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- "~ The nearly nonstationary first order autoregression is a sequence of processes
* where the autoregressive coefficient tends to 1 as n £ oo, M-estimates of the
3 autoregressive coefficient are considered. The process is allowed to be nongaussian,
‘ but a 2+8 moment condition is assumed. The limiting distribution is not the usual
": normal limit but is characterized as a ratio of two stochastic integrals. The
o asymptotically most efficient M-estimate is not given by maximum likelihood.
W However, it is shown that the loss of efficiency in using maximum likelihood is no
» worse than about 20%, whereas the usual least squares estimator can have arbitrarily
. low efficiency.
o
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1. Introduction

The aim of this work is to study asymptotic properties of M-estimators of the
autoregressive parameter ¢ of a nearly non-stationary first order autoregressive process,
and to obtain efficient M-estimators of ¢. We consider the sequence (y,(k):0<k <n}

of first order autoregressive AR(1) processes

Yak) =0, ya(k — 1) +&(k) (1.1)

where we assume (e(k)}in . is a sequence of iid random variables with mean zero and
finite (2+8)-moment, for some positive §, and ¢, is allowed to vary with n. Specifically,

we will assume

0u=l"ﬁ (1.2)

for some B >0, so that y, tends to look like a non-stationary random walk for large .
Also we will assume that we have some knowledge on the starting value y, (0), either by
considering it as a constant or by assuming is a random variable with known distribu-
tion. In principle we are interested in the asymptotic behavior of estimators of the

form:

n-1
¢.=ars.min T o(yatk+1) -y, (k)) (1.3)

k=]
for some function p. Here, arg .min denotes the value of ¢ where a minimum is achieved.
For example, taking p(u) = u2 equation (1.3) gives the least squares estimator, LSE, of ¢.

It is known that the LSE of ¢, for fixed ¢, = ¢ with 1¢1 <1 is asymptotically normal

N(0.1-¢%, but when ¢ =1 the LSE is O,(n~') and the normal approximation fails (see

e.g. Fuller (1976), section 8.5). White (1958) was able to represent the asymptotic
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distribution of the estimation error when ¢,=1 (i.e. =0in (1.2)) as

i W(s)dW (s)

i W(s)ds

nd,~1) =

where W denotes a standard Brownian Motion process and = denotes convergence in
distribution. Rao (1978), Dickey and Fuller (1979), and Evans and Savin (1981) have
obtained representations of this limiting distribution. For the nearly non-stationary
(NNS) model of equation (1.1), Cumberland and Sykes (1982) found that the normalized
processes n~*y,([m]) converges in distribution to an Omnstein-Uhlenbeck process

defined by the Itd’s Stochastic Differential Equation (SDE)
dY()=-BY(@t)d1+cd W(). (1.4)

Bobkoski (1983) independently proved the latter result and based on this convergence

obtained

1
Y(s)dW(s)

n(da—0) = —— (1.5)
[ Y2 s)ds
0
where ¢, is given by (1.2). Chan and Wei (1985) obtained similar results for the NNS

model and found that when the parameter B goes to infinite the asymptotic distribution

of the "r-statistic” [“z-:l y2(k)]"" (¢, - ¢.) is standard normal, which is in agreement with
k=]

intuition, since for large B it takes longer for the non-stationary behavior to manifest

itself.
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In this work we obtain the weak limit of the M-estimator when ¢, =1-p/n. Martin

and Jong (1977) showed that the (generalized) M-estimator is asymptotically normal
: ‘ when ¢, =¢ with 19) < 1; specifically it follows from the work of these authors that

" under standard regularity conditions (e.g (2.A) and (2.B) below)

X n2 @ -0 = NO,(1-8)v)

where
M)
Iy
; .0
X [E v (1))
i vy = 280y O,

A simple variational argument will show the most "efficient” M-estimator (the one
minimizing v, ) is obtained from p = - log(f ) where f is the density of the ¢’s, i.e. when ¢
is the maximum likelihood estimator, MLE, conditioned on the initial value y, (0). Other |

efficiency results for the stationary AR(1) process when the errors are not normal can
be found in Johnson and Akritas (1982). For the nearly non-stationary model where ¢,
is given by (1.2), a similar calculation based on the limit theorems presented here indi-
cates that the MLE will generally nor be the most "efficient” M-estimator. Indeed, the
function which works "best” is a linear combination of the LSE and MLE criterion func-

tions.

The asymptotic results that we present in this work deal with convergence in dis-
tribution of a sequence of stochastic processes with sample paths in D,,[0,T], the space
of R*-valued functions defined on [0,T] such that they are right continuous and the left

limits exists, to a process with sample paths in C,.[0.T]. the space of continuous R*-

ey L S A e
et e ..f..(..&{;ﬁd
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valued functions on [0,T]. The sequence of processes we investigate here are solutions
of stochastic difference equations; in a natural way one might expect that if the differ-
ence equation “converges” in some sense to a (stochastic) differential equation then the

solutions of these equations would be “near” each other.

We base our proofs on the Stroock and Varadhan characterization of the solution
of a SDE as the solution of an associated martingale problem. For a detailed account
see ¢.g Ethier and Kurtz (1986), section 5.3, or Stroock and Varadhan (1979) Chapter 6.
We obtain the asymptotic results of later Sections from the following Diffusion

Approximation Theorem due to Ethier and Kurtz.

Theorem 1 : (74.1 Ethier and Kurtz (1986))

Let a =((a;;)) be a continuous, symmetric, nonnegative definite dxdmatrix-valued
function on R® and b : R* - IR® be continuous. Let A be the second order differential

operator on C(IR*) given by

d d d
Af=33 30,83 +Tbdf feCo®Y)
in] j=l

i=l
and suppose the Cg,[0,=)-martingale problem for A is well-posed.
Forn=1.2,---, let X, and B, be processes with sample paths in D, [0,=) and let
A, =((A))) be a symmetric dxd-matrix valued process such that A}/ has sample paths in

Dgl[0s) and A,(t)-A.(s) is nonnegative definite for >s520. Set

Fr=0(X.(5).B.(5), A (s):5S1).

Lett,=inf(t:1X,(0)1 2r or 1X,(t7)| 2r) and suppose

\-'.\

.......... T
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_ M, = X, -B, (1.6)
o
o and
b o
M M,-4! i,j=1,2,.d 1.7
,::; are local (F!)-martingales, and that for eachr >0and T >0:
R i ]
lim E IX,(0)-X,¢OI* =0
A =)o L,smsgg"‘:) ( ) ( -) ] (1.8)
di
e . :
.
K lim E{| s IB,(1)-B,()13 =0
D) noe= ."mlg-':) © © J (1.9)
P
L~
> lim E 1A¥(e) - A | =
5 e P e (1.10)
e
y . 1] P
b sup  IBi(t) - [ 5:;(Xn(s))ds | =0 (1.11)
2 :1 1 <min(T,t]) 0
)
4 and
J
] sup |A:"(t)—£ a;(X,(s))ds | =0 (1.12)
a‘,ﬁ.‘ ¢ Smin(T,2})
fn,f
Suppose that X,(0) converges weakly to a random variable with distribution v, then
J.: : (X.) converges in distribution to the solution of the martingale problem for (A ,v) O.
" Remark: By the representation mentioned before the limiting process corresponds to
' i the diffusion with infinitesimal generator given by A.
o
a0
'. The rest of the paper is organized as follows: In Section 2 we formalize our prob-
L ]
X lem and state the asymptotic theorem. In Section 3 we derive an expression for the
Vo
;° asymptotic mean squared error, MSE, and find the form of an optimal M-estimator.
o
o
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Next, we compare the MSE ot the LSE and conditional MLE versus the asymptotic MSE
of the optimal M-estimator. In Section 4 we show some results needed for the proof of

the asymptotic theorem and give the proof.

2. Statement of the Main Theorem

Assume p in (1.3) is differentiable and set y=p as before. Also assume that the

following statements for the y function hold:
(2.A)
y is continuously differentiable and satisfies the second order Lipschitz condition
W) = W(to) - (¢ ~ tW(to) = Ct — to2 0t ,t0) 2.1)
where C is a positive constant and la(r , ¢! <1.

(2.B)

The (2+8) order moments of (1), yw(g(1)) and y(e(1)) are finite for some positive 5.

2.0
E w(e(1)) =0 and E y(e(1)) = 1. The assumption E y(e(1)) = 1 involves no loss of gen-

erality provided E y(e(1)) = 0.

Now, for ¢, to be a solution of (1.3), it is necessary that

n-1

Y6a) = T Yak)WOalk +1) =,y (k) =0 (2.2)
k=]
Hence if we let
F R s O S e o S et

P L
e

4
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7
t =y (k+1) = daya(k) and
2.3)
‘0=yn(k +1)- ¢uyn(k) =gk + 1)
in (2.1), equation (2.2) becomes, with a(k) = a(t 1),
n-1 N n-l
T [ vtk + )] - G- 00 Ty 20)
k=1 k=]
n n-1 .
-Gu-00% [y etk + 1)~ 1) 2.4)

n n-1
+ (0, - ¢n)2 o E [y.’(k Yok )] =0
k=]
The main result in this paper is summarized by the following theorem.

Theorem 2 : Suppose assumptions (2.A) to (2.C) hold. Let ¢, =1-Bin with B a posi-

D =
tive real constant. Then under the model (1.1) with y,(0) = T ¢} e(-1):
1=0

(@) There exists a sequence {$,) of solutions of equation (2.2) such that

(éu - ¢u) = op (n_l) (2-5)
(b) For such a sequence
1
Y(s)d Wis)
n(Gn—s) = ——— (2.6)
f Y¥syds
0

where Y (¢) is the Ornstein-Uhlenbeck process defined by the stochastic differential

equation

y LGS R ST E PR S T
- ’ﬁﬁﬂmﬁsﬂh’ﬂﬁ‘ﬂx‘f\’.x{\'_f_x

W P R T TV T Y W T TR T
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dY (1) =—BY (t)dt +dW,(t)

2.7

Y(O)‘!’N(O.i).

28

and (W,(1),W,()Y is a two dimensional Brownian motion with
EW? 0=t E €],
E W3 (O1=1 E Ve,
E W, (W)=t E [e()y(e(1)] O
Remark: Implicitly stated in the assumed initial condition for the sequence of
AR(1) processes is the assumption that for each n, the process is stationary. Thus is not

surprising that the initial condition for the Ornstein-Uhlenbeck process of equation (2.7)

is the one needed to insure the stationarity of such a process (Arnold (1974), page 135).

The weak limit in (2.6) is suggested by neglecting the last two terms of the RHS of

(2.4), so that
n~1
T [ owesn)]
n (6» - ¢u) = = n-1 (2‘8)
nt X ylk)
k=1
Define

nk) = (ek ), w(ek)) , w(ek)-1)

and let T be the variance-covariance matrix of the random vector n(1). Now we define

the stochastic processes Y, (1) and W, (¢) for ¢ in [0,1] by

Ya(t)=n""y ((nt]) (2.9)
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9
and
W.()= [wl,cr)‘wz,(r).wa,.(r)] ‘
2.10)
!
=n"*Y n(k)

k=]

(with the usual convention that summation equals zero when the upper limit is smaller
than the lower). The W,, component does not appear in the limiting distribution but is

used in the proof.

Let A be the usual forward difference operator (ie. Am(k)=m(k+1)-m(k)) and

At =n~'. Then (2.8) can be written as

wly & k
E‘:[Y'(?)AW’"(?)]

R — ) = =
T YA
k=1 n

(2.11)

Let W(t)=[W,(r).W2(r),W3(x)]’ be a three-dimensional Brownian motion such that

variance-covariance matrix of the random vector W(r) is ¢ Z. It can be proven by means
of the Martingale Central Limit Theorem (see e.g. Ethier and Kurtz (1986), section 7.1)
that the process W, defined in (2.10) converges weakly to W. Since Y, converges to Y
(see Cumberland and Sykes (1982)) it is natural to think of the summations in (2.11) as
the Riemann-Stieltjes sums for the integrals in (2.6), and we will show in Theorem 3

below, among other things, that the two summations in (2.11) jointly converge to the

corresponding integrals in (2.6).




\-(.,f
h:\:o;
Ly "
> ' N
LY “
A
b "
&Y
b 10
R
X 3. Optimality
:' We now explore the optimality of the M-estimators under a natural criterion. Our
T
. " approach is to minimize an asymptotic mean squared error
e 1 2
™ Y(s)dW(s)
e Q=0W)=E 4 3.1)
“ [Y¥s)as
oy 0
::Z- Surprisingly, we have found that this criterion leads to the finding that the optimal v
Ll
L) "'.u
3 ~ function is a linear combination of m,(x)=x and n,x)=-I;! f (x)/f (x), where f is the
> probability density function of the innovations (assuming it exists) and /, is the Fisher
‘ ::-f: information of the location parameter problem for the common distribution of the noise.
X Note that 1, corresponds to the least squares score function while n, is proportional to
Y
- . . .. .
e the usual score function of the MLE. The vy function so obtained is not directly useful as
o
ol an estimator since the coefficients of the linear combination depend on the unknown
J
i parameter B. Nonetheless, it does immediately suggest a two stage procedure that may
\
v
:’ be useful. The first stage is to estimate ¢, by say the MLE ,6,zz, and hence B by
¢
oy . . .
, -- Basre =n (1 -6, aaz). One can then find the optimal y function for the estimate § and the
L
-'.:j‘_ second stage consists of finding the solution of the M-estimation equation for this y.
.-_‘ To prove the claim we can think of @ as a functional on
= Lz(f) = (&:j&z(x) f (x)dx <)}. We would like to find the minimizer of 0 on L) subject
to the constraints in (2.B), ie. [&(x)f (x)dxr =0 and [E(x)f (x)dx =1. We have shown in
-~ the Appendix that Q can be written as
=
%
i
.::’
M A T A e e e e e e s Y e L S St M W AT S e N L S R G e AT R T AT R T e
o e e b ]
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LI—LZ 2
0w = =2 Covi{ e(t) wee(t)] + Lavarwieh) 3.2)
where
1 i 2 1 -1
L,=E|:£YdW,/£Y2ds] and L2=E[jrzds] (3.3)
0

Hence Q is a positive definite quadratic functional and since the constraints are linear,
the solution to the minimization problem is obtained by setting the first variation (with

respect to y) of the Lagrangian

QW)+ ME (W + o E (W - 1 =

L,

“E fryeoy () Lofvicor e

+ Mfwef e + Aol Jeo)f o - 1)

equal to zero, and choosing the multipliers A, and A, so that the constraints hold. This

operation followed by an integration by parts leads to the equation

[201-L 2y w0 0)b) 17 () + 2L 2w0)f )+ ()~ f (21 =0

whence
cxx s f) M
y(x)=xx + %, fo) 2, (3.4)
where
x= L;-;Ll: Cov(V .€)

where v and ¢ are shorthand for w(e(1)) and €(1) respectively. It is easy to see that both
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"
=

o 12
'_ E (¢) = 0 and the constraint E (y) =0 imply A, = 0, under the usual regularity conditions on

.h

(A}

::’-: f that allow the interchange of the integral and derivative. Thus the optimal y is a
A
L
1_ linear combination of the least squares and maximum likelihood criterion functions.
o Also the constraint E (y) = 1 implies
o

‘

.J'"

LA 193 4
K -2—L—2 =l (x-1)
;ﬁ_ﬁ Substitution of the value of the multipliers into (3.4) gives

My

| S

s .

() - X )
: (x)=xx + -1t L&) 35
.' v(x) (x-1)I7 &) @3.5)
‘, Ej:’ Calculating Cov(y,¢) for y in equation (3.5) gives that
2
‘,ﬂ:: _ Lz - L]

" Ly,-L,(1~c%))
vy Plugging this value in the definition of v gives
e f(x)

89 L,~L)x-a*L, LZ
r? wo= T G6)
‘*J Ly-L,(1-6%1y)
\ '
’,

p One should note that y depends on B through L, and L,. Further, evaluation of L, and L,
is nontrivial since they are expectations of rational functions of random integrals whose
, distribution is nontrivial to describe. Now, it is easy to check that if L," and L, are the
oot corresponding moments when the variance of the Brownian motion driving Y is equal

I~ to one, then L, =L,’/c? and L, =L,"/c%, so it is enough to obtain L,’ and L,". Following the
N ’ ’l
P procedure in Williams (1942) one can obtain the moments of the ratio of powers of the

-,

'“ numerator (to be denoted by N) and denominator (to be denoted by D) of the ratio on
:j the RHS of equation (1.5) from the joint moment generating function of N and D. Thus,

N
Po
D) .‘l
,;n" J
l-*q

L4
B e e ket e e e o _
A ‘,l*', ‘.".'-".""IV\-" ; ‘ '. U l.. \."‘\'_\"-O,:{‘."\',.- T -":;:‘ .:- _-.)\‘-‘r‘.‘_"."‘,‘.“_ ‘:f.’-('::‘r“ .::.“.--.\’_':(\ -\'(.;"‘ 'hw_:'*};-‘, -J'.;q- R :Q‘.
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for example, if A(so.s)=E [exp{-soD -s N}] then

=3

[AGs0.0) dso= E[}e""’ dso} =E
0

- g~
0 o
Ay A ARy

1
EJ 3.7

,
=g
X

-

and

T
et e

L4

I %A(so,r) l,.odsodl =II£ [Nze_'°0] dsedt = E
0

01

.L’;

o

N1
_D—] 3.8)

4
-

These formal manipulations will be valid as long as the interchange of differentiation

Al

and integration are valid. From equation (4.20), Bobkoski (1983) we have that the joint

PSR
' .‘fi. LA

MGF of N and D, when Y(0)=0 is given by

VAL !
,..l.‘_

A

A(sq,5)=E(exp(-soD - s N))

<A,
F ."'f; £

(3.9)
K, =exp(ﬁ;—‘} [cosh(z)+(p+s)shnc(z)]""
Cd

~1 where
',r- 2= (B?+2Bs + 250" and shnc(z)=iin—l:(ﬂ

B Expressions for the MGF when the initial distribution is known are available (Llatas
(]

(1987)). The choice of ¥(0)=0 is motivated by the convenience of checking the results

‘ , -
’l'l l’lx-“. .

k”l_‘_l_‘r.r.A..) kAP

obtained by numerical integration with both simulations and the approximated moments
obtained by numerical integration of the explicit form of the asymptotic limiting den-
% sity function obtained by Bobkoski in this special case. The fact that A in (3.9) is dif-

i, ferentiable and that the terms of these derivatives will be eventually dominated by e

Rt

where X is a positive constant, as s, — e allow us to interchange the order of the integra-

{

AL

tion and differentiation in both (3.7) and (3.8) by application of the dominated

POL LS

W
"]

n.E\‘

.
A &
L]
K>
N
3
A-
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e
- convergence theorem and Fubini-Tonelli theorem. In Table I we exhibit some of the
LY
:':» values of L," and L, calculated using the integration subroutine DQAGI in QUAD-
S
e PACK.
(2]
oo
:_‘: Table I: Values of L,” and L,’ obtained by numerical integration
Y
44 Valuesof L, and L,
v 1 2
> g
‘..4
i. Y B Ly Ly
v 0.200 13.698232 5.921848
<3 0.400 14.104907 6.285748
- 0.600 14.507015 6.653889
" 0.800 14.905686 7.025686
. 1.000 15.301856 7.400631
o 2.000 17.266291 9.309338
N 3.000 19.228876 11.252599
*{;, 4.000 21.198798 13.214063
Y 5.000 23.175399 15.186088
Y 6.000 25.156913 17.164780
o 7.000 27.141975 19.147965
7 8.000 29.129653 21.134334
o 9.000 31.119311 23.123046
. 10.000 33.110506 25.113539
AT 11.000 35.102916 27.105415
- 12.000 37.096305 29.098390
N 13.000 39.090494 31.092254
. 14.000 41.085346 33.086846
i~ 15.000 43.080753 35.082042
<l 16.000 45.076630 37.077746
- 17.000 47.072908 39.073881
& 18.000 | 49.069531 41.070385
- 19.000 51.066453 43.067207
7 20.000 53.063637 45.064306
.
1;.
'_'
WY
Y.

“~

§,
o
o




Faor,
S Ay

>
~
~

»

So

P‘ wT
)
2 ¥

&
4 &

v,

<
-'J--

-
%

AT PO
Ev.a A

L 8¢ yv. By

Tt ol
g B I Dy

15

The values obtained present a very curious feature: they fall in what seems two
parallel straight lines with slope near 2 and intercept equal to 13.33 for L,” and 5.37 for
Ly (see Figure 1). A regression line was fitted to the values in Table I assuming the two

lines are indeed paralle] and the regression equations are given by:

L=1333+198B; L, =537+198p

The residuals from this regression are shown in Figure 2. Figure 2 indicates the
true values would not fall in a straight line. Note the different behavior when f<1.
However over the range considered the linear approximation might be satisfactory and
gives us a quick way to estimate the value of L,” and L,” without performing the numeri-
cal integration. This may be advantageous when considering the two step estimation
procedure mentioned before. To check the values obtained by the numerical integration
we performed a small Monte Carlo experiment for =2,10,20 by evaluation of the
corresponding sample values of 10,000 series of sizes n =100,500,1000. We also
evaluated the second moment of the asymptiotic distribution from the representation of
the density of the limiting LSE error in Bobkoski (1983). The results are shown in

Table I1. The latter values are slightly smaller than the one calculated from (3.8).
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X Table II. Comparison of results for L, and L’
“‘!
e
\"'* Numerical Integration Monte Carlo Experiment
) ¢ MGF Density n =100 n =500 n = 1000
' B=2 Ly 17.2663 17.2655 16.2126 16.9297 *
ey (0.4349) (0.4750) *
Pt Ly 9.3093 * 9.3327 9.3805 *
'::'. (0.0735) | (0.0725) *
oy B=10 Ly 33.1105 33.1095 29.5127 31.1534 33.4475
) (0.6165) | (0.6780) | (0.7743)
i Ly 25.1135 * 23.8719 24,7268 24.9647
2 (0.1026) | (0.1056) | (0.1091)
e B=20 Ly 53.0636 53.0627 42.6071 51.87°° 51.3961
< 0.7692) | (1 , | (0.9723)
L0 Ly 45.0643 * 40.3335 44..,96 44.4285
) (0.1204) | (0.1373) | (0.1375)
\.. Note: Values in parenthesis are estimated standard errors for the quantity above.
|_'f
e
o The values shown for B=10,20 are obtained by integration on [-70,B]. For p=2 the
Mo
:: range of integration is [-35,5.70). As for the Monte Carlo trials, the estimated values lie
* L
&
' within two standard deviations of the values obtained by numerical integration except
;.:"r when =20, where the bias has not been overcome by the increment of the size of the
-
f,: series. In any case the values are close enough to support the numerical integration
o)
results. Less bias and smaller estimated standard deviation from the simulations would
" be ideal but unfeasible since in order to lower the value of both the bias and vaniance it
:::::: may need more computer time than what is convenient or even allowed on the facilities
o used.
A
e
L
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Now we are in the position to calculate values of Q0 for the score functions
n,.n;and y. By equation (3.2) and the observation about the relation between L, and L,’

we have:
Q ('\1)=02L\ =L1'
QMY=@*IP)'ILy-Ly(1-01)))

L/Ly
Ly-Ly(1-6%))

Qv =

Note that if /,* is the information when o?=1 we have that ¢/, =/, therefore the
asymptotic mean squared error for the score functions considered here does not depend
on the variance of the shocks. Moreover, it depends on the probability density function
of the shocks only through the information 7°,. Thus we will set 6=1 and in this case

we have 7, 2 1 (Rustagi (1976)). Consequently

Qm) _Li-Ly(-1p)

. \ 10
oW Ly (3.10

(a)

and a minimum is obtained when /’, = 1.

QMy L LI+, -LOd -1
o S sini Pt D,
Qw LLy 1]

1 (3.11)

and a maximum is obtained when /7, = 2.

In Figure 3 we exhibit the rauto Qm,) Q) for the LSE for values of
', =(n 32,150, and 2.00. In Figure 4 the ratio Q(ny» Q) for the MLE 1s shown for the

same values of /°,. Note that /°, = (n 1) corresponds to a logistic distnibution with mean

zero and vanance | From these figures one can see that the LSE can be ven
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"inefficient” while the MLE cannot be worse than 20% "inefficient"” in the MSE sense.
>
| : 4. The large sample behavior of ¢,
1) In this section we will prove Theorem 2. First we establish the joint limiting dis-
" tribution of the sums in (2.4) as an application of Theorem 1.
v
D
Theorem 3 : Consider the model 1) with initial value y,(0) as in the statement of
.r:
j: Theorem 2. Suppose that assumptions (2.A) to (2.C) hold. Consider the sequence of
Ly
N processes on D, [0,1) defined by
) n~ %y, ()
; w1}
= X.()=| n”! [y. (k=1)w(e(k »]
N z @
! _nlﬂl 3 .
Yy (k-l)[v(c(kH}
K. (13
E;f'_ Then X, = X as n —» =, where X is the continuous process on [0,1) given by
- ! f
- X() = Y(l).‘[Y(s)sz(s).le(:)dW,(s)]' 4.2)
£
\::
.‘j where W is the 3-dimensional Brownian Motion defined below equation (2.11) and Y is
o
the Ornstein-Uhlenbeck process defined by equation (2.7) with initial condition having
{:: the stationary distribution.
N
A
2 Proof: First of all note that we can represent W by
.:. Wi =T b (4.3
" where b v a 3-dimensional standard Browmian Motion with covanance (1) and
1"_' I =y, a8 the Cholesky factor for L e T as a 3=3-lower tmangular matnx such that
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Ir'=Z. Now the process X(:) satisfies the Stochastic Differential Equation:
—BX (1) 10 0
dx()= 0 dt +10X,2) O |dW(@)
0 0 0 X1
4.4)

(set)y=b(X(1))dt + G (X(1))dW(t)
=b(X(1))dt + G(X(#))Idb(t)

with initial condition X(0)=(Y(0),0,0)". The last equality in (4.4) follows by equation

(4.3) and It8’s formula (Arnold (1974) page 90).

The functions b and G do not depend directly on time and they have continuous
partial derivatives of first order that are bounded on {1x!1 <M} for all M >0. Conse-
quently by Corollary 6.3.3 Arnold (1974), equation (4.4) has exactly one continuous
solution. Moreover the process X(¢) is a 3-dimensional diffusion process on [0,1] with
drift vector b(x) and diffusion matrix a(x)=G&@I'T’G'(x)=G(x)LG'(x) (see Arold
(1974), theorem 9.3.1, page 152). In this case a(x) equals:

O Opx; Oyaxi

a(x)=| Ox, Opxl Opx} 4.5
O1xf Opx? Oyyx !

Thus X(r) is a solution of the associated martingale problem for the infinitesimal opera-

tor of the diffusion, i.e.

3 a ] 33 82
D= ZB (‘)— + 'i zzal[(!)_—_ (46)

o ox, et dx,0x,

with initial measure equal to Law(X(0)), which should equal to the weak limit of

Law (X, (0)) to have the appropriate limiting distribution. We claim that Law (X(0)) 1s the
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2 3-dimensional degenerate normal N(0,80%/2B) where 8, equals zero unless i =j =1.

[/

' - Our claim follows from the definition of X, (0) and the fact that
3

f) ] L]

. Y, (0)= T s (n™e(-k))
+ k=

Lo

i converges weakly to a random variable distributed as a N(0,0%/2p) by an easy applica-
: tion of the Linderberg-Feller Central Limit Theorem to the triangular array defined by

¥

35' Tap, =0re(-k) O0<k<sn?

N

i Now, X, is a solution of the following stochastic difference equation
: p [BXuain) 10 0 ’

:: AX, ()= 0 At+|0 Xyakin) 0 | AW, (=) (4.7)

> 0 0 0 XZ(kin)

0

-‘::' with W, defined in equation (2.10) so it is natural to thing that X, will approximate the
&

! continuous process X. We proceed to prove this by finding 3-dimensional processes
. B.(r) and 3x3-matrix valued processes A,(t) such that the conditions of Theorem 1 are
-

i~
" satisfied. From equation (4.7) it follows that
+
: —BY,(k/n)

o AX, (k/n)= 0 |Ar+a™E (k+1)

Il

y 0

.
ab
” where
;l Ealk)= [E(k) 1y (k = D(ek)) a7y, 2k - DIw(ek)) - 1]} "

X
3:: Since E [&,(k)/G,_,)=0 the predictable compensator of X, is given by
v

™
7
94
]

o
B e Lt L T 0 Ty o TR S NN ) e R N D 0

WS AN () K

..... 2 »




Y. 21

[m)-1
R B.()= 3 {E [Ax.(km)/o.]}
::- ) k=0
N (4.8)
)=
= [-ﬁ{zlY.(k/n)At ,0,0}
k=0

X and writing X, (k/n)=AX, ((k-1)/n) + X,((k-1)/n) One can see that
M, (k/n) = X, (k/n)=B, (k/n) = n™RE, (k) + 8, (k) 4.9)

;,% where §,.(k) is G,., measurable. Thus one can find A,, the compensator of

3,
el M, (k/n)M, (k/n) as

e, (w1} .
p A,(t)= Z{EM.(U")M'. kin)-M,((k-1)/n )M'.((k-l)/n)/Gn-x]}

k=]

- (4.10)
[n)
=17 T [0 (k) (k)/Gi-i]

k=]

It follows from the last equality of (4.11) that the increments A, (1) - A,(s), t >s of the

‘ I .
~
- ARMBAY

process so defined are non-negative definite.

AR T

What is left now is to verify the "continuity" conditions (1.8) to (1.10) and the

L A

"approximation" conditions (1.11) and (1.12) of Theorem 1. We start by the approxima-

< FAFENMAY

tion conditions. For condition (1.11) we have just to show
' P
v sup |B)(t) - [ by(Xa(s))ds| = 0
0815l °

, v,-: but the absolute value equals:
0
,\J‘
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! (a1}
Bll[n""y.([ru])ds - Eo n~Ay, (k)AL= B (e ~[ntin) 1Y, ()]
4.11)

< B 1Y,(¢)! < B Ny, .
n n

Since 11Y, ). is bounded in probability (Bobkosky (1983), page 25) the last quantity
goes to zero as n goes to infinity. Condition (1.12) will also follow by the same type of
argument and the boundeness of 11Y?Ii,, for ¢=0,1,2,3,4. To prove the continuity con-
ditions let t; be the stopping time defined in Theorem 1. Thus for ¢ <1] we have

IX,(t)! <r and in particular
IY,.(t)l <r for t <z 4.12)

Hence the continuity condition (1.10) for A, is easily verified when we note that it

reduces to proving that

lim n'E [sup 1 Y, (([ne]-1)/n) ”] =0 for j=1,2,3,4. 4.13)

4
t S‘!.

which is obvious by (4.12) since we are evaluating the process at a time point strictly

smaller than t,. In the same way, the condition for B, reduces to

lim_ (B/n )ZE [ sup' Y.z(([nt 1-1)/n )] =0 (4.14)

1$%)

which follows again by (4.12).

Finally for the condition on the X, process it is sufficient to verify

. 1
-~ \_‘_:\j
e



AN 23

(- lim E [n-‘ sup [ez(k)—(2B/n)e(k)y,,(k—l)+(B/n)zy.z(k—l)]] =0

= kSt

e lim [n" sup [ ya(k ~ DW(e(k)) 2] =0 4.14)

L dad ksntl

lim E [n"’ sup [y,,z(k ~1)[\il(£(k))-1]} 2] =0

nore ksat!

Wiy But each one of those conditions hold, by (4.12), Lemma 1 below and our assumption
- on the moments of ¢, y(e), and y(e). Hence Theorem 1 guarantees the weak conver-

gence of X, toX. O

Remark : In the proof of Theorem 3 it is not necessary to make the assumption that
e y.(0) has the stationary distribution. The result will follow as soon as ¥,(0) has a weak

limit. In particular the result is true when one assumes Y, (0) to be constant.

- Lemma 1 : Let (n(k))i., be a sequence of iid random variables with finite (1+6)-

o moment then

n-E [ng”n(k)] —0 as n oo (4.15)

Proof : Let F be the cdf of n(1). Define x(u) = inf (x : F(x)<u }. By the so called proba-

bility integral transformation u =F (x)

h R A ey S

Ay by
* et

L2
Py
[

1
E [oTkays(.n(k )] =£ nx()u”du (4.16)

2R i

L 0
4. x5 « ¥

S,

To show (4.15) we use the Holder's inequality
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3 with f =x(u), g=n u™, p=1+3§, and ¢ = (1 +3)/5 to obtain

8 s
(A+8)(n~1)+38

nE [or;lg'n(k)] Sn“[E [ In(l)l““]] _‘_13 n [

-5
=0(n 1+5) 0

The next result proves the weak convergence of the terms on the Taylor expansion

in equaton (24) and in particular the joint convergence of

8 n= n— 1 1
™ (2;1 Y2kin)At, zl Y, (k/n)AW,, (k/n)Y to the random vector ([ Y2(s)ds , [ Y (s )dWx(s))'.
v ) k=1 k=1 (1} 0
%

WS
(%]
r. Lemma 2 : Under model (1.1) and assumptions (2.A) to (2.C) the sequence of 4-
& dimensional random vectors
A .
3 Y, 2(k/n)At
k=1
n-1
v T IYkin) At
P :" k=1
oY zZ, = n-1
&N T Y, (kin)AW o, (k/n)
":'u k=1
" = a-l1
k. T YHkin)AW 3, (kin)
i k=1 ]
e converges weakly to
o
1 1 1 1
k-2 Z=| [Y¥s)ds, | IY’(s)|ds,£Y(s)dW2(s),_fYz(s)dwg(s)
.'\'/ 0 0 0
Lad
l::
I\‘
o : .
= Proof : Consider the transformation g : C,[0,1]- R* such that
I
u,
A
™
w"‘
’ 4
h
P
I::‘-.;- ’:.;-.;sj',ﬁ"#;\.:.:."\;\" YRORIERERL Mt G vy -"\"s"s'\:;.‘(\:'_\:- T T e e RSN LR AN a
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1 1 ’
= [Ixf(s)ds.} lxl’(s)us.xz(l),xa(l)]
0 0

It is easy to see that this is a continuous transformation. Now let Z, = ¢ (X,) and Z= g (X),
where X, and X are the processes defined in Theorem 3. Hence Z, converges weakly to

Z by the continuity principle (Theorem 5.1 of Billingsley(1968) page 30). O

Using the asymptotic results we proceed to prove our main Theorem in the same
fashion Cramer showed the asymptotic properties of the maximum likelihood estimator

(Cramer (1946), chapter 33).

Proof of Theorem 2 : By means of equation (2.4) we can write ¥({)=0, after multipli-

cation by »72, in the form

”-2 ‘P(Q = TOJI - (C_¢A)Tl,l - (C_¢u)T2,n + (c_¢n)2 T3,R =0 (4016)

where

Top=n""! ):": Y, (k)AW 5., (k)
k=]

n-1
Tya= Y Y(k)At
k=1

4.17
n-1
Tap=n""Y VAK)AW (k)
k=]

n-1
Ty, =n"Co, h2 [Y2(k) 1AL
k=l
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which is bounded by 1. Theorem 3 implies that T, is O,(»™") and T,, is O,(n~*), while

T Lemma 2 implies that T, is 0,(»*) and T,, converges weakly to a random variable,
,f:::: which is positive with probability 1 (This last claim follows from the fact that if
A
8
Y =0ae. then necessarily W =0a.e. which is a contradiction). Hence if y is an arbi-
\ trarily small positive number there exists an N such that for all n 2N there exist finite
:ij positive constants My, M, M, M; such that
- P| 1T, ! <n"Mo] >1 -i}
T )
::z P |T1_,,|>M1]>l—z-
- (4.18)
P| 1T, ! <n-"‘M2] >1-1
B PLIT,,|<n"M3]>1-%
} -_::,':: thus with at least probability 1 -y
o
Q) >~ Mon™ — Mi({~0a) -Mon™*1(§-0,)1 = M3n*(C -0, ) (4.19)
v \.::1
_':::: and
v
& n2E) < Mon™ = M (G- 0,) +Man ™A1 (G- 02) 1 + M3n (- 0,)? (4.20)
N...
N Now, choose n large enough so that
e
\? M, m,)? M
D > 0" “ 0 0
LG9 - M -0
‘ " [ M, { M, } ’} )
e
0 and for such n, let
v':cl
n’...-f
YLse
e
-
s
J":-‘
"{'-, . ."u R .-{\’-,\.( }"ﬁ'"’}fd'(‘.ia'r"-ﬁ\-f J"‘{ ,-.q ,,- ,-‘n. ‘»...(f ‘:; -. ;\-‘-_—., ‘ .(."‘. (\(.{{,"
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c1=¢n_"-l v

L= +n7l| —
hence equation (4.19) gives:

2M 2M,)°
a2l >-Mp T+ 2M ! _n-m[___°M2+ [——O-J M,]

M
>[M0—To] n'l>0

while (4.20) gives:

M M,)?
n'z‘l‘(C,_)<Mon“—-2Mon‘1+n'3’2[ M,o M2+[ o] M;l
M
<[—Mo+—2—°]n“<0

Thus, since ¥( is continuous, the equation ¥({)=0 will, with probability exceeding

1-7v, have a root, ¢,, between {; and {, as we wished. Moreover

- 4M0 -1 . o
10, — 0,1 < o a~"  with probability 1-vy
1

and consequently the proof of part (a) is completed.
For part (b) we just have to write

nTo',
Tl,u + T2.u - (6n -¢u )TJ.u

n(dy —0n) = 4.21)

It follows from the preceding discussion that T,, ~ (¢, - .)T3, converges in probability

™ w
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1 1

to zero while, by Lemma 2, (nT,,.T,.) jointly converges to ([Y(s)dW;(s).!Yz(s)ds ).

Thus the weak convergence of the right hand side of equation (4.21) to the random vari-
able in (2.7) is guaranteed by a straightforward application of Slutsky’s theorem and

Theorem 5.1 in Billingsley (1968). O

5. Appendix
Let wW() the 3-dimensional Brownian motion defined in Section 2. As noted
before in the proof of Theorem 3 we can represent this process by

W(i)=Tb()

where b() is a 3-dimensional standard Brownian Motion with covariance « 1) and
I=(y,) is the Cholesky factor for I, ie. T is a 3x3-lower triangular matrix such that
rr=Z. Using this representation we can prove that Q (y) can be expressed as in (3.2).

By Itd’s theorem (Amold (1974) page 90) we can write
1 ! i
[ Y)W os) =1, [ Y(5)db (5) + ¥ [ Y (s)dbs) (5.1
0 0 0

Note that W, = y,, b, and consequently the process ¥ defined by the SDE (2.7) is indepen-

dent of b, and b,.

From (5.1) we have
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1 2 ) 2
Y(s)db(s) Y (s)dby(s)
QW) = (0 E| ——| +(w’E
lv’mds lrz(sm
(5.2)

[:[Y(S)dbx(ﬂ} u Y(s)dbz(S)}

+ 29 E| - T 3
frox

Define F,=0(b/),0<s <t) and FV=0(b\(s).0<s <1). We claim that for any F," -

measurable random functon A (1) we have:

1
E[Ih(s)db,(x)lF,‘”} =0 |
0

and

2
F“’} jhz(s)ds

1
EH{h(s)dbz(s)

This can be proven by first looking at F{"’ -measurable step functions and making use of
the fact that b, andb, are independent. Then the usual limiting argument gives the result.

Consequently, since ({Y(1):0s1<1} is F{"-measurable one obtains that
i

E(!Y(s)db,(s) | F(")=0. Thus the expectation of the cross product in (5.2) vanishes

1 1
since [ Y(s)db,(s) and [ Y¥(s)ds are F{"-measurable. Also
0 i)

"i(‘. . - ' |l"‘l “.
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From all this discussion Q@ reduces to

*y

2

1

Y(S)db1(5)\
QW =HE| | +¥hE
le(S)dJ

1

{Yz(s )d.‘}

MY TVRRR
PR R R} . A s

L)
. B

-

(5.3

=¥ L, +YhL,

Plugging in the values of v;, and y,; into (5.3) gives expression (3.2)

-

o .&‘L’I _'A"l.fl _}'_ '

¢
¥
8
i
¥
.

Cl

q

]
")
?




L aoh o ae o Sl

T

’mdL:I

1

1: Values of

Figure

20

vy

10

0

beta
> ‘ 4 ‘.'p.“- “

3

AL QTS

ot gt et

C N ATA AT AR A pes
oottt ottt

A

>

L)

&)

NN
XN



—— - —y g A a0 o o T O T S ™ o o A Wy W "y

'\
f\
LS

U

Y

2
N
L Y

:a N 32
"

Figure 2: Residuals from linear regression
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Figure 3: Comparison LSE vs "Optmal”
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A% Figure 4: Comparison MLE vs "Optimal”
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