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ZONAL MODELS OF TURBULENCE AND
THEIR APPLICATION TO FREE SHEAR FLOWS

Abstract

The concept of zonal modeling is tested by using three homogeneous
flows. Turbulence models are constructed independently for various
zones. A parameter that governs the readjustment of the flow from one
zone to another is introduced. This readjustment parameter reflects the
changes in physics involved in the transition process. The results of

the zonal concept are very promising.

The idea is then applied to the development of improved models for
free shear flows. A close examination of the experimental data of vari-
ous free shear flows i{s first performed. The standard K-e¢ model is
adopted as a base model since it predicts many flows reasonably well.
Zonal models for well-defined zones are constructed independently by
systematically modifying the standard K-e¢ model to reflect the physics

associated with the zones.

1t is found that two governing parameters suffice to classify all

free shear flows considered. and they are therefore used in the present

. model. 'The first parameter represents the ratio of the inertial force
to the driving force of the shear layer or, alternatively, the ratio of

eddy turn-over time to the characteristic free stream time. It deter-

mines the relative importance of the diffusion process in the turbulence

transport mechanism. The larger this parameter, ie the more important

the diffusion process of turbulence becomes. The other parameter is a

measure of lateral vortex stretching. Strong vortex stretching reduces

the correlation between turbulent shear stress and turbulent kinetic

energy and hence reduces the spreading rate of the flow.

There are a total of three zones found in the class of free shear
flows; they represent the limiting values of the two governing param-
eters, The zonal models for these three zones are built separately.
They are then blended to allowed readjustments between zZones by means of
readjustment parameters that are funct{ons of the governing parameters.
As a result, a unified zonal model for all free shear flows is produced.

This unified zonal model {s used to predict five bdasic free shear
flows. The agreement with data {s excellent. Comparisons of model per-

formance are made with the standard K-¢ model.
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0 Nomenclature
N
c,::v
el
o a; a, Model comnstants in Eqs. (2.3.23) and (2.3.24). .
Y
-:f bs’ ba’ bp Constants in readjustment parameters.
; c, Cs Constants in readjustment parameters N and Aye .
&
! Cu Model constant in model of v,.
.:{! Cel, Ce2 Model constants in model equation for e,
Wy
';- D Diameter.
b,
e E Grid expansion function in Eq. (4.2.2).
::;'" f Nondimensional velocity profile in Eq. (3.2.1).
;..“’z F Function defined in Eq. (5.2.3).
) .
""- Fi, Fy Functions.
'-$ g Nondimensional shear stress profile in Eq. (5.2.5).
:.: G Function defined in Eq. (5.2.4).
‘a8 .
o In Constant defined in Eq. (3.2.11).
;-" 11'1 Constant defined in Eq. (3.3.6). . |
Io0
“'i: J Momentum flux of jets.
1Y
‘3‘ K Turbulent kinetic energy.
;l.:" L Width of mixing layers defined by y -y .
‘.n. v0.9 0.1
'o: { P Production rate of turbulent kinetic energy.
:’.I
i q Function of B defined in Eq. (5.2.8).
't: q' Function of B defined in Eq. (6.2.5).
2.}: r Coordinate in the radial direction.
' [
o
. R Free stream velocity ratio of a mixing layer, U"’Z/U"l
3; Ry Eddy Reynolds number defined in Eq. (3.2.14).
15 s
X R1/2 Radius of curvature of the vortex line passing the point
:: ‘ Of 61/2. )
ol ] Vortex stretching parameter defined in Eq. (6.3.3).
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sp

b

]

bl 2

Strain tensor.
Spreading parameter defined in Eq. (3.2.17).
Time.

Mean velocity component in x-direction.
Velocity excess or velocity deflicit.

Maximum Upe

Jet velocity at the nozzle exit.

Free stream velocity.

Free stream velocity of high velocity side in a mixing
layer.

Free stream velocity of low velocity side in a mixing
layer.

Turbulent shear stress.

Reynolds stress.

Components of turbulent kinetic energye.

Mean velocity component in y-direction.
Streamwise coordinate.

Virtual origin.

Position vector in old reference frame.
Position vector in new reference frame.
Coordinate in direction normal to the flow.

y-coordinate where U = U, + x(U, - U_,) in a mixing
layer y-coordinate. 1 2
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Subscripts

3 jth grid in normal direction.

n nth step in streamwise direction. M
CL Centerline.

Greek Symbols

611 Kronecker delta temsor.

61/2 Half-velocity width.

£ Dissipation rate of turbulent kinetic energy.

Ps’ Pa, Pp Strain rates.

Op» O¢ Model constants in diffusion terms.
0 Momentum thickness defined in Eq. (3.2.7).
n Nonmensional coordinate in normal direction.
v Kinematic viscosity.
Ve Eddy (turbulent) viscosity. ‘
A Kl, X2 Readjustment parameters. .
B Governing parameter in model constants.
K Karman constant.
Ax Step size in streamwise direction.
Ay Mesh size in normal direction.
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':‘v‘t

’ . INTRODUCT ION
b

“9::;

?ﬂ" . 1.1 General Introduction to Zonal Modeling
du

1

ﬁﬁﬁ Methods of simulating turbulent flows can be classified according

to the following scheme (Kline et al. (1981)):
B
\ 1.

N 2., Integral methods

Correlations

¢ 3. One-point closure methods

4, Two-point closure methods

(
E;j; 5. Large-eddy simulation
:'¢E 6. Full simulation
:ﬂ? As one moves downwards in the list, each method requires more computa-
;ﬁ; tional resources but less modeling than those above 1it; consequently,
'5¢ one might think it should also be more accurate. However, the higher-
;g level sinulations also require more complex data inputs which are often
not as accurately known. Therefore, a simulation at a given level {is
oa%‘ - not always more accurate than simulations at lower levels. This remark
:Q$ applies primarily to levels 2, 3, and perhaps 4. Also, owing to the
iggi tremendous cost of simulating even the simplest flows by means of high
‘j‘ level simulations (large-eddy simulation and full simulation) on present
:?W computers, such simulations can serve only as research tools and not
.?J engineering design tools at the current time.
}?ﬁ In the trade-off between accuracy and computation time, one-point
closure methods seem to offer the best compromise for high technology
:‘;% applications at the present time. The one-point closure category
GE? includes: (1) mixing-length; (ii) one- and two—-equation models; and
}J (111) Reynolds stress and algebraic stress models; these three approx-
:w; fmations are sometimes referred to as yesterday's, today's, and tomor-
a row's models, respectively. The latter remark is based on the idea that
this ordering represents a ranking of the quality of the models, i.e.,
~ that each succeeding model is more exact than its predecessors; this may
- not always be the case (see, for example, Kline et al. (1981)).
i
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On balancing all these factors, we believe {t is better to adopt
the pragmatic view that turbulence models are engineering correlations
in a more sophisticated guise and that the only true test of quality is
performance. Of the models mentioned, Reynolds stress models are still
in the development stage, and two-equation and algebraic stress models
are the wost popular ones at present (see, for example, Rodi (1980)).
Two-equation wmodels also have important advantages {n flexibility and

range of application compared to one-equation models.

Two-equation models consist of an assumed functional form for the
structure of the Reynolds stress tensor (usually the eddy viscosity
assumption) and two partial differential equations for turbulent kinetic
energy and another turbulence quantity that provides a length scale.
The most commsonly used two-equation models ar: K-¢, K-L, and K-w models
(where X = kinetic energy; ¢ = dissipation of turbulence; L = length

scale; and w = vorticity).

Looking at the results presented in 1980-81 AFOSR-ATT™-Stanford
Conference on Complex Turbulent Plows, we find, for many of the flows
tested, two-equation models gave the best predictions. However, for
others, some of the simpler models, including integral and mixing length
models, were as good or better. Unfortunately, which method is best
varies from case to case. Each of the models in the 1980-81 Conference
required modifications or special treatments for particular flows. No
single model presented was accurate over the wide range of cases used.
Moreover, some computors reported success on some classes of flows fol-
lowed by degradation of the results when attempts were made to extend

the range of flows without change of model or constants.

Although having a universal model {s desirable, the preceding para-
graph indicates that no such model exists at present. It also appears
such a model would need to be very complicated and would probably be
difficult to apply. (This opinion is8 now shared by W. C. Reynolds, who
has been a leading proponent of universal models for some years, private
comunication.) It is our view that models should be closely tied to the
structure of the flow phenomena they are supposed to represent. This

view is shared by many others but has rarely been used as the basis for

models. Since different parts of flow “{elds often have quite different




flow structures, {t may be {mpossible to model all flows, or even all of
4 single complex flow field, with a universal model. Furthermore, {f we
try to construct 4 unfversal model by using one flow to determine one
model vonstant and another flow for another model constant, we mav, tu
some dJdegree, "contaminate' the model and render 1t invalfd for efther
flow. As 4 result, the model may not be accurate for efther flow. We
4111 show helow that this "contamination” {8 stronger than has been

generally recognized for two-equation models.

Since a complex flow field contains several flow zones with differ-
ent physfcal structures, and since universal closure models are usually
"contaminated", {t seems logical to construct models {n which each flow
zone 18 modeled {ndependently. Here we define a flow zone as a distinct
part of the flow field with definable and distinctive phvsical charac-
teristics, This point deserves emphasis -- the models are tied to the
local characteristics of the flow, not to the flow as a whole and cer-
tafnlv not to a wide varfety of flows. Most flows contain more than one
zone. For example, a diffuser flow with separation (Fig. l.1) can be
regarded as a composite of six flow zones: (A) the potential core; (B)
the attached boundary laver; (C) the detachment zone; (D) the recir-
culation zone; (F) the free shear layer; (F) the reattachment zone.
With zonal models, we can provide a separate model for each zone. It
should be much easfer to construct accurate models for zones than for
the flow field as a whole, and the models can bhe nuch simpler than a
universal model would need to be. Equallv importantly, there is little,
1f any, danger of contamination. Fortunatelv, there is a limited number
of types of flow zones {n flows with engineering application. There-
fore, the task of zonal modeling {3 large but finfte. We believe that
the zonal modeling approach will probably vield accurate engineering

methods more quickly than will a search for a single universal closure

model.
?;f In this approach, the definition of a "zone" must he subject to
e pragmatic testing. At the beginning, we select a region we believe has
-"’.
rle, Atstinct physirs as a candidate zone. We then construct a madel for
L 1L
= that zone. If the model works within the desired accuracv, the zone
)
o definitinn 1{s accepted. However, the process mav not end here. The
o
\q: following possibilities arige:
N
L]
-
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(a) The region {s not adequately modeled. In this case, the zone
may need to be broken into two or more regions each with a

different wmodel; the zonal definition {8 then narrowed.

(b) The model works not only for the region i{ntended, but for
other regions as well. In this case, the definition of the

zone can be broadened.

Thus in each case, we are guided by the success of the model and not by
our initial guesses. In the end, what is seen as a zone therefore de-

pends strongly on the model used.

For free shear flows, we began by adopting the classic classifica-
tion scheme, that is, jets, wakes, and mixing layers were assumed to be
distinct zones. Since jets and wakes have both planar and axisymmetric
realizations, there are five basic cases. In each case there is a near
field and a far field. This suggests that as many as ten zones night be
needed. In addition, there are co-flowing jets and mixing layers with
variable ratio of the velocities of the two main streams. Given this
range of cases, {t was not entirely clear what to select as zones. We
started by assuming the need for a separate model! for each flow. In the
end, we found that many cases could be fitted with a single model, so
that there are only three zones in the final model; the classification

was not obvious a priort.

This process sounds awkward; in practice, however, {t not only led
to resolution {n a reasonable time, but also was {nstructive in provid-
ing information about the basic parameters needed to model free shear
flows and hence about the underlying physics. In the end, we were able
to unify the models to form a single model with two parameters. This
model is wmore successful than any we are aware of. We were able to use
linear first-order equations for all the readjustment processes (to be

described later).

If the flow field is decomposed into zones, as suggested above,
there exist regions between the zones which can be called ''readjustment
regions”", where the structure adjusts from that »of the old zone to that
of the new one. Physically, these readjustments are transitions from

one type of structure to another. The modeling of these readjustment
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regions must reflect this changing physics. Pragmatism requires that,
at least at the outset, we adopt the simplest possible model for the

readjustment reglons. It also means that, to minimize the difficulty of

‘;“ blending, the models tor various zones should have the same form; for
: ", example, they mav all be of the K-¢ type. A linear blending model
l:': a8ing a flrst-order lag equation meets the simplicity criterion; our
expectation {s that {t may be able to represent most readjustment
's::: regions with reasonable accuracy. Thus far, our expectation has been
.:-;E fulfilled as will be reported in later chapters. However, we do not
:. rule out the possibility that more sophisticated blending models may be
needed in some cases.
3]
::, To recapitulate, {n constructing zonal mndels, we shall be guided
:; by fnllowing criterfa:
T
!. ACCURACY. Fach model should represent the zone it is designed
> for with sufficlent accuracy. Acceptable accuracy may vary with appli-
4"_ cation. For the cases of {nterest to the authors, S% accuracy in most
.-’,:: fntegral parameters {s a reasonable goal. In other applications, for
v exanmple, environmental flows, much less accuracy may suffice.
':- . SIMPLICITY. We want the model for each flow zone to be as sim-
‘\'f ple as possible, consistent with engineering accuracy.
o
‘\'. 3. UNIFORMITY. We want the 2zonal models to be uniform in the
sense that the varfables used in each zone should be as similar as
:.:; pnssible in order to simplify the zone readjustments, This will also
-' help to make model develnpment and assessment relatively straightfor-
."; ward. Two-equation models and, particularly, K-¢ models, will he
selected as the basis an which to build the zonal models; this will
‘\ allow max{mum advantage to he taken of existing models.
:- 3. INDEBENDENCE, We want the ahility to alter the model in one
2 zone without affecting the models {n other zones. This will allow
) *ining for each zone separately. It also avolds the "“contaminatin"
'.'.: prontem discussed above,
,la
:::E Se CLOSE CONNECTION TO PHYSICS.  As menti{oned ~arlier, tarbhulence
; models should reflect the physics of the phenomena they are {ntended t
\.- represent . However, fncorporating phvsics into a model 18 difticult and
3 (.
~, :
e
e S T s

#.'(



has rarely beer done. There is considerable accumulated knowledge on

flow structures which should be useful in this effort.

6. NEGLIGIBLE NUMERICAL ERRORS. This {s not really a wmodeling
issue, but we need to eliminate uncertainty due to the numerical errors
in computation. This {s necessary {f one is to evaluate the models ob-
jectively and requires the construction of accurate and stable numerical
methods. At present, adequate numerical methods exist only for some

types of flows and more should become available in the next few years.

1.2 An Overview of Modeling for Turbulent Free Shear Flows

1.2.1 Background for Free Shear Flows

Free shear flows are those flows in which there 18 no direct effect
of solid boundaries. This class of flows consiste of five basic flows;
the mixing layer, and the plane and axisymmetric jets and wakes. As
with boundary layers, these flows have a single predominant flow direc-
tion and hence the shear stresses and diffusion fluxes are significant
only in directions perpendicular to the predominant direction. Further-
more, pressure gradients normal to the predominant flow direction are
usually unimportant. Consequently, the equations governing these flows
are identical to those of boundary layers. For this reason, the free
shear flows and boundary layers are sometimes called thin shear layers.
The free shear flows are all inherently unstable and trans{tion from
laminar to turbulent occurs at Reynolds numbers hetween 15 and 30 based
on shear-layer width. It is almost {mpossible to maintain a laminar
free shear flow in the laboratory and all free shear flows of practical

engineering interest are turbulent.

Free shear flows play significant roles in many engineering appli-
cations. Jet engines, jet ejectors, fuel-oxidizer mixing i{n propulsive
devices, and wakes behind airplanes and submarines are a few examples.
Also, in flows with separation, free shear flow may represent a zone of
the whole flow. Indeed, free shear flow zones are commonly seen in

engineering flows (see Kline et al. (1981)).

Turbulent free shear flows are a good starting point for studying

WY

}ﬂ turbulence because they are relatively simple and hence nffer a better
N /
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chance for understanding. Most of the turbulence structures in engin-
eering flows are not well understood at the present time. When extra
strains, such as the effects of solid walls and pressure or temperature
gradients, are added to the flows, the turbulence evolution becomes more

complicated and more difficult to understand.

In classic theory, power laws describe the downstream variation of
the layer width and the velocity decay with downstream distance for many
free shear flows (see, for example, Schlichting (1979) and Tennekes and
Lumley (1972)). These power laws are exact for laminar flows and are
based on dimensional arguments and the momentum integral equation for
turbulent flows. Although not exact, power laws do provide a guideline
of the behavior of the flows and experimentalists often use power laws

for fitting data.

With present computers, we cannot solve the full time-dependent
Navier-Stokes equatfons (full turbulence simulation), which are the only
truly univerial "model” for all the turbulent flows, except for very
simple flows. Fortunately, the details of a turbulent flow are rarely
needed; time-averaged quantities usually suffice even when the mean flow
{s unsteady. Time-averaged equations are therefore used for most engin-
eering calculations. In the process of time averaging, however, most of
the detailed {(nformation contained in the Navier-Stokes equations 1is
lost and, as a result of the nonlinearity, the time-averaged equations
do not form a closed set of equations. Closure of the set of time-~
averaged equations requires a turbulence model describing the Reynolds

stresses in termws of quantiti{es that can be calculated.

1.2,2 Eddy Viscosity Model

Boussinesq (1877) {initiated the concept of eddy viscosity; it is
stil]l widely used in turbulence modeling. He suggested that the effec-
tive turbulent shear stress, arising from the cross-correlation of the
‘luctuating velocities, be replaced by the product of mean velocity
Zradient and a quantity called the "eddy viscosity" or "turbulent vis-

cos{ty'"., This model! resembles the stress-strain relationship in laminar

flows, Inlike the molecular viscosity, the eddy viscosity {s not a
property of the fluid. Its value varies from point to point {n the
7
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flow, and is largely determined by the characteristics of the turbulence
at the point 1in question. The {introduction of the eddy viscosity
provides a framework for turbulence modeling, but {t does not itself
constitute a wmodel; there remains the task of expressing the eddy

viscosity in terms of known or calculable quantities.

The mixing length hypothesis, introduced by Prandtl (1925), has
been a major success in turbulence modeling. It assumes that the eddy
viscosity is proportional to the product of the density, a length scale,
and a velocity scale. For two-dimensional flows, it further assumes
that the velocity scale can be replaced by the product of the length
scale and the mean velocity gradient. This reduces the number of un-
knowns to one, a length scale known as the mixing length. For flows
bounded by walls, the length scale {s proportional to the distance from
the wall in regions very close to the wall (inner layer) and to the
layer thickness where the wall effect is small (outer layer). For tur-
bulent free shear flows, the length scale should be proportional to the
width of the layer, but the proportionality constant varies from flow to
flow (see, for example, Launder and Spalding (1972)). There is no way
of predicting the constant for a flow that has not been measured. This

lack of generality is a major drawback of this method.

For free shear flows, the mixing length model assumes constant
length scale across the layer at a given downstream location. Another .
class of models assumes the eddy viscosity constant across the layer.
In these models, the velocity scale {8 taken as the maximum velocity
difference in the layer rather than the product of length scale and
velocity gradient. Generally, the constant eddy viscosity model per-
forms less satisfactorily than the mixing length model. However, the
constant eddy viscosity model allows similarity solutions for which the
problem can be reduced to an ordinary differentfal equation (Schlichting
(1979) and White (1974)). This was a major advantage when high-
performance computers and accurate numerical methods for solving partial

differential equations were not available.
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1.2.3 Two—-Equation Models

It was not until the late 1960s that differential equations were
used to calculate the velocity and length scales that determine the eddy
viscosity. In these models, the velocity scale is proportional to the
square root of the turbulent kinetic energy which is obtained by solving
a differential equation. If the length scale is prescribed, we have the
so-called one-equation models. Alternatively, the length scale may be
derived from another differential equation; we then have two-equation
models. Several length-scale-determining equations have been proposed.
The one which describes the turbulent energy dissipation rate has been
favored by many researchers. The reason lies in the fact that this
quantity appears in the turbulent kinetic energy equation. This model
is called the K-¢ model and has enjoyed a great deal of success since
Jones and Launder (1972) first proposed it. Rodi (1972) has used it
extensively in the prediction of free shear flows. Two-equation models
do not require flow-specific length scale information and offer the pos-—
sibility of achieving the generality that the mixing length and constant
eddy viscosity models lack. However, the performance of the K-e model
falls short of the desired accuracy. For example, the standard K-e
model over-predicts the spreading rate of an axisymmetric jet by 30-35%
and under-predicts the plane wake spreading rate by nearly 40%Z. The
reason for the poor predictions of these flows may be contamination. n
the other hand, only slight adjustments are required to improve the

model. Details will be given in later chapters.

This provides the motivation for the present study of free shear
flows. We will apply the zonal modeling strategy to the development of
improved models. We begin with a close examination of the physics of
individual zones and then incorporate as much of what we learn as pos-
sible into the model. The standard K-¢ model 1is adopted as a base
model since it predicts many flows reasonably well. Systematic modifi-
cation of the model constants for well-defined zones 1is performed and
then the zonal models are blended to allow readjustments between the
zones. It 1s found that one primary and one secondary parameter suffice
to classify and predict all free shear flows considered. The primary

parameter 18 the free stream velocity divided by the maximum velocity
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difference in the layer; it represents the ratio of the inertial force
to the driving force. This parameter is zero for "pure" jets. It
varies from a small value to infinity in co-flowing jets or wakes. 1In
mixing layers, this parameter is fixed at some finite value, determined
by the velocity ratio of the two streams, and can take on values from
one to infinity. As this parameter increases, the driving force becomes
smaller compared to the inertial force, it is harder for eddies to pene-
trate into the free stream, and the flow becomes more parallel. In this
limit, the dominant mechanism of the turbulence tramnsport 1s diffusion.

This effect is simulated by changing two model constants.

The secondary parameter 1s a measure of lateral vortex stretching.
This vortex stretching reduces the correlation between the shear stress
and the turbulent kinetic energy. For example, the maximum value of
IGT;TIIK is only about 0.23 in axisymmetric "pure" jet, in which vortex
stretching is strongest, while it 18 about 0.3 in all plane flows. This
effect disappears in far-downstream axisymmetric flows. Change of one

model constant {s required to incorporate this effect.

Experiments are the basis of our understanding of turbulence phe-
nomena and provide the data required to fix the model constants or func-
tions. Therefore, they are crucial in the development of zonal models
and readjustments. There are extensive experiments on turbulent free

shear flows. They will be carefully reviewed below.

In Chapter II, the standard "universal" model is reviewed and the
zonal modeling concept is tested on three homogeneous flows. In Chapter
I1I, a survey of free shear flow experiments 18 performed. In Chapters
IV and V, a zonal modeling approach is used for the development of the
model for plane and axisymmetric free shear flows respectively. In
Chapter VI, a summary of the new model that brings together the plane

and axisymmetric flows is presented.
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Chapter II

ZONAL MODELING OF HOMOGENEOUS FLOWS

2.1 Background

Since the introduction of the idea of zonal modeling (Kline et al.
(1981)), many researchers have shown interest in the approach. Others
have criticized it and raised questions. It was not clear whether this
concept would work, although it appeared to have promise. It was there-
fore decided to make a quick test of the idea before initiating a sig-

nificant efforte.

Homogeneous flows were selected for this task. Homogeneous flows

are ones in which statistical turbulence quantities are independent of
spatial position and, therefore, functions of time only; they may con-
Since nearly all

little

tain a mean flow with a constant rate of strain.

engineering flows are 1inhomogeneous, homogeneous flows have

direct engineering application. Nevertheless, they are simple turbulent
flows and, consequently, it is easier to construct models for them than
for inhomogeneous ones. We shall use these homogeneous flows, because
they provide an easy test of the zonal modeling concept and will lay a

foundation for later development of zonal modeling for more complex

* flows.

J

ﬁ”ﬂ In this chapter, zonal models for three homogeneous turbulent flows

ii? are developed. These are: homogeneous shear; plane strain; and axisym-

%ﬁf metric strain flows. All of these flows start with isotropic turbulence
. as the initial condition. When shear or strain is applied to the flow,

%jé the turbulence begins to depart from isotropy and undergoes a transition

:21 or readjustment to a state which depends on the nature of the applied

?%E strain. After a long enough time, the turbulence reaches an asymptotic

- state. These flows can be regarded as consisting of two zones separated

é;g by a readjustment stage; the two zones are the initial isotropic flow

&s, zone and the fully-developed zone. Since homogeneous flows are time-

%&} developing flows, these flow zones occur in time rather than in space.

‘:~' Although the dimension of variation is different from the flow zones

?f" described in Chapter I, the concept is much the same.
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2.2 The Standard K-e¢ Model

Before developing the new zonal models for homogeneous flows, it is
worthwhile to examine the existing "universal" K-e¢ wmodel (see, for
example, Rodi, 1980). In this model, the Reynolds stress tensor is mod-
eled using the eddy viscosity concept:

an U 2
1] axj 9x 3 1)
The eddy viscosity is given by:
2
K
Ve Cu - (2.2,2)

The turbulent kinetic energy, K, and rate of dissipation of the turbu-

lent kinetic energy, ¢, are governed by the differential equations:

DK Uy 3u,y 3y 3 (Yt K
pe - Ve\dx, Tax, Jox, €t \T ax (2.2.3)
b i k) iVk 4
De € au, l au, e2 WA
e = S kUl ta) T Ce k(5 (2.2.4)
1 j 1 j €y xg \o_ 3%,
wnere U is the mean velocity in the i-direction. C C s C
i IJ’ e’ k’
and o, are model constants. The first two terms on thé rigﬁt hand

side of each model equation represent production and destruction of the
quantity whose evolution the equation describes. The last terms of
these two equations represent diffusion, which plays no role in homo-

geneous flows.

Values of Cu = 0,09, Cel = 1,44, Ce2 = 1.92, o = 1.0, and

and G = 1.3 are widely used for the model constants. For reference,

we shall call these the "standard values" and the model equations with

these values the "standard K-¢ model”.

&
]
-

F{Q

The five standard values of model constants were determined as fol-

lows:

1. Cezz In homogeneous grid turbulence, diffusion and production
are zero so C._ 1is the only constant that plays a role in Egs. (2.2.3)

and (2.2.4). From the measured rate of decay of turbulent kinetic
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energy, C82 can be determined and is found to lie in the range 1.8 to

2.0; as noted above, 1.92 is the most commonly used value.

2. Cu: In local-equilibrium shear layers, production and dis-
sipation are essentially equal, and Egqs. (2.2.1) and (2.2.2) can be com-
bined to yield C, = (u /K) Measurements show that —-u u_/K ~ 0.3

12
in these flows, so that Cu = 0,09,

3. Cel: In near-wall regions of boundary layers, the velocity
profile is nearly logarithmic, production is approximately equal to
dissipation, and the convection of dissipation is negligible. In this

situation, Eq. (2.2.4) reduces to

where «x = 0.41.

4. Finally, the diffusion constants O and o, were assumed to

be close to unity and they were tuned by computer optimization. C82
is then obtained from the eequation above.

Note that at least three different types of flows (homogeneous grid
turbulence, equilibrium free shear layer, and boundary layer) were used
to determine the model counstants. This use of different flows causes
the type of contamination described in the introduction. The standard
K-¢ model probably predicts boundary-layer flows better than other
flows because two of the model constants were set using data from
boundary-layer flows. However, the standard model, although widely
used, cannot be expected to work well "universally". We shall assess
how well (or badly) it does for a number of flows and several variables

in this work.

Applied to homogeneous flows, Eqs. (2.2.3) and (2.2.4) reduce to

U,  au
£ (Eew)w - (2.2.5)
J i h|
] U TN 2
EE = ¢ 5 vt (ax * axj) IX - ¢ E_ (2.2.6)
1 j 17 % 5
13
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and only three model constants, C C., and C

u’ el 62’
equations. Note that the physics from which Cu and Cel were deter-

remain in the

mined are not appropriate to homogeneous flows. Therefore it is ques-
tionable whether the standard K-e¢ model is acccurate for such flows.
In fact, its performance for the homogeneous flow cases in the 1980-81
Stanford Conference was not good. Some examples of the performance of

this model for homogeneous flows will be given later.

In the present study, zonal models for homogeneous shear flow,
homogeneous axisymmetric strain flow, and homogeneous plane strain flow
are constructed as described below. The inputs used to build the models
came from the full turbulence simulations by Rogallo (1981) and Lee and
Reynolds (1985). These zonal models perform considerably better than
the standard K-¢ rwrodel in predictions of these flows, since they have

been tuned for these .(ows.

2.3 Zonal Models for Homogeneous Flows

2.3.1 Homogeneous Shear Flow

Homogeneous sheared turbulence 1s a flow in which initially iso-
tropic turbulence 1s subjected to a mean shear flow. After application
of the shear, the structure of the turbulence becomes anisotropic. The
flow gradually adjusts to the shear and, after a long enough time,
appears to reach a fully-developed or asymptotic state 1in which the
physics no longer changes. This flow can be regarded as consisting of
two flow zones connected by a readjustment stage. The two zones are the
isotropic 1initial flow zone and the fully-developed shear flow zone.
These two flow zones occur in the time domain. Between these two time
periods 1is the readjustment stage where the change of physics takes
place. The readjustment i{s the most interesting part of this flow and

the part to which most of our attention will be devoted.

In shear flows, the strain tensor is

0 r/2 o
sy = |re22 0 0 (2.3.1)
0 0 0 ,
14
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where Ps = dU/dy is the shear rate. The most important Reynolds

¥,

4!

i —
'gﬁ stress component is u1u2' Initially, in the isotropic state,

+ 2
kY - — K 2.302
fﬁ uiuj 3 Gij ( )

o4
et .

‘; i.e., uu, = 0, and in the fully-developed state,

o u,u, = =-0.,32K (2.3.3)

7 12

f& 2 2 2

c: where K = (ul tu, ¢+ u3)/2 1s the turbulent kinetic energy. Equation
W (2.3.3) correlates the experimental data extremely well. No modeling is
. needed for the other components of the Reynolds stress. We shall there-
'Sk fore adopt this as our model for the fully-developed state.
.\.‘

:: In the readjustment region, we shall assume that ulu2 can be
:f’ .represented by a simple blend of the initial and final states:

f.
: = =Ue . 04
4] uu, 0.32 A K (2.3.4)
f where A 18 the readjustment parameter utilized to model the change of
| o3

physics. It is defined to have the range 0 > A > I.

o
gs‘ In line with the philosophy of simplicity expounded in the intro-
'1
g' duction, we shall assume the readjustment parameter obeys a first-order
gﬁ( lag equation, specifically, A 1s determined by the first-order ordi-
;{ nary differential equation:
B
{)
A
ot dx
Yo — = b Tl (l1-1) (2.3.5)
ﬁb dt s s

".

wl

- where b, 1is a dimensionless constant. This choice of lag equation
oy
ol makes the rate of change of the physics greatest for small A. This
)
%} behavior accords with observation. The solution to Eq. (2.3.5) is
(e
'e:». -bsl"st

A = l - e (2.3.6)

)
K By fitting the experimental data from Case 376A of the 1980-81 confer-
)

4 ence, it i{s found that

b = 1.5 (2.3.7)
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o |
:::: The model equation for K can be written, with the help of Eq. (2.3.4), \
ey as ‘
) dK

4 rya - . - 203.

g T 0.32 AT K - ¢ (2.3.8)

,‘\ The first term on the right hand side is the rate of production of kin-

*

' etic energy. When A = 0, the production term vanishes and Eq. (2.3.8)
N reduces to a form appropriate to isotropic flows. When A = 1, Eq.
'\
ft:" (2.3.8) models fully-developed shear flows.

R
",
,':: Following the form used in the standard K-¢ model, the ¢ model
e
equation can be written as
4 2

o de € 1
5N — = C 0.32 AT e~-C — (2.3.9)
W dt € [} e. K

) 1 2
L
- Fitting Rogallo's (1981) full simulation, we find
o C = 1.406 (2.3.10)
1:. el
'.' and
W 11
g c - — (2.3.11)

Fal
.}:‘ €, 6
-:ﬁ This value of C‘:2 has some analytical underpinning and {s favored by
’; Reynolds (1976). When A = 0, Eq. (2.3.9) reduces to the model for the
K decay of isotropic turbulence (see Reynolds (1976)), and as A {s in-
;: creased from zero, the production of dissipation term (the first term)
-

s increases.
)
_“ The Reynolds stress model, Eq. (2.3.4) and the X and ¢ equa-
;:; tions (2.3.8) and (2.3.9), together with the equation for the readjust-
n'.
ol ment parameter, Eq. (2.3.6) constitute the zonal model for homogeneous
‘A
2,’ shear flows with isotropic inftial fields. When A = 0O, the system
J‘. reduces to the model for {sotropic flow and, when )\ = [, to the fully-
-:; developed shear flow model. As A moves between zero and unity, the
"C',’ system undergoes a transition from one form to the other and allows an
Y
e adequate readjustment from one zone to the other. Results obtained with
R
this model will be given below.
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2.3.2 Homogeneous Axisymmetric Strain Flow

Again, in this flow the initial velocity field is {sotropic turbu-
lence. At time t =0 it begins to be stretched in one direction and

*

compressed equally {in the other two directions. This axisvemmetric

strain causes anisotropv; turbulence fluctuations {in the stretching
direction are reduced while those in the compression directions are
fncreased. This is a result of the vortex filaments aliguing with the
stretching direction. After the strain is applied for a sufficientlyv
lony time, the Reynnlds stress reaches a fully-developed structure.
Between the initial and asvmptoti. states, the Reynolds stress undervoes
a transition from one tvpe of structure to the other. Agafn the time

history can be Jecomposed into two zones separated by a readiustment
stage.

The strain tensor for axisymmetric strain is

n ) )
E}
< - ‘. o 0 AP PR
17 a
) -r 2
a

o= 40 dx {s the gtrain rate. The Revno.ds stress in the is.-

Jhere

¢ a
tropi. state is ziven by Fq. (703000, After the turbulence .ndergoues
axisvmmetri- <train for a1 lony period, the Revnolds <tress tensor

reaches an asvmptotic state {a shich

SRR = ‘6 - = S )K oot
: ‘ LR ir i
E}
Jhicrh shows that the component energv approaches zern {n the stretching
directinn an' Y 11 eac™ ot *he conpression directions. Again assaming
4 monatonic variatioan from the fnitial state Jdes rived by bq. O 4000

A1d the state tefined H Ha., .31, we have
,

Wheere: L “ith A= corresponding to the {nftia’ «~tate

and . | Y the Falivodeveloped State.




The behavior of A, the readjustaent parameter, {s again assumed

-
'
i -
to be described bv a {irst-order lag equation
i da .
— = b T il - ) £2.3.19)
At a a
»
!
& where b‘ {8 a constant which need not be the same as b~j of Eq.
;
(2.3.9), The solution to Eq. (J.34.15) {s
=hoTt
i a4 )
P . B i - e (2.3.16)
N
D
' Fitel{ng Rogallo's 981y vt Ssimilatiomn, we find that
’
) - 1.l AR T |
R A
With Fq.  CL30ler, the Y model eqoation s
s
1K ..
R (2.3 18
it 4
Y4 '
¢ Again Wwe ise the <tandart *orm ot rhe ’ m.del equation for this flow
4
L ¢ and arrive at
| ]
oo T - M. 203019
> 1' . 1 a L. K
iy
' However | within the philasophy 2f zonal wodeling, there is no reason why
. rhe  canstarnts need he the <ame s choxke dn o the crevions o ase. In face,
ang woere determined hy tircing ftate f‘rom Rogalls 1981 and
3 tound e
.
.
; - L SR SRR
,
and
- P20 200
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farm *he 7onal mode! or adisvmme: strgln el Again, #hen oo
' the model redines v thgr o et torh len e JRtie for oo,
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br 2.3.3 Homogeneous Plane Strain Flow
»
,,
. In thig flow, the inftially f{sotrupic flow fleld {s stretched in
'ur; one direction and compressed {n a second direction, with the third
2%
‘J di{rection being nefther stretched nor -ompressed. The fluctuations
A
c,‘ dimin{sh {n the stretching direction and increase in the compression
I direction while remaining close to 2K/'3 in the neutral direction.
AN fventuallv, the Revnolds stress approaches a fully-develonped structure.
Thus, th- two-zone concept in the time domain applies to this flow,
>
o The strain tensor for plane strain is
:,:f 0 0 0
LS
., = N - 0 R PO
o {3 b
e ] 0 r
g p
’\-:- where I‘p = dW'dz = -dV'dv {3 the strain rate. We can model the nirma:
::: Revnolds stresses (or the component energies) by
v
LA 2 K
uI , r -
) 2 €
~— = - 4 A [ TR B
. K 3 K
a +arl -
o « p =
v 2 K
/ —
A u2 5 5 I'p .
"’- —_— - - + A e e (2.3, .04)
3 K 3 3 R r K
a a -
e 1 2 p e
s
s
n',. 2
u
. 3 2 2
v — m - == (2.3..2%)
s K 3 3
~L
'f_:-', where a2, and a, are constants, and 0 < XA < 1 is the readjustment
s -
parameter. As in the abnve two flows, A is found from a first-orde:
‘ .
AR l{near ordinary Jdifferential equation:
-'.:'
- dx
0 — = b T (1l -2) (2.3, )
() de PP
with the solution
LA/
<
.\- 19
."
=
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A= 1 - e (2.3.27)

The constant bp may be different than in the other flows. Note that,

in this case, unlike the previous ones, for fixed total strain [ t,

u2 and ug vary with the dimensionless strain rate er € while wu

1
is independent of the strain rate.

o

|

(R N ]

To determine the three constants, ), a8y, and bp {n the mndel,

we used the following procedure:

|

p
l. By fitting the data of u}/K from lLee and Revnolds' (1985)

tull simulation, 1t {s found that
b - 1.1 (2.3.28)

p

2. From rapid distortion theory for plane strain, Batchelor and

Proudman (1954), both uf and ug tend to approach K for large values
of r.t when rp is large. This {s because, under these conditions,
the vortex filaments align with the stretching direction so rapidly that
the component energies i{n the other two directions each share half of

the tnta! energy 2K. This yields:

a; = 3 v2.3.29)
“}
3. Finallv, by fitting Lee and Reynolds' (1989%) data for u)/K,
the component energy 1in the compression direction, it is found that
a - 26.) (2.3.30)

With the developed normal stress functions, Egs. (2.3.23), (2.3.24), and

(2.3.25), the two model equations for K and e can be written as

K
!‘ -—
dK 4 v
N (L LS P (2330
dt p\3 K
a + al —
1 2 p ¢
and
¥
r -— 2
d 4
de ar (2o P -c 2033
de t p\3 K £, K
1 a +arl -— 2
I 2 pe

20




Fitting the full s{mulation data of Lee and Reynolds (1985), we obtain

C « 1.75 (2.3.33)

and

11
C s (2.3.34)

<9

Therefore, the zonal! model for the plane strain consists of the model
equations (2.3.31) and (2.3.72) the Reynolds normal stress functions,
Fqs. (2.3.2%), 72.3.24), and (2.3.25), and the readjustment parameter,

Eq. (2.3.27),

In summarvy, the modal constants b, Ctl' and ng for the three
zonal models developed here are tabulated as below. The constants C‘l

and

Note that the »-model equations (2.2.6), (2.3.9), (2.3.19) and (2.3.32)

in the standard K-r model are also included for comparison.

are al! written in a consistent form:

2
de Py [
— = C —_— - (" —
dt . K v K
1 2
where P o= - \QXI{ Sl, fs the production rate of turbulent kinetic
eneryy.
Tabie 2.1
Compar{son of Model Constants (lHomogenenus Flows)
SRt Siieieaih et eebe ettt -
Zonal Model
Standard . : e
k-¢ Model Homogeneous| Homogeneous —T'Hnmngenemus
Shear Axi{symmetric Plane
Flow Strain Strain
»--4----4—.-—v--4»-—w--‘-----—-<—ﬁ».--v-~-<-Q‘--—-—-4r-‘-*-‘---.---«~ e e e
Lag constant
) 1.5 lol4 Lol
i i o e T R R -+ e
c l.44 1,406 R 1.79
"
~———--——-——-----4L«~-~~----——-—---—1$ ---------------- 1;..--__.__-_.“-_ . e e e —- o
C 1.92 1.833 .93 R
» 2 L
e e et e e B e e e A e aa a4 L__-_A.._____--___. RS U ——
2]
\F‘
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.
Note that, although our models are simple, they apply strictly only to
5‘ cases 1in which one fixed type of strain {s applied to initially iso-
) tropic turbulence. More conmplex cases, such as those with initially *
;a anisotropic states or strains which vary with time may not be amenable
'; to treatment by these models. However, as our purpose is to demonstrate !
b the inadequacy of the standard K-e model and the validity of the zonal
. concept and not to develop a general model of homogeneous flows, these ‘
ﬁ; are not serious deficliencies for our purposes. Certainly, a universal ‘
: model would be valuable but, as noted earlier, it would also need to be
,j much more complicated. This is the trade-off we intended to make; we
give up hope of universality for simplicity while maintaining accuracy.
g
b4 2.4 Results and Conmparisons
o
. Nue to the nature of homogeneous flows, there is no convection or
;; diffusion of turbulence. This fact allows reduction of the model equa-
. tions from their normal partial differential equation form to a mnuch
2 simpler ordinary different{al equation form. These model equations can
- be easily solved by numerical integration. )
< The Runpe-Kutta fourth-order {ntegration scheme seems ideal for ;
{: this intecration, and i{s used In the present study. This scheme 1is of
;; “igh acc.aracy so that numerical errors are eliminated and the true per-
formance of the model can be evaluated. The three zonal models for
vy homogeneous finws described ahbove are tested. The results obtained are
:: compared with thonse predicted by the standard K-¢ model. Test cases
o are nrovided by Rogallo's (1981) and Lee and Reynolds' (1985) full simu-
* lations, and the experiments accepted for the 1980-81 Stanford Confer-
: ence ¥line et al. (1981)).
>
: 'oa.l Homogeneous Shear Flows
18
b Rogailo's Fuil Simuiation
.-- Pogalin's (1981 full siaalation of homogeneous shear flows were
;f ased tn test both the zonal mod2l and the standard X-¢  model. The
- re~ults are shown In Fizs, 2,1-2.4 for varinus shear rates and viscosi{- i
, ties, The f{inirfal turbhulence of the full simulation is unrealistic
-': fundevel oped isotropt- fle'd, square spectrum), and it takes time for
7 N
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the simulation to develop a realization of real turbulence. Therefore,
the prediction of these flows by both models was begun at the third
time-step of Rogallo's data. Also, the last data points of the full
simulations are unreliable. This 1s because the eddy sizes grow with
time, and when they approach the dimension of the box used in the
simulation, the periodic boundary conditions used by Rogallo become
i{invalid.

Reynolds stress —u,u, vs. time are plotted in Fig. (a) and dissipation

For each case, twice the kinetic energy (i.e., 2K) and

level € vs. time 1in Fig. (b). For all cases, the zonal model predic-
tions agree satisfactorily with the full simulation data. On the other
hand, the standard K-e model predictions of the three quantities all
grow too fast. The assumed functional form of the Reynolds stress for
the K-e¢ model, i.e.,

2

du
dy

d

=

[}

(@]
m|7<

is responsihle for the overprediction of the growth by the K-¢ model,
because, at the given levels of X, €, and dU/dy, this Reynolds stress

function gives

- > 0.32 K
Y14,

which makes the production rate too high and hence overpredicts all the

three quantities.

2. 1980-81 Conference Cases 376A and 376B

The zonal model and the standard K-e model were both employed to
predict the two homogeneous shear flow cases (376A, 376B) from the 1980-
81 Stanford Conference. The results are shown in Figs. 2.5 and 2.6,
respectively. The zonal model agrees quite well with the experimental

data for both cases. The standard K-¢ model underestimates K and

- uu, for case 376A and overestimates them for case 376B. The

Reynolds stress function again seems to be the source of the under/over

predictions by the K-¢ model; the predicted values of “u,u, are

conslderably smaller and greater than 0.32K for cases 376A and 376B,

respectively. This violates the established result that - uu, =

r's
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0.32K. 1In the zonal model for the shear flows, however, —uu, = 0.32K

1s explicitly built into the Reynolds stress function.

2.4.2 Homogeneous Axisymmetric Strain Flows

Eight cases of Rogallo's (1981) full simulations of homogeneous
axisymmetric strain flows with various strain rates and two different
viscosities were used for testing the 2zonal model and the standard
K-¢ model. Figures 2.7-2.14 compare the predictions of both models
with the full simulation. For each case, Fig. (a) shows the total and
component energies of the turbulence vs. time and (b) the dissipation
rate. The zonal model performs Guite well for the whole range of strain
rates. For the low-strain-rate cases, the standard K-e model accu-
rately predicts K but not the component energies. The dissipation
level is also incorrect since it must compensate for the erroneous pro-
duction rate. When the strain rate is high, the K-e model can no
longer provide accurate prediction of K. It is obvious that the
assumed Reynolds stress function in the K-e& model is 1incorrect for

these flows.

No appropriate experiment for this type of flows is available from

the 1980-81 Stanford Conference to test the zonal and K-¢ models.

2.4.3 Homogeneous Plane Strain Flows

1. Lee and Reynolds' Full Simulation

Lee and Reynolds' (1985) simulation provides six cases of plane
strain flows with the straln rate varying from 0.65 sec"1 to 100 sec_l.
The zonal and standard K-¢ models are tested against these data. The
results of total and component energies and dissipation vs. time are
presented in Figs. 2.15~2,20. The zonal model predicts the flows accu-
rately over the entire range of strain rates sinulated. The K-¢
model, however, does not perform well in any case, especlally for high
strain rates; the component energies are all seriously in error. When

strain rate 1is high, the smallest component energy (in the stretching

direction) even becomes negative, which is physically impossible. This

again suggests that the K-¢ model Reynolds stress function is not .
837 suitable for plane straining flows and further reinforces the remark on
Pxf "contamination” in the introduction.
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O 2. 1980-81 Conference Cases 374A and 3748

o . Two plane strain flows, cases 374A and 374B, in 1980-81 Stanford

'A" Conference were used to further test the zonal and K-¢ models. The

:E: . results of the total and component energies vs. time are shown in Figs.

?,-, 2.21 and 2.22 for these two cases. Contrary to the previous flcws, the
.Mf’ K-¢ model performs slightly better than the zonal model for case 374A
_' and about equally well as the zonal model for case 374B. One possible
{:{: explanation 1is that the initial conditions of experiments are aniso-
_}‘. tropic which makes the initial production rate not equal to zero while
. the zonal model starts with isotropic flow field and zero initial pro-

_: duction rate. Furthermore, a more careful study of the experimental
::‘. data indicates that the Reynolds stress structure In the experiments is

j;' much different from that in Lee and Reynolds' simulation.

i.-_? No model can simulate discrepant results for a single physical
::.;; situation. The problem in this case is that the experimental data and
~2_" the full simulation are in disagreement. It is hard to explain this
,'.'.« ‘ difference. This clearly needs more attention. Until this problem is
e resolved, these data cannot provide a reliable check on model perfor-
:’% mance. We used the full simulations to set the model and are therefore

‘E.: unable to predict the experimental data. The reverse could have been
"-’ the case, i.e., if we used the experimental data to set the model, we
‘\). would fail to predict the full simulation results.

AN

\";:.

__::: 2.5 Conclusions of the Test

: The study of zonal models for homogeneous flows, which was meant to
_ test the zonal modeling concept and to lay the ground-work for models of

}l”:: more complex flows, has proven a success. The results presented above
‘i'::'j show that zonal models perform far better than the standard K-e¢ model
! in all usable cases. The improvement 1s largely due to zonal models
,., being able to avoid 'contamination" of the flow physics; of course, the
E:.; . extra degrees of freedom which the zonal concept offers make it much
:E': easler to obtain accurate fits to the data. A good model should reflect

'.} the physics; the Reynolds stress representation is the tool for accomp-

::"'.'.? lishing this. The physics is not universal. This is reflected by the
::::'. inability of the Reynolds stress function in the standard K-¢ model to
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fit the range of flows considered. This is the major drawback of the
standard K-e model, at least for these flows. With the zonal approach,
on the other hand, we can incorporate more physics of each zone into the
model by constructing a Reynolds stress function which represents much
of the physics of that zone. Although this requires more work and a
careful study of each flow zone, 1t can be done once and for all. The
gains obtained by whis work are obvious. As can be seen in this chap-
ter, the Reynolds stress functions are different for the three homogen-
eous flows and the ability to incorporate this is the strength of the

zonal approach.

Furthermore, the zonal model has the ability to adjust from one
zone to another via a blending parameter governed by a lag equation.
The addition of a lag equation provides one more degree of freedon.
Physically, the lag equation allows adjustment of the physics as the
flow changes 1its structure. This is one of the most attractive features
of zonal models. In this connection, {t is worth note that the various
K- models, including the standard model, as presented in the 1980-81
Stanford Conference, all use constants set for equilibrium situations in
homogeneous flows, boundary layers, and free shear layers. As a result,
all these methods perform badly for situations where flows are far from
equilibrium and in the readjusting regions that carry the flows back
toward equilibriume. An example is the boundary layer downstream of a
reattaching free shear layer, as occurs in the backward-facing step.
Some additional degree of freedom in the models is therefore apparently
necessary for K-g type models if they are to provide good prediction
for nonequilibrium and readjusting flows. The zonal approach as used in
this study supplies the necessary degrees of freedom; thus the use of a
"readjustment model" is not merely an artifice that allows fitting, but

is rather a necessary step Iin modeling the physics accurately.

In summary, the three zonal models in this chapter were constructed
systematically. They all consist of a specific Reynolds stress func-
tion, a first-order lag equation, and two model equations which have the
format of the K-e¢ model equations. The results suggest a promising

future for the zonal modeling concept.
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Chapter III

A REVIEW OF FREE SHEAR FLOW EXPERIMENTS

3.1 Preliminary Remarks

In this chapter, turbulent free shear flow measurements are re-
viewed. Numerous free shear flow experiments have been performed. How-
ever, the agreement among experiments on the same flow is rather poor in
some cases, particularly with respect to the turbulence data. Since
these data are to be used in constructing models and tuning model con-
stants, it {s essential to justify the available data and to identify

which are reliable.

There are some reviews of free—-shear-flow experiments available —--
for example, Newman (1966) and Harsha (1971). However, they are limited
to earlier data whose accuracy is not known. Moreover, they deal mostly
with mean-flow quantities; very few turbulence quantities were examined.
Rodi (1972) made a more thorough study of free-shear-flow experiments
for his modeling work. He reviewed both mean and turbulence quantities
for a wide range of flows. In a later publication, Rodi (1975) provided
another detailed but similar survey. However, it has been more than a
decade since Rodi's last review. Many more data have recently become
available. Furthermore, Rodi's reviews contain no experiment that
covers both the near and far fields or a wide range of the ratio of
veloclity difference to free-stream velocity. The detalls of turbulence
evolution in this whole range are not clear. Such information, however,
is very important in turbulence modeling; this provides the motivation

of the present review.

Experiments on five basic free shear flows are reviewed in this
chapter. These flows are plane jets, plane wakes and mixing layers,
axisymmetric jets, and axisymmetric wakes. '"Pure" jets (jets issuing
into stagnant surroundings) and co-flowing jets are considered sepa-

rately.

In addition to global parameters, such as the spreading rate and

the centerline velocity decay rate, we shall consider the profiles of

the streamwise mean velocity, turbulent kinetic energy, and turbulent
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shear stress in this chapter. Since the turbulent shear stress is the

7
s 2”&

most important Reynolds stress for thin shear layers, it will receive

particular attention. (Recall that it determines the model constant .

‘: Cu 1in the K-e¢ model.)

j In this survey, power laws serve to correlate the data. The momen-
b tum integral equation provides a relationship between the characteristic
. velocity and the width of the layer and is used as an internal consis-
?' tency check. Moreover, given the streamwise velocity profile, the
< transverse velocity and turbulent shear stress can be found from the
h continuity and momentum equations. This provides a check on the shear

stress measurements. There 1is no easy way, however, to validate the

Yy
wla Al A

turbulent kinetic energy data except by comparing the profiles from
different experiments. The rate of dissipation of turbulent kinetic

- (2 8

2 energy is rarely measured. Even if measured and reported, the uncer-

,% tainties are large and difficult to estimate. Therefore, the dissi-
. pation rate is not examined here.

;- 3.2 Plane Free Shear Flows

3 3.2.1 Jets

Ca

; Many experiments have been performed on plane jets. We shall con-
A sider some of the well-recognized ones. Heskestad (1965) and Gutmark

, and Wygnanski (1976) measured jets issuing into stagnant surroundings
) ("pure" jets). Bradbury (1965), 1in order to reduce the measurement

}é errors near the edge of the jet, had the jet exhaust into a slow—-moving
' airstream. Although this co-flowing Jet departs only slightly from the

o

self-preserving "pure" jet, its spreading rate is considerably lower

-

than that of a '"pure" jet. Bradbury and Riley (1967) carried out co-
flowing jet experiments with various ratios of free stream velocity to

jet exhaust velocity.

An empirical formula for the streamwise velocity profile (Bradbury,

1965) fits the data for all velocity ratios quite well:

TTICOR

e,
13

U 2 4
T— = f() = exp [—0.67a9n (1 + 0.0269n )] (3.2.1)
1m

where
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U, = U-U, (3.2.2)
. is the velocity excess, and
n = El—- (3.2.3)
1/2
U, 18 the free stream velocity, U, ~ is the maximum value of U,

(which occurs at the centerline), y {s the distance from the center-
line, and 61/2 is the half-velocity width (the y value at which U =
Uin/2)- In their "pure” jet experiments, Heskestad and Gutmark and
Wygnanski reported profiles that have a slightly less rapid approach to
the free stream velocity. However, the differences are too small to be
significant. Furthermore, Eq. (3.2.1) also represents the self-
preserving profiles of axisymmetric jets (Bradbury, 1967), and wakes
(Townsend, 1956) with only small discrepancies. We shall therefore use

this formula for all the jet velocity profiles.

Co-flowing jets have significantly different characteristics than
"pure" jets although the "pure" jet is a limiting case of the co-flowing

jet. We shall examine co-flowing jets separately.

Pure Jets

Jets 1ssuing into still surroundings become self-similar after the
potential core disappears. The mean velocity reaches self-similarity
much earlier than the turbulence quantities. How fast this takes place
depends on the nozzle condition. In the self-similar region, the jet

width and the centerline velocity obey power laws. The virtual origin

differs from experiment to experiment. Heskestad and Gutmark and Wyg-

nanski suggested that

alal e

3 8,y
¢ —1° = 0,108 % 0.003 (3.2.4)
dx
] |
v \
: . and
- 2
- d(3/u]) |
* ———"" « 0.16 (3.2.5) ‘
dx
? where
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4 J = / vldy (3.2.6)

. -

;;;‘;;k J 1s the momentum flux and is the invariant for a pure jet by virtue of

::' the momentum theorem. Equations (3.2.4) and (3.2.5) are also in excel-

E:? lent agreement with the review of experiments by Rodi (1972).

o

e The turbulent kinetic energy and shear stress profiles of various

,:; experiments are compared in Figs. 3.1 and 3.2 respectively. The agree-

"ﬂ ment {8 within the uncertainty of the data. Among them, Bradbury's

“:: (1965) data are particularly favored by Rodi (1972). The shear stress
can be obtained by solving continuity and momentum equations assuming

.': the correctness of Eqs. (3.2.1) and (3.2.4); the result {s also shown in

"'E Fig. 3.2. It agrees well with Bradbury's and Gutmark and Wygnanski's

:" data. Heskestad's data, on the other hand, show a 152 lower peak value

i of the shear stress profile; these data are not consistent with the

-._\. values calculated using his own velocity profile (see Fig. 29 in

*-:; Heskestad, 1965). We conclude that Heskestad's data are less reliable

: 'j than those of Bradbury or Gutmark and Wygnanski.

[‘ Co-Flowing Jets

S

‘:; A jet issuing into a uniformly moving stream cannot be self-similar

! because Uo/Ulm varies with x (Townsend, 1956); therefore we are

.:i’ interested in the streamwise flow development. To our knowledge, only

It Bradbury and Riley (1967) reported co-flowing jet measurements cover-

-.j ing a wide range of velocity ratios. They showed, using dimensional

"__ arguments, that the co-flowing jJet approaches the behavior of a self-

:“( preserving "pure" jet as (x-xo)/e + 0 and a self-preserving wake as

{,\ (x-xo)/e + =, They verified these results experimentally. Here, x,

*Q is the apparent origin of the flow and is the only influence the nozzle

'.‘ conditions have on the flow and 8 13 the momentum thickness of the jet

A- defined as

o -

f; o = / 3_. (3_; - 1) dy (3.2.7)

x -

e The limiting behaviors were also suggested by Townsend (1956).

)
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Bradbury and Riley reported that the data can be correlated in two

ltmiting cases as follows. 1In the limit (x-x_ )/8 + O,

8 X - x
1/2 o
— = . —_— 3.2.8
n 0.109 —; ( a)
and U. 2 - Xo
(U—“) = 0.16 ——— (3.2.8b)
lm
In the limit (x-xo)/e > ®,
2
§ X - X
l/Z) 0
“Qa - . - » I9
( 8 0.1 —5 (3.2.9a)
and
u, 2 x =X
(U——) = 0.4] —— (3.2.9b)
lm

Note that Eqs. (3.2.8a) and (3.2.8b) reduce to Eqs. (3.2.4) and (3.2.5)
as U, * 0; this shows that, in the early stage, a co-flowing jet
behaves similarly to a "pure" jet. In addition, Bradbury and Riley
provided the width and centerline velocity excess versus downstream dis-
tance in a dimensionless form that collapses all the co-flowing jet data

except for the initial developing stage, cf., Figs. 3.3 and 3.4.

With the mean velocity profile represented by Eq. (3.2.1), the mo-

mentum integral equation, Eq. (3.2.7), becomes

§ U § U
1/2 lm 1/2 "Im -
8 (U, ) 12 + —3- ﬁ:— Il 0.5 (3.2.10)

where

) -f £%dn (3.2.11)
[o]

Equations (3.2.10) and (3.2.11) provide a relationship between the jet
width and the centerline velocity excess. In the limit (x-x,)/6 + O
(self-preserving "pure" jet), the first term on the left-hand-side of
Eq. (3.2.10) dominates. On the other hand, in the limit (x-x,)/8 + =
(self-preserving wake), the second term domlnates. Therefore, Eq.

(3.2.10) becomes
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%, 5 (U. ) I2 0.5 (3.2.12)
‘f. and

- s u

. 1/2 " lm
.' —e——U- Il 0.5 (3.2.13)
Bb respectively, in the two limits.
.

A Equations (3.2.8) and (3.2.9) satisfy Eqs. (3.2.12) and (3.2.13),
) respectively, within 22, providing a consistency check. Furthermore,
co-flowing jet data given by Bradbury and Riley also agree with

L Eq. (3.2.10) within 2%.

*,

2 Neither turbulent kinetic energy nor shear stress profiles were
e reported by Bradbury and Riley. However, the eddy Reynolds number
" defined by

N

~

A

- 2
- au)
= dy
][ (3y

N
P4

- el 1‘
RT 61/2Uln = U (3.2.14)
. (-u'™Vv7) 3y dy
g o
w .
-h_'
JE was tabulated. The only conclusion that can be drawn from the eddy
* Reynolds number data is that, when going downstream in a co-flowing jet,
</
o the shear stress level (normalized by Ufm) increases to an asymptotic
}ﬂ upper limit equivalent to far-field wake flows. This indicates that a
.Q§ far-field co—-flowing jet behaves similarly to a far-field wake. These
g
x results will help us clarify the controlling physical parameters in free
oy shear flows.
>
.
e
.:. 3.2.2 Wakes
hy
Plane wake experiments 1Include those behind flat plates, those
St behind circular cylinders, and some Iintermediate cases. Although the
%
‘A near fields of wake flows depend heavily on the initial conditions,
oS f.e., the shape of the body that generates the wake and whether or not
: there {s vortex shedding, the far fields display a universal asymptotic
\:
‘\: self-similar state. Townsend (1949) measured a wake behind a circular
a0
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‘ifz cylinder and claimed that self~gimilarity 1is achieved 500 diameters

'f:; downstream of the cylinder. The centerline velocity deficit at the last
) ’ station was about 3% of the free stream velocity. A complete set of

:} turbulence measurements was reported. However, Townsend's data were

ES taken only in the far-field asymptotic self-similar region. They do

{; not, therefore, provide any information on the evolution of the flow

into the asymptotic state. Chevray and Kovasznay (1969), Andreopoulos

vﬂi: and Bradshaw (1980), and Ramaprian, Patel and Sastry (1982) investigated
;El: the wake of a flat plate. Their measurements were made in the near

:g. field; the centerline velocity deficit at the last measurement station

. is at least 20% of the free stream velocity. An analysis of the momen-
fﬂu' tum integral equation similar to Eq. (3.2.10) and examining the size of
éis, the terms show that these flows are not near the far wake asymptote.
o
'$§: More recently, Pot (1979) studied the flat plate wake flow from the
i 3 trailing edge of the plate to a location sufficiently far downstream

;ﬁ that the far wake asymptote 1is clearly reached. He reported all the

i: turbulence data necessary for the present study. Pot's data set and
{?: that of Townsend will be examined here.
\’: The far-field velocity profiles of Townsend and Pot are well ap-
e proximated by Eq. (3.2.1) when U, is taken to be the velocity
\’3 defi{cit U, - U. Velocity profiles at the last few stations of Chevray

"V and Kovasznay, Andreopoulos and Bradshaw, and Ramaprian, Patel and
"{, Sastry all agree with this empirical formula although their experiments :
E;; were not carried far enough downstream to fully reach the asymptotic :

state. This indicates that the mean flow quantities settle down to a

self-similar stage much earlier than the turbulence quantities, as has

been found in a wide variety of other flows.

Pot's far-field data suggest

'.-"z“.-l‘af'a\ s -
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U” X - X
(-——) = 0.43 —2 (3.2.16)
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These equations agree with (3.2.9a) and (3.2.9b) which describe the
behavior of the far-field co-flowing jet. This again confirms that far-
field wakes and far—-field co-flowing jets have common characteristics.

A spreading parameter defined by

(3.2.17)

is 0.103 according to Eqs. (3.2.15) and (3.2.16), compared to a value of
0.098 reported by Rodi (1972) from Townsend's data. The 5% difference
is within the uncertainty of the data.

The counterpart of Eq. (3.2.10) for wake flow is

2
5 U 8,0 U

_%12 (C1m 1/2 “lm -

—= (Ua,) L+% 5. h 0.5 (3.2.18)

Pot's wake width and centerline velocity deficit data were checked
against Eq. (3.2.18). The agreement is excellent (within 3%) except at
the first two stations where the velocity profiles are not close to the

self-similar form.

It is clear from Pot's data that both the turbulent kinetic energy
and shear stress (both normalized by Ufm) increase with downstream
distance to the asymptotic far wake values. Figure 3.5 shows the maxi-
mum shear stress and maximum kinetic energy in the layer as functions of
downstream distance. The far-field shear stress level is between 0.05
and 0.053, which agrees well with Townsend's value (0,051). Moreover,
using 0.103 for the spreading parameter defined by Eq. (3.2.17) and the
velocity profile, Eq. (3.2.1), the shear stress can be derived from the
momentum equation. The resulting maximum shear stress is about 0.053
which agrees with the data from both sources. The far—-field kinetic
energy level 1is about 0.18 in Pot's data and less than 0.14 in Town-—
send's data. It {s hard to justify the discrepancy between these two
data sets. However, we tend to believe Pot's data, for the following
reasons. Firstly, Pot's experiment is much more recent, and his equip-
ment is more modern. Since much has been learned about hot-wire error
control during the intervening period, he should get more reliable

results. Secondly, all known plane shear flows have IET;T]/k = 0.3 1in
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the equilibrium region. In Townsend's data this ratio become 0.5, while
for Pot's data it remains at about O0.3. Thirdly, similar experiments
performed by Uberol and Freymuth (1969) and Thomas (1973) suggested that

2
Townsend's values of y' are too small.

3.2.3 Mixing Layers

The turbulent plane mixing layer 1{s one of the simplest shear
flows. However, complete understanding of the structure of this flow is
still far from complete although the general features of the flow were
estahlished by Liepmann and Laufer (1947). They made hot wire mea-
surements {n a zero-veloclity-ratio mixing layer. Their mean velocity
and turbulence measurements indicated a very rapid approach to self-
similarity. This was regarded as the most reliable and extensive source
of mixing layer data for more than two decades. Wygnanski and Fiedler
(1970), Patel (1973), and Champagne, Pao and Wygnanski (1976) studied
the same flow to obtain higher-order statistical characteristics of the
turbulence. The agreement among these experiments {s rather poor as

will be noted later.

Two-stream mixing layers with finite velocity ratios have not re-
ceived as much attention. Sabin (1965) measured mean velocity profiles
and correlated the spreading parameter for various velocity ratios with
a simple function. Miles and Shih (1968) investigated the flow with a
wide range of velocity ratlos. However, only the spreading parameter as
a function of velocity ratio was presented. Spencer and Jones (1971)
and Yule (1971) each measured the layers at two different velocity
ratios. Both reported detalled velocity profiles and turbulence quan-

tities. The agreement is again poor.

Mixing layers are known to be very sensitive to the initial condi-
tions. For example, placing a trip wire upstream on the splitter plate
can alter the spreading rate by more than 20% (Liepmann and Laufer, 1947
and Wygnanski and Fiedler, 1970). They are also sensitive to the bound-
ary conditions imposed. In most cases, mixing layer experiments are
conducted in wind tunnels with walls both above and below the flow.
This affects the secondary flow speed, the entralinment into the mixing

layer and, consequently, the turbulence structure and the spreading
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\k; rate. Variations {in {initfal and boundary conditions are probably
k; responsible for the disagreement awmong experimental data.

‘ Figures 3.6 compares velocity profiles for mixing layers with zero ’
‘f. and nonzero velocity ratios. In this figure, y 1is normalized by a
;4 characteristic flow width § = Yo.9 ~ Yo.1° Here, Yy 18 defined as
' the location where U = U_2 + x(Un1 - U_z). There i{s considerable scat-

ter of the data near the edges, especially at the zero velocity edge in
»4; Fig. 3.6. According to Rodi (1975), however, this (s the best way to
::t correlate the data. If the data are plotted versus y/x, as is often
,:{ done in the literature, the agreement {8 worse because the spreading
rate d&/dx varies considerably. The scatter Iindicates the dificulties

;ﬁ in measuring accurately in these regions and perhaps reflects the sensi-
Z: tivity of the layer to the nearness of the bhoundary walls.
SAN

s Figure 3.7 shows spreading rates, dL/dx, as a function of the
:>; velocity ratfo (R = UQZ/UQI). Note that the layer width L 1in this
;?: flgure {s defined as

S

3 Lomy -y

' /0.9 /0.1

;f Some of the data were taken from Rodi (1975). The line {n the figure
'ﬁf represents the spreading rate given by the Evaluation Committee of 1980-
.$' 81 Stanford Conference. When the extreme values are discarded, the line
,) seems a reasonable average representation for the spreading rate,
ﬁ? although 1t i{s slightly lower than the average at high velocity ratios.
1

x? The profiles of turbulent kinetic energy measured in various exper-
hr iments are shown in Fig. 3.8(a) and (b) for zero and two finite velocity
o ratios (R = 0.3 and 0.61). The agreement is poor except for the
) shape of the profiles.

A
W The turbulent shear stress profiles are shown in Fig. 3.9(a) and
' (b) for zero and two finite velocity ratios (R = 0.3 and Nn.61),
:”;: regspectively. Although the agreement 1s not good, it appears that the
\$: nondimensional shear stress {increases as the velocity ratio is in-
E:ﬁ creased.

’ There 18 no way to justify the disagreement because of the dif- )
;h: ferent experimental setups 1in different experiments and the nature of
o .
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.
:»\- sensitivity of the flow as explained above. Until this issue is com-
f pletely resolved, the only quantity that can be used as a guide for
» * modeling seems to be the average spreading rate given by 1980-81
. Stanford Conference.
N
:s' 3.2.4 Shear Stress-Kinetic Energy Relationship
R The value of |'u_'7|/K was examined for all plane shear flows.
:‘:'; For jets and wakes, this quantity increases linearly from zero at the
\E centerline to a maximum of about 0.3 and then drops back to zero.
g Townsend's (1949) wake flow is an exception; it shows a maximum value
. much higher than 0.3. However, it is believed that his measurements of
:: kinetic energy are too low as explained above. For mixing layers, all
:_h the available data show that IWHK hags a value of about 0.3 in the
' center and decreases to zero at both edges.
A
-
:’.: 3.3 Axisymmetric Free Shear Flows
';E: 3.3.1 Jets
The mean flow field of axisymmetric jets have been studied by nu-
‘-j merous researchers (for example, Hinze, 1959), but the turbulence field
::: by only a few. Most of the literature on this flow appeared more than
:CE three decades ago when measuring techniques were not very advanced.
:) More recent measurements were made by Wygnanski and Fiedler (1969) and
':.' Rodi (1972) for self-preserving pure jets and by Maczynski (1962),
“"_':; Reichardt (1965), and Antonia and Bilger (1973) for co-flowing jets. It
,(:: is again easier to discuss them separately.
'- Pure Jets
o -
> It was suggested by Bradbury (1967) that Eq. (3.2.1) can also ap-
’.: proximate the velocity profiles of axisymmetric jets. However, the pure
RV jet velocity profiles of both Wygnanski and Fiedler (1969) and Rodi
:-E (1972) approach zero more slowly than the formula suggests. A similar
: trend was found in plane jet cases. However, the uncertainty of the
1,4 measurements is large near the edge (especially when the edge has zero
" velocity). Consequently, this empirical formula suffices as a first
2 order approximation.
;;
ol
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The spreading rates of the pure Jets from both Wygnanski and
Fiedler (1969) and Rodi (1972) are

48, /2

e = 0,087 £ 0.002 (3.3.1)

This value agrees with the spreading rate reported by Newman (1967),

dél/z/dx = 0.086, an average over earlier experiments.

The centerline velocity decay rate, according to Vygnanski and
Fliedler, is

d(u,/u, )
2. o~ 0.2
d(x/D)

in self-preserving region, where Uj; is the jet nozzle exhaust veloc-

ity. This converts into

d(J”z/u1 )
m
—_— s 0.131 (3.3.2)
dx
where
2
J = 21rf Urdr (3.3.3)
o

J 1is the momentum flux; it is the invariant for the jet.

The turbulent kinetic energy and shear stress profiles of Wygnanski
and Fiedler and Rodi are presented in Figs. 3.10 and 3.11, respectively.
The agreement 1is reasonable. The maximum non-dimensional shear stress
of Wygnanski and Fiedler is about 102 less than Rodi's value. The lat-~
ter is closer to the value (0.0184) calculated from the continuity and

momentum equations.

Figure 3.12 sghows the ratio |u'v'|/K versus the transverse

distance for axisymmetric and plane pure jets. The maximum value of

[u'v'|/K for the axisymmetric cases is about 0.23 vs. 0.3 for the

‘j} plane cases. We speculate that this is due to lateral vortex stretching
S;ds which appears only in axisymmetric flows.
o
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Co-Flowing Jets

The velocity profiles measured by Antonia and Bilger (1973) agree
with Eq. (3.2.1) satisfactorily, as reported by Bradbury (1967). Rodi
(1975) also claims that the shape of velocity profile is approximately
the same for both plane and axisymmetric jets, and that it does not vary

significantly with either velocity ratio or downstream distance.

Before discussing the spreading and centerline velocity, it is wise
to examine the constraint connecting them. With the momentum thickness

for axisymmetric jets defined by

o 1/2 i
U U i
8 = an T (-U—- l) rdr (3.3.4) |
w -] |
o
and the help of Eq. (3.2.1), we can write
2 2 2
(61/2 (H_l_tg ! + 61/2) Ulm 1! = l_ (3 3 5)
9 U, 2 9 U, 1 2n *oe
where
1! =f £™ndn (3.3.6)
_ o
In the case of a pure jet, Eq. (3.3.5) reduces to
2
U
2 Im ., _ 1
S22 7 2 T (3.3.7)

The pure jet described by Eqs. (3.3.1) and (3.3.2) satisfies Eq. (3.3.7)
within 47%.

The spreading and velocity decay rates in Antonia and Bilger's
experiment show large uncertainty and scatter. Furthermore, the data do
not display internal consistency. Rodi (1975) managed to collapse the
jet width, Fig. 3.13, and centerline velocity data, Fig. 3.14, of three
experiments for a wide range of velocity ratlos. At larger values of
x/8, however, the measured jet widths and centerline velocities do not
satisfy Eq. (3.3.5). Since the measurements of centerline velocity are
probably more accurate than those of the jet width, a jet width computed
from Eq. (3.3.5) with the measured centerline velocity given 1is also
shown in Fig. 3.13,
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No measurements of turbulent kinetic energy or shear stress were
taken by Maczynski (1962) or Reichardt (1965). Antonia and Bilger's
(1973) data show that both the scaled kineti: energy and shear stress
increase with downstream distance In their measuring range. The largest
value of |GT;T|/Ui they recorded is about three times that found in
pure jets. Althoug;ltheir data must be considered unreliable because of
the scatter, the increasing trend of both the non-dimensional kinetic
energy and shear stress in co—flowing jets seems to be established.
This trend was also found in the plane cases. Indeed, the shear stress
obtained from the continuity and momentum equations and the assumed

velocity profile confirms this.

With the assumption that the velocity fluctuations in the radial
direction are about the same in magnitude as those in the streanmwise
direction, Antonia and Bilger's turbulence data show a maximum value of

I:T;TI/K about 0.3. Since their data were taken some distance from
the nozzle, where the spreading rate Is considerably lower than the pure
jet spreading rate, this leads us to believe that the effect of vortex
stretching 1is significant only when the jet spreads rapidly. We shall

use this fact in generalizing our parameterization of free shear flows.

3.3.2 Wakes

Axisymmetric wakes are known to be very sensitive to the shape of
the wake-generating body (Rodi, 1975). Unless the body is very slender
it usually creates vortices in its wake. Different body shapes generate
vortices of different strengths., This in turn provides different ini-~
tial conditions for the various wakes and it takes a very long distance
for the flow to "forget" the effects of the initial conditions. Al-
though asymptotic far-field behavior exists, it usually occurs very far

downstream from the body.

Many axisymmetric wakes have been studied (e.g., Carmody, 1964;
Chevray, 1968; and Uberoi and Freymuth, 1970). Most of them are gen-
erated by blunt bodies, e.g., cones, spheres or disks. Unfortunately,
they were not studied for a long downstream distance because the re-
searchers were Interested mainly in the vortex shedding phenomenon.

Only Chevray (1968) measured a wake flow that was extended close to the
40
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self-preserving asymptote. His wake-generating body was a relatively
slender 6:1 spheroid and the effect of vortex shedding was reduced. A

complete set of mean flow and turbulence quantities was reported.

Chavray's self-similar velocity profiles are well approximated by
Eq. (3.2.1). The centerline velocity deficit and the wake width both
approach asymptotic power laws. Moreover, the mean flow quantities
satisfy (to within 3%) the constraint
2 2 2

5 U 5 U
_ 1/2) ( lm) , (1/2) m ., _ 1
( 5 v/ 27\ TS S = (3.3.8)

which can be derived in manner of Eq. (3.3.5). According to Rodi

(1975), the far-wake spreading parameter defined by Eq. (3.2.17) for
this flow is about 0.105, the same as that of Reichardt's (1965) asymp-
totic co-flowing jet. This confirms that, as in plane cases, an axi-
symmetric co-flowing jet behaves similarly to an axisymmetric wake 1in

the far field.

The turbulence field of Chevray's wake exhibits a trend similar to
that seen in co-flowing jets. The nondimensional kinetic energy and
shear stress Increase to asymptoti{c values as the flow develops. Fig.
3.15 shows the maximum values of kinetic energy and shear stress in the

layer as functions of downstream distance.

3.4 Conclusiggi

Experiments on five basic free shear flows were reviewed in this
chapter, including both near and far fields, the approach to asymptotic
behavior, and co-flowing cases. Whenever possible, the data were
checked hy analytical relationships for consistency. Good data were
identified for each flow. For those cases where scatter and uncertainty
were large, trends were established; this will help us, at least quali-
tatively, to understand the physics. It appears that the measurements
become difficult when the velocity or velocity difference is small, for
example, near the edges of shear layers. This is probably due to the
fact that the uncertainty of the data is larger than the measured val-

11es.
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In later chapters, we shall use the data reviewed in this chpater
to construct models and tune the model constants. The conclusions about
limiting forms and their relations to each other through nondimensional .
. correlations established in this chapter will allow us to create a
single model for free shear flows containing two nondimensional param- .

A eters and a simple, uniform method for treating readjustment regions.
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NUMERICAL METHOD

g

{ L]

Rres 4,1 Introduction

oo

-;ﬁ- As a result of the thin shear-layer approximation, the governing
"

'\ equations for both the mean and turbulence fields for free shear flows
A are parabolic. They are:

i

o8 WLty < o (4.1.1)
by 3x 13y o
‘!'

K\ TR v LU S i(\:+\J)-?--Il (4.1.2)
R ax ay Ty |7 t’ 3y “
N Y

e 3K 3K au \2 1 3 (1% 3k

-(_! U-a—£+ V—a— = \)t (a—) - € +—i-—a——(y ——-—) (4.1.3)
= y y y y k %
o ‘
D" . an
, I$

h 2 2 v

3¢ 3¢ € (au) e, 1 3 (1 t ae)

l—=—+V—= = ¢C —Zv |+—}) -C —+—7—=|y — = (4.1.4)
::: . ax 3y € K "t \ 3y €y K yi y ae y

:;T where v, = CuKZ/e is the eddy viscosity. In these equations, 1 = 0
N is for plane flows and { = 1 for axisymmetric flows. Note that the

K-¢ model equations are used in Eqs. (4.1.3) and (4.1.4) for the turbu-

lence field. The standard method of solving parabolic equations is to
march the solution downstream in the predominant flow direction. This
is because informaticn propagates in the flow direction and what happens
at any location has no effect upstream. This behavior is a consequence
of the characteristics of these equations. 1In the flow direction, the
domain is open and only an initial upstream condition is needed. Two

boundary conditions are required in the transverse direction.

The Keller Box method (see, for example, Cebeci and Bradshaw, 1977)
is a popular nethod for solving parabolic equations. This method
approximates all variables by their values at points on a rectangular
grid and replaces the differential equations by finite difference
equations that are averaged over each cell (or box). Figure 4.1(a)

shows a typical grid box used In this method. However, experience shows
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that this method tends to give oscillatory solutions in the marching
direction if the initial condition 1is not perfect. If the initial con-
dition is too high, the seclution at the first step tends to be low so .
that the average at the center {8 correct; similarly, the solution at
the second step is high. The oscillation continues downstream although
its magnitude reduces. Another drawback of this method is its require-
ment of a V velocity component initial condition. This component is
rarely measured in experiments and has to be estimated from the continu-

ity equation.

This provides the motivatlion for the development of a better numer-
ical scheme for solving the governing equations for free shear flows.
In this chapter, a modified Keller Box method that uses a staggered grid
system is developed. A transformation of the governing equations equiv-
alent to using a grid expanding with the growth of the layer is first
performed. An averaging technique at the flirst step of the solution
procedure eliminates oscillations. Variable step sizes determined by
the growth of the layer are used. Finally, the method is tested for
some standard cases. The method of generation of initial conditions is

described.

4.2 Description of the Numerical Scheme

4.2.1 Transformation of the Governing Equations

To account for the growth of the layer, the governing equations are

transformed from the (x,y) physical coordinates to (§,n) variables

where
E = X (4.2.1)
and
= L 2.
"R (4.2.2)

Here, E(x) 1s a constant proportional to the thickness of the shear
layer. Thus, 1in the transformed coordinates, the layer thickness (s
constant and the same number of grid points can be used at each down-

gtream locatlinn.
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After transformation, the governing equations, Egqs. (4.1.1) to

(4.1.4) become

U n dE aU 1 19 i
3U _ndE AU E_:._n[(gn) v] -0 (4.2.3)

3L E dx an  E an (En)i an an
K n dE 3K . V 3K 1 3u,2
1 & RS A L - ~ - +
U3t " Vgdaxam T Ean ve (Ean) "¢ , )
4.2.5
1 13 [: 1 Ve 1 ag]
skl e E g
1E E
(En) an K n
and
2
3¢e n dE 3e |V 3e £ 13U ,
V3¢ E dx an E 3n Cel K Yt (5 an) i
2 v
€ 1 1 3 i ¢t 1 3¢
Ce K + "1 E an (En) g E 3n
2 (En) € (6.2.6)

Before solving Eqs. (4.2.3) to (4.2.6), E and dE/dx must be speci-

fied. They are determined, in a discrete manner, as follows:
E = El = [.0 ([‘-207)

and

(61/2)n

where the subscript represents the step number {n the streamwise direc-

(4.2.8)

tion. AdF’dx can be calculated once L {8 determined. The half-velocity

width (61/,)n is easily determined from the converged solution at

step “ne
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4.2.2 Grid System

To derive the finite difference equations for a box, it is first
necessary to define the locations at which the variables are defined.
As shown in Fig. 4.1(b), U, K, and € are given at the centers of
left and right boundaries and V at the centers of top and bottom bound-
aries of a box. This arrangement makes the streamwise derivatives of
U, K and €, and normal derivative of V much easier to deal with.
Furthermore, no V velocity component need be provided at the initial

station.

The outermost location of U, K and ¢ 1is outside the last box.
Therefore the zero boundary conditions of both K and € on the edge
do not cause any difficulty in the calculation of quantities such as

Kz/e or sz/K in the last box.

The spacing between grid points in the normal direction can be
either constant or variable. The choice is made by the selection of the
initial grid. Details will be given in next section. The spacing in
the streamwise direction is variable, and the increase in step size {is

determined by the rate at which the layer grows:

5
(8)/2)n (4.2.9)

Ax = Ax
n n-1 iél/Zin—l

where Axn = X - X_.

4.2.3 Formulation of the Finite Difference Equations

Central differencing 1s used everywhere except where the streamwise
velocity {s small relative to the normal velocity. This occurs near the
edge of pure fets. For those cases, the flow s principally in the
normal direction near the edge and crentral differencing causes oscilla-
tinn when the rell Reynolds numher (based on V and Ay) i{s larger than
two (see Patankar, 1980). To remedy this, upwind differences must be
used for the convection terms in the normal direction in this region

(Patankar, [98N)., A second-order upwind scheme {s used near the edge.

The fomulatinn of the finite difference equations s similar to

that of the FKeller Box method and can be found In Cebeci and Bradshaw

1977). The detafls are presented {n Appendix A,
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.Ei 4.2.4 Averaging at the First Step

¥

iﬁ To avoid oscillation of the solution in the streamwise direction,

) an averaging technique is used at the first step. The initial condi-

\!

;ﬁ tions are generally not correct. The finite difference equations
:; represent an average of the governing equations and tend to produce

'?- oscillations with an amplitude equal to the initial error. Averaging of
- the solutions at the initial and first stations eliminates most of the

‘:2 error and provides an improved initial condition. The solution proce-
>

{S dure is then restarted from the center location and a half step is taken
"

;ﬂ so that an improved solution is obtained at the first station. This
. averaging process 1is repeated three times. Each time the location of

‘oY averaged solution is moved forward by half the reduced step size.

s

fﬁ After this averaging, the effect of "bad" initial conditions on the

solution is greatly reduced. From the second step on, the normal solu-

tion procedure is used.

S 4.2.5 Calculation of Eddy Viscosity

The eddy viscosity is required before the system of equations can

ig be solved. In order to calculate the eddy viscosity, K and € are
:y needed. Since the solution procedure is iterative, K and € are
:E lagged by one ifteration in the calculation of eddy viscosity. No other

L) variables are lagged in the computation; mean and turbulence quantities

fi‘ are computed simultaneously.

] E: Near the edge of the layer, the profile of eddy viscosity is

:; smoothed when necessary. Bad profiles are sometimes caused by small

P negative values of K or . Because these quantities are very small
:? in this region, they may produce large errors in the eddy viscosity.
ﬁ: However, eddy viscosity saould approach zero near the edge of the

’;; laver. Therefore, whenever a bad value of the eddy viscosity occurs, a
b salue linearly interpolated between the previous good point and zero at

S?: the edge replaces the had value. This smoothing process prevents the

:ii had snlutinn from penetrating {nto the layer. It I3 never necessary to
:f' ase this procedure for more than three or four points near the edge

excent for far wake flows.

'.'.
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f}' 4.2.6 Convergence Criteria
\‘ Q
l"
bgh The solution method 1{is 1iterative. The convergence criterion
o demands that the i{ncrements of U, K, and ¢ at the point nearest the ‘
;ng centerline between iterations be less than IO—A times the values of the
*x:: quantities at the previous iteration. Typically, the solution converges
N within five iterations.
L]
.N:~
T 4.2.7 Solution Procedures
o
1‘5 Provided the solutions at step n have been obtained, the solution
D)
v procedure can be outlined as follows:
:tj 1. In physical coordinates, calculate 61/2 at step n. Calculate
”
Dot E +1 by Eq. (4.2.8). Calculate dE/dx.
0 2. Use the solutions at step n as initial guesses for all variables at
??’ step n+l.
.&;\
;E*: 3. Solve a block tridiagonal system of linear equations that results
TS
'1$< from the Newton-Raphson 1linearization of the finite difference
[/ "
e, equations. '
f:f 4, Update all variables by adding the increments obtained from step 3
o to the old values.
,f;f 5. Update the eddy viscosity.
J
Y 6. If the Increments satisfy the convergence criteria, stop the itera-
o
‘}}? tion and go to the next station. If not, repeat steps 3 to 5.
o
i, 4.3 Input Data
N 4.3.1 Initial Conditions
N
»&ﬁt Initial profiles of U, K and € are required to start the com-
‘h’x putation. They have to be generated from experimental data. The
streamwise velocity 1is measured in all experiments. For turbulent
'ﬂfﬁ kinetic energy components, u' and v'z are measured in most exper-
o
53{ iments. w'z, on the other hand, {s not often measured and is usually
;.:g approximated by the average of u' and v' . The dissipation rate of
aad turbulent kinetic energy is rarely measured; i{f it 1s, the uncertainty
:2“ 1s very high. The turbulent shear stress {s always recorded. One way
S 48
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to calculate the dissipation rate is via the relationship for the shear
stress used in the K-g¢ model:

2
e = C _K___g_U (4.3.1)
Y o(matvT)

The dissipation profile obtained by this method is designed to give the
right shear stress. All the profile data mentioned above are interpola-

ted with spline fits.

Although there {s no need for an initial V profile, the program re-
quires initial guesses for V at the first step. Guessed values of V
should be provided but do not need to be accurate. Since V 1is small,

the initial guesses were all taken as zero.

4.3.2 Grid Setup

The grid in the normal direction at the initial station has to be
provided. Experience shows forty to fifty grid points should be used.
The points should cover the region from y = 0O to approximately y =
2.5 61/2. Equal or variable spacing can be used. We found the best
cholce to be a compound interest grid:
kaAy

A y41 3

where 1.03 ¢ k < l.1. This makes the grid finer near the centerline
and coarser near the edge. 1In all the computations reported herein, 45
points were used and k = 1.03 was used for the first 36 grids from the

centerline and k = 1.08 for the rest of the domain.

The initial step size has to be specifiede A step size of about
twice §&,,, appears to be reasonable. From the second step, the step
size will be determined by the rate the layer spreads as described

earlier.

4.4 Validation of the Numerical Method

Some validation tests were performed to assess the accuracy of the
present numerical method. First a laminar plane jet was computed with a
stmilar{ty inftial condition. The results were checked against the ana-

lvtical similarity solution. With the 45-point compound {nterest grid
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described above and an initfal step size of about 2 61/2, the error {is
0.003% in the centerline streamwise velocity and 0.16% in the normal
velocity at the edge after 30 initial 61/2. Similar results were

obtained for a laminar axisymmetric jet.

A turbulent plane jet calculation was made to test the method when
all four equations (the continuity, momentum, K and € equations) are
coupled and have to be solved simultaneously. The results were compared
with the similarity solution solved by Paullay et al. (1985). The
errors in thickness growth and centerline velocity decay rates are both
within 0.1%Z of the exact solution, while the error in the centerline
value of K 1is about 0.9%Z. When the number of grid points is increased
to 60, almost {dentical results were obtained. This indicates that grid
independence was achieved at about 45 grid points across the layer. A
number of streamwise step sizes were tested in the computation; there is
no noticeable difference when the step size 1is 261/2 or less.
However, the difference becomes large when the step size is 361/2 or
larger. Therefore, it was determined that a step size of about 261/2

is the optimal choice.

4.5 Conclusions

In this chapter, an improved Keller Box method for solving equa-
tions of turbulent free shear flows has been described. Several im-
provements are incorporated in the present method, including a staggered
grid, an 1initial averaging process, and upwind differencing near the
edge of the layer. A grid that expands with the layer is used. A vari-
able step size is determined by the growth of the layer. A validation
process was performed to verify the accuracy of the method and the pro-

gramming.

Inftial conditions for U, K, and €, an init{al guess for V
and the grid at the initial station are required, and their construction

was described.
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Chapter V

ZONAL MODELING FOR PLANE FREE SHEAR FLOWS

5.1 Introduction

In Chapter III, we examined experimental data on the flows to be
studied and identified useful data. In this chapter, with these data as
a guide, we shall try to better understand the physics of free shear
flows and to construct improved models for these flows within the zonal
modeling framework. Our goal is to build a consistent zonal model which
can be used for all free shear flows. However, since axisymmetric flows
differ so much from plane flows, we shall focus our attention on plane
flows in this chapter. After the axisymmetric flows are considered in

next chapter, we shall bring these two cases together.

When there is only one important component of the velocity-gradient
tensor and the turbulent kinetic energy production and dissipation rates
are approximately in balance, the standard K-¢ model usually gives
acceptable predictions (Launder et al., 1972). The plane pure jet is
one example. However, when the shear is weak, the standard K-e¢ model
predicts too slow a spreading rate of free shear flows. To remedy this,
in his "extended" K-¢ model, Rodi (1972) made the model constant Cu a
function of the ratio of rates of turbulence production and dissipation.
This improves the predictions of the global parameters of weak shear
flows considerably. However, the predicted profiles do not agree with
the experiments. Patel and Scheuerer (1982), in their prediction of a
far wake, used a corrected eddy viscosity with an intermittency factor.
This model 1mproves the velocity profile but underpredicts the shear
stress and hence the spreading rate. Another difficulty with this model
13 that the intermittency factor has to be obtained from experiments and
1s different from flow to flow. Others selected the model constants
CEl or C€2 as targets for modification in various flows. If done on
a flow-by-flow basis, this process removes the possibility of obtaining

a model valid for all flows.

It seems, at the present time, that there is no single model that
can predict all the plane free shear flows equally well. This provides

motivation for the present study.
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5.2 Analysis and Physics

Consider a steady symmetric plane jet in a uniform stream. With
the thin shear—layer approximation, the governing equations for the flow
are 1dentical to those for boundary layers. Beyond the potential core,
the development of the flow is independent of the initial conditions,

and the profile of the jet becomes self-similar, i.e.,

U = U_+ Ulm f(n) (5.2.1)
where
n = EZ__. (5.2.2)
1/2

In this flow, the effect of the initial conditions persists only a rela-
tively short distance and can be accounted for by use of an effective

origin of the flow  x,. Assuming self-similarity, Eqs. (5.2.1) and

(5.2.2), we can write from dimensional analysis (see Bilger, 1968):

dUlm

dx

FI(U u_,J)

1o’

where

J -f U(U—u_.)dy

—c0

J 1is the excess momentum flux in the jet. This result can also be de-

rived from the momentum integral equation. In nondimensional form, it

becomes
d(u_/u, )
o Im
aTey - FalUl/Uyg)
or
U°° X - xo
g = [ = F (-—7;———) (5.2.3)
lm

where 0 1s defined in Eq. (3.2.7) and i{s constant throughout the flow.
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By similar reasoning, we also obtain

) X - X
1/2 o
= = G(._.___e ) (5.2.4)

Here, F and G are universal functions for all jet flows. This

result is confirmed by the experiment of Bradbury and Riley (1967).

If the jet self-preserving, the velocity can be expressed by
Eq. (5.2.1) and shear stress distribution must have the form:

2
—‘l'v' = U g(n) (5:2.5)
Im
Substitution of these similarity expressions into continuity and momen-
tum equations and elimination of the transverse velocity V result in:
n
§ du ds ) du ds
L2 2B ety - L2 e —( 12 _lm, l/z)f'/ fdn = g'

Ulm Ulm dx dx

)
(5.2.6)

where g 1is defined by Eq. (5.2.5) and f by Eq. (5.2.1). From the

momentum integral equation, we have the constraint:

U dx 1 & T
lm
where q 18 a function of B8:
I, + I.8
21 (5.2.8)

q = i e ———el
212 + IIB

Here, I; and I, are defined by Eq. (3.2.11). Equation (5.2.,6) can

then be written as

n
4,/ 2 : , : o
Ix qBf + qf” - Bnf' - (q+1) f fdn| = g (5.2.9)
o

Since 51/2 and B are functions of x, the only conditions under
which self-similarity {s obtained, 1i.e., f and g are independent
of x, are (see Townsend, 1956, and Hill, 1965):

B = 0 and g + o
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which correspond to a "pure" jet and a far wake, respectively. For
values of B other than these limits, g changes as B varies. On
the other hand, f seems to be very insensitive to B, as shown by
experiments. Moreover, since F and G 1in Eqs. (5.2.3) and (5.2.4)
are universal functions, B and 61/2 are related; 1.e., for a given
8 there is only one corresponding 61/2 and vice versa. Therefore,

the shear stress level, g, 1is only a function of B.

As B Increases, the experimental data show that g increases and
the n-value corresponding to maximum g moves outwards. This indicates
that the turbulence decays more slowly than the centerline velocity. It
also suggests that diffusion is increased as B 1increases; this is re-
quired to allow the maximum shear stress location to move outwards
faster than the jet or wake spreads. It will be helpful to consider the

physical reasons why increasing B has these effects.

Physically, B represents the ratio of the global inertial force
to the global driving force for creating shear of the free shear flow.
Thus, when B increases, the large eddies become relatively less ener-
getic compared to the inertia of the free stream, and it is harder for
them to penetrate into the free stream. As a result, the entrainment
rate 1s reduced and the flow becomes more parallel. In the 1limit
8 + », the small eddies are more responsible for the turbulence trans-
port, 1.e., diffusion is more important. Alternatively, B can be
regarded as a ratin of eddy turn-over time to the characteristic free
stream time. As this ratio increases, the mixing process 1s slower
relative to the free stream motion, and the flow spreads less rapidly.
The slow mixing at high values of B also makes the flow more intermit-
tent. It 1s well known that intermittent flow exists only near the edge
of a "pure" jet, whereas it penetrates almost to the centerline of a far
wake (Townsend, 1956). Intermittency 1increases the gradient of the
average turbulence intensity, and therefore the average diffusion rate

is increased.

As pointed out in Chapter III, it has been observed by many re-
searchers, including Townsend (1956) and Bradbury and Riley (1967), that
in the far fleld, a co-flowing jet behaves essentially the same as a

wake. This means that the turbulence transport 1is independent of the
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sign of the mean velocity gradient. Intuitively, we say that the turbu-
lence rides on the mean flow and only "sees" a local velocity difference
without "realizing" its direction. Although the eddies turn in opposite
directions, the turbulence transport mechanism appears to be the same

for both cases.

From these arguments, we conclude that the turbulence of free shear
flows 1s characterized not by whether the flow 1s a jet or a wake, but
rather by the value of 8. Sabin (1965) also found a strong effect of
B on mixing rate over a wide range of values of B for the mixing
layer. Using similarity arguments, he provided a general relation be-
tween spreading rate and B. The same relation was found by Abramovich
(1963), apparently independently. This Sabin-Abramovich relation was
found to be one of the few universally valid correlations in both the
1972 NASA-Langley Conference on Evaluation of Computation in free shear
layers and the 1980-8]1 AFOSR-Stanford Conference evaluating complex flow
fields. Thus the importance of B8 (or some wholly equivalent parameter
of different mathematic form) {s fully validated and very widely accep-

ted for the mixing layer case.

All these considerations suggest that a turbulence mcdel designed
to simulate these flows in a consistent way should depend on B and not

the mean flow type.
In summary, we note the following:

l. The turbulence model should reflect the relative importance of

the diffusion process as indicated by the value of 8.

2. It appears that we can consider regions with the limits of 8 =+
0 and B *+ = as two zones of free shear flows and intermedi-

ate values of B as a readjustment zone.

3. A co-flowing jet or a wake starts with a small value of B8 and
develops a larger B downstream. In terms of our model, it
starts in the first zone and readjusts toward the second. A
"pure" jet, on the other hand, stays in the first zone perma-
nently. A given mixing layer has a constant value of g, but
mixing layers as a class have values of B8 running from 1 to

», To apply the zonal modeling approach, we shall model the
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two limiting cases first and then patch them together by a

blending technique which describes the readjustment.

5.3 Construction of Zonal Models

As noted in Chapter I, the standard K-¢ model will be used as a
base for the development of zonal models. Therefore, in constructing
zonal models we shall first test the standard K-¢ model in each case.
If it works for a given case, no modifications will be made, since it is

then a satisfactory zonal model.

5.3.1 Zonal Model for the Limiting Case B8 + O

A "pure" jet represents the paradigmatic flow for this zone. After
the disappearance of the potential core, a pure jet quickly becomes
self-preserving. Therefore, we can use pure jet data at any downstream

location to tune the zonal model for this zone.

The standard K-e model was tested for this flow and gives sur-
prisingly good results. The spreading rate and centerline velocity

decay rate are

dé
1/2
ax 0.108
a(3/07 )
— = 0.16
dx

which are in excellent agreement with Egs. (3.2.4) and (3.2.5). The
mean velocity, turbulent kinetic energy, and shear stress profiles also
agree quite well with experimental data. Figures 5.1 to 5.3 illustrate

the agreement.

The standard K-e¢ model 1is known to work well for flows with just
one significant velocity gradient in which the turbulent kinetic energy
production rate approximately equals the dissipation rate. The plane
pure jet satisfies these two conditions. Another part of the reason
that the standard K-e¢ model predicts pure jet flows so well is that
some of the model constants were based on pure jet data. There is no

need to modify the standard model for this zone.
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5.3.2 Zonal Model for the Limiting Case B + =

A far-field wake or co-flowing jet both are instances of this zone.
However, U, is finite at the last measuring station in all experi-

the flow

ments. Fortunately, when Ulm {s less than 10%Z of U
behaves self-similarly and the asymptotic far-field state 1is closely
approximated. Therefore, measurements which satisfy this criterion can
be used. In the co-flowing jet of Bradbury and Riley (1967), Ujp s
never less than 207 of U_; this {s not small enough to qualify. Pot's
(1979) wake data, on the other hand, reach U, /U, = 52. Therefore, the
measurements at the last few stations in Pot's experiment will be used
to tune the model for this zone. 1In this range, the global parameters

of Pot's data behave as described by Eqs. (3.2.15) and (3.2.16).

The standard K-¢ model was first tested. The results are:

2
4(8,/5/9)
dtx/ey T 0:085
a(utu, )2
—’de-Te—T— = 0.248

These quantities are significantly lower than those of Egs. (3.2.15) and
(3.2.16), respectively. The spreading parameter, as defined in Eq.
(3.2.17),

sp = 00,0635

1s more than 35% lower than Pot's and Townsend's values. In addition,
the predicted mean velocity, turbulent kinetic energy and shear stress
profiles do not agree with the data. Figures 5.4 to 5.6 show the com—
parisons. Not only are the magnitudes in serious error, the shapes are
also not correct, especlally near the edge of the layer. These various

profiles all go to zero too fast.

From the discrepancies between the K-¢ predictions and the exper-
iments, 1t appears that the diffusion predicted by the standard K-¢
model 1s not sufficiently strong for this zone. To remedy this, we
decided to decrease two model constants: CCl and op. These changes
increase the shear stress as well as diffusion. Although this choice of
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model constants may not be unique, {t seems the simplest way to achieve
the necessary effect. This satisfles our guideline that we want to make

the changes as simple as possible when modification {s necessary.

After a series of tests against the last few stations of Pot's far

wake data, we set the two model constants at:

C = 1.04 (5.3.1)

and

o = 0.65 (5.3.2)

Using these values, all predicted profiles agree reasonably well with
the experimental data as shown 1in Figs. 5.4 to 5.6. Moreover, the
¢lobal parameters match those described by Eqs. (3.2.15) and (3.2.16)
within 3%. They are:

2
d(al/z/e)
W- - 0.103

2
d(u/u,)

a7y - 0.437

Thus, we have constructed a model for the zone B8 + =» by changing

two model constants.

5.3.3 Model for the Readjustment Region

We have now zonal models for the limiting cases B + 0 and 8 + =
Next, we need to combine these to form a complete model. Any flow with
B between zero and Infinity can be regarded as being Iin a transitional
stage between the two zones. This transition is called a "readjustment"
in zonal modeling. To reflect the continuous change of physics in read-
justment, we shall patch the two zonal models such that the model con-
stants vary smoothly between the limiting values. The experience with

homogeneous flows suggests that the two constants can be expressed as:

Cel = lnba - 0'4 Al (5.3.3)
o = 1.0 - 0.35 ), (5.3.4)
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’:: where 0 < Ay £ 1 1s the readjustment parameter. Ay 1s a function
.:: of 8 and, again in line with earlier experience, we chose it to be the
’ . solution of a first-order different{al equation:

AY

l\l

'~ di .
g _1 . -

A 15 c(r - ) (5.3.5) |
Laml

»

v

where C {s a constant to be determined. The solution to Eq. (5.3.5) {

53 is

g !
::._: Al - ] - e-CB (5.3.6)
4 Note that the model constants, Eqs. (5.3.3) and (5.3.4), reduce to the
?{ appropriate values for each of the two zones as 8 approaches the lim-
Sﬁ iting values.

o
g-{ The exponential form of Eq. (5.3.6) makes the constants leave the
A

o first zone (B + 0) wvalues rather rapfdly and reach the second zone
o
<. values asymptotically. This seems to agree with the data. It is veri-
t}: fied by the rapid growth of the maximum turbulent kinetic energy and
. shear stress in the near field, as shown in Figs. 5.9 and 5.10.

s The data at intermediate 8 wvalues (B8 < 10 or U /U, > 0.1)
ﬁi {n Pot's wake experiment are excellent for tuning the readjustment con-
o stant C. With the use of these data, it was found that
.J

Foo C =~ 0.18 (5.3.7)
e
Y

o This value of C gives good agreement with the data and completes the
o0
‘e model for planar free shear flows.

- Predictions of the zonal model are compared with Pot's wak~ data,
,:t: for the spreading rate, centerline-velocity-deficit decay rate, the
i} max{imur kinetic energy, and the maximum shear stress in the layer,
‘CA
22 respectively, In Figs. 5.7 and S5.10. The agreement s excellent. Also
5;% presented Iin these figures are the results predicted by the standard
' K-¢ model. The disagreement between the data and the standard K-¢
hos, model 1i{s significant, especially {n the far fileld.
l'
=
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5.4 Tests of the Zonal Model

We have constructed a complete model by patching two zonal models
for the extreme cases. This model was tuned using only Pot's wake data.
This model gives very good agreement with that data set as seen {n the
preceding section. lowever, the purpose of modeling {s to enable us not
only to utilize the model for flows to which it is tuned, but also to
other flows. We use co-flowing jets and mixing layers ‘or this check {in

this section.

5.4.1 Co—flowing Jets

It was emphasized in Chapter III that behavior of co-flowing jets
may vary from "pure" jet flow to self-preserving wake flow. This flow
provides a good test for the present model. The data set recorded by
Bradbury and Riley (1967) was reviewed in Chapter III and seen to be
consistent and of high quality. Also, the data were nondimensionalized
to collapse all co-flowing jet data with different ratios of nozzle
exhaust to free stream velocity. We shall use this data set in the

test.

An initial condition was generated using the data of Bradbury's
earlier experiment (1965), Calculation was made to a downstream
location of about 100 8. The results for the jet spreading rate,
centerline velocity decay, and the eddy Reynolds number defined by Eq.
{3.2.14) are shown in Fi{gs. 5.11 to 5.13, respectively. The predictions
of the standard K-¢ model are {ncluded In these figures for com-
parison. In both sets of predictions, x, fis taken to be -68. The
present model performs extremely well for all three quantities com
pared. The standard K-¢ model, on the other hand, predicts well only
in the initial part of the flow and departs from the data further down-
stream, This {8 expected because, as demonstrated earlier, the stan-
dard X-&£ model works well for flows with small g (the first zone)
but poorly for flows with large 8. The serious disagreement bhetween
the data and the standard ¥-. model prediction for the eddy Reynolds
number geen {n Fig. 5.13 reveals that the standard model is unahle to
predict the shear stress level accurately. The low shear stress pro-

duceg the slnwer spreading and velocity decay.
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5.4.2 Mixing Layers

Another challenging test is the mixing layer. These flows do not
have similar velocity profiles. However, the ratio of inertial force to
driving force can be defined if we consider U to be the average of

the two free stream velocities:

—

= + 5.4.1
@ 2 U., ) ( )
and U, to be the difference between either free stream velocity and

U

®°

—

Im 5 (U, -V, ) (5.4.2)

Thus, we take 8 to be U_/Uj = (Uml+Um2)/(Uml’U°2)' In these expres-
sions, U”l and U are the free stream velocities on the high and
low velocity sides, respectively. One side has a velocity excess; the
other has a velocity defect. Both sides share the common U, and have

the same value of Ulm’ and hence identical B8's.

Another way of viewing a mixing layer is as follows. There exists
a dividing streamline which, {f not exactly coincident with, {s very
cinse to the line with velocity equal to U_ . The high velocity side

can be revarded as jet-like and the low velocity side as wake-like.

Using the velocitles as defined in Eqs. (5.4.1) and (5.4.2), the
ritio of {nertial force to driving force, B8, for the mixing layer is
fdentiral to the parameter used by Sabin (1965) to correlate the spread-

{ng parameter tor flows with various veloclity ratios.

In the calrulation of nmixing layers, we have to note that the
resinlts are verv sens{tive to the bnundary conditions on the normal vel-
sefty, V, at both the top and bottom boundari{es, as explained in Chap-
ter [I1. In >rder to accurately compute these flows, therefore, both
boundary condirinong should be specified. However, in the thin shear-
taver apnroaximarfon, only one V boundarv condition can be given. There
s no wav to improve the approximation other than to select a V bound-

arvy cond{t{nn that {s best for a particular problem. There a-e several

ways to specify this boundary condition, including
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vV = 0 as y + —= (low velocity side) (5.4.3)
v v, +u v =0 (5.4.4)
1 1 2 2
or
oo
- Uvdy + v2 - v2 = 0 (5.4.5)
dx L) o
1 2
-0
In the above expressions, le and Vﬂ_2 are the normal velocities on

the top and bottom boundaries, respectively. The last 1s derived from
the y-momentum conservation equation and 1is the best condition for a
"free" mixing layer, i.e., one that is not affected by wind-tunnel

walls.

The V boundary condition determines the angle at which the mixing
layer propagates and can be chosen to match the calculated flow angle to
that observed experimentally; this differs from experiment to experi-
ment. Fortunately, the spreading rate 18 only slightly affected by
the V boundary conditions. 1In this work, only the spreading rate fis

of major concern; the flow angle will not be examined.

Mixing layers with various velocity ratios are computed with both
the present model and the standard K-¢ model. Calculations were
carried out until a self-similar solution was achieved. Figure 5.14
shows the comparison between the predicted spreading rates and those of
various experiments for the range of 1 ¢ 8 < 9. The present model
performs hetter than the standard X-¢ model. Figures 5.15(a), (b) and
(¢c) compare the shear stress profiles of the model predictions and the
data for three different velocity ratlios (R = 0, 0.3, and 0.61),

respectively.

5.9 Galilean Invariance —— A Frame-Invariant Form of the Model

The description of a phenomenon must be the same in all inertfal
frames of reference. That {=, the equations governing the physics
should be i{dentical whether the reference frame {s stationary or {is
moving at a constant speed. To be more specific, the equations must be

form-{nvar{ant under the Galilean tranformation
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N
L=
-'*J >
. where %' and X are the coordinates in the new and old reference
AN frames, respectively. The new reference frame has a constant relative
LY
..'_ﬂ-" ‘ velocity ¥ with respect to the old frame. The Navier-Stokes equa-
o d
Y tions, for example, are Galilean invariant in this sense.
Yy L4
L
It i{s essentfal that the turbulence model be Galilean-invariant.
--:., Otherwise, the model will give different results In various inertial
~.\;:\ reference f{rames. The model developed for plane free shear flows in
)
o this chapter (s not Galilean-invarifant because the parameter B on
which the model constants depend contains U_, which changes with the
b frame of reference. This would restrict use of the model to reference
-~
S frames Iin W~hich the flow appears steady. For example, for jet flows,
e the reference frame has to be stationary with respect to the nozzle that
Ll produces the Jjet and, for wake flows, stationary with respect to the
\ bodv that generates the wake. For all other reference frames, the pre-
f..f- sent model would be {nvalid.
'-;' A look at the analysis {ndicates that the lack of Galilean {nvar-
tance of the nndel arises from our assumption of a steady flow. When
S
" he reference frame 1{s changed, the flow appears unsteadvy and the
\::‘: analysis of Sec. 5.2 18 no longer adequate. Therefore, in order to
NS
Ou nbtain Galilean invariance, we must consider unsteadv flows.
J ‘
REvr The momentum {ntegral equation for an unsteadv flow {s: }
o |
b - 1
TR N 5 Ul § !
oy e e, o e 2 e e o %12 Y
N o2 t v ) ' v u Ix v Ix
¥ | lo Im Im Im
e m (5.5,
-_--‘ i f
':4-' ”51/) » f' (51/2 dllm 3\5 ,z)f' qfd ,
. - ——_—- - — - - - - - ——— n =
dx ! 1 Ix 3 X
e lm 1 0
LA
LA
.~. where l.lm and Sl'” are now functions of hoth x and t. We must
-\I ! ‘
:-:‘.- redefine the parameter 4 as
o
b b L b ot
O o e e (5.0, 40
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where

D_- - .a_+ U a— (5.5.4)
Dt at = 3Ix

Combining Eqs. (5.5.2) and (5.5.3) gives

8./, AU a6 5./, U, 361/2) B
m

im 1/2 v
U ax (B ) - e Bnf (Ulm ax | ax

(5.5.9)
which i{s identical to Eq. (5.2.3). Moreover, the parameter 8 defined
by (5.5.3) reduces to the previous definition, Eq. (5.2.1), for a steady
‘low. The remainder of the analys{s is the same as that in Sec. 5.2 and

will not be repeated here.

Therefore, in applying the present model to a general free shear
flow, the definftion of the parameter 8 given by Eq. (5.5.3) has to
replace that of FEq. (5.2.1) This makes the model Galflean-invariant.
No other changes are needed. Since the original equations with 8
given bv Fg. (5.2.1) are simpler, the more complex analysis of this
section need be used only when the flow is unsteady in the reference

frame chosen.

5.6 Conclusions

In this chapter, plane free shear flows were studied. A zonal
mode]l was developed. Two zones were i{dentified; thev can be called the

far flelds, although that nomenclature {s not accurate for all

rear and
‘lows. This problem is a semantic one arising from the definition of a
zone, and we shall suggest a clearer semanti{cs In the final chapter.
The difference in the turbulence transport mechanism {n the two zones
was discussed. Zonal models have been constructed for these two zones.
A patching technique was used to represent the readjustment and to link
the two zonal models. The new model predicts the change in physics by
~hanging two constants. The requirement of Galilean {nvari{ance can be
«at{sfied by use of a more general definftion for B. Test results show
that the model developed In this chapter performs much better than the
standard K-¢ model, but {8 no mnre difficult to apply nr expensive to

run for plane free shear flows.
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Chapter VI

ZONAL MODELING FOR AXISYMMETRIC FREE SHEAR FLOWS

h.l Introduction

In Chapter V, we buiflt a new (zonal) model that works well for all
usable cases of plane free shear flows. This new model improves the
standard K-e¢ model significantly by allowing two of the constants to
become functions of the parameter B. Axisymmetric flows were not con-
sidered in Chapter V, because there (s a fundamental difference in the
turbulence structure due to the lateral vortex stretching Iin axisymmet-

ric flows as mentioned in Chapter !Il (Fig. 3.12). When vortex stretch-

ins {s stgnificant, {t decreases the ratio of 'u'v'l/K which deter-
mines a central constant in the K-¢ model. In this chapter, we shall
»xamine the vortex stretching effect in detail and Incorporate its
erfe-ts Intn the model for axi{symmetric flows through a suitable non-

timensional parameter.

The standard K-¢ model was tuned to plane shear flows. As a
ressit, houndary lavers and plane pure jets are well represented bv this
model, However, to predict axisvmmetric flows, some modificatiosns are
reqalred, Most of the modifications shown In the literature involve

‘hangine efther or C . For example, Launder et al. (1972) added
! N

correctlon terms {n and FJ
(] 5

C, . = 1.90 = 00607 p
ind
r = 0,09 - N 04 p
5 L | \ 0,2
|2 (dlr,I d FI‘)
3 = - - - - -
' 21 dx dx
I'm

RITRAY T {= *he conterline velocity, MeGiirk and Radi (1977 Ssupses-

TV
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§, ,, du
C = 1.14 - S5.31 ﬁ_l_g »~d—C£
€1 cL X
Morse (1977) used
3 :
C = 1.4 - 3.4 (5 %)
£ € XL

No convincing physical explanation is provided to justify any of
these wmodifications. Moreover, when these corrections are used, the
yenerality of the model ability to predict plane and axisymmetric flows
is destroyed. It i{s not known whether the correction should be used for
flows Intermediate between plane and axisymmetric. Moreover, these
modifications were primarily tuned to pure jets; they do not predict
wakes well. In his extended K-e& model, {in which Cu is a function
of the ratio of the turbulence production and dissipation rates, Rodi
(1972) included a modification for axisymmetric flows similar to that of
Launder at el. (1972) described above. This gives predictions for axi-
symmetris flows better than the ones mentioned above. However, the pre-

dicted profiles do not agree well with data.

v

In thi{s chapter, we will use the zonal approach to develop a model
for axisvmmetric flows. We want to maintain the ability to handle both
lare and axisvmmetric cases. Therefore, we shall often refer to the
plane flow model developed in Chapter V. Our objective is to create a
senera] model which treats plane flows as one special case and axisym-

metric flows as another.

£.. Analvsis and Physics

An analysis simflar to the one for plane flows (Sec. 5.2) can be
carried out for axisymmetric flows. To briefly {llustrate several key
points, ronsider a gterdv axisymmetric jet in a uniform stream with

arbirrarv free atream velocity. Using dimensfonal analvsis, we find

'\’\
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§ X = X
sz, ° 2.2
) ¢ ( ) ) (6.2.2)

Here, 6 1s the momentum thickness for axisymmetric flows defined by
Eq. (3.3.4). F and G are universal functions for all axisymmetric jets.
Indeed, Rodi (1975), using Eqs. (6.2.1) and (6.2.2), collapsed the jet

width and centerline velocity data of three experiments (Fig. 3.13).

We can apply the similarity expressions used iIn Chapter V for
streamwise velocity and turbulent shear stress. Substituting them into

the momentum equation, we have

12 T ey - DU --(f—llz T, d61/2)<5l .
U, dx dx n U, dx dx n
" n " (6.2.3)
1 '
/ fndn 5 (ng)
o
The momentum integral equation, after the similarity transformation,
reads
12 P P2 (6.2.4)
U dx T TIx -
Im
where
ZIé + ZIiB
Q' = - sErTT (6.2.5)
212 + Ils

and I} and Ij are defined by Eq. (3.3.6). Combining Eqs. (6.2.3)
and (b.2.4) results in

dé n
/2] 2 ) ! Y , )
i q'Bf + q'f Bnf' (q'+2) ;r-]( fndn e (ng) (6.2.6)

)

Since B8 and §,,, are related by Egs. (he2.1) and (6.2.2), the shear

stress can be considered a function of B8 alone.

Strictly speaking, the parameter B = Uw/Ulm can be used only in
pt)/ hould b
1/2/ t),(Ulm 361/2/3x) shou e

used to allow Galilean invarlance. This point was discussed in the last

staady flows., In general, 8 = (D§

chapter.




The axisymmetric wake can be analyzed in a similar manner. Let us
assume that the turbulence transport mechanism 1is independent of the
sign of mean velocity gradient and only a function of B. As in plane
flows, B8 has two extreme values: zero and infinity. These correspond
to a pure jet and a far wake, respectively. A co-flowing jet or wake
will develop between these two limits. They may start from a state
close to a pure jet (small B8) and eventually arrive at the asymptotic
far wake state (large B8). Therefore, the zonal idea used in plane
flows can as well be applied here. We shall first consider these two

extremes {(or zones).

The first zone (8 = 0) represents a pure jet. This flow spreads
linearly. 1Its spreading rate is the greatest among axisymmetric flows.
Due to the rapid spreading and small radius of curvature of the flow,
there exists a significant strain 1in the circumferential direction.
This strain tends to stretch the vortex rings which form in the shear
layer. For this effect to be important, two criteria must be met.
Firstly, the jet has to have a radius that is not large in comparison
wi*h the shear layer width. Secondly, the flow has to spread rapidly.

Otherwise, the straining will be weak.

The stretching of vortex rings reduces the ratio of |G7?77f/x.

This conclusion is reached on the basis of experimental data. No physi-
cal or mathematical derivation 1s available at the present time. For a
given turbulence 1intensity, the vortex stretching causes the shear
stress to decrease. For axisymmetric pure jets, in which the effect of
vortex stretching 1{s the strongest, the ratio of IITKJTI/K in the
equilibrium region is reduced to about 0.23 (vs. 0.3 for the plane
flows, cf. Fig. 3.12).

The second zone (B + «) 1is an asymptotic far wake. In this zone
the spreading rate is very slow. The vortex stretching effect is there-
fore small. Indeed, in the review of Antonia and Bilger's (1973) axi-
symmetric co-flowlng jet experiment in Chapter III, we found that

IGT;TI/K is close to 0.3 in the equilibrium reglon far downstream. The
physics of this far-field zone 1is nearly identical to that of the plane

asymptotic far wake.

The turbulence diffusion enhancement as B 1increases seems to bhe

the same for axlisymmetric flows as for plane flows.
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6.3 Construction of Zonal Models

Our approach will again be to model the extremes first, then the

readjustment.

6.3.1 Zonal Model for the Limiting Case B + 0

As before, the standard K-¢ model is first tested to determine
what modification, if necessary, is needed. The results for the global

paraneters are:

dsé

1/2
Ix 0.121
d(Jl/Z/Ul
m
0.178
dx

Both the spreading and velocity decay rates are over—predicted by more
than 35% by the standard K-g¢ model. Mean velocity, turbulent kinetic
energy and shear stress profiles are shown, respectively, in Figs. 6.1
to 6.3 and compared with experimental data. While the mean velocity and
kinetic energy profiles show reasonable agreement with the data, the
shear stress is significantly over-predicted, i.e., the ratio IGT;T]/K
is too high for this flow. The reason is that Cu = 0.09 1in the stand-
ard K-g¢ model |u'v'|/K at appproximately 0.3 in the region where
production 1s 1in balance with dissipation. However, as emphasized
above, [:T;Tl/K is reduced by the effect of vortex stretching and is

0.23 rather than 0.3. To reflect this value of |u'v'|/K in the model,

it appears that the value of Cu should be decreased.

From the shear stress and eddy viscosity formulation, as described

in Chapter II, we have

(“"" ) = c X (6.3.1)
£

where P = - u'v' 3U/3y 1is the production rate of the turbulence.
Knowing that [u'v'|/K = 0.23 {n the region where production is approx-

imately equal to dissipation for axisymmetric pure jet, we set
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Cu = 0.05 (6.3.2)

for this flow. With this new value of Cu, the predicted global param—

eters are

~
~ dsé

N —L2 . 0.089

" dx

L a3t % )

o Im

" = 0.132

- dx

{

[y

which are in excellent agreement with Egqs. (3.3.1) and (3.3.2) that cor-

* relate the data. The various profiles generated by using Cu = 0.05 are
12 also presented in Figs. 6.1 to 6.3. All three profiles match the data
:i very well.

b

i The 2zonal model for this 2zone 1s, therefore, the standard K-¢
ii model with a change in model constant Cu to account for the vortex
y stretching. No other modification 18 needed.

<

' 6.3.2 Zonal Model for the Limiting Case B + =

j A far-field wake or co-flowing jet represents this zone. As noted
,j above, due to the slow spreading, the effect of vortex stretching is
X

po! negligible in this zone, and the physics of the flow 1s nearly the same
. as that of plane cases. Therefore, the zonal model of the plane asymp-
F: totic far wake was adopted for the axisymmetric counterpart. This allows
iz maintenance of the generality of the new model. No tuning of model con-
>

o stants is needed or performed in this 2zone.

\

N 6.3.3 Model for the Readjustment Region
fﬂ As stated earlier, our intent is to produce a general model for
i free shear flows. Therefore, we want to keep the model for axisymmetric
ro flows as consistent as possible with that for plane flows. Furthermore,
g

: the changes with B8 appear to be the same for both plane and axisym—
'j metric flows. For these reasons, we shall keep the variation of the
o model constants Cel and oy between the two zones the same as in

plane flows, f.e., we use Egqs. (5.3.3) to (5.3.7). This leaves us only
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\j: one more linking to be made (for the model constant Cu) before the
;Q% zonal model for axisymmetric flows 1s completed.
b
e ’ In going from the first zone to the second, the stretching dimin-
éﬁ ishes. The model constant Cu should increase from 0.05 to 0.09. This
V:; transitional stage can be represented by sliding Cu between the two
hf? extreme values. Before constructing the blending function for Cu’ let
. us examine what controls the stretching of vortices.
E;g As discussed in Sec. 6.2, the flow has to be small in the normal
¢{: direction and has to spread rapidly in order for the stretching effect
s to be significant. This means that the vortex stretching should be a '
{ .. function of the spreading rate, dél/z/dx, and the radius of curvature
i&ﬂ of the vortex ring. From these and dimensional arguments, an appropri-
::a ate parameter appears to be:
éét 5 ° EI/Z ds 1/dx (6.3.3)
::E: 1/2 1/2
_$: where R, ,, is the radius of curvature of the vortex line passing
A through the point of 51/2. The smaller this parameter, the more
l}xj stretching there is. For plane flows, S 1is infinite and there 1is no
:ﬁtj stretching. For axisymmetric flows, Rl/2 = 61/2 and S 1is inversely
o proportional to the spreading rate. For general three-dimensional
:;: flows, for example a rectangular jet, S 1is smaller at the corners due
b to the small radius of curvature. This gives more stretching and hence
&&:E smaller shear stress near the corners. Consequently, the spreading near
:;% the corners slows down and the flow will eventually become axisymmetric.

This Is at least qualitatively correct.

The smallest observed value of S occurs in the axisymmetric pure

jet and 1is 11.3. Therefore, we propose that the sliding function for
model constant Cu be:

§ > 11.3 (6.3.4)

C, = 0.05+0.041, , >

where 0 < Xy <1 1s the readjustment parameter. Further study may be
needed {f a value of S below 1l.3 occurs In any flow. A, 1s governed

by the first-order differential equation:
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= = ¢ (1-1,) (6.3.5)

where C is a constant that needs to be tuned. The solution to Eq.

s
(6.3.5) 1is:

-Cs(S—ll.3)

X = 1 - e (60306)

The last task is to determine the constant C_. The tuning is done

8
by conmputing a co-flowing jet and comparing the results with the data in
3.13 and 3.14.

and Bilger's (1973) experimental data for a co-flowing jet with the jet

Figs. An initial condition was created by using Antonia

nozzle velocity to free stream velocity equal to 4.5. It was determined

that

c. = 0.1 (6.3.7)

The agreement for the jet spreading rate and
6.4 and 6.5. The

gives the best results.
centerline velocity decay rate can be seen in Figs.

K-¢ model prediction is included in these figures for comparison.

6.4 Tests of the Zonal Model

We have constructed a new model for axisymmetric free shear flows

with Eqs. (5.3.3), (5.3.4) and (6.3.4) and are ready to test the model.

6.4.1 Co-Flowing Jets

It was decided to simulate another axisymmetric co-flowing jet.
The initial condition 1s based on the data of another co-flowing jet of
Antonia and Bilger (1973). This jet has a ratio of nozzle velocity to
free stream velocity equal to 3. Computation was carried out to about
The spreading rate and centerline velocity decay are
6.6 and 6.7,

perimental results 1is obtained for both quantities.

150 8 downstream.

presented in Figs. respectively. Good agreement with ex-

Predictions of the

standard K-&¢ model for the same flow are also shown for comparison.

Although giving reasonable spreading rate, the standard K~-¢  model

fails to predict the velocity decay rate accurately.
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6.4.2 Wakes

Axisymmetric wakes provide a challenge to the present model because
these flows were not used in the determination of the model constants.
Chevray's (1968) wake experiment {s used for this test. The computation
uses the data at x/D = 6 as an initial condition. Comparisons of the
prediction by the present model and experimental data for the spreading
rate and decay rate of centerline velocity deficit are shown in Figs.
6.8 and 6.9. Excellent agreement {s achieved. The standard K-¢ model
underpredicts both quantities; these results are also shown In the fig-
ures. The predicted turbulent kinetic energy and shear stress profiles
at the last measuring station (x/D = 18) are compared with the exper~-
imental data in Figs. 6.10 and 6.11. Good agreement i{s observed with
the present model. The standard ¥-&¢ model, on the other hand, pre-
dicts significantly lower values for both quantities; the low shear
stress 1s responsible for the slow spreading and velocity decay seen in

Figs. 6.8 and 6.9.

6.5 Conclusions

In this chapter, axisymmetric jets and wakes were studied. The
turbulence model for these flows 1s closely connected with the plane
flow model. Vortex stretching was identified as the principal differ-
ence between axisymmetric and plane flows. It reduces the shear stress
and, thereby, the integral parameters of the flow. Incorporation of
this effect into the model required a change of one model constant. The
readjustment of this constant was accomplished as Iin the plane case.
Excellent results for axisymmetric co-flowing jets and wakes were ob-

tained with the present model.

This model reduces to plane flow model when there is no vortex
stretching (S + ®) and can be applied tc general three-dimensional
flows. Tests of this model for three-dimensional flows {s therefore
required. However, in order to do sn, inittial conditions on a plane
normal to the flow directinn must be provided. This requires a set of
experimental data that covers the initial plane. Unfortunatelv, no
rxperimental data presently available give this information. Most of

the data were taken only on two axes. For this reason, this model
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cannot be tested for three-dimensional flows at present. Measurements

L

providing the necessary data for jets and for wakes of noncircular and
nonplanar cross sections are accordingly a next step toward further

generalization of zonal models of free shear flows.
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chapter VII

D ISCUSS ION, CONCLUSIONS, AND RECOMMENDAT IONS

7.1 Summary and Discussion

In this research, we developed zonal models for homopgeneous and
free shear flows. In each case, a linear first-order ordinary differ-
ent{al equation provides a good readjustment between zones. We have,

therefore, not explored more complex readjustment models.

The homogeneous flows were modeled primarily to provide a quick
test of the concept of zonal modeling. Detalls of the zonal models for
three types of homogeneous flows are given in Table 2.1. The homogen-
eous flows show that accurate prediction can be achieved by adjusting
the constants in the standard K-¢ model. The accuracies of the two
types of modeling are indicated in Table 7.1; the differences are based
on the worst point on each curve. These results partially validate the

OPINION by Kline (1981).

Table 7.1

Acccuracy Comparisons for the Predictions of Homogeneous Flows

Worst Point on Curve Percentage of Cases Accurate to the Limit

Agrees with Data Within < 10% < 25% < 50% > 50%
Zonal Models 86 10 4 0
Standard K-g Models 16 16 17 51

The zonal model predicts all free shear flows within the uncer-
tainty in the data. This model 1is given in detail 1in Table 7.2. Com—
parisons of the accuracy of the model of Table 7.2 with that of the

standard K-¢ model are shown in Table 7.3.
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Table 7.2

Summary of Unified Zonal Model for Free Shear Flows

Present Model Standard K-e¢ Model
Cu 0.05 + 0,04 Az , S > 11.3 0.09
CEl 1.44 - 0.4 Al 1.44
C62 1.92 1.92
ok 1.0 - 0.35 Al 1.0
o 1.3 1.3
€
-C (8_1103)
-C 8
Al = 1 -e 8 ’ AZ = ] -e
c = 0.18 , Cs = 0,1
In general,
D Dt
( 1/2/ ) 1/2 1
B = ’ S

Ulm( 1/2/ax)

For steady flows, B8 simplifies to:

U
g = =
Ulm
Table 7.3

Accuracy Comparisons for the Predictions of Free Shear Flows

Worst Point on Curve Percentage of Cases Accurate to the Limit
Agrees with Data Within > 10% > 25% > 50% > 50%
Unified Zonal Model 100 0 0 0
Standard K-g¢ Model 39 25 32 4
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As Tables 7.2 and 7.3 show, the zonal modeling concept not only

succeeds but also provides significant and unexpected results.

First, while the models apply to the "zones" of free shear flows,
it 1s possible to connect these models to yield a single model contain-
ing two non-dimensional parameters. This uniffed model predicts all the
avallable free shear flow data, including plane and axisymmetric jets

and wakes and mixing layers.

Second, the work enlightened us significantly about the underlying
physics of free shear flows and the governing parameters needed to

represent the effects observed.

These gains leave two questions that need discussion. The seman-
tics Introduced initially does not describe the results adequately and
needs improvement. We also need to know whether the physical insights I

are particular to this set of flows or more general.

The semantic question centers on the definition of the word "zone."
We defined a zone to be one or more flow regions which could be modeled
by a single model including particular values of the parameters. In the
homogeneous flows, this description fits the situation precisely; three
types of strains needed three different zonal models. For the free
shear flows, the situation is more complex. Zones representing the near
and far fields were created and linked using a simple readjustment
model. From that point onward, the modeling process almost took on a
life of 1its own. The readjustment from the near to the far fileld
employs a velocity-ratio parameter 8. However, in both pure jets and
mixing layers there 1is only a single value of this parameter (B)
throughout the flow. We found further that the far field of the axi-
symmetric jet 1s well modeled by the plane far-field model. This made
it natural to determine why the near field of the axisymmetric jet {is
not well modeled. Vortex stretching was identified as the probable
cause. Once a parameter, S, accounting for the effect of vortex

stretching was introduced, the unified model emerged.

The free shear flows do not constitute a zone 1{in the sense

initially defined. We ended with three basic models connected by two

parameters. The basic models (the physical situations they represent

ALV %Y%,
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might best be called "flow states"™) do not represent physical regions
but parts of flows with limiting values of the governing parameters B8
and S. In flows in which the parameters vary, the states are connected
by what we originally called readjustments but might better be called

"bridges."

These 1deas suggest use of two sets of words. At an elemental
level, we might speak of a zone and a zonal model for that zone. Such an
elemental zonal model might still have a readjustment region as from an
initial to a final or from a near field to a far field. At a second
level of organization, such as that of the final results for the class
of free shear flows, where a single model containing parameters {is

found, we might speak of a "unified zonal model" for a defined "class"

What about the question of generality of the process? Inspection
of the processes used herein suggests that they will generalize to at
least some degree. The model-construction process is based on a search
for inadequacies 1in existing models, 1dentification of probable causes
and finding simple modifications that model them. This process 1is
likely to succeed as well for other flows; there 18 nothing special
about the free shear flows. The latter were a good choice for this

study, since there 1Is a variety of cases in this class of flows.

This augurs well for the utility of zonal modeling as a method for
creating accurate models of turbulent flows for engineering purposes. It
also provides a tool for increasing our basic understanding of tech-
nically significant turbulent flows. Indeed, the most important result
of this work may be the process suggested rather than the particular

models developed.

7.2 Conclusions

We have shown that the zonal modeling concept can be applied to
homogeneous turbulence and free shear flows. This is a proof of the
concept and provides an indication of what might be expected from zonal
modeling. However, this {s only a very small portion of a much larger
project that needs to be carried out; a great deal remains to be done.
The zonal concept provides a logical framework within which simple and

accurate turbulence models can be developed more easily than the

78

"«'\.’ (9
I( '

! * TN \“&’

ﬁyﬁdkﬂn




It e e A e e i e ahde A e o dieae ME i Bank . Baade  aad eodh Mo 2 — Ty g vy Mt abd adde of D ks ad
S - hading aadh TvTwY - LAl Sak and o 8’ T v od v ol

traditional way. The present research has laid a good groundwork for
the project and we hope that the encouraging results obtained reflect

what can be achleved with more complex flows.

Finally, although we cannot anticipate how far this project will
carry us toward reliable and fast computations of practically important
complex turbulent flows, we are confident that we will be able to

achieve significantly more than has been done in the past.

7.3 Recommendations for Future Work

The followings are suggestions for future work in further testing
the present unified model for other free shear flows, understanding the

physics, and extending zonal modeling to more complex flows.

l. A three-dimensional free shear flow can provide a challenging test
case for the present unified model. However, detailed measurements
on an entire plane must be avallable to start the computation. No
candidate flow has been measured with sufficient detail to meet
these requirements. Therefore, experiments such as elliptic or
rectangular jets with full measurements on a cross section for a

minimum of two stations would be useful.

2. The two physical phenomena parameterized by B and S in the
present model are mainly observed from the experimental results;
the causes of the underlying effects are not understood. More
fundamental research work, either experimental or analytical, that
can address these causes might Increase understanding of the nature

of turbulence.

3. An extension of the present work to the study of free shear flows
with density difference and/or scalar transport, such as heat or
species, would make the zonal model more valuable in practical en-

gineering application.

4. The readjustment parameters are solutions of first-order ordinary
differential equations in the present study. In later development
of the zonal modeling project, a similar format In readjustments
can probably be used in a complex flow-field where patching of
zonal models {s required. This will make the task of creating

zonal models for complex flow flelds easler and more sSystematic.
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*ig. 2.21. Homogeneous plane strain, case 374A in 80-81 Stanford Conference,

dWw/dz = 9 .44, Comparison of zonal model and standard
with experimental data.
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fs Fig. 2.22, Homogeneous plane strain, case 374B in B80-8l Stanford Conference,
P dW/dz = 4 .45. Comparison of zonal model and standard K-g¢ model
with experimental data.
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19
' FORMULATION OF FINITE DIFFERENCE EQUATIONS
:' In this appendix, the finite difference equations for the governing
~. . equations, Eqs, (4.2.3) to (4.2.6) are formulated. We first write the
g governing equations in terms of a first-order system of PDEs. For this
. purpose we introduce three new dependent variables, T(&,n), Q(&,n),
: and W(E,n), so that Eqs. (4.2.3) to (4.2.6) can be written as:
A _ndE, 1 3 (dyy .
5t " E dx T+—1 % (n'V) 0 (A.1)
En
y
": U v
-y RhdE Vo o L 1_t
: U VExT*ET E21T[“ a1y,
, n (A.2)
- i 3T
+ —_
% " (wvt) an
d
L K . ndE . .V T2 1 1 V%
— - — — + - = —_— - —
- P TR OTEY T ezttt T, [Q(“ o i)
o N % (A.3)
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: 3 _yadE Yw = e, I _ £
- e " VEa Y *EY = C ¥ % 77 %% X
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N Recall from Chapter IV that 1 = 0 for plane flows and 1 = 1 for

A

» axisymmetric flows.

a We now consider the grid box shown in Fig. 4.1(b). We denote grid -

points and spacings by

50 = gtarting x-location, 5n+l = En + AEn, n=20,1, 2, ..e (A.8)

P

“.'1 n, =~ 0 41 +An,; §J = 0, 1, oo, J;

n j n_ (A.9)

Ny

and approximate the quantities (U,V,K,¢,T,Q,W) at point (En,nj) by

(U?, V?, K?, e?, T?, Q?, W?). We also define the following midway
™ quantities:
" n+l/2 _ 1 ..n n+l -
N 3 = 2+ e) gy, = (g tngy) (A0
by
- We approximate Eqs. (A.l) to (A.4) at the center of each grid box
b and Eqs. (A.5) to (A.7) at midpoint (gn+1,nj+1/2). Keeping all the
i known quantities (solutions at g= gn) on the right-hand sides, we have
- 1 o+l 1 dE n+1 :
- 2E 417280 (a1 72)" Ugarga — 88000500y /00" i1/ 0 a1y 34172
-
. 1 n+l/2 _ 1 n+1/2 n

+2A€n[(nj+l) Vil (ny)" ¥} ] RIY, /2 (A.11)
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1S In the above equations,
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Expressions similar to Eq. (A.24) apply to Q?+l/2’ "?H/Z’ Q?I}/Z’ and

j+i/2' However, those T, Q, and W associated with V (in Eqs. (A.12) to
(A.14) have an upwind differencing switch in them and are expressed as follows:
T:;'.'l/z het Dj+l/2 [T; + ‘[j-f-l/z('r;l‘"l- Tl;)] i
]
S DJ+1/2)[ Tier = Lys1/2(Tye - T?ﬂ)] (A.26) ‘

where Dj+l/2 is a switching parameter (Dj+1/2 = 1 {s for central differ—
encing and Dj+l/2 = 0 1s for upwind differencing), and

n -n
i+l+l/2 j+l/2 j = 0’ l’ tes J-z

L = .

and (A.27)

Lyyy2 = 0

Again, expressions similar to Eq. (A.26) apply to Qf11+1/2’ “3'+1/2' T;:i/Z' |

Q;r:i /2° and w;':i /2 in those convection terms. The boundary conditions are: N
+1 1/2 1
Gag = Vo » Vom0 T =0

(A.28)
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