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ZONAL MODELS OF TURBULENCE AND

THEIR APPLICATION TO FREE SHEAR FLOWS

Abstract

The concept of zonal modeling is tested by using three homogeneous

flows. Turbulence models are constructed independently for various

zones. A parameter that governs the readjustment of the flow from one

zone to another is introduced. This readjustment parameter reflects the

changes in physics involved in the transition process. The results of

the zonal concept are very promising.

The idea is then applied to the development of improved models for

free shear flows. A close examination of the experimental data of vari-

ous free shear flows is first performed. The standard K-E model is

adopted as a base model since it predicts many flows reasonably well.

Zonal models for well-defined zones are constructed independently by

systematically modifying the standard K-E model to reflect the physics

associated with the zones.

It is found that two governing parameters suffice to classify all

free shear flows considered.and they are therefore used in the present

model. The first parameter represents the ratio of the inertial force

to the driving force of the shear layer or, alternatively, the ratio of

eddy turn-over time to the characteristic free stream time. It deter-

mines the relative importance of the diffusion process in the turbulence

transport mechanism. The larger this parameter, is the more important

the diffusion process of turbulence becomes. The other parameter is a

measure of lateral vortex stretching. Strong vortex stretching reduces

the correlation between turbulent shear stress and turbulent kinetic

energy and hence reduces the spreading rate of the flow.

There are a total of three zones found in the class of free shear

flows; they represent the limiting values of the two governing param-

eters. The zonal models for these three zones are built separately.

They are then blended to allowed readjustments between zones by means of

readjustment parameters that are functions of the governing parameters.

As a result, a unified zonal model for all free shear flows is produced.

This unified zonal model is used to predict five basic free shear

flows. The agreement with data is excellent. Comparisons of model per-

formance are made with the standard K-c model.
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Chapter I

INTRODUCTION

1.1 General Introduction to Zonal Modeling

Methods of simulating turbulent flows can be classified according

to the following scheme (Kline et al. (1981)):

1. Correlations

2. Integral methods

3. One-point closure methods

4. Two-point closure methods

5. Large-eddy simulation

6. Full simulation

As one moves downwards in the list, each method requires more computa-

tional resources but less modeling than those above it; consequently,

one might think it should also be more accurate. However, the higher-

level simulations also require more complex data inputs which are often

not as accurately known. Therefore, a simulation at a given level is

not always more accurate than simulations at lower levels. This remark

applies primarily to levels 2, 3, and perhaps 4. Also, owing to the

tremendous cost of simulating even the simplest flows by means of high

level simulations (large-eddy simulation and full simulation) on present

computers, such simulations can serve only as research tools and not

engineering design tools at the current time.

In the trade-off between accuracy and computation time, one-point

closure methods seem to offer the best compromise for high technology

applications at the present time. The one-point closure category

includes: (i) mixing-length; (ii) one- and two-equation models; and

(iii) Reynolds stress and algebraic stress models; these three approx-

imations are sometimes referred to as yesterday's, today's, and tomor-

row's models, respectively. The latter remark is based on the idea that

this ordering represents a ranking of the quality of the models, i.e.,

that each succeeding model is more exact than its predecessors; this may

not always be the case (see, for example, Kline et al. (1981)).

1



On balancing all these factors, we believe it is better to adopt

the pragmatic view that turbulence models are engineering correlations

in a more sophisticated guise and that the only true test of quality is

performance. Of the models mentioned, Reynolds stress models are still

in the development stage, and two-equation and algebraic stress models

are the most popular ones at present (see, for example, Rodi (1980)).

Two-equation models also have important advantages in flexibility and

range of application compared to one-equation models.

Two-equation models consist of an assumed functional form for the

structure of the Reynolds stress tensor (usually the eddy viscosity

assumption) and two partial differential equations for turbulent kinetic

energy and another turbulence quantity that provides a length scale.

The most commonly used two-equation models are K-c, K-L, and K-w, models

(where K - kinetic energy; c - dissipation of turbulence; L - length

scale; and w - vorticity).

Looking at the results presented in 1980-81 AFOSR-HTTN-Stanford

Conference on Complex Turbulent Flows, we find, for many of the flows

tested, two-equation models gave the best predictions. However, for

others, some of the simpler models, including integral and mixing length

models, were as good or better. Unfortunately, which method is best

varies from case to case. Each of the models in the 1980-81 Conference

required modifications or special treatments for particular flows. No

single model presented was accurate over the wide range of cases used.

Moreover, some computors reported success on some classes of flows fol-

lowed by degradation of the results when attempts were made to extend

the range of flows without change of model or constants.

Although having a universal model is desirable, the preceding para-

graph indicates that no such model exists at present. It also appears

such a model would need to be very complicated and would probably be

difficult to apply. (This opinion is now shared by W. C. Reynolds, who

has been a leading proponent of universal models for some years, private

comunication.) It is our view that models should be closely tied to the

structure of the flow phenomena they are supposed to represent. This

view is shared by many others but has rarely been used as the basis for

models. Since different parts of flow ftelds often have quite different

2
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flow structures, it may be impossible to model all flows, or even all ,)f

A single complex flow field, with a universal model. Furthermore, if we

try to construct a universal model by using one flow to determine one

model constant and another flow for another model constant, we may, to

some degree, "contaminate" the model and render it invalid for either

flow. As a result, the model may not be accurate for either flow. We

aill show below that this "contamination" is stronger than has been

generally recognized for two-equation models.

Since i complex flow field contains several flow zones with differ-

ent physical structures, and since universal closure models are usually

"contaminated", it seems logical to construct models in whic'h each flow

zone is modeled independently. Here we define a flow zone as a distinct

part of the flow field with definable and distinctive phvsical charac-

teriqticq. This point deserves emphasis -- the models are tied to the

local characteristics of the flow, not to the flow as a whole and cer-

• tainlv not to a wide variety of flows. Most flows contain more than one

.one. For example, a diffuser flow with separation (Fig. 1.1) can be

regarded as a composite of six flow zones: (A) the potential core; (B)

the attached boundary layer; (C) the detachment zone; (D) the recir-

culition zone; (F) the free shear layer; (F) the reattachment zone.

With zonal models, we can provide a separate model for each zone. It

should be much easier to construct accurate models for zones than for

the flow field as a whole, and the models can he much simpler than a

universal model would need to be. Equally importantly, there is little,
Va ,

" if any, danger of contamination. Fortunately, there is a limited number

of types of flow zones in flows with engineering application. There-

fore, the task of zonal modeling is large but finite. We believe that

the zonal modeling approach will probably yield accurate engineering

methods more quickly than will a search for a single universal closure

model.

In this approach, the definition of a "zone" must he subect to

pragmatic testing. At the beginning, we select a region we believe as

distinct physis as a candidate zone. We then construct a tnodel f,)r

that zone. If the model works within the desired accliracv, the zone

definition is accepted. However, the process may not end here. The

following possihilities arise:

% . . . . .= ".". .



(a) The region is not adequately modeled. In this case, the zone

my need to be broken into two or more regions each with a

different model; the zonal definition is then narrowed.

(b) The model works not only for the region intended, but for

other regions as well. In this case, the definition of the

zone can be broadened.

Thus in each case, we are guided by the success of the model and not by

our initial guesses. In the end, what is seen as a zone therefore de-

pends strongly on the model used.

For free shear flows, we began by adopting the classic classifica-

tion scheme, that is, jets, wakes, and mixing layers were assumed to be

distinct zones. Since jets and wakes have both planar and axisymmetric

realizations, there are five basic cases. In each case there is a near

field and a far field. This suggests that as many as ten zones might be

needed. In addition, there are co-flowing jets and mixing layers with

variable ratio of the velocities of the two main streams. Given this

range of cases, it was not entirely clear what to select as zones. We

started by assuming the need for a separate model for each flow. In the

end, we found that many cases could be fitted with a single model, so

that there are only three zones in the final model; the classification

was not obvious a priori.

This process sounds awkward; in practice, however, it not only led

to resolution in a reasonable time, but also was instructive in provid-

* Ing information about the basic parameters needed to model free shear

flows and hence about the underlying physics. In the end, we were able

to unify the models to form a single model with two parameters. This

* model is more successful than any we are aware of. We were able to use

linear first-order equations for all the readjustment processes (to be

described later).

If the flow field is decomposed int, zones, as suggested above,
there exist regions between the zones which can he called "readjustment

regions", where the structure adjusts from that if the old zone to that

of the new one. Physically, these readlustments are rransltions from

one type of structure to another. The modelinp of theme readjusteent

.
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regions must reflect this changing physics. Pragmatism requires that,

at least at the outset, we adopt the simplest possible model for the

readjustment regions. It also means that, to minimize the difficulty of

blending, the models tor various zones should have the same form; for

example, they may all be of the K-E type. A linear blending model

.ising a first-order lag equation meets the simplicity criterion; our

expectition is that it may be able to represent most readjustment

regions with reasonable accuracy. Thus far, our expectation has been

fulfilled as will be reported in later chapters. However, we do not4.
rule out the possibility that more sophisticated blending models may be

needed in some cases.

To recapitulate, in constructinR zonal models, we shall be guided

by following criteria:

I . ACCURACY. Fach model should represent the zone it Is designed

for with sufficient accuracy. Acceptable accuracy may vary with appli-

'ation. For the cases of interest to the authors, 5% accuracy in most

integral parameters is a reasonable goal. In other applications, for

example, environmental flows, much less accuracy may suffice.

2. SIMPLICITY. We want the model for each flow zone to be as sim-

ple as possible, consistent with engineering accuracy.

.. UNIFoRMITY. We want the zonal models to be uniform in the

sense that the variables used in each zone should be as similar as.

posqible in order to simplify the zone readjustments. This will also

"elp rto make model development and assessment relatively straightfor-

ward. Two-equation models and, particularly, K-t models, will he

selected as the basis -)n which to build the zonal models; this will
allow maximum advantage to he taken of existing models.

.4. INDEPENIENCE. We want the ability to alter the model in )ne

zone without affecting the models in other zones. This wtIll allow

' ining for each zone separately. It also avoids the "contaminal i )r"

-.. pr -,h ') m disc iss t, above

°. C r 1)% Fo PHYS 1(S5. As ment ined -arlier, t irh>nc,
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has rarely beer. done. There is considerable accumulated knowledge on

flow structures which should be useful in this effort.

6. NEGLIGIBLE NUMRICAL ERRORS. This is not really a modeling

issue, but we need to eliminate uncertainty due to the numerical errors

in computation. This is necessary if one is to evaluate the models ob-

jectively and requires the construction of accurate and stable numerical

methods. At present, adequate numerical methods exist only for some

types of flows and more should become available in the next few years.

1.2 An Overview of Modeling for Turbulent Free Shear Flows

1.2.1 Background for Free Shear Flows

Free shear flows are those flows in which there is no direct effect

of solid boundaries. This class of flows consists of five basic flows;

the mixing layer, and the plane and axisymnetric jets and wakes. As

with boundary layers, these flows have a single predominant flow direc-

tion and hence the shear stresses and diffusion fluxes are significant

only in directions perpendicular to the predominant direction. Further-

more, pressure gradients normal to the predominant flow direction are

usually unimportant. Consequently, the equations governing these flows

are identical to those of boundary layers. For this reason, the free

shear flows and boundary layers are sometimes called thin shear layers.

The free shear flows are all inherently unstable and transition from

laminar to turbulent occurs at Reynolds numbers between 15 and 30 based

on shear-layer width. It is almost impossible to maintain a laminar

free shear flow in the laboratory and all free shear flows of practical

engineering interest are turbulent.

Free shear flows play significant roles in many engineering appli-

cations. Jet engines, jet ejectors, fuel-oxidizer mixing in propulsive

devices, and wakes behind airplanes and submarines are a few examples.

Also, in flows with separation, free shear flow may represent a zone of

the whole flow. Indeed, free shear flow zones are commonly seen in

engineering flows (see Kline et al. (1981)).

Turbulent free shear flows are a good starting point for stlidying

turbulence because they are relatively simple and hence offer a better

6
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chance for understanding. Most of the turbulence structures in engin-

eering flows are not well understood at the present time. When extra

strains, such as the effects of solid walls and pressure or temperature

gradients, are added to the flows, the turbulence evolution becomes more

complicated and more difficult to understand.

In classic theory, power laws describe the downstream variation of

the layer width and the velocity decay with downstream distance for many

free shear flows (see, for example, Schlichting (1979) and Tennekes and

Lumley (1972)). These power laws are exact for laminar flows and are

based on dimensional arguments and the momentum integral equation for

turbulent flows. Although not exact, power laws do provide a guideline

of the behavior of the flows and experimentalists often use power laws

for fitting data.

With present computers, we cannot solve the full time-dependent

Navier-Stokes equations (full turbulence simulation), which are the only

truly univerial "model" for all the turbulent flows, except for very

simple flows. Fortunately, the details of a turbulent flow are rarely

needed; time-averaged quantities usually suffice even when the mean flow

is unsteady. Time-averaged equations are therefore used for most engin-

eering calculations. In the process of time averaging, however, most of

the detailed information contained in the Navier-Stokes equations is

lost and, as a result of the nonlinearity, the time-averaged equations

do not form a closed set of equations. Closure of the set of time-

averaged equations requires a turbulence model describing the Reynolds

stresses in terms of quantities that can be calculated.

1.2.2 Eddy Viscosity Model

Boussinesq (1877) Initiated the concept of eddy viscosity; it is

still widely used in turbulence modeling. He suggested that the effec-

tivP turbulent shear stress, arising from the cross-correlation of the

'luctuating velocities, be replaced by the product of mean velocity

4radli-nt and a quantity called the "eddy viscosity" or "turbulent vis-

rosity". This model resembles the stress-strain relationship in laminar

flow,;. 1nltke the molecular viscosity, the eddy viscosity is not a

property of the fluid. Its value varies from point to point in the

7
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flow, and is largely determined by the characteristics of the turbulence

at the point in question. The introduction of the eddy viscosity

provides a framework for turbulence modeling, but it does not itself

constitute a model; there remains the task of expressing the eddy

viscosity in terms of known or calculable quantities.

The mixing length hypothesis, introduced by Prandtl (1925), has

been a major success in turbulence modeling. It assumes that the eddy

viscosity is proportional to the product of the density, a length scale,

and a velocity scale. For two-dimensional flows, it further assumes

that the velocity scale can be replaced by the product of the length

scale and the mean velocity gradient. This reduces the number of un-

knowns to one, a length scale known as the mixing length. For flows

bounded by walls, the length scale is proportional to the distance from

the wall in regions very close to the wall (inner layer) and to the

layer thickness where the wall effect is small (outer layer). For tur-

bulent free shear flows, the length scale should be proportional to the

width of the layer, but the proportionality constant varies from flow to

flow (see, for example, Launder and Spalding (1972)). There is no way

of predicting the constant for a flow that has not been measured. This

lack of generality is a major drawback of this method.

For free shear flows, the mixing length model assumes constant

length scale across the layer at a given downstream location. Another

class of models assumes the eddy viscosity constant across the layer.
In these models, the velocity scale is taken as the maximum velocity

difference in the layer rather than the product of length scale and

velocity gradient. Generally, the constant eddy viscosity model per-

forms less satisfactorily than the mixing length model. However, the

constant eddy viscosity model allows similarity solutions for which the

problem can he reduced to an ordinary differential equation (Schlichting

(1979) and White (1974)). This was a major advantage when high-

performance computers and accurate numerical methods for solving partial

6 differential equations were not available.

8
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1.2.3 Two-Equation Models

It was not until the late 1960s that differential equations were

used to calculate the velocity and length scales that determine the eddy

viscosity. In these models, the velocity scale is proportional to the

square root of the turbulent kinetic energy which is obtained by solving

a differential equation. If the length scale is prescribed, we have the

so-called one-equation models. Alternatively, the length scale may be

derived from another differential equation; we then have two-equation

models. Several length-scale-determining equations have been proposed.

The one which describes the turbulent energy dissipation rate has been

favored by many researchers. The reason lies in the fact that this

quantity appears in the turbulent kinetic energy equation. This model

is called the K-e model and has enjoyed a great deal of success since

Jones and Launder (1972) first proposed it. Rodi (1972) has used it

extensively in the prediction of free shear flows. Two-equation models

do not require flow-specific length scale information and offer the pos-

sibility of achieving the generality that the mixing length and constant

eddy viscosity models lack. However, the performance of the K-e model

falls short of the desired accuracy. For example, the standard K-E

model over-predicts the spreading rate of an axisymmetric jet by 30-35%

and under-predicts the plane wake spreading rate by nearly 40%. The

reason for the poor predictions of these flows may be contamination. n

the other hand, only slight adjustments are required to improve the

model. Details will be given in later chapters.

This provides the motivation for the present study of free shear

flows. We will apply the zonal modeling strategy to the development of

improved models. We begin with a close examination of the physics of

individual zones and then incorporate as much of what we learn as pos-

sible into the model. The standard K-e model is adopted as a base

model since it predicts many flows reasonably well. Systematic modifi-

cation of the model constants for well-defined zones is performed and

then the zonal models are blended to allow readjustments between the

zones. It is found that one primary and one secondary parameter suffice

to classify and predict all free shear flows considered. The primary

parameter Is the free stream velocity divided by the maximum velocity

9
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difference in the layer; it represents the ratio of the inertial force

to the driving force. This parameter is zero for "pure" jets. It

varies from a small value to infinity in co-flowing jets or wakes. In

mixing layers, this parameter is fixed at some finite value, determined

by the velocity ratio of the two streams, and can take on values from

one to infinity. As this parameter increases, the driving force becomes

smaller compared to the inertial force, it is harder for eddies to pene-

trate into the free stream, and the flow becomes more parallel. In this

limit, the dominant mechanism of the turbulence transport is diffusion.

This effect is simulated by changing two model constants.

The secondary parameter is a measure of lateral vortex stretching.

This vortex stretching reduces the correlation between the shear stress

and the turbulent kinetic energy. For example, the maximum value of

lu'v'I/K is only about 0.23 in axisymmetric "pure" jet, in which vortex

stretching is strongest, while it is about 0.3 in all plane flows. This

effect disappears in far-downstream axisymmetric flows. Change of one

model constant is required to incorporate this effect.

Experiments are the basis of our understanding of turbulence phe-

nomena and provide the data required to fix the model constants or func-

tions. Therefore, they are crucial in the development of zonal models

and readjustments. There are extensive experiments on turbulent free

shear flows. They will be carefully reviewed below.

In Chapter II, the standard "universal" model is reviewed and the

zonal modeling concept is tested on three homogeneous flows. In Chapter

III, a survey of free shear flow experiments is performed. In Chapters

IV and V, a zonal modeling approach is used for the development of the

model for plane and axisymmetric free shear flows respectively. In

Chapter VI, a summary of the new model that brings together the plane

and axisymmetric flows is presented.

10



Chapter II

ZONAL MODELING OF HOMOGENEOUS FLOWS

2.1 Background

Since the introduction of the idea of zonal modeling (Kline et al.

(1981)), many researchers have shown interest in the approach. Others

have criticized it and raised questions. It was not clear whether this

concept would work, although it appeared to have promise. It was there-

fore decided to make a quick test of the idea before initiating a sig-

nificant effort.

Homogeneous flows were selected for this task. Homogeneous flows

are ones in which statistical turbulence quantities are independent of

spatial position and, therefore, functions of time only; they may con-

tain a mean flow with a constant rate of strain. Since nearly all

engineering flows are inhomogeneous, homogeneous flows have little

direct engineering application. Nevertheless, they are simple turbulent

flows and, consequently, it is easier to construct models for them than

for inhomogeneous ones. We shall use these homogeneous flows, because

they provide an easy test of the zonal modeling concept and will lay a

foundation for later development of zonal modeling for more complex

flows.

In this chapter, zonal models for three homogeneous turbulent flows

are developed. These are: homogeneous shear; plane strain; and axisym-

metric strain flows. All of these flows start with isotropic turbulence

as the initial condition. When shear or strain is applied to the flow,

the turbulence begins to depart from isotropy and undergoes a transition

or readjustment to a state which depends on the nature of the applied

strain. After a long enough time, the turbulence reaches an asymptotic

state. These flows can be regarded as consisting of two zones separated

by a readjustment stage; the two zones are the initial isotropic flow

zone and the fully-developed zone. Since homogeneous flows are time-

developing flows, these flow zones occur in time rather than in space.

Although the dimension of variation is different from the flow zones

described in Chapter I, the concept is much the same.

11
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2.2 The Standard K-e Model

Before developing the new zonal models for homogeneous flows, it is

worthwhile to examine the existing "universal" K-c model (see, for

example, Rodi, 1980). In this model, the Reynolds stress tensor is mod-

eled using the eddy viscosity concept:

( Ui jU 2

-uu = ti +-- - 2 6 K (2.2.1)
i V ax ax~ 1 i

The eddy viscosity is given by:

K
2

Vt  = C (2.2.2)

The turbulent kinetic energy, K, and rate of dissipation of the turbu-

lent kinetic energy, e, are governed by the differential equations:

DK I i L~Ui a ' tK
. ... e + l ( K- ) (2.2.3)DVt t ax a a xi a k axi

=a + a e 2 + _L) (2.2.4)t C 1 K a i ax ax i C 2 K ax i 4  a i

where U is the mean velocity in the i-direction. C, C , C ,'k,
and ae are model constants. The first two terms on th rijgt hand

side of each model equation represent production and destruction of the

quantity whose evolution the equation describes. The last terms of

these two equations represent diffusion, which plays no role in homo-

geneous flows.

Values of CP - 0.09, C! = 1.44, C = 1.92, ak = 1.0, and
-1 e2and a - 1.3 are widely used for the model constants. For reference,

we shall call these the "standard values" and the model equations with

these values the "standard K-c model".

The five standard values of model constants were determined as fol-

lows:

a . :E2 In homogeneous grid turbulence, diffusion and production

are zero so C is the only constant that plays a role in Eqs. (2.2.3)

and (2.2.4). From the measured rate of decay of turbulent kinetic

12
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energy, C 2 can be determined and is found to lie in the range 1.8 to

2.0; as noted above, 1.92 is the most commonly used value.

2. C In local-equilibrium shear layers, production and dis-

sipation are essentially equal, and Eqs. (2.2.1) and (2.2.2) can be com-
2

bined to yield C, =  (u u2/K) . Measurements show that -u u 2/K 0.3

in these flows, so that C, = 0.09.

3. C, In near-wall regions of boundary layers, the velocity

profile is nearly logarithmic, production is approximately equal to

dissipation, and the convection of dissipation is negligible. In this

situation, Eq. (2.2.4) reduces to

2
C C K

CI
C =C -C_

1 £2 a/C

C P
where K = 0.41.

4. Finally, the diffusion constants ak and a. were assumed to

be close to unity and they were tuned by computer optimization. C2

is then obtained from the eequation above.

Note that at least three different types of flows (homogeneous grid

turbulence, equilibrium free shear layer, and boundary layer) were used

to determine the model constants. This use of different flows causes

the type of contamination described in the introduction. The standard

K-e model probably predicts boundary-layer flows better than other

flows because two of the model constants were set using data from

boundary-layer flows. However, the standard model, although widely

used, cannot be expected to work well "universally". We shall assess

how well (or badly) it does for a number of flows and several variables

in this work.

Applied to homogeneous flows, Eqs. (2.2.3) and (2.2.4) reduce to

i jffi --a !,)a (2.2.5)
dt 't ax a x I  ax

au au au 2
d C t + - C C (2.2.6)

dt k at axax 2 k
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and only three model constants. CP and C remain in the

equations. Note that the physics from which C and C.1  were deter-

mined are not appropriate to homogeneous flows. Therefore it is ques-

tionable whether the standard K-c model is acccurate for such flows.

In fact, its performance for the homogeneous flow cases in the 1980-81

Stanford Conference was not good. Some examples of the performance of

this model for homogeneous flows will be given later.

In the present study, zonal models for homogeneous shear flow,

homogeneous axisymmetric strain flow, and homogeneous plane strain flow

are constructed as described below. The inputs used to build the models

came from the full turbulence simulations by Rogallo (1981) and Lee and

Reynolds (1985). These zonal models perform considerably better than

the standard K-c rodel in predictions of these flows, since they have

been tuned for these iows.

2.3 Zonal Models for Homogeneous Flows

2.3.1 Homogeneous Shear Flow

Homogeneous sheared turbulence is a flow in which initially iso-

tropic turbulence is subjected to a mean shear flow. After application

of the shear, the structure of the turbulence becomes anisotropic. The

flow gradually adjusts to the shear and, after a long enough time,

appears to reach a fully-developed or asymptotic state in which the

physics no longer changes. This flow can be regarded as consisting of

two flow zones connected by a readjustment stage. The two zones are the

isotropic initial flow zone and the fully-developed shear flow zone.

These two flow zones occur in the time domain. Between these two time

periods is the readjustment stage where the change of physics takes

place. The readjustment ts the most interesting part of this flow and

the part to which most of our attention will be devoted.

In shear flows, the strain tensor is

rij /2 0 (2.3.1)
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where ra - dU/dy is the shear rate. The most important Reynolds

stress component is u Iu2. Initially, in the isotropic state,

~2
uu - 6 K (2.3.2)
i j 3 ii

i.e., u " I u2  0, and in the fully-developed state,

u 1u2 - -0.32K (2.3.3)

222
where K - (u2 + u + u )/2 is the turbulent kinetic energy. Equation

(2.3.3) correlates the experimental data extremely well. No modeling is

needed for the other components of the Reynolds stress. We shall there-

fore adopt this as our model for the fully-developed state.

In the readjustment region, we shall assume that U IU2  can be

.represented by a simple blend of the initial and final states:

u 1u2 = -0.32 X K (2.3.4)

where X is the readjustment parameter utilized to model the change of

physics. It is defined to have the range 0 > X > 1.

In line with the philosophy of simplicity expounded in the intro-

duction, we shall assume the readjustment parameter obeys a first-order

lag equation, specifically, X is determined by the first-order ordi-

nary differential equation:

dX
-- = b r (1 - x) (2.3.5)
dt s s

where bs  is a dimensionless constant. This choice of lag equation

makes the rate of change of the physics greatest for small X. This

behavior accords with observation. The solution to Eq. (2.3.5) is

-b r t
X I - e s s (2.3.6)

By fitting the experimental data from Case 376A of the 1980-81 confer-

ence, it is found that

b - 1.5 (2.3.7)
5
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The model equation for K can be written, with the help of Eq. (2.3.4),

as

dK - 0.32 ir K - c (2.3.8)
dt s

The first term on the right hand side is the rate of production of kin-

etic energy. When X - 0, the production term vanishes and Eq. (2.3.8)

reduces to a form appropriate to isotropic flows. When A = 1, Eq.

(2.3.8) models fully-developed shear flows.

Following the form used in the standard K-c model, the c model

equation can be written as

2

,- C 0.32 r c - C - (2.3.9)
dt C s E K

*1 2

Fitting Rogallo's (1981) full simulation, we find

C - 1.406 (2.3.10)
C1

and

C£ - (2.3.11)E 2 6

This value of C has some analytical underpinning and is favored by
E2

Reynolds (1976). When X - 0, Eq. (2.3.9) reduces to the model for the

decay of isotropic turbulence (see Reynolds (1976)), and as A is in-

creased from zero, the production of dissipation term (the first term)

increases.

The Reynolds stress model, Eq. (2.3.4) and the K and E equa-

tions (2.3.8) and (2.3.9), together with the equation for the readjust-

ment parameter, Eq. (2.3.6) constitute the zonal model for homogeneous

shear flows with isotropic initial fields. When X - 0, the system

reduces to the model for isotropic flow and, when X - 1, to the fully-

developed shear flow model. As X moves between zero and unity, the

system undergoes a transition from one form to the other and allows an

adequate readjustment from one zone to the other. Results obtained with

this model will be given below.
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2.3.2 Homogeneous Axisymmetric Strain Flow

Again, in this flow the initial velocity field is Isotropic turbu-

lence. At time t = 0, it begins to be stretched in one direction and

compressed equally in the other two directions. This axsvmetric

strain causes anisotropv; turbulence fluctuations in the stretching

direction are reduced while those in the compression directions are

increased. This 's a result of the vortex filaments aligning with the

stretching direction. After the strain is applied for a sufficient1y

Sloner time, the Reynolds stress reaches a fully-developed ;triict,re.

Between the initial and asYmptti states, the Reynolds stress under.oes

a transition from one type of structure to the other. Again the- time

historv can be decomposei into two zones separated by a readitisntnt

stage.

The strain tensor for axiiyrmetric strain is

2 -r~ 2)2.
a

,dhere- F L I i , the strain rate. The Revnolds stress In the is-

.t roipi- state is !iven 2." ,q. 2.1.2). After the tiirbulence indergoes
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The behavior )f 4, the read j.t-ent parameter. Is again ot4umed

to e described by a ftrst-order lag equit tori

"-t ba;a 7 - .) '2. .19)

A t a a

where b , ,; a constant which need not be t he stme as b ,Of Eq.

2. I.S). The .oIlit )fl to Eq. I . . f ) %

F it I ng Riza l,'s -,,i , M, I' im T' 1:' 40- f!nd t hd t.t - 2.3 l.1 )
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I
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2. 1.3 Homogeneous Plane Strain Flow

In this flow, the initially Isotr,)pic flow field is stretched in

one direction and compressed in a second direction, with the third

direction being neither stretched nor ,-ompressed. The f luct uat ions

diminish in the stretching direction and increase in the compress in

direction whil- remaining close to 2K;3 in the neutral direc rion.

.ventuIallv, the Revnolds stress approaches a fully-developed structure.

- Thu s, th two-zone concept in the tine domain applies to this flow.

The -train tensor for plane strain is

I"'.P

_ r p-) 2. .,2

0A rJ

-~where rF dW'dz -- dV'lv is the strain rate. We -an model the tinrma,

Revnolds stresses (or the component energies) by

K

uI 
r -

, . . + 2 2. 1. )
K 3 K

a + a r-
I 2  p

K
r -

--

+ - 1) 3.:~
K

a I + a -rp

U 2,.'. . . . . - (2.3.2 5

K 3 3

where and a-, are cons t ants, and 0 ( I is the read j s. rt ent
lea '1parameter. A.s in the above two flows, X is found from a first-.)rdo,

* linear ordinary Aifferenttal equation:

-- = b r (I - )(2. ,..]'
dt p p

with the solltio
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-b r t
- - e P p  (2.3.27)

The constant bp may be different than in the other flows. Note that,

in this case, unlike the previous ones, for fixed total strain r pt,

u 2 and u2  vary with the dimensionless strain rate r K E while u2

is independent of the strain rate.

To determine the three constants, a,, a2 , and b in the model,

we used the following procedure:
2

1. By fitting the data of u 3 ,K from Lee and Reynolds ( 1995)

tull simulation, it is found that

b - 1.1 (2.1.29)- p

2. From rapid distortion theory for plane s4train, Batchelor and
z -22

Proudman (1954), both u2 and u2  tend to approach K for large values

Of rpt when Ip is large. This is because, under these conditions,

the vortex filaments align with the stretching direction so rapidly that

the component energies in the other two directions each share half of

the total energy 2K. This yields:

a2  k "..3.29)

3. Finally, by fitting Lee and Reynolds' (199S) data for u2  ,

the component energy in the compression direction, it is found that

a a 26.3 (2.3.3o)

With the developed normal stress functions, Eqs. (2.3.21), (2.3.24), and

(2.3.25), the two model equations f.or K and t can be written as

K
dK '4 P

- r . . . . . . . K - 2.3 i)
dt 3

a + a 7 K
1 2 pE

and
K

r 2
dc C , p E (2.p C )

dt c l C a 2 K C K
Ip(3 a+ a r 2

1 2 p
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Fitting the full simulation data of Lee and Reynolds (1985), we obtain

C - 1.75 (2.3.33)
L

and

C 1i (2.3.34)6

Thert-fore, the zonal model for the plane strain consists of the model

equat ions (2.3.31) and (2.3.32) the Reynolds normal stress functions,

Eqs. (2.3.23), '2.1.24), and (2.3.2"), and the readjustment parameter,

Eq. (2. 3.27).

-. 3.4 Summarv

In summarv, the modal constants b, C , and C for the three

zonal models developed here are tabulated as below. The constants C I

ind " in the standard K-P model are also included for comparison.

Note that the .-model equations (2.2.6), (2.3.9), (2.3.19) and (2.3.32)

ar-. al' wrttLen in a consistent form:

-- - ( - C --dt ,K K
[ 2

where P - - u S Is the production rate of turbulent kinetLic

energy.

Table 2.1

Comporison of Model Constants (Homogeneous Flows)

9tandard Zonal Model
k - Model Homogeneous Homogeneoug Homogt'nenus

Shear Axisymmetric Plane

Flow Strain Strain

Lag ons, int
1h 1.5 1.14 1.1

C 1.44 1.4()6 ?•! 7 )

1.9 1.911lA
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Note that, although our models are simple, they apply strictly only to

cases in which one fixed type of strain is applied to initially iso-

tropic turbulence. More complex cases, such as those with initially

anisotropic states or strains which vary with time may not be amenable

to treatment by these models. However, as our purpose is to demonstrate

the inadequacy of the standard K-c model and the validity of the zonal

concept and not to develop a general model of homogeneous flows, these

are not serious deficiencies for our purposes. Certainly, a universal

model would be valuable but, as noted earlier, it would also need to be

much more complicated. This is the trade-off we intended to make; we

give up hope of universality for simplicity while maintaining accuracy.

2.4 Results and Comparisons

Due to the nature of homogeneous flows, there is no convection or

diffusion of turbulence. This fact allows reduction of the model equa-

tions from their normal partial differential equation form to a much

simpler ordinary differential equation form. These model equations can

he easily solved by numerical integration.

Thp Runge-Kutta fourth-order integration scheme seems ideal for

this integration, and is used in the present study. This scheme is of

jzh acc iracv so that numerical errors are eliminated and the true per-

formanct- of the model can he evaluated. The three zonal models for

homoleneous flows described above are tested. The results obtained are

Domared with those predirted by the standard K-E model. Test cases

are r)ro..ided by Rogallo's (1981) and Lee and Reynolds' (1985) full simu-

lations, aind the experiinent; accepted for the 1980-81 Stanford Confer-

,nce ('fine et al. (1991)).

2.4. I Homn4 eous Shear Flows

' 1 s_ Fii: I Simul at Ion

,, lo s 1% ) ful I I i nilat I.)n of h,)mogeneous, shear flows were

j ,, t, test both the zonail mo~dI and the standard K-> model. The

ir' shown In Ff 's. 2.1-2.4 for various shear rates and viscosi-

tfes. The Inittal tiirhilence of the fill ;imulatIon is unrealistic

(,indov,.& ,peptd 4,otropi.s field, squar. ;pectrkim), anid it takes time for

-. ,.-. " . d. e' . .. ,



the simulation to develop a realization of real turbulence. Therefore,

the prediction of these flows by both models was begun at the third

time-step of Rogallo's data. Also, the last data points of the full

simulations are unreliable. This is because the eddy sizes grow with

v time, and when they approach the dimension of the box used in the

simulation, the periodic boundary conditions used by Rogallo become

invalid. For each case, twice the kinetic energy (i.e., 2K) and

Reynolds stress -uIu 2 vs. time are plotted in Fig. (a) and dissipation

level e vs. time in Fig. (b). For all cases, the zonal model predic-

tions agree satisfactorily with the full simulation data. On the other

hand, the standard K-e model predictions of the three quantities all

grow too fast. The assumed functional form of the Reynolds stress for

the K-e model, i.e.,

2
CK dU

1 2 cis dy

is responsible for the overprediction of the growth by the K-c model,

because, at the given levels of K, c, and dU/dy, this Reynolds stress

function gives

S-uU > 0.32 K

1 2

which makes the production rate too high and hence overpredicts all the

three quantities.

2. 1980-81 Conference Cases 376A and 376B

The zonal model and the standard K-E model were both employed to

predict the two homogeneous shear flow cases (376A, 376B) from the 1980-

81 Stanford Conference. The results are shown in Figs. 2.5 and 2.6,

respectively. The zonal model agrees quite well with the experimental

data for both cases. The standard K-c model underestimates K and

- u Iu2  for case 376A and overestimates them for case 376B. The

Reynolds stress function again sepms to be the source of the under/over

predictions by the K-c model; the predicted values of -ulU 2  are

considerably smaller and greater than 0.32K for cases 376A and 376B,

respectively. This violates the established result that - UU2
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0.32K. In the zonal model for the shear flows, however, -u Iu2 = 0.32K

is explicitly built into the Reynolds stress function.

2.4.2 Homogeneous Axisymmetric Strain Flows

Eight cases of Rogallo's (1981) full simulations of homogeneous

axisymmetric strain flows with various strain rates and two different

viscosities were used for testing the zonal model and the standard

K-c model. Figures 2.7-2.14 compare the predictions of both models

with the full simulation. For each case, Fig. (a) shows the total and

component energies of the turbulence vs. time and (b) the dissipation

rate. The zonal model performs quite well for the whole range of strain

rates. For the low-strain-rate cases, the standard K-e model accu-

rately predicts K but not the component energies. The dissipation

level is also incorrect since it must compensate for the erroneous pro-

duction rate. When the strain rate is high, the K-c model can no

longer provide accurate prediction of K. It is obvious that the

assumed Reynolds stress function in the K-e model is incorrect for

these flows.

No appropriate experiment for this type of flows is available from

the 1980-81 Stanford Conference to test the zonal and K-c models.

2.4.3 Homogeneous Plane Strain Flows

1. Lee and Reynolds' Full Simulation

Lee and Reynolds' (1985) simulation provides six cases of plane

strain flows with the strain rate varying from 0.65 sec1 to 100 sec •

The zonal and standard K-c models are tested against these data. The

results of total and component energies and dissipation vs. time are

presented in Figs. 2.15-2.20. The zonal model predicts the flows accu-

rately over the entire range of strain rates simulated. The K-cImodel, however, does not perform well in any case, especially for high

strain rates; the component energies are all seriously in error. When

strain rate is high, the smallest component energy (in the stretching

direction) even becomes negative, which is physically impossible. This

again suggests that the K-c model Reynolds stress function is not

suitable for plane straining flows and further reinforces the remark on

"contamination" in the introduction.
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2. 1980-81 Conference Cases 374A and 374B

Two plane strain flows, cases 374A and 374B, in 1980-81 Stanford

Conference were used to further test the zonal and K-c models. The

* results of the total and component energies vs. time are shown in Figs.

2.21 and 2.22 for these two cases. Contrary to the previous flews, the

K-c model performs slightly better than the zonal model for case 374A

and about equally well as the zonal model for case 374B. One possible

explanation is that the initial conditions of experiments are aniso-

tropic which makes the initial production rate not equal to zero while

the zonal model starts with isotropic flow field and zero initial pro-

duction rate. Furthermore, a more careful study of the experimental

data indicates that the Reynolds stress structure in the experiments is

much different from that in Lee and Reynolds' simulation.

No model can simulate discrepant results for a single physical

situation. The problem in this case is that the experimental data and

. the full simulation are in disagreement. It is hard to explain this

difference. This clearly needs more attention. Until this problem is

resolved, these data cannot provide a reliable check on model perfor-

mance. We used the full simulations to set the model and are therefore

unable to predict the experimental data. The reverse could have been

the case, i.e., if we used the experimental data to set the model, we

would fail to predict the full simulation results.

2.5 Conclusions of the Test

The study of zonal models for homogeneous flows, which was meant to

test the zonal modeling concept and to lay the ground-work for models of

more complex flows, has proven a success. The results presented above

show that zonal models perform far better than the standard K-c model

in all usable cases. The improvement is largely due to zonal models

being able to avoid "contamination" of the flow physics; of course, the

extra degrees of freedom which the zonal concept offers make it much

easier to obtain accurate fits to the data. A good model should reflect

the physics; the Reynolds stress representation is the tool for accomp-

lishing this. The physics is not universal. This is reflected by the

inability of the Reynolds stress function in the standard K-c model to
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fit the range of flows considered. This is the major drawback of the

standard K-c model, at least for these flows. With the zonal approach,

on the other hand, we can incorporate more physics of each zone into the

model by constructing a Reynolds stress function which represents much

of the physics of that zone. Although this requires more work and a

careful study of each flow zone, it can be done once and for all. The

gains obtained by whis work are obvious. As can be seen in this chap-

ter, the Reynolds stress functions are different for the three homogen-

eous flows and the ability to incorporate this is the strength of the
zonal approach.

Furthermore, the zonal model has the ability to adjust from one

zone to another via a blending parameter governed by a lag equation.

The addition of a lag equation provides one more degree of freedom.

Physically, the lag equation allows adjustment of the physics as the

flow changes its structure. This is one of the most attractive features

of zonal models. In this connection, it is worth note that the various

K-e models, including the standard model, as presented in the 1980-81

Stanford Conference, all use constants set for equilibrium situations in

homogeneous flows, boundary layers, and free shear layers. As a result,

all these methods perform badly for situations where flows are far from

equilibrium and in the readjusting regions that carry the flows back

toward equilibrium. An example is the boundary layer downstream of a

reattaching free shear layer, as occurs in the backward-facing step.

Some additional degree of freedom in the models is therefore apparently

necessary for K-c type models if they are to provide good prediction

for nonequilibrium and readjusting flows. The zonal approach as used in

this study supplies the necessary degrees of freedom; thus the use of a

"readjustment model" is not merely an artifice that allows fitting, but

is rather a necessary step in modeling the physics accurately.

In summary, the three zonal models in this chapter were constructed

systematically. They all consist of a specific Reynolds stress func-

tion, a first-order lag equation, and two model equations which have the

format of the K-c model equations. The results suggest a promising

future for the zonal modeling concept.
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Chapter III

A REVIEW OF FREE SHEAR FLOW EXPERIMENTS

3.1 Preliminary Remarks

In this chapter, turbulent free shear flow measurements are re-

viewed. Numerous free shear flow experiments have been performed. How-

ever, the agreement among experiments on the same flow is rather poor in

some cases, particularly with respect to the turbulence data. Since

these data are to be used in constructing models and tuning model con-

stants, it is essential to justify the available data and to identify

which are reliable.

There are some reviews of free-shear-flow experiments available --

for example, Newman (1966) and Harsha (1971). However, they are limited

to earlier data whose accuracy is not known. Moreover, they deal mostly

with mean-flow quantities; very few turbulence quantities were examined.

Rodi (1972) made a more thorough study of free-shear-flow experiments

for his modeling work. He reviewed both mean and turbulence quantities

for a wide range of flows. In a later publication, Rodi (1975) provided

another detailed but similar survey. However, it has been more than a

decade since Rodi's last review. Many more data have recently become

available. Furthermore, Rodi's reviews contain no experiment that

covers both the near and far fields or a wide range of the ratio of

velocity difference to free-stream velocity. The details of turbulence.1

evolution in this whole range are not clear. Such information, however,

is very important in turbulence modeling; this provides the motivation

of the present review.

Experiments on five basic free shear flows are reviewed in this

chapter. These flows are plane jets, plane wakes and mixing layers,

axisymmetric jets, and axisymmetric wakes. "Pure" jets (jets issuing

into stagnant surroundings) and co-flowing jets are considered sepa-

rately.

In addition to global parameters, such as the spreading rate and

the centerline velocity decay rate, we shall consider the profiles of

the streamwise mean velocity, turbulent kinetic energy, and turbulent
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shear stress in this chapter. Since the turbulent shear stress is the

most important Reynolds stress for thin shear layers, it will receive

particular attention. (Recall that it determines the model constant

Cp in the K-e model.)

In this survey, power laws serve to correlate the data. The momen-

tum integral equation provides a relationship between the characteristic

velocity and the width of the layer and is used as an internal consis-

tency check. Moreover, given the streamwise velocity profile, the

transverse velocity and turbulent shear stress can be found from the

continuity and momentum equations. This provides a check on the shear

stress measurements. There is no easy way, however, to validate the

turbulent kinetic energy data except by comparing the profiles from

different experiments. The rate of dissipation of turbulent kinetic

energy is rarely measured. Even if measured and reported, the uncer-

tainties are large and difficult to estimate. Therefore, the dissi-

pation rate is not examined here.

3.2 Plane Free Shear Flows

3.2.1 Jets

Many experiments have been performed on plane Jets. We shall con-

sider some of the well-recognized ones. Heskestad (1965) and Gutmark

and Wygnanski (1976) measured Jets issuing into stagnant surroundings

* ("pure" jets). Bradbury (1965), in order to reduce the measurement

errors near the edge of the jet, had the jet exhaust into a slow-moving

airstream. Although this co-flowing jet departs only slightly from the

self-preserving "pure" jet, its spreading rate is considerably lower

than that of a "pure" jet. Bradbury and Riley (1967) carried out co-

flowing jet experiments with various ratios of free stream velocity to

jet exhaust velocity.

An empirical formula for the streamwise velocity profile (Bradbury,

1965) fits the data for all velocity ratios quite well:

U t*

U 1 f(n) exp [_0.6749n2(1 + 0.0269n ) (3.2.1)UIm

where
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U 1  = U - U (3.2.2)

is the velocity excess, and

l =  _ _(3.2.3)
- 1/2

U. is the free stream velocity, Ulm is the maximum value of U1

(which occurs at the centerline), y is the distance from the center-

line, and 61/2 is the half-velocity width (the y value at which U1 -

Ulm/ 2 ). In their "pure" jet experiments, Heskestad and Gutmark and

Wygnanski reported profiles that have a slightly less rapid approach to

the free stream velocity. However, the differences are too small to be

significant. Furthermore, Eq. (3.2.1) also represents the self-

preserving profiles of axisymmetric jets (Bradbury, 1967), and wakes

(Townsend, i956) with only small discrepancies. We shall therefore use

this formula for all the jet velocity profiles.

Co-flowing jets have significantly different characteristics than

"pure" jets although the "pure" jet is a limiting case of the co-flowing

jet. We shall examine co-flowing jets separately.

Pure Jets

Jets issuing into still surroundings become self-similar after the

potential core disappears. The mean velocity reaches self-similarity

much earlier than the turbulence quantities. How fast this takes place

depends on the nozzle condition. In the self-similar region, the jet

width and the centerline velocity obey power laws. The virtual origin

differs from experiment to experiment. Heskestad and Gutmark and Wyg-

nanski suggested that

d61/2 - 0.108 * 0.003 (3.2.4)

dx

and

d(J/U2)
Ile 0.16 (3.2.5)dx

where
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J - 2 dy  (3.2.6)

J is the momentum flux and is the invariant for a pure jet by virtue of

the momentum theorem. Equations (3.2.4) and (3.2.5) are also in excel-

lent agreement with the review of experiments by Rodi (1972).

The turbulent kinetic energy and shear stress profiles of various

experiments are compared in Figs. 3.1 and 3.2 respectively. The agree-

ment is within the uncertainty of the data. Among them, Bradbury's

(1965) data are particularly favored by Rodi (1972). The shear stress

can be obtained by solving continuity and momentum equations assuming

the correctness of Eqs. (3.2.1) and (3.2.4); the result is also shown in

Fig. 3.2. It agrees well with Bradbury's and Gutmark and Wygnanski's

Idata. Heskestad's data, on the other hand, show a 15% lower peak value

of the shear stress profile; these data are not consistent with the

values calculated using his own velocity profile (see Fig. 29 in

Heskestad, 1965). We conclude that Heskestad's data are less reliable

than those of Bradbury or Gutmark and Wygnanski.

Co-Flowing Jets

A jet issuing into a uniformly moving stream cannot be self-similar

because U./Ulm varies with x (Townsend, 1956); therefore we are

interested in the streamwise flow development. To our knowledge, only

*Bradbury and Riley (1967) reported co-flowing jet measurements cover-

ing a wide range of velocity ratios. They showed, using dimensional

arguments, that the co-flowing jet approaches the behavior of a self-

preserving "pure" jet as (x-xo )/ + 0 and a self-preserving wake as

(x-xo)/O + -. They verified these results experimentally. Here, X0

is the apparent origin of the flow and is the only influence the nozzle

conditions have on the flow and 9 is the momentum thickness of the jet

defined as

5- 1) dy (3.2.7)

The limiting behaviors were also suggested by Townsend (1956).
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Bradbury and Riley reported that the data can be correlated in two

limiting cases as follows. In the limit (x-x0 )/e 0,

612 a 0.109 o(3.2.8a)

and U 2

G 0.16 0 (3.2.8b)

IIm

In the limit (x-xo)/O + -,

2
(51/2) 0.1 6 o (3.2.9a)

and

(.) (3.2.9b)

N"ote that Eqs. (3 .2 .8 a) and (3.2.8b) reduce to Eqs. (3.2.4) and (3.2.5)

as UM + 0; this shows that, in the early stage, a co-flowing jet

behaves similarly to a "pure" jet. In addition, Bradbury and Riley

provided the width and centerline velocity excess versus downstream dis-

tance in a dimensionless form that collapses all the co-flowing jet data

except for the initial developing stage, cf., Figs. 3.3 and 3.4.

With the mean velocity profile represented by Eq. (3.2.1), the mo-

mentum integral equation, Eq. (3.2.7), becomes

~1 1/2

--1/2 Ulm) 12 + 61/2 U 1M I = 0.5 (3.2.10)

where

In a f fndn (3.2.11)

Equations (3.2.10) and (3.2.11) provide a relationship between the jet

width and the centerline velocity excess. In the limit (X-Xo)/e + 0

(self-preserving "pure" jet), the first term on the left-hand-side of

Eq. (3.2.10) dominates. On the other hand, in the limit (x-xo)/e + -

(self-preserving wake), the second term dominates. Therefore, Eq.

(3.2.10) becomes

31

1 01'



2
1/2 (: ) 12 - 0.5 (3.2.12)

and

"" 61/2 Ulm
.. 1 = 0.5 (3.2 .13)

respectively, in the two limits.

Equations (3.2.8) and (3.2.9) satisfy Eqs. (3.2.12) and (3.2.13),

respectively, within 2%, providing a consistency check. Furthermore,

co-flowing jet data given by Bradbury and Riley also agree with

Eq. (3.2.10) within 2%.
.1*I

Neither turbulent kinetic energy nor shear stress profiles were

reported by Bradbury and Riley. However, the eddy Reynolds number

defined by

y dy

R - 6 1/2Ul (3.2.14)

was ~~~f tauae.T / 3 V) a y

was tabulated. The only conclusion that can be drawn from the eddy

Reynolds number data is that, when going downstream in a co-flowing jet,

the shear stress level (normalized by U2 ) increases to an asymptoticIm

upper limit equivalent to far-field wake flows. This indicates that a

far-field co-flowing jet behaves similarly to a far-field wake. These

results will help us clarify the controlling physical parameters in free

shear flows.

3.2.2 Wakes

Plane wake experiments include those behind flat plates, those

behind circular cylinders, and some intermediate cases. Although the

near fields of wake flows depend heavily on the initial conditions,

i.e., the shape of the body that generates the wake and whether or not

there is vortex shedding, the far fields display a universal asymptotic

self-similar state. Townsend (1949) measured a wake behind a circular
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cylinder and claimed that self-similarity is achieved 500 diameters

downstream of the cylinder. The centerline velocity deficit at the last

station was about 3% of the free stream velocity. A complete set of

turbulence measurements was reported. However, Townsend's data were

• taken only in the far-field asymptotic self-similar region. They do

_ not, therefore, provide any information on the evolution of the flow

into the asymptotic state. Chevray and Kovasznay (1969), Andreopoulos

and Bradshaw (1980), and Ramaprian, Patel and Sastry (1982) investigated
- * the wake of a flat plate. Their measurements were made in the near

field; the centerline velocity deficit at the last measurement station

is at least 20% of the free stream velocity. An analysis of the momen-

tum integral equation similar to Eq. (3.2.10) and examining the size of

the terms show that these flows are not near the far wake asymptote.

p" More recently, Pot (1979) studied the flat plate wake flow from the

trailing edge of the plate to a location sufficiently far downstream

-1 that the far wake asymptote is clearly reached. He reported all the

turbulence data necessary for the present study. Pot's data set and

that of Townsend will be examined here.

The far-field velocity profiles of Townsend and Pot are well ap-

A proximated by Eq. (3.2.1) when U1  is taken to be the velocity

deficit U - U. Velocity profiles at the last few stations of Chevray

and Kovasznay, Andreopoulos and Bradshaw, and Ramaprian, Patel and

Sastry all agree with this empirical formula although their experiments

were not carried far enough downstream to fully reach the asymptotic

*state. This indicates that the mean flow quantities settle down to a

self-similar stage much earlier than the turbulence quantities, as has

been found in a wide variety of other flows.

Pot's far-field data suggest
J.

- 0.1 o (3.2.15)

and
2

Ux -x
" 0.43 0 0 (3.2.16)

Im
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These equations agree with (3.2. 9a) and (3.2.9b) which describe the

behavior of the far-field co-flowing jet. This again confirms that far-

field wakes and far-field co-flowing jets have common characteristics.

A spreading parameter defined by

U d61/
sp = d1/2 (3.2.17)

U ImdxUlm

is 0.103 according to Eqs. (3.2.15) and (3.2.16), compared to a value of

0.098 reported by Rodi (1972) from Townsend's data. The 5% difference

is within the uncertainty of the data.

The counterpart of Eq. (3.2.10) for wake flow is

61/2 / um 2 +6112 U1I
- /2 l )8 12 + 0  U I = 0.5 (3.2.18)

Pot's wake width and centerline velocity deficit data were checked

against Eq. (3.2.18). The agreement is excellent (within 3%) except at

the first two stations where the velocity profiles are not close to the

self-similar form.

It is clear from Pot's data that both the turbulent kinetic energy

and shear stress (both normalized by U 2 ) increase with downstreamIm)  ireswihdwsra

distance to the asymptotic far wake values. Figure 3.5 shows the maxi-

mum shear stress and maximum kinetic energy in the layer as functions of

downstream distance. The far-field shear stress level is between 0.05

and 0.053, which agrees well with Townsend's value (0.051). Moreover,

using 0.103 for the spreading parameter defined by Eq. (3.2.17) and the

velocity profile, Eq. (3.2.1), the shear stress can be derived from the

momentum equation. The resulting maximum shear stress is about 0.053

which agrees with the data from both sources. The far-field kinetic

energy level is about 0.18 in Pot's data and less than 0.14 in Town-

send's data. It is hard to justify the discrepancy between these two

data sets. However, we tend to believe Pot's data, for the following

reasons. Firstly, Pot's experiment is much more recent, and his equip-

ment is more modern. Since much has been learned about hot-wire error

control during the intervening period, he should get more reliable

results. Secondly, all known plane shear flows have lu'v'!/k 0.3 in
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%i the equilibrium region. In Townsend's data this ratio become 0.5, while

for Pot's data it remains at about 0.3. Thirdly, similar experiments

performed by Uberoi and Freymuth (1969) and Thomas (1973) suggested that

Townsend's values of u' are too small.

3.2.3 Mixing Layers

The turbulent plane mixing layer is one of the simplest shear

flows. However, complete understanding of the structure of this flow is

still far from complete although the general features of the flow were

established by Liepmann and Laufer (1947). They made hot wire mea-

surements in a zero-velocity-ratio mixing layer. Their mean velocity

and turbulence measurements indicated a very rapid approach to self-

similarity. This was regarded as the most reliable and extensive source

of mixing layer data for more than two decades. Wygnanski and Fiedler

(1970), Patel (1973), and Champagne, Pao and Wygnanski (1976) studied

the same flow to obtain higher-order statistical characteristics of the

turbulence. The agreement among these experiments is rather poor as

will be noted later.

Two-stream mixing layers with finite velocity ratios have not re-

ceived as much attention. Sabin (1965) measured mean velocity profiles

and correlated the spreading parameter for various velocity ratios with

a simple function. Miles and Shih (1968) investigated the flow with a

wide range of velocity ratios. However, only the spreading parameter as

a function of velocity ratio was presented. Spencer and Jones (1971)

and Yule (1971) each measured the layers at two different velocity

ratios. Both reported detailed velocity profiles and turbulence quan-

tities. The agreement is again poor.

Mixing layers are known to be very sensitive to the initial condi-

tions. For example, placing a trip wire upstream on the splitter plate

can alter the spreading rate by more than 20% (Liepmann and Laufer, 1947

and Wygnanski and Fiedler, 1970). They are also sensitive to the bound-

ary conditions imposed. In most cases, mixing layer experiments are

conducted in wind tunnels with walls both above and below the flow.

This affects the secondary flow speed, the entrainment into the mixing

layer and, consequently, the turbulence structure and the spreading
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rate. Variations in initial and boundary conditions are probably

responsible for the disagreement among experimental data.

Figures 3.6 compares velocity profiles for mixing layers with zero

* and nonzero velocity ratios. In this figure, y is normalized by a

characteristic flow width 6 = y 0 .9 - Yo.l Here, Yx is defined as

the location where U - U. + x(U.l - U. ). There is considerable scat-

ter of the data near the edges, especially at the zero velocity edge in

Fig. 3.6. According to Rodi (1975), however, this is the best way to

correlate the data. If the data are plotted versus y/x, as is often

done in the literature, the agreement is worse because the spreading

rate d6/dx varies considerably. The scatter indicates the dificulties

in measuring accurately in these regions and perhaps reflects the sensi-

tivity of the layer to the nearness of the boundary walls.

Figure 3.7 shows spreading rates, dL/dx, as a function of the

velocity ratio (R = U.2/U I). Note that the layer width L in this

%PP figure is defined as

L y y

Some of the data were taken from Rodi (1975). The line in the figure

represents the spreading rate given by the Evaluation Committee of 1980-
81 Stanford Conference. When the extreme values are discarded, the line

seems a reasonable average representation for the spreading rate,

although it is slightly lower than the average at high velocity ratios.

The profiles of turbulent kinetic energy measured in various exper-

iments are shown in Fig. 3.8(a) and (b) for zero and two finite velocity

ratios (R - 0.3 and 0.61). The agreement is poor except for the

shape of the profiles.

The turbulent shear stress profiles are shown in Fig. 3.9(a) and

(b) for zero and two finite velocity ratios (R = 0.3 and 0.61),

respectively. Although the agreement is not good, it appears that the

nondimensional shear stress increases as the velocity ratio is in-

Pcreased.

There is no way to justify the disagreement because of the dif-
ferent experimental setups in different experiments and the nature of
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sensitivity of the flow as explained above. Until this issue is com-

pletely resolved, the only quantity that can be used as a guide for

modeling seems to be the average spreading rate given by 1980-81

Stanford Conference.

*3.2.4 Shear Stress-Kinetic Energy Relationship

The value of uv'I/K was examined for all plane shear flows.

For jets and wakes, this quantity increases linearly from zero at the

centerline to a maximum of about 0.3 and then drops back to zero.

Townsend's (1949) wake flow is an exception; it shows a maximum value

much higher than 0.3. However, it is believed that his measurements of

kinetic energy are too low as explained above. For mixing layers, all
* the available data show that Iu'v'j/K has a value of about 0.3 in the

center and decreases to zero at both edges.

3.3 Axisymmetric Free Shear Flows

3.3.1 Jets

The mean flow field of axisymmetric jets have been studied by nu-

merous researchers (for example, Hinze, 1959), but the turbulence field

by only a few. Most of the literature on this flow appeared more than

three decades ago when measuring techniques were not very advanced.

More recent measurements were made by Wygnanski and Fiedler (1969) and

Rodi (1972) for self-preserving pure jets and by Maczynski (1962),

Reichardt (1965), and Antonia and Bilger (1973) for co-flowing jets. It

U'. is again easier to discuss them separately.

Pure Jets

It was suggested by Bradbury (1967) that Eq. (3.2.1) can also ap-

proximate the velocity profiles of axisymmetric jets. However, the pure

jet velocity profiles of both Wygnanski and Fiedler (1969) and Rodi

(1972) approach zero more slowly than the formula suggests. A similar

trend was found in plane jet cases. However, the uncertainty of the

measurements is large near the edge (especially when the edge has zero

velocity). Consequently, this empirical formula suffices as a first

order approximation.
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The spreading rates of the pure jets from both Wygnanski and

Fiedler (1969) and Rodi (1972) are

d81/2 0.087 t 0.002 (3.3.1)

dx

This value agrees with the spreading rate reported by Newman (1967),

d6l/2/dx - 0.086, an average over earlier experiments.

The centerline velocity decay rate, according to Wygnanski and

Fiedler, is

d (U/U 1 m)
d(xi/D) 

0.2

in self-preserving region, where Uj is the jet nozzle exhaust veloc-

ity. This converts into

1 (J1/2/Ulm )

dx U 0.131 (3.3.2)

where

3 M 2w f U2rdr (3.3.3)

J is the momentum flux; it is the invariant for the jet.

The turbulent kinetic energy and shear stress profiles of Wygnanski

and Fiedler and Rodi are presented in Figs. 3.10 and 3.11, respectively.

. The agreement is reasonable. The maximum non-dimensional shear stress

of Wygnanski and Fiedler is about 10% less than Rodi's value. The lat-

ter is closer to the value (0.0184) calculated from the continuity and

momentum equations.

Figure 3.12 shows the ratio Iu'v'I/K versus the transverse

distance for axisymmetric and plane pure jets. The maximum value of

Iu-v'I/K for the axisymmetric cases is about 0.23 vs. 0.3 for the

Ir 0 plane cases. We speculate that this is due to lateral vortex stretching

which appears only in axisymmetric flows.
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Co-Flowing Jets

The velocity profiles measured by Antonia and Bilger (1973) agree

with Eq. (3.2.1) satisfactorily, as reported by Bradbury (1967). Rodi

(1975) also claims that the shape of velocity profile is approximately

the same for both plane and axisymmetric Jets, and that it does not vary

significantly with either velocity ratio or downstream distance.

Before discussing the spreading and centerline velocity, it is wise

to examine the constraint connecting them. With the momentum thickness

for axisymmetric Jets defined by
'1/2

a2n the hep I) rd (3.3.4)

and the help of Eq. (3.2.1), we can write

61/2 2 m 2 /2 Ulm -- ' - 'ffL- (3.3.5)
- 2 U 1 23

where

J fn dn (3.3.6)

In the case of a pure jet, Eq. (3.3.5) reduces to

U2

612 = 2 1 (3.3.7)

The pure jet described by Eqs. (3.3.1) and (3.3.2) satisfies Eq. (3.3.7)

within 4%.

The spreading and velocity decay rates in Antonia and Bilger's

experiment show large uncertainty and scatter. Furthermore, the data do

not display internal consistency. Rodi (1975) managed to collapse the

jet width, Fig. 3.13, and centerline velocity data, Fig. 3.14, of three

experiments for a wide range of velocity ratios. At larger values of

x/0, however, the measured jet widths and centerline velocities do not
satisfy Eq. (3.3.5). Since the measurements of centerline velocity are

probably more accurate than those of the jet width, a jet width computed

from Eq. (3.3.5) with the measured centerline velocity given is also

shown in Fig. 3.13.
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No measurements of turbulent kinetic energy or shear stress were

taken by Maczynski (1962) or Reichardt (1965). Antonia and Bilger's

(1973) data show that both the scaled kinetic energy and shear stress

increase with downstream distance in their measuring range. The largest
2

value of lu'v'I/U they recorded is about three times that found in
Im

pure jets. Although their data must be considered unreliable because of

the scatter, the increasing trend of both the non-dimensional kinetic

energy and shear stress in co-flowing jets seems to be established.

This trend was also found in the plane cases. Indeed, the shear stress

obtained from the continuity and momentum equations and the assumed

velocity profile confirms this.

With the assumption that the velocity fluctuations in the radial

direction are about the same in magnitude as those in the streamwise

Ndirection, Antonia and Bilger's turbulence data show a maximum value of

1u'v'l/K about 0.3. Since their data were taken some distance from

the nozzle, where the spreading rate is considerably lower than the pure

jet spreading rate, this leads us to believe that the effect of vortex

stretching is significant only when the jet spreads rapidly. We shall

use this fact in generalizing our parameterization of free shear flows.

3.3.2 Wakes

Axisymmetric wakes are known to be very sensitive to the shape of

the wake-generating body (Rodi, 1975). Unless the body is very slender

it usually creates vortices in its wake. Different body shapes generate

vortices of different strengths. This in turn provides different ini-

tial conditions for the various wakes and it takes a very long distance

for the flow to "forget" the effects of the initial conditions. Al-

though asymptotic far-field behavior exists, it usually occurs very far

downstream from the body.

Many axisymmetric wakes have been studied (e.g., Carmody, 1964;

Chevray, 1968; and Uberoi and Freymuth, 1970). Most of them are gen-

erated by blunt bodies, e.g., cones, spheres or disks. Unfortunately,

they were not studied for a long downstream distance because the re-

searchers were interested mainly in the vortex shedding phenomenon.

Only Chevray (1968) measured a wake flow that was extended close to the
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self-preserving asymptote. His wake-generating body was a relatively

slender 6:1 spheroid and the effect of vortex shedding was reduced. A

complete set of mean flow and turbulence quantities was reported.

Chavray's self-similar velocity profiles are well approximated by

Eq. (3.2.1). The centerline velocity deficit and the wake width both

approach asymptotic power laws. Moreover, the mean flow quantities

satisfy (to within 3%) the constraint

( 2 2  2

-(61/2)1 + - 1 (3.3.8)

which can be derived in manner of Eq. (3.3.5). According to Rodi

(1975), the far-wake spreading parameter defined by Eq. (3.2.17) for

this flow is about 0.105, the same as that of Reichardt's (1965) asymp-

totic co-flowing jet. This confirms that, as in plane cases, an axi-

symmetric co-flowing jet behaves similarly to an axisymmetric wake in

the far field.

The turbulence field of Chevray's wake exhibits a trend similar to

that seen in co-flowing jets. The nondimensional kinetic energy and

shear stress increase to asymptotic values as the flow develops. Fig.

3.15 shows the maximum values of kinetic energy and shear stress in the

layer as functions of downstream distance.

3.4 Conclusions

Experiments on five basic free shear flows were reviewed in this

chapter, including both near and far fields, the approach to asymptotic

behavior, and co-flowing cases. Whenever possible, the data were

checked by analytical relationships for consistency. Good data were

identified for each flow. For those cases where scatter and uncertainty

were large, trends were eqtablished; this will help us, at least quali-

tatively, to understand the physics. It appears that the measurements

become difficult when the velocity or velocity difference is small, for

example, near the edges of shear layers. This is probably due to the

fact that the uncertainty of the data is larger than the measured val-

ties.
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In later chapters, we shall use the data reviewed in this chpater

to construct models and tune the model constants. The conclusions about

limiting forms and their relations to each other through nondimensional

'q ~correlations established in this chapter will allow us to create a

single model for free shear flows containing two nondimensional param-

eters and a simple, uniform method for treating readjustment regions.

!%.
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Chapter IV

NUMERICAL METHOD

4.1 Introduction

-$ As a result of the thin shear-layer approximation, the governing

equations for both the mean and turbulence fields for free shear flows

are parabolic. They are:

a U + (yiV) = 0 (4.1.1)
ax yi ay

au au 1 8yyy (v + v) (4.1.2)

y lt

ax aya y yI a y k a Y

and

SC _ 2 LS C + 1ay' Vt 3 e) (4.1.4)
ax ay 1 I~" (ay) c2 K y a aCa

where v = C K2/e is the eddy viscosity. In these equations, i = 0
is for plane flows and i = I for axisymmetric flows. Note that the

K-e model equations are used in Eqs. (4.1.3) and (4.1.4) for the turbu-

lence field. The standard method of solving parabolic equations is to

V. march the solution downstream in the predominant flow direction. This

is because information propagates in the flow direction and what happens

at any location has no effect upstream. This behavior is a consequence

of the characteristics of these equations. In the flow direction, the

domain is open and only an initial upstream condition is needed. Two

boundary conditions are required in the transverse direction.

The Keller Box method (see, for example, Cebeci and Bradshaw, 1977)

is a popular method for solving parabolic equations. This method

approximates all variables by their values at points on a rectangular

grid and replaces the differential equations by finite difference

equations that are averaged over each cell (or box). Figure 4 .1(a)

shows a typical grid box used in this method. However, experience shows
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.- that this method tends to give oscillatory solutions in the marching

t. direction if the initial condition is not perfect. If the initial con-

dition is too high, the solution at the first step tends to be low so

that the average at the center is correct; similarly, the solution at

the second step is high. The oscillation continues downstream although

its magnitude reduces. Another drawback of this method is its require-

ment of a V velocity component initial condition. This component is

rarely measured in experiments and has to be estimated from the continu-

ity equation.

This provides the motivation for the development of a better numer-

ical scheme for solving the governing equations for free shear flows.

In this chapter, a modified Keller Box method that uses a staggered grid

system is developed. A transformation of the governing equations equiv-

alent to using a grid expanding with the growth of the layer is first

performed. An averaging technique at the first step of the solution

procedure eliminates oscillations. Variable step sizes determined by

the growth of the layer are used. Finally, the method is tested for

* some standard cases. The method of generation of initial conditions is

described.

4.2 Description of the Numerical Scheme

4.2.1 Transformation of the Governing Equations

To account for the growth of the layer, the governing equations are

transformed from the (x,y) physical coordinates to ( ,n) variables

where

X (4.2.1)

and

S = - _ (4.2.2)
E(x)

Here, E(x) is a constant proportional to the thickness of the shear

layer. Thus, in the transformed coordinateq, the layer thickness Is

constant and the same number of grid points can be used at Pach sown-

stream location.

44

. . ,- .. ' ^". ". .-



After transformation, the governing equations, Eqs. (4.1.1) to

(4.1.4) become

3U _ dEU W + 3 rj1iV 0 (4.2.3)
E a Edx an (En)l E an

u n dE aU + V aU 1 L L En) i (V + V (4.2.4)

u E dx an a (En )i E anLtUnj

U. K U ad E aK + L K ,, (I !U) 2 +

a - E dx an E an E -n
(4.2.5)

+ ia i 't I a.K
1 .1(L(En) an a E

+(En)1
, o'.

and
ac dEAc + V a3 c C vt  U)-

U E dx an E- C 1Kt E

. 2 + -1 a ) t I
C, [ +(En) v

2  K (E n )i E a n a E (4 .2 .6 )

Before solving Eqs. (4.2.3) to (4.2.6), E and dE/dx must be speci-

fled. They are determined, in a discrete manner, as follows:

E El  . 1.0 (4.2.7)

andj.9:

.9 (61/2) n
Fn+ I  = E n , n > 1 (4.2.8)

where the subscript represents the step number in the streamwise direc-

- tion. dF'dx can be calculated once C is determined. The half-velocity

width (I5 is eas;ily determined from the converged solution at

_ ,'~step Xn •
% -. *
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4.2.2 Grid System

To derive the finite difference equations for a box, it is first

necessary to define the locations at which the variables are defined.

As shown in Fig. 4.1(b), U, K, and e are given at the centers of

left and right boundaries and V at the centers of top and bottom bound-

aries of a box. This arrangement makes the streamwise derivatives of

U, K and C, and normal derivative of V much easier to deal with.

- Furthermore, no V velocity component need be provided at the initial

station.

The outermost location of U, K and e is outside the last box.

Therefore the zero boundary conditions of both K and e on the edge

do not cause any difficulty in the calculation of quantities such as

K2 /e or c2/K in the last box.

The spacing between grid points in the normal direction can be

% either constant or variable. The choice is made by the selection of the

initial grid. Details will be given in next section. The spacing in

the streamwise direction is variable, and the increase in step size is
determined by the rate at which the layer grows:

7 (61/2)n
-" [Ax , AX (4.2.9)

n-In(61/2T1n-

where Axn - Xn+ I - xn .

4.2.3 Formulation of the Finite Difference Equations

Central differencing is used everywhere except where the streamwise

velocity is small relative to the normal velocity. This occurs near the

" edge of pure lets. For those cases, the flow is principally in the

normal direction near the edge and central differencing causes oscilla-

tion when the cell Reynolds number (based on V and Ay) is larger than

two (see Pitankar, 1980). To remedy this, upwind difference- nust be

:ised for the con'ection terms In the normal direction in thb region

(PatAnkar, 199f). A second-order upwind scheme Is used near the edge.

The fomulition of the finit difference -quatinns Is similar t'

that of the Keller Box method and can he found in Cebe,'I and Brads'aw

(1977). ?he details are presented in Appendix A.
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4.2.4 Averaging at the First Step

To avoid oscillation of the solution in the streamwise direction,

an averaging technique is used at the first step. The initial condi-

tions are generally not correct. The finite difference equations

represent an average of the governing equations and tend to produce

oscillations with an amplitude equal to the initial error. Averaging of

the solutions at the initial and first stations eliminates most of the

error and provides an improved initial condition. The solution proce-

dure is then restarted from the center location and a half step is taken

so that an improved solution is obtained at the first station. This

averaging process is repeated three times. Each time the location of

averaged solution is moved forward by half the reduced step size.

After this averaging, the effect of "bad" initial conditions on the

solution is greatly reduced. From the second step on, the normal solu-

tion procedure is used.

4.2.5 Calculation of Eddy Viscosity

The eddy viscosity is required before the system of equations can

be solved. In order to calculate the eddy viscosity, K and e are

needed. Since the solution procedure is iterative, K and E are

lagged by one iteration in the calculation of eddy viscosity. No other

variables are lagged in the computation; mean and turbulence quantities

are computed simultaneously.

Near the edge of the layer, the profile of eddy viscosity is
%"

4" smoothed when necessary. Bad profiles are sometimes caused by small

negative valiies of K or e. Because these quantities are very small

in this region, they may produce large errors in the eddy viscosity.

However, eddy viscosity snould approach zero near the edge of the

laver. Therefore, whenever a bad value of the eddy viscosity occurs, a

alue linearly interpolated between the previous good point and zero at

the edge replaces the had value. This smoothing process prevents the

bad soltitfrn from penetrating ino the layer. It is never necessary to

'110 this Procedure for more than three or four points near the edge

P<rpt f,'r far -ake flows.
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4.2.6 Convergence Criteria

The solution method is iterative. The convergence criterion

demands that the Increments of U, K, and e at the point nearest the

' centerline between iterations be less than 10.4 times the values of the
quantities at the previous iteration. Typically, the solution converges

within five iterations.

4.2.7 Solution Procedures

Provided the solutions at step n have been obtained, the solution

procedure can be outlined as follows:

1. In physical coordinates, calculate 61/2 at step n. Calculate

En+1 by Eq. (4.2.8). Calculate dE/dx.

2. Use the solutions at step n as initial guesses for all variables at

step n+l.

3. Solve a block tridiagonal system of linear equations that results

from the Newton-Raphson linearization of the finite difference

equations.

4. Update all variables by adding the increments obtained from step 3

- to the old values.

5. Update the eddy viscosity.

6. If the increments satisfy the convergence criteria, stop the itera-

tion and go to the next station. If not, repeat steps 3 to 5.

4.3 Input Data

k4.3.1 Initial Conditions

Initial profiles of U, K and c are required to start the com-

piitation. They have to be generated from experimental data. The

streamwise velocity is measured in all experiments. For turbulent

kinetic enrgy components, u12 and v are measured in most exper-

iments. w , on the other hand, is not often measured and is usually

approximated by the average of u' and v' The dissipation rate of

turbulent kinetic energy is rarely measured; if it is, the uncertainty

is very high. The turbulent shear stress is always recorded. One way
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to calculate the dissipation rate is via the relationship for the shear

stress used in the K-e model:

C K2  au j(4.3.1)
-"'-';..:Y

The dissipation profile obtained by this method is designed to give the

right shear stress. All the profile data mentioned above are interpola-

ted with spline fits.

Although there is no need for an initial V profile, the program re-

quires initial guesses for V at the first step. Guessed values of V

should be provided but do not need to be accurate. Since V is small,

the initial guesses were all taken as zero.

4.3.2 Grid Setup

The grid in the normal direction at the initial station has to be

-. .4provided. Experience shows forty to fifty grid points should be used.

The points should cover the region from y - 0 to approximately y =

2.5 61/2. Equal or variable spacing can be used. We found the best

choice to be a compound interest grid:

.%- .-"Ay + kAyj

where 1.03 < k < 1.1. This makes the grid finer near the centerline

and coarser near the edge. In all the computations reported herein, 45

points were used and k - 1.03 was used for the first 36 grids from the

centerline and k = 1.08 for the rest of the domain.

The initial step size has to be specified. A step size of about

twice 61,2 appears to be reasonable. From the second step, the step

size will be determined by the rate the layer spreads as described

* .earlier.

4.4 Validation of the Numerical Method

Some validation tests were performed to assess the accuracy of the

present numerical method. First a laminar plane jet was computed with a

tmilarity initial condition. The results were checked against the ana-

! ricai qimilarity solution. With the 45-point compound interest grid
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described above and an initial step size of about 2 61/2, the error is

0.003% in the centerline streamwise velocity and 0.16% in the normal

velocity at the edge after 30 initial 61/2. Similar results were

obtained for a laminar axisymmetric jet.

A turbulent plane jet calculation was made to test the method when

all four equations (the continuity, momentum, K and c equations) are

coupled and have to be solved simultaneously. The results were compared

with the similarity solution solved by Paullay et al. (1985). The

errors in thickness growth and centerline velocity decay rates are both

within 0.1% of the exact solution, while the error in the centerline

value of K is about 0.9%. When the number of grid points is increased

to 60, almost identical results were obtained. This indicates that grid

independence was achieved at about 45 grid points across the layer. A
number of streamwise step sizes were tested in the computation; there is

no noticeable difference when the step size is 261/2 or less.

However, the difference becomes large when the step size is 361/2 or

larger. Therefore, it was determined that a step size of about 261/2
is the optimal choice.

4.5 Conclusions

In this chapter, an improved Keller Box method for solving equa-

tions of turbulent free shear flows has been described. Several im-

provements are incorporated in the present method, including a staggered

grid, an initial averaging process, and upwind differencing near the
, edge of the layer. A grid that expands with the layer is used. A vari-

able step size is determined by the growth of the layer. A validation

process was performed to verify the accuracy of the method and the pro-

gramming.

Initial conditions for U, K, and C, an initial guess for V

and the grid at the initial station are required, and their construction

was described.
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Chapter V

ZONAL MODELING FOR PLANE FREE SHEAR FLOWS

5.1 Introduction

In Chapter III, we examined experimental data on the flows to be

studied and identified useful data. In this chapter, with these data as

a guide, we shall try to better understand the physics of free shear

flows and to construct improved models for these flows within the zonal

* modeling framework. Our goal is to build a consistent zonal model which

can be used for all free shear flows. However, since axisymmetric flows

differ so much from plane flows, we shall focus our attention on plane

flows in this chapter. After the axisymmetric flows are considered in

next chapter, we shall bring these two cases together.

When there is only one important component of the velocity-gradient

tensor and the turbulent kinetic energy production and dissipation rates

are approximately in balance, the standard K-c model usually gives

acceptable predictions (Launder et al., 1972). The plane pure jet is

one example. However, when the shear is weak, the standard K-e model

predicts too slow a spreading rate of free shear flows. To remedy this,

in his "extended" K-c model, Rodi (1972) made the model constant Cp a

function of the ratio of rates of turbulence production and dissipation.

This improves the predictions of the global parameters of weak shear

flows considerably. However, the predicted profiles do not agree with

the experiments. Patel and Scheuerer (1982), in their prediction of a

far wake, used a corrected eddy viscosity with an intermittency factor.

This model improves the velocity profile but underpredicts the shear

stress and hence the spreading rate. Another difficulty with this model

is that the intermittency factor has to be obtained from experiments and

is different from flow to flow. Others selected the model constants

Ce or C as targets for modification in various flows. If done on

a flow-by-flow basis, this process removes the possibility of obtaining

a model valid for all flows.

It seems, at the present time, that there is no single model that

can predict all the plane free shear flows equally well. This provides

motivation for the present study.
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5.2 Analysis and Physics

Consider a steady symmetric plane jet in a uniform stream. With

the thin shear-layer approximation, the governing equations for the flow

are identical to those for boundary layers. Beyond the potential core,

the development of the flow is independent of the initial conditions,

and the profile of the jet becomes self-similar, i.e.,

U = U +UIm f(q) (5.2.1)

5', where

n - (5.2.2)
6 1/2

S.'

In this flow, the effect of the initial conditions persists only a rela-

tively short distance and can be accounted for by use of an effective

origin of the flow x0 . Assuming self-similarity, Eqs. (5.2.1) and

(5.2.2), we can write from dimensional analysis (see Bilger, 1968):

dUim

dx = F(UImUJ)

where

J f U(U - U) dy

J is the excess momentum flux in the Jet. This result can also be de-

rived from the momentum integral equation. In nondimensional form, it

becomes

d(U./U 1m)

d(x/e) F 2(U-/Um)

or

U
U F (x 0  (5.2.3)

1m

where 0 is defined in Eq. (3.2.7) and is constant throughout the flow.
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By similar reasoning, we also obtain

6 1/12 ox0  (5.2.4)

Here, F and G are universal functions for all jet flows. This

result is confirmed by the experiment of Bradbury and Riley (1967).

If the jet self-preserving, the velocity can be expressed by

-: Eq. (5.2.1) and shear stress distribution must have the form:

-u'v' = Ul2 g(n) (5.2.5)

Substitution of these similarity expressions into continuity and momen-

tum equations and elimination of the transverse velocity V result in:

61/2 dUIM d61/2 6 1 /2 dUlm d6 1/2

f(0+f) - Onf' - + w- /f fdn g'
U Im dx f(~) dx Gnf IUm dx + dx f

(5.2.6)

where g is defined by Eq. (5.2.5) and f by Eq. (5.2.1). From the

momentam integral equation, we have the constraint:

-. ,61/ dUlm  d61/
1/2 d 1 2  (5.2.7)

U 1 dx =qdx

where q is a function of 8:

12 + I1

q21 + lI (5.2.8)

Here, I1 and 12 are defined by Eq. (3.2.11). Equation (5.2.6) can

then he written as

d6."2 Bf + qf2  Bnf' - (q+l) V fd g (5.2.9)
-~ dx

W" ]e. ".
. Since 61/2 and B are functions of x, the only conditions under

: which self-similarity is obtained, i.e., f and g are independent

of x, are (see Townsend, 1956, and Hill, 1965):

B 0 and ,
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1

which correspond to a "pure" jet and a far wake, respectively. For

values of 8 other than these limits, g changes as 8 varies. On

the other hand, f seems to be very insensitive to 8, as shown by

.1 experiments. Moreover, since F and G in Eqs. (5.2.3) and (5.2.4)

are universal functions, 8 and 61/2 are related; i.e., for a given

8 there is only one corresponding 61/2 and vice versa. Therefore,

the shear stress level, g, is only a function of 8.

As 8 increases, the experimental data show that g increases and

the n-value corresponding to maximum g moves outwards. This indicates

that the turbulence decays more slowly than the centerline velocity. It

also suggests that diffusion is increased as 8 increases; this is re-

quired to allow the maximum shear stress location to move outwards

faster than the jet or wake spreads. It will be helpful to consider the

* physical reasons why increasing 8 has these effects.

Physically, 8 represents the ratio of the global inertial force

*" to the global driving force for creating shear of the free shear flow.

Thus, when 8 increases, the large eddies become relatively less ener-

getic compared to the inertia of the free stream, and it is harder for

them to penetrate into the free stream. As a result, the entrainment

rate is reduced and the flow becomes more parallel. In the limit

8 + , the small eddies are more responsible for the turbulence trans-

port, i.e., diffusion is more important. Alternatively, 8 can be

regarded as a ratio of eddy turn-over time to the characteristic free

stream time. As this ratio increases, the mixing process is slower

relative to the free stream motion, and the flow spreads less rapidly.

The slow mixing at high values of 8 also makes the flow more intermit-

tent. It is well known that intermittent flow exists only near the edge

of a "pure" jet, whereas it penetrates almost to the centerline of a far

wake (Townsend, 1956). Intermittency increases the gradient of the

average turbulence intensity, and therefore the average diffusion rate

is increased.

As pointed out in Chapter III, it has been observed by many re-

searchers, including Townsend (1956) and Bradbury and Riley (1967), that

in the far field, a co-flowing jet behaves essentially the same as a

• wake. This means that the turbulence transport is independent of the
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sign of the mean velocity gradient. Intuitively, we say that the turbu-

lence rides on the mean flow and only "sees" a local velocity difference

without "realizing" its direction. Although the eddies turn in opposite

directions, the turbulence transport mechanism appears to be the same

for both cases.

From these arguments, we conclude that the turbulence of free shear

flows is characterized not by whether the flow is a jet or a wake, but

rather by the value of 8. Sabin (1965) also found a strong effect of

8 on mixing rate over a wide range of values of 8 for the mixing

layer. Using similarity arguments, he provided a general relation be-

tween spreading rate and 8. The same relation was found by Abramovich

(1963), apparently independently. This Sabin-Abramovich relation was

found to be one of the few universally valid correlations in both the

1972 NASA-Langley Conference on Evaluation of Computation in free shear

layers and the 1980-81 AFOSR-Stanford Conference evaluating complex flow

fields. Thus the importance of 8 (or some wholly equivalent parameter

of different mathematic form) is fully validated and very widely accep-

ted for the mixing layer case.

All these considerations suggest that a turbulence model designed

to simulate these flows in a consistent way should depend on 8 and not

the mean flow type.

In summary, we note the following:

1. The turbulence model should reflect the relative importance of

the diffusion process as indicated by the value of 8.

2. It appears that we can consider regions with the limits of 8 +

0 and 8 + - as two zones of free shear flows and intermedi-

ate values of 8 as a readjustment zone.

3. A co-flowing jet or a wake starts with a small value of 8 and

develops a larger 8 downstream. In terms of our model, it

starts in the first zone and readjusts toward the second. A

"pure" jet, on the other hand, stays in the first zone perma-

nently. A given mixing layer has a constant value of 8, but

mixing layers as a class have values of 8 running from I to

m. To apply the zonal modeling approach, we shall model the
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two limiting cases first and then patch them together by a

* blending technique which describes the readjustment.

5.3 Construction of Zonal Models
r.p*

As noted in Chapter I, the standard K-e model will be used as a

base for the development of zonal models. Therefore, in constructing

zonal models we shall first test the standard K-c model in each case.

If it works for a given case, no modifications will be made, since it is

then a satisfactory zonal model.

5.3.1 Zonal Model for the Limiting Case 8 + 0

A "pure" jet represents the paradigmatic flow for this zone. After

the disappearance of the potential core, a pure jet quickly becomes

self-preserving. Therefore, we can use pure jet data at any downstream

location to tune the zonal model for this zone.

The standard K-c model was tested for this flow and gives sur-

prisingly good results. The spreading rate and centerline velocity

decay rate are

dx / 0.108
4.x

d(J/U )
dx -- 0.16

which are in excellent agreement with Eqs. (3.2.4) and (3.2.5). The

mean velocity, turbulent kinetic energy, and shear stress profiles also

agree quite well with experimental data. Figures 5.1 to 5.3 illustrate

the agreement.

The standard K-c model is known to work well for flows with just

one significant velocity gradient in which the turbulent kinetic energy

production rate approximately equals the dissipation rate. The plane

pure jet satisfies these two conditions. Another part of the reason

that the standard K-c model predicts pure jet flows so well is that

some of the model constants were based on pure jet data. There is no

need to modify the standard model for this zone.
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5.3.2 Zonal Model for the Limiting Case 8 +

A far-field wake or co-flowing jet both are instances of this zone.

However, Ulm is finite at the last measuring station in all experi-

ments. Fortunately, when Uim is less than 10% of U., the flow

behaves self-similarly and the asymptotic far-field state is closely

approximated. Therefore, measurements which satisfy this criterion can

be used. In the co-flowing jet of Bradbury and Riley (1967), Ulm is

never less than 20% of U.; this is not small enough to qualify. Pot's

(1979) wake data, on the other hand, reach Ulm /U- 5%. Therefore, the

measurements at the last few stations in Pot's experiment will be used

to tune the model for this zone. In this range, the global parameters

of Pot's data behave as described by Eqs. (3.2.15) and (3.2.16).

The standard K-e model was first tested. The results are:

2

* d(5 1 / 2 /O) 2

d~x/6) = 0.065

d(U./Ulm)2

d(x/0) = 0.248

These quantities are significantly lower than those of Eqs. (3.2.15) and

(3.2.16), respectively. The spreading parameter, as defined in Eq.

(3.2.17),

sp - 0.0635

%is more than 35% lower than Pot's and Townsend's values. In addition,

Sthe predicted mean velocity, turbulent kinetic energy and shear stress

* profiles do not agree with the data. Figures 5.4 to 5.6 show the com-

* parisons. Not only are the magnitudes in serious error, the shapes are

also not correct, especially near the edge of the layer. These various

profiles all go to zero too fast.

From the discrepancies between the K-e predictions and the exper-

Iments, it appears that the diffusion predicted by the standard K-c

nodel is not sufficiently strong for this zone. To remedy this, we

decided to decrease two model constants: Ce and ak. These changes

WII

"-'Z-.increase the shear stress as well as diffusion. Although this choice of
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model constants may not be unique, it seems the simplest way to achieve

the necessary effect. This satisfies our guideline that we want to make

the changes as simple as possible when modification is necessary.

After a series of tests against the last few stations of Pot's far

wake data, we set the two model constants at:

C - 1.04 (5.3.1)

and 1

ak = 0.65 (5.3.2)

Using these values, all predicted profiles agree reasonably well with

the experimental data as shown in Figs. 5.4 to 5.6. Moreover, the

global parameters match those described by Eqs. (3.2.15) and (3.2.16)

within 3%. They are:

d(6 1/2 /0) 2

= 0.103d( /6)

d(U./U 1m
)2

- = 0.437d(xi8)

Thus, we have constructed a model for the zone 8 + - by changing

two model constants.

5.3.3 Model for the Readjustment Region

We have now zonal models for the limiting cases 8 + 0 and 8 * m0

Next, we need to combine these to form a complete model. Any flow with

8 between zero and infinity can be regarded as being in a transitional

stage between the two zones. This transition is called a "readjustment"

in zonal modeling. To reflect the continuous change of physics in read-

justment, we shall patch the two zonal models such that the model con-

stants vary smoothly between the limiting values. The experience with

homogeneous flows suggests that the two constants can be expressed as:

Cc 1.44 - 0.4 X1  (5.3.3)

ak - 1.0 - 0.35 A1  (5.3.4)
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where 0 < X1 < I is the readjustment parameter. XI  Is a function

of 5 and, again in line with earlier experience, we chose it to be the

solution of a first-order differential equation:

dX11- c(i - ) (5.3.5)

where C is a constant to be determined. The solution to Eq. (5.3.5)

.5 is

'. -C 8
1 I - e (5.3.6)

Note that the model constants, Eqs. (5.3.3) and (5.3.4), reduce to the

appropriate values for each of the two zones as B approaches the lim-

iting values.

The exponential form of Eq. (5.3.6) makes the constants leave the

first zone (B + 0) values rather rapidly and reach the second zone

values asymptotically. This seems to agree with the data. It is veri-

fied by the rapid growth of the maximum turbulent kinetic energy and

shear stress in the near field, as shown in Figs. 5.9 and 5.10.

The data at intermediate B values (B < 10 or Ulm/U. > 0.1)

in Pot's wake experiment are excellent for tuning the readjustment con-

stant C. With the use of these data, it waq found that

C - 0.18 (5.3.7)

This value of C gives good agreement with the data and completes the

model for planar free shear flows.

Predictions of the zonal model are compared with Pot's wak, data,

for the spreading rate, centerline-velocity-deficit decay rate, the

maximur, kinetic energy, and the maximum shear stress in the layer,

respectively, in Figs. 5.7 and 5.10. The agreement is excellent. Also

presented in these figures are the results predirted by the standard

K-c model. The disagreement between the data and the standard K-c

model is significant, especially in the far field.

.
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5.4 Teats of the Zonal Model

We have constructed a complete model by patching two zonal models

for the extreme cases. This model was tuned using only Pot's wake data.

This model gives very good agreement with that data set as seen in the

preceding section. However, the purpose of modeling is to enable us not

only to utilize the model for flows to which it is tuned, but also to

other Flows. We use co-flowing jets and mixing layers 'or this check in

this section.

5.4.1 Jets

It was emphasized in Chapter III that behavior of co-flowing jets

may vary from "pure" jet flow to self-preserving wake flow. This flow

provides a good test for the present model. The data set recorded by
.e Bradbury and Riley (1967) was reviewed in Chapter III and seen to be

consistent and of high quality. Also, the data were nondimensionalized

*" to collapse all co-flowing jet data with different ratios of nozzle

exhaust to free stream velocity. We shall use this data set in the

test.

*An Initial condition was generated using the data of Bradbury's

earlier experiment (1965). Calculation was made to a downstream

location of about 100 8. The results for the jet spreading rate,

centerline velocity decay, and the eddy Reynolds number defined by Eq.

(3.2.14) are shown in Figs. 5.11 to 5.13, respectively. The predictions

,)f the standard K-F model are included in these figures for com-

parison. In both sets of predictions, X0 is taken to be -68. The

present model performs extremely well for all three quantities com-

pared. The standard K-c model, on the other hand, predictq well only

In the initial part of the flow and departs from the data further down-%..

qtream. This is expected because, as demonst rated earlier, the stan-

Oard K-_ model works well for flows with small a (the first zone)

but poorly for flows with large 8. The serious disagreement hetweon

the data and the standard K-_ model prediction for the eddy Revnold

%:.'5. number seen In Fig. 5.13 reveals that the standarI mdel 1s unahlo tn

predict the shear stress level accurately. The low shear %tross pro-

duces the slower spreading and velocity decay.
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5.4.2 Mixing Layers

Another challenging test is the mixing layer. These flows do not

have similar velocity profiles. However, the ratio of inertial force to

driving force can be defined if we consider U. to be the average of

the two free stream velocities:

U = + ) (5.4.1)
00 2

and Ul to be the difference between either free stream velocity and

U:

U m (U - U ) (5.4.2)

2 2

Thus, we take 8 to be U/Uim M ( +U 2)/( I_U. 2). In these expres-

sions, U and U are the free stream velocities on the high and

low velocity sides, respectively. One side has a velocity excess; the

other has a velocity defect. Both sides share the common U. and have

the same value of Ulm, and hence identical B's.

Another way of viewing a mixing layer is as follows. There exists

a dividing streamline which, if not exactly coincident with, is very

ciose to the line with velocity equal to 1' . The high velocity side

can be r!.arded as jet-like and the low velocity side as wake-like.

Using the velocIties as defined In Eqs. (5.4.1) and (5.4.2), the

ritlo of inertial force to driving force, 8, for the mixing layer is

identical to the parameter used by Sabin (1965) to correlate the spread-

Ing p1irameter tor flows with various velocity ratios.

In the calculation of mixing layers, we have to note that the

rs ilrs are very iensitive to the boundary conditions on the normal vel-

it;, V, at both the top and bottom boundaries, as explained in Chap-

ter III. In rder to a urately compute these flows, therefore, both

hofldarv condI lonq should be specified. However, in the thin qhear-

lavp- iplrxima Io, onlY one V boundary condition can be given. Thero

is no way to improvP the approximation other than to select a V bound-

arv "uM,4ition that is best for a particular problem. There a-e several

wdavs to spe,'ifv this boundary condition, including
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V - 0 as y + - (low velocity side) (5.4.3)

U V + U V = 0 (5.4.4)
I Il as2 '2

or

d f + 0 (5.4.5)

In the above expressions, V. and V. are the normal velocities on
1 m2

the top and bottom boundaries, respectively. The last is derived from

the y-momentum conservation equation and is the best condition for a

"free" mixing layer, i.e., one that is not affected by wind-tunnel

walls.

The V boundary condition determines the angle at which the mixing

layer propagates and can be chosen to match the calculated flow angle to

that observed experimentally; this differs from experiment to experi-

ment. Fortunately, the spreading rate is only slightly affected by

the V boundary conditions. In this work, only the spreading rate is

-* of major concern; the flow angle will not be examined.

Mixing layers with various velocity ratios are computed with both

the present model and the standard K-E model. Calculations were

carried out until a self-similar solution was achieved. Figure 5. 14

shows the comparison between the predicted spreading rates and those of

v3rious experiments for the range of I < 8 < 9. The present model

performs better than the standard K-E model. Figures 5.15(a), (b) and

(c) compare the shear stress profiles of the model predictions and the

data for three different velocity ratios (R - 0, 0.3, and 0.61),

regpectively.

5.5 Galilean Invariance -- A Frame-Invariant Form of the tiodel

The description of a phenomenon must be the same in all inertial

frames of reference. That is, the equations governing the physics

9hould be identical whether the reference fratne Is qtationary or is

moving at a constant speed. To be more specific, the equations must be

form-invariant under the Galilean tranformation
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= - (5.5.1)

where and X are the coordinates in the new and old reference

frames, respectively. The new reference frame has a constant relative

velocity with respect to the old frame. The Navier-Stokes equa-

tions, for example, are Galilean invariant in this sense.

It is essential that the turbulence model be Galilean-invariant.

Otherwise, the model will give different results in various inertial

reference frames. The model developed for plane free shear flows in

this chapter is not 'alilean-invariant because the parameter 6 on

which the roodel constants depend contains U., which changes with the

frame of reference. This would restrict ukse of the model to reference

, frames in 4hich the flow appears steady. For example, for jet flows,

the reference frame has to be stationary with respect to the nozzle that

produces the jet and, for wake flows, stationary with respect to the

. body that generates the wake. For all other reference frames, the pre-

sent model would be invalid.

A look it the analysis Indicates that the lack of Galilean invar-

lance of the model arises from our assumption of a steady flow. When

'he reference frame is changed, the flow appears unsteady and the

inalsis of Sec. i.2 is no longer adequate. Therefore, in order to

ibtafi Galilean invariance, we muse consider unsteady flows.

The 'oomentlIm tnte.ral equation for an ilnsteddv flow IS:

"-2 i A 1_L' f 1 2 1 m f + 1 '2 lm 2

f 1 2 1m + 2 - t fd' t2
dx U In X J

= I
(35 .x) (3! "x

wh,, 1 an 1 are now f tinct tons ,f h, th x a nd t . We M I!

I -m

Im I'2 Ira Im

U.%
%..........4. . - * . ' .*- * **...



where

D _a+ U a (5.5.4)

Dt at -ax

Com~bining Eqs. (5.5.2) and (5.5.3) gives

___ 1,2a1nf( )- /2 On'- 61/2 a1.t + a'1/2 if, f fdn - g
Um ax ax (Ulm ax ax

(5.5.5)

*which I,; identical to Eq. (5.2.3). Moreover, the parameter 8 defined

*by (5.5.3) reduces to the previous definition, Eq. (5.2.1), for a steady

"low. The remainder of the analysis is the same as that In Sec. 5.2 and

* will not be repeated here.

Thereforeo in applying the present model to a general free shear

flow, the definition of the parameter 8 given by Eq. (5.5.3) has to)

replace that of Eq. (5.2.1) This makes the model Galilean-invariant.

*N- )ther changes are needed. Since the original equations with 8

-. iven byv Fq. (5.2.1) are simpler, the more complex analysis of this

-ection need be used only when the flow Is unsteady in the reference

f rame chosen.

S.h Conclusions

In this; chapter, plane free shear flows were studied. A zonal

'mNdel was developed. Two zones were identified; they can be called thl,

'r ind far fields, although that nomenclature is not accurate for all

'iws;. This; problem Is a semantic one arising from the definition of a

* ,,,)ne, and we shall quggest a clearer semantics in the final chapter.

The difference in the turbulence transport mechanism in the two zones

was; 'iiscussed. Zonal models have been constructed for these two zones.

* A parhing technique was used to represent the readjustment and to link

the two zonal models. The new model predicts the change in physics by

;,hanging two canntants. The requirement of Galilean invariance can be

qatlif led by use of a more general definition for B. Test resultq show

that the model developed In this chapter performs much better than the

strandard K-v mo~del, but is no more difficult to apply or expensive to

riin for plane free shear flows.
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Chapter VI

ZONAL IODELINC FOR AX[SYMMETRIC FREE SHEAR FLOWS

6.1 Introduction

In Chapter V, we built a new (zonal) model that works well for all

usable cases of plane free shear flows. This new model improves the

standard K-E model significantly by allowing two of the constants to

be(come functions of the parameter B. Axisymmetric flows were not con-

i dered in Chapter V, because there is a fundamental difference in the

tirbiilence ;tructure due to the lateral vortex stretching in axisymmet-

*ic flows as mentioned in Chapter III (Fig. 3.12). When vortex stretch-

ins: !s ;Ignificant, it decreases the ratio of u'v'!/K which deter-

,nes a central constant In the K-c model. In this chapter, we shall

,,xa n ti the vortex stretching effect in detail and incorporate its

etfe-t fnto the model for axfsymmetric flows through a suitable non-

nvnhn5 a l p iramt er.

The standard K- model was tuned to plane shear flows. As a

, oundar-v layers and plane pure jets are well represented by this

'idio. "inwover, to predi-t axisvmmetric flows, some modificatlins are

r,ritred. Most nf the modifications shown in the literature Involve

hanzfnv either 7 or C . For example, Launder et al. (1972) added

r rrPm I ln terrs in (7 and :

f = r .l(q - (}.(/ p

: ,.,,', { b, en!" , n l ne ,,',,* or'it \. M(-7; Inl k and Rod I 1 7 ) l ,,, -

,I
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6 dU
C = 1.14 - 5.31 1 CL

UCL dx

Morse (1977) used

-'+' 3

C " 1.4 - 3 K U

No convincing physical explanation is provided to justify any of

these modifications. Moreover, when these corrections are used, the

generality of the model ability to predict plane and axisymmetric flows

is destroyed. It is not known whether the correction should be used for

flows intermediate between plane and axisymmetric. Moreover, these

modifications were primarily tuned to pure jets; they do not predict

wakes well. In his extended K-E model, in which C is a function

of the ratio of the turbulence production and dissipation rates, Rodi

(1'2) included a modification for axisymmetric flows similar to that of

1aunder at el. (1972) described above. This gives predictions for axi-

-vmmvtr1-" flows better than the ones rentioned above. However, the pre-

dicted profile- do not agree well with data.

_i t t"s chapter, we will use the zonal approach to develop a model

for aIs-mmetric flows. We want to maintain the ability to handle both

,'at aid axlsymmetric cases. Therefore, we shall often refer to the

plane flow model eveloped in Chapter V. Our objective is to create a

,'=' neri. minde- which treat- plane flows as one special case and axisym-

met rf, f,!iws as another.

. A.nalvsis and Physics

An -inalysIs similar to the one for plane flows (Sec. 5.2) can be

carried out for axisymwm.tric flows. To, briefly illustrate several key

points, consider a sttc,: axisymmetric jet in a uniform stream with

,irr.irv freeP ;tream velocity. Using dimefisional analysis, we find

%' )x x

". ['Im

%i %

%U
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-- 1/2 x-x)/2 (6.2.2)

Here, 0 is the momentum thickness for axisymmetric flows defined by

Eq. (3.3.4). F and C are universal functions for all axisymmetric jets.

Indeed, Rodi (1975), using Eqs. (6.2.1) and (6.2.2), collapsed the jet

width and centerline velocity data of three experiments (Fig. 3.13).

We can apply the similarity expressions used in Chapter V for

streamwise velocity and turbulent shear stress. Substituting them into

the momentum equation, we have

6 1,/2 dUIm d61/2 61/2 dUm + 2 d6 1/2 f
Um I x f- (8+f dx 8f U Im  dx dx ri

iid(6.2.3)

fndn = -(ng)

The momentum integral equation, after the similarity transformation,

reads

61/2 dU1 m d5_1_2

lmU dx = q dx (6.2.4)

where

q1 21' + 2IB=J-q2 = (6.2.5)
21' + I5

and I, and Ij are defined by Eq. (3.3.6). Combining Eqs. (6.2.3)

and (6.2.4) results in
d 1 /l2  2 f' fd ] I(ng)' (2

-- .- d+ 2 - Bnf' - (q'+2) - (6.2.6)

Since B and 61/2 are related by Eqs. (6.2.1) and (6.2.2), the shear

stress can be considered a function of B alone.

Strictly speaking, the parameter B = U./U can be used only in

;toady flows. In general, B = (D /Dt)/(U 36 /ax) should be
1/2 Im 1/2

"ised to allow Galilean invartance. This point was discussed in the last

chapter.
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The axisymmetric wake can be analyzed in a similar manner. Let us

assume that the turbulence transport mechanism is independent of the

sign of mean velocity gradient and only a function of 8. As in plane

flows, 8 has two extreme values: zero and infinity. These correspond

to a pure jet and a far wake, respectively. A co-flowing jet or wake

will develop between these two limits. They may start from a state

close to a pure jet (small 8) and eventually arrive at the asymptotic

far wake state (large 8). Therefore, the zonal idea used in plane

flows can as well be applied here. We shall first consider these two

extremes (or zones).

The first zone (8 = 0) represents a pure jet. This flow spreads

linearly. Its spreading rate is the greatest among axisymmetric flows.

Due to the rapid spreading and small radius of curvature of the flow,

there exists a significant strain in the circumferential direction.

This strain tends to stretch the vortex rings which form in the shear

layer. For this effect to be important, two criteria must be met.

Firstly, the jet has to have a radius that is not large in comparison

with the shear layer width. Secondly, the flow has to spread rapidly.

Otherwise, the straining will be weak.

The stretching of vortex rings reduces the ratio of Iu'v'I/K.

This conclusion is reached on the basis of experimental data. No physi-

cal or mathematical derivation is available at the present time. For a

given turbulence intensity, the vortex stretching causes the shear

stress to decrease. For axisymmetric pure jets, in which the effect of

vortex stretching is the strongest, the ratio of 1u'v-j/K in the

equilibrium region is reduced to about 0.23 (vs. 0.3 for the plane

flows, cf. Fig. 3.12).

The second zone (8 + c) is an asymptotic far wake. In this zone

the spreading rate is very slow. The vortex stretching effect is there-

fore small. Indeed, in the review of Antonia and Bilger's (1973) axi-

symmetric co-flowing jet experiment in Chapter III, we found that

u-v'r/K is close to 0.3 in the equilibrium region far downstream. The

physics of this far-field zone is nearly identical to that of the plane

asymptotic far wake.

The turbulence diffusion enhancement as 8 increases seems to be

the same for axisymmetric flows as for plane flows.
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6.3 Construction of Zonal Models

Our approach will again be to model the extremes first, then the

readjustment.

6.3.1 Zonal Model for the Limiting Case + 0

As before, the standard K-c model is first tested to determine

what modification, if necessary, is needed. The results for the global

parameters are:

Sd 1/2

dx = 0.121

d( j /2,, )

dJ 1/2x/U = 0.178

dx

Both the spreading and velocity decay rates are over-predicted by more

than 35% by the standard K-e model. Mean velocity, turbulent kinetic

energy and shear stress profiles are shown, respectively, in Figs. 6.1

to 6.3 and compared with experimental data. While the mean velocity and

kinetic energy profiles show reasonable agreement with the data, the

shear stress is significantly over-predicted, i.e., the ratio Iu'v'I/K

is too high for this flow. The reason is that C. = 0.09 in the stand-

ard K-c model lu'v'I/K at appproximately 0.3 in the region where

production is in balance with dissipation. However, as emphasized

above, lu'v'I/K is reduced by the effect of vortex stretching and is

, 0.23 rather than 0.3. To reflect this value of lu'v'I/K in the model,

it appears that the value of C should be decreased.

From the shear stress and eddy viscosity formulation, as described

%.. in Chapter 1I, we have

_-_ 2

--. : C (6.3.1)

where P = - u aU/y is the production rate of the turbulence.

Knowing that Iu'v'l/K 0.23 in the region where production is approx-

imately equal to dissipation for axisymmetric pure jet, we set
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C = 0.05 (6.3.2)

for this flow. With this new value of C , the predicted global param-

eters are

d61/
12= 0.089

dx

d(J 1/2/Um)
- 0.132dx

which are in excellent agreement with Eqs. (3.3.1) and (3.3.2) that cor-

relate the data. The various profiles generated by using C, = 0.05 are

also presented in Figs. 6.1 to 6.3. All three profiles match the data

very well.

The zonal model for this zone is, therefore, the standard K-c

model with a change in model constant C to account for the vortex

stretching. No other modification is needed.

6.3.2 Zonal Model for the Limiting Case 8 + c

A far-field wake or co-flowing jet represents this zone. As noted

above, due to the slow spreading, the effect of vortex stretching is

negligible in this zone, and the physics of the flow is nearly the same

as that of plane cases. Therefore, the zonal model of the plane asymp-

totic far wake was adopted for the axisymmetric counterpart. This allows

maintenance of the generality of the new model. No tuning of model con-

stants is needed or performed in this zone.

6.3.3 Model for the Readjustment Region

As stated earlier, our intent is to produce a general model for

free shear flows. Therefore, we want to keep the model for axisymmetric

flows as consistent as possible with that for plane flows. Furthermore,

the changes with 8 appear to be the same for both plane and axisym-

metric flows. For these reasons, we shall keep the variation of the

model constants CE1 and ok between the two zones the same as in

plane flows, i.e., we use Eqs. (5.3.3) to (5.3.7). This leaves us only
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one more linking to be made (for the model constant C ) before the

A zonal model for axisymmetric flows is completed.

In going from the first zone to the second, the stretching dimin-

ishes. The model constant C should increase from 0.05 to 0.09. This

transitional stage can be represented by sliding C between the two

extreme values. Before constructing the blending function for C, let

us examine what controls the stretching of vortices.
As discussed in Sec. 6.2, the flow has to be small in the normal

direction and has to spread rapidly in order for the stretching effect

to be significant. This means that the vortex stretching should be a

function of the spreading rate, d6i/ 2/dx, and the radius of curvature

of the vortex ring. From these and dimensional arguments, an appropri-

N ate parameter appears to be:

S ftR1/2 1 633

61/2 d61 /2/dx

where R1/2 is the radius of curvature of the vortex line passing

through the point of 61/2. The smaller this parameter, the more

stretching there is. For plane flows, S is infinite and there is no

stretching. For axisymmetric flows, R1 /2 - 61/2 and S is inversely

proportional to the spreading rate. For general three-dimensional

flows, for example a rectangular jet, S is smaller at the corners due

to the small radius of curvature. This gives more stretching and hence

smaller shear stress near the corners. Consequently, the spreading near

the corners slows down and the flow will eventually become axisymmetric.

This is at least qualitatively correct.

The smallest observed value of S occurs in the axisymmetric pure

jet and is 11.3. Therefore, we propose that the sliding function for

model constant C be:

WLI

C - 0.05 + 0.04 X S > 11.3 (6.3.4)
LI

where 0 < X2 < I is the readjustment parameter. Further study may be

needed if a value of S below 11.3 occurs in any flow. X2 is governed

by the first-order differential equation:

J'...,"v ..'. :.., .,m%,-: 'V '',,', j ,", .,-- -'-'.'. ,".-". , J .'.-"° -.i.- < ..,-..., .--,,,-.-. -.--



dAd;22 _ Cs(1 (6.3.5)

where Cs  is a constant that needs to be tuned. The solution to Eq.
Bs

(6.3.5) is:

~-C (S-1 1.3)

'2  = -e s (6.3.6)

The last task is to determine the constant Cs . The tuning is done

by computing a co-flowing jet and comparing the results with the data in

Figs. 3.13 and 3.14. An initial condition was created by using Antonia

and Bilger's (1973) experimental data for a co-flowing jet with the jet

nozzle velocity to free stream velocity equal to 4.5. It was determined

that

Cs  M 0.1 (6.3.7)

gives the best results. The agreement for the jet spreading rate and

centerline velocity decay rate can be seen in Figs. 6.4 and 6.5. The

K-e model prediction is included in these figures for comparison.

6.4 Tests of the Zonal Model

We have constructed a new model for axisymmetric free shear flows

with Eqs. (5.3.3), (5.3.4) and (6.3.4) and are ready to test the model.

6.4.1 Co-loingJets

*It was decided to simulate another axisymmetric co-flowing jet.

The initial condition is based on the data of another co-flowing jet of

Antonia and Bilger (1973). This jet has a ratio of nozzle velocity to

free stream velocity equal to 3. Computation was carried out to about

150 0 downstream. The spreading rate and centerline velocity decay are

presented in Figs. 6.6 and 6.7, respectively. Good agreement with ex-

perimental results is obtained for both quantities. Predictions of the

standard K-c model for the same flow are also shown for comparison.

Although giving reasonable spreading rate, the standard K-c model

fails to predict the velocity decay rate accurately.
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6.4.2 Wakes

Axisymmetric wakes provide a challenge to the present model because

these flows were not used in the determination of the model constants.

Chevray's (1968) wake experiment is used for this test. The computition

uses the data at x!D = 6 as an initial condition. Comparisons of the

prediction by the present model and experimental data for the spreading

rate and decay rate of centerline velocity deficit are shown in Figs.

6.8 and 6.9. Excellent agreement is achieved. The standard K-c model

underpredicts both quaittities; these results are also shown in the fig-

oires. The predicted turbulent kinetic energy and shear stress profiles

at the last measuring station (x/D = 18) are compared with the exper-

imental data in Figs. 6.10 and 6.11. Good agreement is observed with

the present model. The standard K-E model, on the other hand, pre-

dicts significantly lower values for both quantities; the low shear

stress is responsible for the slow spreading and velocity decay seen in

Figs. 6.8 and 6.9.

6.5 Conclusions

In this chapter, axisymmetric jets and wakes were studied. The

turbulence model for these flows is closely connected with the plane

flow model. Vortex stretching was identified as the principal differ-

ence between axisymmetric and plane flows. It reduces the shear stress

and, thereby, the integral parameters of the flow. Incorporation of

this effect into the model required a change of one model constant. The

readjustment of this constant was accomplished as in the plane case.

Excellent results for axisymmetric co-flowing jets and wakes were ob-

tamned with the present model.

This model reduces to plane flow model when there is no vortex

stretching (S + ) and can be applied to general three-dimensional

flows. Tests of this model for three-dimensional flows is therefore

required. However, in order to do so, initial conditions on a plan,I! normal to the flow direction must be provided. This requires a set of

oxperimental data that covers the initial plane. Unfortunately, no

experimental data presently available give this information. 1ost of

the data were taken only on two axes. For this reason, this model
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cannot be tested for three-dimensional flows at present. Measurementq

providing the necessary data for jets and for wakes of noncircular and

nonplanar cross sections are accordingly a next step toward further

generalization of zonal models of free shear flows.
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Chapter VII

I) ISCUSSION, CONCLUSIONS, AND RECOMMENDAT IONS

7.1 Summary and Discussion

In this research, we developed zonal models for homogeneous and

free shear flows. In each case, a linear first-order ordinary differ-

ential equation provides a good readjustment between zones. We have,

therefore, not explored more complex readjustment models.

The homogeneous flows were modeled primarily to provide a quick

test of the concept of zonal modeling. Details of the zonal models for

three types of homogeneous flows are given in Table 2.1. The homogen-

eous flows show that accurate prediction can be achieved by adjusting

the constants in the standard K-e model. The accuracies of the two

types of modeling are indicated in Table 7.1; the differences are based

on the worst point on each curve. These results partially validate the

OPINION by Kline (1981).

Table 7.1

Acccuracy Comparisons for the Predictions of Homogeneous Flows

Worst Point on Curve Percentage of Cases Accurate to the Limit

Agrees with Data Within < 10% < 25% < 50% > 50%

Zonal Models 86 10 4 0

Standard K-e Models 16 16 17 51

The zonal model predicts all free shear flows within the uncer-

tainty in the data. This model is given in detail in Table 7.2. Com-

parisons of the accuracy of the model of Table 7.2 with that of the

standard K-e model are shown in Table 7.3.
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Table 7.2

Summary of Unified Zonal Model for Free Shear Flows

Present Model Standard K-E Model

Cj 0.05 + 0.04 X2  , S > 11.3 0.09

C I E1.44 - 0.4 X! 1.44

C 1.92 1.92£2

OK  1.0- 0.35 X 1.0

a F 1.3 1.3

- B 2e-C (S-11.3)
I = I1-e ', = 1- e

C = 0.18 , Cs  = 0.1

In general,

(D61/2/Dt) R1/2 1

S l m(D6 1/2 lax) 61/2 (d6 1/2/dx)

For steady flows, B simplifies to:

U

in

Table 7.3

Accuracy Comparisons for the Predictions of Free Shear Flows

Worst Point on Curve Percentage of Cases Accurate to the Limit

Agrees with Data Within > 10% > 25% > 50% > 50%

Unified Zonal Model 100 0 0 0

Standard K-e Model 39 25 32 4
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As Tables 7.2 and 7.3 show, the zonal modeling concept not only

succeeds but also provfdes significant and unexpected results.

First, while the models apply to the "zones" of free shear flows,

it is possible to connect these models to yield a single model contain-

ing two non-dimensional parameters. This unified model predicts all the

available free shear flow data, including plane and axisymmetric jets

and wakes and mixing layers.

Second, the work enlightened us significantly about the underlying

physics of free shear flows and the governing parameters needed to

represent the effects observed.

These gains leave two questions that need discussion. The seman-

tics introduced initially does not describe the results adequately and

needs improvement. We also need to know whether the physical insights

are particular to this set of flows or more general.

The semantic question centers on the definition of the word "zone."

We defined a zone to be one or more flow regions which could be modeled

by a single model including particular values of the parameters. In the

homogeneous flows, this description fits the situation precisely; three

types of strains needed three different zonal models. For the free

shear flows, the situation is more complex. Zones representing the near

*, and far fields were created and linked using a simple readjustment

model. From that point onward, the modeling process almost took on a

life of its own. The readjustment from the near to the far field

employs a velocity-ratio parameter 8. However, in both pure jets and

mixing layers there is only a single value of this parameter (8)

throughout the flow. We found further that the far field of the axi-

symmetric jet is well modeled by the plane far-field model. This made

it natural to determine why the near field of the axisymmetric jet is

not well modeled. Vortex stretching was identified as the probable

cause. Once a parameter, S, accounting for the effect of vortex

stretching was introduced, the unified model emerged.

The free shear flows do not constitute a zone in the sense

Initially defined. We ended with three basic models connected by two

parameters. The basic models (the physical situations they represent
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" might best be called "flow states") do not represent physical regions

but parts of flows with limiting values of the governing parameters a

and S. In flows in which the parameters vary, the states are connected

by what we originally called readjustments but might better be called

"bridges."

These ideas suggest use of two sets of words. At an elemental

level, we might speak of a zone and a zonal model for that zone. Such an

elemental zonal model might still have a readjustment region as from an

P initial to a final or from a near field to a far field. At a second

level of organization, such as that of the final results for the class

of free shear flows, where a single model containing parameters is

found, we might speak of a "unified zonal model" for a defined "class".

What about the question of generality of the process? Inspection

d of the processes used herein suggests that they will generalize to at

least some degree. The model-construction process is based on a search

for inadequacies in existing models, identification of probable causes

and finding simple modifications that model them. This process is

likely to succeed as well for other flows; there is nothing special

about the free shear flows. The latter were a good choice for this

study, since there is a variety of cases in this class of flows.

This augurs well for the utility of zonal modeling as a method for

creating accurate models of turbulent flows for engineering purposes. It

also provides a tool for increasing our basic understanding of tech-

nically significant turbulent flows. Indeed, the most important result

of this work may be the process suggested rather than the particular

models developed.

7.2 Conclusions

We have shown that the zonal modeling concept can be applied to

homogeneous turbulence and free shear flows. This is a proof of the

concept and provides an Indication of what might be expected from zonal

modeling. However, this is only a very small portion of a much larger

project that needs to be carried out; a great deal remains to be done.

The zonal concept provides a logical framework within which simple and

accurate turbulence models can be developed more easily than the
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traditional way. The present research has laid a good groundwork for

the project and we hope that the encouraging results obtained reflect

what can be achieved with more complex flows.

Finally, although we cannot anticipate how far this project will

carry us toward reliable and fast computations of practically important

complex turbulent flows, we are confident that we will be able to

achieve significantly more than has been done in the past.

7.3 Recommendations for Future Work

The followings are suggestions fer future work in further testing

the present unified model for other free shear flows, understanding the

physics, and extending zonal modeling to more complex flows.

1. A three-dimensional free shear flow can provide a challenging test

case for the present unified model. However, detailed measurements

on an entire plane must be available to start the computation. No

%" candidate flow has been measured with sufficient detail to meet

%these requirements. Therefore, experiments such as elliptic or

rectangular jets with full measurements on a cross section for a

minimum of two stations would be useful.

2. The two physical phenomena parameterized by 8 and S in the
present model are mainly observed from the experimental results;

the causes of the underlying effects are not understood. More

fundamental research work, either experimental or analytical, that

can address these causes might increase understanding of the nature

of turbulence.

3. An extension of the present work to the study of free shear flows

with density difference and/or scalar transport, such as heat or

species, would make the zonal model more valuable in practical en-

gineering application.

4. The readjustment parameters are solutions of first-order ordinary

differential equations in the present study. In later development

of the zonal modeling project, a similar format in readjustments

can probably he used in a complex flow-field where patching of

zonal model, is required. This will make the task of creating

zonal models for complex flow fields easier and more systematic.
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B

A: Potential Flow

B : Attached Boundary Layer

C: Detachment

D: Recirculation

E: Free Shear Layer

F : Reattachment

Fig. 1.1. Flow zones in a diffuser flow with separation.
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Fig. 2.5. Homogeneous shear Flaw, case 376A in 80-81 Stanford Conference,
dU/dy - 1.2.9. Comparison of zonal model and standard K-E model
wth experimental data.
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Fig. 2.6. Homogeneous shear flow, case 376B in 80-81 Stanford Conference,
dU/dy - 48. Comparison of zonal model and standard K-_ model with
experimental data.
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0.08

* EXPERMENTAL DATA
C4 ZONAL MODEL

0. 06- \1 __S DR K-S MODEL

* 2K

0.04

0 0. 04 o. C8 0. 12 0. 16

TIME

Tig. 2.21. Homogeneous plane strain, case 374A in 80-81 Stanford Conference,
dW/dz - 9.44. Comparison of zonal model and standard K-e model
with experimental data.
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A 1  ~g. 2.22. Homogeneous plane strain, case 374B in 80-81 Stanford Conference,

dW/dz -4.45. Comparison of zonal model and standard K-e model
with experlmental data.
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- - -. __-" -GUTMARK & WYGNANSKI
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0 1 2

= y/61,2

Fig. 3.1. Turbulent kinetic energy of plane pure Jet.
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Fi. 3.2. Shear 3tress )f plane pure jet.
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Fig. 3.3. Spreading rate of plane co-flowing jets.
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Fig. 3.4. Centerline veloct~v decay, of plane co-flowing jets.
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Fig. 3.8(a). Turbulent kinetic energy of mixing layers with zero

velocity ratio.

0.06

SPENCER 9 JONES. R-O. 3
YULE. R-O. 3

-- - YULE. R-O.61I

/

0. 04 ,'
N 8

002-,, /

-1 0

= (y -Yo.5) /(yo. -Yo.,)

Fig. 3.3(b). Tirbulent kinetic energy of mixing layers with t~o nonzer)
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Fig. 5.1. Prediction of mean velocity for plane pure jet.
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Fig. 5.3. Prediction of shear stress for plane pure jet.
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Fig. 5.11. Prediction of spreading rate for plane co-flowing jet.
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Fig. 5.12. Prediction of centerline-velocity decay Eor plane

co-flowing jet.
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Fig. 5.13. Prediction of eddy Reynolds number for plane co-flowing

jet.
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Fig. 5.14. Predictton of spreading r3te For plane mi-tig layer.
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Fig. 5.15(c). Prediction of shear stress for plane mixing "ayer,
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Fig. 6.2. Prediction of tturbulent kinetic energy for axisymmetric
pure -jet.
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Appendix A

FORMULATION OF FINITE DIFFERENCE EQUATIONS

In this appendix, the finite difference equations for the governing

equations, Eqs. (4.2.3) to (4.2.6) are formulated. We first write the

governing equations in terms of a first-order system of PDEs. For this

purpose we introduce three new dependent variables, T(C,n), Q(t,n),

and W(t,n), so that Eqs. (4.2.3) to (4.2.6) can be written as:

aU ndE 1
y T T +niV) (A.I)

Ex E dx ETI8
En i n

U -U -a Lx T + 1T 1 IT [ + FQ (v+vt

a E x E E a (A.2)

i ni

t in~ (V Vt, C + 2T£I (,

aE x E dx E 2 E 2 n 2n(A 3

+", ii + ita

tan

_SvQ - (A.L)

-(A.7)

W an

QK dE (A.6)@v

aan

nWO ( A.73)
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Recall from Chapter IV that i - 0 for plane f lows and i - 1 for

axisymmetric flows.

We now consider the grid box shown in Fig. 4.1(b). We denote grid

points and spacings by

0 . starting x-location, &n+l n + &no n - 0, 1, 2,... (A.8)

no  0; n n + Anj; j - 0, 1. ... , J; nj n (A.9)

and approximate the quantities (U,V,K,e,T,Q,W) at point ( n,1 j) by

(Us, V', K , , T , QJ, Wj). We also define the following midway

quantities:

E /n) ( 1 j+i/2 -= jE n ) (A.10)

We approximate Eqs. (A.1) to (A.4) at the center of each grid box

and Eqs. (A.5) to (A.7) at midpoint (&n , Tj+ 1/ 2 ). Keeping all the

known quantities (solutions at " Cn on the right-hand sides, we have

2En+ dE ( in+l

En+1/2 J+1/2 )  J+n/2 n nJJ+1/2J 1J+1/2 dx ln+1/2 J+l/2

+ 2A [( )i Vn+l/2 )i vn+1/2] = Rln  (A.11)+ An -J+1 - ( Jnj - J+1/2

1P

A-2



j+1/2( J+1/ 2 ) nri+±/2 ,' T + 'J+1/ ) J+1/2)+*~~12

n+1+1/2

jnU+1/ 1/2/2 + V-1/2 (T + Txv~

+ 2(~~11)
2 (lj+1 2)

1  U~'~ 2)
2

- 2A~(n~ -112
1 Mj-1 1/[2)

J+/ JT +1/2]4- + i n+ 1/( i 1/) ti J~+ J = 1/22

Tp...l

AcJ'pj 
1 2 i tj l a +/

n /2(Lan /2 +a-3l

n~~~* 
-.l 

+* 
-.

iav

+ *.2 + v +/ Sn +/ ) 5T ~



2l Fr+1n+1
4(-i[j 2U~ L+ e 2_(/2

.+1/2) "J/ 1/2 1 J+1/2 J+1/2/ J+12 J+11

n uA/(rj1/) j+/ CE1+1/2 1J12Lj+/+Un+12

nj nl+1/2 1 1+( V~2~n+1/2 n Qr')
+Q /2 J+1/2 + 2A& nE n 1/2 (nj+/2)i j + j )(Q +1/2 j +1/2)

- tn(nj+12 I V t Jv+1/ J~+1 /2 + J+1/2 + VtJ12(J /2

+ 2v Tn~l Tn )2 1 n+1
tJ12J+1/2 J+1/2] + 4AE (En~ /2) (nj+1/2) 'J+1/2

av n+1

2(A& Iak4 (~+, n n~ 2)T + V n ]

n Qj+/2 + + / + 1/) an lj / M 1 J+1/2

tj v~ l ( n**f+l n Qn+n n+1 n+1 1 3

(A.13)
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8(E.1 . 2(n., 1 [,~ + - nnn+1n

- An+1 2 (n. /9) 'J+1/2 (Un+1/2  L w 1 ,2(i n++1 /2 

* j+1/2 j+1/2J flT2 +l J+1/2 )~ +/2 j12

4A&~ 1 1 ) E (191 +1 2 2+1' T
n 1/ 12 1/ x J+1/2 J+1/2 t 1 2 J+1/2 j+/

1J+ +1 A n+1 I n (n +U

j+1,21/Tf+ i,9)2]+ nU+z +z E ( ) + W~
J+1/2J+1/] nj+1/2 J+1/2 J J12 +/)

- AgZc1 [Z .n(T+1 2 + 2Z ) T n £j+l
n J1/2 E:J+ 1/ 2  J+/2 u, J /) J+1/2 tJ+1/2 1/T 12

n fl + -, ~ n+1n 1 2

nt+t I t)

J+ 2 J+ /2 tJ+/2 tJ12 J12J+1/2 J+1/2 J+1]

+-4 8(E 2a (n ) i vc ~ + ~nl + - wn
nl n +1/2 J+1/2 Lc 2 [j+1/ ,J+1/ J+12 j 1 /2 j ++l2

+(a (Wn~ ~f+ =n~ anl~ ~

++n~ n+1l n+ -

J+/ 1( Afl/2 Tn J (1/ 12 +j/2 iv 0 J+./2

+ n+1 n+1 n+l
(Afjl. + -n Q 2(K +, /2  K- 1/2 ) = 0 (A. 16)
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Wiij w +1 El - (A. 17)
(An-1 + in 2( 'J+1/2 cj-1/2)

-'I..where

J+1/ n1/ J+/2 J+/2

+n A (A.18)
n~/ J= J12)(i n+/ dXl+ +/

R2J+/2 - 2A n(j+1/2) Mi+ 112  (2v + Vt 1/ J - T'

+ 2(E +1 /2) 
2 (,J+ 1 2)i (Uj+1/2) + ' n /2(j+112~

U12 Tj12 -ln+1/2

n nal + 1(2 v + vtn (A.19)j +1/2Tj+1/2 + A&nJ12 _j12i __J1/ +/)

"F"]/ nj+/(J 12i'J 12-1 +1/2 Jt/q+/

+ 4( n+/2) (nj1/2' J1/21 7,/2+ A,(nJ+12) t J1/2 j+/2)

j/ 2 1 n+n1/2n
-A&n E +12)(lj +1 2) Uj+1 2 +~2  + /"k) Q+ 1/2 ) t~nj 1 2  T j+ /2 +tJ 12

4(AE /ak) (n lj+112 n n nfA.0
n J+/2)J+12 tJ+1/2 iQ + j

and
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R4J+1/2 4(A n/a) c+1/2 [(T'J+1 1 2)i an j+1/2 tj+l/

8(E 2 1 2 j i/2 + 8(A l)(n/)1

8(+1/ 2)
) j n+1/2J+1/2 { j +1/ 2

J+1/2, t J+1/2 J+l - + '&En"j+1/2)- e 1 J+1/2 tj + /2 (T +122j+1/

2 n n
-4A&n (E.+1/2) (nj+1l2) C j+1/2 j+1/2

+ 4A Z lEl i dEl (A.21)

n E 1 / 2 (T1j1 2) nJ+1/2 x J +1/2 j+112

In the above equations,

:';~~~ 1+=_l , 2, .. ,J-1
-J =1/2 nj+l+ll2 - njl/2

(A. 22)

.. 1/2 n1+1/2 +12

Z (A. 23)j K

and

Tp -T,,+ I '9'-9) (A. 24)
J+1/2 j J+1/2 J+1 j

where

I = .+1/2 j-1/2I 1, 2 , J-1
J+112 nj+ 1+1/2  nj- 1l2

and (A.25)

1 1/2 n n/ 2
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Expressions similar to Eq. (A.24) apply to n+1/2, VP+/2 _+1 and

W+I/2 However, those T, Q, and W associated with V (in Eqs. (A.12) to

(A.14) have an upwind differencing switch in them and are expressed as follows:

J/2 J+ I. J +1/ J+

+ (i- Dj+ 1 2 )[ T - Lj+I, 2 (T'+ 2 - TA+)] (A.26)

where Dj+ 1/2  is a switching parameter (DJ+ 1 / 2 
= 1 is for central differ-

encing and VJ+i/2 - 0 is for upwind differencing), and

L n+1+1/2 - "J+1/2 j - 0, 1, ... , J-2
J+1/2 ' n J+2+1/2 -nj+/2

and (A. 27)

Lj-1/2 0

Again, expressions similar to Eq. (A.26) apply to QV J+, 2 ' T++I/2' Tnj 1(t 1 2 J1//2
n+1 n+1l 

+12

QJ+1/2' and 11J+1/2 in those convection terms. The boundary conditions are:

n+l U Vn+1/2 0 + I - o
J+1/2 o o

(A.28)

Kl+I  + n+1 + 0 n+1 0 Wn+ l  0

j+1/2 + J+1/2 O' Qo -

.-
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