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Binoinial N Estimation: A Bayes Empirical Bayes Approach

Adrian E. Raftery
Department of Statistics, GN-22,
University of Washington,
Seattle, WA 98195,

ABSTRACT

A Bayes empirical Bayes approach to the problem of estimating N in the
binomial distribution is presented. This provides a simple and flexible way of
specifying prior information, and also allows a convenient representation of
vague prior knowledge. In addition, it yields a solution to the interval estimation
problem. The Bayes estimator corresponding to the relative squared error loss
function and a vague prior distribution is shown to be stable, and to compare
favorably with the estimators introduced by Ofkin et al. (1981) and Carroll and
Lombard (1985).
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L. INTRODUCTION

Suppose x =(x;,...,x,) is a set of success counts from a binomial distribution with
unknown parameters N and 6. The problem of estimating N was first considered by Haldane
(1942), who proposed the method of moments estimator, and Fisher (1942), who derived the
maximum likelihood estimator. DeRiggi (1983) showed that the relevant likelihood function is
unimodal. However, Olkin, Petkau, and Zidek (1981) - hereafter OPZ - showed that both these
estimatoncanbeunst_ableinthcsensethatumallchmgeinthedaucancamalargechange

in the estimate of N.

OPZ introduced modified estimators and showed that they are stable. On the basis of a
simulation study, they recommended the estimator which they called MME:S. Casella (1986)
suggested a more refined way of deciding whether or not to use a stabilised estimator.
Kappenman (1983) introduced the "sample reuse” estimator; this performed similarly to MME:S
in a simulation study, and is not further considered here. The history and applications of the
problem were discussed in more detail by OPZ; a recent application was described by Dahiya
(1980), who used the maximum likelihood estimator to estimate the population sizes of different
types of organism in a plankton sample.

Draper and Guttman (1971) adopted a Bayesian approach, and gave a full solution for the
case where N and 0 are independent a priori, the prior distribution of N is uniform, and that of 0
is beta. Blumenthal and Dahiya (1981) suggested N * as an estimator of N, where (N *,0%) is the
joint posterior mode of (N ,0) with the Draper-Guttman prior. However, they did not say how
the parameters of the beta prior for 0 should be chosen. Carroll and Lombard (198S) - hereafter

CL - recommended the N estimator Mbeta (1,1), the posterior mode of N with the Draper-
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Guttman prior after integrating out 8, where the prior of 6 has the form p (0) = 6(1-8) (0<0<1).

Most of these papers were concerned almost exclusively with point estimation; interval
estimation has been little studied. The simpler problem of estimating N when 0 is known has
been addressed by Feldman and Fox (1968), and Hunter and Griffiths (1978).

I adopt a Bayes empirical Bayes approach (Deely and Lindley 1981). This provides a
simple way of specifying prior information, and also allows a convenient representation of vague
prior knowledge using limiting, improper, prior forms. It leads to solutions of both the point
estimation and interval estimation problems. The Bayes estimator corresponding to the relative
squared error loss function and a vague prior distribution is shown in Section 3 to be stable, and,

using simulation, to compare favorably with both MME:S and Mbeta (1,1).

2. A BAYES EMPIRICAL BAYES APPROACH

I assume that N has a Poisson distribution with mean 1. This defines an empirical Bayes
model in the sense of Morris (1983). Then x,,...,x, are realisations of a Poisson random
vmbkwiﬂlmmk-uo.vlcmymanayuimmﬂym«thismdel.

I specify the prior distribution in terms of (A,0) rather than (1,0). This is because, if the
prior is based on past experience, it would seem easier to formulate prior information about A,
the mean of the observations, thmaboutu.dnmofﬁeunébsmadqumﬁtyN.lfthisino,
prior information about A would be more precise than that about | or 0, so that it may be more
reasonsble to assume A and 0 independent a priori than it and 0. In this case, 4 and 6 would be
negatively associated a priori. Jewell (1985) has proposed a solution to the different but related

problem of population size estimation from capture-recapture sampling, which is based on an

M
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assumption similar to prior independence of 1 and @ in the present context.
The posterior distribution of N is

n le
p(N|x) e (N {mz)} { { 6™+ (1-8y™ 5 AN exp(-1/0) p (A,0) dAd O

i=l

(N2X ) | ) 2.1)

n
where S = ¥ x;, and x p,=max{x,, ...,x,}. If A and © are independent a priori, and A has a

i=m]
gamma prior distribution, so that p(A,0) e )."‘"e"‘"‘p (6), then A can be integrated out

analytically, and (2.1) becomes

inl

P(N|x) = (V) T(V+x,) {f[(i’:)}

1
! VS 1-0yVS @ k) M p )0 Warpy)

I now consider the case where vague prior knowledge about the model parameters is
represented by limiting, improper, prior forms. I use the prior p (A,0) = A1, which is the product
of the standard vague prior for A (Jaynes 1968) with a uniform prior for 6. This leads to the
same solution as if a similar vague prior were used for (11,0), namely p (11,8) o« . The posterior
is

PIVIx) = {N-SWON+DW} (T} (V2r ) 22)

im]

In the important special case where a=l, (2.2) becomes
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p(N|x)=x/{NNN+1)} (N2xy)

so that the posterior median is 2x,, which seems intuitively reasonable.

3. POINT ESTIMATION

Bayes estimators of N may be obtained by combining (2.2) with appropiate loss functions;
examples are the posterior mode of N, MOD, and the posterior median of N, MED. Previous
authors, including OPZ, CL, and Casella (1986) have agreed that the relative mean squared error
of an estimator N, equal to E [(N/N-1)?], is an appropriate loss function for this problem. The
Bayes estimator co;'responding to this loss function is

MRE= ¥ N-lp(V|x)/ ¥ N-2p@|x)

N=X gy N=xX ou

The three Bayes estimators, MOD, MED, and MRE, are reasonably stable, as can be seen
from the results for the eight particularly difficult cases listed in Table 2 of OPZ, which are
shown in Table 1. MED was closer to the true value of N than the other estimators considered in
four of the eight cases, while MOD was best in a further three cases. However, in the cases in
which MOD was best, MED performed poorly; the converse was also true. The other three

estimators always fell between MOD and MED.

Table 1 about here

’l‘heresnltsofnimulationstudyareshownin'l‘ablez.lusedthemnedesignasOPZmd‘

CL. In each replication, N, 0, and n were generated from uniform distributions on [0,1],
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{1,...,100}, and {3,...,22} respectively, using the uniform random number generator of

Marsaglia, Ananthanarayanan, and Paul (1973). A binomial success count was then generated

using the IMSL routine GGBN. There were 2,000 replications.

Table 2 about here

Table 2 shows that MRE performed somewhat better than MME:S and Mbeta (1,1) in both
stable and unstable cases, with an overall efficiency gain of about 10% over MME:S, and about
6% over Mbeta (1,1). Here, as in OPZ, a sample is defined to be stable if ¥/s2> 1+1/V2, and

unstable otherwise, where X =Yx;/n, and s 2= ¥\(x;—x)?/n.

4. EXAMPLES

CL analyzed two examples, involving counts of impala herds and individual waterbuck.
The point estimators are shown in Table 3. The stability of the Bayes estimators is again
apparent; the stability of MRE for the waterbuck example is noteworthy given the highly

unstable nature of this data set.

Table 3 about here

The posterior distributions obtained from (2.2) are shown in Figures 1 and 2. The posterior

distribution for the waterbuck example has a very long tail; this may be related to the extreme

instability of this data set.




Figures I and 2 about here
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Table 1. N Estimators for Selected and Perturbed Samples.

Parameters Estimators

Sample N 0 n MMES Mbeta(l,1) MOD MED MRE

1 75 32 5 70 49 42 82 57
80 52 46 91 62
2 34 .57 4 77 47 42 84 57
91 52 46 95 62
3 37 17 20 25 23 21 40 26
27 25 23 46 29
4 48 06 15 10 8 7 14 10
12 10 10 19 12
5 40 .17 12 26 25 23 42 30
32 29 27 52 35
6 74 68 12 153 125 114 207 127
162 131 120 217 129
7 55 48 20 69 63 59 91 75
74 67 63 101 81
8 60 .24 15 49 41 38 68 49
53 45 41 77 53

NOTE: The exact samples are given in Table 2 of OPZ. For each sample number, the
first entries are the N estimates for the original sample, and the second entries are the N
estimates for the perturbed sample obtained by adding one to the largest success count.




Table 2. Relative Mean Square Errors

of the N Estimators
Estimators
Cases No. MME:S Mbeta(1,1) MRE
All cases 2000 A71 .165 .156
Stable cases 1378 .108 .104 .100
Unstable cases 622 312 300 281




Table 3. Estimators for the Impala and Waterbuck
Examples: Original and Perturbed Samples

Estimators

Example @ MME:S Mbeta(l,1) MOD MED MRE

Impala 54 42 37 67 49
63 46 40 76 54

Waterbuck 199 140 122 223 131
215 146 127 232 132

NOTE: The data are given in Section 4 of CL. For each example, the first entries are the
N estimates for the original sample, and the second entries are the N estimates for the
perturbed sample obtained by adding one to the largest success count.
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