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L IRODUCTON

Suppose x =(z 1,... ,x.) is a set of success counts from a binomial distribution with

unknown parameters N and 0. The problem of estimating N was first considered by Haldane

(1942), who proposed the method of moments estimator, and Fisher (1942), who derived the

maximum likelihood estimator. DeRiggi (1983) showed that the relevant likelihood function is

unimodal. However, Olkin, Petkau, and Zidek (1981) - hereafter OPZ - showed that both these

estimators can be unstable in the sense that a small change in the data can cause a large change

in the estimate of N.

OPZ introduced modified estimatos and showed that they arm stable. On the basis of a

simulation study, they r M the estimator which they called MMES. Casella (1986)

suggested a more efined way of d wheth or not to use a sabilised estimator.

K1p-mmn (1983) introduced the "sample reuse" estimamr this performed similarly to IN4ME:S

in a simulation study, and is not further considered hem Ile history and applications of the

problem were discussed in moe detail by Ol,; a recent application was described by Dahiya

(1980), who used the maximum likelihood estimator to estimate the population d of different

typm of organism in a plankton sample.

Draper and Outtman (1971) adopted a Bayesd approach, and gave a full solution for the

case where N and 0 we indepndent a priori, the prior distribution of N is uniform, and that of 9

is beta. Blumeth and Dahiya (1981) suggstdN* as an estimator of N, where (N*,O*) is the

joint posterior mode of (N.) with the Draper-Ouuman prior. However, they did not say how

the pmeers of the beta prior for 0 should be chosen. Carroll and Lombard (1985) - hereafter

CL - mAemmendd the N estimator Mbew (1,1), the posterior mode of N with the Draper-
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Guttman prior after integrating out 6, where the prior of 0) has the form p (0) -01(1-0G) (O.-Ol).

Most of these papers were concerned almost exclusively with point estimation; interval

estimaton has been little studied. T7he simpler problem of estimating N when 0 is known has

been addressed by Feldman and Fox (1968), and Hunter and Griffiths (1978).

1 adopt a Bayes empirical Bayes approach (Deely and Lindley 1981). This provides a

simple way of specifying prior information and also allows a convenient representation of vague

prior knowledge using limiting, improper, prior forms. It leads to solutions of both the point

estimation and interval estimatio problems. The Bayes, estimator coresponin to the relative

squared error loss function and a vague prior distributio is shown in Section 3 to be stable, and,

osin simulato, to compare: favorably with bot hMS and Mbeta (1, 1).

2. A BAYES EAMIRCAL BAYES APP'ROACH

I assume that N has a Poisson disriution with mean tL This defines an empirical Bayes

modiel in the sense of Morris (198). Then x 1 . ,x. are realIsations of a Poisson random

variable with mean X. w p. I carry out a Bayesian analysis of this model.

I specify the prior distribution in terms of NO,) rather than (pf0) This is because, if the

prior is baoed on past experience, it would seem easier to formulate prior information about X,

the moa of the ohm vati.., tha about P, the mean of the usobserwod quantity N. If this is so,

prior informatio about X would be momn precise tha that about pL or 0, so that it may be more

remsonAblto asume Iand 0 bxpendnt a priori dm P and0. In this caw, gamid 0would be

negtively associated a priori. Jewell (198) has proposed a solution to the different but related

problemt of populatio she estimatio from cpuzreaue sampling, which is based on an
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assumption similar to prior independence of g and O in the present context.

The posterior distribution of N is

p (N Ix) - (N !)- i (ifO" ).Nexp( - J0)p ,O)dO

(N 2%MU) (2.1)

where S = ixi, and xm=max 1 ,... ,x,}. If X and 0 are independent a priori, and has a
i-I

gamma prior distribution, so that p (N.O), ) e -t-p (0), then X can be integrated out

analytically, and (2.1) becomes

p (N Ix) - (N)-l r(N+|c,) IC)

( 1 "4)) 'sN (0"K+) p (0) dO (N. xU)

I now consider the cae where vague prior knowledge about the model parameters is

represented by limiting. improper, prior forms. I use the prior p (.,O) e X- 1, which is the product

of the standard vague prior for X (Jaynes 1968) with a uniform prior for 0. This leads to the

same solution as if a similar vague prior were used for (tt,0), namely p (,0) e Wt. The posterior

is

p(Nlx)-t {(N--S)/(nN+l)W} Il(N)} (Nxmu) (2.2)

In the important special cae where xnI, (2.2) becomes
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p(NIx) =xI/(N(N+l)} (N'-x1 )

so that the posterior median is 2x 1, which seems intuitively reasonable.

3. POINT ESTIMATION

Bayes estimators of N may be obtained by combining (2.2) with appropiate loss functions;

examples are the posterior mode of N, MOD, and the posterior median of N, MED. Previous

authors, including OPZ, CL, and Casella (1986) hive agreed that the relative mean squared error

of an estimator t, equal to E [(N IN-I)2], is an appropriate loss function for this problem. The

Bayes estimator corresponding to this loss function is

MRE= : N-p(Njx)I 1_ N-2p(Nix)

The three Bayes estimators, MOD, MED, and MRE, are reasonably stable, as can be seen

from the results for the eight particularly difficult cases listed in Table 2 of OPZ, which are

shown in Table 1. MED was closer to the true value of N than the other estimators considered in

four of the eight cases, while MOD was best in a further three cases. However, in the cases in

which MOD was best, MED performed poorly; the converse was also true. The other three

estimators always fell between MOD and MED.

Table I about here

[lIFE
The results of a simulation study are shown in Table 2. I used the same design as OPZ and

CL. In each replication, N, 0, and n were generated from uniform distributions on [0,I],
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11, ... ,001, and 13,... ,22} respectively, using the uniform random number generator of

Marsaglia, Ananthanarayanan, and Paul (1973). A binomial success count was then generated

using the IMSL routine GGBN. There were 2,000 replications.

Table 2 about here

Table 2 shows that MRE performed somewhat better than MME:S and Mbeta (1,1) in both

stable and unstable cases, with an overall efficiency gain of about 10% over MME:S, and about

6% over Mbeta (1,1). Here, as in OPZ, a sample is defined to be stable if TI/s 2 1+1/-2, and

unstable otherwise, where i = ,x1 In, and s 2

4. EXAMPLES

CL analyzed two examples, involving counts of impala herds and individual waterbuck.

The point estimators are shown in Table 3. The stability of the Bayes estimators is again

apparent; the stability of MRE for the waterbuck example is noteworthy given the highly

unstable nature of this data set.

Table 3 about here

The posterior distributions obtained from (2.2) are shown in Figures 1 and 2. The posterior

distribution for the waterbuck example has a very long tail; this may be related to the extreme

instability of this data set.
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Figures I and 2 about here
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Table 1. N Estimators for Selected and Perturbed Samples.

Parameters Estimators

Sample N 0 n MME:S Mbeta(1,1) MOD MED MRE

1 75 .32 5 70 49 42 82 57
80 52 46 91 62

2 34 .57 4 77 47 42 84 57
91 52 46 95 62

3 37 .17 20 25 23 21 40 26
27 25 23 46 29

4 48 .06 15 10 8 7 14 10
12 10 10 19 12

5 40 .17 12 26 25 23 42 30
32 29 27 52 35

6 74 .68 12 153 125 114 207 127
162 131 120 217 129

7 55 .48 20 69 63 59 91 75
74 67 63 101 81

8 60 .24 15 49 41 38 68 49
53 45 41 77 53

NOTE: The exact samples are given in Table 2 of OPZ. For each sample number, the
first entries are the N estimates for the original sample, and the second entries are the N
estimates for the perturbed sample obtained by adding one to the largest success count.



Table 2. Relatfive Mean Square Errors
of the N Estimators

Estimators

Cases No. MME:S Mbeta (1, 1) MRE

Ali cases 2000 .171 .165 .156

Stable cases 1378 .108 .104 .100

Unstable cases 622 .312 .300 .281



Table 3. Estimators for the Impala and Waterbuck
Examples: Original and Perturbed Samples

Estimators

Example MME:S Mbeta (1,1) MOD MED MRE

Impala 54 42 37 67 49
63 46 40 76 54

Waterbuck 199 140 122 223 131
215 146 127 232 132

NOTE: The data are given in Section 4 of CL. For each example, the first entries are the
N estimates for the original sample, and the second entries are the N estimates for the
perturbed sample obtained by adding one to the largest success count.
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