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Effect of Nose Bluntness on Twin Wave Interference /66

Xia Nan and Chen Qiang

(Department of Modern Mechanics)

Abstract

This paper discusses the mutual interaction between an

oblique blast wave and the shock wave layer on a supersonic blunt

cone. A flow field superposition technique is used to calculate

the shape of the transmitted blast wave and peak pressure

produced as it is reflected on the cone. A detailed analysis

shows that due to the complexity of the blunt cone flow field,

especially the effect of the high entropy layer, the shapes of the

transmitted blast wave and the peak pressure are quite different

from those obtained with a slender one.

When a supersonic blunt cone encounters a planar blast wave#

the planar blast wave meets the bow-shaped separated shock wave

of the blunt cone. A transmitted blast wave is propagating in

the shock wave layer of the blunt cone. The transmitted blast

wave is reflected from the surface of the blunt cone. This is

the so-called Otwin wave interference" .

The "twin wave interference' problem has an important

practical significance in the aerodynamic design of a high speed

Manuscript received on May 25, 1985
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vehicle. Since the 1960's a lot of work has been done in

theoretical analysis and experimental research. References [1]

and [2) give a good overall summary. As for the twin wave

interference involving a sharp cone, because the interference

flow field is similar, the problem is greatly simplified. Good

results have been obtained in engineering as well as in numerical

computation. In the twin wave interference problem with a

supersonic blunt object, however, because the flow field of a

slender blunt cone is far more complex than that of a sharp cone,

all engineering computation techniques are limited to the

stationary point region. Numerical calculation[3 ] is also

limited to the blunt tip region[ 4 ,5 ] . Moreover, it consumes

quite a bit of computer time.

The purpose of this paper is to expand the flow field

superposition technique reported in the references [2,6] to the

interaction between an oblique blast wave and the shock wave

layer of a blunt cone. The paper discusses the peak pressure

variation on the cone as affected by the small blunt head. It is

also compared to the situation of a sharp cone.

In order to simplify the study, we only considered a zero

attack angle blunt cone. We also limited ourselves to the flow

within the meridian plane. It is assumed that the gas is an

ideal gas with a constant specific heat, r-l.4. All parameters

in the paper are dimensionless. The velocity, pressure and

density are relative to incoming flow velocity ax, pressure Pw

and density p., respectively. The length is relative to the

2



radius of the spherical head rb. The entropy is relative to the

gas constant R.

I. Calculation of Bigh Speed Blunt Cone Flow Field Parameter

Before Interference

Numerical solution is used to represent the initial flow

field of the blunt cone before interference. In the hybrid flow

region in the head area, a linear method was used[ 71 . In the

rear supersonic region, an eigenline method was used[8 ]. If x is

axial distance from the body axis from the center of the

spherical head and r is the distance from a point in the flow

field to the body axis, let us define the coordinate ,
/67

where O~f.l. The subscript s represents a shock wave value and w

represents a surface value. Let us transform the r, x coordinate

to f, x, and divide the shock wave layer into N layers along the

r-direction and express them as ki where l=4S=4l>42. N+l=4w=O.

In the x-direction, let us choose K straight lines where x are

constants xl<x 2<...xk. Then, let us divide the entire shock wave

layer into meshes as shown in Figure 1. We used an intrapolation

technique to determine the parameters at the nodal points (ixj)

of the network. In calculating the supersonic flow field in the

rear of the object, we only went as far as x-15. Within the
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range of parameters calculated, the results agreed quite well

with other people's values [93 . Figure 2 shows the surface

pressure and Mach number distribution along the x-direction when

Md4 and the semi-cone angle 8=100. From the figure we can see

that the sharp cone has a constant surface pressure, while a

blunt cone has an over exposure characteristic. The lowest

pressure is smaller than the pressure on a sharp cone. Then, it

gradually rises back to the sharp cone value. Because of the

high temperature in the high entropy layer, the speed of sound on

the surface of a blunt cone is much larger than that on a sharp

cone. Hence, the Mach number of the flow is much less than the

sharp cone case. Figure 3 shows how the flow parameters vary

along the 4 direction when x-5. The figure also indicates that

in the case of a sharp cone, it is a isoentropic compression

process from the shock wave to the surface of the object.

Therefore, both density and pressure are increased. As for a

blunt cone, because of the high entropy layer on the surface, the

density at the surface is much lower than that behind the shock

wave.
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Figure 1 Division of the Flow Field Meshes

1. planar blast wave
2. body shock wave
3. surface

At

Io.

Figure 2 Pressure Distribution on the Surface of a Blunt Cone1m=48=10 o

1. sharp cone
2. blunt cone
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II. Interference Between Planar Blast Wave and Blunt Cone Shock

eWave Layer

When a planar blast wave traveling at a Mach number MB

encounters a supersonic blunt cone at an encounter angle 9B

(which is defined as the angle between the blast wave and a line

perpendicular to the body axis on the meridian plant where P0-0),

it is certain that the blast wave collides with the body shock

wave first. It creates two new shock waves which are called

transmitted blast wave and transmitted body shock wave,

respectively. There is a contact surface between them. Then,

the transmitted blast wave is reflected by the surface of the

dull cone through the entire shock wave layer. Here, we will

primarily discuss the formation of this twin wave interference

the supersonic region of the cone, as shown in Figure 4.
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Figure 4 Encounter Between Planar Blast Wave and Blunt Cone
Shock Wave

1. planar blast wave
2. body shock wave
3. transmitted blast wave
4. contact surface
5. transmitted body shock wave

At a certain instance, the planar blast wave meets the

curved body shock wave at point GI. in the body axis coordinate

system the velocity of G1 moving in the tangential direction of

the body shock wave can be expressed as

V- us +MCoS.(O.6, eD8(V++Y,) ' (2)

Its components in the X and Y directions, respectively, are

V ,. VG , 6 8171, (3)

Vl.- Vo, sim",, (4)
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where 71, is the angle of inclination of the body shock wave at

Gl, i.e. P. In the body coordinate system, the parameters in

region C following the planar blast wave can be expressed as

S(5)

MCI,= sn%(6)

2 Y- (7)
p. Y+1 M,2

p. 27 U2 7-1 (8)
P sl.. Y+1 a '+1

The flow field parameters in region I immediately after point GI

have been obtained from the numerical solution. If the

coordinate system is fixed on point G1 , based on the relation

that the pressure is equal on either side of the contact surface

and the flow direction is consistent, we get

_+1 _7+ P.
2Y_ (Ad.si .) sin -, (9)

1'+1 7+1

8
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" -'qP Cos 9,, !-- .o .C ,9 9). C -t--"- ,
_________I_+At._Y 

1 OF

) C- (10)

where Mi, A'1 and M', X' are the Mach number and deflection angle

relative to a coordinate system fixed at G, for Region 1 and

Region C, respectively.

Q41,A ("",fl) I'

Figure 5 Refraction and Reflection of Blast Wave on Various

Interfaces

1. blast wave
2. contact surface
3. transmitted wave

qI and 9c are the angles of inclination of the flow in region 1 /69

with respect to the transmitted blast wave transmitted body shock

wave, respectively. Based on these two equations, T1 and Vc can

be determined.
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With a sharp cone, the twin wave interference flow field is

similar to the flow field itself. The transmitted blast wave

moves at a constant speed along a line coming out of the apex.

The shape of the transmitted wave is similar at different z

positions. In the case of a blunt cone, the similarity does not

exist. At different x positions, the shape of the transmitted

blast wave is different. We divided the entire shock wave layer

into N thin layers based on the coordinate 4. In a small region

within 4i to ti+l and Xj to Xj+ I, the transmitted blast wave is

approximated as a straight line. The wavefront parameters are

obtained based on the local numerical solution. It moves in

parallell at a speed VGi (see Figure 5). If a physical quantity

on the ith layer is known, then it is possible to calculate it in

the i+lth layer. If Vi is known, the angle between the

transmitted wave from the ith layer and the x-axis, 'ix, is

,. -V,+ .A0(11)

Based on this equation, it is possible to obtain the intersect

between the transmitted blast wave and fi+1, Gi+l and the

coordinates of this point (fi+1' 1 i+1 ) " Let "i be the angle

between the tangent of 4i and the x-axis. Then, the velocity of

Gi+l moving along the tangent of 4i+l , VGi+l, can be written as

V, ,v,, ( ,(12)

l,+, -, w 4, - ', .(13)
X1. -XI
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where

XjX(i+I) <Xj+ 1

The transmitted blast wave is refracted after meeting the

interface fi+1 at Gi+l. In addition, an isoentropic wave is

reflected. There is a contact surface between the isoentropic

wave the transmitted wave layer in the i+lth layer. The shape of

wave an the tranivttea in the i+lth layer should meet the condition

that the pressure on either side of the contact surface is equal

and the direction of velocity is consistent. The wave front

parameters in the ith and i+lth regions are known. The shock

wave shape in the ith layer is already known. The parameters

behind the wave in region ia can be determined. The shape of the

reflected wave and the shape of the transmitted wave in the i+lth

layer can be found based on two compatible conditions; i.e. it is

possible to obtain Vi+l" To simplify the computation, a small

parameter expansion formula may be used to derive an iterative

formula. The transmitted waves of the ith and i+lth layer can be

obtained based on the oblique shock wave relation. The

isoentropic wave employs a simple wave relationship. The

following functions are defined by us

P , (M, ), (14)
P

(15)
L.- -F (M, Of )

v _ -p. (M,Y,'), (16)

1(16)



The subscript a indicates parameters behind the wave.

If the coordinate system is fixed at the intersect Gi*1, the

following equation can be derived based on the compatibility

relation of the contact surface.

P, ( ,, ) -{-, (M1 ,,,,) A , -i' +F,(Ao, , ',qYg,)
ow' ,F (W17)

The parameters of two neighboring layers differ insignificantly.

Let

P ,+, -P I +dP, (8

, '(19)

F. ( , ,, . , ,)- . ., , ,)+ r . ,- , ,),(20)

By substituting these equations into equation (17), we get

/70

FFL a ,d,+d (21)

P 3 P

where

, d9 + "- -

dp,- Z - -+,
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By substituting these equations into equation (21) and changing it

from a differential to a difference equation, we finally get

1- OF ,

where M 1, X2 and 1/Fl OFI/DN'j 0F 2/ONj, *F2/ 9,

1/F1 0F 1 /&p,, Fs are shown in equation (3-12) in reference [2].

The relative Mach number and inclination angle of the flow behind

the transmitted blast wave are:

. +W7-T, i.*., - (s- I) + (V (23)

2V, .. ,+ 9, V

-sin 'P, (24)

The angle between the transmitted blast wave and the x-axis is

expressed in equation (11).

As we proceed making the calculation layer by layer, when we

reach the layer closest to the cone surface which is the Nth layer

(see Figure 6), the angle between the transmitted blast

13



wave and the cone surface #a (which is the incident angle) is

approximately equal to 91N. If * is the angle of deflection of

the flow passing through the transmitted wave, it should also be

the deflection angle of the flow passing through the reflected

wave.

(25)

Figure 6 Reflection of Transmitted Blast Wave on the Surface

1. cone surface

The maximum deflection angle of the flow after passing through

the reflected shock wave is

CEgin'(),).-.
I+q;2!_I-$i (T.. (26)

where (q,). is the maximum deflection angle of the flow.

The angle of inclination of the corresponding maximum reflected

14



shock wave is determined by the following equation:

si' Y-W 0-' [-14 N / IV+1)1---,(? 2 16 )]. (27)

If #max>#, then it is a routine reflection. The following /71

equation must be first used to determine the angle of inclination

' of the reflected shock wave.

tg--CtgW, -- 'wAea in9, - I

Iin'- .) (28)

The pressure behind the reflected shock wave is

Y-I
P M. Y +-- - Y + I ,

The angle between the reflected shock wave and the cone surface

(angle of reflection)

(30)

If #max<*, it must be a Mach type of reflection. The pressure

behind the wave is calculated by the following equation:

v- I , , (31)

There is another case (Figure 5). When the computation proceeds

15



to point Gi+l if the Mach number is in zone ia behind the wave

NMa<l relative to the coordinate fixed at Gi+l i.e. the flow is

subsonic# it is not possible to produce a reflected wave. In

this situation, we can assume that a Mach reflection is produced

at point Gi. Make a line perpendicular to the surface at Gi.

Its intersection at the surface GN is used to calculate the

surface pressure behind the normal shock wave.

Our calculation showed that there is little difference

between the results obtained based on the iterative equation (22)

and the results obtained with a rigorous shock wave simple wave

relationship by trial iterations.

III. Calculated Results and Discussion

Based on the method discussed in this paper# we performed

computations on a Chinese made Model 320 computer in two cases;

Ma-4r 8-100r MB- 2 and M!-5, 8-11.20r %-2.
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Figure 7 Oblique Interference Pressure on a Sharp Cone with 9.

1. this work

2. numerical solution done by Kutler
M,"5, M8-1.2306, 5-1I.2 °
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Figure 8 Oblique Interference Pressure on a Blunt Cone with O

1. sharp cone
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Due to the complexity of the twin wave interference

involving a blunt cone, we have not yet seen any theoretical and

experimental results to date for comparison. For this reason,

the oblique interference pressure on a sharp cone calculated with

this method is shown in Figure 7 together with the numerical

solution obtained by Kutler [I 0 ,11] for comparison. The agreement

appears to be reasonable. Figures 8 and 9 show the calculated

peak pressure and geometric shape of the transmitted blast wave

from the interaction between an oblique blast wave and a high

speed cone, respectively. For comparison, the calculated value

of a sharp cone is also plotted. From Figure 8 we can see that

the peak pressure on a blunt cone is much lower than that on a

sharp cone under similar conditions. This apparently is due to

the high entropy layer near the surface. The high speed of sound

associated with the high temperature makes the Mach number of the

flow near the surface much lower than that of the transmitted

blast wave. In the figure, X. is the coordinate of the intersect

between the blast wave and the shock wave GI . From the Figure we /72

can also see that when the Mach number M increases, this entropy

layer effect becomes more pronounced. The peak pressure of a

sharp cone in independent of the axial position. The flow field

of a blunt cone varies with the axial position. Thus, the peak

pressure also varies. The figure also shows the angle *b, at

which it changes from routine reflection to Mach reflection. In

the case of a blunt cone, it is less than that with a sharp cone.

18
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Figure 9 Transmitted Blast Wave With a Blunt Cone in Oblique
Interaction vs. Body Axis Angle (

1. sharp cone

Figure 9 shows the geometric shape of the transmitted blast

wave with a blunt cone during oblique interference. The figure

shows that the slope of the transmitted blunt wave in the shock

wave layer of a sharp cone is decreasing uniformly. In the case

of a blunt cone, the shape of the transmitted blast wave also

varies quite a bit. This is particularly true as the point Xs

gets closer to the shoulder of the blunt cone. As Xs increases,

Ox gradually decreases monotonically. However, because the

entropy layer gradient is larger near the surface, Ox decreases

faster.

19



When using this method to calculate the twin wave

interference on a blunt cone, it takes approximately 30 minutes

to compute the steady flow field. It only takes 1-2 minutes to

calculate a set of OB values (24 values) with a set of given Xx

and MB. With respect to a given set of M, and 6, the steady flow

field calculated does not have to be repeated for varying X., MB

and *B in calculating the interference flow field.

IV. Conclusions

The flow field superposition technique introduced in

reference [2] was used to solve the mutual interference between

an oblique blast wave and a high speed blunt cone shock wave

layer to determine the geometric shape of the transmitted blast

wave and the peak pressure on the surface. The results indicate

that because of the high entropy layer formed at the high speed

blunt head, the entropy gradient at the surface is very high, the

gas temperature and speed of sound are also high. The Mach

number of the flow is low, which makes the peak pressure much

lower as compared to that with a sharp cone. In addition, due to

the inhomogeneity of the flow field, the shape of the transmitted

blast wave is also quite different from that associated with a

sharp cone.

20
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Application of Finite Element Method to Transonic Airfoils /74

- A Preliminary Steady Subcritical Calculation

Xu Shoudong and An Changfa

(Department of Modern Mechanics)

Abstract

In this paper, the finite element method developed by

Galerkin is used to calculate the surface pressure distribution

on a symmetric double. curved airfoil. Numerical results

basically are in agreement with experimental data.

hBased on the transonic small perturbation equations, the

finite element method is used to calculate the transonic flow

field of a symmetric double curve airfoil. Referring to

reference [1], we employed a rectangular mesh scheme and the

Hermite interpolation function. The Galerkin method was used to

control the error. However, in the finite element analysis, we

did not use the numerical integration in determining the values

of elements of the unity matrix. Instead, we found an iterative

formula to integrate all the elements in the rigidity matrix.

Through the calculation of the subcritical pressure distribution

of a 6% symmetric airfoil, it was demonstrated that the method is

feasible.

Manuscript received on June 6, 1985
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I. Theoretical Analysis

The steady transonic flow around a two-dimensional thin

airfoil can be described by the transonic small perturbation

equations and the associated boundary conditions.

4y-(l+ 6x)g'=0 (on the wing) (2)

40-0, (at infinity) (3)

where g(x) is the dimensionless wing surface equation. When

M - l, it was proven in reference [21 that NwVl+(+I) 1x-M1

(local Mach number). Then, equation (1) can be written as

xx 4 yy'f, f=M xx (4)

As a preliminary approximation, boundary condition (3) can be

considered valid at a finite distance.

If the airfoil is symmetric and the attack angle of the

incoming flow is zero, we only have to consider the upper half.

Let us choose a rectangular area which is 5 times the chord /75

length and 2 times the chord length heiaht and divide it into 64

elements with 85 nodes as shown in Figure 1. For a thin airfoil,

the elements near the wing surface can also be treated as

rectangles. By doing the following transformation

fI(x-xc)/a, n-(y-Yc)/b, where a, b, (xcy c ) are the half length,

half height, and center coordinate of a certain element,

respectively, then all elements become identical cubic elements

as shown in Figure 2.

23
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Figure 1

C. *I ". "
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Figure 2

Let's do a Hermite interpolatiQn on the function * in each

cubic element

24



where #i (i-1,2,...,12) represent the functions and derivatives

on the nodes: 01, Olt, 01, #2, #2(, 02nF 03t 034, 3", 4, 044 ,

*4" Ni(,q)(i-1, 2,...,12) are the shape functions. Their

specific expressions can be found in Conner's book[ 31 . For

example:

N- (,7-i] ,) 2 - -; 2# ]

- 07-07)(+0)-(-1),

N(')

o............

_ Based on the Galerkin method, we have the following relation

in element E and wing surface W:

Ij(f.. +4,,-I)N,dxd,+ I[,-( )tNd-O(7)

According to Green theorem, we get

if ~ +l[r ,)s -(a.]tNd-

vhere 1n is the normal derivative of I on the boundary of the /76

25



element OE. The first term on the right side of equation (8)

happens to cancel out with the first half of the third term. By

inserting the interpolation function (5) and transfornmnr it into a

function of ( ,7), we get

S, Il P1,, i - --,1Z (9)

where

5 a 5= &-

S --AD-B., -- '--X

IN I,= JNj Ned,;dp, 'Bjj-1 IN ^N1 , (10)
1 I(10)

The local finite element equation (9) is combined into an overall

equation

where k, 1-1,2,...,255. Then, we used an iterative method to

solve equation (11) to obtain the nodal parameters (including

derivatives). Thus, we can find the velocity u=0., V=y and

pressure coefficient CpM-2# x at the node.

The matrices Aij, Bij and Cij in the element analysis were

26



numerically integrated on a computer in reference [11. It will

bring about two problems: increased computer time and new error

due to approximation. As a matter of fact, all the elements in

these matrices can be precisely integrated. The only problem is

there are too many elements and each element involves a double

integral. It is just too tedious. However, an analysis shows

the following patterns: 1) many elements in Gij are zero; 2) all

elements of Bij have a certain relation with respect to the

elements of Aij and 3) an iterative formula can be found for Aij.

Thus, the integration caLn be greatly simplified.

From equation (6) we know that the interpolation function

and its derivative are combinations of products of (4-1)t (q+1),

(t-1) and (4+1) of various orders. All elements of Aij are

double integrals of these combinations in the cubic region.

After considering the separable variables of these integrals, it

is only necessary to calculate the following integral:

fee,'", (12)

By using equation (12), we can calculate all the elements of Aij.

For example

*.. -.j..N.e--"j..--'4

In addition, based on the symetry of Ni(tpq) with respect to t,

n1 we found the following relations exist between the elements of

27



Bij and those of Aij.

A 2 3 t 1112 (B)
B0 11 2i 2' to !I~. 'It1g

For example, B2,11 =A3,6 . Thus, when Aij are calculated, Bij are

also determined. The computation of Cij is similar to that of

Aij. It is only simpler. After all the elements of these

matrices are determined, they can be stored in the computer for

future use to avoid numerical integration.

II. Example and Discussion

In order to check the accuracy and efficiency of the

technique, we used this method to calculate two subcritical

conditions of a symnetric airfoil whose relative thickness is 6%

at M -0.806 and 0.861. The pressure distributions thus obtained /77

are compared to the experimental data as shown in Figure 3. The

figure also shows the result obtained in reference [1]. We can

see that although the meshes are divided more coarsely than in

reference [1] (it was divided into 120 elements with 150 nodes in

reference [11), the accuracy of the computation is similar. They

essentially agree with the experimental data.

In this paper, the computation is done on a Model M-140F

minicomputer. Each state takes 3 minutes CPU time. In reference

28



111, a mainframe Univac computer was used. Each state took 40

seconds. Considering the difference in the speed of these two

computers, the number of operations of this method is only 45% of

that used in reference [1]. Thus, we proved that the efficiency

is improved with this computation under the premise that the

accuracy is insured.

-- I~~ ~~~p - n'I' :3"ci II I

Figure 3

1. this work
2. computation by Chan in reference [1]
3. experimental data by Knechtel in reference [4)
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