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-—Abatractt VVc propose a new method for the solution of the wide angle wave equation in 
three dimensions. In contrast witli standard techniques, our approach requires only solu- 
tions of successive tridiagonal systems in the resulting finite difference parabolic equations. 
The method is basgdrOflTa simple approximation to the square-root operator written for- , 
mally as tfl + X'+ Y where JV is a partial differential operator with respect to the Jepth^  /A' 
z and F is a partial differential operator with respect to the azimuthal angle 0. W^exploit? ^' 
the fact that the partial derivative term Y with respect to the azimuthal angle is small, 
but not negligible, as compared with other terms. It is then natural to replace the square- 
root operator by an expansion which is of order 2 with respect to the X operator, and 
of order 1 with respect to the Y operator. An important feature of this approach is that 
it is then possible to derive a rational function approximation to the exponential of the 
square-root operator which has the property of being stable, and accurate. Moreover, the 
approximation decouples naturally as a product of a (1, l) rational function of X times a 
(1.1) rational function of F. As a consequence, this will result in a solution technique that 
requires only two tridiagonal system solutions per step, namely one for the -Y operator 
and one for the Y operator. Numerical examples are reported that show the wide angle 
capability of this method.       (      
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1. Introduction 

The wide angle three-dimensional parabolic approximation technique developed by 

Siegmann, Kriegsmann, and Lee [5] has been proven capable of handling wide angle prop- 

agation in the vertical plane. This technique is based on a pseudo-differential three- di- 

mensional parabolic wave equation of which the 3-D parabolic approximation introduced 

by Tappert [7] is a special case. Methods for solving this equation have been developed 

by Baer and Perkins [l], using the fast Fourier transform, but are only applicable to small 

angles of propagation. Moreover, these methods do not extend easily to equations with 

variable coefficients and do not handle rigid boundary conditions. 

In order to be able to handle wide angle propagation in the general variable coeffi- 

cient case and to easily treat rigid boundary conditions, we choose the three-dimensional 

parabolic wave equation as the representative equation. The main contribution of this pa- 

per is a method for efficiently solving this equation for wide angle propagations. A solution 

technique for the wide angle 3-D equation has been previously developed by Schultz, Lee, 

and Jackson [4] using the Crank-Nicolson scheme in conjunction with a preconditioned 

conjugate gradient method. Due to the resulting properties of the discretized finite differ- 

ence equations, the operator is neither Hermitian nor positive real. Therefore no effective 

preconditioners are known for this case and the solution adopted by Schultz, Lee, and 

Jackson [4] was to precondition the normal equations. This squares the condition number 

of the initial matrix but gives satisfactory results as far as accuracy is concerned. 

In this paper we propose a new method to solve the same 3-D wide angle parabolic 

approximation. What makes our technique so attractive as compared to other techniques 

is that each integration step requires solving only two successive tridiagonal systems. The 

method resembles alternating direction schemes but its foundation and analysis are differ- 

ent. The main goal of this paper is to derive this method and to discuss its validity and 

accuracy. The theory is then verified by performing two numerical tests, an azimuthally 

independent case and azimuthally dependent one. The first example is for testing the 

accuracy of the method and for determining how wide an angle it can accomodate. The 

second example is for verifying whether angular dependencies are well handled and for 

comparing the speed of our method with the speed of other methods. This last test shows ^7 
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an example where the new method is orders of magnitude faster than existing competing 

techniques. 

2. Background 

The standard wide angle 3-D wave equation was developed using the classical formu- 

lation of the Helmholtz equation in three dimensions, in cylindrical coordinates (r, 6, z): 

d2p     Idp     1 d2p     d2p     l2 o       n i* .> 

In the abo^e equation p represents the acoustic pressure, UQ = CJ/CQ, where CQ is a reference 

sound speed, u = 27r/, in which / is the frequency of the signal and finally n = n(r, 6, z) = 

co/c(r, 6, z) is the index of refraction, in which c(r, 6, z) is the sound speed. 

We make a standard transformation of the above equation by writing the pressure in 

the form [7]: 

p{r,9,z) = u{r,e,z)v{r) 

where the factor v{r) represents a rapidly varying portion of the pressure and «(r, Ö, z) is 

its modulation, a slowly varying function with respect to range.  After neglecting small 

terms, making use of the far-field approximation (^or >> 1)» and rearranging the above 

equation we obtain: 

Brn     „.,   du      1 d2u      d'u      ,  9       v.9 ,     . 
äT + 0-'k°Tr + SW + J? + ln'- 1)l»" " "■ (2-2) 

This new equation has been at the origin of the very successful small angle parabolic 

approximation technique, which consists in simply dropping the second order derivative 

with respect to r and integrating the resulting parabolic equation. 

It is convenient to define the operators: 
» 

*^ + (n*-l), (2.3) 

after which the above equation reads as follows: 

^J + 2iko-£ + kl {X + Y)u = 0. (2.5) 



The standard wide angle PE technique [5] starts by approximately factoring the above 

operator as the product 

9     .,      ., Ä — + i&O - ikoQ ^- + tko + tkoQ (2.6) 

in which 

Q = y/l + X + Y. (2.7) 

Then the operator Q is approximated by a rational function in the form 

_     1 + piX + piY 
1 + QiX + «72^ 

which yields the wide angle 'parabolic' equation 

(2.8) 

To solve (2.9) Schultz, Lee and Jackson [4] applied the Crank-Nicolson scheme in conjunc- 

tion with a preconditioned conjugate gradient method. The application of Crank-Nicolson 

reduces (2.9) to a sequence of systems of difference equations of the form 

(/ - \ArL)un+1 = (7 + ^ArL)un, (2.10) 
2 2 

where 

By multiplying both members of (2.10) by the denominator of (2.11), we obtain a marching 

process, in which a large block-tridiagonal linear system must be solved at each step. 

3. The new approach 

Our approach starts with the equation (2.5) which is formally considered as an ordi- 

nary differential equation with respect to the variable r. For convenience the variables z 

and 9 will therefore be dropped out in the remainder of the paper: u(r) stands for u{r, z, 9). 

Locally, its formal solution has the form 

u(r + Ar) = e-,*oAre.A:oArN/I+T+7t<+(r) + e-t*oAre-iA:oAfVl+X+Ku- ^ 
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where u+(r) and u~{r) are some initial conditions at the range r. The first term in the 

above solution is the outgoing wave and the second is the incoming wave. In this paper 

we will neglect back-scattering and therefore the second term will be dropped to yield the 

local solution 

«(r + Ar) = e-Se6^l+X+Yu{r) (3.1) 

in which we have set 

6 ■ t'^oAr. 

Note that this is also a local solution of the one way wave equation 

ur = {-iko + ikQy/l + X + Y)u 

which is obtained by neglecting the second factor in (2.6). 

The approach taken in this paper consists of approximating the term e
6vl+X+Y jn 

a convenient and accurate manner. An easy way in which this can be done is to use the 

approximation 

y/l + X + Y*l+\{X + Y) 

which yields the standard three-dimensional narrow angle parabolic equation: 

ur = (^Mn   " 1) + ^^ + ^2 ä^j w " Lu- 

This equation was solved by Baer and Perkins [1,3] using a split-step Fourier algorithm. 

However this equation accurately represents only narrow angle propagation. 

To accomodate wide angle propagation, we consider the higher order approximation 

v/T+XTY « 1 + ^Y - gX2 + jK. (3.2) 

The corresponding approximation to the wave equation becomes 

2 8 2 
«, (3.3) «r = ( -ikQ + ikQ 

and formula (3.1) becomes: 

«(r + Ar) = c-V^+^-^+^Mr) (3.4) 



Assuming that n{r,0,z) varies slowly with respect to 9, the operators X and Y are 

rearly commutative, and equation (3.3) yields 

u(r + Ar) = •-*fl(l+iJH*,)«lyii(r) (3.5) 

In the following we seek an approximation of the term 

G{6,X) = esi1+^-h^) (3.6) 

Here, the function G and its approximations should be regarded as functions of the real 

variable X while <5 is an independent parameter. 

The Taylor series expansion of (3.6) about X = 0 is 

52 
G{6,X) = e6 I+I*+J!(T-CH+O(*S)-       (3-7) 

We seek an approximation to the function G in the form 

G(*'x)*e'rni' (3-8) 

where p is a complex number to be determined. 

Writing that the expansion (3.7) is equal to the right hand side of (3.8) up to 0{XS) 

we get the equation 

from which it is easy to obtain p: 
1     6 

) = 

A similar development for the term 

H{6:Y) = e2 

leads to the approximation 

P = -4 + 4 

-AY 

H^Y)*TTW' (3-9) 

with 
6 
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Therefore we get the final expression 

u{r + Ar) = 

This can be rewritten as 

u{r + Ar) = L u{r) 

i-fy 
u{r). (3.10) 

where 

L = LX*LXLY*LY, (3.11) 

in which 

Lxml+fl + ^X,    LY = 1+S-Y, (3.12) 

and where X-* stands for the inverse of X*, the adjoint of X. Equation (3.10) can formally 

regarded as an explicit marching scheme. It can easily be seen that the two operators in 

the denominator of (3.10) are nonsingular because 6 is purely imaginary and X and Y are 

both self-adjoint. In the next section we analyze the accuracy and stability of this scheme 

and in Section 5, we will see how to discretize it and use it numerically. 

4. Theoretical aspects 

4.1. Stability 

The operators X and Y defined earlier are self-adjoint and therefore their correspond- 

ing eigenvalues are real. Since the numerator and denominator of each term between 

brackets in equation (3.10) are the conjugate of each other, a modal expansion of (3.10) 

shows that with respect to each mode, the error induced by the marching scheme will not 

increase exponentially, i.e., the scheme (3.10) is stable. After discretization, the eigenval- 

ues of X and Y will remain real provided boundary conditions are properly handled and 

the discretizations in the numerators and denominators are calculated at the same range r 

(see next section). Under these conditions the scheme is stable. Note that the second part 

of (3.10) is the usual Crank-Nicolson approximation applied here to the term e^'2'Y. 

4.2. Accuracy 

To analyze the local error of the integration scheme (3.10) we must attempt to find 

an estimate of the difference between the operator 

c_Vv/I+X+7 (41) 

6 



and the operator in the right hand side of (3.10). In the following we consider that X and 

Y are two independent real variables. On the one hand, we find after some calculation 

that the second order Taylor expansion of the operator (4.1) is 

e-6e6Vi+X+Y ml + LX + Y) + i{S- 1) [A'2 + 2XY + Y2] + 0{\\{X,Y)\\3)     (4.2) 
2 8 L J 

On the other hand, the second order Taylor expansion of the operator of the right hand 

side of (3.10) is given by 

^i -Kl + i)x' 
i + (J - i)x. 

i+|y 
i-|r 

i + |x+i«-i)^ + i + ir + ^ + .... 

s2 

= 1 + ;(X + Y) + ^-XY + "-{6 - 1)X2 + —Y2 + ... 

The larger terms in the difference between the two (4.2) and (4.3) are 

(4.3) 

-6.6VI+X+Y _ 1 + (W)X = -^Yy-^r2 + o(||(x,r)||3). 6 
4" 

Thus, one can expect good accuracy when Y is very small and X is small. The above 

error is better than an error of the form 0{X2), because the error expression is the product 

of three small terms namely 6,Y, and X. Moreover, we have assumed that the term Y is 

much smaller than the term JVT. 

When using a marching scheme, an upper bound for the global error at some point 

can be derived from the above local truncation error by expressing the error 

e{+1=U>+1-^+1. 

where uJ
h     represents the computed solution at step j a;-d u-'+1 the exact solution ät the 

same point. On the one hand, we have 

«r1=Lhui 

where L/, is the discretization of the operator L as defined by (3.11). On the other hand 

«>+1 = Lh*' + ey 
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where tj is the truncation error incurred at step j. Hence, 

^•i*i**i 

and since the operator L^ is unitary, we have 

iK+1ii<D ^M- 
«=0 

Since the number of steps in range is 0(<5   1), the above analysis shows that the norm of 

the global error ||ei+1|| is 0(A'2). 

5. Finite Difference Solution 

To employ formula (3.10) numerically, we must discretize the operators X and Y by 

central differences and replace the corresponding operators by their discrete analogues. 

However, we first put equation (3.10) in the form 

^..[1+(|_«)jrl -1 
i+(i+£)* ['-M 

-i 

HA (5.1) 

There are several way of rewriting (5.1) exploiting the commutativity of the operators 

Lx and L^ and of Ly and Ly*- The near commutativity of „Y and Y can also be exploited 

to derive alternative formulae. For example we may consider the scheme 

-(|> ^ 
«J+1 = i + (i + f)X l+f. UJ (5.2) 

Although not obvious at first, the above scheme is also unconditionally stable. The reason 

for this is that the corresponding operator L = Lp*Lv*£;fLy is also unitary as is readily 

seen by forming LL* which is found to be the identity operator. The question as to which 

of the various schemes is tc be preferred is certainly worth further investigation but we 

will not pursue it in the present paper. 

Let us denote by A the finite difference approximation of the operator Lx = / + (| — 

|)X and by B that of Ly = I + \Y. Both matrices are tridiagonal with the structure 

indicated in Table 1. 
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Super diagonal Diagonal Sub diagonal 

A (i-f)^ l + (|-f)(n2-l)-2(M)^ U   i)*^a 

B 6   1       1 ..11      1 1 + 2it0V(Aö)2 
6 i    i 

Table 1: Coefficients of the two tridiagonal matrices A 

and B 

When solv ing tridiagonal systems with the matrices A and B it is of interest to know 

whether these matrices are diagonally dominant or not. While the matrix B is always 

diagonally dominant, the situation is more complicated for A. In the simple case where 

n{r,9,z) = 1, the matrix is conditionally, i.e., for h > l/k0, diagonally dominant in the 

sense that the modulus of the diagonal term is greater than or equal to the sum of the 

modulii of the off-diagonal terms in the same row. The more general case where n is 

arbitrary is not easy to analyze. 

The scheme (5.1) becomes 

UJ+1 = A-*AB-*BuJ. (5.3) 

Note that we evaluate the matrices .4 and B at mid distance between uJ+l and uJ, i.e., at 

range r + Ar/2. This is in order to ensure that the operators A* and A, as well as B* and 

B, form two pairs of operators that are conjugate of each other. This choice will guarantee 

stability a* was seen in Section 4.1 

To perform one step of (5.3) we must start by computing wJ = Bui and solve the 

tridiagonal system 

SV+1 = w*. 

Then we compute w^ = A~1A*uJ+1 and solve the tridiagonal system 

A*uJ+1 = AJ. (5.4) 

Thus there are two multiplications of a tridigonal system by a vector and two tridiagonal 

systems to solve at every step. 
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6. Test examples 

The numerical scheme (5.3) has been implemented into a research computer code 

which is used to predict wave fields at required ranges. We used the marching scheme (5.2) 

instead of the original scheme (5.1). The resulting values are compared against a known 

solution to check the validity as well as the accuracy of our scheme. All computations 

are made on the VAX-ll/780 computer using single precision complex arithmetic. We 

present two examples. The first one is an azimuthally independent case and the second 

is an azimuthally dependent one. The input parameters for both examples are shown in 

Table 2 for convenience. 

6.1. An azimuthally independent case 

To start the computation, the initial field is taken from the following formula borrowed 

from [6]: 

00 

u(r, ,.) a -1- 52 •»»» (**0^/l - aj.j sin (kg^l - a|j H^ikajr). (6.1) 
* j=0 

where ay satisfies 

We are concerned with the propagating mod0« namely those for which ay remains real. 

In the computation the sector is divided into 10 portions. The two extreme sectors 

represent sector boundaries where the solution is supplied from the exact solution. The 

inner sectors, because of the azimuthal independence have the same initial values. It is 

expected that at different sectors at the same depth, the computed wave fields should be 

identical. We examined this hypothesis. Another verification we did was to look at the 

size of the angle of propagation. To simulate this we took the mode index j to be 9 so that 

we could obtain an angle of propagation of around 52°. Our method could handle such a 

wide angle without any major difficulty. 

Our results are summarized in the two tables 3 and 4. The first table shows the 

accuracy achieved and the second shows the angle of propagation for the case of 8 modes 

and 9 modes. In the tables the values appearing in the first row represent the calculated 

10 



Input parameters Problem 1 Problem 2 

Source 300 m 10 m 
Initial range 100 m 10 m 

Source frequency 20 Hz 20 Hz 
Bottom depth 400 m 20 m 
Sound speed 1500 m/s 1500 m 

Reference sound speed 1500 m/s 1500 m/s 
Receiver depths 156 m, 312 m 5 m 

Propagating sector -24,+2^ -5,5 
Depth increment 4 m 0.2 m 
Range step size 1 m 0.001 m, 0.25 m 

Angular increment 0.5° 1° 
Maximum range 1 km 10.5 m 
Surface condition pressure release Dirichlet 
Bottom condition Rigid Dirichlet 

Size of matrices .4 and B 1000 1000 

Table 2: Parameters for the two test problems. 

9 
«rM — 2 degree +2 degree 

156 -0.59261E-04 
-0.59224E-04 

0.20995E-04 
0.20954E-04 

-0.59259E-04   0.20995E-04 
-0.59224E-04   0.20954E-04 

312 -0.96924E-04 
-0.96908E-04 

0.34283E-04 
0.34287E-04 

-0.96924E-04  0.34285E-04 
-0.96908E-04  0.34287E-04 

Table 3:   Wave field results at 1 km range:  accuracy 

test. 

values by our new method, the values in the second row are the exact solutions. The first 

columns are the real parts and the second columns are the imaginary parts. 

6.2. An azimuthally dependent case 

This ssecond example deals with a iow freqiiency propagation in shallow water. To 

construct an azimuthally dependent case, we modified a reference solution tested by Chan, 

Shen and Lee [2] and used the same exact input parameters to derive a system of equa- 

tions with the same dimension in order to compare the computation speed. An exact 

solution, after the modification, to the wide angle 3-dimensional wave equation (3.3) can 

11 



Mode j 
Angle size 
(Degrees) 

Results 
Complex values 

Results 
dB 

6 31.03° (0.13749E-04,-0.23722 E-05) 
(0.15624E-04,-0.12743 E-05) 

97.107 
96.095 

7 37.54° (-0.96649E-05, 0.25102 E-05) 
(-0.68974E-05, 0.23300 E-05) 

100.013 
102.757 

be expressed by 

Table 4:   Wave field results at 1 km range:  angle of 

propagation measurements. 

u[r,e,z) = e-^eim0eim2/{2kor) (6.3) 

The expression is used to generate the initial field. The input parameters used are shown 

in the second column of Table 2. The surface condition is taken to be 

u{r,e,0) = eim6eirn2^2ko^ (6.4) 

and the bottom condition was 

u{r,9,zmax) = e-^maxeim6eim2/{2kor) (6.5) 

The scalar f2 in Equation (6.5) is chosen to be 2Ä;o. The angular modal number m is taken 

to be 3. To obtain an accuracy of 10_2, as in [2], their methods need to take a range step 

size of 0.001 m. 

We tested two different step sizes: 0.001 m and 0.25 m. The experiment with the first 

range step-size is only done for a comparison with reference [2]. We should point out that 

such a small step size for the 5-point method of Chan, Shen and Lee is necessary because 

the scheme is explicit. In this computation, we found that our method was approximately 

1.6 times faster than the 5-point explicit method of [2], and 17 times faster than Crank- 

Nicholson of [4]. Note that the Crajik-Nicholson of [4] uses a stable version of the conjugate 

gradient method applied to the normal equations, called Craig's method. Using the second 
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Method Ar Relative error CPU time (h-m-s) 

Crank Nicolson 
5-Point Explicit 

New method 

0.001 
0.001 
0.001 

(0.18E-01,-0.12E-01) 
(0.10E-01,-0.11E-01) 
(0.26E-02,-0.1lE-02) 

03-47-10 
00-21-35 
00-13-12 

New method 0.25 (0.22E-02,-0.1lE-01) 00-00-09 

Table 5: Results for Problem 2. 

step size of 0.25 m, we found that the same accuracy could be achieved by our method as 

with Ar = 0.001 but the excution was much faster. Here, our method is approximately 160 

times faster than the 5-point method and 1600 times faster than Crank-Nicolson. Results 

are displayed in Table 5. 

7. Conclusion 

Obtaining solutions to ocean acoustic propagation in three dimensions can be very 

complicated and computationally expensive. Moreover, it is now becoming the general 

consensus that two-dimensional models are no longer sufficiently representative. Efficient 

methods and clever implementations for dealing with three-dimensonal wave propagation 

are therefore very important. 

The new method proposed in this paper is not only a fast and accurate method, but 

also has the property of being as representative a model as other well known existing 3-D 

models. Our numerical results have demonstrated that the method is efficient and have 

confirmed the theory that it is also stable. 

Our new approach is based on considering a form of the 3-D wave equation as an 

ordinary differential equation with respect to range. Then a formal expression of the 

solution is written in terms of the exponential of the square-root of some operator. The 

artifice used in this paper is to approximate this exponential in a clever way by the product 

of two rational functions of the type (1,1). As a consequence the resulting ODE-integration 

process, requires only two successive tridiagonal system solutions. The theory shows that 
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our method is unconditionally stable. Moreover, it is so accurate that larger step-sizes can 

be afforded resulting in substantial savings in computational times. This has been widely 

confirmed by the numerical tests. Moreover, angles of propagation as wide as 31 dgrees 

have been accurately handled. 

Acknowledgement. The authors would like to thank George Botseas for his technical 

assistance in developing the research computer code and for producing the numerical results 

in this paper. 
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