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NOTATION

aj Amplitude of discrete wave component

bj Complex amplitude of discrete wave component

P11(m )  Vector wave number variance spectrum, nominal field

FT(R) Vector wave number variance spectrum, true field to second order

rt(tL.x,Y) IIner time domain kernel

g,(t~xIIy1 .t,xsy 5 ) Wave-wave intraction kernel (time domain)

ht(tl,xty 1 ) Linear ume domain kenel relating nominal and true wave fields

ha(t1 ,x1 ,y1 ,ts,xg,y.) Quadratic time domain kern relatin nominal and true wave fields

k1 (t1 .xtY1 ) Linear time domain kernel relating true wave field and ship
response

k#(tj,xj,y1 t,,x#,y) Quadratic time domain kernel relating true wave field and ship
response

Q¢(Z1 ,1) Quadratic wave-wave interaction function, sum frequency

QT(11,ZB) Quadratic response function relating nominal and true wave fields,
sum frequency

Quadratic response function relating inear wave field and ship
response, sum frequency

W(Z1.q1 1,478) Quadratic response function relating nominal wave field and ship
response to second order, sum frequency

RC (ZIX 1) Quadratic wave-wave interaction funcdon iff ce frequency

RT(Z1,] 8 ) Qjuadratic response function relating n6min and true wave fields.
difference frequency

Rt(zl. t.zspws) Quadratic response function relating linear *ave fekd and ihip
response, difference frequency

(1,1 ,es*s) Quadratic response function relating nominal wave fle and ship
response to second order, difference frequency * . I

TT(Z) Linear response function relating nominal and true wave fields

Linear response function relating linear wave field .id ship response

Linear response function relating nominal wave fld and ship
response to second order

t Time

U Ship velocity
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NOTATION (Cmgid)

W(J) Complex random amplitudes

XT Y Fixed horizontal coordinate system

KVector position, fixed coordinates

zXy Horizontal coordinate system moving with the ship

Vector position relative to ship

xj'y j Spatial variables of integration

cj Phase of discrete wave component

CL(yr.t) Linear wave field

CT(Yt) True wave field to second order

C3 (X.t) Nominal wave field

RVector wave number

I Scalar wave number

Sz, Y Component wave numbers

pt Component wave direction relative to ship track

t(t) Ship response

p Vector position difference

a Encounter frequency, circular

Tr Time difference

Wave frequency, circular

v



ABSTRACT

The present work Is an extension of previous work on the statistics of
quadratic noniner ship response to short-crested seas. In this previous work
the basic response model was a truncated functional series; the short-crested
exciting seaway was modeled ds the superposition of linear component
waves. To be mathematically consistent the excitation must be allowed the
same degree of nonlinearity as the system being excited. A consistent
approach is desirable, even if it merely yields indirect estimates of the
magnitude of the error resulting from the inconsistency.

The objectives of the present work included the development of a
model for the statistics of quadratic ship system response in short-crested
seas which is consistent in that quadratic nonlinearities in the wave field are
taken into account. It was found that, if the statistical representation of the
response to the nonlinear short-crested deep water wave field is carried out
strictly through contributions which may be considered second order in
wave excitation, the statistical estimating formulae for the quadratic
response to short-crested seas in which quadratic nonlinearities are included
are identical to those previously developed when no wave nonlinearities
were included. The difference is that the sum and difference frequency
response functions required by the previous work are modified by a term
which amounts to the linear ship system response to those quadratic wave
field components which are produced by the wave field nonlinearities. In
practice the most important statistic involving quadratic response is the
expectation, or mean value. In this special case an extension is not
necessary. To second order, the mean response of a linear plus quadratic
ship system to a short-crested wave field is not affected by wave field
nonlinearities. The present development suggests that the mean value
estimator may be robust through third order.

ADMINISTRATIVE INFORMATION
This work was sponsored by the General Hydromechanics Research program under Task

S00230101, Program Element 61153N, and Work Unit 1561-112, and administered by
NAVSEA Code 05R.

INTRODUCTION
Since the first introduction to the marine field, [11, [2] there have been developed a

number of applications of the quadratic functional model to the prediction or simulation of
nonlinear response of ships and platforms to random seas. The details of the various
approaches to quadratic nonlinear response vary. However, all the state-of-the-art models now
in use are essentially single input models, meaning that validity is confined to the long-crested
case.

The basic formulation for the short-crested case was outlined in 1966 by Hasselmann [I].
Recently this formulation was extended and embellished to an extent by the present writer (3].
This short-crested model involves the assumption that the sea is a zero-mean stationary and
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homogeneous Gaussian process, which excites a nonlinear system containing quadratic level
nonlinearities and thus produces a response which is neither zero mean nor Gaussian. As in the
linear case [41, the fundamental difference between the long- and the short-crested sea model is
that a wave field rather than a wave profile must be dealt with. The result is that the linear
and quadratic response functions which define the ship dynamics become functions of vectors
rather than scalars. Given a directional wave spectrum and the linear and quadratic response
functions corresponding to some response of interest, the model provides estimating formulae
for a variety of statistics. When the nonlinearities are negligible, the estimates reduce to those
long known [4]. Relative to the corresponding formulae for the long-crested quadratic model,
there are no real surprises in the short-crested estimation formulae, only the greater
complication that would be expected because of the increase in the dimensions of the problem.
It was found [3) that in almost all cases there is no necessity to work in the encounter domain.
This result implies that the previous restriction of the long-crested case to the encounter
frequency domain may be largely removed. The formula for the mean value of the response in
short-crested seas is especially simple, in that it was found to be hardly more computationally
demanding than estimating the variance of a purely linear system in short-crested seas.

Hasselmann [11 remarks that, since the basic model is a truncated functional series, for
mathematical consistency the excitation must be allowed the same degree of nonlinearity as the
system being excited, and thus the model of Dalzell [31 is inconsistent in this regard. Thus the
overall objective of the present investigation was to remove the inconsistency by allowing the
wave field to have quadratic nonlinearities. The detailed present objectives included
clarification of how one would actually carry out a practical computation, what further
assumptions are being made, and perhaps most importantly, whether the complication affects
estimates of the mean nonlinear response which is the most important aspect of quadratic
response in practical applications.

The inconsistency at issue involves a priori ideas about the magnitude of quadratic
nonlinearities. In most if not all hydromechanical analyses of response the quadratic
nonlinearities are "second order" effects. Similarly, quadratic nonlinearities in the wave field
have long been known to be "second order" from the Stokes expansion. The question is
whether "small" nonlinearities in wave field have a disproportionate influence on "small"
nonlinearities of response. For engineering purposes the answer will depend on the details of
the problem to a greater or lesser extent. Accordingly, a mathematically consistent approach is
desirable, even if it merely yields indirect estimates of the magnitude of the error resulting
from the inconsistency.

Hasselmann [1] suggested an approach to the consistency problem which is grounded in
the Stokes expansion, dates at least to Tick [5), and was used by Hasselmann et al. [61 in the
interpretation of wave bispectra. More recently, the approach has been used for the long-
crested case by Hineno [7]. This approach centers on the assumption that there exists a
stationary and homogeneous zero mean Gaussian and linear "wave field" which generates the
true wave field, correct to second order, through quadratic wave-wave interactions. The true
wave field in turn then excites the ship system. In the linear context the approach is
conceptually equivalent to the often used model in which the response is visualized as the result
of cascading white noise through a wave spectral filter and exciting the ship system with the
result.
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QUADRATIC WAVE-WAVE INTERACTIONS

The solution to the quadratic wave-wave interaction problem via the Stokes expansion has
been available for some time, having been used by Tick [51, Phillips [8), Longuet-Higgins [9],
and Hasselmann [6], [101 among others. Appendix A summarizes the results in notation close
to that used by Longuet-Higgins.

For present purposes the important aspect of the hydrodynamic analysis is that the
corrections to an assumed first order wave field due to second order wave-wave interactions
assume the form of the quadratic part of the response of the linear plus quadratic functional
model. To be specific, CL(3,t) will denote a deterministic wave field composed of N
superimposed small amplitude, first order progressive gravity waves, where R is a vector
position relative to an X-Y coordinate system fixed in the mean water plane, and t is time.
This same representation of the wave field was used previously [31 and may be written

N

)RebjExp[ikj. X - icojt (

where bj = ajExp[ij].

In this representation aj and t i are the amplitudes and phases of the discrete components of the
small amplitude waves, Wj is the corresponding vector wave number, and wj denotes wave
frequency. The wave frequency, cai , is assumed to be connected with [7j[ via a dispersion
relation which will be taken to be the deep water relationship for present purposes.

To second order, wave-wave interactions will distort the assumed field of Eq. 1, and to
this order the corrected or "true" wave field may be written:

CT(X,t) = RelbjExp[ikj - icoj t ]I
N+1N

+ , Relbj bk QC(X 'jk)
j k Exp[i('j + Zk)" + - W +

+ -'E E Rejbj b RC(Zj,Z,)

Exp[i(Zj - Zk) C - -(COJ -- Wk)t] (2)

The detail of this transition is contained in Appendix A, and explicit formulae for the
fvnctions QtIj,lfk), and Repj~ik) are given there for the deep water case. Except that they are
purely real, these two functions have the same symmetries as the quadratic frequency response
functions previously defined [31, which relate the quadratic sum and difference frequency
response of a ship system to the amplitudes of component small amplitude waves in the
excitation. In this case the functions relate the components of the true field, which correspond
to sums and differences of vector wave numbers, to the interactions of the constituent small
amplitude waves.

The analogy to the ship system response case would be much closer if the first term of
Eq. 2 were different from Eq. I by a factor of some function of wave number inside the
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summation. Such a factor would correspond to a linear frequency response function. In this
case the hydrodynamic theory shows that there is no linear transformation of the small
amplitude wave field, and thus the analogy must be completed by taking the linear frequency
response function to be unity.

Although it has not been done explicitly in Appendix A, it appears that the potential of
the true wave field may also be expressed in a form similar to that of Eq. '. This result tends
to justify the idea that the properties of the true wave field to second order may be represented
as the response of a physical linear plus quadratic system to a fictive "linear" small amplitude
field. It also strongly suggests that the theoretical response of the ship system to the true field
may be approached as the result of one linear plus quadratic system (the ship) acting upon
another (the wave-wave interactions).

REPRESENTATION OF THE WAVE FIELD

The hydrodynamic arguments suggest that the true wave field may be taken to be a
functional of a "linear", small amplitude field, at least to second order. In accordance with
the previous work involving system response [31, if the linear field is continuous and
differentiable and vanishes outside some finite region in the space of all admissible linear
fields, or if the field is square integrable, the true wave field may be represented as a
functional Taylor expansion in the neighborhood of zero wave field. With further general
assumptions noted in Appendix B, the Taylor expansion through the second order term may be
written as follows:

CT(tX.Y) = CL("XY)

+f ... fg(ti ,xi ,y" ,t 2 ,x 3 ,y2) X

CL(t-t ,X-x, ,Y-yl) 'L(t-t ,X-x 3 ,Y-ya) X

dt1 dxl dy, dt2 dx3 dy, (3)

where the integrals are infinite. The kernel within the integral in Eq. 3 is a function of time
and space differences and contains the physical relationship between the linear field and the
second order components of the true wave field. The variables t, X, and Y denote absolute
time and position in a fixed frame of reference. As in the previous work it has been assumed
that the integrands differ from zero only in a finite range of the dummy arguments.

A difference between Eq. 3 and the corresponding representation [31 of the response
should be noted. The response of the ship system is supposed invariant with absolute position,
and in the representation of the response this restriction was taken into account in the
formulation for the encounter domain. In effect, had the response been presumed a function
of absolute position, the form of the final functional representation would have been similar to
Eq. 3 except that a linear convolution would also have appeared.

The hydrodynamics of the problem noted in the last section shows that there is no linear
transformation of the linear field. This fact accounts for the absence of a linear convolution in
Eq. 3.
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An immediate problem which arises with this representation is both theoretical and

practical (from a computational point of view). The quadratic wave-wave interaction response

functions are known in the wave number domain. The consequence of the representation of
Eq. 3 is that the second degree kernel and the quadratic response functions must form special

multi-dimensional Fourier transform pairs. Unfortunately the analysis of Appendix A shows

that the quadratic response functions do not possess all the required properties [I II to make
the required transforms valid. The problem with these functions is that they are unlimited as
wave number tends to infinity.

A way out of the problem is detailed in Appendix B. Essentially, a wave number window
is hypothesized such that the final expansion represents the interactions only between wave
components having wave numbers less than some large but finite value. The window is
represented by a linear transformation, and the revised formulation may be summarized in a
cascade diagram:

N(t,9 ) f.0 I,.(t,y) g' 0,. CT(tR)

Here the notation CN(t,X) represents the nominal linear wave field. This field is presumed to be

operated upon by a linear system fl(.) in the time/space domain to produce a linear small
amplitude wave field CL(t,R) which is wave number limited but defined as before. The linear
small amplitude field is acted upon by the quadratic wave interaction system with kernels gl(.)
and g2(.) to result in the true wave field CT(t,X). The last functional relation is the same as
Eq. 3, with the missing linear kernel presumed to be a delta function.

The Taylor expansion of the true field in terms of the nominal field becomes

CT(t,X,Y) = fffh(t ,x 1 ,y 1 ) N(t-t1,X-xl,Y-y1 )dtl dxt dy 1

+ f ... fhg(tj,xj,y,,tz,xs,ye) x

C'N(t-tl ,X-x1 y-yt) 'N(t-tBX-XO'Y-yP,) X

dt, dxl dy, dto dxe dy 3  (4)

and the response functions relating nominal and true wave fields may be written as follows:

TT(k) = f..fh(tjx,y 1 ) Exp[-i(xxI+XTY1 -cOtI)] dtldxldy, (5)

QT( 1,k2) f..fh,(t~xY1 9 t2 ,xgY.) x

Exp[-i(cXIXl+IYjyCY Iti)] X

Exp-i(cxxa +XyY2-cgt a)] dtt...dys (6)

I I III II !5



RT(OEEB) = f..fhs(t19xipy1 *tpx,yg) x

Exp[-i(/ClX Xl +JCT1y-cQlt0)] X

Exp[i(1cX2X3 +ry 2 y3 -cOt2)] dtL...dyg (7)

where frequency has been omitted from the arguments of the response functions because wave
frequency is a function of wave number via the dispersion relation.

From the cascade analysis of Appendix B the relationships between the functions defined
by Eqs. 5 through 7, the quadratic wave-wave interaction functions defined previously, and the
linear window response function TN(-x) are defined as follows:

TT(I) = TN(k) (8)

QT('Rlje) = Q.(,Z1 2 ) TN( 1 ) TN(-g) (9)

RT(XlXu) = RC("ki.ika) TNOUO1 T*('kg) (10)

The relation between the window response function and the space/time domain window
f l(.) is the same as Eq. 5 with fl(.) substituted for hl(.).

Except that it must approach zero at a sufficient rate to make the left hand sides of Eqs.
9 and 10 approach zero for large wave number, the window response function is quite
arbitrary. In what follows it will be assumed to be analogous to a non-realizable low pass filter
with unity gain up to some cutoff wave number and a rapid transition to zero above. Since the
wave-wave interaction functions are real, this assumption makes Eqs. 8 through 10 purely real.

The interpretation of the windowed response functions just defined is identical to that of
the last section. If the nominal wave field is represented by a sum of cosinusoids exactly as in
Eq. 1 and this representation is substituted into Eq. 4, the resulting expression for the steady
state true wave field becomes

N

CT(tX) L -TTj) Relb j Exp[ikj - - ijt]l
J

N N

+ 4 - ZQT('EJ -e) X
J k Relb bk Exp[i('j + ). X - i(oJ + COmk)t]

N N

+ -ZRT(jj X0
J k Re)bi bk Exp[i(kj -k) X - i(Coj - t(I1)

As before, the windowed quadratic response functions QT(ij,7k) and RT(xj,Vk) relate those
components of the nominal field which correspond to sums and differences of vector wave
numbers, to the interactions of small amplitude waves which reside within the window. The
range of wave numbers present in the linear part of the true field is determined by TT(Ej) in
the first term of the expression.
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SPECTRAL REPRESENTATION OF THE TRUE WAVE FIELD

The next step in the development involves the introduction of randomness. This step may
be approached in the same manner as in the case of response to a linear wave field [31. For
this purpose, it is assumed that the nominal linear wave field CN(X,Y,t) is dispersive,
homogeneous in space, stationary in time, and Gaussian. It is further assumed that the
elevation variance of this nominal wave field may be represented by

Var(C.) = ffF ( x, 1 I )dicx dcy (12)

where FN(xx,xy) is a vector wave number spectrum.
These assumptions together imply that the field has a "spectral representation" [12], [131,

[I]. Although this representation is often written in the form of a Fourier-Stieltges integral, it
is convenient to work with the corresponding approximating.Fourier sum. Accordingly, the
approximating Fourier sum of the spectral representation of the nominal field is taken to be

C'(t0) = RejW(j)Exp[ixjX + ixyjY - irijt ]1 (13)

where W(j) is a complex random function of the interval MXj,Axyj. The initial assumptions
that the nominal field is stationary and homogeneous and that the process is Gaussian imply
that the random functions are Gaussian, zero mean, and statistically independent for different
wave numbers and directions of propagation. Under these assumptions the ensemble expected
values of the function and its various order moments may be defined and become either zero
or relatively simple functions of the variance spectrum. Appendix C summarizes the results
through sixth order moments.

As in the deterministic case of the previous sections, a substitution of Eq. 13 into Eq. 4
yields the statistically steady state spectral representation of the true wave field in the form of
an approximating Fourier sum. Because the random functions are analogous to the complex
amplitudes of Eq. 11, the algebra of the substitution and subsequent reduction is identical to
that of the deterministic case. The resulting spectral representation of the true wave field is
identical in form to Eq. 11 and may be written

C T(tXt) = ~ jaj RejW(J) Exp[i2ej - X - iwjt I

+ ~ZQT(kl .ik) X
j k ReoW(J)W(k) Exp[i(;E + j-k) - 1(wj + k)t]l

+ RTZ(jwT (1Wk) x

j k Re*)W(J)W* (k) Exp[i(gj - 90 i(C.OJ - C0tl(14)
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where it should be noted that, as in all the development thus far, the spatial coordinate system
is fixed, and the frequencies are wave frequencies related to scalar wave number through a
dispersion relation.

STATISTICAL PROPERTIES OF THE TRUE WAVE FIELD

The true and nominal wave fields differ by the windowing function and the effects of
wave-wave interaction. The spectral representation, Eq. 14, and the properties of the complex
random functions noted in Appendix C allow some of the important statistical properties of
the true field to be inferred.

First among the important statistics is the statistical mean value. When the ensemble mean
value of Eq. 14 is taken, almost all the contributing terms drop out by virtue of Eqs. C.3, C.4,
and C.6. The value of the single term remaining is determined by Eq. C.5, and the resulting
mean value of the true wave field may be written

E RTOEJ XJ) FN(ICxJIJCJ)ACxJAICTJ ---- 0 (15)

J

where the notation <..> denotes the ensemble expected value, and the expression is zero finally
because the wave-wave interaction component of R-r(x,-j) is zero (Appendix A). Thus Eq. 15
expresses the physically expected result that the true wave field is a zero-mean process.

The other statistics of primary interest are the true wave variance and the true wave
number spectrum. Both may be approached by first developing the space-time auto covariance
function <ZTt,R) C(t + T,X + Q)> in which T denotes a time difference and Q a vector position
difference. Using the spectral representation, Eq. 14, for each of the factors inside the
expectation operator, expanding the real part operation into a sum of the function and its
complex conjugate, and forming the required product results in thirty-six terms involving
multiple summations of complex exponentials, the response functions, and the complex random
amplitudes. Once the expectation is taken, all but twelve of these products drop out by virtue
of Eqs. C.7 and C.8, and the remainder are evaluated and simplified by Eqs. C.4, C.5, C.9,
and C.10. After a further algebraic reduction, which parallels that described for the response
[3], the apg:oximating Fourier sum representation of the space-time auto covariance of the true
wave field becomes

(CT(t,X) CT(t+7TX+P)) =

Z TO(Fj)FN(jcxj , yJ) Rel Exp[ik j p - icajr ]I AgXJ A TJ
J

k IeExp[i(Gj + Xk) P - i(J + k)]I ACXJ AICTJ AiCXk AICTk

+5 ( RT ,Zk) FN(ICXJ ,iTJ)FN(icxk xiyk) X
J k ReExp[i(ki - kk)" P - i(W - Wk)T]I AXXJ Ai"j Aixk AXick (16)

8



At this stage all the complex random amplitudes have been eliminated and with them the
necessity for the Fourier sum approximations to Fourier-Stieltges integrals. Thus when the
range of the summation is allowed to increase and the wave number intervals to decrease, the
limiting form involves ordinary integrals

+ f f..fT8T,. ) Fx(() Rol BxpiZ* p - iwir

Re{Exp[i(9 1 + Re). p - i(wo, + co)'r]l ME, d

+ f.. f R (19, .,) F,('R,)F(Zg) x

ReJExp[1(X1 - ic3 ) p - icl- cm)r]l dZ1 d~g (17)

Now if the time and vector space differences are set to zero, Eq. 17 represents the true
wave variance

wr(CT) = f..fT2(Z)FN(!)dX

+f..-f JO(je1 ,) + R2T(j~i 2) Fu(Zl)FN(kg) d2Z1 d~g (18)

Since the response functions defined by Eqs. 8 through 10 are here assumed to be real valued,
this result is exactly that which would be expected from the previous development [3].

In accordance with convention [8] the vector wave number spectrum of the true wave field
FT(i) may be defined as follows:

(¢T( ) (T( +P)) = f..fFT(k)Exp[1W , p]dX (19)

where the wave field is assumed to be homogeneous. An expression for the wave number
spectrum of the true wave field in terms of that of the nominal wave field is obtained by
setting the time difference in Eq. 17 to zero and making changes of variable so as to put the
result in the form of Eq. 19. By this process the expression for the true wave number spectrum
becomes

FT(O) = TO(e) F(Z)

+ -[- f..fQ(t V+)/2 .( - )/2 F [( +i )/3] FN[(Z-1)/2J d

+4 f..f F[(+i/ ,(--) ,[(+ /] FN[(-Z)/O] dV (20)

The convolutions in this expression are of the general form which would be expected from
the time-only theory for linear plus quadratic systems. In the practical case one might want to
analyze an observed wave number spectrum by deriving the nominal spectrum. The results just
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shown illustrate the difficulties in such an endeavor - the nominal vector wave number
spectrum is dined by interal equation of greter complexity than that which obtains in the
time-omly case. The present model is oriented more toward synthesis than analysis, although
some analysis steps have been made [6].

Because in marine practice the directional variance spectra of waves are usually considered
in the wave frequency/direction form, it was of interest to see whether an equivalent or simpler
form for the true wave spectrum would be obtained in the wave frequency/direction domain.
The required transformations were carried through far enough to see that the equivalent
expression would be far more complicated. Accordingly, if the computations equivalent to Eqs.
18 or 20 need to be done in this domain, it appears less troublesome to transform the nominal
frequency/direction spectrum to the vector wave number domain, carry out the convolutions,
and then transform the true vector wave number spectrum back to the wave
frequency/direction domain.

REPRESENTATION OF THE RESPONSE
The representation of the ship response to the true wave field is essentially the same as in

the previous work (3). It is assumed that the ship is proceeding at mean speed U along the X
axis in a fixed X-Y frame of reference. Component wave directions will be denoted by IA, and
the resulting conventions are indicated in the figure.

T

O2.D

I Ut

Fig. 1. Componeat wave directio.
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An (x-y) coordinate system moving with the ship is conventionally defined as follows:

x X-Ut

y=Y

and accordingly the encounter frequency corresponding to a given wave component becomes

a - -XX U

- encounter frequency

As in the previous work, the ship response 1(t) may be represented by a functional Taylor
expansion in the neighborhood of zero true wave field as encountered by the ship. The
resulting model is written as follows:

#(t) - fffk 1 (tl ,xjl,y 1 )C(t-t,,Xi ,y)dtl dxl dy 1

+f ... fk.lt,x 1 ,7 1 ,tx 8 joys) x

CT(t-t ,x 1 3Y1 ) C (t-t, ,x2 ,ys) dt, dx1 dy1 dt dxs dy, (21)

The first (constant) term in the expansion has been dropped on the presumption that no
response of current interest occurs in the absence of waves, and the series has been truncated
at the quadratic term. The convolutions are with respect to time and space differences. Since
this is an encounter domain model, the space differences are with respect to a reference point
on the moving ship. The linear ship dynamics are assumed to be represented by the linear
kernel kl(tl,xl,yi) and the quadratic nonlinearities by the kernel k2(tI,X1 ,y11t2 ,x2,y2). Apart
from the explicit note that the local wave field is the true field, Eq. 21 is identical to Eq. 3 of

* the previous work [3].
The identification of linear and quadratic response functions corresponding to the kernels

of Eq. 21 is identical to that of the previous work. The steady state response to assumed
"true" wave fields composed of one and two superimposed linear regular waves is obtained,
and in this process the relationships between the kernels and response functions may be defined
in the following form:

TI(je,) = f..fk(t,x,y) Exp[-i(xXj+Xyyt+atj)] dtldxldy1  (22)

*Qt(XjPa1 .~jeg,) = f..fks(tj,x,yjtsxsxyg) x

Exp[-i(w1 1 xj+5xy y 1 +ojt)] x

Exp[-i(Xc1 x$+ICyTyg+at2)] dt 1 ... dyo (23)
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,.aR - f..fk.(tj,x.y .t2'xa'ys) x

Bxp[i('CxsX2+isYa+Cstg)] dt 1 ...dy s  (24)

As before 131, Eq. 22 defines the linear response function, Eq. 23 the quadratic sum
frequency response function, and Eq. 24 the quadratic difference frequency response function.
The existence of these transforms requires that the kernels be square integrable - in effect that
the time/space "memory" of the physical ship system be finite (or that some artifice to make
this so can be introduced if necessary). The notation departs from that used previously 131 in
that the encounter frequency corresponding to each vector wave number argument is noted
explicitly in the argument of each function. In the previous work if a dispersion relation and
the ship speed are assumed, the encounter frequency is determined, and accordingly the
encounter frequency argument was dropped on this basis. In portions of the present work this
understanding is not necessarily valid, and the present more cumbersome notation is of
advantage. However, the meaning of the response functions is identical to that previously
given. The linear response function is the normalized amplitude of response in the encounter
frequency to a linear regular wave component. The sum (difference) frequency response
function is the normalized amplitude of response at an encounter frequency equal to the sum
(difference) of the encounter frequencies corresponding to each of two linear regular wave
components.

From the definitions two symmetry relations arise:

=

1= n(R,.u5e. t.) (25)

as well as the formal relation

= Rt(-Rja 10!,e2,1) (26)

SPECTRAL REPRESENTATION OF THE RESPONSE
Because the response model, Eq. 21, is for the encounter domain, and the spectral

representation of the true field, Eq. 14, involves the fixed spatial coordinates of Figure 1, a
conversion is necessary. Transformation of Eq. 14 from the fixed (X-Y) coordinates to the
moving (x-y) system results in the following spectral representation of the true wave field:

~- T T,(J) ReIW(J) Exp[ij. I - iajt][

At RefW(J)W(k) Exp[i(X3 + 1) • 2 - i(Vj + Wk)t]1
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+X

J RfW(J)W* (k) Zxp[l(1j - NO. - ills- 9k).-3(27)

The form of BEs. 14 and 27 is the same. Wave frequencies in Eq. 14 are replaced by encounter
frequencm , and the fixed position vectors become relative to the mean ship position. The only
difference between this stage and the corresponding stage in the previous work [31 is the
presence of wave-wave interaction terms. Equation 27 is the Fourier sum approximating the
local random wave field as it would be sensed aboard the ship.

The interest here is in the statistically steady state ship response to the true wave field. As
in the previous work, the substitution of the Fourier sum spectral representation of the true
wave field, Eq. 27, into the time domain model, Eq. 21, yields a spectral representation of the
steady state response in the form of an approximating Fourier sum. It was anticipated from
the form of the two equations that this direct substitution would yield a result which in pan
would involve contributions corresponding to noninearites of higher degree than those which
are of interest here. The approach taken was to ignore the potential inconsstency pending the
complte result.

The mechanics of this substitution involves replacing the real prts of the various
expressions in Eq. 27 by half the sum of the respective expression and its complex conjugate,
substituting the result in Eq. 21, and carrying out the integrations with respect to the time and
space difference variables by applying the response function definitions, Eqs. 22 through 24.
The raw result involves 6 summations from the first integral of Eq. 21 and 36 summations
from the second. These summations occur in conjugate pain so that the final results may be
expressed in real part notation. The form of the summations allows some terms to be
combined, and the symmetry relations, Eqs. 25 and 26 serve to combine others. The not result
is 12 terms of different form which may be expressed as 8 summations, and the final result is
given as Eq. 28 on the next page.

It will be remembered that the function TN(Ei) is a wave number window which has been
assumed to be purely real and whose purpose is to make the wave-wave interaction model
valid. This window function has been combined with the wave-wave interaction response
functions O j,) and Relj,% ) in Eqs. 9 and 10. The cascaded response functions defined
by Eqs. 9 and 10 have been used in the immediately previous development to compress
notation. In the case of Eq. 28 the window functions have been factored outside of the real
part operator. All the summations of Eq. 28 are over wave number, and the net result is as
would be expected; that is, in any of the summations, any term which involves a wave number
above the cutoff determined by the. window function will be attenuated or zeroed entirely.

Each of the summations of Eq. 28 has a similar form: first, the product of as many
window functions as there are summations, and then the real part of a complex expression
made up of factors of three kinds. Within the complex expression in each case is the product
of as many complex random amplitudes W(j) as there are summations. These factors are
followed by an exponential factor containing time and sums and differences of encounter
frequencies. Finally, the last factor involves products and sums of wave-wave interaction and
system response functions.

13



#(t) -T 3 (U,)RejW'(J)Rxp~iejtJT,(U, 8 wj)I

. Tu(Uj)TE(3)RIV"(J)W(m)xp~i(j+7.)tJ x

-[QC(IJ. 1 ) T(j-zmovj-a) +Qt(mRvff3, *a.) It
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xx
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j a pRO$W(J) W"(in) W(n) W(p) Exp[i(aj+'m-e'5 -ap)t X

QC(RPRM)Qc(Ea~z) Qjxj~=,vjffmRAa~p~v (28f)I

+.LE EE T(Zj)n(Z.TX(Z)Tllzp'4



The degree of nonlinearity of each term of the expression is easily determined by a count
of the number of summations. In each term the number of wave numbe window functions in
the product equals the number of summations. The number of complex amplitude functions in
the product is the same, as is the number of encounter frequencies summed in the exponential.
Had the Taylor expansion of the response, Eq. 21, been truncated after the fourth instead of
after the second functional, the corresponding approximating Fourier sum would have been of
very similar form to Eq. 28, with the response function corresponding to the N'th degree
kernel appearing in an N-old summation which also involves an N-fold summation of
encounter frequencies.

The first term of Eq. 28 is the only one of first degree; it represents the linear ship system
response to the nominal wave field and is the same as the corresponding term of the response
representation of [31 except for the window function. The next two terms are second degree
and represent the quadratic response in sum and difference encounter frequencies. Since the
final factor in these complex expressions is a sum of two terms of the form Qzcxpi m) X
Tj(Zj +L.;,,oj + o.) and Qjjoj,om), the response of second degree has two qualitative
origins. One is the quadratic ship system response to pairs of linear wave field components
(identical to the results in the previous work [3]). The other is the linear ship system response
to all the wave-wave interaction sum or difference frequency components present in the true
wave field. This last contribution is the first of the modifications due to the difference between
true and nominal wave fields.

None of the remaining terms in Eq. 28 have counterparts in the earlier work [3]. The
fourth and fifth terms in Eq. 28 are of third degree and involve response in an encounter
frequency equal to the sum as well as a partial difference of three linear encounter frequencies.
These terms represent all the possible ship system quadratic responses to all the pairs of true
wave field components which may be formed with one linear wave field component and one of
the components.of the wave field produced by quadratic wave-wave interactions.

The sixth through eighth summations in Eq. 28 correspond to fourth degree nonlinearities.
This par of the response occurs at sums and differences of four linear encounter frequencies.
These terms represent all the possible ship system quadratic responses to pairs of the
components in the true wave field which are produced by wave-wave interactions.

The form of the arguments of some of the response functions in Eq. 28 has come about
purely as a result of the definitions, Eqs. 22 through 24. The reason for the addition of the
encounter frequency argument in the definition of these functions may now be apparent. For
example, in the linear function Tl(x- + im~oj + om) the argument ij, +i. defines a wave-wave
interaction component which may have a propagation direction different from those of the two
linear wave field components involved and almost certainly a different wave length. The wave
frequency which would be inferred by applying the deep water dispersion relationship to the

* absolute value of the vector sum is not necessarily the same as the sum of the wave frequencies
of the components, nor is the corresponding encounter frequency. Since many ship motion
responses involve a mixture of dynamic resonances with a geometric matching of wave shape
and vessel shape (wave matching), it is important to keep track of such differences.

As has been noted, the result, Eq. 28, has been obtained under assumptions which are
mathematically inconsistent in the context of series expansions. In particular, it has been
assumed that the wave-wave interactions are strictly limited to the quadratic ("second order")
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type; that is, cubic and nonlinear interactions of higher degree are assumed to be identically
zero. Similarly, nonlinear ship system interactions of degree higher than two are assumed not
to exist. Equation 28 is a Fourier sum approximating the spectral representation of the
response under these assumptions.

It is helpful to define an "order" -(in the magnitude sense) of the various terms of Eq. 28.
The most convenient way is to assume that the magnitude of response is most closely
associated with the magnitude of the wave components. If, as is necessary when dealing with
weakly nonlinear systems, it is assumed that the components of the nominal (linear) wave field
are small, then products of components are smaller yet. In the present context the complex
amplitudes W(j) are a measure of the magnitude of each wave component. If these amplitudes
are small and assumed to be of "first order", then N-fold products of the complex amplitudes
are of N'th order. On this ordering assumption it may be seen that the order of the various
terms in Eq. 28 is the same as the degree of nonlinearity. Thus, if it seems permissible to
disregard response of third and higher order, only the first three summations of Eq. 28 will
remain.

EXPECTED VALUE OF EQUATION 28
The form of the statistical mean value of Eq. 28 as it stands is instructive. The required

algebra is not overpowering, and thus the order of the various terms will be temporarily
ignored.

The ensemble average of six of the eight summations of Eq. 28 may be immediately seen
to be zero from the relations of Appendix C. In particular, the mean of the first summation is
zero by Eq. C.3, and the mean of the second by Eq. C.6. The mean of the fourth and fifth
summations is zero by Eq. C.7. The mean of the sixth and seventh summations is zero by Eq.
C.8. Most of the terms in the expansion of the third summation are zero by Eq. C.4, and most
of the terms of the eighth by Eq. C.9. The non-zero portion of the third summation is
determined by the application of Eq. C.5, and the non-zero portion of the eighth summation
by Eq. C.10. The application of Eqs. C.5 and C.10 to these terms has the effect of converting
the third summation of Eq. 28 from a double to a single sum, converting the eighth
summation from four-fold to two-fold, and eliminating all the exponential factors. Combining
some of the terms remaining algebraically, and using Eqs. 25 and 26 as well as the result that
the wave-wave interaction function R(ij,Wj) is zero (appendix A), results in the following
Fourier sum approximation to the statistical mean value of Eq. 28:

j In
j

(29)
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The compress notation in this result the wave number window functions have been
combined with the wave-wave interaction functions in accordance with Eqs. 8 through 10, and
component wave number intervals are represented by vector wave number intervals. Equation
25 and previous definitions of the wave-wave response functions make the expression purely
real.

Because all the complex random amplitudes have been eliminated, the range of the
summations may be allowed to increase and the wave number intervals allowed to decrease so
that the limiting form of Eq. 29 involves ordinary integrals as follows:

(t(t)) = f ... fRe(Xj.tai.Zj,4Y) TITO(Z) FN(-kl) die,

f.. 1(e Z47 47'k Z47-Oa T(kje Fje)FgZ)d~ Z d~g (30)

Apart from the wave number window TT1<) the first term of Eq. 30 is exactly the same as
the estimator for the mean developed earlier (31 for the linear wave field case. Since the wave
number window has been assumed to be unity up to some large wave number, its inclusion in
the first term makes no practical change in the estimator because the nominal wave number
variance spectrum FN(I) generally tends toward zero for large wave number.

Comparison with Eq. 20 and the discussion of Eq. 28 show that the last two terms of Eq.
30 are the mean quadratic ship system response to the true wave field components produced by
wave-wave interaction. The form is very like that of the true variance, Eq. 18. Were it not for
the sum and difference frequency arguments in the ship system response function, it would be
possible to change variables in Eq. 30 so as to compact the expression.

On the assumption that the order of magnitude of the terms in Eq. 30 is determined by
the magnitude of the wave excitation, the first term is second order and the last two terms are
fourth order. In effect, if the representation, Eq. 28, is assumed to be correct through fourth
order, the modification of the nominal wave field by wave-wave interactions influences
estimates of the mean response only by the addition of terms which are two orders of
magnitude smaller than the leading term.

STATISTICS OF RESPONSE TO SECOND ORDER

In the discussion of the spectral representation, Eq. 28, it was noted that this
representation has been developed on the assumption that the truncated functional expansions
of both the true wave field and the response are exact. Had the functional expansions been
truncated at third degree nonlinearities, for example, two additional third degree contributions
would appear in Eq. 28. These contributions would correspond to the linear response to third
order wave-wave interactions and a response of third degree to the nominal linear wave field.
There would also appear contributions to the terms of fourth degree, as well as new fifth and
sixth degree terms. If the order of magnitude of the various contributions is assumed to be
based on the wave components as outlined previously, Eq. 28 includes third and fourth order
contributions which are quite possibly incomplete, and thus inconsistent.
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ion through e of second degree (order) [31 led to the present work.
By exm the same arumems the present reults through Eq. 30 are inconsistent with respect
to third and hw order responses.

Thus, to develop response statistics which are consistent to second order it is necessary to
disregard the terms of Eq. 28 of third, and higher degrees. Accepting this premise, and defining
t) as the Fourier sum appioximation to the spectral representation of the response through
ecod order rsuks in

T(t) = NO)eW*(J)Bxp[iujtl ( j'aJ)

Jm +}E~~OUJ M+.,.-o) I(
J M

where the products of wave number windows and response functions have been consolidated as
follows:

!(-jaj) = T(-j)Te(Rjs7j) (32)

0ejvo'jZmO=) = TN(Zj) TN(Km) X
[ Q'(1 j,-m) T t(-R14"RjOaj+o m) +Q1 ( jj ~MaM ) (33)

W(zj,7j,xm,o'm) = TN(Rj)TN(Rm)x

[RC(zJRM) lT1(jej-RMOfj-o'M) + R~e k j 0 m ' ° 'Cm ) ]  (34)

It will be noted that the functions defined in Eqs. 32 through 34 are effective linear and
quadratic ship system response functions relating the response to the nominal linear wave field
components. When the wave number window is assumed real and equal to unity over the range
of wave number of interest, the effective linear function, Eq. 32, is the same as the linear
response function defined in Eq. 22. Apart from notation it is the same as the linear response
function previously developed [31. The quadratic response functions, Eqs. 33 and 34, have the
same symmetries as the response functions, Eq. 23, by virtue of the symmetry of the wave-
wave interaction functions and the definition, Eq. 22. In addition, because of the zero mean
property of the wave-wave difference frequency response function,

Rj'j"Rj'j) = TSI(Rj) R1(Zj,o'j,j,'Zj) (35)

In effect, the function determining the mean value of the effective response to a true wave
component is the same as the corresponding function for the response to a linear wave
component.
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As would be expected, the spectral representation, Eq. 31, is analogous to the second
order system expansions of Papanikolaou [14], in which the contributions of second order
nonlinearities include both pure second order hydrodynamnic response and interactions of
second order. In the present case the grouping of the origins of the response is less specific.
(No attempt has been made here to azqalyze the hydrodynamic response problem other than to
note that the "true wave field" could just as well have been represented by "true wave
potential".)

Equations 33 and 34 explain what Hasselmann [1] meant by the assertion that the
corrections to the response due to wave-wave interactions could be absorbed into the quadratic
response functions. In a consistent expansion correct to second order in the true wave field the
wave-wave interaction functions can be combined with the ship system response functions with
advantage. In a higher order expansion the second order wave-wave interactions also contribute
to the higher order response functions, so that the details of the "absorbtion" are relative to
the order of the expansion.

As just noted, the symmetries of the effective functions, Eqs. 32 through 34, are the same
as the ship system response functions, Eqs. 22 through 24. Both these sets of functions are the
same as the linear and quadratic response functions developed earlier [3] in the sense that they
represent the normalized complex response of the system to linear components of the wave
field. The spectral representation through second order of the response to the true wave field,
Eq. 31, is identical in form to the earlier spectral representation of the response to the linear
field (Eq. 34 of reference [31). The difference is that the linear and quadratic response
functions of Eq. 3-1 represent the response to both the linear field and the second order
components produced by wave-wave interactions. The subsequent derivations of statistics of
response in the earlier work [31 involved only the symmetries of the response functions. Thus it
is pointless to continue here with derivations of the various statistics. The results will be the
same as those of the earlier work [3) when the effective response functions, Eqs. 32 through 34
are substituted for the corresponding response functions of reference [31.

* With-respect to the most practically important statistic, the expected value of response, the
above result, with Eq. 35, means that to second order the estimator for the mean response to
the true wave field is exactly the same as the estimator for the mean response to the linear
field. To this order the mean value of response is not affected by wave-wave interactions.

To the extent that the effective response functions, Eqs. 32 through 34, are obtainable, the
other statistics derived earlier [3] are also. Because the wave number windows in Eqs. 32
through 34 have consistently been assumed to be unity in the wave number range of
importance, they constitute no particular problem - in fact, they formally represent only the
finite truncation of wave number interval which would be necessary in a practical calculation.
On this basis Eq. 32 and the second terms of Eqs. 33 and 34 also constitute no new problems.

The wave-wave interaction functions QC(j,7m) and RC(j,im) appeariaig in Eqs. 33 and 34
have been defined explicitly for deep water. The linear response functions of the form
TlZ±-Zm,Oj ± am) which appear in Eqs. 33 and 34 present a slightly different problem from
the ship motions perspective. The argument Vj ±7 defines a wave which is in general of
different length and direction than either of the superimposed linear waves. However, the
argument 0j ± am denotes that the response is at a frequency which is the sum or difference of
the encounter frequencies of the two linear waves. The phase speed of the second order
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interaction component is not determined by the free wave dispersion relationship. This result is
consistent with the result that the second order component of a Stokes wave has the same
phase speed as the first order component, although the wave number is twice that of the first
order component. Obtaining the required linear response function of the ship motion system, if
it is needed, will thus require the treatment of a somewhat different potential flow situation
than is ordinary. The level of effort, however, is likely to be much smaller than the effort
required for the quadratic responses to the linear waves.

CONCLUSIONS

The present objectives included a) the development of a model for the statistics of
quadratic ship system response in short-crested seas which is consistent in that quadratic
nonlinearities in the wave field are taken into account, b) a clarification of the assumptions
being made, c) an assessment of what is involved in carrying out computations which include
the wave field nonlinearities, and d) an assessment of the influence of the wave field
nonlinearities upon the most important statistic associated with quadratic response, the mean
value.

In this development the lead of Hasselmann was followed and amplified. If the statistical
representation of the response to the linear part as well as to the quadratic nonlinearities of a
deep-water wave field is carried out strictly through contributions which may be considered
second order in wave excitation, and if higher order response is neglected, the statistical
estimating formulae for the quadratic response to short-crested seas in which quadratic
nonlinearities are included are identical to those previously developed for the case in which no
wave nonlinearities are taken into account.

The only difference is that the quadratic sum and difference frequency response functions
required by the previous work are modified by a term which amounts to the linear ship system
response to those quadratic wave field components produced by the wave field nonlinearities.
The main assumption producing this result is that the magnitude of the nonlinear ship system
response follows the magnitude of the wave excitation, and thus that nonlinear ship system
response to quadratic wave field components is of higher order and may reasonably be
neglected. The alternative to this assumption involves the development of a consistent higher
order model which has not been attempted here.

In so far as practical computation of response functions is concerned, the conceptual idea
is the same as in previous work. The linear response function is exactly the same. The present
development requires that the response through second order terms in excitation be computed
for pairs of waves, just as in the previous work. The difference in the context of potential flow
hydrodynamics is that the assumed wave potential for the wave pair must include the potential
due to the quadratic wave-wave interactions. The net effect, after the computed responses in sum
and difference encounter frequencies have been identified, will be to add the linear response to
the wave field nonlinearities noted above. This additional contribution is a slightly different
potential flow problem because the wave-wave interaction components are not free waves. On
the whole, however, if the addition of this effect is required, it could easily involve less work
than is involved in the computation of quadratic response to the linear components of the
wave field.
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The most important statistic in practice involving quadratic response is the expectation, or
mean value. In this special case the extension just outlined is not necessary. To second order,
the mean response of a linear plus quadratic ship system to a short-crested wave field is not
affected by wave field nonlinearities. The previously developed approach appears to apply
equally well when quadratic wave-wave interactions are taken into account. The present
development suggests that the mean value estimator may be robust through third order,
although a consistent development through this order must be made for confirmation.
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APPENDIX A

QUADRATIC WAVE-WAVE INTERACTION THEORY

The theory of quadratic wave-wave interactions has been developed in a number of ways.
The treatment here summarizes that of Longuet-Higgins [9], and will be specialized to the deep
water case. To first order, the potential solutions for small amplitude gravity waves
superimpose. The waves propagate independently and without interaction. To second order the
waves interact, and the interaction produces a small, bounded modification to the wave
motion. It is the second order modifications which are of interest here, and to study these it is
sufficient to consider the interactions between pairs of waves.

To fix notation the parameters describing a single small-amplitude gravity wave will be
taken as follows:

= wave length

= wave frequency

= vector wave number
with components;

Xx = cos()
OY = csin(p)

1 = wave direction
= tan'(Xy/Xx)

x = scalar wave number
= 2ir/X = JI1
= wa/g for deep water

where the deep-water dispersion relationship just expressed will be assumed hereafter, and a
fixed X-Y coordinate system in the undisturbed water surface with the Z coordinate positive
upward is implied.

The derivation of Longuet-Higgins involves the postulation of a velocity potential
satisfying the Laplace equation and the free surface boundary conditions. The result is three
equations in the unknown potential, the velocity, and the free surface elevation. These
equations are expanded in a Taylor series about the mean water position, and formal
perturbation series are assumed for the potential, velocity, and surface elevation of two
intersecting trains of regular waves. Substitution of the series, gathering terms of first and
second order, with the requirement that the potential satisfy the Laplace equation results in a
soluticn for the total velocity potential of the two intersecting waves (correct to second order
for deep water) in the form

= wo, + Vto + 1oo + VZo + V11 (A.I)

In this result the first and second terms are the well-known potentials for two first-order
regular waves. The third and fourth terms represent quadratic interactions of each first-order
wave with itself. Both are functions of time only, corresponding to the vanishing of second-
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order velocities in a single first-order wave. The last term represents the potential resulting
from second-order interactions.

To be specific, the two intersecting first-order deep-water wave trains may be assumed in
the form

CI0= ajCos(" 1 .- W t+C l )

Cal = ascos( 3 " -  ct + e,) (A.2)

where X represents the vector position in fixed coordinates and L is an arbitrary phase angle.
The corresponding first-order potentials may be taken in the form

1o =atcwtat'Exp[c1 Z] s in(Z 1 X - clt+cl)

o = aaaaicjExp[iaZ] sin( , i- wat + c) (A.3)

With these representations and the result for the interaction potential from Longuet-
Higgins [9] the total velocity potential for deep water of two intersecting wave trains may be
represented by

V= a-- c "ICjExp[xZ] sin(-." - wit+ cl)

+ aaroaia 1E~xp[xaZ] sin(jE2'X-coat+ c)

+ a1 agA(-k , ) Exp[ Ijt- cIZ] x

sinl(a1 - ic3 ). Rt- (Col - Caj)t + (e -Sl

- ag a B(Z1 , e) Exp[ IUI+kI Z] X

sini( 1 + -g)" T - (Cal + Co4)t + (e, + C2) (A.4)

The third and fourth terms of Eq. A.4 are the second-order wave-wave interaction potential,
and the as yet undefined functions in these terms may be written

A(C'0 - 2(W-Cd)) cos2 [(p,1 -t&.)/2]
( at-Q) - g Ii 1 -a 2 I (A.5)

GtjWe(col+Wg) sino[(~t-/A.)/Z]
(C)I+ )a - g I 1 +jea I (A.6)

With the velocity potential defined the total surface elevations of the two intersecting wave
trains may be derived from the Longuet-Higgins analysis [9] and are written as follows:
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'(L~t) - alcos(z1•-&ijt+C1 )

+ aacos(Ra • - oat + c)

+ a,*-- coa83(,, X)-80) 1t +3c,
+ &1 28 Coa98(X. i) - 8.,t + Zell
+ as -
+ "a", Q ( Ra . X) o( t + Zea) l -( + o.)t + (e1 +

+ al a* Rt(Al .. ) coal(zi - i.). - (,. - W.)t + (C, - C.)l (A.7)

As in the case of the potential, two new functions appear and are defined as follows:

Q'cklx.7+=+ y'-uinar
7y+1- - ui~snr (A.81

(A.9)

= !"?a 7+ -1+4 7 counr (A.9r
a -Y7-1 .-COs (A9

where: W -4/51I&

r ~ (A. 101P = (ps-/.*)/a (A.l0)

Special limiting cases of Eqs. A.8 and A.9 are as follows:

R , = 0 (A.ll)

The result for the corrected wave field, Eq. A.7, is very close in form to that obtained [31
for the response of a linear plus quadratic system to two superimposed sinusoids. If the
position in the wave field is taken to be fixed, the expression involves six frequencies: those of
the two small amplitude waves, their second harmonics, and the sum and difference
frequencies. Missing is the shift in the mean obtained for the linear plus quadratic system.
However, terms corresponding to a shift in the mean would involve the special case of
RC i1,i2) indicated in the second of Eqs. A. l1, so that Eq. A.7 could be put in the form of
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the respoe of a linear plus quadratic system. Essentially, the analysis says that there is no
shift in the mean of the corrected wave field (as might be expected from continuity
conide~ratis for incompreie flow). The functions, Eqs. A.A and A.9, are real and
symmetric in their argument, and thus they satisfy the requirements for quadraM frequency
response functions noted in [)alzell 131, These conideration along with the position of the
functions in Eq. A.7, suggest that they may be regarded as quadratic frequency response
functions which relate the sum and difference frequency components of the true wave field to
the interactions of the two superimposed small amplitude waves. The first of Eqs. A. II serves
to put the coefficients of the second harmonics of Eq. A.7 into the form of the response of
the linear plus quadratic system. Eq. A.7 contains no explicit notation for the linear frequency
response function, which thus may be regarded as unity.

The preceding argunents indicate that the true wave field (to second order) may be
regarded as the response of a linear plus quadratic system to a fictive "linear" small amplitude
wave field. The quadratic system is defined by a linear frequency response function of unity
and quadratic frequency response functions defined by Eqs. A.8 and A.9. Although it has not
been done explicitly here, the wave potential, Eq. A.4, may also be interpreted in this way.
These observations form the hydrodynamic background for Hasselmann's approach (11 to the
consistency problem mentioned in the main body of the report.

Had the Longuet-Higgins derivation been for the true wave potential and elevations (to
second order) corresponding to the superposition of N independent small amplitude waves, the
perturbation expansion would have involved the interactions of all possible pairs of waves.
These interactions would have given rise to a total potential of the form

N P N

to 600J IPJO) + E E ij
J J k (A. 12)

The summations on pairs of waves carries through to the elevations. With a manipulation
of Eq. A.7, and a use of Eqs. A. 11, the true wave field corresponding to the summation of N
small amplitude waves may be put in the form

Re I RebExp[ikj. icaijt

+ Re I b

Exp[i(kj + 9k)" X -i(J + k)t]l

+ Reb b:RmiIR

j , Exp[i(Ri - ak) i - (c - C00 1 (A.13)

where bj = ajlxp[icj]

With the position vector fixed, this result is nearly identical to that for the response of a
linear plus quadratic system to the sum of N small amplitude waves.
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APPENDIX 5
FUNCIONAL RVPRUENTATION OF THE WAVE FULD

The hydrodynamic arguments suggest that the true wave field may be taken to be a
functional of the "linear", small amplitude field, at least to second order. In accordance with
the previous work involving system response 131, if the linear field is continuous and
differentiable and vanishes outside some finite region in the space of all admissible linear
fields, or if the field is square integrable, the true wave field may be represented as a
functional Taylor expansion in the neighborhood of zero wave field. With a further
assumption to be noted, the Taylor expansion through the second order term may be written as
follows:

to=

+fff (t , .x.yl)'CL(t-tl ,X-x 1 ,T-yl) dt1 dxl dyt

+f ... f&.t ,'x ,y1 .t3 ,.x.sy) X

'L(t-tl .X-x i .Y-yt) 'L(t-ts.X-xs.Y-ys) X

dtl dx1 dy1 dtg dxs dy, (B.l)

where the integrals are infinite. The kerneir within the integrals in Eq. B. I are functions of
time and space differences and contain the physical relationships between the linear and true
wave fields. The variables t, X, and Y denote absolute time and position in a rud frame of
reference. As in the previous work it has been assumed that the integramds differ from zero
only in a finite range of the dummy arguments.

The difference between Eq. 1 and the corresponding representation [31 of the response
should be noted. The risponse of the ship system is supposed invariant with absolute position,
and in the representation of the response this restriction was taken into account in the
formulation for the encounter domain. In effect, had the response been presumed a function
of absolute position, the form of the final functional representation would have been of
exactly the same form as Eq. B. I

The hydrodynamics of the problem noted in Appendix A allows an immediate
simplification of the representation. First, note that in Eq. B. 1, when the linear field
approaches zero, there is left the zero'th order term go, and this term may be taken equal to
zerQ on the basis that the true wave field must approach the linear field as the latter
approaches zero. The hydrodynamic analysis also shows that there is no linear transformation
of the linear field. Thus the kernel g1(t1 ,x1 ,y1) of the second term of Eq. B.1 may be regarded
as a delta function in the dummy variables. The net result of these considerations is that the
-functional representation of the true wave field becomes
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CT(t.X.Y) - CL(t.X.Y)

+f...f&S(tL.zft.y,.t.,x,.y,) X

'* X I-JX-xs .T-.
CL(t-t -)CL(t-tLX-xs.Y-ys) x

dt 1 dx 1 dyedtgdz dy5  (B.2)

As in the develoment of the interpretation of the time domain kernels of response, the
quadratic kernel of Eq. B.2 may be interpreted by assuming that the lineaw wave field is the
superposition of two small amplitude regular waves, which is the same as Eq. I with N - 2.
The steady state true wave field is obtained by substitution into Eq. B.2. The result of this
operation is the same as Eq. 2, or Eq. A. 13, with N = 2 if the following transforms hold:

= f..f1(tx 1 ,y 1.t,,x,,y,) X

tXp[-i( XJ xi+JTt yt-Ws1t)] x

Exp[-i(xsza2+ceyy-wstg)J dt1 ...dye (B.3)

= f..fs(tXy.t,.Xs.y) X

Exp[-1(XxJx+Xy-Wtt))] x

Exp[i(gX +ysy3 -Cw.3 t§)] dt 1 ... dye (B.4)

In these transforms it is implicitly assumed that frequency and wave number are connected
by a dispersion relation. Thus the sum and difference response functions are denoted only as
functions of vector wave numbers, although this is not mathematically essential.

To ensure that Eqs. B.3 and B.4 are valid representations the integral of the absolute
value of the time-space kernel in the transforms must exist, and the kernel must be continuous
[I I]. Additionally, if the inverse transforms are valid, the kernel must be square integrable,
and the same continuity and integrability conditions must hold for the inverse functions of
wave number.

These last considerations pose a serious practical problem in view of the results of the
hydrodynamic theory, Appendix A. The hydrodynamic functions corresponding to the left-
hand sides of Eqs. B.3 and B.4 are defined in Eqs. A.8 through A. 1I. As the magnitude of the
vector wave number arguments tends to infinity, the value of the functions does also. Thus the
functions defined by Eqs. A.8 and A.9 do not satisfy the conditions required for the validity
of Eqs. B.3 and B.4. As a practical example, were it required to generate the time-space kernel
by transforming the response functions, there would be an immediate problem because the
limits of the integrals of Eqs. B.3 and B.4 as well as those of their inverses are infinite.
Hineno (7) ran into this problem in conjunction with a simulation of long-crested waves and
solved it numerically with a truncation technique which is mathematically similar to that which
will be developed next.
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One way out of such a problem is analogous to the "white noise" excitation approach
often used to mitigate similar problems in the time-only case. Essentially, in the time-only case
white noise is operated upon with a linear transformation to produce an excitation to the
system of interest, and the response functions connecting the noise to the system response are
considered in lieu of those connecting the actual excitation to the response. In the time-only
can the implementation is through well-known relationships developed for the results of
cascading Volterra series.

Thus to pursue this direction in the present case it is necemsary to hypohesize a noise or
nominal field CN(t,X) in which time and position vectors have the same meaning as before. The
cascade of fields may be diagrammed as follows:

____- r()g t
The nominal field is presumed to be operated upon by a linear system fI(.) in the time/space
domain to produce the linear small amplitude wave field 4L(,M) which is defined as before.
The linear small amplitude field is acted upon by a linear plus quadratic system with kernels
g8(.) and g2(.) to result in the true wave field CT(t,R). The last functional relation is the same
as Eq. B. I with the zero'th term omitted.

The relationship desired between the nominal field and the true wave field may be

diagrammed as follows:

('O(t.-X) h(. CT(".)

ha(.)

where the kernels h1(.) and h2 .) incorporate the relationships between the nominal and linear
fields and those between the linear and true wave fields.

If the zero'th order term is omitted, the corresponding time/space domain Taylor
expansion of the true wave field in terms of the nominal field has the same form as Eq. B. 1,

(T(t.X.Y) - fff h,(tl,xt.y,)Cn(t-t,.X-x,.Y-y,)dttdxldy,

+f f...f h.(t, ,x, ,y, ,tg.xa.ya) X

'N(t -tj , X I , Y )i(t -tsX -x3 ,-ym) x

dt, dxj dy Idtsdx a dy e  (B.S)

On the assumption that the kernels in Eq. B.5 are sufficiently well behaved, the corresponding
linear and quadratic response functions relating nominal and true wave fields may be written

as follows:
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T?(I) - f.fh(t.xIaY') 3xp[-i(lx,+.yY1 - et)] dttdxldy1  (B.6)

QT(2,,48) - f..fhs(tixijy,,t.,xay2) x

lgxp[-i(XX I9 +'CT1Y t-Wlt 1) X

3xp[-i(xX+ynYn-W t2)] dt1 ...dyg (B.7)

RT(ki-kn) = f..fhs(tIx 1 ,Yn.t3xSfy*) x

Zxp[-i(£xt X1+jCyIy-WtA )] X

ExpI(XIwxS+CysYI-Wst 3 ) dtl...dyg (B.8)

To complete the definitions required for the cascade problem the assumed linear
transformation between noise and linear wave fields must be defined and may be written in the
time/space domain as follows:

CL(tX,Y) = ffffl(t, ,x1 .Y)('(t-t 1 ,X-x 1 ,T-yl)dt dx t dyI (B.9)

The linear response function corresponding to the kernel of Eq. B.9 will be written

TN(i) = f..ff(t~xj.y 1 ) Exp[-i(cxx1 +iy-I-wtj)] dtldxtdy1  (B.10)

Now if the model, Eq. B.9, for the linear field is substituted into the initial expansion of
the true field, Eq. B.2, the dunmy time and space variables are renumbered, and a simple
variable transformation is made (noting that all integrals are infinite), the result is sufficiently
similar to the expansion, Eq. B.5, that the relations between the kernels of Eqs. B.2, B.9, and
8.5 are developed. These turn out to be

h1 (t1 xj.y 1 ) = f 1 (tt,xt,y,) (B. 11)

hs(t!.x 1 ,YttS.x2,y,)

f.. f (tl-t 3 ,xl-x3 .yt-y 3 .t 3 -t 4 ,x 2 -x 4 ,y,-y 4 ) X

ft(t 3 -X3 ,y 3 ) fr(t 4 .x 4 , y 4 ) dt 3 dx 3 ...dy 4  (B.12)

The relations between the response functions of the cascade and those relating the nominal
and true wave fields are developed by substituting Eqs. B.II and B.12 into the definitions,
Eqs. B.6 through B.9, with the following results:

T,(l) = TN(i) (B.13)
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QT(Z1.Z8) = QC(R 1 ,3*) T,(Z) 7'(1) (B.14)

RT(ZI-ZOi) - Rr(Zj.Xjs) TX(ZI) T*(2i*) (B. 15)

If the functions defined in Eqs. B.14 and B.15 can be made to satisfy the square
integrability condition, the representation, Eq. 8.5, will be valid, as will be the inverse
transforms of Eqs. B.7 and B.8. For this to be true, the kernel of Eq. B.9 and its transform
must first be square integrable. Inspection of Eqs. A.8 and A.9 discloses that under the worst
circumstance (one wave number very much greater than the other) the values of the wave-wave
interaction response functions are nearly proportional to the greater of the two scalar wave
numbers. Thus if TN(I) approaches zero at a rate greater than 1/1 for large wave number,
the left-hand sides of Eqs. B.14 and B.15 should approach zero sufficiently rapidly to satisfy
the integrability condition.

It is possible to interpret the linear transformation hypothesized here in a number of ways.
If the vector wave number spectrum of the linear field may be put in the form TN(Wj)TNffk),
then the linear transformation could be called a "spectral filter" in direct analogy to the
common practice in the time-only case. (Scalar wave number spectra of ocean waves decay
more rapidly with wave number than is required to ensure validity.) Alternatively, the
transformation might be viewed as an analytical "window" which limits the range of possible
wave interaction. In this interpretation TN(T) could be chosen, for instance, to be purely real
and equal to unity up to some cutoff wave number higher than the range of interest, after
which a relatively arbitrary transition to zero could be made. The present development is
essentially an artifice to overcome the existence problems brought about by the hydrodynamic
development for the wave-wave interactions.

As usual, the functions defined by Eqs. B.6 and B.7 may be interpreted by assuming that
the nominal field ZN(M,t) is a summation of cosinusoidal waves in the form

N(tX) = Re1cjExp[i .X - iwjt (B.16)
J

where cj = ajExp[i j]

and aj and tj are the arbitrary amplitudes and phases of the N cosinusoids. When Eq. B. 16 is
substituted into the model, Eq. B.5, and the transform definitions are taken into account,
there results the following expression for the true wave field:
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N I

J~T~,X =~ e~~ ,() Exp[.Xi t + ]) -i + ~]

+ 1L Rej k
Exp[i(XJ + Zk). i(W - +

+ Re~c Ci' Ck Rr(jX) TN(-kj) T Oak)

Exp[i(zi - Zk) X- i(Waj - Cdk)t]I (B.17)

The difference between the results of the hydrodynamic analysis, Appendix A, and those
just completed is that the functions defining the sum and difference wave interactions are
modified by the linear response function presumed to relate the nominal and linear fields.
Additionally, the linear components of the true field involve an arbitrary linear transformation
not present in the development of Appendix A.
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APPENDIX C
SPECTRAL REPRESENTATION OF THE NOMINAL WAVE FIELD

For present purposes the existence of a nominal underlying linear wave field 4N(X,Y,t) is
assumed. It is further assumed that the elevation variance of the nominal wave field may be
represented by

Var(Cd) = ffF(xIy)d xdily (C.1)

where FN(xx,xy) is a vector wave number spectrum.
It is also assumed that the nominal field is dispersive, homogeneous in space, stationary in

time, and Gaussian. These assumptions together imply that the field has a "spectral
representation". Although this representation is often written in the form of a Fourier-Stietges
integral, it is convenient to work with the corresponding approximating Fourier sum.
Accordingly, the approximating Fourier sum of the spectral representation of the nominal field
may be written

CN(X,Y,t) = ReW(J)Exp[icxjX + icT - iwjt ]I (C.2)
J

where W(j) is a complex random function of the interval MXjAxyj. This function has the
following propertiep: (<.> denotes the ensemble expected value.)

(w(j)) M o (C.3)

(W(j) W*(k)) = 0 (for j 0 k) (C.4)

(W(j) W*.(J)) = 2FN(icxjTJ) AIjAICTJ (C.5)

(w(J)W(k)) 0 (C.6)

Now the initial assumption on the nominal wave field of stationarity in time, with the
Gaussian process assumption, as well as that of homogeneity imply that the random functions
W(j) are Gaussian and statistically independent for different wave numbers and directions of
propagation. Thus from the properties of the third and fourth moments of Gaussian variables
the following additional relations arise:

(W(j)W(k)W(m)) = (W(J)W(k)W*(m)) a 0 (C.7)

(W(J)W(k)W(m)W(n)) = (W(J)W(k)W(m)W*(n)) =. 0 (C.8)

(W(J)W(k)W*(m)W*(n)) = 0 (C.9)
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unless (j,k = m,n or j,k = n,m) in which case

(W(j)W(k)W* (j)W* (k))

= 4FN(JCXJ ,CTJ)FN(qXk ,1Cyk) ACXJAJCTJ ACXkA#ICk

= 8[FN(XJ . yj) AXxjAICyj]2  (if k = j) (C.10)

The complex random amplitudes W(j) are assumed to be Gausian and zero mean. Eqs.
C.3 through C.10 define the expectations of first through fourth order moments. Under this
assumption the expectations of fifth and sixth order moments are also known. The fifth order
expectations are identically zero because of the Gaussian assumption.

The sixth order expectation of Gaussian variables may be written as the sum of fifteen
products of three.second order expectations. The pairing of variables in the second order
expectation products corresponds to all the ways in which the six variables may be grouped
into three pairs. Noting Eqs. C.1 through C.3, the only way the second order expectation can
be other than zero is when one of the terms in the product is a complex conjugate. Thus the
only way the product of three second order expectations can be other than zero is that each
second order expectation must be of the form of Eq. C.5. Accordingly, exactly three of the six
variables in the sixth order expectation must be complex conjugates. Otherwise the process of
grouping the six variables into pairs will result in at least one of the terms in each of the
fifteen triple products of second order expectations being of the form of Eq. C.6, and thus the
entire expectation will be zero.

Writing out the expansion of the sixth order expectation in which exactly three of the
variables are complex conjugates, and applying Eq. C.2 results in the following definition of
the only ways in which this expectation can be other than zero:

(W(j) W(k) W(m) W*(n) W* (p) W* (q))

= 8FN(AxJ ,icyj)FN(#CXk ,Xyk)FN(CXm ,XYm) &I&XJAXYJ Ar-XkA/Yk AXXmAXYm

If n = j , p = k , and q = rn

or n = J , p = m , and q = k

or n = k , p = rn , and q = J

or n = k , p =j , and q = rn;

or n = rn, p = J , and q = k;

or n = i , p = k ,and q = J (C.11)
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