WD-A181 156 TOOL INTERFRCE TECHNOLDGV(U)) CARNEGIE- HELLOM UNIV
PITTSBURGH PR SOFTHA RE ENGINEERING INST J NEWCOMER
NAR 87 CMU/SE1-87-TR-7 ESD-TR-87-188

UNCLRSSIFIED F/G 12/5

FEEFEEE R
d e
ERE
EERE

o~

B

—

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDANDS ~ 1943~ A

E

EFE
r
[

I

"h ’ a
e, o

. RO
e Pt u,‘_zel
' T |

4

" e
h' .O‘. "i‘“ U

0 FILE COBY pareren o @

SEI-87-TR-7
ESD-TR-87-108

\ —_—_—— Carnegie-Mellon University

= Software Enginering Institute

|

Tool Interface Technology

Joe Newcomer

March 1987

AD-A181 156

Technical Report
CMU/SEIS7-TR-7

ESD-TR-87-108
March 1987

Tool Interface Technology

. 2

dc_qe_sslon For
NTIS GRAXI
DTIC TAB
Un~nnounced]
Justification |

Joe Newcomner

B
By ?L%
Dutribuuon/ IP"
Avallubtllt Codes
S y pndi—

Avail and/or

Dist | Speutal DT‘C

-l l ELECTE
A- f JUN 1 5 987

Approved for pubiic releess.
Olstribution uniimited.

This technical report was prepared for the
SE| Joint Program Office

ESO/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
oy position. it is published in the interest of scientific and technical information
0 exchange.

v Review and Approval

N This report has been reviewed and is approved for publication.

O FOR THE COMMANDER

\.._(.‘;\5 %N‘w -
: Kart Shingler
; SEI Joint Program Office

A

- 1 * o a3
RN AL NI Ut 'a‘i's“_;‘.,i‘_}.'.")? NN

CMU/SEL87-TR-7

Table of Contents

Foreword

1. Introduction
2. Tool interface Technology
3. Issues
4. issues in Interfacing

4.1. Memory Resident interfaces

4.2. Message Passing interfaces

4.3. Persistent interfaces

4.4, Structural interfaces

4.5. impact of interface Considerations on Programming-in-the-Small
§. Flexibility Requirements
6. Potential New Technologies 10
7. Rethinking the Probiem 1
8. A Taxonomy of issues 1"
9. Conclusions 1

D B®NNOOOO BN N =

CMU/SEL87-TR-7

Tool Interface Technology

Foreword

The Technology identification and Assessment Project combined a number of related investi-
gations fo identity:

e existing technology in a specilic problem area 10 review research and development
results, and commercially avallable products;

* new technoiogies through regular reviews of research and deveiopment results, peri-
odic surveys of specific areas, and identification of particularly good exampies of the
appiication of specific technologies;

* requirements for new technoiogy through continuing studies of software development
needs within the DoD, and case studies of both successiul and unsuccessful

Technology assessment invoives understanding the software development process, determining
the potential of new technology for solving significant problems, evaluating new software 100ls

-h

CMU/SEI-87-TR-7

that are core o developing software engineering environments.

1. Introduction

One of the key areas in which project members were interested was tool interface technology.
This report discusses the need for (00! interfaces and some of the current trade-offs in tool inter-
face technology, emphasizing the trade-olis between homogeneous and heterogeneous 100ls.
By highlighting some of the major issues, this report reflects the state of the technoiogy today.

2. Tool Interface Technology

The fundamental goal of tool interface technology is to make k possible for many independent
hardware/software components 10 share information. While there are many low-level technol-
ogies that allow the sharing of information (e.g., object file formats common among many
languages), the growing complexity of tooling and information, and the realization that coding is
but a small part of the problem indicates that more sophisticated tools are needed.

The notion of software development environment technology implies that information is shared at
all levels — not only at the “manutacturing” level, but aiso at administrative and support levels —
and shared at all times during the complete product e cycle. Initial requirements specification,
problem analysis, system design, coding, testing, product defivery and distribution, maintenance,
and even cbsolescence are all activities that need to share complex information in increasingly
critical ways.

Pant of the technological problem is that many of the toois currently employed at these levels are
not designed work together toward a common goal. Word processing/document processing
systems used in the requirements documents do not create structures that can be used to trace
design decision. Project planning and management 100i8 do not have interfaces 10 the actual
task 1008, 0.9., directing the development of the program by direct input of the project plan.
implementation fools do not have provisions to feed information back 10 the project management
fools, 0.9., project tracking by direct analysis of the programming environment database.

Even within tasks there is itle provision for sharing; for example, SOMe Project Management
tasks can best be handied by a spreadsheet capabiity, while the output from the spreadsheet
might then be used 10 manipuiate the project dependency graph. Currently such independent
programs have no connections; one must have “integratled” 1ol designed 10 handle the com-
plete task.

A imitation of monolthic integrated systems is the difficulty of incorporating new ideas iInto the
system. New ideas, new 100ls, and new Needs can suddenly make the integrated system a
problem rather than a solution.

An aliermative approach 10 the highly integrated monoiRthic 100l sets is the nearly uncontrolied
anarchy of some other sfwironments. R is sasy 10 create Or add new 100is Or repiace old 100ls,
but there is little control or standardization at the interfaces. inerfaces that are not fully specified

CMU/SEN87-TR-7

can lead to surprising behavior when the valid (but undocumented) output of one tool doesn't fit
the specification for the input of a subsequent tool. Also, growth and extension of such anarchic
foolsets presents significant managerial problems. The major thrust in tool interfacing over the
next few years should be to develop a technology that aliows the following:

o controlied but uninhibited growth,

* interfacing between new technologies and existing technologies, and

o interfacing of relevant but independently developed programs — within tasks, across
tasks, and at the supra-task levels of project management and administration.

Rt is important 10 remember that stronger type mechanisms in programming languages or better
data description mechanisms in conventional databases will not be adequate. Strong typing is
actually an extremely weak form of semantic consistency speciication. To interchange infor-
mation among diverse appliications, a stronger approach to semantic consistency i8 necessary.
The database approach is also syntactic, since & provides no intringic mechanisms that preserve
semantic consistency. Semantic consistency must be maintained by speciications and
mechanisms outside the applications programs that manipulate subsets of the information; other-
wise, the compiexHy is limited, and growth quickly becomes impossible because every application
program must be updated 1o maintain consistency with each new relation or ks equivalent. This
suggests that future interface specification development should emphasize more precise seman-
tic specification.

Iinterfacing diverse foois will become a key problem in constructing sophisticated software devel-
opment environment technology. Sources of important ideas and programs or the hardware they
will use cannot be anticipated; the best or the most appropriate technology should be integrated
as k emerges.

integration may take the form of specifying and adopting standards. Many standards are in
piace, but many more need 10 be specified. New 100iing can be developed with these interface
standards in mind. However, oider tooling and fooling that needs t0 use information in a form
ditferent than that for which & was developed (whether non-standardized information, information
adhering 1o an oider standard, or information in simply a different but standardized form) must be
asccommodated. This can be done by providing mapping functions that transform information on
input and/or output between the desired forms. in the presence of pervasive information, this
agein demonstrates the value of handiing semantic consistency with data specification in an
active database rather than with the mapping programs.

For example, a simple "Unix' pipe” approach 10 interfacing data in form "A" 10 data in form "B"
sultable for processing via a program “B” might be:

“A” format
ifformation —| A©B - Program |_—g."B" format
° transformer input B output

Ut is @ regiotered rademark of Boll Laboretories.

CMU/SEL87-TR-7

But the problem is much more serious when the scenario is:

Database of information
“A" format view) "A" format remap
AvB |—o"B" format Program | ¢ "B" format
transformer input B8 output

The A format view represents a way to get the information from the database, but it Is still in a
database-relative format (e.g., a set of relations). The A-to-B transtormer must convert this infor-
mation 10 a sultable form for B to manipulate, and the output from B must be fed back into the
database, possibly updating the information that produced the original A format view. Consis-
tency and correctness of the database must be maintained, even though the A view Is a subset of
the total information available and other relations might be affected by the updating process as
the output from B is fed back into the database.

The technology for dealing with these mappings is new; there is now a product availabile (5] that
handies some of the remapping problemns, but the deeper problems remain.

3. iIssues

To discuss the problems in 100! interfacing, an overview is presented that is itended o capture
the essence of some of the problems without going into detail.

The basic goal of 100l interface technology is 10 make it possibie to interconnect the components
of a systemn by providing a mechanism for passing information among them. For simpie toois and
information structures this can be quite straightforward, e.g., a trigonometric routine taking an
input value and producing an output value. However, as the nature and complextty of the intor-
mation changes, simple mechanisms are no longer adequate.

Simple type mechanisms were introduced to attempt 10 maintain consistency at the interface
level; thus, one could not pass an integer 10 a procedure expecting a double-precision real num-
ber. Even this simple type mechanism is not avaliable in many languages that suppont separate

A A Al

CMU/SE87-TR-7

compilation because the type consistency cannot be enforced across compilation boundaries.
More modern languages, compilers, and environments provide better support (e.g., Ada,
Modula-2 and C/lint), but mechanisms alone do not suffice if they are not used property; for
example, one must actually define and create types. Passing a real number whose units are
degrees t0 a procedure that accepts a real nhumber whose units are radians is often valid, but
produces surprising results.

Tool interface technology is well deveioped in the EDP/Database world. Various mechanisms
allow applications programs to run unchanged in spite of changes in the structure and organi-
zation of the underlying database, as long as the abstractions required are preserved. Many of
these mechanisms, however, cannot be applied generally to the complex information processing
that is beginning to characterize programming and project environments.

Conventional EDP databases tend to involve a small number of scalar types, usually of fixed size,
and a small number of relations easily expressed in terms of those scalar types. Although one
can produce very complex structures in this way, the structures are usually examined along
certain restricted dimensions at any one time. A simple characterization is that there are many
instances of a few types, and any step in the processing invoives a very small number of relation-
ships among these types. The pattemns of computation are aimost always predictable, occurring
at fixed, known intervals (e.g., daily, weekly, quarterly), and careful analysis of time/space costs
based on the known transaction style can allow the system architect to predict reasonably accu-
rately the throughput of the system.

The more compiex information of ifecycle-pervasive environments — those that try to support all
aspects from the requirements assessment through post-deployment support — involves a small
number of instances, each of many types, whose fine structures are compiex and not of predeter-
mined length; and there are many relationships among the types. Furthermore, the usage pat-
temns are not a priori determinable, since they depend upon particular project management strat-
egies, needs for information, and events that are neither regular nor frequent.

A new property that these systems introduce to software development is the presence of
persistent information, a property well-known in the EDP community. Over the Wetime of the
project, the database must not only support a heterogenesous collection of information (including
graphs, program source, documentation, test data, customer reports, etc.), but also must be
available for new toofing as & is introduced. The classical collection of text files organized by file
name or directory name is not capable of coping with this class of problems, largely because of
the unstructured nature of such information.

As more structure is impossed on the information, the needs of unanticipated new technoiogy
must be addressed. This technology will aiso deal with the information and its relations in ways
far more compiex than the currently avallable, simple relational database models can support;
and they must do so efficiently. Imposing a new structural layer onto an existing database sys-
tem has the potential of incurring unacceptably high performance costs. Nonetheless, this may
be the most effective way (given current technology) 10 expiore the deeper issues of such a
structure.

2w A s e

L N
A e R

CMU/SEI-87-TR-7

4. Issues In Interfacing

The following subsections represent a list of issues in interfacing. For each issue, motivations for
their choice and cost/flexiblility trade-offs are given. Some promising new approaches will then be
discussed.

4.1. Memory Resident Interfaces

These interfaces are characterized by data that typically have a brief existence ranging from a
few microseconds (e.g. a stack frame) to hours (a long program run). Only a few anomalous
cases occur, 6.g., operating system data structures that may persist for months if the hardware
and software are reliable. However, the interfaces usually are not transmitted extemnal 10 the
program'’s address space. They are usually recreated when the program starts execution and do
not persist beyond the (normal or abnormal) termination of the program. Memory interfaces are
also seen as highly reliable interfaces at the bit level; there is rarely any error in the transmittal of
the physical data. The interpretation of that data, of course, is a different problem; strongly-typed
languages are an approach to syntactic correctness of the information, but not sufficiently power-
ful to guarantee its semantic correctness.

These interfaces are not particularly flexible; once an instance of such an interface strategy is
determined (usually by a compiler), a strong commitment is made to its representation. It usuatly
cannot be changed without regenerating the system, e.g., recompiling and relinking in the
simplest case. The cost of a change can be unacceptably high when a complex set of inter-
actions encompassing several modules, plus acceptance testing, is involved.

42. Message Passing Interfaces

These interfaces are characterized by a brief existence (the transmittal time of the message), but
are usually transmitted external 10 the program’s address space. Messages are created, trans-
mitted, received, and destroyed. Significant considerations here include the fact that the infor-
mation may be transmitied in a heterogeneous environmemt and is frequently very simple in
structure. However, Rk is usually assumed that the transport mechanism is unreliable; and at
some level of abstraction, & is no longer safe 1o assume that a message sent is a message
received.

The need for portability often places a limitation on the complexiy of the information passed
through a message. Pointers 10 other data structures are classically hard to encode, 8o what is
usually passed consists of one or more records or sequences of scalar values. However, scalars
aiso have their limitations (see 4.4).

Remote Procedure Call (RPC) mechanisms are an interesting extension, and one that is becom-
ing more important in modem distributed computing. In RPC, the parameter passing mechanism
may have 10 pass compiex information structures; ¥ it passes them by reference instead of by
value, additional complications oocur; and ¥ the structures contain pointers o other structures,
sven more elaborate mechanisms must be included in the RPC mechanism. RPC also has all of
the complications engendered by message loss, recsiver failure, etc., with additional complica-
tions of recovery. However, the power and flexibility of RPC are making & a potentiafty important

CMU/SE87-TR-7

replacement for some of the more limited message passing sy.'ems in distributed environments.
A significant contribution of RPC to programming methodology is that it frees the user from the
task of determining the site of the activation. In a fully general system this may involve schedul-
ing resources, such as finding an idle processor, in a manner that is completely transparent to the
user.

4.3. Persistent interfaces

Persistent interfaces are those where the information being passed along the interface has an
existence quite independent of its creator. File systems and databases are classical instances.
The lifetime of such data is not only independent of the creating process, but in fact often ex-
ceeds the useful Ietime of the code that constituted the creating process. Revised programs
must be able to access this data without requiring reorganization of the information. Reorgan-
ization may incur either prohibitive cost or simply be impossible.2 Thus, representation independ-
ence, data dictionaries, and similar mechanisms have arisen in the EDP community in response
to a very real set of problems. These problems have been largely ignored in the computer
science community, where persistent data may have a lifetime of only weeks or months.

In programming environments, the information has the quality of the persistent interface. In a
5-year project, it shouid be possible not only to access the requirements documents from which
the project was created, but also to provide annotations, communication, feedback, traces, etc.,
of the current system relative to those initial documents. Change log histories from the beginning
of the project may be needed and should be accessible. However, the environment Rself may
change over time, because there are new releases of 10ols or completely new tools introduced in
the environment, or new hardware that requires porting of the environment. None of these events
should cause critical information to be lost.

A number of factors seem to preclude the use of conventional DBMS technology from maintaining
this information. They include: structures such as graphical data structures; program sources of
indeterminate length; annotated post-semarntic syntax tree representations (such as structure edi-
tors use); and the need to establish relations at levels finer than the gross “file" level (for example,
formin) a relation between a field bug report or feature upgrade request and the line or two of
code which performs it, or the paragraph in the revised requirements document that would reflect
a change in the specification.)

4.4. Structural Interfaces

As information becomes more complex, it is no longer possible to encode ki effectively as simple
scalars. Some mechanisms which now exist are text encodings of trees, dags, or general cyclic
oraphs. While allowing a general encoding, these mechanisms can be costly. Notably, the cost
of encoding as text, writing text, reading and parsing text, and encoding text as binary data can
be quite high. When text is used as a communication mechanism between tightly coupled com-
ponents of a system, significant performance costs can be incurred. However, such mechanisms

#The last machine that can read the magnetic tapes from the 1960 census is due for decommissioning soon. There is
apparently no way ©© ransfer hose 1apes 10 & more modem medium, 80 they will be completely inaccsssible.

e,
‘et
ot

CMU/SEI-87-TR-7

allow communication in heterogeneous environments; for example, if the text is limited to the 95
“printable” characters of the ASCI| set, plus "newline” or other equivalent punctuation, such struc-

.;:gi tures can be interchanged between various 8, 16, and 32-bit architectures.

i

;.EEE Such changes do not occur without management and development costs. The readers and
iaf:;g writers must agree on the format of the information; unless a fully general mechanism (such as
mr extended S-expressions) can be used, each writer and reader must be individually handcrafted.
e Changes in the structure will then require changes in all associated readers and writers. This can
.::}‘: be a formidable management task. Even with a fully general mechanism, the form and content of
':ES" the resulting data structure must be agreed upon. Ideally, existing code should be reasonably
'.:“3. impervious to change in the presence of upward-compatible changes.

_ Regardless of these problems, the importance of structural intertaces is increasing as more com-
;_;2{:} plex information must be passed among system components. An example of a highly-structured
z‘i‘e- interface with a textual representation is the POSTSCRIPT® system [1], an interface designed for
i the transmittal of complex multifont documents.

4.5. iImpact of Interface Considerations on Programming-in-the-Small

...l.' There is, as usual, a trade-off between flexibility and other parameters. For example, a data
-;:‘,'s: structure access of the form

o A.B.C (Ada)

":':' A*.BA.C (Pascal)

o A-=>B->C (C)

e encodes very strongly the notion that the B field is a component in the record referred to by A and
:; is found at a distinct offset within that record. Pascal and C are even more problematic, since the
:§i¢ programmer must also encode the fact that A is a pointer to a record instance, and B is a pointer
i found within that record (at a specific offset) which refers 1o a record that contains a C field. Such
o programs contain no representation independence. Mechanisms that create record definitions
;'.;,» from a data-dictionary-like specification and require recompilation of the programs with the new
:'::, definitions help only a small part of the problem, since there is still a commitment to a represen-
‘(:?‘f! tation at the source level.

A

g Procedural interfaces introduce a level of abstraction; for example, the interface

e C(B(r))

E:E; simply constrains the B operation to provide a piece of information when applied to the name A,

and the C operation, when applied to this value, delivers the desired result. There are those who,
with significant justification, argue that this approach provides entirety too much representation
information, and that the correct access is

5 c@)

S where the implementation decides (via its data dictionary) exactly how to find the C information
Ry when given the object A.

-

.-}r RS
RS e i

R

7
-

A 3posTSCAPT is trademark of Adobe Systems Incorporated.

SN MY M WM IO xR ALK WA T TR N PO I o K RN M L T
BN K R AN S A zt’a*“af.-,‘a’,‘t'.- L a'."a‘.a‘m R D R e M A S I

DA\ p AW g
BRMOU OO x_'ﬂm.(“e’,.',’;‘). W1

CMU/SE-87-TR-7

Procedural interfaces are extremely clumsy to write, and they only solve the right-hand-side
(RHS) value; languages like Ada and Pascal do not permit procedures to retumn left-hand-side

‘::"o;&: (LHS) values. This means that LHS values require some other mechanism, e.g., using ‘store’
e:::;‘ procedures for assignment. These do not usually work when ‘var’ (Pascal) or ‘out’ or "inout’ (Ada)
::5::5 parameters are required, and the result is some tairly distorted code.
ot

Procedural interfaces are typically very expensive at runtime. They are usually implemented by
:‘(;, x compilers as the most general procedure-call mechanism. Very few compilers atiow the user to
;’VQ I specify that the procedure (defined in a separate module) shouid be compiled inline or perform
:E::t‘:' such optimizations automatically.
Ry

Many of these problems do not arise in the DBMS/EDP community because the notion of pointers
is encoded as keys in relationships. The more general mapping shown above is a common

N

1‘::":: pattern: given a tuple A and another relation R, retrieve the corresponding C data. However, as
5}:\‘ indicated earlier, the costs associated with these are quite different, and attempting to use such a
j;o::fr' mechanism to manipulate the abstract syntax tree in real time in a screen-based structure editor
e would not give adequate performance. This is because the nature of the relations and the usage

pattems of classical DBMS systems involve coarser-grained interaction on large quantities of

§ : structurally identical information.

y)
zj A mechanism that provides data independence and works Raturally within the language, and
fl does not incur severe cost is necessary at the programming level. Although there are some

candidates for this, they do not respond to all of the problems.

bt
%
R 5. Flexibility Requirements
s R
e There are two extreme positions of tool integration. in one model, the tool does everything; new
,‘_)'. features are added by integrating new components into the tool. This rapidly becomes self-
;a:’ limiting. By analogy, few people use a Swiss army knife, which includes knife blades and scis-
;ti',c sors. If one adds a torque wrench, an oil filter removal tool, and a small astronomical telescope,

! even fewer people would use it. Further, adding a new tool to the knife becomes increasingly
“hbY difficult.

The altemnate extreme is analogous to selling an empty toolbox and providing a tool catalog.

s
a5 While it allows customization, there s substantial overhead involved in identitying the right tools,
& - and significant problems occur K the toolbox does not have a space for them (adding a chain saw
5 2 ' or two-man crosscut to the average toobox does pose certain technical ditficuties). Connecting
) the tools together, where that analogy applies, is substantially more complicated than buying a
;$ ' 3/8"-10-1/2" socket wrench adapter.
>
t’. Somehow, new tools that interact in ways not yet predicted must be accommodated. In the case

ot future computing systems, a variety of tools from all phases of the project lifecycle must be
integrated into something that actually supports a project across its Metime: project planning

e tools, documentation tools, accounting and cost tools, program construction tools, testing tools,
s maintenance support tools, and many others.

e

— 9

R U e t’g.z”.a’uﬂ O N i SRRV M »:‘_';'c.‘}t“{;“éc}\:\.s\I-'tf“p i

T

CMU/SEI-87-TR-7

A single vendor, tool, or machine cannot be expected to support all of these requirements or even
a subset of them effectively. As technology becomes software driven, & will be less important
which hardware is chosen since software costs are now aiready dominating hardware costs (e.g.,
today, R is possible to install a $40,000 CAD software package on a $12,000 computation
engine.) Thus, preparations must be made 10 integrate programs into a computer and also 10
integrate the computers that run those programs into an assemblage of other, heterogensous,
computers that support various aspects of the project tecycle.

6. Potential New Technologies

A system recently coming into use within the Ada community and elsewhere is the Interface
Description Language (IDL) data structure notation, used to specify the Diana representation for
Ada compiler intermediate representation [7]. IDL provides both a language-independent struc-
ture specification (aflowing interface to multilanguage environments) and an interchange format
specification; however, for the latter case the specification does not preciude highly optimized
representations for tightly coupled systems. With certain careful engineering considerations
taken into account, an IDL support system incurs no more time or space overhead than conven-
tional language-specific record systems; and Rk can support upward-compatible changes with au-
tomatically generated or fully generic readers and writers for a variety of interchange represen-
tations.

More speculative, but also more promising, are systems based on the object-oriented mode/.
Such systems include Smalitalk [4, 8, 8, 3], Actors, and Flavors. In these systems, one does not
s0 much act upon data as request data to act. This shift in emphasis allows richer structures to
be built and enhancements to be made over time while maintaining a consistent interface 1o the
user. In addition, the notion of active databases, in which the database has responsiiiity for
maintaining its consistency and integrity relations rather than the (distributed) applications code,
allows much more compiex structures 10 be buikl. Systems such as CAIS demonstrate that this is
a highly promising direction for future development. CAIS (the node model) currently rests some-
where between the simpler structure representations and the fullty general active database model.

For control, the notion of remote activation, of which RPC is but one instance, becomes impor-
tant. Active dalabases, which are themselves distributed, must be able 10 intiate activities on
other machines. When they are combined with object models and active databases, more
) flexible and general paradigms can be developed. The concentration on costs of these
) mechanisms thus becomes a structura! and organizational issue (where, when, and how to act
' upon information) rather than a construction issue (the cost of building these mechanisms). Cer-

tainly the various DBMS systems have accomplished this for their problem domain; a philosophi-
) calty similar approach of developing basic mechanism packages with general applicabiity needs 1
, to be followed.

10

7. Rethinking the Problem

) Some of the interesting implications of long-term information storage are the requirements of
Yy traceabilty, accountabilly, and re-creatabilily. These requirements move sway from the e
fs:, model in which 8 small number of files are “updated” (effectively changed-in-place). They aleo
. move away from the database mode! in which records, relations, or values are “updated” (usually
' changed-in-piace) toward a modet in which nothing is ever “discarded”; all versions of all infor-
N mation are preserved. Logistically, this would entall consuming nearly infinite amounts of disk
N space; pragmatically, one must reguiarly remove information 10 a long-term archive store. How-
" ever, R is currently the case that such “checkpoints” are determined by adminigtrative action. R
must become the case that checipoints and consisiency are automatically maintained by the

system, and adminigtrative choices for baseline points must be validated for consistency. As
, systems grow in complexity, & becomes increasingly difficult for any one person or group fo
*!..! maintain the consistency requirements across thousands of modules and milions of lines of code.
W New approaches 10 the problems of information storage, independent of all other considerations,
o must be considered. Thus, a multiversion, parvasive siore may be an active database, an object
a database, or a passive information database; @ may be accessed via hand-coded intertaces,
automatically generated intertaces, message inlerfaces, or whatever — but & must be 8 new way
. of thinking about the problem. Approaches such as HyperText/HyperData (2, 9] address many of
g these questions, but by no means all of them. Considerable work remains.

8. A Taxonomy of issues

1 The previous sections have discussed some of the topics in tool intertace technology that are
K presently important to software development environment technology. In summary, these topics
Rt involve the following issues:

' o transient vs. persistent data,

o o data vs. control issues (local procedural communication vs. remote activation),

.5.; strong typing (syntactic) vs. interpretation (semantic), and

o information structures passed (singie word, fixed length text, variable length text,
structures, pointers, objects).

Each of these represents a diferent kind of interface problem. Many of the problerms have
characteristics that make them appear 10 be Information management problems rather than
simple information communication.

e 9. Conclusions
4

)

“ Tool intertacing is one of the core technologies that must be undersiood and treated property for
;& software development environment technology 10 continue 10 evolve. Unfortunately, 100! inter-
facing is not well understood, and the trade-offs between allermative interfacing methods are not
easily evalusted. A homogeneous system (s atiractive for obvious reasons, but system
s homogeneity inhibits the abilty of software development environment technology 10 evoive

n

oo

Quickly as new technoiogies smerge in heterogeneous forms. Heterogenelly, on the other hand,
poses significant communications problems. The ideal solution should combine the strengths of
both approaches whils bypassing the weakneeses. To date, thers is no readily avalable tech-
nology that captures these cheracieristics. Alhough prefiminary research resulls are eNCOUrag-
ing. much more work is needed belore the IMPonant issues are rescived.

12

LR bl sl ol ol

CMU/SELST-TR-7

References

(1) Adobe Systems.
PostScript Language Reference manual (ISBN 0-201-10174-2)
Addison-Wesley Publishing Company, Reading, MA, 1906.

2 Steven Feiner, Sandor Nagy. and Andriss van Dem.
An integrated System for Creating and Presenting Compilex Computer-Based Documents.
ACM Computer Graphics 181-180, August, 1988.

31 Adele .
Smallak-80: The interactive Programming Environment.
Addison-Wesley. 1984.

[4) Adele Goliberg and Devid Robeon.
A Metaphor for User intertace Design.
in Proceedings of the 12th Hawail inernational Conference on System Sciences, pages
148-157. Conderence on System Sciences, 1979.

[5) imperial Sofware Technology
ISTAR: integrated Project Support Erwironment.
internal Paper.
August, 1985

[6] RaphL. London and R. Aum

Animating Programs Using Smaliak
Computer 18(8) 81-71, August, 1905

M John R. Nestor, Williem A. Wull, and David A. Lamb.
IDL - iertace Description Language.
Formal description.
1981

(L)] §.K.Warren and D. Abbe.
Rosetta Smaltalk: A Converstional Extengible Microcomputer Language.
in Proceedings of the Second Symposium on Small Systerns. October, 1979

™ N. Yankeiovich, N. Meyvowiz, and A. van Dam.
Reading and Writing the Electronic Book.
Computer ., October, 1988

F

REPORT DOCUMENTATION PAGE

1s AGPORT SECURITY CLASSIFICATION
UNCLASSIFIED

10. AESTAICTIVE MAAKINGS

28 SECURITY CLASBIFICATION AUTHOAITY
N/A

N/A

25 OECLASSIFICATION/OOWNGRADING SCHEOULE

3. OISTRIBUTION/AVAILABILITY OF REPORT

UNCLASSIFIED, UNLIMITED, DTIC

CMU/SE1-87-TR~7

6 PERPFOAMING ORGANIZATION REPORT NUMBER(S)

ESD-TR-87-108

8. MONITORING ORGANIZATION REPORT NUMBER(S)

6o NAME OF PERFORMING ORGANIZATION
SOFTWARE ENGINEERING INST,

QFFICE SYMBOL

lé'iio“ﬂ“ﬂ

Jo. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6c. ADDAESS (City. State end ZIP Cede)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

ESD/XRS1

01231

70. ADORESS (City, State ond ZIP Code)

HANSCOM AIR FORCE BASE

Ga NAME OF PUNDING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

. OFSICE SYMBOL
(11 applicebls)

ESD/XRS |

9. PROCUAREMENT INSTAUMENT IDENTIFICATION NUMBER

G ADDRESS (City. State and ZIP Cods)
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT
ELEMENT NO.)
63752F N/A

[K] Tir £ iincinds Secunty C-h-mnuau
TOOL 'INTERFACE TECHNOLOGY

TASK
NO.

N/A

WOAK UNIT
NO.

N/A

B MR

13a TYPR OF ARPOAT

130 TIME COVERRD

FROM
%_
16. SUPPLEMENTAAY NOTATION

16. DAYE OF REPORT (Yr, Me.. Dey)

To MARCH 87

18

18. PAGE COUNT

17 COBATI CODES

| sayp | gmoue Sy gn

180 SUBJECT TEAMS (Connnue on reverse if necomery end identify by blech number)

RETEROGENEOUS TOOLS.

19. ABBTARACT (Contmue on musree i/ nooossery and 1den ify by dleack number)
THIS REPORT DISCUSSES THE NEED FOR TOOL INTERFACES AND SOME OF THE CURRENT TRADE-OFFS
IN TOOL INTERFACE TECHNOLOGY, EMPHASIZING TME TRADE~OFFS BETWEEN HOMOGENEOUS AND

BY HIGHLIGHTING SOME OF THE MAJOR ISSUES, THIS REPORT REFLECTS
THE STATE OF THE TECHNOLOGY TODAY.

1: w:w*lumvmu.ouhr OFf ABSTAACY

UNCLASSI#180/UnLIMTED i Same as mer T oric ussne O

2% AGBTARACT SECUNITY CLABBIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION

20 NANME OF AESPONSIBLE N0 VIDUAL
KARL N. SHINGLER

L

230 TELEPHONE NUMBER
tinoinde Awe Code:

412 268-7630

23e OFFICE SYMBOL

AEL JIPQ

