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CONFIDENCE SETS IN CHANGE-POINT PROBLEMS

David Siegmund

Department of Statistics, Sequoia Hall, Stanford University, Stanford, California 94305, USA

Summary.

Several methods are discussed for confidence set estimation of a change-point in a se-

quence of independent observations from completely specified distributions. The method based

on the likelihood ratio statistic is extended to the case of independent observations from an

exponential family. Joint confidence sets for the change-point and the parameters of the ex-

ponential family are also considered.

Key words: change-point, likelihood ratio, boundary crossing probabilities

1. Intucin.

Let Z1, X2,.... , ,. be independent random variables with £1,...*, z, having distribution

F and ~,,. ,~having distribution G i4 F. The change-point j, where the distribution

shifts from F to G, is an unknown parameter, to be estimated by a confidence set. In general.

the distributions F and G may be known, completely unknown, or specified up to an unknown

parameter. In this paper I discuss several procedures for the artificial but informative case

of completely specified F and G, and then develop more completely a method based on the

likelihood ratio statistic for the case where F and G come from a common exponential family of

distributions. Precedent for the approach taken here is found in Worsley (1986) and Siegmund

(1986).

A distinguishing feature of change-point problems is that the likelihood function is not

smooth, even (or perhaps especially) if the process evolves in continuous times. Hence there is

no reason to expect maximum likelihood, likeliho"od ratio, and Bayes es timates from different

prior distributions to lead to asymptotically equivalent results. In fact, confidence sets based

directly on the maximum likelihood estimator are demonstrably inferior to those obtained hn



other methods. See Siegmund (1986) and Ibragimov and Khasminski (1981) for related results

in the context of detecting a change in the drift of Brownian motion.

Section 2 is concerned with known F and G. In addition it is assumed that the sequence

of observations is actually doubly infinite,... x-. 1 , zo, x1 .  This additional assumption has

little effect if mn is large and it is known that j is not close to 1 nor to m, because observations

far from the change-point carry little information about the location of the change-point.

The virtue of the assumption is that it makes j into a location parameter and provides an

exact ancillary statistic: the class of shift invariant events. Five confidence set estimates are

discussed. Three are studied by Siegmund (1986), in the context of estimating a change-point

in the drift of Brownian motion. The fourth is essentially the suggestion of Cobb (1978),

and the fifth has smallest expected size among all shift invariant confidence sets. Section 3

A. compares the different confidence sets.

* Sections 4 and 5 are concerned with the case that F and G are imbedded in a common

exponential family, whose parameter 0 is unknown. Section 4 develops a method based on

* the likelihood ratio statistic for obtaining exact confidence sets for j. A new, fairly simple

approximation is suggested for the required probability calculation. The approximation is

illustrated on the coal mining accident data along the lines discussed by Worsley (1986). In

Section 5 the likelihood ratio method is extended to give a joint confidence set for I and

a function of the parameters of the exponential family. Technical results are given in two

appendices.

2. The Cases of Known F and G.

Let Z denote the integers and let j( Z . Let x,~, nt Z be a sequence of independent

random variables with r,, having the distribution function F or G? according as ni < j or

n > j. The distributions F and G are assumed known; the change-point j is unknown. Let

P, denote the probability measure induced by this model on the spare of infinite sequences

.= (x,,, nt Z ). Let or denote the shift operator. i.e., the mapping which takes -; = (x,, noiE

into aw = (z,,+,, n7 ). Note that the family J P, Z }is a translation fantik in t he "Prise

that for any event P? and j( Z
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Pj(B) = 1%(WEB) = PO(r 3 jeB) = Po(a B).

Let z,, = log{dG(x,,)/dF(x,,)} denote the log likelihood ratio of xn, and put

Z, + - -+.+Zn (n > 1)

=-(Zn+l+..+ Z0) (n< -1)

=0 (n =0)

Let 1i = dPi/dPo denote the likelihood function at i. By considering the finite sequence

z,n, -N < n < N, and then letting N -- oo, one can easily show that ti = exp(S,). Under PO

the log likelihood process (Sn, ntZ ) is a random walk satisfying So = 0 and having increments

S, - Sgn-I with mean f log(dG/dF)dF < 0 for n > 0 and f log(dF/dG)dF > 0 for n < 0.

The maximum likelihood estimator for j is the value J where the process (Sn, nt Z

assumes its maximum value. In general this value need not be unique, but to avoid technicalities

it is assumed to be so in what follows. In the space of the sufficient statistic (Sn, nt Z ), the

sequence Y, = 9;+6 - S;, it Z , is ancillary.

In the context of estimating a change-point in the drift of a Brownian motion process.

Siegriund (1986) compares the following three confidence sets for the change-point j. The

first two were discussed earlier by Hinkley (1970, 1972), who, however, made no attempt to

establish their relative efficiency.

(i) Sincej - j is pivotal, if r = r,, is defined by Po(jil > r) = a. then C, = [. - r.j + r]

is a (I - a) 100% confidence interval.

(ii) Let .4 devote the acceptance region of a size a likelihood ratio test of the hypothesis

that the change-point is j. i.e., .4, = imax,, ,., - ., < q/}. where Y7 = 7,, satisfies Pi 4j) =

I Po(maX,>o.5, < 7)1 = I - ,. Then the set ', of ne Z such that the observed saniple point

-;#.A, is a (I - a) 100 confidence set. Since the log likelihood process 1 'i,,. nf Z 7 is in Keneral

multimodal. this confidence set is not in general an interval

(iii) A modification of the prec.-ling riethod which aways Yields an Interval is t() define



L(R) = min(max){n: gn > max.i- 7'

which for suitable q' < 17 satisfies

Pj(L <j R) = Po(L < 0 < R)= 1- 2P 0 (R <0)= 1-a.

The next possibility is essentially the suggestion of Cobb (1978). In analogy with Fisher's

(1934) observation that the conditional probability density of the maximum likelihood estima-

tor of a location parameter given the sample spacings, which are ancillary in that case, is the

normalized likelihood function, one may show by a direct calculation that

Ai

where 3ob. denotes the observed value of J. Let

pn = exp(g.)/ Eexp(gi), ne Z. (2)

(iv) It follows from (1) that a confidence set of conditional coverage probability 1 - o can

be formed as follows. Order the N in (2) as P(j) - P(2) >_- ... Construct the set C 4 by putting

the index n1 corresponding to P(1) in C4 and continuing to add points n2 ,..., nk corresponding

to P(2),", P(k) as long as -,<k P(,) < 1 - a. Note that for a Bayesian with a uniform prior on

Z.

p, = P(j = nix,, Z

and hence the set (4 is a highest posterior probability credible set for j. In fact, even without

the explicit evaluation in ( 1), one knows from a general theorem of Stein (1965) and Hora and

Buehler ( 1966) that the highhest posterior credible set for j is also a confidence set.

(v) One can also obtain an unconditional confidence set from the formal posterior prob-

abilities (p,,, nt Z7 ) in (2) as follows: let r be such that

4
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P3{p I Pj-C} A P{ exp(S.) 5c-'} a1- (3)

and Cs = {n : p,, > c}. Then C5 is a (1 - a) 100% confidence set, which according to a general

theorem of Hooper (1982) or alternatively by a simple Neyman-Pearson argument has smallest

expected size among all shift equivariant confidence sets.

Remarks. The confidence sets (ii), (iv), and (v) all order the parameter values for inclusion

according to the value of the likelihood function. Where they disagree is where to draw the

line between inclusion and exclusion. For those who strongly prefer a confidence interval to a

possibly disconnected confidence set, (iii) appears to be a reasonable modification of (ii). It is

possible to give analogous modifications of (iv) and (v).

Of these five confidence sets, all except for (iv) require computation of a sampling distri-

bution. Approximations are suggested in the following section.

3. Comparisons.

The purpose of this section is to compare the expected size of the various confidence sets

proposed in Section 2. Since the case of known G and F is artificially simple and our main goal

is insight into the case where G and F contain unknown nuisance parameters, there seems to

be little harm in simplifying the technical problems somewhat by assuming that F is N(0, 1)

and G is N(6, 1) for a known b > 0.

Siegmund (1986) considers the computationally simpler case of a Brownian motion process

and shows that the length of the confidence interval defined in (i) is substantially longer than

the expected size of the confidence sets in (ii) and (iii).

In the present context it can be shown as a - 0 that the expected sizes of the confidence

sets in (ii) - (v) are all - 46 - 2 loga - , whereas the length of the interval in (i) is - 86-2 logo - 1 .
3%:

Hence the confidence interval C, defined in (i) appears not to be competitive with the others

and will not be considered further.



Although Siegmund's (1986) comparison of (ii) and (iii) favors (ii), the difference is not

large. In fact there is a transcription error in passing from the first to the second line of the

display following (3.15) of Siegmund (1986), and consequently the difference in the numerical

example between methods (ii) and (iii) is smaller than stated there. Since one suspects that

the rapid fluctuations of Brownian motion may account for some of that difference, and since

(iii) is the only remaining interval estimate and is a surrogate for interval modifications of (iv)

and (v), it seems reasonable to make a comparison of (ii) and (iii) in the present discrete time

setting. Theorem 1 below gives asymptotic expansions as a -+ 0 of the expected size of the

confidence sets (ii) and (iii).

It seems difficult to give comparably precise expansions for (iv) and (v). Hence (ii),

(iv), and (v) are compared below in a Monte Carlo experiment, which also shows that the

approximations given in Theorem 1 are reasonably accurate.

We begin with approximations for the coverage probability of (ii) and (iii). Let b be the

standard normal distribution function and

v(x) = 2x-2 exp {-2Z n- x(-xvt'n/2) } (X > 0). (4)

For computational purposes it usually suffices to use the small z approximation (Siegmund,

1985, p. 219)

v(x) = exp(-pc) + o(x 2 ) (X - 0), (5)

where p _5 .583. For the normally distributed X,, nc Z , under consideration here S, =

p4: 6(n6f2 - Sn),n = 0,1, where Sn = X1 + + Xn. It follows from a classical result of

Cram~r (cf. Siegmund, 1985, (8.49)) that

Po max > -> 77 , V( exp(-) (77 00) (6)

and hence by (5) for A, defined in (ii) above

P(A,) '- {1 - exp(-Y-l p)} 2 .  (7)

% ,. 0.



By conditioning on maxn>o S, one may show for R defined in (iii),

Po(R < 0)= Po (max 9, > max S, + 17' (8)

V(b)exp(-r/')Eo exp ( max gn)

-* oo. It is possible to compute the expectation on the right hand side of (8) numerically or

give a small 6 expansion analogous to (5), but for our purposes it seems adequate to pretend

that (6) is an equality, which after an integration by parts in (8) leads to the approximation

Pi(O /[L, R]) - 2 exp(-i7' - pb){1 - exp(-p)/2}. (9)

The following theorem gives an asymptotic expansion as a --+ 0 of the expected size of

C2 defined in (ii) and [L, R] defined in (iii), It will be convenient to use the notation LyJ =

integer part of y, ICI = number of elements in the set C, and M = sup,,>o Sn.

Theorem 1. Let C2 be the confidence set defined in (ii) and [L, R] the confidence interval

defined in (iii). As 7 --- oc

EjiC 21 = 22,7/b2j + 4/62

- 4b 1 2P0(M > x) - P2(M > x)}dx + o(1),

and as r7 --- 00

Ej(R - L) = 2[2ti'/ 2J + 4/2

- 46 - 1 O Po(Mcdy){2Po(M > x + y) - P2(M > x + y)}dx + o(1).

A proof is sketched in an appendix.

To obtain easily evaluated approximations to the integrals appearing in these expressions.

one may again pretend that (6) is an equality and use (5). This leads to

7



EiJC21 2[2i7/ 62J + 26 -2 (2 - 4e - P6 + e- 2 p6 ) (10)

and

EI(R - L) - 2L277'/62J + 2b-2(2 - 4e - P6 + 3 e- 2 p6 - 2e-3p6/3). (11)

Table 1 contains some numerical examples. It indicates that there is essentially no dif-

ference between the expected size of the confidence sets (ii) and (iii). On the basis of these

results a statistician who strongly prefers a confidence interval to the generally disconnected

likelihood ratio confidence set should feel comfortable in imposing that constraint.

Table 1.

Expected Size of Confidence Sets (ii) and (iii)

a 6 rl (7) EoIC 2 1 (10) 17' (9) Eo(R - L) (11)

.1 0.7 2.56 19.1 2.18 17.9

.1 1.0 2.39 8.2 2.08 9.2

.05 0.7 3.27 25.1 2.88 23.9

.05 1.0 3.09 12.2 2.78 11.2

.01 0.7 4.89 37.1 4.49 37.9

.01 1.0 4.71 18.2 4.39 17.2

In the present context of completely specified distributions there is no sampling theory to

develop in order to use the confidence set (iv). However, it seems a difficult problem to give

a reasonable approximation for the related set defined in (v). A crude approximation to (3)

which might be used as the first step in an iterative numerical or Monte Carlo scheme is to

replace 3, by a Brownian motion process W4(t) with drift -(6 2 /2)sgn(t) and variance 62 and

replace the sum in (3) by an integral. One easily sees that the integral over [0, oo) has the

8
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distribution given by Pollak and Siegmund (1985, Proposition 3). This can be convolved with

itself to obtain pr[fOo exp{W(t)}dt < c- 1] = 2b-'/c exp(-4c/62 )K 1(2b-v /), where K, is

*" the modified Bessel function of the second kind.

Table 2 reports the results of 1000 repetition Monte Carlo experiment with m = 100

and j = 50 to compare the confidence sets C2 , C4 , and C5 . It confirms that the analytic

approximation for the expected size of C2 given in Theorem 1 is reasonably accurate and

shows that all three confidence sets have about the same expected size.

Table 2.

Monte Carlo Comparison of C 2 , C 4 , and C5

C2  C4  C5

a (nominal) b & EoIC2 1 & EoIC 4 1 c & EoICs

.10 .07 .090 18.8 .084 19.5 .010 .092 19.3

.10 1.0 .098 9.6 .085 10.3 .022 .113 9.4

.05 0.7 .041 24.6 .040 25.2 .005 .047 26.0

.05 1.0 .048 12.6 .037 13.2 .011 .052 12.6

Although the confidence sets defined in (ii)-(iv) perform similarly on the average, they can

treat individual sets of data differently. Figure 1 displays two simulated log likelihoods with

m = 101,j = 50, and 6 = 0.7. The horizontal line defines the 95% likelihood ratio confidence

set (ii). In accordance with the approximation (7) it is drawn 3.27 units below the maximum

of the log likelihood function.

In the upper part of Figure 1 the one major peak of the log likelihood is fairly sharp

with the consequence that all the confidence sets are about one half their expected size of 25.

The confidence interval defined in (iii) has one point less on each end than the likelihood ratio

confidence set. The formal Bayes posterior set, C4 , makes a smaller adaptation to the peaked

,* log likelihood; it contains four more points, including the local maximum at 63. The confidence

set C5 is the same as the likelihood ratio confidence set.

4 9
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The lower part of Figure 1 contains a comparatively flat log likelihood with two distinct

peaks. The likelihood ratio confidence set contains 33 points. The interval modification is now

* slightly larger because it contains points of relatively low likelihood: 44, 45, 56-58. Again the

formal Bayes posterior set adapts less to the departure of the log likelihood from its expected

shape and this time contains four fewer points than the likelihood ratio confidence set.

In general, the interval modification (iii) is usually slightly shorter than the likelihood

ratio confidence set but can be considerably larger. The formal Bayes posterior set is usually

larger than the likelihood ratio set when both sets are small and smaller when both sets are

large. This suggests that there may be recognizable subsets making the conditional coverage

probability of the likelihood ratio set differ from its nominal value. The confidence set Cs

can look rather foolish conditionally. If all the pi are very small and about equal, it can

deliver a small, or perhaps empty confidence set while the other methods recognize the data as

uninformative and yield large confidence sets. Presumably this occurs with small probability.

Overall the evidence given here does not seem persuasive for choosing among the confi-

*dence sets (ii) - (v). A possible conclusion is that in more complex problems one may reasonably

use whichever method seems most easily adpated to the problem at hand. When the distri-

butions F and G are unknown, but can be imbedded in a common exponential family, one

can use a conditioning argument to obtain exact likelihood ratio confidence sets. This is the

subject of the next section.

4. The Likelihood Ratio Method for an Exponential Family.

Now suppose that F and G can be imbedded in an exponential family of the form

dFO(x) = exp{Ox - 0(O)}dFo(x)

relative to some fixed distribution F0 , which without loss of generality can be standardized

to have mean 0 and variance 1. Thus for some unknown 00 A 01 and j{1,. ... m}, ,.. ., Xj

have distribution FO, and xj+,... , x, have distribution F91 . The probability on the space

of xl,...,Z, will be denoted by P, with the dependence on j,Oo, and 01 suppressed. For

;, Im11



the most part we consider a scalar parameter 0, but with some technical complications the

methods described below are generally valid.

Several writers, e.g., Davies (1977), Siegmund (1986), and Worsley (1986), have observed

that one can extend the likelihood ratio method (ii) of Section 2 to obtain a confidence set

for j in the presence of the unknown nuisance parameters 00,01 as follows. Let H(x) =

sup 0{Ox - P(O)},S.= x, +... + x,, and

n = nH(n-'S) + (m - n)Hf{(m - n)-'(S, - S,)}. (12)

The likelihood ratio test of the hypothesis that the change-point is j has acceptance region of

the form

A) =(max An -A, <_k

By sufficiency the conditional probability ofA1 given (Sj, S,) does not depend on O0, 01. Hence

if one chooses k = k(j, 6, 2 ) so that

P(Aj IS, = 6, Sm = 2) = 1 - a

for all j, fi, 4,, then the set of values j which are accepted by the test is a (1 -a100% confidence

set.

It is not actually necessary to solve for k(j,fi, 2 ) in order to determine the confidence

set. Given Sj and S,, A, is constant, and hence the confidence set is most easily determined

as the set of j for which

P{max An< (maxAn,b, IS3S }<_I-a. (13)

"e. Approximations for this conditional probability which seem adequate for many cases are given

below.

Bayesian credible sets for the change-point have been considered by Smith (1975) and

Raferty and Akman (1986). Although some numerical computation is required, the computa-

12
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tional problems are not particularly onerous. However, the elegant relation of Section 2. where

any shift equivariant credible set for the uniform prior was also a confidence set is no longer

valid. Results of Stein (1985) lead one to hope that a similar relation is approximately true

in the present context; but because the likelihood function is not smooth, a new argumeit is

required to make such a relation precise.

Some close cousins of the likelihood ratio confidence set might also be considered. For

example, Worsley's (1986) D,, includes j in the confidence set if the likelihood ratio tests

for no change in [0,j - 1] and in [j, m] are both accepted at significance levels greater than

1 -( 1 -o)i/2 - a/2. Alternatively. Pettitt's (1980) test might be inerted to vield a confidence

set A third possibility is to invert the likelihood ratio test in the conditional model given S,.

It would be interesting to study the expected sizes of these confidence sets along the lines

.. of Section 3, but the computations will be substantially more complicated. At present one

can make the following qualitative comparisons. (i) If one considers the boundary crossing

problems defined by the likelihood ratio confidence set and Worsley's D, in the simple case

of a normal mean, one sees that for a 'typical" sample path Worsley's D, is more likely to

include values ofj far from the true one and less likely to include close by values. (iii Pettitt's

- test presumably gives smaller confidence sets than the likelihood ratio test for values of j near

m/2 and larger sets for values of j near 0 and m. See James. James. and Siegmund ( 19X7T for

related results about the power of the tests. An objection to the use of Pettitts, test I, that

for values of j not close to m/2 the two factors in the relevant probability cf. ( 141 below are

quite unequal with the result that the confidence sets are biased in the direct ion of m, 2 and

hence give the impression that the change-point is closer to rn/2 than is actually the CAse.

Given (S). Sm) the random variables max,<, A, and max,<, A n are omndit ionall ii

dependent, and hence the left hand side of ( 131 is of the form

P (max . < ain. . p(ax A, < a .8,- ,

( n<j )<n '_M/

'hese two probabilities present similar conpuitatimial pr bleni,. so it iiffi( sit ,nild,.r Ihv

second one. or equivalently

"hI-3
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SP(,max .\, > alSj. S,) Il

In order to evaluate (15) Worsley (1986) in the special case of exponentially distributed

observations uses repeated numerical integration, and Siegmund (1986) in the case of normal

observations with known variance gives an asymptotic approximation. Related approximations

representing different compromises between accruacy and simplicity are suggested below.

Suppose initially that Fe is a d-variate normal distribution with mean vector 9 and

identity covariance matrix. The case of an arbitrary, known covariance matrix is easily reduced

to this one. Then the probability j15) equals

P o[<max I nSm/m - , 1 12 > a j.S,/m -5 =} ,, 1i
'vrvm 2n( I - n/rn)

for which Siegmund 11946) in the case d = I gives an approximation when ja. and 1 %I are

proportional to m. and

C2  = 2a- tl Itl /j 1 - j/rn) 117,

is a positive multiple of mn as m - x A generalization of that argument shows that 1 16) is

2I + 1 e' - j I- j, 01'"v cC'J/( rn I.11)+ i 1)-., , -1 71j,, expi 2 .

where v is defined in (4) and given approximately by (.51 Appendix B gives a version ,t

for exponential families.

One can obtain a simpler and quite genera approximation b, .an. ,, weak *oiverg.'ri.

.Argtim*ents to replace the likeliho d ratio process \,, by r 1t tA t, hr l

.Iw1 Bn i* A d dimensional Brownian bridge superimposed on A rianfuliar irIt I Iii approa, h

lads to ' 1 'with 11 i \lthoat h tie a pproximat mtn IS q ,tw , er ,o IIo At it li in i, tiiI

Ketivrl itr inake it isefifl iii i npl(-Aat ed i..As

()fie ,t tai, a ,tlfea'rent ,arla tailcatlealt A t imi .s iiitl (,tt c -. ithtl , 1

4id - -i I hla l 1 I
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This approximation has the disadvantage that it does not depend on d. We shall see its

advantages below. From the simulations in Table 6 of Siegmund (19S6) in the case d = I

one can see that (19) is reasonably accurate for the range of j. m. and considered there

Presumably it is less accurate for larger (-. smaller m, and/or larger d, but it seems more thai

adequate for many cases of interest.

For smooth exponential families the approximation (19) takes tie form

P max A, > alS,, S -m v'expl-(a - .\,)]. 20)tl<_n<nt

where a - AI is assumed small compared to m and v° is a distribution dependent quantity

whose exact definition is given in Appendix B A detailed example involving the exponential

distribution is discussed below

In the normal case, according to the approximations (19) and I5) the confidence .et

defined bv (13) is the set of all i such that

* 1 - exp(-.583[2A,/J:( - i/m)}1'' - (rmax.-, )) _ 1-n. -2 ,

Ev [en when one questions the accuracy of (19) or when the data are not normal, the central limit

theorem suggests the use of (21) as a first approximation. A better approximation. simnlation.

or numerical methods can be used to decide whether values of i on the boderline according to

121 I should be included in or excluded from the confidence set.

Note also the formal similarity between IIf)) and 6i fTo the extent that I i 1 - a III

neark constant over the values I of interest. eg.. when the likelihoI)d raio statistic IN 11Irpi%

peaked and hence the confidence Net is small. 21 shoas that the )nfid(v I It .II) ' t I ,)

those I for which X, is withini sonie distance of max, .\'. which can be displjd'ed zraphiti ,ad%\

4. I11 I Iotil 2

, F g ire 2 ThoN the h()g llkelih()d rati) ,tatit; at l hi apprtu\.ri at. , it,! t.r %,

'-,)nhden e t 1e)r 'tie arnue Niruilatel data ,. ii Fil t re I mtlit ,,l\ tho, ,a - .. t ,
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I

presumably because the procedure in effect estimates t' and then acts as if the. al this c

large. estimated value is the true one.

As an iUustration we consider the British coal mining accident data of Maguire. Pearson

and Wynn 1 1952). as extended and corrected by Jarrett (1979) ,Worslev I 1Nsfii ha ana'ssed

the original data and determined the likelihood ratio confidence set h. nuimerical omputAtion

(f - 14

The data are intervals in days between accidents in British coal ines in which At le' at!

ten deaths occurred. Jarrett's 119791 data involve m = 190 intervals from 1. . March. x."5 to

'22 March. 1962. a period of 40.549 days- Under the assumption that the intervals yi. . . y,

are independent and exponentially distributed with a change after the j th observation in the

mean time between accidents. we shall determine a likelihood ratio confidence .et for j

The likelihood ratio statistic is max, A., max., 1m logt I,.,im - rl log( 11t i - FYI -

nlogj(I,, -- V.,)/(rn - ni}j. where It',, = Yl + + y,, For Jarrett's data the iaximunit

value equal, .15,6 and is assumed at ri = 124 in the year 1N90 According to, H 1 .P s - in

Xppendix B the likelih(d ratio confidence set is given approximately as the et of All j .uch

that

- ' i 2 xp -,max ~. 2 A xi-11naxA, - %. 1 - 22

Where k 'Ui j- . 'i lI, lI~i/t i .And v'i , is defined ir i B 14' ' Tileuse it

21 a s e that I • if )i .then the %alues of k, and k, hould t. fiterchantled

T he £pprtxi mation 2'21 KI "-s the set 116, 117. 12.x. 1.13 A a 'aJs - olifiden .t' set fir tht

hlAng" pe iit I lls ,orreslipmid. to the interval froi 114,47 to 1q9j3 !t .ie r with atl i141at1l

picifit i !- 1

t ii laitieli , 22, to1 the )riInal Mtaguiire Pearsori. .t ,i 4 i ',2 ,lili pitl*' lre

he lAti rlighderig e t 'A I ch %%orsle. o i lpited ritirtnerl( All'e tl,,a. r t'w,'e - ' -I
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essentially the same as the confidence set computed here. Actually Raferty and Akman consider

a continuous time Poisson process model and hence allow the change to occur between event

times It is a straightforward matter to adapt the theory developed here to allow for that

possibility.

Cobb (1979) has suggested an extension of method (iv) in Section 2 to deal with nuisance

parameters. but it contains some arbitrary features which may make it difficult to implement

with small or moderate sample sizes. An interesting variant of Cobb's analysis has recently

been proposed by Hinkley and Schechtman (1987).

, Joint Confidence Sets

-rhe likelihood ratio method can also be adapted to give joint confidence sets for the

change--point j and some function A of the parameters 00 and 01. We begin with the simple

"&se that the z, are normally distributed with mean 00 or 01 according as I < I j or

< ., m and identity covariance matrix, and take 6 = 01 - 00.

The acceptance region of the likelihood ratio test that the parameters are j atd A is

4,= {sup ,, ,jS,,/m - 5, - j(I - j/mJn /2 < /12

% here \, =I - ;2 "2i 1 - /rn) and c = tj. A) is chosen to satisf

IP, Pt .4 ..,, I - ,

I for All j \ (lte that
" up \, 4A +/ "u ,., j - }j' - }j m A + 2

o"."~.U + Ti[ 1 \ m'tl p ] I F ri+ P 2)l 1 ftl I .

,ini i #-lae tlrt ,hM eretii4e . Iil t he riht lia it itId lieu P .,arl li ,I *a! l l. i
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. / ¢ "I ' .1 r, I %, r S ,, PIl % p 1 II I A 'Pt "

ppO.°-.



The first term on the right hand side of (24) is exactly I - Fd(c2 ), where Fd denotes the X2

distribution with d degrees of freedom. According to (19)

P(A 6IjS,/m - Sj =

- 2v[ 11 1 /{j(1 - j/m)}] exp { - c'/2+ I - j(1 - j/m)6 112 /[2j(1 - j/m)]},

provided the exponent is small 'ompared to mn as m - :o. Substitution of this approximation

into (24) yields (if c2 = o(m))

P(.4, - 1- Fd(c)+v(6)cd exp(-c2/2)/{2d/ 2-1r(d/2 + 1)}. (25)

If instead of (19) one uses in (24) the presumably more accurate approximation (18), the

integration must be performed numerically.

Using (25) one can easily find an approximate confidence set by trial and error.

An extension of this method to non-normal exponential families requires a consideration

of special cases, depending on the parameter 6 of interest. The generalization of (23). in an

almost obvious notation is

sup(A, - AM= (sup A, - A) + Al - A
-iI I

If 6 is a function of the difference between the natural parameters of the exponential family, e.g.

if the parent populations are Poisson and 6 is the ratio of their means, one obtains distributions

parameterized by 6 by computing probabilities conditionally, given S,, . On the other hand.

if the parent distributions are exponential and 6 is again the ratio of their means, considera-

tlons of Invariance of the two sample problem under scale changes shows that unconditional

probabilities are appropriate. In either case. using a X2 approximation to the distribution of

01 in conjunction with (20 . one obtains an approximation similar to (25. but with the

v* appropriate to the distribution under consideration in place of V. In large samples one ina.

, onsider replacing ., by V. bilt some thought milUst he given to the choice of argument of t he

fu uttor I,

F-or t he special case of #,xponentialv (lit ributed y's having mean A -W and b /,.one

pi3
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obtains from (B.13)-(B.15) when 6 > 1
p

P(Aq,8 ) c 2[1 - 4(c)] + 2[v*(6) + b-']cv(c), (26)

where v* is defined in (B.14). When 6 < 1 (26) holds with -' in place of 6.

Table 3 gives an approximate 90% joint confidence set for j and b = A,/A 2 for the British

coal mining data.

Table 3

90% Confidence set for (j, 6)

115 (2.7, 3.9) 124 (2.3, 5.3)

116 (2.5, 4.3) 125 (2.4, 4.9)

117 (2.4, 4.6) 126 (2.4, 5.0)

118 (2.3, 4.8) 127 (2.4, 4.7)

119 (2.4, 4.5) 128 (2.5, 4.4)

120 (2.5, 4.3) 129 (2.7, 4.0)

121 (2.4, 4.7) 130 (2.9, 3.6)

122 (2.4, 4.7) 132 (2.8, 3.9)
S. 123 (2.3, 4.9) 133 (2.5, 4.5)
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APPENDIX A

Informal Proof of Theorem 1.

We consider only the confidence interval [L, R]. The proof for the likelihood ratio confi-

dence set is similar and somewhat simpler. Since the confidence set is equivariant, it suffices

to consider the case j = 0. To simplify the notation we shall write P and E instead of P0 and

Eo, Y7 instead of il, S,, instead of S,, and take 6 = 1. Recall that M = sup,,>o S,.

For arbitrary no = 1, 2,...

00 00

E(R - L) = P(L < n < R) = P(L <0< R) + 2 P(L < n < R)
-00 1

0

PR) + 2EP(R > n)- P(L > n)}
1

00

=+2EP(R>n)+o(l) asq- oo
1

00 no

= 1+2no+2 E P(R n)-2Z{ -P(R> n)}+o(). (Al)
no+l 1

For positive n', by the definition of R

P(R -!n)=P (Sup S :sup Si+ 7)
(i<n i>n

I JPO4,0 { Sn E <~,max(Si - Sn) E dy}

x P (max Si'5/+'+yiSn - (maxSi < ?1+.7 + 1Y)

= P(S, E d )P(M E dy)P ( a i YSn POI 17c+ +[-,o)x(o,oo) in

I_ fOf)P(Sn E -77+dx)P(M E d)P( max St < x + YI Sn Z- 7)P( <[o,0o)x[o.0o) o<i<n

Let no = 127J and k = n - no, so
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-Y7 + d + /2- 7 +-no/2 + 1 /2
,X (no + k)/ 2 + k) =

It may be shown that the contribution to the two series in (Al) from values of x and k outside

the range I < 772/3, IX + k/21 _< 02/3 is negligible, and inside this range

P (max+S, > X + yIS"+k = -77 + x -P(M > X + Y)
(O<i<no +k/

converges uniformly to 0. Hence for the purpose of evaluating (Al) asymptotically, P(R >

no + k) may be replaced by

j 2 /3 o 'P {n+k1/2  (no+k)-/ 2dx P(M E dy){1-2P(M > x+y)+p 2 (M > +y)}.

For k = 0 this integral converges to 1/2. The terms in (Al) for k = ±1, ±2,... may be paired,

and after some calculation one obtains

EZP(R > no+k)- El{l-P(R> no+k) =-l/2

k>1 k<O

+ -[${2-k/(no - k) 1/ 2 } - t{2-'k/(no + k)1/2}
k>1

-12 1 12 I- 2no W(2-/no) P(M E dy){2P(M > x + y)

- p 2 (M > z + y)}dx + o(1).

A Taylor series expansion, approximation of Riemann sums by integrals, and substitution of

the result back into (Al) complete the informal proof of Theorem 1.
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APPENDIX B

This appendix is concerned with approximations to boundary crossing probabilities like

(15).

Let X1, X2, be independent random variables with probability density function of the

form

fo(x) = exp{Ox - 0(0)}fo(x),

where fo is without loss of generality standardized to have mean 0 and variance 1. We shall

consider only the case of real x and 0, although the extension to the multivariate case is

straightforward. However, the case of vector 0 in which some components change at j while

others are assumed to remain fixed is substantially more difficult. See James, James, and

Siegmund (1986) for the special case of normal observations whose mean changes while the

unknown variance does not. One can also handle discrete random variables and continuous

time Poisson process. Some remarks about the necessary modification in the argument are

given below.

Let S,, = x, + ... + x, , H(x) = supe{Ox - 0(0)},A,,( , 7) = nH(ij/n) + (m - n)H[( -

7)/(rn - n)] - mH( /m), A,,( ) = A.( , S.), and define

T = inf{n: n > mo,A,() > a} (B.1)
, .4

o(=0 if An() < a for all m0 _ n < m). Also put a. = 0'(0). We shall write P, to denote

dependence of probabilities on the parameter 0. For events A defined in terms of xl,... xm

"- -" let

P(m)(A) = PM.(AISm

By sufficiency this probability does not depend on ps. Theorem B.1 gives approximations for

P(m)(T < mS,0 = 7).

In order to describe those approximations let 0 = O(x) be defined by V)'(0) = x, so

H(x) = Ox- ¢(0). Note that H'(x) = 0 and xH'(x) - H(x) = (8). For pu # M2 let

ii= i(p) and i2 = i(,42), and define

r = inf {n: (01 - 02 )S n - n[V'(i1) - ¢(9 2 )] _ b}.
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Also let

V*(l,, A2) -lir EJA exp ( - {(01 - 02)S, - 7[0(1) - 002A - b}). (B.2)

The limit indicated in (B.2) exists as a consequence of the renewal theorem. A general method

for computing v* numerically has been given by Woodroofe (1979). In the special case of

normal x's V* (9 1 , A2 ) = V (Ji - A2 1), where v is defined in (4) and given approximately by (5).

The case of exponentially distributed x's is discussed below.

Theorem B.1. Assume for fixed 0 < to < 1,ao > 0,o, and 7r $ oto that mo -. mto, a

mao,, m&o, and t7 m770 . Let t* be defined by

t*H(r7o/to) + (1 - t*)H{( o - riot*/to)/(1 - t*)} - H( o) = ao,

and assume that to < t* < 1. Then as m - oo, for T defined by (B.1)

P m){T < mjSm0 = 77} - exp{-[a - Amo( ,f)}

f (1 - to)t*Ht"[( o - rqot*/to)/(1 - t*l )1/2 v- . .

X to(i ,) v(io/to,(o rot*to)/(1 t*)) (B3)

* where v* is defined in (B.2).

A simpler approximation to P m){T < m[Smo = 77} is obtained by assuming

00 - a - Amo( , r7) = o(m). (B.4)

*In this case t = to, so (B.3) becomes

p(m) {T < miSmo = 7} - * (7o/to, ( o - i7o)/(1 - to)) exp{-[a - Amo( , 77)]}. (B.5)

Complete proofs of (B.3) and (B.5) are quite long and technical. The main idea and some

important lemmas are given here. The method is inspired by that of Lai and Siegmund (1977.

Section 3), but it differs in several crucial ways.

Let f, denote the n-fold convolution of fo(n = 1,2...) and assume that f, has an

integrable characteristic function for some n. The following large deviation approximation for

f, is used repeatedly. (See Borovkov and Rogozin, 1965.) As n - oc

%fn(nx) , [ H"( x)/27rn]'/2 exp[-nH ( x)]. (B.6)
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Let Q = f0 Pt2)d</(2r)1/2, and let L,, denote the likelihood ratio of xz, ... x, under Q

relative to P(") (n = 1, 2,..., m - 1). Then

00Ln = Ifm-n( - Sn)/fm(0)V' L1f m-n(' - Sn)/frn( ')]k'/(2r )1 /2 . (B.7)

The following representation is basic.

Lemma B.1. P('){T < miS,. = 77}

fm00 _________7) 1/2

fn- m(. V L7 fm- m o )' E4,m) [LT'1{T<mjSmo = 1] d'/(27r)/ 2 . (B.8)

Proof. By Wald's likelihood ratio identity and the definition of Q

p~m){ < So < 17+ 6 T < m = L1 dQ
t"MO J{- -<S,,.O<n+6, T<m} T

1= f 7:55 o <t, T<m) L' d</(27r)1/2

=f f+ E7) [L-
1

1{T<m}ISmO = 1] P(m)(S E d17')d/(27r1/
2

.

The desired representation follows by dividing by

P(-(,q< S < 77 + 6)= 7 {fmo (17')f,_-mo ( - 7')/f.( )}dY'

A.. and letting 6 - 0.

It follows from (B.6) that

Sfm ()m 2rH"( /m)m(m - ino) 
1 2

f M,,(7)fm -m o(G - 1q)Mo 1 H"(/mo)H"( - 7)/(m-moflmn expAmo , 77)]-

The measure {mofmo(7)f,_,o( '- Y)/rf m ( ')}d' behaves asymptotically like a normal dis-

tribution with mean m7h/to and standard deviation proportional to M 1/2, i.e. like a Dirac

delta function at mrio/to. Hence the right hand side of (B.8) is asymptotic to

exp[A '(, ;1 )] mH"H"(-o) 1 - to)

{H"(r~olto)H"[(&j - 77o)I tot
: ,E(-) [Lj'1Tr<m- )jS.o = 771 (B.9)

The following lemma is useful in approximating the conditional expectation in (B.9).
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Lemma B.2. For n proportional to m as m -- oo except for an event of negligibly small

probability under P(()ISmo =7)

L,, in(o)(1 - n) 1/2

exp[A,,( )] H"[( o - (on/mo)/(1 - n/m)]H((1o/to)n I)

The proof of Lemma B.2 follows from substitution of (B.6) into (8.7), the observation that

mH( '/m) - (m - n)H[( ' - Sn)/(m - n)] is maximized at ' = mS,/n, where it equals

nH(S,,/n), and a Laplace type asymptotic expansion of the integral in (8.7).

The HI-jek-Rdnyi-Chow inequality applied to the P(m), t -martingale (S, - nro/to)/( 1 -mo/ o

n/m) shows that for any 0 < e < 1

P(/){ISn - nr°/t>A + ne for some mo < n < m(l - C)ISo =7}

can be made arbitrarily small by taking A sufficiently large, and hence

m'T .- t in P(-) (iS,, = q) - probability.

It follows from (B.10) that

LT - exp[AT()] -rt o)(1 - t)]H"(/t)t (B.11)
H"(o- H"(t*/o)r(1 - t)'(7/ot

except for an event of negligibly small probability under p().ISo = 7).

The proof of Theorem B.1 can be completed by substituting (B.11) into (B.9) and ap-

pealing to Hu's (1987) conditional nonlinear renewal theorem, which says that the distribution

of the excess over the boundary, AT(W) - a, under the conditional probability P(m) has the

same limit as a suitable random walk approximation to A,(f) under the unconditional proba-

bility Po/to" See Siegmund (1986, Appendix 2) for an intuitive discussion of nonlinear renewal

theory.

Now assume that Y1, Y2,. ., y,, are independently and exponentially distributed with

mean A-1 . Let W, = Yi +...+ y, and Sn = n-W,. Then 0 = A- I and 0(0) = 0-log(l +0).

Let A1 = (Wmo/mo)-l,A 2 = [(Wm - Wmo)/(m - mo)]'- and assume that A1 > A2. (The case

A1 < A2 is similar.) Assuming that (B.4) holds one can use the lack of memory property of
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the exponential distribution to obtain

P{ max A, > alW,o. Wm) - V(A 1 /' 2 )exp(-(a - \,. . B 1:
mo <n<m

where in this case

* '" .V'(b) = logth /i( - 1)- I/!logib)i'i -I - 1 l i

*Q Similarly

{ max An > aIVV,, . W , 2A exp -(a A, I

The details of these evaluations are omitted.

With minor modifications the methods developed here yield likelihood ratio confidence

sets for a change-point in the intensity of a continuously observed Poisson process. Thev also

apply to many discrete exponential families, even though the nonlinear renewal The)rem 1I ,,ei

in the proof of Theorem B.A requires that certain distributions be non-arithmetic. However.

these are the distributions of the P,,/, 0 -random walk (0 S - .', - rt[vO6 - . which

usually are non-arithmetic for all but countably many values of 0o,co, and to.

..
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Several methods are discussed for confidence set estimation of a change-point in a se-

quence of independent observations from completely specified distributions. The method based

on the likelihood ratio statistic is extended to the case of independent observations from an

exponential family. Joint confidence sets for the change-point and the parameters of the ex-

__ponential family are also considered.
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