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ABSTRACT

The nearly nonstationary first order autoregression is a sequence of processes

where the autoregressive coefficient tends to 1 as n ,-_oo. M-estimates of the

autoregressive coefficient are considered. The process is allowed to be nongaussian,

but a 2 + 8 moment condition is assumed. The limiting distribution is not the usual

normal limit but is characterized as a ratio of two stochastic integrals. The

asymptotically most efficient M-estimate is not given by maximum likelihood.

However, it is shown that the loss of efficiency in using maximum likelihood is no

worse than about 20%, whereas the usual least squares estimator can have arbitrarily

low efficiency.
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1. Introduction

The aim of this work is to study asymptotic properties of M-estimators of the

autoregressive parameter * of a nearly non-stationary first order autoregressive process,

and to obtain efficient M-estimators of *. We consider the sequence [y,(k): 0<5k <sn )'.

of first order autoregressive AR(1) processes

y.(k) = 05 y.(k - 1) + e(k) (1.1)

where we assume (c(k)j.., is a sequence of iid random variables with mean zero and

finite (2 + 8)-moment, for some positive 8, and *. is allowed to vary with n. Specifically,

we will assume

=1 - (1.2)

I

for some 0 > 0, so that y. tends to look like a non-stationary random walk for large n.

Also we will assume that we have some knowledge on the starting value y.(0), either by

considering it as a constant or by assuming is a random variable with known distribu-

tion. In principle we are interested in the asymptotic behavior of estimators of the

form:

. M-1
, ' .= argmin jZp(y,(k +1)- ¢y.(k)) (1.3)

'€ k-I

for some function p. Here, arg min denotes the value of 0 where a minimum is achieved.

For example, taking p(u) = u2 equation (1.3) gives the least squares estimator, LSE, of 0.

It is known that the LSE of 4, for fixed 0, a with 101 < 1 is asymptotically normal

N(0. i - 2). but when s = I the LSE is O,, - ') and the normal approximation fails (see

e.g. Fuller (1976), section 8.5). White (1958) was able to represent the asymptotic

* .. -~*1 ~' 9
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distribution of the estimation error when 4,,1 (i.e. o = 0 in (1.2)) as

W(s)dW(s)

t W2(s)dS

where W denotes a standard Brownian Motion process and =O denotes convergence in

distribution. Rao (1978), Dickey and Fuller (1979), and Evans and Savin (1981) have

obtained representations of this limiting distribution. For the nearly non-stationary

(NNS) model of equation (1.1), Cumberland and Sykes (1982) found that the normalized

processes n-%y.([nt]) converges in distribution to an Omstein-Uhlenbeck process

defined by the It's Stochastic Differential Equation (WE)

d Y(t)=- Y(t)d t + ad W(t). (1.4)

Bobkoski (1983) independently proved the latter result and based on this convergence

obtained

Y(s)dW(s)

f Y2(s)ds

where *. is given by (1.2). Chan and Wei (1985) obtained similar results for the PNS

model and found that when the parameter 1p goes to infinite the asymptotic distribution
el4-1

of the "t-statistic" (Iy(k)]-(, - ,) is standard normal, which is in agreement with

intuition, since for large I3 it takes longer for the non-stationary behavior to manifest

itself.

S.

'f . l ' 'l '¢ ' .''.I "'. It %, '2 2 2 2 2 "." . S/..' S ?S.4,. P/S. . ' / o" ." rA",€ .'o," """:. .
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In this work we obtain the weak limit of the M-estimator when =1- D/n. Martin

and Jong (1977) showed that the (generalized) M-estimator is asymptotically normal

when #. w* with I#I < 1; specifically it follows from the work of these authors that

under standard regularity conditions (e.g (2.A) and (2.B) below)

n - N (0, (1 - ) vp)

where

E =Ip e(1))

dp(u) W~)=d (u)
du " du

A simple variational argument will show the most "efficient" M-estimator (the one

minimizing v, ) is obtained from p = - og(f ) where f is the density of the e's, i.e. when j

is the maximum likelihood estimator, LE, conditioned on the initial value y. (0). Other

efficiency results for the stationary AR(l) process when the errors are not normal can

be found in Johnson and Akritas (1982). For the nearly non-stationary model where *,
is given by (1.2), a similar calculation based on the limit theorems presented here indi-

cates that the MLE will generally not be the most "efficient" M-estimator. Indeed, the

function which works "best" is a linear combination of the LS and MLE criterion func-

tions.

The asymptotic results that we present in this work deal with convergence in dis-

tribution of a sequence of stochastic processes with sample paths in DR. [0 ,T], the space

of m'-valued functions defined on [0,TI such that they are right continuous and the left

limits exists, to a process with sample paths in C,, [0,T]. the space of continuous I"-
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valued functions on [0.TI. The sequence of processes we investigate here are solutions

of stochastic difference equations; in a natural way one might expect that if the differ-

ence equation "converges" in some sense to a (stochastic) differential equation then the

solutions of these equations would be "near" each other.

We base our proofs on the Stroock and Varadhan characterization of the solution

of a SDE as the solution of an associated martingale problem. For a detailed account

see e.g Ethier and Kurtz (1986), section 5.3, or Stroock and Varadhan (1979) Chapter 6.

We obtain the asymptotic results of later Sections from the following Diffusion

Approximation Theorem due to Ethier and Kurtz.

Theorem 1 : (7.4.1 Ethier and Kurtz (1986))

Let a = Oai,)) be a continuous, symmetric, nonnegative definite dxdmatrix-valued

. function on JR and b : -d _.,IR' be continuous. Let A be the second order differential

operator on C,-(Id) given by

A f = - a a + bi aj fE C7"(IR d)
i-I jai i-I

and suppose the C., [O, -*) -martingale problem for A is well-posed.

For n = 1. 2,. •, let X. and a. be processes with sample paths in D,,[O,**) and let

AA. = ((A.)) be a symmetric dxd -matrix valued process such that AY has sample paths in

Dp [0..*) and A. (t) - A. (s) is nonnegative definite for t> s 2. Set
9...

Fn " cr=(X. (s), . (s), . (s):ss <t )

Let ' = inft : I XtQ)I r or IX. (t) I 2 r and suppose

.1* a

".1* 0

:-S:
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M. - X. -B. (1.6)

and

M.' Mj - A i .j=1.2 ..... d (1.7)

are local (F')-martingales, and that for each r > 0 and T > 0:

im E[ sup ,X.(t)-X.(-),2]0=0(18. _, [ 1 S zn. ,V.", ) (1 .8 )

lrn E sup IB(t)-1B,(t-)12] = 0
_ I 0 Swi (1.9)

Srlim E sup IAi'(t)-Aij(t-)I 0t .. , . , ( T .19 . )  1 ( 1 .1 0 )

P

sup IBi(t)-Jb,(X.(s))ds I -- 0 (1.11)St <min(T,.[) 0

and

P

sup I A1Y(t) - a° (X. (s))ds I - 0 (1.12)St S"i (T'/) I

Suppose that X.(0) converges weakly to a random variable with distribution v, then

(X.) converges in distribution to the solution of the martingale problem for (A , v) 0.

Remark: By the representation mentioned before the limiting process corresponds to

the diffusion with infinitesimal generator given by A.

The rest of the paper is organized as follows: In Section 2 we formalize our prob-

lem and state the asymptotic theorem. In Section 3 we derive an expression for the

asymptotic mean squared error, MSE, and find the form of an optimal M-estimator.
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Next, we compare the MSE ot the LSE and conditional MLE versus the asymptotic MSE

of the optimal M-estimator. In Section 4 we show some results needed for the proof of

the asymptotic theorem and give the proof.

2. Statement of the Main Theorem

Assume p in (1.3) is differentiable and set V p as before. Also assume that the

following statements for the -# function hold:

(2.A)

W is continuously differentiable and satisfies the second order Lipschitz condition
.-

W(t) - V(1o) - (t - 'o)(to) = C (I - 1o)2 a( , to) (2.1)

where C is a positive constant and I a(t ,t o) I<1.

(2.B)

The (2 + 8) order moments of e(1), N(e(1)) and i(e_(1)) are finite for some positive 8.

(2.C)

E W(e(1)) = 0 and E W(E(I)) = 1. The assumption E I#(E(1)) = 1 involves no loss of gen-

erality provided E 1(E(1)) 0.

Now, for j,. to be a solution of (1.3), it is necessary that

, = y.(k )W(y,(k +1) -jy,,(k))= 0 (2.2)

Hence if we let

-/

- .4

* * ',pA. S :d: : £ .Z . : S - 5 -- p. -- , "'';."'.' , * ., :,' .--o., ,
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t =y.(k+-1) -. y(k) and

(2.3)
to = y. (k + 1)- .y.(k) = e(k + 1)

in (2.1), equation (2.2) becomes, with g(k)= a(t ,to),

[y. (k) WCe(k + 1))] - (j. - €.) Iy.2(k)

- 0 -* y (k)X[k (e(k + 1))- 1)1 (2.4)

+(j.-O.) 2 C y [Yk(k)] = 0

The main result in this paper is summarized by the following theorem.

Theorem 2 : Suppose assumptions (2.A) to (2.C) hold. Let 4 .=1- Oln with 0 a posi-

tive real constant. Then under the model (1.1) with y.(0) . i e F-(-1):
1.0

(a) There exists a sequence {&) of solutions of equation (2.2) such that

(j. - , O(n -I  (2.5)

(b) For such a sequence

.Y (s)d W2(s)
; ~n (j,, - ,) * t(2.6)

-- f , Y2($ ) ds

0

where Y(t) is the Ornstein-Uhlenbeck process defined by the stochastic differential

equation

WEqr

-_ .-,* ..
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dYW) =-WY()dt + dW 1(t)

D 
(2.7)

Y() -N(O-),
2J3

and (W (),w 2())" is a two dimensional Brownian motion with

[W 2 (t)] =t E [e2(I)],

~E [W22tl E [W2(F-())],

E [W(t)W 2()] t E [e(1)lv(E(1))] r0

Remark: Implicitly stated in the assumed initial condition for the sequence of

- AR(1) processes is the assumption that for each n, the process is stationary. Thus is not

surprising that the initial condition for the Ornstein-Uhlenbeck process of equation (2.7)

is the one needed to insure the stationarity of such a process (Arnold (1974), page 135).

The weak limit in (2.6) is suggested by neglecting the last two terms of the RIIS of

(2.4), so that

S- ) n . (k)(2.8)

I." Define

TI(k) = (e(k), W(E(k)), ((k)) - I)'

-.,

and let ; be the variance-covariance matrix of the random vector rI(1). Now we define

"• the stochastic processes Y.(t) and W.(t) for i in [0j1] by

Y() = n-y,([nt 1) (2.9)

...
I

• ''S." " , '< "" "" ",: ' ,- 
"
" - """" -" ' ' ,, -" ', -" "-"."-"-"-" ."-" £ , ' - """
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and

W.t) W [WIl.(t),W(tW31.(t1 )

(2.10)
(,t]

n"Y, 1(k)
k=1

(with the usual convention that summation equals zero when the upper limit is smaller

than the lower). The w3., component does not appear in the limiting distribution but is

used in the proof.

Let A be the usual forward difference operator (i.e. Am(k)=m(k+1)-m(k)) and

t = n-1. Then (2.8) can be written as

iY. ( k)AW2,(
n n -n. _ (~ tY  (2.1I1 )

-,"t.""-.2. k )At

Let W(t)= WI()W 2 (t),W3 )' be a three-dimensional Brownian motion such that

variance-covariance matrix of the random vector W(t) is t E. It can be proven by means

of the Martingale Central Limit Theorem (see e.g. Ethier and Kurtz (1986), section 7.1)

that the process W. defined in (2.10) converges weakly to W. Since Y. converges to Y

(see Cumberland and Sykes (1982)) it is natural to think of the summations in (2.11) as

"T ~- the Riemann-Stieltjes sums for the integrals in (2.6), and we will show in Theorem 3

below, among other things, that the two summations in (2.11) jointly converge to the

corresponding integrals in (2.6).

beoaogohrtigta h w umain n(.1 onl ovret h
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3. Optimality

We now explore the optimality of the M-estimators under a natural criterion. Our

approach is to minimize an asymptotic mean squared error

Y(s)dW(S)

Q = Q (W) = E (3.1)

f y2(S)dS
0

Surprisingly, we have found that this criterion leads to the finding that the optimal W/

function is a linear combination of h(x)=x and 'r(x)=-1iW(x)If(x), where f is the

probability density function of the innovations (assuming it exists) and If is the Fisher

information of the location parameter problem for the common distribution of the noise.

Note that zh corresponds to the least squares score function while 72 is proportional to

the usual score function of the MLE. The W function so obtained is not directly useful as

an estimator since the coefficients of the linear combination depend on the unknown

parameter P. Nonetheless, it does immediately suggest a two stage procedure that may

be useful. The first stage is to estimate €. by say the ML ,, and hence 0 by

$,wza = n (I-, ). One can then find the optima] W function for the estimate 0 and the

second stage consists of finding the solution of the M-estimation equation for this v1.

To prove the claim we can think of Q as a functional on

L2(f)= { g:J4 2(x)f(x)dx <oo. We would like to find the minimizer of Q on L2f) subject

to the constraints in (2.B), i.e. f (x)f(x)dx =0 and f (x)f (x)dx = 1. We have shown in

the Appendix that Q can be written as

-4- ' ' ' % ' ' . ° ' '. % % ' ' o 
"

-' ' ' ' ' '- - . - . . - - - . % .' % ' , . . , - , . .



11

Q(V= L-L2COVe 2[~j'V'A;,)) + L 2 ar1VC(A,,(.2
U2

where

m2

LI=E YdW/ y2d] and L 2=E fY2ds] (3.3)

A Hence Q is a positive definite quadratic functional and since the constraints are linear,

the solution to the minimization problem is obtained by setting the first variation (with

respect to W) of the Lagrangian

Q (W) + XIE (W(e(l))) + X2E (I(E(l))) - 1]

LI-L f

02 (X)f (X +L 2 JVx)Jx

+ XIJa(x)f (x)dx + X411.(X)f (x)dr - 1]

equal to zero, and choosing the multipliers X, and X2 so that the constraints hold. This

operation followed by an integration by parts leads to the equation

~26 2(L x-L )Yi(Y)f (y)dyJ xf (x) + 2L iiv(X)f (x + VJ W - Xj W) = 0

*" . whence

2L2 fx) 22"

where

K= L 2 -L, Cov(VE)

a2L 2

where V and E are shorthand for W(c(l)) and E(1) respectively. It is easy to see that both

* . S
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E (e) = 0 and the constraint E (y) = 0 imply X, = 0, under the usual regularity conditions on

f that allow the interchange of the integral and derivative. Thus the optimal W is a

linear combination of the least squares and maximum likelihood criterion functions.

Also the constraint E (a) = I implies

X2 . - II - 1)

Substitution of the value of the multipliers into (3.4) gives

(x) = ,Cx + (Ic- I)7 f (X) (3.5)
f (x)

Calculating Cov (%V, e) for V in equation (3.5) gives that

L 2 -LI
L~~rt x= L2-LI( I  f)

Plugging this value in the definition of V gives

(L2-L 1 )x -r 2 L, i(x)
iW(x) = f (x) (3.6)

One should note that Vp depends on 13 through L, and L 2. Further, evaluation of L and L 2

is nontrivial since they are expectations of rational functions of random integrals whose

distribution is nontrivial to describe. Now, it is easy to check that if Ll' and L21' are the

corresponding moments when the variance of the Brownian motion driving Y is equal

to one, then LI =L,'/oa and L 2 =L 2 '/Ca, so it is enough to obtain L,' and L 2'. Following the

procedure in Williams (1942) one can obtain the moments of the ratio of powers of the

numerator (to be denoted by N) and denominator (to be denoted by D) of the ratio on

the lRIS of equation (1.5) from the joint moment generating function of N and D. Thus,

N ,€ . . .. o ° . , , ° ° - -.- - - .- -o . ° " ° ° • . . .
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for example, if A(sos)=E [exp(-soD -sN)] then

,ri

and A(so, 0) ds = ER dl = EII (3.7)

02: and

*1 .

A(sos) 1 .0 dsod fE[N2e-fD ]dsod*= E[ N (3.8)
a2D

These formal manipulations will be valid as long as the interchange of differentiation

and integration are valid. From equation (4.20), Bobkoski (1983) we have that the joint

MGF of N and D, when Y(0)=0 is given by

A(so.s)= E(exp(-soD - s N))

(3.9)
a, exp ( -2s) [os z + P+ s ) nc (zj'

where

'/. 
z (32+23s +2.so)" and shnc(z) sinh(z)

z

-. Expressions for the MGF when the initial distribution is known are available (Llatas

(1987)). The choice of Y(O)=O is motivated by the convenience of checking the results

obtained by numerical integration with both simulations and the approximated moments

obtained by numerical integration of the explicit form of the asymptotic limiting den-

sity function obtained by Bobkoski in this special case. The fact that A in (3.9) is dif-

ferentiable and that the terms of these derivatives will be eventually dominated by e ,

where K is a positive constant, as s0 -* - allow us to interchange the order of the integra-

tion and differentiation in both (3.7) and (3.8) by application of the dominated

"-.V
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convergence theorem and Fubini-Tonelli theorem. In Table I we exhibit some of the

values of Ll' and L 2' calculated using the integration subroutine DQAGI in QUAD-

PACK.

Table I: Values of L,' and L2' obtained by numerical integration

Values of L1 and L2'

L I' L2'

0.200 13.698232 5.921848
0.400 14.104907 6.285748
0.600 14.507015 6.653889
0.800 14.905686 7.025686
1.000 15.301856 7.400631
2.000 17.266291 9.309338
3.000 19.228876 11.252599
4.000 21.198798 13.214063
5.000 23.175399 15.186088
6.000 25.156913 17.164780
7.000 27.141975 19.147965
8.000 29.129653 21.134334
9.000 31.119311 23.123046
10.000 33.110506 25.113539
11.000 35.102916 27.105415
12.000 37.096305 29.098390
13.000 39.090494 31.092254
14.000 41.085346 33.086846
15.000 43.080753 35.082042
16.000 45.076630 37.077746
17.000 47.072908 39.073881
18.000 49.069531 41.070385
19.000 51.066453 43.067207
20.000 53.063637 45.064306

'a
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The values obtained present a very curious feature: they fall in what seems two

parallel straight lines with slope near 2 and intercept equal to 13.33 for LI' and 5.37 for

L 2' (see Figure 1). A regression line was fitted to the values in Table I assuming the two

lines are indeed parallel and the regression equations are given by:

L'= 13.33+1.983; L2'=5.37+ 1.983

The residuals from this regression are shown in Figure 2. Figure 2 indicates the

true values would not fall in a straight line. Note the different behavior when 53< 1.

However over the range considered the linear approximation might be satisfactory and

gives us a quick way to estimate the value of L,' and L2' without performing the numeri-

cal integration. This may be advantageous when considering the two step estimation

procedure mentioned before. To check the values obtained by the numerical integration

we performed a small Monte Carlo experiment for ( = 2.10,20 by evaluation of the

corresponding sample values of 10,000 series of sizes n = 100.500.1000. We also

evaluated the second moment of the asymptotic distribution from the representation of

the density of the limiting LSE error in Bobkoski (1983). The results are shown in

Table II. The latter values are slightly smaller than the one calculated from (3.8).

Ig- o

S.-. . I *-. . . - -
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Table II. Comparison of results for L 1' and L 2'

Numerical Integration Monte Carlo Experiment
MGF Density n=100 n=500 n=1000

3=2 L1 " 17.2663 17.2655 16.2126 16.9297 *
(0.4349) (0.4750) *

L 9.3093 * 9.3327 9.3805 *

-_ _ _ _(0.0735) (0.0725) *
13=10 L1"  33.1105 33.1095 29.5127 31.1534 33.4475

(0.6165) (0.6780) (0.7743)
L 2' 25.1135 * 23.8719 24.7268 24.9647

_._..,.. (0.1026) (0.1056) (0.1091)
.=20 L 53.0636 53.0627 42.6071 51. L- 51.3961

(0.7692) (1 , (0.9723)
L2' 45.0643 * 40.3335 4', .- 96 44.4285

__ _ (0.1204) (0.1373) (0.1375)

Note: Values in parenthesis are estimated standard errors for the quantity above.

The values shown for 13=10,20 are obtained by integration on [-70,13]. For 3=2 the

range of integration is [-35,5.701. As for the Monte Carlo trials, the estimated values lie

.r. within two standard deviations of the values obtained by numerical integration except

when 13=20, where the bias has not been overcome by the increment of the size of the

series. In any case the values are close enough to support the numerical integration

results. Less bias and smaller estimated standard deviation from the simulations would

be ideal but unfeasible since in order to lower the value of both the bias and variance it

may need more computer time than what is convenient or even allowed on the facilities

used.

-. o
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Now we are in the position to calculate values of Q for the score functions

TI ,, and W. By equation (3.2) and the observation about the relation between L, and L,'

we have:

Q (ml)= a2 Lj =Ll'

i Q (T2) = (co If2)- ' [L I' -L2'( I -(Y2/))

L I'L 2'Q ('v) L - 1 I-3 1L.2' - L I(1 -U /)

Note that if If' is the information when a2 = I we have that ciif = /',, therefore the

asymptotic mean squared error for the score functions considered here does not depend

on the variance of the shocks. Moreover, it depends on the probability density function

of the shocks only through the information / . Thus we will set a = I and in this case

we have /'2! I (Rustagi (1976)). Consequently

(a) Q (I) L2' -L'(I -I') (3.10)

Q (v) L 2'

and a minimum is obtained when '/ = 1.

(b) Q (T1 L:'L'I 24 (L,' - L"(I'1  - 1)
Q (W) L 'L 2'] (

and a maximum is obtained when /', = 2.

In Figure 3 we exhibit the ratio Q1) Qo(W) for the LSE for values of

I'/ = (it 3 2. 1.50, and 2.() In Figure 4 the ratio Q oj, Q iW# for the MLE is shown for the

same values of V, . Note that ' = (i 1). corresponds to a logistic distribution with mean

zero and variance I From these figures one can see that the LSE can be ver%

.V- . '.. . tr&

A-. . _.,. . .. _ . .,,,, , .. _. :::, ,:. .:, ---- -. , ...-- . , . .
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"inefficient" while the MLE cannot be worse than 20% "inefficient" in the MSE sense.

4. The large sample behavior of i.

In this section we will prove Theorem 2. First we establish the joint limiting dis-

tribution of the sums in (2.4) as an application of Theorem 1.

Theorem 3 : Consider the model 1) with initial value y.(O) as in the statement of

Theorem 2. Suppose that assumptions (2.A) to (2.C) hold. Consider the sequence of

processes on D,[0,l) defined by

Xi-)= n I'., I
'-, X,, (I) n -  .y.(k-l) !(F(k) .

k , -1" (4.1)
a]' . ~n- 1'1J. (k- )[ qt(t(k )..-

Then I. =* X as n -, where X is the continuous process on [0.11 given by

.'°.

.

)Y,'S1

where W is the 3-dimensional Brownian Motion defined below equation (2.11) and Y is

the Ornstein-Uhlenbeck process defined by equation (2.7) with initial condition having

the stationary distribution.

Proof: First of all note that we can represent W by

Wi E bu 1 (4.3)

A-here btis a ,-dimensional standard Brownian Motion with covanance (t1) and

r ,.is the Cholesk factor for . r F is a 1- lower triangular rmamnx ,uch that

S

• ' -"-" " -" - -" "- ............................................. .............-...- • ". .. .;- -... .......-
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rr = . Now the process X(t) satisfies the Stochastic Differential Equation:

d (I 0 dt+ 0Xt)0 dWQi)
ox2(t)

(4.4)
(set)= b (X(t))d +G(XQ))dW(t)

= b(X(t))dt + G(X(t))Fdb(t)

with initial condition X(0)=(Y(0),0,0)'. The last equality in (4.4) follows by equation

(4.3) and It6's formula (Arnold (1974) page 90).

The functions b and G do not depend directly on time and they have continuous

partial derivatives of first order that are bounded on (I x I < M ) for all M > 0. Conse-

quently by Corollary 6.3.3 Arnold (1974), equation (4.4) has exactly one continuous

solution. Moreover the process X(t) is a 3-dimensional diffusion process on [0, 1] with

drift vector b(x) and diffusion matrix a(x)=G(x)r IG'(x)=G(x)EZG'(z) (see Arnold

(1974), theorem 9.3.1, page 152). In this case a(x) equals:

Li
, Oil 0191l 013XI

a(x):= a11  2 CzY2x (4.5)

aI 3 IX I aY2  I a33X I'

4. Thus X(t) is a solution of the associated martingale problem for the infinitesimal opera-

tor of the diffusion, i.e.

3 j33 a 2
'-D = IB (z) - + - ', a,, (Z) (4.6)

-1 ,. ax, 2 - axx

with initial measure equal to Law(X(0)), which should equal to the weak limit of

.: Law(X,(0) to have the appropriate limiting distribution. We claim that Law,(X(0)) is the
'4

"

'.

* .*.. . *g~~*"
- .=,2tAZ ,,"~Nsu~k.a
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3-dimensional degenerate normal N(0,Oe 21 23) where ej, equals zero unless i =. = 1.

Our claim follows from the definition of X. (0) and the fact that

Y.(0) = j ! (n-/t(- k)
k.O

converges weakly to a random variable distributed as a N (0, 2 / 23) by an easy applica-

tion of the Linderberg-Feller Central Limit Theorem to the triangular array defined by

T... = .F.(-k) 05k <n2

Now, X. is a solution of the following stochastic difference equation

AX.(k) 0 At + 0 XI,(kln) 0 AW.(1) (4.7)
0 0 X 2

k rili~k) 1.,0X?(klIn)]

with W. defined in equation (2.10) so it is natural to thing that X, will approximate the

continuous process X. We proceed to prove this by finding 3-dimensional processes

B. (t) and 3×3-matrix valued processes A, (t) such that the conditions of Theorem I are

satisfied. From equation (4.7) it follows that

[-. Y(k In)
*AX. (kIn)= 0 At + n -"4.(k + 1)

where

(k)- [E(k), n- y. (k - I)W(c(k)) n y 2(k - I)[N(c(k))- I

Since E [k. (k)I GkjI = 0 the predictable compensator of X. is given by

N,~

/

Iw
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B, (t)= E [AX.(k In)/ Gk

(4.8)

: -f 7. Y(kln)t ,oo
k=O .

and writing X.(k/n)=AX((k-1)In) + X,((k-1)ln) one can see that

MN(kln) = X(kln)-DB(kln) = n- (k) + 8(k) (4.9)

where 8.(k) is Gk, measurable. Thus one can find A., the compensator of

M,(kln)M.'(k/n) as

A(t): . E[(kn)M'.(kn ) - M,,((k-l)n )M'N((k-l)/n) IGk-
(4.10)

= n- ~ R7. l(k) 'N(k)IGkI]

'k..

It follows from the last equality of (4.11) that the increments A. (1) - A. (s), t > s of the

process so defined are non-negative definite.

What is left now is to verify the "continuity" conditions (1.8) to (1.10) and the

"approximation" conditions (1.11) and (1.12) of Theorem 1. We start by the approxima-

tion conditions. For condition (1.11) we have just to show

I Psu JB,.(, )- [ob,(X.(, ds-0
"S

but the absolute value equals:

S-AA.
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-n'Y.,([ns])ds - : n -"y.(k)At (t - [nt/n )IY(t) I

p* E k-0

(4.11)

<~5 1 Y'(01 !9 1 11y, 11.
n n

Since II Y. I. is bounded in probability (Bobkosky (1983), page 25) the last quantity

goes to zero as n goes to infinity. Condition (1.12) will also follow by the same type of

argument and the boundeness of IIYI . for q =0, 1,2,3,4. To prove the continuity con-

ditions let r r be the stopping time defined in Theorem 1. Thus for t<'r we have

I X. (t) I < r and in particular

IY(t)i <r for t <,r (4.12)

Hence the continuity condition (1.10) for A. is easily verified when we note that it

reduces to proving that

nlimn-'E supI YA(([nt]-l)/n)IJ = 0 for j=1,2,3,4. (4.13)

,i which is obvious by (4.12) since we are evaluating the process at a time point strictly

smaller than r. In the same way, the condition for B, reduces to

lim (0/n) 2 E sup Y(([nt]-l)/n) 0
XL. sup, = (4.14)

which follows again by (4.12).

. Finally for the condition on the x. process it is sufficient to verify

5%f:

.,
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-- '.,lira E n- 1 sup E 2(k)-(2PJ/n)E(k)y.(k-l)+(5In )2 y (k - 1 = 0

I:%ft.cj

l. EimE n-2 s = 0

'p

. li E n-3 sup [y2(k- 1)[I(E(k))-1 = 0
M-4-1 Il k S ,y 11y- ' i *jr I

But each one of those conditions hold, by (4.12), Lemma 1 below and our assumption

on the moments of e, W(E), and ( ). Hence Theorem 1 guarantees the weak conver-

gence ofX, toX. 0

Remark : In the proof of Theorem 3 it is not necessary to make the assumption that

y. (O) has the stationary distribution. The result will follow as soon as Y,(0) has a weak

limit. In particular the result is true when one assumes Y.(0) to be constant.

pLemma 1 : Let (r(k))lL be a sequence of id random variables with finite (1+8)-

moment then

n.E n axTI(k -4 0 as n -4- (4.15)

Proof: Let F be the cdf of T(1). Define x (u) = inf (x : F (x) u1. By the so called proba-

bility integral transformation u =F (x)

E [max T(k ) =f n x(u)u' 1du (4.16)
.S- o . 0

To show (4.15) we use the Holder's inequality

V. '1 .

i 1

'.4,.,, - s,. , { , ,
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* with f =x (u), g = n u1-1, p =1+ 8, and q = (1 + 8)/8 to obtain

':1 [" I -[ 1n l 18 1+ n

r . nt~agk]nlo<,EIl1l s (1+8)(n -1)+S

=O(n ') 1

The next result proves the weak convergence of the terms on the Taylor expansion

in equation (2.4) and in particular the joint convergence of

n-I n-II

(,Y.2(k/n)At , ,Y5 (k/n)AW2, (k/n))' to the random vector (fY2(s)ds f Y(s)dW2(s))'"
k=1 A=l 0 0

Lemma 2 : Under model (1.1) and assumptions (2.A) to (2.C) the sequence of 4-

dimensional random vectors

y-2

ZY(k In )At
k=1

I kYI 2k/ n)IAt
k=

Zx
=

n-I
IY, (k/n )AW 2, (k/n)

n-0

SY.2(k/n)&W ,, (kIn)
Lk=1

converges weakly to

z = y2(s)ds, IY3(s)Ids, Y(s)W2 (s), f Y2(s)W,(s)
0O 0 0.

Proof: Consider the transformation g CW[O,1]--? 4 such that
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g(X) g X ,X2() -X3(t))'j
r 1)

= fx 2(s )d S . I x (s I ~ x ( ) x ( J0 0.

It is easy to see that this is a continuous transformation. Now let Z. = g (X.) and Z= g (X),

where X. and X are the processes defined in Theorem 3. Hence Z. converges weakly to

Z by the continuity principle (Theorem 5.1 of Billingsley(1968) page 30). 0

Using the asymptotic results we proceed to prove our main Theorem in the same

fashion Cramer showed the asymptotic properties of the maximum likelihood estimator

(Cramer (1946), chapter 33).

Proof of Theorem 2 : By means of equation (2.4) we can write 'f(T)=0, after multipli-

cation by n-2, in the form

a'..'.'"n-2W(C = To, - (C- 0.)TI,, - (C-O.)r2. + (C_.)2T3..=O (4.16)

where

h=I

-a-
TO.= n .()AZ k

k--1

(4.17)
I-T2, = n- Y ,"I -(k )AW .. (k)

.' ml k=l

k=1
.. .T3,= n" 'C 0., 1 Y.3(k) I At

and

V',P

V.
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0 . I Y.r(k) I 5. (k)(x(k )
L k-1 k=1

-S%

-', which is bounded by 1. Theorem 3 implies that T0, is O(n - 1) and T2,, is Op(n-), while

Lemma 2 implies that T3 , is Op(n ") and T.1, converges weakly to a random variable,

-: which is positive with probability 1 (This last claim follows from the fact that if

Y = 0 a.e. then necessarily W =0 a.e. which is a contradiction). Hence if y is an arbi-

trarily small positive number there exists an N such that for all n N there exist finite

positive constants M0 ,M1 ,M 2,M 3 such that

P[ ITo, I < nCMo] 1 I4

. P[IT1 .5 I>M >1

(4.18)
... P[ IT, I < n-"12M 2]>,1-

-44

jP[ IT,,I < n M3 >I-4

'2"- thus with at least probability I - -f

_.' .~~ ~ n- 2 4 , ( C ) > - _M o n - ' - _ M s( _ ) M 2 n - ( C -, ) 1 -M n ( t -0 ¢ ) 2 ( 4 .1 9 )

and

i ~n- ( ) < Mort-' - M A(- 0) +M~n_4-"- ) 1 ~'(-€) (4.20)

Now, choose n large enough so that

2

1~ M, rm 0 1 1 1 2ni-< -1w3 --

and for such n, let

.1' 
F',
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r . + L-' J .

hence equation (4.19) gives:

n-' (C)- Mon - '+ 2Mon - 1 - 1r3/ 2 + M 3

MM

while (4.20) gives:

~-2 2

<[-MO+ !] n1<

1-' 2

Thus, since 4'(Q is continuous, the equation I'P()=0 will, with probability exceeding

l --f, have a root, j., between C and C2 as we wished. Moreover

I *p5 < |M n'- with probability I -y

and consequently the proof of part (a) is completed.

For part (b) we just have to write

°" nT o.

(4.21)

4 It follows from the preceding discussion that Tz. -(Os -0.)T3 , converges in probability
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to zero while, by Lemma 2, (nTo., ,T1.)' jointly converges to (Y(s)dW 2(s), Y2(sWs

Thus the weak convergence of the right hand side of equation (4.21) to the random vari-

able in (2.7) is guaranteed by a straightforward application of Slutsky's theorem and
a,..-

-- Theorem 5.1 in Billingsley (1968). 0

5. Appendix

Let W(t) the 3-dimensional Brownian motion defined in Section 2. As noted

before in the proof of Theorem 3 we can represent this process by

w(t) = rb(t)

where b(t) is a 3-dimensional standard Brownian Motion with covariance (a1) and

r=(,,) is the Cholesky factor for ., i.e. r is a 3x3-lower triangular matrix such that

rrFV=L. Using this representation we can prove that Q(W) can be expressed as in (3.2).

By 1t6's theorem (Arnold (1974) page 90) we can write

f Y(S)dW%2(S) Yl fY(S)db I(S)+ Y22 fY(S)db 2 0s) 51
0 0 0

Note that W' =-y, b, and consequently the process Y defined by the SDE (2.7) is indepen-

dent of b 2 and b3.

From (5.1) we have
a.".m

9. %
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fY(s)db1 (s) Y (s)db 2(s)

Q()y)= (y) 2 E Iy+(s) +(.22)2E Ij
y2(S)dS y( d

(5.2)

Y([dI( Y (s)d 2s

Define F, =(br.<OS StI) and F,()=a(b(s),OShv:t). We claim that for any F,"'-

measurable random function h (t) we have:

EI h(s)db2(s) I FO)] 0

and

E[[h (s)db 2(s )]I F I(' h 2(S )dS
0

This can be proven by first looking at F V) -measurable step functions and making use of

the fact that b, andb 2 are independent. Then the usual limiting argument gives the result.

Consequently, since (Y(t):Ost s 1) is F,()-measurable one obtains that

E(jY(s)db2(s) I F~l)-O. Thus the expectation of the cross product in (5.2) vanishes

since f Y(s )db,(s) and f y 2(s )ds are F11 -measurable. Also
0 0

S°
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1 12

Y)db 2(s) -2~~2

E IE- = E [)Y2(Ss1 EIlIYWs&b(s I('~j

L I Y 2(=0 j

~EL Y2(S)dsvj

From all this discussion Q reduces to

Q (W) -q E d 1 3 +-d2E Y2(5s lS
J Y 2 (s)ds

~(5.3t

-7, LI + )q2 L 2

Plugging in the values of y2l and r2 into (5.3) gives expression (3.2)

5%

5%*

4 - , ".,- ,'V " .. -.. '." - '-.- "- " - . " ..-. ' ' " "



Figure 1: Values of L1 and L
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Figure 2: Residuals from linear regression
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Figure 3: Comparison LSE vs "Optimal"
i Q(TII),Q(W).
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Figure 4: Comparison MLE vs "Optimal"
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