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1 Introduction

One of the primary tasks of a computer vision system is to reconstruct from two-

dimensional images certain three-dimensional properties of a scene such as motion, shape,

and the spatial arrangment of objects in the scene. In monocular vision, the goal is to

recover, from time-varying images, the relative motion between a viewer and the environ-

ment as well as the structure of the environment. The structure of the scene is usually

defined in terms of the relative depth of points on the visible part of the surface of the

scene.

An important issue in motion vision is whether the solution can be determined

uniquely. Alternatively, one may ask if there exist situations that give rise to an am-

biguity in the interpretation of three-dimensional motion and shape.

Apparently, Hay [19661 was the first to report the observation that two planar surfaces

each undergoing different rigid motions can produce the same instantaneous motion in

the image plane. The same observation and the proof of the existence of at most two

solutions in the case of planar surfaces has since been reported by Tsai et al. 11982],
Waxman & Ullman [19851, Longuet-Higgins [1984], Maybank [1984], and Negahdaripour

& Horn [1985].

In the case of curved surfaces, two types of approaches, based on local and global

representation of three-dimensional surfaces, have been pursued. In the local approach,

* the surface is represented by its Taylor series expansion in some neighborhood of the

fixation point, based on the assumption that the surface has continuous derivatives up

to some order n in that region. In the global approach, no special model is assumed and
*, the depth values are allowed to vary arbitrarily from one point to the next.

Using a local second-order analysis, Longuet-Higgins & Pradny [1980] ihow that

three interpretations are possible for the motion parameters and the local structure of

the surface of the scene (tangent plane orientation and surface curvature). Waxman et

al. 119861 derive the special cases which give rise to the three-fold ambiguity observed
by Longuet-Higgins & Prazdny. In addition, they show that other situations can give

rise to a two-fold ambiguity (similar results were derived by Negahdaripour & Yuille

1986]). Negahdaripour [19861 shows that only certain hyperboloids of one sheet and
circular cylinders can give rise to an image motion field with multiple interpretations.

The ambiguity of hyperboloids of one sheet can be either two-fold or three-fold. The

ambiguity associated with circular cylinders is two-fold and can be viewed as a degenerate

case of the three-fold ambiguity of hyperboloids of one sheet. Negahdaripour 1986' also
shows that most of the ambiguities observed by Waxman et al. are the shortcomings of

a local second-order analysis of the motion field.

The same problem has been addressed using a global analysis. Fang & Huang 1984'
aa, the correspondence of nine image points in two frames to show that the motion

parameters can be determined uniquely unless the point, lie on a second-order surface
pa"ing through the viewing point. Tsai & Huang 1i1I ,tv that the correspondence of
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seven image points is sufficient to recover motion uniquely unless the points lie on either

two planes with one passing through the viewing point or a cone that passes through

the viewing point. In an elegant derivation, Horn [1986b] shows that the class of curved
surfaces that may give rise to the same motion field is restricted to certain hyperboloids

of one sheet that are viewed from a point on their surface. He also shows that the special
cases observed by Tsai & Huang are degenerate cases of his results.

In this paper, we present some results related to the ambiguities in the interpretation
of three-dimensional motion of curved surfaces. These results can be summarized as

follows:

(1) Only certain hyperboloids of one sheet or cylindrical surfaces that are viewed by an
observer moving parallel to the image plane can give rise to an ambiguity in the

interpretation of a perspective motion field. These ambiguities occur under two rare
conditions and can be either two-fold or three-fold. In either case, the resulting motion
field is quadratic.

(2) When multiple solutions exist, the relationship among them can be derived in closed-
form.

(3) With a large field of view, it is generally possible to identify the correct solution by

imposing the constraint that depth is positive over the image region onto which the

surface projects.

2 Motion Field

We assume a viewer-centered coordinate system. The optical axis is chosen along the

z-axis, and the image is formed on the plane z = 1; that is, without loss of generality,

the focal length is chosen to be unity (Figure 1). Let R = IX, y, Z]T be a point in the

scene that projects onto the point r = [z, V, 1 1T in the image. Assuming a perspective

projection, we have

r

where Z =- R • I is the distance of the point R from the viewer along the optical axis.

Suppose the viewer moves with relative translational and rotational velocities t and w

with respect to the scene. Then a point in the scene moves with respect to the viewer

with velocity

Rt = -R x w -t

The corresponding image point moves with velocity Negah,1 tripour & Horn 119871)

rt X r x (r I -iR -: I

'LM
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Figure 1. Viewer-centered coordinate system.

Note that rt- I = 0 and, therefore, the third component of the 3D vector rt is always zero,
as expected. The velocities of all image points taken collectively defines a two-dimensional
vector field that we call the image motion field (Negahdaripour & Horn 11987]). This
vector field has been referred to elsewhere as the optical flow field (see Horn [1986a1 or
Negahdaripour [1986 for the distinction between the motion field and optical flow).

The motion field remains unchanged if the translational vector t and the depth values
Z are multiplied by the same constant factor. Therefore, we can recover depth and the
translational motion from image motion field only up to a scale factor; this has been
referred to as the scale-factor ambiguity in motion vision.

3 The Uniqueness Issue

Trhe motion field is a purely geometric concept. It is uniquely defined in terms of the
observer motion and the scene structure. More precisely, once we specify the motion of
the viewer as well as the structure of the scene, the motion field is unique as given by the
earlier equation; that is,

strctreunique
3D motion and structure 2D image motion

Ideally, the motion field over some region of the image can be used to recover theS relative motion, w and t, as well as the structure of the scene (,1,,fined in terms of the
depth values of the points on the surface of Lhe scene, Z) up to d1e factor. The issue
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we address is the uniqueness of the solution:

unique?0
2D image motion -. 3D motion and structure

More precisely, the question we answer is: Given the motion field over some region of

the image, when can we recover the motion parameters and the scene structure uniquely
(up to the scale-factor ambiguity)? Note that the solution may be non-unique because

the relationship between the two-dimensional image motion field and the underlying
three-dimensional structure and motion is non-linear and, therefore, there need not be a

one-to-one correspondence. Alternatively, we are interested to know what circumstances

may give rise to an ambiguity in the interpretation of the motion field. In general, the
problem of robust recovery of 3D structure and motion can be more complicated (than
deriving the uniqueness results) since we cannot compute the motion field accurately
enough from time-varying images. The inaccuracy in the estimate of the motion field
obtained from noisy data may then introduce additional ambiguities in the interpretation
of three-dimensional motion and shape (Ullman [1983], Jerian & Jain [1983], Adiv [1985]).
In this paper, we restrict attention to the types of ambiguities that arise even when the
exact motion field is used.

4 Surface Representation

One of the issues in deriving uniqueness results for curved surfaces is the choice of an ap-
propriate representation of general three-dimensional surfaces. For example, the surfaces
of a scene may be represented by the relationship Z = Z(X, Y), where R = [X, Y, Z]T is a
point on the surface of the scene. This will be referred to as a global representation since
we can define the whole surface in this form. There is no constraint on the relationship
among the depth values of neighboring points and the surface need not have a particular
structure in local regions; for example, it need not be smooth. The surfaces of most

physical objects, however, possess some degree of "regularity" at least in local regions;
the regularity or smoothness of a surface can be measured in terms of the continuity in
the surface function and its derivatives. In other words, most surfaces have continuous
derivatives up to some order n in local regions. Then we can represent a surface by its

Taylor series expansion up to order n in a local region, assumed, for simplicity, to be
around the fixation point:

1 X1! y
Z - Z. + ZxX + ZY+1Zxx 2 + ZxXY + IZy 2 +... +

2 2
1 ZX.X .. + -Zy v) + O(e).

n n

Alternatively, the surface may be represented by a 'raylor series expansion in terms of
the image coordinates. This is a mire convenient reprse..tt;,.n when we deal with

inmages. Finally, we may write the expansion of d I/Z is a measure related to

1. ' .
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the disparity function in stereopsis), instead of the expansion of Z, since the motion field
equation depends on 1/Z (as a result of perspective projection). Therefore, the surface
can be represented by the equation

1 2

d = do + dxx + 4y+ i dxzx + dxzy +idyfy +... +

d...3z" +... + dy + o(e).

Ignoring the error term, this can be written more compactly using tensor notation,

d = do + diri + 2 dijrirj +t . .. + dii.., riri ... ,

where ri = [z, YIT. Since depth can be recovered only up to a scale factor, we can set
do = 1. Therefore, we can write

d = 1 + diri + _dijrir +... + 1di.., riri....

* This will be referred to as a local representation since it may be the true representation
of the surface only in a local region near the fixation point. One justification for using
a local representation is that we only need a finite number of parameters, namely, the
coefficients of the Taylor series (d,, dij, ... ) to represent the surface, where the number
of parameters is related to the order of the Taylor series. We may not need to impose
any restriction on n in addressing the uniqueness issue since we deal solely with a purely
theoretical problem. The problem of robust recovery of motion and shape, however, is a
separate issue. In practice, we cannot robustly determine the coefficients of the surface
function beyond the linear terms due to noise in the data (Adiv [19851, Le Guilloux

1986)). Furthermore, the resulting non-linear problem is usually ill-conditioned.

Using a local representation of curved surfaces, the motion vision problem reduces
to estimating a finite number of unknowns, namely, the motion and surface parameters,
from the image data. Similarly, the uniqueness issue translates into the following question:
How many sets of motion/surface parameters can give rise to the same motion field over
the image region of interest?

5 Ambiguities In the Interpretation of the Motion Field

If we substitute the equation for d = 1/Z into the motion field equation, we arrive at the
Taylor series representation of the motion field, rt ,,, V, 0T, in the image region under
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consideration; that is,

u = Uo + u=x + u,+-Usz 22 + uza zy + u,1 y2 +
1 2 1 2 I
x s + Xuzv + + UUzlfiZI + gUvv+SI + ...

1 2 2

V V + VzX + VY+-VzZ2 + VZyXy + VYVYY2 +
11

vzzzl + 3 VZZYzXy 2 + V21 ZYYY2 + VYYY+ ...

where the coefficients of the Taylor series expansion of the motion field are given by

Uo = -Wy - tZ Vo = W -ty

u= tz - dxtz V= -w, - tydz
uy = wZ - tzdy VY = t= - tydy

uxz = -wy + tzdz - 2tzdzz vzz = -2tydzz
uzy = Wt + tzdy - tzdzy vzy = -w. + tzdz - tydzy
uyy = -2tzdyy VYY = Wz + tzdy - 2tydyy
uzzz = 3tzdzx - tzdzzz vzXZ = -tydz

UzzY = 2tzdzy - tzdzzy VZZY = tzdzz - tydzzy
UzY = tzdyy - tzdxyy VZyy = 2tzdzy - tyfdzyy
UYYY = -tzdyyy YVV = 3tzdyy - tydyy

The question regarding the uniqueness of the solution can be rephrased as follows:
Under what circumstances can we obtain the same set of motion field coefficients up to
some order n for different sets of motion/surface parameters?

Considering the motion field coefficients up to the second-order terms, Longuet-
Higgins & Prazdny [1980] showed that three interpretations for the motion and local
structure of the surface (tangent plane orientation and surface curvature) are generally
possible. They arrived at this conclusion by reducing the problem of determining the
motion and surface parameters to solving a cubic equation; however, they did not show
when the cubic equation can possess three real solutions. Waxman et al. [1986] derived
the conditions that give rise to the ambiguity observed by Longuet-Higgins & Prazdny
(similar results were derived independently by Negahdaripour & Yuille [1986]). These

conditions can be categorized as follows:

(1) Three solutions are obtained when d. = di = 0, the surface has a negative Gaussian

curvature (dzzdyy-dzy < 0), and the mean-scaled curvature is uwil i (d;'2 +d) = I).
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(2) Two solutions are obtained if the surface has a non-positive Gaussian curvature
(dzzdyy - di , 0), the mean-scaled curvature is unity ('(dzx + dyy) = 1), and the
translation along the line of sight vanishes (t, = 0). When d./dy = t./t,,, the two
solutions become equivalent.

(3) Two solutions are obtained regardless of the sign of the Gaussian curvature when
dz/dy = t/ty, (this condition was referred to as the structure-motion coincidence).
The two solutions degenerate to a unique solution when the translation is along the
surface normal or when t, = 0.

(4) In all other cases, the solution is unique.

Longuet-Higgins & Prazdny claim that these ambiguities are usually only instantaneous,
and can be resolved at the next time instant. Negahdaripour [19861 shows that an
ambiguity in the interpretation of the motion field arises only in the case of some quadratic
surfaces with a non-positive Gaussian curvature at the fixation point. More importantly,
these surfaces have to be viewed by an observer translating perpendicular to the viewing
direction. Interestingly, the restriction on the motion of the observer is peculiar to the
local representation of curved surfaces. Furthermore, the resulting motion field is second-
order; but this obviously does not imply that any second-order motion field is ambiguous.
The ambiguity in the case of quadratic surfaces that are viewed by an observer moving
parallel to the image plane (t,=O) is eithere (1) two/three-fold when the surface gradient vanishes (d.- = dy = 0), the Gaussian cur-

vature is zero/negative (dzdyy - d'i < 0), and the mean-scaled curvature is unity
('(dxz + dyy) = 1),or

(2) two-fold when the Gaussian curvature is negative (dxzdy, - d~y < 0), the mean-scaled
curvature is unity ('(d.. + diy) = 1), and the surface normal, the optical axis, and
one of the asymptotic lines of the quadratic surface are in the same plane; that is,

dx -dz, + /d'z, - d2 zdiy dx -dz, - d2z, -dx diyeither -- or --d= dzz dy dzz

When dx/d. = tz/t, the ambiguity is resolved because the two solutions become
identical.

6 Surfaces That Give Rise to an Ambiguity

We have given the conditions under which there may be an ambiguity in the interpretation
of a given motion field resulting from the relative motion between an observer and a curved
surface. Since the ambiguity is restricted to quadratic surfaces, we can ignore the higher
order terms in the surface function given earlier. Therefore, an "ambiguous surface" is
given by

d = 1 + diri + -djrjrj,

%&2"MUM



8 Motion of Planar Objects

which can be written
_d 2 rTDr,

where

D = dy dyy

d4 d 2

If we multiply both sides of the equation for d = 1/Z by Z 2 , we obtain

Z = 1RDR

2
or 1

ITR + RTDR = 0,

which is the equation of a quadratic surface passing through the origin (viewing point).
This, however, is an artifact resulting from the multiplication of both sides of the equation
for d by Z 2 ; that is, by multiplying both sides of the equation for d by Z 2 , we have
artificially made the origin (R = 0) a point on the surface. To be precise, we should
define the surface by

iTR + 2RTDR = 0, R - o.

. This brings up an interesting issue since some previous results derived using a global rep-
resentation of curved surfaces suggest that an "ambiguous surface" should pass through
the viewing point (Fang & Huang [1984], Tsai & Huang [1984], Horn [1986b]). The
inconsistency in the interpretation of the results can be attributed to the difference be-
tween the local and global representations of the surface and can be explained through
the following example: Consider an observer on the inside surface of a cylinder viewing a
point on the inside surface directly across from him/her (as before, a viewer-centered co-
ordinate system is assumed). In the global representation, we consider the whole surface,
whereas in the local representation, we only consider some neighborhood of the fixation

point. The viewing point is a point or. the surface in the global representation. It will
not be so in the local representation. The difficulty, however, arises when we consider
the behavior of the motion field at the origin of the image plane. The question is: Which
point projects onto the origin of the image plane, the viewing point or the point directly
across? Consequently, is it the motion of the viewing point or the point across that
we observe (or measure) in the image? Clearly, it is the latter. Whether we do or do
not include the origin as a point on the surface seems to depend on the choice of the
representation we use.

The signs of the eigenvalues of the matrix D determine the type of the quadratic

surface. When an ambiguity exists, the eigenvalues of D, in the ascending order, are

given by (see the Appendix)

A_ =l-vl+ , ,,=2, and A+=l -\T .p+q,

I I . . ... I ' ' ' I
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wherewhere 
p=d2+d2 and q = d.2 - dzdyy .

In the case of a three-fold ambiguity, we have p = 0 and q > 0. The eigenvalues of D
become

- =1- -- <O, A0 -=2, and A+= 1+\-V-q>2.

Since the ambiguous surface has one negative and two positive eigenvalues, it has to be
a hyperboloid of one sheet. When q = 0, that is, the Gaussian curvature vanishes, the
ambiguity degenerates to a two-fold one. In this case, we have

X_-=0, )0=2, and X+=2.

and the hyperboloid of one sheet degenerates to a circular cylinder. The other ambiguous
situation arises when the optical axis, the surface normal, and an asymptotic line are in
the same plane. In this case, p > 0 and q > 0, and we obtain

A _-l-1-I-p+q<O, \ 0 =2, and \+=l+\/l+p+q>2.

Again, the surface is a hyperboloid of one sheet. Note that, in every case, we have
A + A+ =- A. and, therefore, there is a constraint among the eigenvalues. We conclude
that not every hyperboloid of one sheet or circular cylinder can give rise to an ambiguity.

0 7 Relationship Among Multiple Solutions

The conditions given above allow us to determine when we may expect an ambiguity in
the interpretation of a motion field and the number of possible interpretations. Generally,
we do not know the correct interpretation in advance. Therefore, we need to obtain all
of the possible solutions before we can identify the correct one; it is often difficult, if not
impossible, to obtain a robust closed-form solution in the case of curved surfaces. We may
need to rely on some type of iterative method to recover motion from a set of non-linear
equations. An iterative method, however, can converge to only one of up to three possible
solutions (when multiple solutions exist) depending on the initial condition. Several runs
of the iterative algorithm may be necessary before we obtain every possible solution; this
is expensive computationally. Furthermore, in some cases, a solution may be hard to
obtain if it has a small radius of convergence (this is important if it is the true solution).
Finally, the true solution may not be an optimum one (in the least-squares sense) with
noisy data. Therefore, it is not only important to know what circumstances can give rise
to an ambiguity and the number of possible solutions, it is equally important to know
the relationship between the true and spurious solutions.

Suppose we have determined a motion/surface pair, {t, w) and d - l/Z, that is
consistent with the data, where the surface is given by

d = 1 + diri + -diirir.
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Furthermore, suppose we know that the solution is not unique (that is, the solution we

have obtained either fully or, due to noise, approximately satisfies the conditions for an

ambiguous case). Then we can find another (two other) motion/surface pair(s), Jt, D}

and d, that is (are) consistent with the data, where the surface d is given by

d = 1 + dir, + -djrirj.
2

Negahdaripour [19861 has derived the relationship among the multiple solutions in the

two potentially ambiguous cases described earlier.

7.1 Case One: Three-Fold Ambiguity of Hyperboloids of One Sheet

There may be three interpretations if the surface of the scene is a hyperboloid of one

sheet. The "surface of ambiguity" is characterized by the following conditions:

(1) the surface gradient is zero (d = dy = 0),

(2) the Gaussian curvature is negative (dzzd y - d 2 < 0), and

(3) the mean-scaled curvature is unity ('(d. + ) = i).

The other solutions, in terms of the first solution, are given by

,= aty6- = w,- kdyy/(2a4y)

ty = (tzdyy + atydzz)/(2a) &u = wy - kd,,/(2y)

Z = 0 Zy = -(atzdzz + tydyy)/(2a-ty)

dy = 0 dy = txdyy/(at)

where -dxy : / -dxxdy

at= dxz -and k = (aty - tz)ty.

For each solution of a, we obtain one "spurious" solution from these equations. We

can alternatively determine both spurious solutions using only one of the solutions for

a. This requires that we derive another set of relationships for the dual solutions. These

are given by
T, = (at. + ty)dy/(2a) z = wX - ka/(cxtz + ty)

tY = (at, + ty)dxx/2 6,y = WY - k/(atx + ty)

= 0 Z= wZ
d, = 1 dzz = 2t,,/(at. -+ ty)

d4 = 0 d = -(ti + atv)/(at, + ty)

4 = 0 dyy = 2at,/(atz + ty)

where
k = -(atz + ty)(atzdz - tsd ,) '(2).

& •1.
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To summarize, we can determine the two "spurious" solutions either (1) by substi-
tuting the two values obtained for a into one of the two sets of relationships given above

or (2) by substituting one of the two solutions of a into both sets of equations. When

the Gaussian curvature is zero (with other conditions being the same), the surface degen-
Aerates to a circular cylinder and the ambiguity reduces to a two-fold one since the two

solutions for a become identical.

7.2 Case Two: Two-Fold Ambiguity of Hyperboloids of One Sheet

Certain hyperboloids of one sheet can give rise to a two-fold ambiguity. The surface of

ambiguity is characterized by the following conditions:

(1) the Gaussian curvature is negative (dzd., - d2 < 0,

(2) the mean-scaled curvature is unity (I(d,. + dyy) = 1), and

(3) the surface normal, the optical axis, and one of the asymptotic lines of the quadratic

surface are in the same plane; that is,

d -d d - dzdyy dy d dzd
either - d z or - = + =d

OH The dual solution is given by

Z = aty =w. - kdy,/(2aty)

= (tzdy + atydxz)/(2a) WI = wy - kdzz/(2F)
i= o 64= w, + k4/T,
do = 1 dxz =- tydzz t
d4 = t.d, l'f dy = -(atzdzz + tydyy)/(2at1 )

d4 = tYd 1 /Ty d1  = tZdyV/(a1 )

where a = dz/dy and k = (aty - t),. When d/dy = tz/ty, the ambiguity is resolved

because the two solutions become identical.

8 Imposing Depth-Positiveness Constraint to Resolve Ambiguity

In many cases, an incorrect interpretation, when more than one exists, may be ruled out
due to the fact that it violates physical constraints. One such constraint is that the depth
value for a point that is projected onto the image should be positive; that is, a point can
be seen only if it is in front of the camera (see also Horn [1986b]).

Consider, once again, the surface

d I + diri + 1dqrir.
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Since d l/Z, then d = 0 implies that Z -- oo. Therefore, the conic section

1 + diri + -dirir, = 0

is the image of points at infinity. It is also the boundary between regions with positive
and negative depth values. The region(s) with positive depth values can be the image of
the surface under consideration whereas the regions with negative depth values cannot.
A negative depth value corresponds to a point on a surface that either is behind the

camera (or translates in the opposite direction). The point cannot belong to the same

physical surface that is projected onto the region of the image with positive depth values.
". The regions with negative depth values are the image(s) of the background and/or other

objects in the scene. Therefore, the conic section is the boundary between the object
under consideration and the background or other objects in the scene. We can use these

boundaries to identify the correct solution, provided that the field of view is large enough
so that the image includes some portion of these boundaries.

It is more instructive to study an ambiguous situation. We consider the case that gives
rise to a three-fold ambiguity since it is easier to derive the equations for the minimum

size of the field of view. In this case, the surface is given by

d =1+ +dz2 + dz xy + 2

with the constraints

d,,dyy -dy <0 and -(d, +d 1y) l.
2

Suppose the image plane is circular with radius r (half-angle field of view is tan- (r)
degrees). in order to have some portion of the boundaries of the true surface within the

field of view, we should have r > re, where r, is the shortest distance from the origin of
the image plane to a point on the conic section

1 1 d,,x2 +{ d.yxy + I2dyy y2 = O.
21

Ideally, we want a larger field of view so that we can have as much of the boundary in
the image as possible.

m'h When d 5 0, it can be shown that r, = \ + yj, where

, ,:Xc± \dyym2 + 2dy + dz '

and m dy - dzz ( d /:dzx)
2

2dm- I 2d

%"

V~ ~ ~ ~ ~ ~~; *-d- . I** **.,*e~v
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Only one of the two signs gives a value of m that makes the solution for z, and y, real-
valued (the proof follows easily from the geometry of the problem). When d,, = 0, then
either d.. < 0 or dy < 0 (because d13d,, - d'- d2 2 = d.d < 0). In this case, we instead

have either

(Xc-0, YC if dly <0

or
-2

YC = 0, 9 = Xif dxz <O0.

We can derive similar expressions for 7,, the shortest distance from the origin of the image
plane to a point on the conic section of either spurious solution. Now if 7c > r > rc, the
image includes some portion of the boundaries of the true surface but no part of the
boundaries of the spurious solution or if 7 > r, and r > F,, then the image should include
some portion of the boundaries of both the true and spurious solutions. It is only when
r < min(rc, 7c) that we cannot identify the true solution since then the depth values are
positive everywhere in the image for every possible solution.

Example: Consider a viewer moving with translational velocity t = [1,2, 01T with re-
spect to surface d defined by

d = I + 0.5z + lOzy + 0.5y2 .

Using the equations given earlier, the spurious solutions are:

(1) An observer moving with translational and rotational velocities t 1 = [.445, -8.98, 0 ]T

and Ci = [-11.0, .5 5 0 , 0 ]T with respect to surface d, given by

di = 1 + -. 112z - 2.17zi/+ 1.11i2.

(2) An observer moving with translational and rotational velocities t2 = [-19.5, .975, OT

and C2 = [-1. 0 3 , 2 0 .5 , 0]T with respect to surface d2 given by

d = 1 + +1.03z - .461zy - .026y2.

The boundaries of the three surfaces are shown in Figure 2. For each solution, the regions
of negative depth values are shown by hatched lines. The resulting second-order motion
field is given by

- I- O5x2- OXy - 0.51,2
re -2 - x2 - 20xy - y2s

0

which is shown in Figure 3 (the image plane is a unit square; that is, the field of view is
2 tan-'(0.5) 54 degrees). Note that the velocity vectors are dl pairallel emanating from
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the focus of expansion at infinity in the region where the depth values are positive (the
region including the bottom-left, the center, and the top-right of the imae). They point
in the opposite direction in the bottom-right and top-left of the image. This implies that.
for points ir. these regions, either the motion is in the opposite direction (to the true one)
or the depth values are negative. In either case, these regions cannot be the images of
parts of the same object that is imaged into the region with positive depth values.

The apices of the conic section of the true surface are located at (1 23, 1 '3) If
* the tield of view is larger than 2 tan I(v/2/3) = 51 degrees, we can identify the correct

solution by matching the boundaries of depth discontinuity in the image with the conic
section of the true surface.

The two spurious solutions involve a viewer rotating about an axis parallel to one of
the asymptotic directions and translating parallel to the other asymptotic dirwtion of

the trme surface. This is quite counter-intuitive since the motion field suggests that the

underlying 3D motion is purely translational.

9 Summary

In this paper I have presented some results concerning the ambiguity in the interpretatio;i
of the motion of curved surfaces. These results suggest that only certain hyperboloids of

" One sheet or circular cylinders viewed by an observer moving parallel to the image ca:1
give rise to an ambiguity in the interpretation of the underlying motion. In the case of
hyperboloids of one sheet, the ambiguity can be either two-fold or three-fold, where&,
there can be at most two solutions in the case of circular cylinders. In either case, the
resulting motion field is second-order. I have also given analytical expressions for the
relationship among multiple solutions. In most cases, an ambiguity can be resolved by
imposing the positive-depth constraint.

'

a-.
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Appendix

The eigenvalues of

dD = 2 4 d8
D=ds 4v 4)

are the solutions of the characteristic equation

A3 + aP 1 + 1 A +a = 0,

where
a2 = -(2 + d,, ,- 4,),
al = 2(d.. 4,) (d.,d,, - d'4,) - (d! + ),

a. =-2(dsdn- 4,) +~ (d2 d' - 2d3 1d.4, -4,4I).
One of the conditions in the case of an ambiguity is that the mean-scaled curvature is
unity; that is, l(ds + 40) = 1. Therefore, we have

a0 = -4,

a , = 4 + (+,,s,- d:,)- (d: + 2))
a. = -2 (d,,,,- ge,,) + (d,,d' - d,,ds,+4Vd',).

Another condition is that either the surface gradient should vanish (d. = 0) or the
optical axis, the surface normal and one of the asymptotic lines of the surface are in the

same plane. In either cae, we obtain

ds,d, -- 2dd,, + d,,d 2 = 0.

Using this in the earlier equations and simplifying the results, we can show that the
characteristic equation simplifies to

(A -2)(A' - 2% (p-q))=o,

where
p =2 +d2 and q = -d2 -d.

Therefore, the eigenvalues of D, in the ascending order, are

A_ - vli+p+q, Ao=2, and , + I+v/! +p+ q.
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