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CONFIDENCE SETS IN CHANGE-POINT PROBLEMS
David Siegmund \

Department of Statistics, Sequoia Hall, Stanford University, Stanford, California 94305, USA

Summary.

A
‘ Several methods are discussed for confidence set estimation of a change-point in a se-

quence of independent observations from completely specified distributions. The method based
on the likelihood ratio statistic is extended to the case of independent observations from an
exponential family. Joint confidence sets for the change—point and the parameters of the ex-

ponential family are also considered.

Key words: change-point, likelihood ratio, boundary crossing probabilities

1. Introduction.

Let z,,z2,...,Zm be independent random variables with z,,...,z, having distribution
F and z,4,,...,zm having distribution G # F. The change-point j, where the distribution
shifts from F to G, is an unknown parameter, to be estimated by a confidence set. In general.
the distributions F and G may be known, completely unknown, or specified up to an unknown
parameter. In this paper I discuss several procedures for the artificial but informative case
of completely specified F and G, and then develop more completely a method based on the
likelihood ratio statistic for the case where F and G come from a common exponential familv of
distributions. Precedent for the approach taken here is found in Worsley (1986) and Siegmund

(1986).

A distinguishing feature of change—point problems is that the likelihood function is not
smooth, even {or perhaps especially) if the process evolves in continuous times. Hence there is
no reason to expect maximum likelihood, likelihnod ratio, and Bayes estimates from different
prior distributions to lead to asymptotically equivalent results. In fact, confidence sets based

directly on the maximum likelihood estimator are demonstrably inferior to those obtained by



o

other methods. See Siegmund (1986) and Ibragimov and Khasminski (1981) for related results

in the context of detecting a change in the drift of Brownian motion.

Section 2 is concerned with known F and G. In addition it is assumed that the sequence
of observations is actually doubly infinite,...z_;, 29, ;,.... This additional assumption has
little effect if m is large and it is known that j is not close to 1 nor to m, because observations
far from the change-point carry little information about the location of the change-point.
The virtue of the assumption is that it makes j into a location parameter and provides an
exact ancillary statistic: the class of shift invariant events. Five confidence set estimates are
discussed. Three are studied by Siegmund (1986), in the context of estimating a change-point
in the drift of Brownian motion. The fourth is essentially the suggestion of Cobb (1978),
and the fifth has smallest expected size among all shift invariant confidence sets. Section 3

compares the different confidence sets.

Sections 4 and 5 are concerned with the case that F and G are imbedded in a common
exponential family, whose parameter 9 is unknown. Section 4 develops a method based on
the likelihood ratio statistic for obtaining exact confidence sets for j. A new, fairly simple
approximation is suggested for the required probability calculation. The approximation is
illustrated on the coal mining accident data along the lines discussed by Worsley (1986). In
Section 5 the likelihood ratio method is extended to give a joint confidence set for ; aud
a function of the parameters of the exponential family. Technical results are given in two

appendices.

2. The Cases of Known F and G.

Let Z denote the integers and let je Z . Let z,, ne Z be a sequence of independent
random variables with z, having the distribution function F or G according as n < ) or
n > j. The distributions F and G are assumed known; the change-point ) is unknown. Let
P, denote the probability measure induced by this model on the spare of infinite sequences
w = (ZIn, neZ ). Let o denote the shift operator. i.e., the mapping which takesw = (r,. ne Z .

into 0w = (Za41.n€ Z ). Note that the family {P,, je Z } is a translation family in the sense

that for any event B and ;¢ Z

*




P;(B) = Pj(weB) = Py(0™’weB) = Py(o’ B).
Let 2z, = log{dG(z,)/dF(z,)} denote the log likelihood ratio of z,,, and put

Sn=21+...42, (n>1)
= ~(zap1 4 ...+ 2) (n<~1)
=0 (n=0)
Let ¢, = dP;/dP, denote the likelihood function at i. By considering the finite sequence
Zn, =N £ n < N, and then letting N — 00, one can easily show that ¢, = exp(.§.). Under P,

the log likelihood process (S, ne Z ) is a random walk satisfying So = 0 and having increments
Sn — Sn-1 with mean [log(dG/dF)dF < 0 for n > 0 and [ log(dF/dG)dF > 0 for n < 0.

The maximum likelihood estimator for j is the value j; where the process (S,, ne Z )
assumes its maximum value. In general this value need not be unique, but to avoid technicalities
it is assumed to be so in what follows. In the space of the sufficient statistic (S,, ne Z ), the

sequence Y, = §;+. - 5;, ie Z , is ancillary.

In the context of estimating a change-point in the drift of a Brownian motion process,
Siegriund (1986) compares the following three confidence sets for the change-point j. The
first two were discussed earlier by Hinkley (1970, 1972), who, however, made no attempt to

establish their relative efficiency.

(i) Since j — j is pivotal, if r = r, is defined by Po(|j| > r) = a.then C, = [ - r.j + ri

15 a (1 - a) 100% confidence interval.

(ii) Let 4, devote the acceptance region of a size a likelihood ratio test of the hypothesis
that the change-point 1s ;. 1e.. 4, = {max, S, - S, < n}. where n = n, satisfies P,(4,) =
{ Polmaxq>o Sa <7} =1-0a Then the set (), of ne Z such that the observed sample point
JeAqisa (1l —a) l00% confidence set. Since the log likelihood process 1 S,. ne Z | is in general

multimodal, this confidence set 1s not 1n general an interval

(it1) A modification of the preceding method which always vields an interval is to define




0. . .
::: L(R) = min(ma.x){n : Sn > max $; — n'},
3
B
" which for suitable ' < n satisfies
o
B[w
'* P(L<j<R)=P (L<O0<R)=1-2P(R<0)=1-a.
:‘)i
The next possibility is essentially the suggestion of Cobb (1978). In analogy with Fisher’s
L
o (1934) observation that the conditional probability density of the maximum likelihood estima-
:“ tor of a location parameter given the sample spacings, which are ancillary in that case, is the
)
o normalized likelihood function, one may show by a direct calculation that
4 2
£ ) _ . i .
” Pi(j-j=nlYoicZ )= Poj =nlY,icZ ) =exp (55, _,) / 3 exp(3), (1)
v:‘ ' '
where jo, denotes the observed value of ;. Let
n
o
'
¢ :; - -
e Pn = exp(S$n)/ D _exp(5), ne Z . (2)
oy (iv) It follows from (1) that a confidence set of conditional coverage probability 1 — a can
0
;::h' be formed as follows. Order the p, in (2) a8 p(y) > p(z) 2 .... Construct the set C4 by putting
:;‘ the index n, corresponding to p(;) in C4 and continuing to add points nj, ..., nx corresponding
t0 p(2),. .., P(k) 38 long as 3_ ., p(i) < 1 —a. Note that for a Bayesian with a uniform prior on
o -
Wil Z
'
‘l
,k [y
Pn= P() =n|z,,ieZ)
:: and hence the set C4 is a highest posterior probability credible set for ;. In fact. even without
.5
1 the explicit evaluation in (1), one knows from a general theorem of Stein (1965) and Hora and
Buehler (1966) that the highhest posterior credible set for  is also a confidence set.
R {(v) One can also obtain an unconditional confidence set from the formal posterior prob-
)
" abilities (p,.ne Z ) 1n (2) as follows: let ¢ be such that
- 4
“l\‘
K
O
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Pi{p; > c} = PO{Zexp(S',,) < c'l} =1-a, (3)

and Cs = {n : p, > c}. Then C;s is a (1 — a) 100% confidence set, which according to a general
theorem of Hooper (1982) or alternatively by a simple Neyman—Pearson argument has smallest

expected size among all shift equivariant confidence sets.

Remarks. The confidence sets (ii), (iv), and (v) all order the parameter values for inclusion
according to the value of the likelihood function. Where they disagree is where to draw the
line between inclusion and exclusion. For those who strongly prefer a confidence interval to a
possibly disconnected confidence set, (iii) appears to be a reasonable modification of (ii). It is

possible to give analogous modifications of (iv) and (v).

Of these five confidence sets, all except for (iv) require computation of a sampling distri-

bution. Approximations are suggested in the following section.

3. Comparisons.

The purpose of this section is to compare the expected size of the various confidence sets
proposed in Section 2. Since the case of known G and F is artificially simple and our main goal
is insight into the case where G and F contain unknown nuisance parameters, there seems to
be little harm in simplifying the technical problems somewhat by assuming that F is ¥(0,1)
and G is N(6,1) for a known &§ > 0.

Siegmund (1986) considers the computationally simpler case of a Brownian motion process
and shows that the length of the confidence interval defined in (i) is substantially longer than

the expected size of the confidence sets in (ii) and (iii).

In the present context it can be shown as a — 0 that the expected sizes of the confidence
sets in (ii) - (v) are all ~ 462 loga~!, whereas the length of the interval in (i) is ~ 86 2 loga~!.

Hence the confidence interval C, defined in (i) appears not to be competitive with the others

and will not be considered further.
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Although Siegmund’s (1986) comparison of (ii) and (iii) favors (ii), the difference is not
large. In fact there is a transcription error in passing from the first to the second line of the
display following (3.15) of Siegmund (1986), and consequently the difference in the numerical
example between methods (ii) and (iii) is smaller than stated there. Since one suspects that
the rapid fluctuations of Brownian motion may account for some of that difference, and since
(iii) is the only remaining interval estimate and is a surrogate for interval modifications of (iv)
and (v), it seems reasonable to make a comparison of (ii) and (iii) in the present discrete time
setting. Theorem 1 below gives asymptotic expansions as a — 0 of the expected size of the
confidence sets (ii) and (iii).

It seems difficult to give comparably precise expansions for (iv) and (v). Hence (ii),
(iv), and (v) are compared below in a Monte Carlo experiment, which also shows that the

approximations given in Theorem 1 are reasonably accurate.

We begin with approximations for the coverage probability of (ii) and (iii). Let ® be the

standard normal distribution function and

v(z) = 2z % exp {-2§: n'l‘b(—-x\/ﬁﬂ) } (z > 0). (4)
1

For computational purposes it usually suffices to use the small z approximation (Siegmund,

1985, p. 219)

v(z) = exp(—pz) + o(z%)  (z —0), (5)

where p = .583. For the normally distributed z,,ne¢ Z , under consideration here S, =
§(né/2 - S,),n = 0,1,..., where S, = z, + ...+ z,. It follows from a classical result of
Cramér (cf. Siegmund, 1985, (8.49)) that

Po(tg;g&kﬂ) ~ v(6)exp(-n) (n — o0) (6)

and hence by (5) for A; defined in (ii) above

P;(A)) % {1 - exp(~n — pé)}>. (7)

A RO IR A RPN AT R,




By conditioning on max,>o S,, one may show for R defined in (iii),

_ b C !
¥ Py(R<0)=Py (x}‘lgb‘n > T%Sn + n) (8)

, -
X ~ v(§)exp(—n )Eo{exp (— max Sn) }

7’ — oo. It is possible to compute the expectation on the right hand side of (8) numerically or

iy give a small § expansion analogous to (5), but for our purposes it seems adequate to pretend
,: that (6) is an equality, which after an integration by parts in (8) leads to the approximation
P;(0 AL, R]) = 2exp(—n' — p8){1 — exp(—pé)/2}. (9)
¢ '* The following theorem gives an asymptotic expansion as @ — 0 of the expected size of
'}, C; defined in (ii) and [L, R] defined in (iii). It will be convenient to use the notation |y| =
E‘; integer part of y, |C| = number of elements in the set C, and M = sup,.5, Sn.

Y
;",:. Theorem 1. Let C; be the confidence set defined in (ii) and [L, R] the confidence interval
J defined in (iii). As n — oo
A9
oY
e E{|Ca| = 2{2n/6% + 4/
i oo

2 - 4671 / {2Po(M > z) — P3(M > z)}dz + o(1),

0

W and as ' = oo

Ht
b
!

W E;(R-L)=2|2n/6% +4/68*

o0 oo

o —46'1/ / Po(Medy){2Po(M >z +y) — PZ(M > z + y)}dz + o(1).

: o Jo
b A proof is sketched in an appendix.

ol
, §: To obtain easily evaluated approximations to the integrals appearing in these expressions.
$: one may again pretend that (6) is an equality and use (5). This leads to

‘

<" ,
-~ 7

U
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EJ|C2I = 2'_27]/62J + 26_2 (2 _ 4e—95 + 6—206) (10)

and

Ej(R—-L)2|2n/6%) +267%(2 — 4e7"0 + 37270 — 2673 /3). (11)

Table 1 contains some numerical examples. It indicates that there is essentially no dif-
ference between the expected size of the confidence sets (ii) and (iii). On the basis of these
results a statistician who strongly prefers a confidence interval to the generally disconnected

likelihood ratio confidence set should feel comfortable in imposing that constraint.

Table 1.
Expected Size of Confidence Sets (ii) and (iii)

a §  n(7) EoCy|(10) 7' (9)  Eo(R-L)(11)

.1 0.7 2.56 19.1 2.18 17.9
.1 1.0 2.39 8.2 2.08 9.2
.05 0.7 3.27 25.1 2.88 23.9
.05 1.0 3.09 12.2 2.78 11.2
.01 0.7 4.89 37.1 4.49 37.9
.01 1.0 4.71 18.2 4.39 17.2

In the present context of completely specified distributions there is no sampling theory to
develop in order to use the confidence set (iv). However, it seems a difficult problem to give
a reasonable approximation for the related set defined in (v). A crude approximation to (3)
which might be used as the first step in an iterative numerical or Monte Carlo scheme is to

replace §, by a Brownian motion process W(t) with drift —(62/2)sgn(t) and variance 62 and

replace the sum in (3) by an integral. One easily sees that the integral over [0,00) has the




,,,,,,,,

n
;
_ distribution given by Pollak and Siegmund (1985, Proposition 3). This can be convolved with
- itself to obtain pr{[°7 exp{W(t)}dt < c¢™!] = 26~1\/c exp(—4c/6?)K(2671\/c), where K is i
- the modified Bessel function of the second kind. |
‘ Table 2 reports the results of 1000 repetition Monte Carlo experiment with m = 100
: and j = 50 to compare the confidence sets C,,Cy4, and Cs. It confirms that the analytic
; approximation for the expected size of Cy given in Theorem 1 is reasonably accurate and
b shows that all three confidence sets have about the same expected size.
- Table 2.
1‘. Monte Carlo Comparison of C;, C4, and C;
E Ca Cy Cs
2 a (nominal) ) &  Eo|Cy &  Eo|Cy ¢ & EolCs)
. .10 .07 .090 18.8 .084 19.5 010 .092 19.3
_ .10 1.0 .098 9.6 .085 10.3 .022 .113 9.4
: .05 0.7 041 24.6 .040 25.2 .005 .047 26.0
* .05 1.0 .048 12.6 037 13.2 .011 .052 12.6

3
et h D

Although the confidence sets defined in (ii)-(iv) perform similarly on the average, they can

oy

treat individual sets of data differently. Figure 1 displays two simulated log likelihoods with

r

m = 101,j = 50, and § = 0.7. The horizontal line defines the 95% likelihood ratio confidence
set (ii). In accordance with the approximation (7) it is drawn 3.27 units below the maximum

of the log likelihood function.

'1
M -
+q
D)
4
|}
L)

In the upper part of Figure 1 the one major peak of the log likelihood is fairly sharp
with the consequence that all the confidence sets are about one half their expected size of 25.
The confidence interval defined in (iii) has one point less on each end than the likelihood ratio
confidence set. The formal Bayes posterior set, C4, makes a smaller adaptation to the peaked
log likelihood; it contains four more points, including the local maximum at 63. The confidence

set Cs is the same as the likelihood ratio confidence set.
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Figure 1. Two Simulated Log Likelihoods.
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v The lower part of Figure 1 contains a comparatively flat log likelihood with two distinct
WY

,:'| . peaks. The likelihood ratio confidence set contains 33 points. The interval modification is now
R

{:: : slightly larger because it contains points of relatively low likelihood: 44, 45, 56-58. Again the
oy

e formal Bayes posterior set adapts less to the departure of the log likelihood from its expected
LA

j : shape and this time contains four fewer points than the likelihood ratio confidence set.

! v In general, the interval modification (iii) is usually slightly shorter than the likelihood
o

Ty ratio confidence set but can be considerably larger. The formal Bayes posterior set is usually
‘.. larger than the likelihood ratio set when both sets are small and smaller when both sets are
AN
'&';: large. This suggests that there may be recognizable subsets making the conditional coverage
’3::,' probability of the likelihood ratio set differ from its nominal value. The confidence set Cs
i:* can look rather foolish conditionally. If all the p; are very small and about equal, it can
.‘ ‘..
::: deliver a small, or perhaps empty confidence set while the other methods recognize the data as
:::\ uninformative and yield large confidence sets. Presumably this occurs with small probability.
' Overall the evidence given here does not seem persuasive for choosing among the confi-
'% dence sets (ii) - (v). A possible conclusion is that in more complex problems one may reasonably
x‘.:‘:,_. use whichever method seems most easily adpated to the problem at hand. When the distri-
fr_

e butions F' and G are unknown, but can be imbedded in a common exponential family, one
{*)‘ can use a conditioning argument to obtain exact likelihood ratio confidence sets. This is the
e g

L

-t subject of the next section.

oS

'('.'_\::

B
LT 4. The Likelihood Ratio Method for an Exponential Family.

LY

i
y ::::i Now suppose that F' and G can be imbedded in an exponential family of the form

o
L/
10 dFy(z) = exp{6z — $(8)}dFo(z)

3

relative to some fixed distribution Fy, which without loss of generality can be standardized

A
S
L

to have mean 0 and variance 1. Thus for some unknown 8y # 6, and je{l,...,m},z1,...,z;

have distribution Fj, and z;41,...,Zm have distribution Fy . The probability on the space

4 . .
RO of £1,...,2, will be denoted by P, with the dependence on j, 6y, and 6, suppressed. For
)
Y ~
o 11
‘r
A
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ot the most part we consider a scalar parameter #, but with some technical complications the

- methods described below are generally valid.

;;' Several writers, e.g., Davies (1977), Siegmund (1986), and Worsley (1986), have observed
A |

that one can extend the likelihood ratio method (ii) of Section 2 to obtain a confidence set

b

for j in the presence of the unknown nuisance parameters 6g,6, as follows. Let H(r) =

supg{fz — ¥(0)},Sn =21+ ...+ z,, and

e ]

Ka sy h s

>
~
(o3
-
-~

! An = nH(n—lsn)+(m" n)H{(m - n)—l(sm - Sa)}. (12)
V%‘
J:'. The likelihood ratio test of the hypothesis that the change—point is j has acceptance region of
£
?'\’ the form
A
‘..i
B
5
:::_. AJ= m’z‘z.xA,,—AjSk .
- By sufficiency the conditional probability of .4, given (S, Sm) does not depend on o, 8;. Hence
W0y
2 if one chooses k = k(j, &), £2) so that
2
3
5 P(Aj|S; =&,5m=&)=1-a
\/" for all 5, &, (2, then the set of values j which are accepted by the test is a (1—a}100% confidence
b ',‘-: set.
3
It is not actually necessary to solve for k(j,&;,£2) in order to determine the confidence
.
:::: set. Given S§; and S,,, A, is constant, and hence the confidence set is most easily determined
[}
:5:: as the set of j for which
e
_": P{ma-xAn < (ma-XAn)obsISJa sm} €1l-a (13)
B n n
,:2' Approximations for this conditional probability which seem adequate for many cases are given
e
below.
s:’: Bayesian credible sets for the change-point have been considered by Smith (1975) and
"
N Raferty and Akman (1986). Although some numerical computation is required, the computa-
w*
>

12

o 0 VP T <

! OO Y OO O 3 OOt A Pa P lad S T AT LRI e A A
Ahahthathahal 1‘?‘« 90‘&«‘%"7;‘\ .!ﬁ‘.';.‘% .k‘. NN T R Sy .d':x'bl:'l' mM(L*:‘\T‘A'LHL{L‘(a.ﬁ_&..‘tfufa.m&\":h{:j




)
,"','a
o
)
‘-1
-
L]
»
.l..
tional problems are not particularly onerous. However, the elegant relation of Section 2, where
’__-:: any shift equivariant credible set for the uniform prior was also a confidence set is no longer
20 . . - . .
-0 valid. Results of Stein {1985) lead one to hope that a similar relation is approximately true
Wl . T . . .
in the present context; but because the likelihood function is not smooth, a new argument is
|'.
2 required to make such a relation precise.
Y
Ny Some close cousins of the likelihood ratio confidence set might also be considered. For
‘»'k‘- N . . . . .
example, Worsley’s (1986) D, includes ; in the confidence set if the likelihood ratio tests
0y for no change in [0, - 1] and in ). m] are both accepted at significance levels greater than
o
! -:‘:} 1-(1-a)l/? = a/2. Alternatively, Pettitt’s (1980) test might be inverted to vield a confidence
D ™ ~)
e set A third possibility is to invert the likelihood ratio test in the conditional model given $,,.
: ? It would be interesting to study the expected sizes of these confidence sets along the lines
L5
o of Section 3. but the computations will be substantially more complicated. At present one
S
'-,: can make the following qualitative comparisons. (i) If one considers the boundary crossing
Lt s
v problems defined by the likelihood ratio confidence set and Worsley's D, in the simple case
R . . . .
of a normal mean, one sees that for a “typical” sample path Worsley's D, is more likely to
Y
¥
?“\; include values of j far from the true one and less likely to include close by values. (i} Pettitt’s
P W
o' . . . .
0 ! test presumably gives smaller confidence sets than the likelihood ratio test for values of ) near
"), m/2 and larger sets for values of j near 0 and m. See James. James. and Siegmund (1957 for
:.\: related results about the power of the tests. An objection to the use of Pettitt's test 1s that
%
i,
:: g for values of j not close to m/2 the two factors in the relevant probability (cf (14} bejow ) are
.
> quite unequal with the result that the confidence sets are biased in the direction of m 2 and
;—.; hence give the impression that the change-point is closer to m/2 than is actually the case.
-
he! o ‘
:\;’ Given (S,, S, ) the random variables MaXnc, \n and Max,cnem Aa are conditionally in
; dependent, and hence the left hand side of (13} 1s of the form
O' N
e
W
e |
,:.0:: P (max.\., < al%.ﬁ.,.) l’( max \, < as,. ,s’.,‘> N
' n<y J<n<m ‘
Mg < <
e
3 These two probabilities present similar compnutational problems. so it suffices to consider the
o
5 .
K \:.J' second one, or equivalently
)
.c't',:
o 13
-
B o
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P{ max \, > al5,.5n (15
1<n<m

In order to evaluate (15) Worsley {1986) in the special case of exponentially distributed
observations uses repeated numerical integration, and Siegmund (1986) in the case of normal
observations with known variance gives an asymptotic approximation. Related approximations

representing different compromises between accruacy and simplicity are suggested below.

Suppose initially that Fy is a d-variate normal distribution with mean vector # and
identity covariance matrix. The case of an arbitrary. known covariance matrix is easilyv reduced

to this one. Then the probability (15) equals

Sm - S, 12
P may LnSaim=Sul

S -5, =£). 16
<n<m  2n(l - n/m) > 6|J5m/m ¢ S} e

for which Siegmund (1986) in the case d = | gives an approximation when ;.a. and | £ ;i are

proportional to m. and
:_ . 2 -
et =2a- €))% /)1 =3/m) (17

ts a positive multiple of m as m — ~x A generalization of that argument shows that (1671
2 -2 4/2 2 . ' 2.
~ et T -y, z)] u[r}/(m‘f}{HH» HE /) = Jrm) expl e 02 R

where v 1s defined in (4) and given approximately by (51 Appendix B gives a version ot 1%,

for exponential families.

One can obtain a simpler and quite general approximation by means of weah convergene
arguments to replace the likelihood ratio process A\, by Byt 4 toy 10 where © = nomy
and Bois ad dimensional Brownian bridge superimposed on a triangular dritt - This approach
teads to 1% with v = 1 Although the approximation s quite consersative its simphicity and

generahity make 1t aseful in complicated « ases

One obtans a Ditferent miphication of %o hy assunung that « o 07 ~atishes . - x

and o mo -0 Then 1% .
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Ve This approximation has the disadvantage that it does not depend on d. We shall see its
‘.' Oy
»
. advantages below. From the simulations in Table 6 of Siegmund (1986) in the case d = }
e
g one can see that (19) is reasonably accurate for the range of ;. m. and £ considered there.
©re
Presumably it is less accurate for larger ¢. smaller m. and/or larger d, but it seems more than
..'.i .
1 adequate for many cases of interest.
l».”
i. 1 For smooth exponential families the approximation (19} takes the form
it
P{ max \, >al|$, Snp ~ v exp[-(a - \,). (20)
,-;t.q 1<n<m
ot
'y . .. o :
'.“:. where a — .\, 1s assumed small compared to m and v* is a distribution dependent quantity
N whose exact definition 1s given in Appendix B. A detailed example involving the exponential
Y 4 PP P 8 P
- .
N distnibution 1s discussed below
~
> In the normal case. according to the approximations (19) and (5) the confidence set
L] J
)
)
b defined by (13) i1s the set of all 1 such that
e 3
’ 2
.:,-': {l —exp(—A583[2.\./{i(l—l/m)}]‘“-—(mnaxA\..—,\.))} <1-a. (21
Q,.
R 0..--
- Even when one questions the accuracy of (19) or when the data are not normal. the central limit
.
theorem suggests the use of {21 as a first approximation. A hetter approximation. simulation,
Al
or numerical methods can be used to decide whether values of 1 on the boderline according to
2
o 121) should be included in or excluded from the confidence set.
e
Note also the formal similarity between (191 and i6i. To the extent that {ul — ¢ m }P 4
. nearly constant over the values 1 of interest. e.g.. when the likelihood ratio statistic s sharpis
I..-' )
peaked and hence the confidence set 15 small. (21 shows that the confidence <et cnnsists o
.
'; those 1 for which A, 15> within some distance of max, \,. which can he displaved graphicadsy
- a8 10 Section 2
NN .
7o Figure 2 ~shows the jog Likehhood ratio statistic and the approvimate cutorf tor @ 907
o
o .
y .p: conhdence set for the same simulated data as i bagure 1 Qualitativels the cases ol anows,
.
and anknown & look quite similar Usually the confidence set s larger oo the case of anknown
:" .
f, A and this i~ indeed saon the cower plot However the reverse s trge nthe pper Dot
'
g
[ ¥
'."-"
[ .
</
A
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presumably because the procedure in effect estimates & and then acts as if the, .n this case

large. estimated value 1s the true one.

As an illustration we consider the British coal mining accident data of Maguire. Pearson
and Wynn 11952), as extended and corrected by Jarrett (1979) Worsley 19861 has analvsed
the onginal data and determined the likelihood ratio confidence set by numerical computation

of 14

The data are intervals in days between accidents in British coal mines in which at least
ten deaths occurred. Jarrett's (1979) data involve m = 190 intervals from 15 March. 1851 to
22 March. 1962, a period of 40.549 days. Under the assumption that the intervals y;. . .y,
are independent and exponentially distributed with a change after the j th observation in the

mean time between accidents. we shall determine a likelihood ratio confidence set for ;.

I'he likelihood ratio statistic 1s maxa Aq = max, miog( W, mi - nlogW,ini - im -
nlog{iW,, — W, /im - ni}y where W, =y + + yn- For Jarrett’'s data the maximum
value equals 35.6 and 15 assumed at n = 124 in the vear 1890 According to iB. 13, ‘B 15/

Appendix B the lLikelihood ratio confidence set is given approximately as the set of all ; such

that

re

to

P-emod Vpexpl{-imax Ay - A 1 - o A exp{-imax A, - A0} <1 ol
n vt " .

where \p o= W 57t A, = W W im -0 and ¢® s defined in B 14y The use of
210 assumes that Ay » A, f Ay - A then the values of A and A, should be interchanged

[he approximation 22 gives the set {116 []7, 12133} as a4 95% conhdence set for the
cnange pont  This corresponds to the interval from 1857 to 1893 together with an isoiated

point i w97

Application of 220 to the onginal Maguire Pearson. and Wann 1952 data gives pre
cisely the same confidence set which Worsier computed numernically, However  tecause ot
discrepanies hetween the two data sets the vears covered by the 'wo conhdenoe et qre

shehthy hitferent

Raterty and Akman 19%6 give a4 flat prior Bavesian anaivsis of these data 11 appears

from their caloniations and Fagure that 4 highest postenior set estithate for the  hange point -
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essentially the same as the confidence set computed here. Actually Raferty and Akman consider
a continuous time Poisson process model and hence allow the change to occur between event
times [t is a straightforward matter to adapt the theory developed here to allow for that

possibility.

Cobb (1978) has suggested an extension of method (iv) in Section 2 to deal with nuisance
parameters. but it contains some arbitrary features which may make it difficult to implement
with small or moderate sample sizes. An interesting variant of Cobb’s analysis has recently

been proposed by Hinkley and Schechtman (1987).

5 Joint Confidence Sets

The lLikelihood ratio method can also be adapted to give joint confidence sets for the
change-point ;) and some function 4 of the parameters 8y and #,. We begin with the simple
case that the z, are normally distributed with mean 6y or #, according as 1 < « < ; or

) < t < m and i1dentity covariance matrix, and take é = 8, - 8,.

The acceptance region of the likelihood ratio test that the parameters are ; and & 1n
4,: = {sup A -8y Sa/m -5 - (1 - y/myi| b 14 ,/2\‘ < r"/'_’}
where \, =, 1Sm.;m — 5, 14 /{211 - 1/m)} and ¢ = ¢().4) 15 chosen to satisfy

Pta,o1=1-a

for all ) ¢ Note that

sup \, A Sm e S - el g imi b 4y
:

Saup N, N v o gSaomN il gm0 Pt R
ahd since the hrst diference on the nght hand side (8 necessarily non negative one abtae
Py - F ); J S M S ot Jomd S o o b

b Py 190 ™ N 'S, m ) el v AN R ITER R )

T
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The first term on the right hand side of (24) is exactly 1 — Fai(c?), where F; denotes the \?

distribution with d degrees of freedom. According to (19)

P(Aj'6|j5m/m -5, =€)

~2[ | €11 /{1 = j/m)}exp { = /24 || €~ j(1 = j/m)é |* [{25(1 = j/m)]}.

provided the exponent is small ~ompared to m as m — 0. Substitution of this approximation

into (24) yields (if ¢ = o(m))

P(AS) X1 - Fy(c?) + v(6)c® exp(—c?/2)/{24/*7'T(d/2 + 1)}. (25)

If instead of (19) one uses in (24) the presumably more accurate approximation (18), the

integration must be performed numerically.
Using (25) one can easily find an approximate confidence set by trial and error.

An extension of this method to non-normal exponential families requires a consideration
of special cases, depending on the parameter § of interest. The generalization of (23). in an

almost obvious notation is
sup A, - A" = (sup A, - A+ 4, = Al

If 8 is a function of the difference between the natural parameters of the exponential family, e.g.
if the parent populations are Poisson and ¢ is the ratio of their means. one obtains distributions
parameterized by ¢ by computing probabilities conditionally. given S,,. On the other hand.
if the parent distributions are exponential and ¢ is again the ratio of their means. considera-
tions of invariance of the two sample problem under scale changes shows that unconditional
probabilities are appropriate. In either case. using a \? approximation to the distribution of

[y

i) : . L e .

A\ -\ in conpunction with (20), one obtains ap approximation similar to (25). but with the
1+* appropriate to the distribution under consideration in place of v. In large samples one may
consider replacing * by v, but some thought must he given to the choice of argument of the

function 1

For the special case of exponentially distributed y's having mean A~ and & = A/ ). one
I | A y 1
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obtains from (B.13)-(B.15) when 6 > 1
P(A54) = 2[1 - ®(¢)] + 2[v"(8) + 6 ew(c), (26)

where v* is defined in (B.14). When é < 1 (26) holds with §~! in place of 4.

Table 3 gives an approximate 90% joint confidence set for j and § = A;/X; for the British

coal mining data.

Table 3
90% Confldence set for (j, 6)

j 8 i é
115 (2.7, 3.9) 124 (2.3, 5.3)
116 (2.5, 4.3) 125 (2.4, 4.9)
117 (2.4, 4.6) 126 (2.4, 5.0)
118 (2.3, 4.8) 127 (2.4, 4.7)
119 (2.4, 4.5) 128 (2.5, 4.4)
120 (2.5, 4.3) 129 (2.7, 4.0)
121 (2.4, 4.7) 130 (2.9, 3.6)
122 (2.4, 4.7) 132 (2.8, 3.9)
123 (2.3, 4.9) 133 (2.5, 4.5)
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APPENDIX A

Informal Proof of Theorem 1.

We consider only the confidence interval [L, R]. The proof for the likelihood ratio confi-
dence set is similar and somewhat simpler. Since the confidence set is equivariant, it suffices
to consider the case j = 0. To simplify the notation we shall write P and F instead of P, and

Eo, n instead of 7/, S, instead of S,, and take § = 1. Recall that M = SUPp>0 Sn-

For arbitrary ng = 1,2,...

E(R-L):iP(LgnsR):P(LsogR)+2§:P(Lgn5R)
1

-0

P(L<OZ R)+2§:{P(R2 n) — P(L > n)}
1

1+2ZP(R2n)+0(1) as n — o

1+2no+2EP(R>n) 2Z{I—P(R>n)}+o(1) (A1)

no+1

For positive 7, by the definition of R

P(R>n) = P(supS <sup S; +n)
<n 2n

- // P{S,,Gdf,ma.x(si—sn)edy}
[-7.0)x[0,00) izn

xP(ma.x Si<n+€+y|Sa —E) (rp<%x5.-$n+£+y)

[-n.0) x{0,00) 0<i<n

= // P(S, € —n+dz)P(M € dy)P(ma.x Si<z+ylSn=1z- n) P(M < - y.
[0.00) x{0.00) 0<i<n

Let no = |2n) and k = n - ng, so

------

" -
, ) %)
- L) G.'.g'" ety 0‘6‘




T+ k/2-n+no/2
(no + k)1/2

: P(Sn € -n+dz) = w{ } (no + k)~*/%dz.

It may be shown that the contribution to the two series in (A1) from values of z and & outside

XX the range |k| < n?/3,|z + k/2| < n*/? is negligible, and inside this range
.Q.
.:
)
&2 P (Mfr(xa.x+ S5i >+ Y|Sng+k = -0+ z) ~P(M >z +y)
o converges uniformly to 0. Hence for the purpose of evaluating (A1) asymptotically, P(R >
'.;: no + k) may be replaced by
)
"
A z+k/2
~ / / { 2}(no+k)"’2tflz P(M € dy){1-2P(M > z+y)+ P*(M > z+y)}.
7 (no + k)V/
\‘
‘-.
:' For k = 0 this integral converges to 1/2. The terms in (A1) for k = +1,42,... may be paired,
o~ and after some calculation one obtains
:::
Y P(R2no+k) = {1-P(R2no+k)}=-1/2
k21 k<0
s + D [8{27'k/(no — B)'/%} — ®{27"k/(no + k)"/?}
‘:.-\, k>1
f:, -1/2 -14,1/2 > [
::, =2ny Cp(27 /ny’'7) P(M € dy){2P(M > z + y)
2. o Jo
; - P2 (M > z + y)}dz + o(1).
<
:f A Taylor series expansion, approximation of Riemann sums by integrals, and substitution of
- the result back into (A1) complete the informal proof of Theorem 1.
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APPENDIX B

This appendix is concerned with approximations to boundary crossing probabilities like
(15).

Let z,,z3,..., be independent random variables with probability density function of the
form

fo(z) = exp{fz — ¥(0)} fo(z),

where fo is without loss of generality standardized to have mean 0 and variance 1. We shall
consider only the case of real z and 4, although the extension to the multivariate case is
straightforward. However, the case of vector 8 in which some components change at j while
others are assumed to remain fixed is substantially more difficult. See James, James, and
Siegmund (1986) for the special case of normal observations whose mean changes while the
unknown variance does not. One can also handle discrete random variables and continuous
time Poisson process. Some remarks about the necessary modification in the argument are

given below.

Let Sy = 21 + ...+ zq, H(z) = supg{fz — ¥(0)},An(€,7) = nH(n/n) 4+ (m — n)H[(£ -
m/(m - n)] — mH(§/m), An(€) = An(&, Sn), and define

T =inf{n:n > mg,An(§) > a} (B.1)

(=00 if Ap(€) < a forall mo < n < m). Also put u = ¢’'(8). We shall write P, to denote
dependence of probabilities on the parameter §. For events A defined in terms of z,,...,Zm
let
P{™(4) = P,(A|Sy = 6).

By sufficiency this probability does not depend on x. Theorem B.1 gives approximations for
P™(T < m|Sm, = n).

In order to describe those approximations let § = é(:c) be defined by ¥'() = z, so
H(z) = 6z — y(0). Note that H'(z) = 6 and zH'(z) - H(z) = ¥(6). For uy # us let
b, = é(ul) and 6, = é(ug), and define

7 =inf {n : (6 — 82)Sn — n[w(61) — w(62)] > b}.

23
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Also let

v*(uyiz) = lim By, exp (= {(61 ~ 0,)S, — {9(61) — $(62)] - b}). (B.2)
: The limit indicated in (B.2) exists as a consequence of the renewal theorem. A general method
e for computing v* numerically has been given by Woodroofe (1979). In the special case of
: normal z’s v*(uy, p2) = v (|1 — p2|), where v is defined in (4) and given approximately by (5).
- The case of exponentially distributed z’s is discussed below.
D)

N Theorem B.1. Assume for fixed 0 < tg < 1,a9 > 0,&, and g # &oto that mg ~ mtg,a ~
',: mag, { ~ m&o, and n ~ mny. Let t* be defined by
.
t*H(mo/to) + (1 = tYH {(§0 = mot"/t0)/(1 = )} = H(£o) = ao,

1
f{ and assume that to < t* < 1. Then as m — oo, for T defined by (B.1)
S P{™{T < m|Smq = 1} ~ exp{=[a = Amo(&, n)]}

(1 = to)t* H"[(&0 — mot"/20)/(1 = t')}}‘”

‘ X v* (mo/to, (b0 — Mo t* /o) /(1 — t*)) (B.3
2 [ i (mo/t0, (60 =m0 " /10)/(1 = 1) (B3)
" where v* is defined in (B.2).

W A simpler approximation to Pé(m){T < m|S,, = 1} is obtained by assuming
5 00 — @ = Amy(£,7) = o(m). (B.4)
:', In this case t* = tg, so (B.3) becomes

' P™{T < m|Sm, = 0} ~ v*(mo/to, (€0 - 10)/(1 = to)) exp{~[a — Amo (&, M)]}- (B.5)
»

. Complete proofs of (B.3) and (B.5) are quite long and technical. The main idea and some
' important lemmas are given here. The method is inspired by that of Lai and Siegmund (1977.
- Section 3), but it differs in several crucial ways.

by Let f, denote the n-fold convolution of fo(n = 1,2,...) and assume that f, has an
¥ integrable characteristic function for some n. The following large deviation approximation for
' f» is used repeatedly. (See Borovkov and Rogozin, 1965.) As n — oo

;:l "

:;_ fa(nz)~ [H (1:)/27rn]'/2exp[—nH(z)], (B.6)
iy
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Let Q = [T, Pe(,m)df’/(27r)1/2, and let L, denote the likelihood ratio of z,,...,z, under Q

relative to Pe('") (n=1,2,...,m—1). Then

Ln = Unenl€ = S0/ (1 [ Umenl€’ = Sa)/ ml€€/20V2 (BT
The following representation is basic.
Lemma B.1. P™{T < m|Sm, = n}
= fm_,fnfg?— m) .: f,..-}:g:)_ DB (L7 L rem| Smo = 1] dE'/ 2% (B3)

Proof. By Wald’s likelihood ratio identity and the definition of Q

Pé"‘){ngsmo<n+6,T<m}=/ L7'dQ
{’Issmo <n+6, T<m}

o0
-/.J L 4P de [ (2n)'
—00 J{n<Smqy <n+4, T<m}
T m) (m)
= / / ES (LT (7<m}|Smo = 1] Pe™ (Sm, € dn')d€'/(27)!/2.
- n

The desired representation follows by dividing by

{m) n+é ’ ] ]
P10 < Sy < 14 6) = / Uo (1) fraemo (€ = 1)/ Fm(€)}dim

n

and letting 6§ — 0.
It follows from (B.6) that

Jm(€E)m N { 2r H"(E/m)m(m — mp)
Smo (M) frn-mo (€ — m)mo H"(n/mo)H"[(§ — n)/(m — mo)]mg

The measure {mg fim, (1) fm=-mo(& = 1)/ M fm(€')}dE’ behaves asymptotically like a normal dis-

1/2
} exp[‘\mo(fv TI)]

tribution with mean mng/ty and standard deviation proportional to m!/2, j.e. like a Dirac
delta function at mng/to. Hence the right hand side of (B.8) is asymptotic to
m H"(£0)(1 = to) }‘“

H"(no/to) H"{(§0 — m0)/(1 = to)]to
xEM  (L3'(T<my)|Smo = 1] . (B.9)

mno /to

exp[Amo (€, )] {

The following lemma is useful in approximating the conditional expectation in (B.9).
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Lemma B.2. For n proportional to m as m — oo except for an event of negligibly small

probability under nym('|5m° =1)

H"(&)m(m - n) }1/2 (B.10)

L, ~ exp[l\n(f)] {H"[(fo — non/me)/(1 — n/m)|H"(no/to)n

The proof of Lemma B.2 follows from substitution of (B.6) into (B.7), the observation that
mH(§' /m) — (m - n)H[(§' = S,)/(m — n)] is maximized at £’ = mS,/n, where it equals

nH(S,/n), and a Laplace type asymptotic expansion of the integral in (B.7).

The Hijek—~Rényi-Chow inequality applied to the P'(n'::z /to-martinga.le (Sn—nmng/te)/(1 -

n/m) shows that forany 0 < e < 1

va;';z {ISn — nmo/to| > A+ ne for some mo < n < m(l—¢)|Sm, = n}

can be made arbitrarily small by taking A sufficiently large, and hence

m™IT — " in P'Eo";lo(-lsmo = 1) — probability.

It follows from (B.10) that

Hll(&))m(l_t-) }1/2 (B.ll)

Lt ~ exp[Ar(£)] {H"[(Eo — not*/to)/(1 — t*)|H"(no/to)t*

except for an event of negligibly small probability under P,E;':Z(-lsmo =n).

The proof of Theorem B.1 can be completed by substituting (B.11) into (B.9) and ap-
pealing to Hu’s (1987) conditional nonlinear renewal theorem, which says that the distribution
of the excess over the boundary, A7(£) — a, under the conditional probability P'(,;':t), has the
same limit as a suitable random walk approximation to Ap(£) under the unconditional proba-
bility P, /¢, See Siegmund (1986, Appendix 2) for an intuitive discussion of nonlinear renewal

theory.

Now assume that yy,y2,...,Ym are independently and exponentially distributed with
mean A", Let W, = y1 +...+yn and S, = n—W,. Then 8§ = A — 1 and ¥(8) = § —log(1 +6).
Let A\ = (W,,,o/mo)“,;\g = [(Wm = W )/(m — mp)]~! and assume that A > Az, (The case

A < Aqis similar.) Assuming that (B.4) holds one can use the lack of memory property of
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the exponential distribution to obtain

-, P{ max A\, 2>a|W, . W.,.}~v" A,,’.\I)exp[—ca S VU RS

mo<n<m

where in this case
L. vi(8) = [logté)/io - 1) = 11 /llogga)/ (1 - o7t - 1 B

N Similarly

N P { max \, > a|W,, . W’m} ~ Ap\l_l exp(—(a - Amg i B

n<mq
-E The details of these evaluations are omitted.

- With minor modifications the methods developed here vield likelihood ratio confidence
sets for a change-point in the intensity of a continuously observed Poisson process. They also
ol apply to many discrete exponential families. even though the nonlinear renewal theorem sed
3 in the proof of Theorem B.1 requires that certain distributions be non-arithmetic However.
these are the distributions of the Py j¢o-random walk (8, - 018, - n[w(é, - iy, which

[ . usually are non-arithmetic for all but countably many values of ny. £,. and t,.
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