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I. SU19ARY

We have pursued three major lines of investigation this year: (1)

development of theoretical methods for predicting the relaxations of atoms at

III-V surfaces, (2) prediction of the vibrational spectra of random III-V and

Hgl.xCdxTe alloys, and (3) development of a theory of Raman scattering in

correlated and clustered alloys. Among other predicitons, we have shown that

(1) The reconstruction of (110) zincblende surfaces is inhibited by ionic

forces, and so the 290 surface anion relaxation angle of GaAs, which was

thought to be common to all zincblende (110) surfaces, decreases significantly

with increasing ionicity of the semiconductor. (2) Vurtzite (1010) surfaces,

to a reasonable approximation, do not reconstruct. (3) The "clustering mode*

observed in Hgl.xCdxTe Raman spectra is due to Te atoms surrounded by three Hg

atoms and one Cd atom, not to vacancy complexes. (4) The effects of

correlations and clustering in the Reman spectra of alloys can be easily

predicted using a theory which combines Isig-Monte Carlo techniques and the

recursion method.

II. RECURSION THEORY OF RANDOM ALLOYS

We have developed recursion method calculations for treating the

electronic and vibrational properties of alloys. In particular, we have

predicted the electronic structures of Pbl.xSnxTe alloys, and shown that the

virtual crystal approximation breaks down for the cation s-levels, but not for

most of the other electronically relevant bands (1). To our knowledge, this is

the first theory of this sort for IV-VI alloys, materials with rocksalt

crystal structure and direct band gaps at the L-point of the BrLllouin zone.
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We have applied recursion techniques to the vibrational spectra of

Hgl.xCdxTe and found that the principal features of the Reman scattering data

can be understood, and that formerly mysterious features of the data can be

attributed to vibrations of specific clusters in the alloy. For example,

Aaitharaj et al. discovered a "clustering modem in Hg0 .8Cdo. 2 Te, which they

suspected might be related to vacancies. We find that this mode is due to a

vibrating To atom surrounded by three Hg atom and one Cd atom (23. This

ability to understand the spectra of technologically important alloys should

be useful for characterizing the materials, and determining the importance of

non-random clustering of the atoms in the alloy.

III. Ising-Monto Carlo Theory

We have developed a theory of lattice vibrations of correlated alloys.

The usual assumption one makes in treating an alloy such as Hgl.xCdx T e is that

the atoms occupy sites randomly. This assumption is rarely valid, but is

invariably made for lack of a theory of non-randomness.

Our approach is to assume that extended x-ray absorption fine structure

data (EXAFS) that are nov available at Notre Dame will provide information on

pair correlations in alloys. We have constructed a theory which uses these

data to construct all the higher-order correlations using an Isig-Monte Carlo

scheme. We adjust the "exchange integral* and "magnetic field" of our Ising

model to yield the measured pair correlations, and then predict the

higher-order correlations and configurations of the non-random alloy. With

these configurations we compute the Ran spectra using the recursion method.

This combinations of lsng-Monte Carlo and recursion theories yields what we
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believe is the first reliable theory of the vibrational properties of

non-random alloys.

IV. SURFACE REUXATION

In order to better understand the mechanical properties of surfaces, we

hae" developed a theory of surface total energies and minimized the surface

energies of zinablende semiconductor& with respect to rigid rotational bond

relaxations. go find that the anions at the GaAs (110) surface rotate out of

the surface through a large angle, as is well-established. We also find that

the rotation is considerably smaller for more ionic zLnoblendes (contrary to

the accepted viewpoint), and that the more-ionic wurtzLte (1010) surfaces, to

a good approximatLon, do not reconstruct.

V. IPULICATIONS WCLOSD WITH THIS REPORT

(13 S. Lee and J. D. Dow. Electronic structure of Pbl.,SnTe semiconductor

alloys. Submitted.

[23 Z.-W. 1u and J. D. Dow. *Clustering modes" in the vibrational spectra of

Hgi.xCdxTe alloys. Submitted.

(3) R. V. Kasowski, 3.-H. Tsai, and J. D. Dow. Dependence on ionLcLty of the

(110) surface relaxations of zincblende semiconductors. J. Vac. ScL.

Technol., in press.

(4) K.-H. Tsai. R. V. KasowskL, and J. D. Dow. Reconstruction of the non-polar

(1010) surface of vurtzLte AMN and ZnS. Submitted.
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Electronic structure of Pbi.xSnxTe semiconductor alloys

Seongbok Le and John D. Dow
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Notre Dame, Indiana 46556 U.S.A.

(Received [])

The electronic structures of the pseudo-binary alloy semiconductors

?ol.xSnTe are analysed using a tight-bindLng model vLth spin-orbit

interaction. The densities of states and the band gaps at the L point are

computed for both the effective media using the virtual crystal approximation

ad the realistic media employing the recursion method, and the results are

omupared. Both theories exhibit alloying effects such as band broadening.

energ shifts, and Dimock's band crossing phenomenon. However, significant

deviations from the virtual-crystal approximation are found for the

catLon-derLved s-like deep valence band states.

PACS lumbers: 71.25.Tn
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I. Introduction

The narrow-gap IV-VI semiconductor compounds and their pseudo-binary

alloys have unique properties. They have on the average five valence electrons

per atom, small direct band gaps at the L point, and high static dielectric

constants of order 103 . They often show a variety of anomalous thermodynamic,

acoustic, and electronic properties [l(2). PbIl.xSnxTe is an especially

interesting semiconductor alloy because the symmetry of valence and conduction

band edges of SnTe is reversed compared to PbTe and other IV-VI

semiconductors: The conduction and the valence band edges have Lj and

symmetry respectively in PbTe and most other IV-VI semiconductors, while the

ordering is Dimmock reversed* in SnTe (1][2)(3]. This has an interesting

consequence: that the fundamental band gap closes to zero at an intermediate

composition x in Pbl.x.SnxTe [3]. This property of the fundamental energy band

gap vanishing for a selected composition mans that alloys with compositions

near this composition exhibit small band gaps that satisfy the special needs

for infrared sources (4) and detectors (5) in modern technology. Therefore it

is very important to understand the effects of alloy disorder on the

electronic structures of these technologically important materials.

Recently. Spicer et al. (61 have reported experiments indicating the

selective breakdown of the virtual crystal approximation for deep valence

bands in Hgl.xCdyTe (which is a covalent semiconductor alloy containing

"light" (Cd) and wheavyw (Hg) atoms), and have identified that phenomenon as

resulting from the Hg 6s atomic levels being significantly below the Cd 5s

levels. Also, Haas et al. (71 have obtained similar disorder effects

theoretically in Hgl.xCdxTe using the coherent-potential approximation. Davis
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(8] has also found large deviations from virtual-crystal behavior

theoretically in Pbl.xSrxS where the cations Pb (configuration 6s26p2) and Sr

(configuration 5s2) differ so much that an average cation potential is

meaningless.

The present work analyzes the effects of alloy disorder on the electronic

structures of the random alloys Pbl xSnxTe using the recursion method with a

tight-binding model. Pbl.xSnxTe is an interesting material for this purpose

because its- constituent semiconductor compounds PbTe and SnTe have very

similar overall electronic structures, except for the Dimmock reversal of the

valence and conduction band edges; the alloy contains "light" (Sn) and *heavy"

(Pb) cations. Moreover, the electronic band structures of these materials have

t.arge spin-orbit splittings, and the fundamental gaps are not at the center of

the Brillouin zone, - Indeed, some authors believe that PbTe and SnTe are

ionic rather than covalent materials [9]. Therefore the usual criteria (101

for the validity of the virtual crystal approximation may not apply.

In Section II, the tight-binding model for the parent semiconductors PbTe

and SnTe is discussed, and the recursion method is ohtlined. In Section III,

the results of the calculations are presented and discussed. Section IV

summarizes the conclusions.

II. Calculational Procedures

A. Tight-binding model
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It is well known that Pbl.xSnxTe forms a single phase pseudo-binary alloy

over the entire composition range x, with about 2% of lattice constant change

from PbTe to SnTe. Both compounds crystallize in the rocksalt structure with

lattice constant 6.443 A for PbTe and 6.327 A for SnTe (111 at 300 OK. The

electronic structures of PbTe and SnTe (and other IV-VI compounds) have been

extensively investigated theoretically and experimentally [1][21. A variety of

computational techniques such as the relativistic augmented plane wave (APW)

method [12)(13][14], orthonalized plane wave (OPW) method [15], empirical

pseudopotential method [16](17][18J[191, and relativistic Green's function or

Korringa-Kohn-Rostoker method (KKR) [201 have been used to calculate the

electronic band structures of these materials. Hore recently, a

self-consistent relativistic APW calculation for SnTe (211 and

first-principles pseudopotential total energy calculation for the ground state

properties and electronic structures of PbTe and SnTe (221 have been reported.

Although considerable differences may exist concerning some details, such as

the parity assignments at the L point [23] and gap structures at critical

points (for example, some calculations (13][16][211 showed a "hump structure",

i.e., the L point is not a minimum or maximum energy p6int, but a saddle point

in SnTe), the general features of the various band structures mentioned above

are quite similar. Concentrating on this point and the fact that the recursion

method takes its most convenient form in a tight-binding model, we will use in

this work the empirical tight-binding Hamiltonian matrix elements of Lent et

al. (24), which are obtained by fitting the eigenvalues of the tight-binding

Hamiltonian matrix to the experimental band gap at the L point and to band

energies at symmetry points, as calculated by Herman et al. [15].
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Since the relativistic corrections to the energies of heavy materials,

particularly those including Pb, are significant (25] (26], the Hamiltonian

used for band calculations should include these effects. The relativistic

Hamiltonian which produces the energy band structure has the following form

[121

H-(p2/2) + V + H + h2V2V8m2c?- -p 4/8m 3c2  (1)

where V is the periodic crystal potential. The spin-orbit term which may split

degenerate levels is

Ho - )(o. [(AV)xj]/4m2c2  (2)

and the remaining terms are the Darwin and mass-velocity terms, respectively.

Employing the ideas of Harrison (27], Chadi (28], and Vogl et al. [29],

the nearest-neighbor tight-binding Hamiltonian can be constructed

Ho - Fi 0 la,i,o,> i,a <a...o,,fl + Ici,,.+&> Ei,c <c,i to, +l

+ E-XOiJ [Ia.i,oP.> Vi j <c,J,G,,X,+aI

+ H.c.] + HBO (3)

where H.c. means Hermitian conjugate, Rt are the lattice vectors, i and j are

the localized quasi-atomic orbitals for the cation and anion, a is the spin

index (up or down), a and c refer to the anion and cation respectively, and
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is the position of the cation relative to the anion in any unit cell: d -

(aL/ 2 ,0,0). The spin-orbit interaction term can be described by the following

Hamiltonian

Hso - R,ij,a,q* [ia,i,aR>(Aa/2)ta-;a<aj.' ,I

+lc, l,,Rz>(Ac/2)tc-;r_<c, j ,a' RrI (4)

As a basis set, we used eighteen quasi-atomic orbitals localized on each

atomic site which are assumed to be mutually orthonormalized by the method of

Lowdin [30]: s, px, Pyt Pz, dx2-y2 . d3z2 -r2 ' dIy, dyz, and dzx for each spin

up and down state. The parameters of this model are given in Ref. (24], and

reproduce the experimental band gaps at the L point 131 (0.186 eV for PbTe and

0.3 eV for SnTe) as well as the calculated band energies of Ref. (15] at the

high symmetry points r, x, and L. The resulting band structures are given in

Ref. (24). In particular, the Dimmock reversal of the band structure from PbTe

to SnTe is correctly reproduced by the model.

B. Recursion method

In a random alloy where the perfect periodicity is lacking, the wave

vector E is no longer a good quantum number and the simplifications of Bloch's

theorem do not apply. Horeover, since the number of possible alloy

configurations is infinite, it is necessary to develop a theory that will

correctly predict the macroscopic physical properties of an alloy without

having to perform ensemble averages of microscopic properties over impossibly
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large numbers of alloy configurations. Various approaches have been developed

to overcome these difficulties. Among these, effective medium theories such as

the virtual crystal approximation (VCA) [311 and the coherent potential

approximation (CPA) [61[7][10][32][33](34)]35][36) have been commonly used for

the study of semiconductor alloys. In this work, we will use the recursion

method (8J[37J because it does not require any lattice periodicity or

effective medium; and, if executed to'convergence, does obtain the correct

alloy density of states (in contrast with the effective medium models). In

this section, we shall briefly present the underlying concept of the recursion

method.

For the discussion of electronic structure of disordered systems, the

local density of states (LDOS) is a well-defined and useful quantity; it can

be written

n(E,') -E I#n(')l 6(-En)
n

or

- -(l/s) Im G(i,i.E), (5)

where

G , E) -lim < r I(E.H+i)-I11r> (6)

is the Green's function, and On(i) is an eigenfunction of the disordered

system with eigenvalue En.
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We choose as a basis set the localized atomic orbitals centered on the

various atoms of a finite cluster. *m(r-R), where m runs over the a, p, and d

states. These are orthonormalized L~wdin orbitals [301 and X is the atomic

site. Nov we relabel them as i> (i-0. 1, 2, ..., N, where N+1 is the total

number of orbitals). and take as 10> the particular orbital (either s, p. or

d) on the particular atomic site (either anion or cation) we are interested

in. In this basis, the local density of states of the state 10> becomes

no(E) - -(l/W) In GOO(E) (7)

where we define

Oij(9) 4- <il(E-H+ie) 'j> (8)

Waen we know the exact eigenvalues and eigenstates, we can calculate the local

density of states by the use of equation (5). In actual calculations for

realistic models of disordered systems. this approach requires computations

that are complicated and often impractical. Other apprbaches (e.g., the method

of moments or the recursion method) are needed to predict the (local) density

of states without directly calculating the eigenvalues and eigenvectors.

The recursion method is one such scheme, and uses an analytic expression

to obtain the density of states. Since any Hermitian matrix can be transformed

into a real symmetric tridiagonal matrix by unitary transformation, the

Hamiltonian matrix elements in the new transformed basis li) (v-O, 1, ..., N)

can be written

. .... .. ....M
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(.IHIj) - bg+1  ,-p+i (9)

0 otherwise

In other words, we have the following recursion equation

Hli) - bvlp-l) + amjv) + bv+flv+l) (10)

At the initial iteration, we choose 10)-10>, and set b0-O. Then all the

recursion coefficients av and b. (v-0, 1, ... , N) can be determined by

recursive use of equation (10).

Given the tridagonalized Hamiltonian (equation (9)), the Green' s

function can be expressed as a continued-fraction

1
G (E) - E - b2

K- a1 - b2
2

Z - a2 -. ....

where E has an infinitesimal positive imaginary part. In principle, G0 ,0 (E)

can be determined as exactly as possible by expanding it to the N-th level.

However, in practice the expansion is cut off at some finite level L, and the

remainder is neglected here.
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As a final step, the continued-fraction form of Green's function is

decomposed into partial fractions and the imaginary part is taken to obtain

the local density of states. Thus the local density of states is expressed as

a sum of Dirac delta functions, and a relatively accurate integrated local

density of states is evaluated by integration. Then the local density of

states itself is determined by numerical differentiation. Details of the

method can be found. in Ref. [371,- computer programs for executing the

recursion method are available (38).

Since we are interested in the macroscopic properties of the alloy. the

local densi ty of states should be averaged over all sites in the alloy. This

can be done by the usual method. i.e., finding the local densities of states

for each site and taking the average of them. However, it is an extremely

time-consuming procedure for a large cluster. In practice, it is better to

choose an initial state 10) that is a sum over either all cation or anion

sites of #,M vith a the sm for each site and with random signs on the

various sites. Then the off-diagonal terms <niGlm> that enter equation (7)

approximately cancel out, due to the random signs. giving a reasonable site

average for the large cluster.

III. Results and Discussion

We first calculate the density of states for the perfect crystals PbTe

and SnTe employing the nearest-neighbor tight-binding model discussed in the

previous section. The results are shown in Figs. (1) and (2). The dot-dashed

curve is the density of states obtained by the Lehmann-Taut method (39). in

this method, the Brillouin zone is decomposed into a set of tetrahedra. and
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the integration over the Brillouin zone is evaluated using an analytic

expression. The solid curve is from the recursion method. A 12xl2x12 atom

cluster was generated to simulate the perfect infinite crystal. and the local

density of states for each orbital was calculated with the initial state

10)-10> being a linear superposition of *( -E) from all the sites on a given

sublattice• with random signs (+) on each site. Periodic boundary conditions

were used, and the reqursion was iterated to L-51 levels -- that is, the

continued-fraction expansion of the Green's function was cut off at the L-51

level. Then all the local densities of states were sumed to give the (global)

density of states.

The overall agreement between the two methods is very good. except for

some minor details such as the peak structures and the band gap smearing; the

differences between the results of the recursion method and the Lehmann-Taut

method are within the tolerable range. The 6-function-like peaks are

associated with van Hove singularities (401 due to the long-range order. The

more or less smooth peaks in the upper valence bands given by the recursion

method (solid curve) are partly due to the finite size of the cluster and

partly due to the limited resolution of the present method because of the

finite cutoff at L-51. (We determined this by varying the size of the cluster

and L.) Another difference is that while the Lehmann-Taut method clearly shows

the band gap to contain no states,. the band edges are smeared in the recursion

method. The main reasons for this are the limited resolution of the method and

the incomplete cancellation of the off-diagonal elements of the Green's

function due to the choice of randomly phased initial state. The band edges

can be sharpened by choosing the initial state on the center of a cluster or

by Investigating the spectral density of states as will be discussed later. In

... . . ~ ~ ~ MM jam...sI= I'



Page 12

Fig. (3), the contribution of each orbital to the density of states of PbTe is

displayed. The lowest valence band is predominantly anion s-like, and the

middle valence band is cation s-like. The upper valence bands have dominant

anion p-like character, while the lower conduction bands are p-like and cation

derived. This can be visualized by the following simple picture. The Pb atom

has four valence electrons (6s26p 2 ) with free-atomic orbital energies -12.42

eV and -6.95 eV (relative to vacuum) -for s- and p- orbitals respectively, and

the Te atom has six valence electrons (5s25p4 ) with orbital energies -19.05 eV

(Ss) and -9.79 eV (Sp) 1411. The two 5s electrons of Te. which have the lowest

orbital energies, form an isolated valence band deep in energy, and the two 6b

electrons of Pb form a middle valence band. The two 6p electrons of Pb and the

four 5p electrons of Te interact with each other to form bonding (valence

band) and antibonding (conduction band) bands. Therefore, alloying PbTe and

SnTe, which is equivalent to distributing Pb and Sn atoms randomly on cation

sites, has the largest effect on the cation-like middle valence band. The

characteristics of the local density of states structure in SnTe is similar to

that of PbTe (see Fig. (4)) the 5s and 5p free-atomic orbital energies of Sn

are at -12.97 eV and -7.21 eV, respectively.

We generate a model of the random alloy Pbl.xSnxTe by randomly occupying

cation sites by either Pb (with probability l-x) or Sn (with probability x),

while all anion sites are occupied by Te. The matrix elements of the alloy

Hamiltonian are derived from those of PbTe and SnTe as follows: On cation

sites, we use either PbTe or SnTe matrix elements, depending on whether the

site was occupied by Pb or Sn. On To sites, we average the PbTe and SnTe

matrix elements, weighting the average in proportion to the number of

neighboring Pb and Sn atoms to the To. Then the densities of states for
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Pbl.,SnTe are calculated using both the virtual crystal approximation and the

recursion method for a number of compositions x. Again, the density of states

is obtained by the use of the Lehmann-Taut method in the virtual crystal

approximation, and a 12xl2xl2 atom cluster is used in the recursion method

with periodic boundary conditions. In order to avoid sample dependent results,

we repeated the calculations for five different alloy configuration. of 123

atoms, and averaged the densities of btates. The results are shown in Figs.

(5). (6), (7), and (8). The solid curves represent the recursion density of

states, and the dot-dashed curves are for the virtual crystal approximation

(VCA) results. Both the virtual crystal approximation and the recursion

density of'states show the alloying effects i.e., energy shifts and width

changes of the den.ity of states peaks. However, analysis of the middle

valence band near -7 eV, which has the greatest alloying effects, clearly

reveals the differences between the prediction. of the two methods -- the

effects of disorder. This band is a doublet, with its low- and high-energy

components due to Pb and Sn s-states, respectively.

Fortunately the results we find agree rather well with what is expected,

based on the Onodera-Toyozawa theory of alloys (10] -- despite the fact that

that theory, to our knowledge, has not been applied previously to alloys with

fundamental band gaps at the L-point of the Brillouin zone. The density of

states spectra of the alloys exhibit some features that are "persistent" and

others that are *amalgamated' in the terminology of Ref. [10). The persistent

features are associated with the cation-like middle valence bands: the Pb

6s-like and Sn 5s-like bands that retain their characters in the alloy because

the perfect-crystal bands do not overlap in energy. The remaining bands are

Oamalgamated" and tend to form hybrids of the PbTe and SnTe bands rather than
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exhibit separate IPbTe- and SaTe-iike bands. This amalgamation occurs because

the PbTe and SnTe bands overlap in energy, and hence mix in the alloy [10].

Bands that fall within this amalgamated regime can generally be described, in

a first approximation, by the virtual crystal approximation.

Although it is straightforward to include a valence band offset in the

calculation by adding a constant energy to all of the diagonal matrix elements

of either PbTe or SnTe (by construction, the matrix elements of Ref. [241

place the zero of energy at the valence band maxiinm). we have not done so

here because the offset is thought to be small (of order 60 maV) (421, almost

neglLgLble .on the scale of the figures.

It is well known that the fundamental band gap of Pbl ,SnxTe closes at

ome intermediate composition because of the inverted band structure of SnT*.

We calculated E(L)-2(L4) of Pbl.,,STe as a function of composition x by

dLagonalizing the vrftual-crystal empirical tight-binding HLmiltonian (closed

circles in Fig. (9)). Also the corresponding quantity can be calculated using

the recursion method. In alloys, the translational symmtry is broken, thus

the wave vector E is not a good quantum numer. Howevet, we still can define

the spectral density functions analogous to the perfect crystal by the

following [8

Umn Its < b~i,ojG(u +ie)jb,i~o, V, (12)

where lb,i,v,E> is a normalized Bloch sum over all unit cells of orbital i

with spin a on each atomic site b (anion or cation). Then the position and

broadening of the peak represents the energy shift and damping of a particular
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quaaipartLcle state of energy E and wave vector R. Since L6 (Lj) has anion

(cation) p-like character, a Bloch sun of (px+Py+pz)/J3 on each anion (cation)

site at the L point is chosen as the initial state 10> for L (L), and the

spectral density of states A(rt,Z) is calculated. Then the gap is defined by

the differences In the peak values of A(R,E), i.e., E(L;)-E(L4). The

theoretical predictions are shown also in Fig. (9) (closed triangles) In

comparison with a linear, interpolatLon of the experimental band gaps of PbTe

and SaTe [3) (solid line). The theoretical uncertainty in E(L)-E(4+) is

- 1 0.02 eV for 0cx<l. The calculated band gap is almost a linear function of

composition x and compares well with the experimental results.

IV. Summary

The electronic structures of fb.-xSnTe alloys including their parent

semiconductor compounds have been analyzed using the tight-binding model with

spin-orbit interaction. The densities of states were computed for both the

effective media using the virtual crystal approximation and the realistic

media employing the recursion method, and the results were compared. As

expected, both theories exhibited alloying effects such as band broadening and

energy shifts. However, the two methods differed in their predictions for the

cation-derived s-like states, which experienced the greatest alloying effect.

The alloy composition dependence of the band gap at the L point was analyzed.

and exhibits Dimmock's band crossing phenomenon. The above facts show that the

recursion method is a useful tool for the study of the electronic structure of

random fb1 .xSnxTe, and in particular for the cation-like middle valence band.

However. they also show that the virtual crystal approximation provides a

remarkably good description of the electronically important top valence and
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bottom conduction bands. Finally, they demonstrate that the Onodera-Toyozawa

criteria can be applied to Pbl.SnxTe, even though these alloys have their

fundamental band gaps at L: the cation-like s-like middle valence bands are

*persistent" while the top valence band and lowest conduction band are

"amalgamated."
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FIGURE CAPTIONS

Fig. (1) The virtual crystal approximation (dot-dashed curve) and the

recursion method (solid curve) density of states in PbTe. A 12xl2xl2 atom

cluster with periodic boundary conditions was used in the recursion method.

The zero of energy is the valence band maximum.

Fig. (2) The virtual crystal approximation (dot-dashed curve) and the

recursion method (solid curve) density of states in SnTe. A 12x12x12 atom

cluster with periodic boundary conditions was used in the recursion method.

Fig. L3) Local density of states for cation (dot-dashed curve) and

anion (solid curve) calculated by the recursion method in PbTe.

Fig. (4) Local density of states for cation (dot-dashed curve) and

anion (solid curve) calculated by the recursion method in SnTe.

Fig. (5) The virtual crystal approximation (dot-dashed curve) and the

recursion method (solid curve) density of states in Pb0 .3Sno. 7Te. A 12x12x12

atom cluster with periodic boundary condition was used in the recursion

method.

Fig. (6) The virtual crystal approximation (dot-dashed curve) and the

recursion method (solid curve) density of states in Pbo.4Sn0 .6Te. A 12x12x12

atom cluster with periodic boundary condition was used in the recursion

method.
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Fig. (7) The virtual crystal approximation (dot-dashed curve) and the

recursion method (solid curve) density of states in Pb0 .5Sno.5Te. A 12x12x12

atom cluster with periodic boundary condition was used in the recursion

method.

Fig. (8) The virtual crystal approximation (dot-dashed curve) and the

recursion method (solid curve), density of states in Pbo0 . 6Sno.Te. A 12x12x12

atom cluster with periodic boundary condition was used in the recursion

method.

Fig. (9) The band gap E(L6 ")-E(L6
+ ) of Pbl.xSnxTe versus composition x.

The closed circles (triangles) are obtained using the virtual crystal

approximation (the recursion method), and the solid line represents the

interpolation of PbTe and SnTe experimental results of Ref. (3].
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"Clustering modes" in the vibrational spectra of Hgl.xCdxTe alloys

Zhuo-Wu Fu and John D. Dow

Department of Physics, University of Notre Dame

Notre Dame, Indiana 46556 U.S.A.

Abstract

The spectral densities of states for phonons in Hgl.xCdxTe alloys are

predicted using the recursion method and are compared with Raman scattering

data. The "clustering mode" observed by AmirtharaJ et al. is shown to be an

"alloy model associated with vibrations of a Te atom bonded to one Cd atom and

three Hg atoms. HglxCdxTe is shown to be a "two-mode" alloy vibrationally.
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Recent Raman scattering data [1] for HgO.8Cdo.2Te substitutional

crystalline alloys revealed a vibrational mode at 135 cm "1 that is neither

Hg-like nor Cd-like. This "clustering mode" was thought to be caused by

either non-random clusters in the alloy or by vacancies or vacancy-complexes.

Motivated by these data, we have executed calculations of the densities of

vibrational states of Hgl.xCdxTe random substitutional alloys, using the

recursion method (2]. As a result: (i) We have determined that the

"clustering mode" [1] is attributable to clusters of one Cd atom and three Hg

atoms bonded to the same Te; there is no need to invoke vacancies or

non-random clusters to describe the observed mode; and (ii) We have found that

Hgl.xCdXTe is a "two-mode" alloy (3] in that the optical phonons of HgTe and

CdTe persist for all x.

The calculations employ the recursion method [21, using a model with only

short-ranged forces (4][5](6. The method and model are essentially the same

as those used for AIxGa.-xAs alloys [6] and (GaAs)lxGe2x alloys [7], and so

we do not repeat the formalism here. The recursion method is a Green's

function theory, and, as such, has elements in common with the work of Talwar

and Vandevyver [8]. The force constants used for HgTe and CdTe were fit to

neutron-scattering data [9](101, and are given in Table I. They produce good

phonon dispersion curves and vibrational densities of states [11][12].

Here we report the recursion calculations for Hg0 .8Cd0 .2Te, for which

Raman scattering data are available (1]. Principal peaks of the spectra of

HgTe and CdTe are identified in Fig. (1), using standard notation. In

addition, "alloy modes," which appear in the spectra of neither HgTe nor CdTe,

are indicated on Fig. (1). These modes are associated, in general, with
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vibrations of specific clusters of atoms in Hgl.xCdxTe. Such identifications

of peaks in the spectra with particular clusters of atoms are obtained by

choosing various specific mini-clusters [6][7J and by computing the local

densities of states for one atom at the center of such a mini-cluster.

Comparing our theoretical results with the Raman scattering data of

Amirtharaj et al. [1] (Fig. (1)), we find good agreement with the Cd-like

optic mode at 156 cm 1 and the two Hg-like modes at 122 and 144 cm-1

respectively. The experimental "clustering mode" is simply an "alloy mode"

(6] due to Te atoms bonded to three Hg atoms and one Cd atom. There is no

need to invoke non-randomness in the alloy or to postulate the existence of

vacancies in high concentrations.

We find that the optic modes of HgTe and CdTe persist for all alloy

compositions x in Hgl.xCdxTe. This is to be expected on the basis of the

criterion of Onodera and Toyozawa [13J: because the masses of Hg and Cd are

so different, the spectrum of Hgl.xCdxTe exhibits "two-mode" persistent

behavior, and the optical phonon bands of HgTe and CdTe persist for all

compositions x in the alloy Hgl.xCdxTe. Note that the model on which the

recursion calculations are based contains no long-ranged forces; hence the

longitudinal and tranverse optic phonons are degenerate in this model at 94,

the Brillouin zone center. Since the experimental longitudinal-transverse

optic phonon splitting at K- is small, the omission of the long-ranged

Coulomb forces responsible for the splitting does not alter the essential

physics or impede the identification of the principal spectral features.
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In summary, recursion-method calculations of the densities of states of

Hgl.xCdxTe alloys provide a natural identification of the "clustering mode"

with vibrations of a complex involving three Hg atoms and one Cd atom bonded

to the same Te atom. A complete discussion of phonons in these interesting

alloys will be published soon [11].
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TABLE

Table I. Force-constant parameters (in units of dyne/cm) and masses (in

units of 10" 24g) for HgTe and CdTe, in the notation of Ref. [6].

HgTe CdTe

a - 15875 - 19806

- 14635 - 18469

Xc 5302 5304

Aa  2579 1360

.c - 2486 - 5281

Aa - 6650 - 2704

vc  - 4830 - 6954

Va - 2930 2105

mc  333.1 186.6

Ma 211.9 211.9

111'j
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FIGURE CAPTIONS

Fig. (1). The Raman scattering data of HglxCdxTe, according to Ref.

[1] (upper panel), in comparison with the calculated density of states of

Hgo.8Cd0 .2Te (lower panel). The data were taken for the <110> face at 77K and

are the curves 2a, 2e, and 2c (from the top down) of Fig. 2 from Ref. [1].

They correspond to the following experimental conditions: X2[Y2 ,Y2]X2,

X2[Z2',Z2']X 2 , and X2 [Y2 ,Z2 ]X2 , where we have X2[llO], Y2 [llO, Z2[OO1], and

Z2 '[112]. Principal spectral features are identified on the figure.
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of zincblende semiconductors
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Abstract

It is argued that the surface relaxation angle w of zincblende (110)

surfaces should depend on ionicity or on longitudinal effective charge Z.

approximately as w - 0 " 1 Z2e 2/eaL with ,m 60/eV.
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The (110) zincblende surface relaxations are thought to be the best

understood of the semiconductor surface reconstructions, based on analyses of

numerous low-energy electron diffraction (LEED) data

(1)[2](3][4][5](6][7)(8)[9](101 and medium-energy ion-blocking experiments

[11](12]. It is widely believed that these reconstructions are determined

virtually exclusively by covalent forces, and that the surface anions rotate

more-or-less rigidly out of the surface through an angle w - 290 for all

zincblende (110) surfaces [13)[14][1][2]. (See Fig. 1.) This relaxation angle

w minimizes the energy of the covalent bonds. To be sure, some (110)

zincblende surfaces have relaxations that are not purely rigid rotations of

anions through 290: (i) an opposite smaller rotation of the second layer

followed by some inward relaxation of the top-bilayer toward the substrate

(10] has been reported for some compound semiconductors (91(101(151; and (ii)

small variations in w for different zincblendes have been purportedly

correlated with variations of bulk lattice constants rather than Lonicity (as

previously proposed (16]) [18]. Nevertheless, the currently most-accepted

viewpoint is that the (110) zincblende surface relaxations are remarkably well

described by a rigid rotation model with a relaxation angle w very near to 290

and virtually independent of ionicity.

However, the viewpoint that w is constant for all zincblendes cannot

possibly be precisely correct, and must be strictly valid only in the limit of

low ionicity. For the more ionic zincblende semiconductors, the attractive

Coulomb forces between the relaxed, negatively charged surface anions and the

positively charged cations in and below the surface tend to pull the anions

back toward the surface and reduce the relaxation caused by the covalent

forces. (See Fig. 1.) This Coulombic effect should reduce the relaxation angle

bm/
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2
w by an amount proportional to Z where Z is the (longitudinal) effective

charge 119), and the effect should become significant when Z2e2/'aL is of

order 0.5 eV, a typical covalent energy gained by each relaxing surface anion

120]. Here e is the electron's charge, c is the dielectric constant, and aL is

the lattice constant. Recall that the ionicity fi is approximately

proportional to Z: Z/Zc - fi' where Zc is the chemical valency [19).

Thus it is disturbing that LEED analyses of some zincblende

semiconductors with quite different ionicities have yielded essentially the

same values of w [3][4](6, especially when one recognizes that the electronic

properties of these surfaces depend dramatically on ionicity [21). Clearly the

surface physics of zincblende materials would advance if either (i) there were

a convincing theoretical demonstration that w should not depend significantly

on ionLcity, or (ii) there were revisions of the experimental values of w that

demonstrated a variation of w with ionicity or effective charge Z.

To determine theoretically if the relaxation angles w should indeed be

the same for all zincblende semiconductors, we have executed self-consistent

total-energy calculations based on the pseudo-function local-density theory

[22]. These calculations employed four-atom-thick slabs of GaAs, InP, ZnTe,

and ZnS (231, and allowed their (110) surfaces to relax via rigid rotations

through angles w until the total energies of the slabs reached minima. The

resulting equilibrium relaxation angles w are plotted in Fig. 2 as functions

of Z2e2/eaL (See Table I.), and, to a good approximation, form a straight line

described by the empirical rule

- "0 - l Z2e2/aL'
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with w0 - 20.620 and wl - 6.080/eV. The fact that w0 is of the same general

magnitude as the observed surface relaxation angles indicates that the rigid

rotation model, as used here, contains the essential physics of the surface

relaxation. We note also that the values u we find for GaAs and other

zincblendes are comparable vith other theoretical values (9](171[24](20](251.

Furthermore. the sign and magnitude of w are as expected. While our computed

relaxation angles do vary systematically with effective charge or ionicity,

they show no such trend with lattice constant exclusively (See Table I) and

therefore cast doubt on data analyses claiming to have determined such a

correlations [18.

The relaxation angles u extracted from data analyses are difficult to

obtain accurately [101 (See Table I.). and actually agree about equally well

with either hypothesis; (1) the widely believed w - constant or (2)

W - "O - W, Z202/EaL. with wI of order 6°/eV. (See Fig. 2.) Therefore we think

that the w - constant hypothesis should be reexamined experimentally, possibly

by studying the (110) surfaces of zincblende CuCl, ZnS, Cul, and ZnSe (or some

other highly ionic zincblende materials) in the light of the present results.

The ionicity of the zincblende surface not only reduces the equilibrium

relaxation angle w, but it also increases the relaxation energy per surface

atom and increases surface phonon frequencies, according to the theory. (See

Fig. 3.)

We hope that experiments on the (110) surfaces of different zincblende

semiconductors will confirm these theoretical ideas quantitatively, establish

the role of effective charge and ionicity in determining equilibrium surface

geometry, and lead to an even better understanding of these prototypical
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surfaces.
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Table I. Effective bulk (longitudinal) charges Z [19], lattice constants

aL (in units of Bohr radii a0 ), dielectric constants c [19], Z2e2/caL (in eV),

calculated relaxation angle wTheory, predicted change in relaxation angle A

(based on the empirical rule), and relaxation angles w measured by low energy

electron diffraction (wUED) and ion back-scattering (wion), respectively. See

Ref. (19]. Note that our results for Theory are generally smaller than those

of Ref. [241 and Ref. [251, especially for large effective charge Z. because

of superior features of our model [26).

Materials Z aL(aO) f Z2e2/eaL wTheory "& wLEED "ion

cucl 1.505 10.215 3.6 1.67 10.150
CuBr 1.35 10.753 4.4 1.048 6.370
Cul 1.715 11.419 5.2 1.347 8.190
AgI 1.38 12.232 4.9 0.864 5.250
ZnS 1.795 10.222 5.1 1.681 110 10.220 260 (3]
ZnSe 1.625 10.710 5.9 1.137 6.910 290 (4]
ZnTe 1.66 11.529 7.3 0.891 140 5.420 280±20 (5]
CdTe 1.715 12.240 7.3 0.895 5.440
HgTe 2.025 12.208 14.0 0.653 3.970
BN 0.78* 6.831 4.5 0.538 3.270
AIP 0.93* 10.301 7.6 0.301 1.830 27.50±30 (6)
AlAs 0.81* 10.700 9.0 0.185 1.120
AISb 1.045 11.594 10.2 0.251 1.530
GaP 1.185 10.300 8.5 0.436 2.650 27.50 131
GaAs 1.03 10.683 10.9 0.248 200 1.510 270-31°(2] 290±30 (111
GaSb 0.69 11.519 14.4 0.078 0.470 300±20 [5) 28.50±2.60 (12]
InP 1.485 11.090 9.6 0.563 170 3.420 28.10 [8]
InAs 1.085 11.449 12.3 0.227 1.380 310±30 (7] 300±2.40 (12]
InSb 0.72 12.243 15.6 0.074 0.450 28.80 (8]
sic 0.775 8.217 6.7 0.297 1.810

* Estimated from the ionicity fi by Z - Zcfi.

i c w*



Page 9

FIGURE CAPTIONS

Fig. 1. The rigid rotation model of the zincblende (110) surface

geometry, as seen from the side, with the surface anions having relaxed

through a relaxation angle w - 290. Note that the anions rotate up out of the

surface, and that the bulk semiconductor lies in the lower part of the figure.

Note also that the Coulomb forces between the negativ y chargeu anions that

have rotated out of the surface and the positively charged cations near and

below them pull the surface anions back toward the surface.

Fig. 2. Calculated change - o- of the relaxaLion angle ( as a

function of Z2e/aL in eV. The calculations were performed for GaAs, InP,

ZnTe, and ZnS (closed circles) and interpolated according to the empirical

rule W - WO - W1 ze/EaL (open circles). Data for various semiconductors are

plotted for comparison (See Table I.).

Fig. 3. Calculated total energy curves as a function of rotational

relaxation angle w for GaAs, ZnTe, and ZnS. Note that the effective charge Z

increases from GaAs to ZnTe to ZnS. Note that the angle w corresponding to

equilibrium decreases with increasing ionicity or effective charge Z. (See

Table I.) Note also that as the total energy curve becomes sharper and deeper,

surface phonon frequencies increase.
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Using the pseudo-function method and local density theory, we minimize

the total energy of the (1010) surfaces of AIN and ZnS, within the context of

a Rigid Rotation Model. We predict that the surface anions rotate inward

toward the bulk through very small angles (in contrast to the anions of the

(110) surface of GaAs, which rotate outward through large angles (w-290 ).

Thus, to an adequate approximation, the (1010) surfaces of these relatively

ionic wurtzite semiconductors do not teconstruct.

PACS Numbers: 68.20.+t; 73.20.-r
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In this communication we present calculations of the surface relaxations

of the non-polar (1010) surfaces of wurtzice AIN and ZnS. We assume a Rigid

Rotation Model of the surface similar to that developed for zincblende (110)

surfaces by Tong and others (1](2), and calculate the angle of rotation w that

minimizes the surface's total energy.

Studies of zincblende (110) surfaces indicate that the primary chemistry

determining their reconstruction is simple: surface anions that were four-fold

co-ordinated kn the bulk rotate out of the surface in order to re-hybridize

their orbitals and adopt a three-fold co-ordination with bond angles that are

near 900 and characteristic of three-fold co-ordinated molecules [3]. To an

adequate approximation, bond-lengths are conserved during this rotational

relaxation of zincblende (110) surfaces [4].

Guided by the success of the Rigid Rotation Model for the non-polar (110)

surfaces of zincblende semiconductors, we propose an analogous model for the

non-polar (1010) surfaces of wurtzites, in which the reconstruction is

described by a single angle w, which gives the equilibrium rotation of the

anions' surface-bonds, as described in Fig. (1). Ve then determine the

equilibrium relaxation angle w by minimizing the total energy, using local

density theory 15] and the pseudo-function method 16). To implement this

procedure without using excessive computer time, we take the solid to be a

slab four atoms thick, and, for simplicity, relax both the top and bottom

layers symmetrically. Bond lengths are constrained to remain unaltered during

this relaxation. (Such a procedure successfully described the physics of (110)

zincblende relaxation [7].) Details of our calculational procedure may be

found in Ref. [6].
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In the minimum energy configuration, we find that the anions and cations

of the (1010) surfaces of wurtzite AIN and ZnS are very nearly on bulk lattice

sites; the magnitudes of the equilibrium relaxation angles w are small and

negative, -2.50 and -2.40 for AIN and ZnS, respectively: the anions move

slightly inwards toward the bulk (in contrast to the well-understood (110)

zincblende surface, in which the anions relax out of the surface through a

large angle of -29o). The energies galned by this relaxation are 0.14 eV and

0.09 eV per surface atom for AIN and ZnS, respectively (much smaller that the

0.3 to 0.5 eV relaxation energies of zincblende (110) surfaces).

This resistance of wurtzite (1010) surfaces to surface relaxation can be

understood in terms of simple physics: Surface reconstruction is dictated by a

competition between covalent forces and Coulomb forces. Atoms that are

four-fold coordinated in the bulk are only three-fold co-ordinated at the

surface, and covalent forces tend to rotate these atoms out of the surface

through a relaxation angle w into configurations such that they can

re-hybridize and form three-fold co-ordinated bonds with bond-angles near 900

(to accommodate the ix Py and pz bonding orbitals (3]). The Coulomb forces,

however, tend to counteract the covalent forces and pull the surface atoms

back toward the bulk, because the nearest ion to a surface atom has an

opposite charge to the surface atom. If the Coulomb forces are sufficiently

strong in comparison with the covalent forces, the relaxation will be

inhibited.

At zincblende (110) surfaces, relaxation energies are due primarily to

covalent forces and are typically 0.3 to 0.5 eV (for large relaxation angles

w); moreover the zincblende relaxation angles are indeed large: on the (110)
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surface of GaAs, the anions rotate by -290 up out of the surface so that their

bond angles are nearly right angles [31(8]. Coulomb forces for a zincblende

structure tend to pull the surface atoms down toward the bulk and are

characterized by energies of order Z2e2/ed, where d is a surface bond length

(9], Z is the longitudinal effective charge [101, e is the electron's charge,

and c is the dielectric constant [10]. For GaAs this Coulomb energy is small:

0.25eV (9]. Thus for the zincblendb GaAs (110) surface, the covalent forces

dominate the Coulomb forces and the anions rotate out of the surface through a

large relaxation angle (.-290 so that the bond angles of the anion are nearly

900 [3].

For the (1010) surfaces of wurtzite AIN and ZnS, the opposite is the

case: Coulomb forces dominate the covalent forces. The corresponding [9]

Coulomb energy for a wurtzite surface is Z2e2/aL, where aL is the lattice

constant, and is an order of magnitude larger than the Coulomb energy for

zincblendes: 1.38 eV and 2.38 eV for AlAs and ZnS, respectively. This means

that, at these wurtzite (1010) surface, the Coulomb forces, not the covalent

forces, should determine the reconstruction, and so the rotation angle w

should be considerably smaller than the 290 characteristic of most zincblende

(110) surfaces: to a reasonable approximation, these surfaces do not

reconstruct. That is, we have w near zero.

In a point-charge model, the Coulomb forces on the anions and cations in

an unrelaxed (1010) surface are the same and so do not, by themselves, lead to

a rotation of the anions either into or out of the surface.
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We attribute the slight inward rotation of the anions to the strong

second-nearest-neighbor anion-anion interactions combined with Coulomb forces

that are unbalanced at the surface: The anion-anion interactions (that is, the

matrix elements of the crystal potential between orbitals centered on

different anion sites) are strong and attractive, much stronger than the

cation-cation interactions -- presumably because of the greater anion-anion

covalent bonding. Furthermore, movemeht of the surface anions in toward the

bulk as a result of these interactions shortens the distance from a surface

anion to its two third-layer anions (See Fig. 1), further enhancing the

anion-anion interactions. This third layer effect is larger than the effect on

the inward anion movement of the four nearest-neighbor anions in the second

layer, two whose distances to the surface anion are lengthened by the

rotation, and two of whose distances are shortened -- layers, two whose

distances to the surface anion are lengthened and cancelling out the effect in

lowest order. In any event, the inward rotation is very small.

Thus, if we assume a Rigid Rotation Kodel of the wurtzite (1010) surfaces

of AIN and ZnS, we find that the relaxation angles w are small and even

negative. Since the model does not allow for small changes of bond length,

which could be as important as small rotations of order w-2° , we cannot rule

out the possibility that small bond length changes might quantitatively alter

the relaxation angles. However we can conclude that, to an adequate

approximation, the (1010) surfaces of wurtzite AIN and ZnS do not reconstruct.

Other wurtzite semiconductors with comparable ionicities and effective charges

should also have (1010) surfaces that are comparably well-described by a

no-reconstruction model.
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Finally we note that Duke et al. (11] have recently reported calculations

of the ZnSe and ZnS (1010) and (1120) surfaces, and find results which are in

conflict with ours: they find large positive bond rotation angles w and

considerable surface relaxation. We do not understand the physical origin of

their results, and note that the physics we discuss here is not contained in

the phenomenological model employed by Duke et al. That model replaces the

Coulomb forces with a phenomenological contribution to the Hamiltonian which

depends on bond-length changes. Such an approximation may not be valid at the

surfaces of ionic compound semiconductors. We suspect that their model, by

omitting the explicit Coulomb forces between the surface anions and the

neighboring bulk atoms, also omits the force that inhibits the relaxation. As

a result, their surface anions rotate unimpeded until they form bond angles

near 900 -- and achieve a large relaxation angle w. If our suspicion is

correct, the addition of explicit Coulomb forces to their model should lead to

small values of w.

It will be an interesting challenge to the experimental surface physics

community to determine which, if either, prediction is correct. Are the (1010)
0

surface relaxations of wurtzite AIN and ZnS large or small?
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Figure Caption

Fig. (1). Illustration of the reconstruction of the (1010) wurtzite

surface for a large positive relaxation angle w. The anions and cations

are denoted by - and + signs, respectively.
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