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SECTION I

INTRODUCTION

For over 140 years, fluid mechanics has used the Navier-

Stokes equations (1:297) to describe fluid movement. Yet, uatil

the arrival of large computers in the last five to ten years, it

had been impossible to solve the Navier-Stokes equations in

their complete form. In the past, workers obtained analytic

solutions to simpler equations that were simplifications of the

complete Navier-Stokes equations. For example, a simplified

form of the Navier-Stokes momentum equations known as the

Prandtl boundary layer equations were derived by assuming

incompressible, two-dimensional flow. The Prandtl equations

(and a derivative, Blasius' equation) enjoyed tremendous success
-a

in predicting the characteristics of laminar boundary layers

(2:142).

A Now that computers permit solution of the complete Navier-

4"a Stokes equations, workers still seem to prefer other forms of

the Navier-Stokes equations than the basic primitive variable

(pressure and velocity) form. For example, researchers have

often recast the equations in a vorticity formulation or assumed

spatial periodicity of the solution in order to obtain a

solution that predicted vortical structures, the building blocks

of turbulent flow. The favoritism given vorticity formulations

is particularly interesting considering the picture of

a•1



turbulence emerging from the laboratory. Experimental

observation has shown the vital role vortical structures play in

turbulence. Although much of the rich vortical structure of

turbulent flow appears to be born from inviscid interaction

between different regions of fluid, viscous effects play a role

by creating unstable velocity gradients in some cases and

attenuating velocity gradients in other cases (3).

Despite this involvement of vortical structures and viscous

influences in turbulence, the standard constitutive relation for

stress does not admit the influence of vorticity. This state of

affairs exists even though vorticity is one of three basic

isotropic motions about a point (the other two being deformation

and dilatation, both used in the standard constitutive

relation). Heuristic and specious aiguments have been presented

(2:50 and 4:143-144) to justify omitting vorticity from the

constitutive relation. For example, one argument assumes the

stress tensor to be symmetric and then proceeds from this to

"prove" that vorticity can not contribute to stress. This

argument assumes the result and then uses this to prove the
result. It is logically incorrect. This heritage of omission

seems to stem more from an assumption Stokes made in 1845

(1:289-290) rather than from any rigorous proof of the symmetry

of the stress tensor. Stokes simply assumed that vorticity did

not influence viscous stress.

This paper will show that, by retaining the effect of

vorticity on stress, a stress tensor can be obtained that has

2
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intuitively appealing predictions of stress and a "different."

behavior in vortical flows or, more generally, in regions where

shearing fluid is turning away from the higher speed fluid. In

particular, the vorticity-influenccd stress tensor is

asymmetric, and, by diagonalizing this stress tensor, the

principal stresses become complex in these regions. A simple

one-dimensional linear analysis using this complex principal

stress suggests a dispersive or phase shift effect in vortical

regions. Computer "tbought" experiments comparing the behavior

of the present vorticity-influenced stress tensor and the

classic Stokesian stress tensor show a small difference in fluid

behavior in a low-speed free shear layer.
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SECTION II

THEORY

1. CLASSIC DEVELOPMENT OF STRESS TENSOR

The logical starting point for the classic development of

the stress tensor is Cauchy's equation of motion, equation (1).

D u. + = iGk (1)

Dt

Equation (1) describes the change in momentum of a point in aI fluid due to body and surface forces (stresses). The Einstein

summation convention is used. The subscripts i, j, p, and q can

each take on the values 1, 2, or 3. Commas in the subscripts

p
such as u denote differentiation (i.e. y- ). The left-hand

ppq q

side of (1) describes the acceleration of the fluid while the

right-hand side of (1) describes the forces exerted on the

fluid. D is the material (sometimes called substantial)Dt

derivative, p is the fluid density, ui is the ith velocity

component, G. is the component of a body force (e.g. gravity),

and aki is a component of the stress tensor. The component,

4



Oki' is a generic stress that must be defined with a

constitutive relation appropriate for the fluid of interest.

This paper will focus on the nature of aki.

Stokes made two assumptions when he presented his theory of

stresses caused by velocity gradients. "That the difference

between the pressure on a plane in a given direction passing

through any point P of a fluid in motion and the pressure which

would exist in all directions about P if the fluid in its

neighborhood were in a state of relative equilibrium depends

only on the relative motion of the fluid immediately about P;

and that the relative motion due to any motion of rotation may

be eliminated without affecting the differences of the pressures

above mentioned" (1:289-290). Stokes italicized these words to

emphasize that they were assumptions only.

Stokes first assumption effectively says

a .. = B.. u (2)ij ijpq p,q

where a.. is the stress tensor, B.. is a fourth order tensor,Ij ijpq

and u is the fluid velocity gradient tensor.
p~q

Equation 2 t i that any possible first-order velocity

gradient could affect any of the nine stresses in a...ij

Unfortunately, B.. has 81 components, so Stokes was very
Ijpq



interested in simplifying the situation in order to generate a

more manageable constitutive relation. lie was able to do this

by assuming that the fluid "looks the same" (is isotropic) no

matter which way one looks in the fluid. This requires that the

components of B.. do not change under rotation to a new

coordinate system. With this requirement in hand, the 81

components reduce to three. The general fourth order tensor

(5:34) that results from this isotropy assumption is

.. . .6 + '(6* 6. + 6. 6. p) + i~6 .- 6. 6.) , (3)

Bijpq =Xij pq ip jq iq p +(ip jq iq jp

where 6 is the Kronecker delta, X is the second viscosity, 1A is

the shear (first) viscosity, and v is the vortex (third)

viscosity.

Equation (3) "contains" three basic movements about a

point. They are 0latation, deformation, and vorticity. Figure

1 shows the correspondence.

6
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ij pq ip jq iq jp ip jq- iq jp

Dilatation Deformation Vorticity

Figure 1, Basic Movements from Isotropic Stress Relation

This correspondence might become a little clearer upon

multiplying B.jpq by upq

(X 4 21)ul,l+ (O + ))ul,2 + + V)Ul,3 +

X(u2,2+u3,3) (1A - V)u 2 ,1  (,U - L)u 3 ,1

(,a - V) ul+ (X + 2p)u 2 2 + (p + v)u2+

aij= (i V 4 v)u 2 , 1  X(ul,1 + u3, 3 ) (U. - LI)u 3 , 2  (4)

(1A- v)Ul,3+ (/P - V)u2+ (X + 2,)u 3) 3

"(1 + 1/)u 3 , 1  (As + ) u3 , 2  X(ul,1+ u 2 , 2 )

7



In relation (4), s is multiplied by deformation-like groups

(Ui,k+ Uk), X is multiplied by dilatation, u ii, and v is

multiplied by vorticity-like groups, (ui,k- Uk,i). Strictly

speaking, deformation is D i- (Ui,k+ u k,i) and vorticity is

W - (ui,k- Uk,i). Stokes assumed away the effects of

vorticity so he effectively set v to be zero. (We shall later

retain v ) At this point he had only two surviving constants: X

and p. When he summed the diagonal components of (4) (the

"trace"), he obtained (3X + 2p)u i,i where the quantity (3X + 2p)

is commonly called the bulk viscosity, r (7:4). He reasoned

that the average of the trace should simply be the local

thermodynaumic pressure, so he set X = 1- A in order to have
3

1 (3X + 2p)u ii= 0. In this way, he reduced the 81 coefficients
3 ,

to just one (is).

In addition to these relative movement stresses, a fluid is

also considered as having a pressure. Pressure can be added to

the general stress tensor by adding in -P5.. so that relation

(5) results.

~ij= -P6ij+ #,(uij+ uji) - 2 6 ijukk (5)

8
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Consequently, in the absence of local fluid velocity gradients,

the stress predicted is simply the pressure. Modern textbooks

that use equation (5) as their constitutive relation for

predicting stress in a fluid include one by White (6:69-70) and

one by Schlichting. (2:64)

Not everyone subscribes to Stokes' hypothesis that

X _2 y, though. If we were to believe that the average of the

trace should include not only the pressure, but also the stress

due to dilatation, we could refrain from setting X -- p and
S~3

write

0 .i P6ij+ /(uji,j uj,i) + kljUk,k (6)

The average of the trace of ti-is tensor would be -P + Xukk"

Thompson (7:20) is one modern textbook author who uses this

form.

The value to be assigned X has been vigorously debated for

many years. Experiments in acoustical streaming and sound wave

attenuation support the idea that X is not negative at all but

positive and, in some cases, larger than the shear viscosity, s,

by two orders of magnitude. (7:21) To complicate matters, X

appears to be frequency dependent. The experimental procedures

themselves are controversial. See Karim and Rosenhead (8),

Rosenhead (9), or Truesdell (10:228-231) for a review of the

Sor
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basic issues. Modern-day computational fluid dynamicists appear

22

to ccet te iea hatk =- 2 without question. Use of

_2 probably does not make any difference for most flowsS 3
since the dilatation or compression rates are low. For acoustic

motions and the interior of shock waves, though, the dilatative

stress can be significant (7:21).

The arguments about the second viscosity coefficient aside,

there remain a few observations about the Stokesian tensor that

will be useful for later discussions in this paper. Because ,2

the Stokesian assumption of v = 0, the resulting stress tensor

is symmetric. Given this symmetry, linear algebra enables one

to find an orientation for a small fluid cube -hat will cause

all the shear stresses on the faces o# th- . to disappear,

leaving only normal stresses. This is really an eigenvalue

problem where the normal stresses in the diagonalized stress

tensor are called the principal stresses. For the symmetric
tensor, these principal stresses have some intuitively

attractive properties, namely, they are always real and mutually

orthogonal. One unsatisfying result, though, is that the

symmetric tensor predicts shear stresses on faces of a small

fluid cube even with no shearing rate of strain parallel to that

face. Figure 2 makes the point. Imagine flow over a flat

plate. In laminar flow, the velocity gradient is primarily

U, 2 . A shear stress should form on the top face (x 2 or the A

10



face), and the symmetric stress tensor predicts this. What is

niot aL a;l cl]ear iti wily a shear stress wolid form on the side

face (x1 or the B face), but this is what Stokes' symmetric form

predicts.

Another unsatisfying consequence of the v = 0 assumption is

that, although isotropy shows that there are three basic types

of motion about a point (Figure 1), the Y = 0 form ignores one

of them, the vorticity. These objections will surface again

1% later in the paper in comparing the behavior of a vorticity-

influenced stress tensor with the Stokesian tensor.

,X1

Figure v, z = 0 Stress Square

Before leaving Stokes' form, though, here is its x

Smomentum equation for future reference. It is formed by

"substituting (6) into (1) and ignoring body forces.
V.
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Du

PDt - ,I 1+ 21Uu, /S 3 ,2 ,2 2 ,1,2
1

(

:• ~ ~ 1 •Ul ,+ "u3,,

2. DEVIATION FROM CLASSIC THOUGHT: VORTICITY CONTRIBUTION

TO STRESS

Let's return now to the role vorticity could play in

viscous stress. For a long time, vorticity has seemed involved

somehow with turbulence. A few examples illustrate this point.

0. Reynolds, generally credited with conducting the first

scientific study of turbulence, noted in 1883: "On viewing the

tube by the light of an electric spark, the mass of colour

resolved itself into a mass of more or less distinct curls,

showing eddies.. 11(11: 942). Van Driest and Blumer (12)

correlated a "vorticity Reynolds number" with laminar-turbulent

transition results for a flat plate. Results were excellent,

but White dismissed it by saying "Since the concept of a

critical vorticity Reynolds number is obviously questionable and

not related to any fundamental rigorous analysis, we can regard

the van Driest-Blumer correlation simply as an excellent

semiempiricism" (6:435).

Contemporary descriptions of turbulence also invoke the

role of vorticity. Morkovin (3:0.01 - pl) observes: "the

12



continuously distributed vorticity in the base shear layer

undergoes successive instabilities, i.e. transformations into

increasingly more complex spatial and temporal patterns of

vorticity concentrations." Dimotakis (13) has succinctly

defined turbulence as "vorticity fluctuations."

Researchers trying to directly compute turbulence appear to

prefer non-primitive variable formulations of the Navier-Stokes

equations (e.g. vorticity-stream function). Fasel comments:

"In reviewing literature on numerical simulations of viscous

incompressible flows it is noticeable that formulations

involving a vorticity-transport equation, rather than the

primitive variable formulation, are preferred. The unpopularity

of the u, v, p system is a result of numerable unsuccessful

attempts in applying it to calculations of viscous

incompressible flows" (14:9).

With all this attention focused on vorticity in order to

understand turbulence, it's only reasonable to return to the

constitutive relation Stokes developed for the Navier-Stokes

equations and see how vorticity might be involved. We will

deviate from Stokes' line of reasoning by allowing the vortex

viscosity, v, to survive the derivation of a constitutive

relation. The first issue, on taking this course, is to choose

a plausible value for v.

One might choose v to be the same magnitude as u. In this

case, according to relation y = z/ or = -v. This says that

13
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vorticity, w ij= (ui.j- u. i), causes stress of the same

1

magnitude as deformation, D=ij (uij+ uj,i). This seems a

reasonable choice because both vorticity and deformation contain

the same shearing gradients. What follows is a discussion of

the implications of these two forms (p = v and u = -v) and a

comparison to Stokes' form (v = 0).

As Figure 1 shows, the stress tensor must consider the

effects of dilatation, deformation, and vorticity to stay

perfectly general in its isotropic form. The il = ,s form of aij

appears an attractive choice because equating IA and v says v and

p behave in similar ways. Unfortunately, on replacing v with j

in (4) and writing out the xI momentum equation, the U 1 ,2, 2 and

U1 ,3,3 terms are seen to be missing.

Du1 _

PD = -1 (ukkk 1+ 2sul' 1 + 2tu 2, 1 ,2 + 2pu 3 1 3  (8)

The u, 2 2 term is the term surviving from the classic Navier-

Stokes equations when neglecting small terms to obtain the

Prandtl equations for two-dimensional, laminar boundary layers.

The Prandtl equations have been extremely successful in

predicting characteristics of laminar boundary layers. In

particular, the Blasius equation, a simplified form of Prandtl's

equations, has convincingly predicted the laminar boundary layer

14



velocity profile (2:142). The absence of the u1,2,2 term for

the v = # form is grounds for summarily dismissing it from

further study.

That leaves the other possibility, that of v = -s. Some

very interesting results stem from this case. By replacing v

with -p in (4), a -- form" of the stress tensor results.

(X + 2p)u 1 1 +

"X(u2 , 2 +u 3 , 3 ) 2jsu2 ,1  2#u3)1

(X + 2u)u2,2+

aiu 2#ul,2 1(Ul,l+ u 3 , 3 ) 2ju 3 , 2  (9)

(X + 2u)u3 , 3 +

2jsu1,3  2u 2,3 )(Ull+ u 2 , 2 )

By substituting (9) into (1), the asymmetric stress tensor

momentum equations can be written as following.

Du.pD P.+ (Xukk) i+ 2 pui kk (10)

Dt,

is



An x momentum equation can be obtained from equation 10 by

setting i=1. Then, by expanding the 2 pUi,k,k term, the

following equation results.

Du 1

D u -P + X+ 
A uDt - (1Ukk) 1+ 2pUjl 1 1 + 2jsuI 2 2 + 2su, 3 3  (11)

This p = -v form of the x 1 momentum equation is somewhat

different from the v = 0 form of the x momentum equation

(equation 7) although it has similarities. Equation 7 contains

two more viscous terms than does equation 11. Also, the last

two viscous terms in (11) have factors of two not present in the

corresponding terms in (7).

These differences virtually vanish in the case of

incompressible flow, though. By applying the incompressible

continuity equation (ui'i=O) to (7), the following equation

results.

Du1
Dt_ - + /•u l+ /su 1 2  + pu 1 3 3 (12)

16
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By applying the ictiewpressibility assumption to (11), the

following equation results.

Du 1 _p + 2,u + 2jsu + 2Aul, (13)I._ D-t - ,II,I 1,2,2 1.3,3

As the reader can see, equation 13 has identically the same form

as equation 12. The only difference is in the factors of two in

the viscous terms in (13). For practical pnrposes, this is no

difference at all because the shear viscosity, u, is obtained

experimentally with devices that assume the momentum equation

looks like (12). In other words, the coefficient, p, in (12) is

an arbitrary coefficient just as is the coefficient, 2p, in

(13); the coefficients are simply assigned values based on

experimental results.

Note that one can proceed further from (13) and obtain

Prandtl's boundary layer equations through the usual arguments.

3. IMPLICATIONS OF THE s = -i STRESS TENSOR

The s = -v assumption has intuitive advantages over Stokes'

w = 0 assumption. Consider the drawing of a small fluid square

for the i = -v form (Figure 3). The square is in a laminar

boundary layer.

17
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12

Figure 3, -v Stress Square

This form predicts no stress on an adjacent pace given that the

only rate of strain gradient is out the x2 face. This state of

affairs appears to satisfy causality. Equation 11 says that

viscous forces in the x direction are simply due to the total

diffusion of xI momentum through the faces of the cube.

Alternatively, they describe how rapidly x1 momentum arrives or

leaves a small region of fluid. So, like heat or self diffusion

of gases, the transport of molecular momentum in a given

direction is simply proportional to the second spatial

deriv4'Ltive of the momentum in that same direction. It is not

simultaneously dependent on velocity gradients out of other

18



faces of a fluid stress cube as Stokes hypothesized when he

assumed v = 0.

Another intuitive advantage of the j = -v tensor is that it

accounts for all three basic movements about a point (Figure 1),

not just two of them as with the v = 0 form. The • = -v form,

then, would seem to give a more complete accounting of the

viscous stress in the fluid as a result.

Although the stresses for the p = -v stress tensor have

this intuitively satisfying behavior, the # = -P stress tensor

raises some questions about the proper interpretation of the

principal stresses. But, before elaborating on this, here is a

little background about the principal stresses.

Stokes showed that the v = 0 stress tensor could be

diagonalized to create only normal stresses by rotating a fluid

cube to a particular orientation. See Figure 4.

Figure 4, Normalizing a Stress Cube By Transforming
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In a way, then, he envisioned viscous effects simply as

pressures, and, in fact, Stokes used the word, "pressure," to

describe viscous stresses. He seemed to be addressing the point

of view of hydrodynamics, a point of view that recognized

thermodynamic pressure but did not recognize viscous forces.

indeed, his interpretation of viscous effects as stresses (i.e.

forces per unit area) seemed to stem from his hydrodynamic

heritage.

With this interpretation of viscous effects as pressures in

mind, note that one can also diagonalize the p = -P stress

tensor. However, under some conditions, the resulting principal

stresses become complex, i.e. contain real and imaginary parts.

This may be shown with the two-dimensional, incompressible form

of the A = -vi stress tensor.

1PI,1 2y u 2,1

*a. .= (14)
S 13

2yu 1 , 2  2Au2 ,2

By solving for the eigenvalues of (14), one can learn &omething

about the behavior of the principal stresses. By factoring out

the common quantity, 2,u, and introducing 7, the eigenvalues, the

following results.

%'.
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U1,1- 7 u 2 1

o. .-J2,u (15)

U 1 , 2  u2,2- "7

By Cramer's rule for the determinant, we obtain the

characteristic equation.

(Ul,1- 7)(u 2 , 2 - 7) - Ul,2u2,1= 0 (18)

Solving, we find the eigenvalues to be:

7 =21 [_(ul'1+ u2,2) _+ [(Ul,1+ u2,2) _

4(ul 1 U2 , 2 - U1 ,2u2, 1)]
2 ] (17)

The corresponding eigenvectors are

-u 2 1  -u 2 2

U1,1- and U 1,2

) ,l1 1
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The incompressible flow assumption reduces (17) to:

1

7 = ±(U 1 ,2 u2, 1 - ul,1  (18)

One can easily see that the eigenvectors corresponding to these

eigenvalues will or will not have complex components depending

on whether or not the eigenvalues are imaginary. Equation (18)

shows that the eigenvalues will be imaginary if

U1 ,1 U2,2> U1 ,2U2, 1 . We call this condition the "phase shift

criterion."

The complex nature of the principal stresses suggests that

they could act like a complex forcing function in regions of the

flow where the phase shift criterion was met. The imaginary

component of the principal stress suggests a dispersive effect

during which different wavelengths might be forced to move at

different speeds. Unfortunately, the study of such an effect

should be done in at least two dimensions for otherwise the

principal stresses could not be complex. This fact complicates

the analysis considerably. In three dimensions, the problem is

much worse because many combinations of flow gradients could

create complex principal stresses and the magnitude of the

imaginary part varies with both the sign and magnitude of the

velocity gradients.

Despite this intractable situation, one fact surfaces about

complex principal stresses in two-dimensions. By inspection,

22
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equation 18 says that the principal stresses will be complex

whenever a shearing flow turns away from the higher speed flow

(unless normal velocity gradients, u 1 )1 and u2,2 for the two-

dimensional case, dominate). This would typically occur in a

vortex. A detailed mapping of regions where the phase shift

criterion is met in a two-dimensional free shear layer will

appear later in the paper in the description of numerical

experiments.

In addition to this descriptive approach to understanding

the consequences of complex principal stresses, one could also

study a one-dimensional linearized equation similar in some

respects to the momentum equations but with a complex forcing

function. Although much is lost in linearizing the partial

differential equation, the linearized system still might offer

some insight into how a complex forcing function would affect

the fluid.

The one-dimensional, inviscid scalar convective equation

serves as a starting point for such a study.

8u +3u 0
bt bx
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Here, u is velocity, t is time, c is the wave speed, and x is

postion. Assume that u = ete ikx is the general solution to

(19) where a is a complex number a. + ib, t is the time, i is

I

(-1)2 , k is a wavenumber, and x is the position. By

differentiating the assumed solution and substituting into (19),

the following solution is obtained.

U =e ik(x-ct) (20)

This solution says that all wavelengths convect at the same wave

speed so that the starting u in x is simply shifted a distance

ct in time t.

Now let's change (19) by modeling the effect of complex

principal stress. It's already apparent that at least two

dimensions are required to have principal stresses that are

complex, but we suggest as a crude model the following equation.

au 8u u
+ c (gr+ igi) 3 (21)

8t ax 2

Equation 21 is the same as the one-dimensional scalar convective

equation (10) with the exception of the appearance of a viscous
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type term with a complex coefficient. In general, gr+ igi will

vary with time, but it is held constant for the current problem

to simplify the analysis.

Assuming the general solution of (21) to be u = eate ikx,

differentiating this assumed solution and substituting the

derivatives back into (21) results in the following solution.

u=e _k2 grt e i[k(x-ct-kgit)] (22)

To the extent that equation (21) captures some of the dynamics

of the full, multi--dimensional partial differential equations,

(22) suggests that an imaginary component in the principal

stress would have a dispersive or phase shift effect. This is

so because of the appearance of an additional term (-kgit)

subtracted from x-ct. For comparison, see equation (20).

In summary, here are the consequences of the # = -v form of

the stress tensor. By accounting for all three types of basic

motion about a point, we find an intuitively appealing diffusion

of linear momentum through the different faces of a small fluid

cube. Stresses arise on a given face of a cube only if there

exists a shearing velocity gradient when viewed out of that

face. Upon diagonalizing this stress tensor, the principal

stresses are shown to be complex only under a condition called

the phase shift criterion. This complex behavior arises when
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the velocity gradients turn a shearing flow away from the higher

speed flow such as would occur in a vortex.

4. OBJECTIONS TO ASYMMETRIC (s = -w) STRESS TENSOR DISCUSSED

There probably would be objections to the idea of an

asymmetric stress tensor although it accounts, as shown, for all

three basic types of motion about a point and not just the two

proposed by Stokes. One objection is the argument that material

indifference is violated. Material indifference heuristically

requires that the stresses predicted in the fluid do not depend

on the observer's motion (5:191). In the case of the p =

stress tensor, observer rotation would impress a kind of solid

body rotation on the fluid with the vorticity contributed by the

observer's rotation everywhere equal to half the rate of the

observer's rotation. Since the p = -v stress tensor predicts

that vorticity will contribute to stress, a rotating coordinate

system (rotating observer) will create stress under this model.

This problem would disappear by specifying a non-rotating

coordinate system, but this isn't really necessary as will be

shown later.

If one considers coordinate system rotation simply as a

time rate of change of a coordinate system, some inconsistencies

in the material indifference argument appear. Take for example

the dilating coordinate system that transforms according to the

equation x?= cx. where c is a constant speed If the x.
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coordinate system had a velocity field of ui= cxi , then an

11

observer in the x1 system would see a dilatation of 3c, while

the observer in the x! system would see a dilatation of zero.
1

Following the material indifference argument, one must. exclude

dilatation from the constitutive relation because the stress due

to dilatation would not be the same for all observers just as

was the case with the rotating coordinate system.

Similarly, a coordinate system that transforms according to

a simple shearing motion, say x' = cx with a velocity field in
a1 2'

the unprimed system of u1 = cx 2 would have an observer in the x

coordinate system seeing the shearing motion, but an observer in

the x! system would not see it. This shearing would give a
I

deformation, D1 2 , of 1 c. Again, the material indifference
2

argument would find that the stress seen by the two observers

would not be the same because of the different values of

deformation seen in the two systems so, as a result, deformation

would have to be excluded from the constitutive relation.

This line of thought, then, would lead to the conclusion

that all three basic types of isotropic motion (vorticity,

dilatation, and deformation) would not be permitted in

predicting fluid stress. Fortunately, there may be an escape

from this dilemma. All the distorting coordinate systems

mentioned above have a common behavior. They all have a

homogeneous motion contribution in the coordinate system. In
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the case of rotation, the system has a spin rate everywhere the

same. In the case of the dilating coordinate system, the system

has a dilatation rate everywhere the same. In the case of the

shearing coordinate system, the sybu i has a shear rate

everywhere the same. Since viscous effects are thought to

manifest themselves as surface stresses, the divergence theorem

says that only gradients of these stresses will create a net

force on a region of fluid. In the three coordinate systems

just described, the gradients of motion (due to coordinate

system distortion rates) would all be zero because the system

motion is everywhere the same. Consequently, a better way to

approach the issue of material indifference when building a

constitutive relation for fluid stress would be to admit

"motions" due to tinie rate of change of a coordinate system as

long as the contribution was the same (i.e. homogeneous)

throughout the system.

Another objection to an asymmetric stress tensor is the

idea that a small fluid cube under asy ..atric stress would spin

infinitely fast. Supposedly, the think:ing goes, as the cube

becomes smaller, the surface area decreases as the length

squared while the volume (and the mass) &dcreases as the length

cubed. Therefore, the shear stress has progressively more

influence and, in the limit, the cube would spin infinitely

fast.

The fallacy in this argument is in the assumption that the

fluid is a continuum. This assumption is false. As the
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hypothetical cube becomes smaller and smaller, eventually,

individual molecules are recognized colliding in the cube and

leaving or entering the cube, contributing or acquiring linear

momentum from the fluid in the region. The continuum

differential equations do not recognize these facts because they

profess to be valid at each infinitesimal point with any point

divisible into an arbitrarily smaller point. This is simply not

true in a real fluid, yet the continuum line of thought induces

one to visualize a small cube of continuum substance that will

spin if torqued. Even if one begins to consider individual

molecules, continuum thought may persist by making one believe

that an asymmetric stress on a small "cube" of molecules would

have to set all the molecules accelerating in spin to balance

the torque applied. But even this viewpoint does not seem

reasonable if there is no preferred form of collision between

molecules in a region of shear that would set them spinning

preferentially with a certain spin vector.

Another comment about continuum thinking is appropriate.

Continuum theory prohibits two points in the continuum from

mapping into one point or vice versa. Yet this is effectively

just what is happening when molecules from two different regions

of fluid diffuse into the same region. This is after all how

diffusive transport of momentum and energy is possible. The

viscous "stress" arises only by diffusion of individual

molecules through the different faces of the arbitrarily defined

cube. Hence, it. seems unreasonable to apply a continuum
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argument to justify what is a non-continuum phenomenon. There

is no inherent ability to spin our hypothetical cube, because

the cube merely consists of a box that happens to contain a few

molecules just passing through and occasionally suffering a

collision.

In addition to the above discussion, the reader may find

the work by molecular dynamicists useful in considering the

utility of material indifference. Molecular dynamicists

directly simulate the kinematics of large numbers of molecules

with computational techniques, and a summary of their misgivings

abouL material indifference can be found in Evans and Hoover

(15:259-260).

5. WHICH STRESS TENSOR IS BETTER?

Inevitably, the philosophical arguments used to justify one

mathematical model over another are driven by the conclusion, in

many cases heuristic, that one already has in mind. The real

test comes when the models are compared with observations of

nature. Unfortunately, many of the mathematical models, chiefly

the non-linear ones, have defied solution until the arrival of

large computers able to solve them in a discretized analog form.

It now looks attractive to compare non-)inear model predictions

with nature by solving the non-linear systems on a computer.

Oae attractive possibility for such a comparison would be

to use molecular dynamics. With a powerful enough computer,
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large enough systems of molecules could be simulated that could

perhaps answer the question of how best to relate the change in

momentum of a region of fluid to mean velocity gradients. The

reader is referred to Evans and Hoover (15) for information on

progress in this area.

In the present work, however, the computer is used to solve

the continuum equations and thereby compare the behavior of the

two stress tensors. In this way, the computer can be considered

ab a "Gedankenversuch" (thought experiment) machine.
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SECTION III

COMPUTER EXPERIMENTS

1. Problem Setup

This comparison between the stress tensors was done by

computing a free shear layer using a two-dimensional, time-

accurate, compressible Navier-Stokes code. This code served as

a discrete analog to the two-dimensional Navier-Stokes partial

differential equations. The only restriction beyond the two-

dimensionality was that the second viscosity coefficient, X, was

set equal to zero for the experiments. This was done because

the value to be assigned X is controversial anyway, dilatative

effects were thought to be small, and the real focus of the

experiments was on the viscosity coefficients, # and v.

The momentum equations which were solved are presented

below so as to avoid any confusion over just which momentum

equations were used in the computer experiments. The x 1 and

x 2 momentum equations containing the p = -t stress tensor appear

in equations 23 and 24, respectively.

Du
PD- -P + '(u1,1,1 + u1,2,2) (23)
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Du2  (24)
pDt -P 2 + (u 2 ,1, 1  2,2,2)

Equations 23 and 24 may be derived from (13) by assuming two-

dimensional flow and setting X = 0. Although (23) and (24)

contain the # = -v assumption, A and v are both assigned half

the value of the conventional shear viscosity. This is done for

reasons explained in the text immediately following (13).

The v = 0 momentum equations used in the computer

experiments appear in (25) and (26) for the x and x2

directions, respectively.

Du

PD- = _P 1 + U(u 1,1, 1 + U 1 ,2, 2 ) + (U 1, 1 ,1 + u 2 ,1, 2 ) (25)

Dt

Du2
_ = -P + (u 2 ,2) + (u 2,2 ,2,u )P__t ,2 /• ,II +2,°,22 2,22 1,2,126

The reader may derive (25) and (26) from (6) and (1) by assuming

two-dimensional flow and setting X = 0.

A free shear layer computation was used for the computer

experiments, because a free shear layer is a simple flow for

which there is experimental data and such a computation reduced

33
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numerical concerns over well-posed boundary conditions near the

region of shear by keeping the boundaries of the computational

domain away from the shear region (except near the upstream and

downstream Loundaries). This, of course, would not have been

the case for a wall-bounded shear layer (i.e. a boundary layer).

The boundary conditions used were those of Weisbrot's experiment
'4

(16), but the domain was kept two-dimensional because of memory

and speed limitations on the CRAY X-MP 12 computer.

2. Code and Grid Information

The discretized analog of the two-dimensional Navier-Stokes

equations that was used was the finite difference algorithm of

MacCormack (17) as implemented by Shang (18). Shang's code was

modified by removing the pressure damping subroutine and the

turbulence model subroutine. Shang's code is second-order

accurate in time and space (19:483). Consequently, the highest

order error terms due to discretization are third order

(dispersive). The code was run time-accurately with a Courant-

Friedrichs-Lewy number of .8 to insure stability of the

calculation.

The computational domain was 4.99 feet long and 1.64 feet

wide. See Figure 5 for a view of a sparsely gridded version of

the upper half of the grid. The domain had 947 streamwise

points and 08 cross-stream points for a total of 92,808 grid

points. The computational cells were kept as square as possible
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in the mixing layer "cone," a region of densely packed cells

whose upstream boundary was .05 feet wide and whose downstream

boundary was .5 feet wide. Figures 6 and 7 show closeup views

of cells near the centerline at the upstream and downstream

boundaries, respectively. The cone had 38 points crosswise.

Sixty additional points were placed outside (30 on each side)

with a stretching routine that smoothly transitioned the spacing

from the cone dense packing to a sparser spacing at the top and

TE

C|

0.0 0 .5 .0 2.5 3.0 3.5 4 0 4.5 5.0
X

Figure 5, Upper Half of Grid (Not every line is shown)
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3. Boundary Conditions

Figure 8 shows the boundary conditions for the computation.

The flow speed for x2> 0 was 35.45 feet/sec, and the flow speed

for x2< 0 was 21.27 feet/sec. These inflow conditions deviated

slightly from Weisbrot's (32.808 feet/sec and 19.685 feet/sec)

because of an input mistake. A 1/7th power law was applied to

simulate both boundary layers coming off the splitter plate.

The boundary layers were the same thickness, .025 feet.

Initially, a steady-state upstream boundary condition was tried,

but experience showed that some unsteadiness, even if only on

the order of freestream turbulence (.1%), was required in order

to create vortical structures in the shear layer. Davis and

Moore (20); Mclnville, Gatski, and Hassan (21); and Grinstein,

Oran, and Boris (22:209) also found it necessary to excite the

flow at some point. While the present study did not explicity

explore the sensitivity of shear layer roll-up to disturbance

amplitude, in earlier work by the authors a simple sinusoidally

oscillating u 2 component impressed on the steady state flow with

amplitudes of .3% of free stream (high speed side of shear

layer) was found to induce formation of structures in the shear

layer. Davis and Moore (20) found that amplitudes as low as .2%

would cause reasonably prompt roll-up of the shear layer. Below

.2%, the distance from the front boundary to roll-up lengthened

considerably. For the results presented here, u 2 was oscillated
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at one percent of freestream at 44.5 Hz in order to simulate

Weisbrot's experimental conditions (16). All computations

started with uniform high speed flow fcr x 2 >O and uniform low

speed flow for x 2 <O except for boundary layer profiles placed on

either side of the channel center line.

The boundary conditions in Figure 8 worked adequately well

as long as the flow which started at the upstream boundary did

not convect asfar as the downstream boundary. This was the case

for all results presented in this paper. One attempt to convect

these upstream structures through the downstream boundary failed

(the computation became unstable). Grinstein et al (22:207-209)

reported success in overcoming this problem with a pressure

extrapolation scheme to a downstream farfield. Davis and Moore

(20) took a slightly different approach by transforming the

downstream portion of the domain to infinity and then enforcing

zero gradient conditions there. Either one of these schemes

would likely solve the current downstream problem.
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Figure 8, Boundary Conditions for the Computations

39



4. Computation Results

Figures 9 and 10 present "snapshots" of the vorticity

fields for the two computations at an elapsed time of .1242

seconds from computation start. Solid lines denote positive

vorticity; dashed lines denote negative vorticity. The

vorticity fields are very similar. The upstream boundary emits

positive vorticity (solid lines) and negative vorticity (dashed

lines) corresponding to the two boundary layers. Both

computations show waves growing as the fluid in the shear layer

moves downstream. At a point a little over one foot from the

upstream boundary, the laminar shear layer transitions to a

turbulent shear layer as individual vortices roll up and

interact with one another as they move downstream. This proves

that the Shang code can predict laminar to turbulent transition

in a low speed, two-dimensional free shear layer. To the

authors' knowledge, it is the first time a compressible, Navier-

Stokes code has demonstrated this capability. This is probably

due in part to the punitive computational resources required.

Each of the current computations required 200,000 iterations at

a cost of 34 central processing unit hours on a Cray XMP-12.

Nevertheless, the current work does establish that it is

possible and presents one approach for computing the flow.

Although the current inflow conditions specified u1 speeds

slightly higher than that actually used in Weisbrot's experiment

(16) and Figures 9 and 10 show vorticity most. likely at a
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different phase of the upstream boundary excitation than that

reported by Weisbrot, some similarities between computed and

experimental results can be seen. Figure 11 shows vorticity

contours which Weisbrot educed by sampling the flowfield at the

same frequency as the splitter plate oscillation frequency. Two

main features appear. Upstream, a vorticity zone appears as a

layer tilted slightly downstream. Downstream, two vortical

structures appear, one directly over the other. Similar

structures can be seen in Figures 9 and 10. The two structures

in the process of rolling up in the range of x 1 from 1.3 to 1.5

feet look like Weisbrot's tilting vorticity layer. The two

vortices stacked on top of one another at x1 of 2 feet look like

the downstream stacked vortices in Figure 11.

The qualitative similarities aside, it is useful to study

where in the flowfield the eigenvalue of the p = -v stress

tensor becomes complex so as to aid in understanding differences

in the computed results. Figure 12 shows the regions of

imaginary eigenvalue as given by equation 18. Curiously, only

some regions of the laminar shear layer have imaginary stress

eigenvalues. One such region is the wave that extends from x

of .5 feet to .8 feet, and, if one looks downstream about .6

feet (the distance corresponding to the upstream excitation
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frequency and the mean shear layer speed), one sees a shape that

looks somewhat like a galaxy. This "galaxy" is apparently what

the wave will become. The imaginary eigenvalue condition

appears to be able to identify a vortical structure while it is

still just a wave presumably because both the wave and the

vortical structure have a common characteristic described by the

iarmginary eigenvalue condition. The vorticity contours in

Figures 9 and 10 make no such distinction. However, downstream

of the laminar shear layer rollup, the imaginary eigenvalue

contours in Figure 12 look very similar to the vorticity field

contours in Figures 9 and 10.

Because the wave and the galaxy appear to be two

characteristic regions of complex stress eigenvalues, they will

be analyzed in more detail for differences between the two

computations. For the sake of completeness, the vortex at xI of

1.47 feet (just downstream of the galaxy) will be included in

the comparison. These regions of imaginary stress eigenvalue

(the wave, galpxy, and vortex) are likely regions to look for

differences between the computations, because the complex nature

of the # = -v principal stresses in these regions might be

expected to induce the solution to behave differently due to the

fact thalt the symmetric stress tensor does not possess the

property of conditional imaginary eigenvalues.

Figures 13, 14, and 15 present labeled vorticity contour

plots for the wave, galaxy, and vortex respectively. Peak

voeticity is seen in the wave. It is about 1100 feet/sec/foot.
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In the galaxy and vortex, peak vorticity is about 700

feet/sec/foot.

Figures 16, 17, and 18 present labeled vorticity difference

plots for the wave, galaxy, and vortex respectively. Positive

values mean that the symmetric stress tensor computation

predicted vorticity that was larger than that predicted by the ;A

S; -v stress tensor computation. The wave (Figure 16) shows

extremely small differences, only as high as .8 feet/sec/foot.

The galaxy shows somewhat larger differences, some as high as 7

feet/sec/foot. Most of the difference is centcred in the clump

at x1 = 1.35 feet and x2 = -. 05 feet. The vortex (Figure 18)

also shows peak differences of about 7 feet/sec/foot. The
differences are organized into four zones and alternate between

positive and negative as one moves around the vortex. In fact,

four similar zones can be seen to be forming in the galaxy

(Figure 17). What meaning the four zone pattern might have, if

any, is unclear. In any event, given that peak vorticity in the

galaxy and vortex is about 700 feet/sec/foot, peak differences

in vorticity of about 7 feet/sec/foot only amount to one percent

of the peak vorticity. Consequently, when using vorticity as

- the ruler for measuring the differences between the

computations, one must conclude that the effect of the p = -v

stress tensor on the computation of a low speed, two-dimensional

free shear layer is minimal when compared to the computation of

the same shear layer using the v = 0 stress tensor.
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Although differences between the computations do appear,

characterizing the development of the differences seems

difficult. Perhaps the p = -v complex principal stresses cause

a dispersion or phase shift effect as suggested by the simple

one-dimensional scalar convection equation presented earlier in

this paper. In any event, the present results do show small

differences in the computed flowfields.

M
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SECTION IV

CONCLUSION

The study concludes that an asymmetric stress tensor

influenced by vorticity contains advantages over the classic

Stokesian approach. By including the effects of all three of

the basic motions about a point in a fluid, a more intuitively

satisfying prediction of stress on a small fluid cube is

obtained. The principal stresses of this new vorticity-

influenced stress tensor become complex when a shear layer turns

away from the higher speed flow such as in a perturbed shear

layer or in a vortex. Although the classic theory might raise

objections to the idea of an asymmetric stress tensor, these

objections appear difficult to support. Computer experiments

demonstrate that a two-dimensional, compressible Navier-Stokes

code (the Shang code) can predict the transition from laminar to

turbulent flow, but the symmetric and asymmetric stress tensors

only change predicted vorticity by a maximum of approximately

one percent, in the vicinity of the two vortical structures

examined.
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SECTION V

RECOMMENDATIONS

1. Change the downstream boundary conditions to permit flux of

upstream disturbances. Then, after the computation has run long

enough to develop the flow in the entire computational domain,

run the computation long enough to obtain reliable mean and

spectral velocity data for comparison with Weisbrot's

experimental data (16).

2. Explore the sensitivity of grid density on the solution. It

would be helpful to know whether fewer grid points would yield

an acceptable answer. This would reduce computation costs for

future users as long as some rules of thumb could be

established.

3. Run the same computation in an Euler mode and compare with

experimental data. This would help establish the practicality

of predicting shear layer mixing without having to reEort to the

extra expense of computing viscous terms.

4. When a more powerful computer becomes available, repeat the

computation with a three-dimensional Navier-Stokes code to

establish what benefits the extra dimensi-n gives. Vortical

structure interaction would probably not remain two-dimensional

51



for long in a real shear layer. A three-dimensional computation

would help establish guidelines for the limits of the utility of

two-dimensional calculations.

1 5. Develop a generic, robust, unsteady boundary condition for

use upstream or on the surface of a vehicle. Perhaps such a

boundary condition could excite a range of frequencies with

continually varying phase. The frequency and phase content of

disturbances in the flow appear very important for predicting

the transition from laminar to turbulent flow.
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