
-AI81 56 TOOL INTERFACE TECHNOLOGY(U) CARNEGIE-MELLON UNIV i/i
PITTSBURGH PA SOFTWARE ENGINEERING INST J NEWCOMER
MAR 87 CMU/SEI-S7-TR-7 ESD-TR-97-iOS

UNCLASSIFIED F/G 12/5 M.EEEEEEmnmmhnE
Eu'.'..

L

11112 11111_.

MICROCOPY RESOLUTION TEST CHART
PIAT OAL ou*EAU Of STSWUSM09-143- 4

A4IL

OIC FILE COIEx,o
FILE CODTechnical Report

SEI-87-TR-7
ESD-TR-87-101

_____ Carnegie-Mellon University

-- Software Enginering Institute

Tool Interface Technology

00
Joe Newcomer

March 1987

"?\,

J //

/ /

TWO~

87 12 102

Technical Report
CMUISE-'-T-7

EM.TP.P.10
Meh I7

Tool Interface Technology

Joe Newcomner
Accesslon For

NTIS GRAAI
DTIC TAB
Unnrnounced Q
Just Ificatlo

Distrlbution/

Availabtilty Codes

.Avail and/or
)Dis+. Spoulal,

0-I0 D S3I

Pgfns~V 121

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. it Is pubished in the ineret of scie tilic and technical inlormation
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler
SEI Joint Program Office

This work was sponsored by the U.S. Department of Defense.

The damam is evalbf Sglp do Dofmme TeidWW Itmmelsa Cwm OTIC p -idsm s M aId m m an
amgis - Uumwo bWewmmn Ow 0.0 pI n m. D@0 = Iramrs aid Mld mwiacrrs, & em US

owww o qmF smdme oi Smw muwaums To ubmun a eW. pbse oomnw OTIC dmsly Os nuea Tatwnrai
=ibm Z C$ s Wi F000. Com~ SNllw. Abwi T. VA 22M44lF5

ft mww ws dm ~sm~f fs.wo ft WsWedwm a~w lin au Smone ForL OWNmm Woan
.pft emea WIS do@* Nefm Tatvms kdswmb Se n s, U5 Dapaitvm of Co mw s

p 1 10 . VA 2216

cWu/sE147-TR-7

Table of Contents

1. Intodton 2
2. Tool Intrface Technology 2
3. Isues 4
4. Issues In Wntefadng 8

4.1. Mstmory Resident Interfaces 6
4.2. Message Passing Iterfaces 6
4.3. Persistent Interfaces 7
4.4. Stuctura Interface 7
4.5. INfac of kntrfac Considlerations on Programnlng-In-t-Small 9

5. Flexblky Requirement 9
6. Potental New Technologles 10
7. Rethlnking the Problem 11
S. A Taxonomy of Isues 11
9. Conclus~on I11

Tool Interface Technology

Foreword
The Technology lentilcallon ard Assesament Proe onblned a nuuTder of rela-ed inveuti-
gpions to klsntly:

" existing technology In a specific probisem aW review research and development
results. and oommeroilij avalle podijcls;

" n- technologles Ivough regular reviews of research and developmere resuits pe*l
odtowuney of lpecllc areasW and ~etIIn of particularly good examples of the
applicalon of specillc technologles;

9.6 WeIrmet new lechnology through continuing studI of softwar development
nee ds wilhin the DoD, wtd cas studies of both successful ard unsuccessfu

Technology assesmn Involves undersadn t software developmnent process. dete*mning
the potential of new technology for solvin significant prOlems. evaluaing new softowr lools
andirmethods, matchin 1P1 ting technologies to needs, and doterlnnln the potetial payoff of
new technologies. sesmnt activities of the prlojec tfosed on core techolog am for
softm enierg environments.

This report is one of a eerie of suway reports. it is not iende lo provide an euxhaustive
discussion of topice pertinen to Owe area of ussr tnen ace technology. PAW.er it is atn as an
Ir~n'.atlve review of the technology surveye. These surae" were concced In kie IMS and

Maro of fte prooect reco1, d tha more general technology surveys have been conducted
by other investigaors. The proj-ct dd not atempt to &*NM@i those surveys. hul foused on
poInts not addressed In fthse surveys. The goal In ondict*n the SEI survys was not to
d -PcThe the technology In general, but to emphasize bsues tha have either a strong kvrac on
or am ~n~ to soflwmre eaine~ n environments. The objective In presenting thee reports is
to provd an overview of the technolgies

fI If

CMSEI417-TIR-7

tha are coe to developing software engineering environmenis.

1. Introduction
One of the key mren In which project memnbers; were Interested was tool interface technology.
This repor discusses the need flor tool Interfaces and some of the curren trade-offs in tool hedr-
face techx*og, ernphasizing the trade-ofls between hmgen eous and heterogeneous tools.
By highligtling some of the malor Issues. this report refects the Ot of the technology today.

2. Tool Interface Technology
The fnaetlgoal of tool ~werae technology Is to makf posble for many indepndert
hardware/softare components to share inlormatlon. Wie there are many low-level technol-
ogies that allow the sharing of ifonyiation (e.g., object fis formats common among many
lauges), the growing complexity of tooling and inormation. and the realization that coding Is
but a smnall pa of the problem Indicates that more sophisticated tools are needed.

The notion of solfware development environmrent technology implies that kIormation is shared A
aftlvls w - not only at the *Manuiacturlng level, but also at adirnstratlve and support leivels -
arid shared at all times during the complete product go cycle. Iitial requirements specification,

-OW analysis, system design, coding, tesig, -rdc delivery and dietiuton, maitenance,
and even obsoenos are all lvSfes that need to share complex Inormatlon in increasingly
critical ways.

Part of the technological problem Is tha many of the tools currently emrployed at these l el are
not designe to work together toward a common goal. Word processirgdocument processing
systes used in the requirements documnet do not create structures that can be used to trace
deepg decision Psojac planilg andi management tools do not have Interfaces to the actual
task lools. eg., directin the development of the progprm by direct krpx of the project plan.
hnplernenlation tools do not have provisions to feed Inlonnatlon back to the projec management
tools, e.g., project tracking by direso analysis of the programming environent database.

Even wlthIn tasks there is mi provision for sharing; for sample. some proj-ct management
taek can best be handled by a spreadshee caailty, while the vAp* from the speedshee
mlgte then be used to manpulate the project depenidency graph. Currentl such Independen
programs have no connections; one must have Inlegrled tools desIgned to handle the corn-
plow teak.

Allmatlon ofmonoilthic-Iegra-e systemnsis he difflaultycof incoooaln newideasilo the
sysitm. New Ideas, new tools, and new neede can suiddenly rW~e the Integrated syslemi a
problem ratherilwa soblon.

An allernatie apposch to the hlVil negraWe m o nolIc tost Is the nearly unoronimled
anarchy of some other orwronnw. Nb isesy to c eaWe or add now tl or replace olad tools,
bt teeis Se otrol or eMdarintlon attheIrls. Winerlaoethat we not gIly allled

CMISEW4-TR-7

can lead to surprising behavlir when the valid (but undocumented) output ol one too doesn't fit
the speclication for the Input of a subsequent tool. Amo. growth and extension of such anarchic
loolsets presents significant managerial problems. The major thrust In tool interfacing over the
next few years should be to develop a technology that allows the following:

& controlled but unilhbited growth,
* Interfacing between new tecnolgis and existing technologies, and
* Interfacing of relevant but Independently developed programs - within taskcs, across

tasks, and at the supra-ai levels of project management and adymistration.

it is important to rementer that stronger type mechanisms in programming languages or better
daa description mechanisms In conventional databaxses will not be adequate. Strong typing Is

actually an extremely weak form of semantic consistency specllcation. To interchange infor-
mation among diverse appications. a stronger approach to semantic consistency is necessary.
The database approach Is also syntactic, since it provides no Intrinsic mechanism that preserve
semantic consistncy. Semantic consistency must be maintained by specifications and
mechanisms outsWd the appications programs that manipulate subsets of the Information; other-
wise, the comlexity is limited, and growth quicky becomes Impossble because every application
program must be updated to maintain consistency with each new relation or its equivalent. This
suggests that future inteurim* specification development should emphasize more precise seman-
tic specification.

interlacing diverse tools will become a key problemn In constructing sophisticated softare devel-
opine. environment techology. Sources of Irnportard Ideas and programs or the hardware they
wil use cannot be anticipated; the best or the most appropriate technology should be Integrated
asitemnerges.

Integration may takhe the form of specifn anid adopting standards. Many standards are in
place, but many more need t0 be specified. New tooting can be developed with these Interface
standards In mind. However, older toting and toolig thast ned to use Informtion Ina form
dlifferent tha that for which I was developed (whether n-tnaried Information. itormatlon
adhering to an older standard, or kdormation In sikRft lyflereft but stadardized form) must be
accommnodated. This can be done by provling mpping fnctions tha transform Information on
Input and~or ouiput betweeon fte deered forms. in the lovesnas of pervasive information, this
again demonsraes te value of handin sematic coitency with data speciication In an
active database rather tha with the mappin programs.

For example. a 0"~l Uuexl pOWe appnroc to Interfacing data In form sA to data In form Wr
suitable procesing vima progra WnVlItbe:

'A"format -inlormation AtoB Porm"I~'

'tanfome kPe Outputwkd i wd

3

CMU/ISE-7TR-7

But the problem is much mome serious when the scenario is:

Atorma Bforat

transformer kPut Boutput

The A format view represents a way to get the information from the database, but it Is still i a
database-relative f1ormat (e.g., a set of relations). The A-to-B transformner must convert this Infor-
mation to a suitable form for 1B to manipulate, and the output tm B must be led back into the
database, possibly updating the kWormation that produced the original A format view. Consis-
tency and correctness of the database must be maintained, even though the A view is a subset of
the total Inlormation avallable and other relations might be affected by the updating process as
the output from B Is fed back into the database.

The technology for dealing with these mappin-gs Is new; there Is now a product available (51 that
handies some of theirmappi problens butthedeeper probemnsremain.

3. Issues
To iscus the problems In too Itttacing, an overview Is presented that Is Intended to capture
the essence of some of the problem withou going nto deta.

The basic goa of tool Intofam technology is to make It possible to interconnect the omponents
of a system by providin a mechanism for passin irformstion among them. Fr simle tools and

k~omutOn tuctures this can be *uit stralgtowad, e.g., a trigonometric toutine taking an
kpg v*Anj and producin an outpu valus. However, as the rn and com'plexity of the ktor-
motion changes, simple mechanism are no longer adequate.

8inqle type mechanisms wer s Itroduced to attewpt to* mairtain consistency at the Interf ace
level thus, one could not pass an Iriege to a procedure expecting a double-precison real num-
ber. Even this simple t"p mechanim Is not awalal" In mainy languages tha supor separate

4

CMU/SEI-ST-TR-7

compilation because the type consistency cannot be enforced across compilation boundaries.
More modem languages, compilers, and environments provide better support (e.g., Ada.
Modula-2 and C/NN), but mechanisms alone do not suffice If they are not used properly; for
exumple, one must actually define and create types. Passing a real number whose units are
degrees to a procedure that accepts a real number whose units are radians Is often valid, but
produces surprising results.

Tool inerface technology Is wel developed in the EDP/Database world. Various mechanisms
allow appliations programs to run unchanged In spite of changes in the structure and organi-
zation of the underlying database, as long as the abstractions required are preserved. Many of
these mechanism, however, cannot be applied generally to the complex Information processing
that is beginning to characterize programming and project environments.

Conventional EDP databases tend to Involve a small number of scalar types, usually of fixed size,
and a small number of relations easily expressed In terms of those scalar types. Although one
can produce very complex structures in this way, the structures are usually exanined along
certain restricted dimensions at any one time. A sinple characterization is that there are many
Instances of a few types, and any step in the processing involves a very small number of relation-
ships among these types. The pattems of computation are almost always predictable, occurring
at fixed, known Intervals (e.g., daily, weekly, quarterly), and careful analysis of time/space costs
based on the known transaction style can allow the system architect to predict reasonably accu-
rately the throughput of the system.

The more complex Information of Iiecycle-pervasive environments - those that try to support all
aspects from the requirements assessment through post-deployment support - involves a small
number of instances, each of many types, whose fine structures are complex and not of predeter-
mined length; and there are many relationships among the types. Furthemore, the usage pat-
terns are not a prorl determinable, since they depend upon particular project management strat-
egies, needs for Irormation, and events that are neither regular nor frequent.

A new property that these system ftd to software development Is the presence of
persstent Womaton, a property wel-known In the EDP community. Over the ietime of the
project, the database must not only support a heterogeneous collection of information (including
graphs, program source, documentation, tes data, customer reports, etc.). but also must be
avalble for new tooing as I Is introduced. The clasical collection of text ties orgamized by file
name or directory name is not capable of coping wirh this class of problems, largely because of
the unstructured nature of such Iriormation.

As more structure is Imposed on the Information, the needs of unanticipated new technology
ust be addressed. This technlology will also deal with the knormatlon and Its relations in ways

fa more conmplx than the currently avalable, sim reltonal database models can support;
&rd they must do so officiently. Imposing a new structural lawer onto an existing database sys-
tern has the potential of inn unaceptably high peWrmnce costs. Nonetheless., this may
be the most effective way (given current technology) to explore the deeper Issues of such a
structure.

i i5

CMU/SEI-87.TR-7

4. Issues In Interfacing

The following subsections represent list of Issues in interfacing. For each issue, motivations for
their choice and cost/liexbUty trade-offs are given. Some promising new approaches will then be
discussed.

4.1. Memory Resident Interfaces
These Interfaces are characterized by data that typically have a brief existence ranging from a
few microseconds (e.g. a stack frame) to hours (a long program run). Only a few anomalous
cases occur, e.g., operating system data sructures that may persist for months if the hardware
and software are reliable. However, the interfaces usually are not transmitted external to the
program's address space. They are usually recreated when the program starts execution and do
not persist beyond the (normal or abnormal) termination of the program. Memory Interfaces are
also seen as highly reliable Interfaces at the bit level; there Is rarely any error In the transmittal of
the physical data. The Interpretation of that data, of course, Is a different problem; strongly-typed
languages are an approach to syntactic correctness of the Information, but not sufficiently power-
ful to guarantee its semantic corredness.

These Interfaces are not particularly flexible; once an Instance of such an interface strategy Is
determined (usually by a compler), a strong commitment Is made to Its representation. It usually
cannot be changed without regenerating the system, e.g., recompiling and rellnking In the
simplest case. The cost of a change can be unacceptably high when a complex set of Inter-
actions encompassn several modules, plus acceptance testing, is involved.

4.2. Message Passing Interfaces
These Interfaces are characterized by a brief existence (the transmittal time of the message), but
ae usually transmitted extemal to the program's address space. Messages are created, trans-
mitted, received, and destroyed. Significant considerations here Include the fact that the Wor-
mation may be transmitted In a heterogeneous environment and Is frequently very simple in
structure. However, it Is usually assumed that the ransport mechanism is unreliable; and at
some level of abstraction, it is no longer safe to assume that a message sent Is a message
received.

The need for portability often places a limiation on the complexity of the inormation passed
through a message. Pointers to other data structures are clmically hard to encode, so what is
usually passed consists of one or more records or sequences of scalar values. However, scalars
aWso have their liitations (see 4.4).

Remote Procedure Call (RPC) mechanisms are an Interesting extension, and one that Is becom-
Ing more Important in modem distibuted computing. In RPC, the parameter passing mechanism
may have to pow complex Irdormuion structures; I it pam them by reference Instead of by
value, additiona complications ocour, and N the structures contain pointers to other structures,

oven more elaboralte mecmnism must be Included In the RPC mechanism. RPC also has all of
the complications engendered by message loss, receiver falhre, etc., with additional cwplica-
tions of recovery. However, the power and flexlblity of RPC ae maling it a potentially ImportanI' '

CMU/SEI.67.TR-7

replacement for some of the more lined message passing sy.ems In distributed environments.
A significant contribution of RPC to programming methodology is that it trees the user from the
task of determining the eke of the activation. In a fully general system this may Involve schedul-
ing resources, such as finding an Idle processor, in a manner that Is completely transparent to the
user.

4.3. Persistent Interfaces
Persistent interfaces are those where the Information being passed along the Interface has an
existence quite Independent of its creator. File systems and databases are classical Instances.
The lifetime of such data is not only Independent of the creating process, but n fact often ex-
ceeds the useful lifetime of the code that constituted the creating process. Revised programs
must be able to access tNs data without requiring reorganization of the information. Reorgan-
ization may Incur either prohibitive cost or simply be Impossible.2 Thus, representation independ-
ence, data dictionaries, and similar mechanisms have arisen in the EDP community n response
to a very real set of problems. These problems have been largely Ignored in the computer
science community, where persistent data may have a lifetime of only weeks or months.

In programming environments, the Information has the quality of the persistent Interface. In a
5-year project, it should be possible not only to access the requirements documents from which
the project was created, but also to provide annotations, communication, feedback, traces, etc.,
of the current system relative to those Initial documents. Change log histories from the beginning
of the project may be needed and should be accessible. However, the environment itself may
change over time, because there are new releases of tools or completely new tools introduced In
the environment, or new hardware that requires porting of the environment. None of these events
should cause critical information to be lost.

A number of factors seem to preclude the use of conventional DBMS technology from maintaining
this Information. They Include: structures such as graphical data structures; program sources of
indeterminate length; annotated post-semantic syntax tree representations (such as structure edi-
tors use); and the need to establish relations at levels finer than the gross "file* level (for example,
formin-j a relation between a field bug report or feature upgrade request and the line or two of
code which performs it, or the paragraph in the revised requirements document that would reflect
a change In the specification.)

4.4. Structural Interfaces
As information becomes more complex, it is no longer possible to encode it effectively as simple
scalars. Some mechanisms which now exist are text encodings of trees, dags, or general cyclic
graphs. While slowing a general encoding, these mechanisms can be costly. Notably, the cost
of encoding as text, writing text, reading and parsing text, and encoding text as binary data can
be quite high. When text Is used as a conmunication mechanism between tightly coupled com-
ponents of a system, significant performance costs can be Incurred. However, such mechanisms

he bat mecle t Oan r ged i. meb pMe from dh 1N0 censs I die for dwamis n mn. Thmi
wpm~w no way lo VamnW lime Wn ID a -r mnam medum, so 0ey w be =mpW* hwmcb.

7

CMU/SEI-87.TR-7

allow communication in heterogeneous environments; for example, If the text Is limited to the 95
Vdrntable" characters of the ASCII set, plus "newtine or other equivalent punctuation, such struc-
tures can be interchanged between various 8, 16, and 32-bit architectures.

Such changes do not occur without management and development costs. The readers and
writers must agree on the format of the information; unless a fully general mechanism (such as
extended S-expressions) can be used, each writer and reader must be individually handcrafted.
Changes In the structure will then require changes in all associated readers and writers. This can
be a formidable management task. Even with a fully general mechanism, the form and content of
the resulting data structure must be agreed upon. Ideally, existing code should be reasonably
Impervious to change In the presence of upward-compatibe changes.

Regardless of these problems, the Importance of structural interfaces Is Increasing as more com-
plex information must be passed among system components. An example of a highly-structured
Interface with a textual representation Is the POSTSCRIPT3 system [1], an interface designed for
the transmittal of complex multifont documents.

4.5. Impact of Interface Considerations on Programming-in-the-Small
There is, as usual, a trade-off between flexibility and other parameters. For example, a data
structure access of the form

A.B.C (Ada)
A . .C (Pascal)
a -> a -> C (C)

encodes very strongly the notion that the B field is a component In the record referred to by A and
is found at a distinct offset within that record. Pascal and C are even more problematic, since the
programmer must also encode the fact that A is a pointer to a record instance, and B is a pointer
found within that record (at a specific offset) which refers to a record that contains a C field. Such
programs contain no representation Independence. Mechanisms that create record definitions
from a data-dictionary-lIke specification and require recompilation of the programs with the new
definitions help only a small part of the problem, since there is still a commitment to a represen-
tation at the source level.

Procedural Interfaces Introduce a level of abstraction; for example, the Interface

C (B (0))

simply constrains the B operation to provide a piece of Information when applied to the name A,
and the C operation, when applied to this value, delivers the desired result. There are those who,
with significant justification, argue that this approach provides entirely too much representation
Information, and that the correct access is

C (A)
where the inplementation decides (via its data dictionary) exactly how to find the C Information

when given the object A.

SPCsc,.rT Is 9",auud d Addis Sy,ms IFnoorpmU:

S

CMU/SEi-67-TR-7

Procedural interfaces are extremely clumsy to write, and they only solve the right-hand-side
(RHS) value; languages like Ada and Pascal do not permit procedures to return left-hand-side
(LHS) values. This means that LHS values require some other mechanism, e.g., using 'store'
procedures for assignment. These do not usually work when 'vr' (Pascal) or 'out' or 'inout' (Ada)
parameters are required, and the result is some fairly distorted code.

Procedural Interfaces are typically very expensive at runtime. They are usually Implemented by
compilers as the most general procedure-call mechanism. Very few compilers allow the user to
specify that the procedure (defined In a separate module) should be compiled inline or perform
such optimizations automatically.

Many of these problems do not arise in the DBMS/EDP community because the notion of pointers
is encoded as keys In relationships. The more general mapping shown above is a common
pattern: given a tuple A and another relation R, retrieve the corresponding C data. However, as
indicated earlier, the costs associated with these are quite different, and attempting to use such a
mechanism to manipulate the abstract syntax tree in real time in a screen-based structure editor
would not give adequate performance. This is because the nature of the relations and the usage
patterns of classical DBMS systems involve coarser-grained Interaction on large quantities of
structurally identical information.

A mechanism that provides data Independence and works naturally within the language, and
does not incur severe cost is necessary at the programming level. Although there are some
candidates for this, they do not respond to all of the problems.

5. Flexibility Requirements
There are two extreme positions of tool integration. In one model, the tool does everything; new
features are added by Integrating new components into the tool. This rapidly becomes self-
Initing. By analogy, few people use a Swiss army knife, which Includes knife blades and scis-
sors. If one adds a torque wrench, an oil filter removal tool, and a small astronomical telescope,
even fewer people would use it. Further, adding a new tool to the knife becomes increasingly
difficult.

The alternate extreme is analogous to selling an empty toolbox and providing a tool catalog.
While it allows customization, there is substantial overhead Involved in identifying the right tools,
and significant problems occur I the toolbox does not have a space for them (adding a chain saw
or two-man crosscut to the average toolbox does pose certain technical difficulties). Connecting
the tools together, where that analogy applies, is substantially more complicated than buying a
3/8"-to-1/2" socket wrench adapter.

Somehow, new tools that Interact In ways not yet predicted must be accommodated. In the case
of future computing systems, a variety of tools from all phases of the project Ifecycle must be
Integrated Into something that actually supports a project across its lifetime: project planning
tools, documentation tools, accounting and cost tools, program construction tools, testing tools,
maintenance support tools, and many others.

9

CMU/SE-87-TRI.7

A single vendor, tool, or machine cannot be expected to support all of these requirements or even
a subset of them effectively. As technology becomes software driven, It will be less important
which hardware is chosen since software costs are now already dominating hardware costs (e.g.,
today, I Is possible to Install a $40,000 CAD software package on a $12,000 computation
engine.) Thus, preparations must be made to Integrate program into a computer and also to
integrate the computers that run those programs into an assemblage of other, heterogeneous,
computers that support various aspects of the project liecycle.

6. Potential New Technologies
A system recently coming Into use within the Ada community and elsewhere Is the Interface
Description Language (IDL) data structure notation, used to specify the Diana representation for
Ada compiler Intermediate representation [71. IDL provides both a language-independent struc-
ture specification (allowing Interface to multilanguage environments) and an interchange format
specification; however, for the latter case the specification does not preclude highly optimized
representations for tightly coupled systems. With certain careful engineering considerations
taken Into account, an IDL support system incurs no more time or space overhead than conven-
tional language-specific record systems; and it can support upward-compatible changes with au-
tomatically generated or fully generic readers and writers for a variety of interchange represen-
tations.

More speculative, but also more promising, are systems based on the obct-orientd model.
Such systems include Smailtalk [4, 8, 6, 3], Actors, and Flavors. In these systems, one does not
so much act upon data as request data to act. This shift in emphasis allows richer structures to
be built and enhancements to be made over time while maintaining a consistent interface Io the
user. In addition, the notion of active databases, in which the database has responsiblity for
maintaining its consistency and Itegrity relations rather than the (distributed) applications code,
allows much more complex structures o be bulk. Systems such as CAIS demonstrate that this is
a highly promising direction for lulure development. CAIS (the node model) currently rests some-
where between the simpler structure representations and the fully general active database model.

For control, the notion of remote ac vahon, of which RPC is but one instance, becomes impor-
tant. Active databases, which are themselves distributed, must be able to Wiate activities on
other machines. When they are combined with obect nmdel and active databases, more
flexible and general paradigms can be developed. The concentration on costs of these
mechanisms thus becomes a structural and organizational issue (where, when, and how to ac
upon Information) rather than a construction Issue (the cost of bulking these mechanisms). Cer-
tainly the various DBMS systems have accomplished this for their problem domain; a phlosophi-
cally similar appmach of developing basic mechaism packages with general applicability needs
to be followed.

10

CuIAPEI-9-TW.7

7. Rethinking the Problem
Somne of Voilw atren ;,Ilcatllof@ bogerm knormgion storage we Ow requirements ot
fraceaby.- aaay wd s a . Thes requhments nve away fromn Me oft
wme In whic a ameS nwNw of fee we 'ud~ (ellectlvely chrie in-lWe). They also
umveaway from ie database model in which recorrlonsor vfjes re'pdoiier(usuuly
changed in-place) lows~ a model in wihnotig Is ever "dicardedr; au versions of am Wdor-
mnation am preserved. Logistically, thi would e~ai consu*m"n nedinlnl wlounts of M~k
space; pragmatally, one nmoustready remove Wwormft~n to a long-tem archive store. How-
ever 11 Is curer t case OWi such "chsdWpo&W we dleteried by adndnistive aelon. It
must becomne Vfe case #Wi alteclipoints wW cwonsency we &auomatt ic mrinhalnd by ft
systm. MWi adinistrative choices for baselin points MWs be vebANed for oonsiency. As
s"sem grow In conmeip y. I becms incrainl dificL for any one pero or ~ou t0
mfainftVeconsistncy reqLlemewftsacrossVuuifioans@ o~als ndW. mlhlon eso@6 ode.
New approaches to Vie problemso @6tMU S~ilonsorage, inependent of all ote ConlderIoat
ut be considered. Thu, a multiveralon, pervasive store my be an aclive database. an ob~ed

dlatabase, or a passive iomyeion database; I my be accessed via herid-oded ltedacs.
atmatically generate iniesnface message interfaces, or whiatever - but It m be a new way
of thlring about Vie protbm Approaches such as HyperTextflyper~sta 12,93 adfOsa many of
these questions, bu by no means all of tm. Condrble work rains.

6. A Taxonomy of Issues
The previous sections have discusse some of Vie tc in tool interac teclwology WOa we
presenty in"ortant to softare development environmnto techolog. in smmary. thes topics
involve the tolowng Issues:

" transient vs. persistent data.
* data vs. control Wasue (lOa procedural con. nlcatlon vs. remiote activation),
" stron typkin (syntactic) vs. intrpetation (semntnic), wd
" Itormation structures pause (singl word, bxed length teW. varWWleIngth teM.

structures, pontrs object)

Each of Vies represents a d~ferent knd of ~Itrface problem Many of NWe problem have
characteristics toa makh em w ppear to be informatIon manrwnt problems rwe 1ham
WMInPl ktormiiion conhnur~abI

9. Conclusions
Tool kInerfacing Is one of NWe core technologis Vii must be undero and teated piapery for

aof w eeopment envionment tecnology to cotlw~ to evolve. Urlokanately, too ~ier-
facing; is not well understood, and NWe trade-of between alemffive Iterfaclng methods am not
easil evahuated. A hormpogeu syste Is attractive for obviou reasons, but systm
homognelty bi heN abiliy of softwar developmen erwionment technology to evolve

qAs~ -nrew WcInmWm emesge i haseugeneus Wansnug uuseiy allop ~ n Vwafediw
pose ininlww cama a pnb~Arn. The W sokogn gsuMW on~n ft WnVs of
baolh appmaoes while h~puq IQ M wsiinsu. To .c fuis noa meu~ I MAN tech-
noba VW cspams Use cl -meeislMp. Aough puebvfwy rrnwch uemfs e wmourW

= big~k..U "ah~we ak 6 needed beam Wie ba qmeu" amu sc Wale.

111 AobeSan.
PusO&O Lrim Rtoeu nwmaaI(MWI 0-201-10174-)

DnWgebyW Pibft ConmanV, Psmdkq MA. 1SO6

121 Msewn Fela.f doi NW. wid MdieenDun
An1Vmem1ed SWemtr Cabiand Piesn"n Con~IeConp#uerSed Dowumnta

(31 Adie OWIN .
Olmft-W: The Mteuw Acram" Embwwpewe
Adsn Vefy. 1184.

141 Adeb 0 ulhe g and DavidRbon
A MN" IOC User MWem Dearu.
I Pooauee of ite IM, DMmv bftemak~wW Cmwifi on Systm S&wn. pen

146-157. Cmois ence on S"4em Sciences, 1979.

P61 MPGu- Soluvre TeONwie
STAR: I ise Pnm Supof Efwbonnme.

Aug, 10

161 Rh L. London andR.A. ergW.-nnf Pooena LWV Smeldik

[7 "JM RL Nfel. WIOMm A. V"I, and David A. Laft.
DL - belave DswapSon Lwap
Foon escos- n
1161

16) S.K.Warre and D. AM*.
Pmae SmelEM': A Coewerslional F, Sirsib- Ift oco, u LngUaGe
i Poep o 0Me w n Synoeea on SmW Systers ~Obe, 1979.

[1N. Yankgobvich, N. MoymwiU, wid A. van Dun.
Reading and MO n i Becknc Sok.
cvff4er. ~Obe. 1166

13

REPORT DOCUMENTATION PAGE
IREOTSICuRITY CI.AOSIPICATSON lb. RESTRICTIVE MARKiNGS

UNCLASSIFIED NONE
ft SCURiT'V CLASSUICATION AUlMORiTV 3. OISTRIBUTIONIAVAILAOI& #TV OF REPORT

N/A

~POIRIPONMtG ORG0ANIZATIOIO REPORT NUIASRISI 0. MONITORING ORGANIZATION REPORT NUMBIRIS)

CMU/SEI-87-TR-7 ESD-TR-87- 108

% AME OP PERPORMING ORGANIZAT'ION4 OPP ICE SYMBOL V&. NAME Of MONITORING ORGANIZATION

SOFTWARE ENGINEERING INST. SEt" SEI JOINT PROGRAM OFFICE

ft ADDRESS (08Vp. SaM& sd ZIP Cm'., ?W ADORE"S (Cifi.. S850 an ZIP Cde

CARNEGIE-MELLON UNIVERSITY EDXS
PITTSBURGH, PA 15213 HNCMARFREBS

a& Name ofP PuNOING4mpONSORPma OPPICI SYMBGOL 9. PROCUREMENT INtSTRUMENT IDENTIFICATION NUMBER

CARNEGIE-MELLON UNIVERSITY PROG RAM PROJEC TAK WRKUI

PITTSBURGH, PA 15213 ELEMENT NO. No. No. NO.

63752F N/A N/A N/A
TOOL INTERFACE TECHNOLOGY

lI. TYPE O0 REPORT 138L TIME COv64SO TAOT OF REPORT (YVP Me.. DRY) S. PAGE COUNT

PROM ____ TO ____MRH 87 -7 18

16. SUPPLIMEP4TARV NOTATION

17 COBATIC04 Il GOOUalalcmnw01pw"i m~m edlrlfy6 6t uair

PIEL&j GROUP OU. ot

Is. _______________ IIAC SUBJECTe TERM laufuor ef furommoe and "w~aly eadw 0141mbap ee mm

THIS REPORT DISCUSSES THE NEED FOR TOOL INTERFACES AND SOME OF THE CURRENT TRADE-OFFS
IN TOOL INTERFACE TECHNOLOGY, EMPHASIZING THE TRADE-OFFS BETWEEN HOMOGENEOUS AND
HETEROGENEOUS TOOLS. BY HIGHLIGHTING SOME OF THE MA.JOR ISSUES, THIS REPORT REFLECTS
THE STATE OF THE TECHNOLOGY TODAY.

SOB0TUOIIONAVAILADILITY Of ANTRACT 21 ASISTRACT SECUMITY CLABIPSCATION

MStCLAWBP60/sUlAMT20 SAME AS OP? C; OTic umeR 0 UNCLASSIFIED, UNLIMITED DISTRIBUTION
If A&M OP MOPONBI IUtO#VI04A. SM TO LIP 1N NUMBE IasP CS SYMBOL

KUIL I. SUINGLE fm~aade A sme Codes

____________ 412 268-7630 111131

