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ABSTRACT

A method for accelerating thin metallic plates to hypervelocities has
been proposed by G. McCall. 10  In this method a shock in a propellant
generates a strong expansion wave that smoothly accelerates the plate.

We have studied the hydrodynamics of this process in one dimension, both
analytically and computationally. The metal was modeled as a stiffened gas,
and the corresponding Riemann problem was solved. The asymptotic behavior of
the solution was determined analytically. The one-dimensional random choice
method, modified so that material boundaries are tracked and the spatial mesh
is refined locally, was used to compute the flow; comparison with the
asymptotic solution demonstrated its accuracy. With this method, shocks that

form within the accelerating plate were accurately resolved, so that possible
structural damage to the plate could be evaluated.
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MODELING OF SHOCKLESS ACCELERATION OF THIN PLATES USING A
TRACKED RANDOM CHOICE METHOD

Bradley J. Plohr

Introduction

G. McCall has proposed a method for accelerating a thin metal plate to exceedingly
high velocities within a short distance.'0 These hypervelocities, on the order of 1 cm/As,
are difficult to achieve without destroying the plate since the kinetic energy of the plate
exceeds its vaporization energy. The acceleration must be rapid enough to attain high
velocities within a short distance, on the order of 10 cm, but it must be sufficiently smooth
that strong shock waves do not form inside the metal. Furthermore, the compression of
the plate resulting from the acceleration must be relieved gradually so that the plate does
not spall.

A schematic diagram of the experimental configuration proposed by McCall is shown
in Fig. 1. A tube containing a tungsten plate is partially filled with a plastic foam (CH)
that serves as a propellant; a low pressure cavity separates the foam from the plate. The
energy needed to accelerate the plate is supplied by a planar shock passing through the
foam and compressing it. When the shock reaches the end of the foam, the foam expands
isentropically into the cavity. At the leading edge of this rarefaction wav- is low density,
high velocity material, which is followed by material with gradually increasing density
and decreasing velocity. As succeedingly denser portions of the foam reach the plate, the
pressure behind the plate rises, thereby gradually accelerating the plate. Thus the low
pressure cavity intervening between the foam driver and the plate converts the shock wave
in the foam into a strong rarefaction wave that smooths the acceleration. Of course, the
rising pressure behind the plate produces compression waves in the plate that in general
steepen into shock waves. McCall has estimated the formation time for such shock waves
and has concluded that shockless acceleration of sufficiently thin plates can be achieved
using his method.

A more complete modeling of this hydrodynamic process entails computer simulation.
Numerical methods for solving the Euler equations encounter three major difficulties in
modeling this flow. First, the mass density varies over a vast range, from the high density
in the tungsten plate and the compressed foam to the near-vacuum conditions inside the
cavity. Therefore Lagrangian coordinates, which place few mesh blocks in regions of low
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tungsten

shocked I plate
CH cavity

CH

Figure 1. Schematic diagram of the shockless acceleration of a tungsten plate using a
plastic foam (CH) propellant. A planar shock in the foam is incident from the left.
When it reaches the end of the foam, the foam expands into the cavity. The rarefied
foam serves to smoothly accelerate the tungsten.
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density, are inappropriate for the leading edge of the rarefaction wave. On the other
hand, the material boundary between the metal and the fluid accelerating it is the focus
of interest. Whereas the position of this boundary is naturally tracked in Lagrangian
coordinates, it is uncertain to within a mesh length on an Eulerian grid; furthermore,
most Eulerian methods exhibit substantial numerical diffusion that spreads the interface
over many mesh lengths. Finally, the formation of shock waves within the plate must
be accurately detected, even though the metal plate is very thin, spanning only a few
computational mesh zones.

In this paper we have modeled the hydrodynamics of McCall's problem using a com-
bination of methods that address these difficulties. The computation is performed in
Eulerian coordinates to allow for arbitrarily low densities in the cavity. To correctly model
the material interfaces, their positions are tracked across the Eulerian grid. Also, the
computational mesh is refined in the vicinity of the plate to better resolve the flow in this
region. Finally, the underlying numerical scheme for solving the flow equations, the ran-
dom choice method, models shock waves as sharp discontinuities resolved within a mesh
block, so that shock formation can be detected within the thin plate. This numerical

* approach gives solutions of a much higher quality than were previously available.
The plan of the paper is as follows. In the next section the thermodynamic model we

use for the tungsten plate is described. Then the solution of the Riemann problem, which is
the key input into the random choice method, is described for this thermodynamic model.
Next the random choice method, as extended by front tracking and mesh refinement, is

explained. Aiialytical. results on the short-time behavior of flows in which rarefaction waves
impinge on a plate are derived in the following section. Finally, the results of numerical
experiments for McCall's problem are presented.



Thermodynamics

The shockless acceleration of metal plates will be modeled as a hydrodynamic process.
This requires the specification of a suitable equation of state for each component substance.
Since use of the random choice method requires that Riemann problems be solved, it is
advantageous to use an equation of state that is amenable to analytic solution. The
propellant may be modeled as a polytropic gas, for which the solution of the Riemann
problem is simple, but the metal plate cannot be adequately modeled as such. In lieu
of designing a Riemann solver for a general equation of state, such as one based on the
SESAME tables,2 we have modeled the metal plate as a "stiffened gas." This equation of
state gives the correct semi-quantitative behavior of the plate. In conjunction with a spall
model to give yield strains and an estimate of melting and boiling points, it can be used
to asses the feasibility of shockless acceleration.

The equation of state for a stiffened gass is given by the relation

1 P +' Poo
"y-1 p

between the specific (internal) energy E, the pressure p, and the mass density p. Here -Y
and poo are prescribed constants that characterize the gas, -y being dimensionless and pc,
being a pressure. In terms of the Gruneisen coefficient

we have -t = r + 1. (Note, however, that -y is not the adiabatic exponent "ys, which is
defined by c2 = "Isp/p; see (2.2) below.)

The isentropes for a stiffened gas may be determined by noting that

Thus the entropy S is most generally given by

S - =k" II

for some function E, with the corresponding temperature T being

T- = p + P oo EI log P+Po
P /

The speed of sound c, defined by

ap pi ap
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may be calculated to be

= + Poo) (2.2)

Fast and slow rarefaction waves, which correspond to the fast and slow characteristic
speeds v ± c, satisfy the equations

dv P = 0
PC

and

dE +pd(!) =0.

By (2.1) and (2.2) we determine that

dp 2 d .
! Ipc "-1

', Therefore

2
v T -c= const. (2.3)

and
(p + p oo)/py = const. (2.4)

across rarefactions corresponding to the characteristic speeds

V,±C. (2.5)

The Hugoniot locus is given by solving the equation

E-Eo+ l(p+po) (!- 1 =0

for p in terms of Po, Po, and p. Simple algebra yields the result

p = ( + 1)(p + P) + ( - 1)(po + P) (2.6)
PO (Y + 1)(po + P.) + ( - 1)(p +- p)

As for any equation of state, the speed a of the corresponding fast and slow shocks may
be determined from the relations

p(v - o) = Tm = po(vo - o), (2.7)

where
m= ( /PO 1 /2 (2.8)

o -5-
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is the mass flux acroes the wave.
To demonstrate the adequacy of using a stiffened gas equation of state to model a

metal plate made from tungsten we compare to experimental data.1 These data show that
a plot of shock speed U. = ja - vol vs. particle speed Up = Iv - vol along the principal
Hugoniot of tungsten is well approximated by a straight line

U. P Co + aUp (2.9)

for pressures up to 3 Mbar. Here co = 0.404 cm/ps is (approximately) the sound speed in

tungsten at standard conditions and a = 1.23 is an empirical dimensionless constant. For

a general equation of state one finds from (2.7) and (2.8) that

U, p-PoU.p

and
P0

Using the Hugoniot relation (2.6) for a stiffened gas, one can eliminate p and p to find

U= 'I + 1U.UP+C
270

so
Us C + 1/2 + Up

For our calculations modeling tungsten we have used -y = 3.14 and p0 = 1.0 Mbar. A
plot comparing the empirical linear fit to the stiffened gas relation (2.10) for pressures up

to 3 Mbar is shown in Fig. 2. The stiffened gas relation coincides with the linear fit to

within 3%.

P.
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Figure 2. Comparison of the stiffened gas equation of state to experimental data for
tungsten. The shock speed U. along the principle Hugoniot is plotted with respect to the
particle speed Up behind the shock. Speeds are measured in cm/ls, and the range of
shock strengths corresponds to overpressures up to 3 Mbar. The stiffened gas is defined
by the parameter choices y 3.14 and p = 1.0 Mbar. The comparison shows a max-
imum difference of 3%.
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Riemann Problems

A Riemann problem for a system of conservation laws in one space dimension is an
initial-value problem with scale invariant initial data, i.e., data at t = to that is constant
to either side of a jump discontinuity at z = zo. We use the subscript 1 to label the initial
state on the left of xo, and r for the initial state on the right of zo. The solution of a
Riemann problem is constant along each ray = (z-zo)/(t-to) = const. through (zo,to);
thus we may specify the solution as a function of the speed .

The solution of a Riemann problem for a stiffened gas requires only a simple modi-
fication of the well-known solution for a polytropic gas. It consists of a slow (i.e., v - c)
rarefaction or shock wave on the left, a fast (i.e., v + c) rarefaction or shock wave on
the right, and a contact discontinuity (moving with velocity v) in between, as indicated
schematically in Fig. 3. It is convenient to speak of the left side of a slow wave and the
right side of a fast wave as being "ahead" of the wave, the opposite sides being "behind"
the wave; the corresponding states are labeled by the subscripts a and b. A slow or fast
wave is determined by the state ahead of it together with one other parameter, such as the
pressure behind it. For the left (resp., right) wave in the solution of a Riemann problem,
the state ahead of the wave is the left (reap., right) initial state. Since the particle velocity
and the pressure is continuous across a contact discontinuity, the velocities and pressures
behind the left and right waves must coincide. Thus solving a Riemann problem amounts
to finding the pressure in the middle between the left and right waves such that the particle
velocities behind the waves are equal.

For a shock wave, conservation of momentum may be written

±m(Va - Vb) + Pa - Pb = 0. (3.1)

Here m is defined as a function of the pressure Pb behind the shock and the state ahead of
the shock through equations (2.6) and (2.8), so long as Pb ! Pa. For a rarefaction wave,
we may define m through the equation

-M. 2(ca - cb) + Pa - Pb = 0;-1

so that by (2.3) we find that (3.1) again holds. With this definition and equations (2.4)
and (2.2), m may be expressed as a function of Pb and the state ahead of the wave, so long
as Pb < Pa. More explicitly we have

m 1/ + , 2 
-(b + Poo,b (3.2)

P+ P0CG

where
* -1 1-r

~(r, + 1r + 1)1/2 if r> I

-8 -y
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Nn

t n+1  G

x i- I x i x 41

" ,a Figure 3. The computational grid for the random choice method. 'Me reconstructed
solution is constant in the cells centered on the circles and bounded by the vertical hash

1 marks. The solution of the initial value problem with piecewise constant initial data
-, . involves solving a sequence of Riemann problems originating at the boundaries between
.,; cells. Ile solution of a Riemann problem is constant along rays through its origin and,
' " , for gas dynamics, consists of a shock or rarefaction wave (indicated by an individual ray

or a fan of rays, respectively) on each side of a contact discontinuity (indicated by a
~dashed ray). The numerical solution after one time step is obtained by sampling the
,. Riemiann solutions at the points indicated by the stars, whose shift relative to the cell

centers is random in time.
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Let v. and p. denote the common values of the particle velocity and pressure on the
two sides of the contact discontinuity. Then by (3.1) we have

-M,(V, - v.) + P, - p. = 0

.and
nd+ (VI - V.) + PI - p. =0

for the right and left waves, where m, is expressed through (3.2) in terms of Pb = P.
and the density and pressure Pr and Pr ahead of the wave, and similarly for mi. These
equations may be written

P* --- -mlP, + mrPI (3.3)
1/ma + 1/r mi + Mr

and

PI - Pr + mnaVy + MrVr(.
mi + m7

N Therefore to solve a Riemann problem we first use the Godunov-Chorin 6' , 3 fixed-point
iteration to solve (3.3) for the pressure p. between the left and right waves. Then (3.4)
gives the velocity v. in the middle, and for both the fast and the slow wave the state along
a ray moving at a specified speed f may be determined using either equations (2.2-5)
or equations (2.6-7), according as the wave is a rarefaction or a shock. Except for the
modifications to the formulae (2.2), (2.4), (2.6), and (3.2), the construction of the solutionof the Riemann problem is identical to that for a polytropic gas (for which p.0 = 0).

..
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Tracked Random Choice Method

The random choice method is a numerical method for solving the general initial-valueproblem for a system of conservation laws. It is based on the constructive existence proof

for solutions of conservation laws of Glimm, 4 and was adapted for numerical computation
by Chorin. 3

In the random choice method for the hyperbolic system of conservation laws

Ut + f(u). = 0 (4.1)

the solution is determined at the lattice of space-time points (zj, tn);

Xi = (z- 1 2 + zj+1/ 2)/2

is the center of the mesh cell from zY- 1 ' 2 to Z,+l 2 . Given the solution values u! =
u(zj,t,) at time level n, the solution values • at level n + 1 are determined in three

stages.
First, an approximation U" (z) for the solution at time t, and an arbitrary position z

is reconstructed by defining Un to be piecewise constant on mesh cells:

un (X) = uj if Xj-1l2 !< X < Zj+l/2 (4.2)

Next, consider solving the initial-value problem for (4.1) with initial data (4.2) at
time tn. For t - tn sufficiently small, the solution is given in terms of the solutions of a

. sequence of Riemann problems between the states u7 and u"+, and centered at the points
(Xj+ 1 / 2 ,tn). The situation is depicted in Fig. 3. In fact, the waves in the solutions of the
Riemann problems centered at neighboring points (zj-1/2,tn) and (z-+ 1 / 2 ,tn) will not
interact so long as the Courant-Friedrichs-Levy condition

t - tn < tCFL = -min (z 1 +l/2 - zj-/12 ) /Aj (4.3)
2,j

holds, where A, is the maximum wave speed, in absolute value, in the solution of the
Riemann problem centered at (zj+1 / 2 ,tn). We have taken tn+ 1 - tn = C. tCFL with the
Courant number C kept between 0.7 and 0.9.

Finally, an equidistributed random number rln+1 is chosen from the interval

-1/2 _< 1n+1 < 1/2 ,

and the solution value u7+ 1 is taken to be the value u. of the solution of the above
Ninitial-value problem sampled at the position

" = z + ,.+," (Xj+1 12 -

at time tn. In our computations we have used the Van der Corput sequence3 to obtain 17.
The solution given by the random choice method has the advantage, when compared

to standard finite difference methods, of preserving the structure of discontinuous waves in

M '? -11 -



tic .uluifl shc-k ,va ves and co,_ t,.t discontinuities remain perfectly sharp. The method
.crk!toLe able to detect formativ-i of shock waves within regions extending only a few

mesh cells. This property is crucia. for our application to shockless acceleration of thin
plates.

The price paid for perfect resolution of discontinuous waves is that their positions are
not exactly correct. On the average the position of a discontinuous wave in the numerical
solution is correct, but the wave performs a random walk about this correct position. To
remedy this in situations where maintaining the position of certain prominent waves is
critical, Glimm, Marchesin, and McBryan introduced the tracked random choice method.6

In a front tracking method, certain waves in the flow, typically strong discontinuous
waves, are resolved on a subgrid level. With each tracked front is associated a position
and a wave type. The wave type determines how the tracked front moves and interacts
with the fluid. For example, in gas dynamics the possible wave types include slow and fast
pressure waves and contact discontinuities.

Let x denote the position of a particular tracked front at time t,. If the tracked
front lies in the jth mesh cell at time t,, i.e., x-1/ 2 < ' < Xz+1/ 2 , then the solution
values u 1  , nd +1 are obtained in a fashion different from that just described.
The piecewise constant data u' is defined by{) -1 if Xp-32 < x < zX'

u n if z' < X < Xz+3/ 2

for x in the interval xZ-3/2 < x < X3 +3 1 2 , and by (4.2) for x outside this interval. As
before, the initial-value problem with initial data un at time t, is solved up to time t,+ 1 .

The position of the tracked front at time t,+1 is

n= + f (t+, - t),

where the velocity s is determined according to its wave type. Finally, the solution value
n+lU j+11is taken to be the value u. of the solution of this initial-value problem at time t,,+l

sampled at the position

X- = i-312 + (?7n+l + 1/2) (z +  - l

Similarly U-+1 is obtained by sampling at
X, X +1 + n+l)

+ (?7n4- + 1/2) (xj+ 31 2 --

The choice for the value of - seems somewhat arbitrary. For instance, one could
take un+1 to be ui"+ or u"+1 according as x < n+1 or xn + 1 < xj. We have found

that with this choice, however, a strong wave crossing the tracked wave does not separate
correctly from the tracked wave after the interaction. This effect is rather dramatic in
calculations where a tracked shock wave is followed closely by a strong rarefaction wave.
To remedy this we instead define u' to be Uf__ or uf+1 according as xj < xf or

xf < xj, where Unf- an(i fL + are the states on either sid(e of the tracked front.

-12-
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* In gas dynamics the possible wave types are: contact discontinuities, moving with the
particle velocity v; slow and fast pressure waves, which either follow sound waves moving
with velocity v ± c in case the solution is continuous across the wave (the rarefaction case),
or move with the shock velocity or if the wave is discontinuous (the shock case); Neumann
and Dirichlet boundaries, which supply boundary conditions; and movable walls, which
are ascribed a mass density and move according to Newton's law. The velocity of a
slow or fast pressure wave or contact discontinuity, is calculated by solving the Riemann
problem between u! _ and u +i, centered at (zX,tn), and determining the velocity of

the corresponding wave in this solution. (We track the leading edge of a rarefaction
wave.) Neumann and Dirichlet boundaries are stationary, and their interaction with the
flow is determined by solving a Riemann problem between the fluid state neighboring
the boundary and, respectively, the same state with a reflected velocity or the imposed
boundary state. The evolution of a movable wall is determined as follows.

Let the wall have mass per unit area M and velocity vn at time t,,. Suppose for
concreteness that the fluid lies on the right side of the wall, so that the solution value
inside the fluid is u, = +1. Define the virtual state ul to have the same pressure and
density as u, and to have the velocity

vi = 2vwall - Vr

obtained by reflection through the moving wall. Then solve the Riemann problem between
ul and u,. centered at (Xn, t.) and sample it at the position

n

X. =Z w+all (tn+l - tn)

to obtain the state u. on the fluid side of the wall at time tn+i. Because vj is obtained
by reflection, the velocity v. of the fluid at the wall coincides with V aIn , so that the

correct boundary conditions have been maintained. The pressure in the fluid accelerates
the movable wall according to Newton's law. If At = t,+1 - tn is small enough (more
precisely, as may be deduced from the analytic solution,9 if p.At/Mc. is small) we may
approximate this acceleration by

n+P + P. Atwal w 2lM

The speed s of the moving wall during this time interval is then taken to be

15 V n+1 n

2 wall + wall)

To obtain acceptable resolution of the waves in the thin plate the computational grid
must be refined in the vicinity of the plate. The positions of the the edges of the mesh
cells zj+ 112 , j = 0,... ,N are defined as follows. The grid spans the interval [XminXmax1
and has a subinterval [a, b] over which the mesh is refined by the refinement ratio R. To
smooth the transition between the coarse and fine meshes, a molification parameter c is
also specified, with c = 0 corresponding to a sharp transition. We define

PO( =11IR ifO0< € < 1 (4A,)
1 otherwise

-1[3-



and let p, be the convolution p, = 6, * po of po with an approximate 6-function. We have
used

where 1
= -( + 2)

With these definitions, the zone edges are given by

Xj+1/2 = Z .n + (Zmmx - min) j dC p.,(f) df p.() (4.5)tlo /Jo
where fj = fo + (fN - fo)

N

It remains to define f and CN. The transitions occurring between the coarse and fine
meshes at= 0 and C = 1 in (4.4) are to correspond to z = a and = b through (4.5).
For e 0 0 this gives a pair of nonlinear equations to be solved for Co and f N in terms of a
and b. When f = 0, however, these equations reduce to linear equations, with the solution

1 a - Xmin
-° R b-a

and

R b-a

for simplicity we use these equations to define Co and N.

• -14-



Analytical Results

As a preliminary to solving the shockless acceleration problem, we study a similar
problem for which analytical information is available. This is the problem of the reflection
from a rigid wall of a rarefaction wave expanding into a vacuum. The short-time asymptotic
solution of this problem has been described by Greenspan and Butler;7 they reduce the
problem to the solution of a boundary-value problem for a system of ordinary differential
equations, which they solve numerically. These equations may, in fact, be integrated
analytically, and we describe this solution here.

The flow pattern is shown in Fig. 4. A rarefaction wave in a polytropic gas with
adiabatic exponent -1 connects the state p - p0, p = po, v = v0 to the vacuum p = 0,
p = 0; it originates at x = 0 at time t = 0. The rarefaction wave corresponds to the slow
(i.e., v - c) family of characteristics, so within the wave the fluid state is

= POo(C/co)2/ - 1)
p = (/o) /  -  , (5.1)

2
v = vo + 2 (co - c)

"1-I

where
C=-- I Vo + 2 -C-1 + 1 -+-lC °

by virtue of Eqs. 2.2-S. Since the tail of the wave corresponds to c - 0, the rarefaction
arrives at the wall located at z = zo at time

+ 
2

At this time a reflected shock wave forms to decelerate the expanding fluid.
Following Greenspan and Butler we seek a scaling solution for the flow between the

reflected shock and the wall in terms of the variables r = t - to and 6 = (z - zo)/(t - to).
Ahead of the reflected wave the state is given by Eqs. 5.1, where c may be written

c 2!(/ - - r:.c -(Co to) + o

with - t,. Thus the state just ahead of the reflected shock wave satisfies p,
()((r/to)2 /(' pi, ()((r t, ) 2 "('-)),and v. = 0(1) as r - 0. The state p Pb.
. - Pb, v - vu just behind the reflected shock wave must satisfy the tHugoniot relation
Eq. 2.6 together with

(tib v) - (Pb Pa) (1/p. 1iPb) (5-

which is a comsequence of momentum conservation. Assuming a non-negligible part of the
deceleration of the fluid occurs across the shock wave, so that its strength does not vali-2
as r * 0. the left-hand side of this last equation is 0(1). It follows that

P, o

p.

-A -. -7 .7. V -77 .-
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reflected shock

rarefaction

time

I =t

/

K9

rigid wall

N i

P 'vacuum

t =0

S0 distance x X0

Figure 4. Reflection of a rarefaction from a rigid wall. A rarefaction wave in a polytro-
pic gas connects the state with p = p0, p = po, and v = vo to a vacuum state. The rarefac-
trin originates at x = 0, and its tail strikes a rigid wall at x to at time t= to, whereupon
a reflected shock is formed.
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and hence that
+ = (i + O(r/to)2 )

as r -* 0. Thus the reflected shock is infinite in strength at the time of its formation.
In this way, Greenspan and Butler are led to expect that the solution between the

reflected shock wave and the wall is, asymptotically as r --* 0, of the form

p (r/to)2 /¢"-')f(E) , (5.3)

here f lies in the range o < f < 0, o0 being the limiting velocity of the reflected shock

wave as r -- 0. By assuming that the solution is of this form, they find a system of

nonlinear ordinary differential equations to be satisfied by #, P, and 6, and they solve the

equations numerically. However, one can find an analytic solution of these equations in
terms of incomplete beta functions, as we now show.

The flow is governed by the characteristic equations

1 ±1
Vt ± Pt +(v ± c) Vz±-Pz)

P. t c 2 Pt + V (pz - C2 Pz) 0

It is subject to no-flow boundary conditions v 0 at 0 0, and to the boundary conditions

V Vb o + + (to - go)

" 2 ( -+ 1)

c eb - (Co - 0oo)
7+1

and

, 2 PO 2 1 )2/ ( 1--I) (Co - o
7+1 (-Co

.t ry, these conditions follow from mass conservation, Eq 27, anl tr, t un .(it,

-erVation, Eq. 5.2, in the strong-shock limit.
I'pon substituting the polytropic gas relation c2  -yp p, t he (har m -terot .(

"naY be written

-C ( f c V 2 - c ) C CpX

. Pr o

P 2 €, * r(PZ - ,

*c i .%
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When the solution is assumed to be of the form of Eq. 5.3, v 0 and c = = 1

are independent of r, so the last equation becomes

2 , ., 2 (5.4)

-- -P =Y )

therefore the previous pair of equations reads

(0 ± - ) ( 2'± 2_ ,) 2 (5.5)
- I) -(-y- 1)0-

where the prime denotes differentiation with respect to C.

In terms of c = i and the Mach number M = (v - f)/c, Eqs. 5.5 are

M(M±) [i + cM, + (M± 2) ] _ 2

"1("1 - i)
i.e. -

cM' 2 (I - 21,M 2 ) (l - M) -  (5.6)2--yE

and

mMC, I ) (5.7)

while Eq. 5.4, when combined with Eq. 5.7, becomesi

c=p _ 2 M(I- M2)'

We have introduced the parameter t = 2('y - )/(-y2 + 1) for later convenience.

The ratio of Eqs. 5.6 and 5.7 dictates that

,dM 2  1 \d M I- - ( I - 2 -11 M ) ." M 2  ,,.

dlogc f

which integrates to yield
C M2 1 2y1M 2 \ (5.8)

Hurt, Aft (tyb o()/rb / (-7 I)i2y is the Mach number just behind the reflected
-h, k wave. Similarly,

d log y-Fd, 1 2 1 +

% ** -. V..-s ,-. -. ' , .. ' " .' .' .,%. ." , . '('' . ..... .',- . " , " - " ... • .. . ' . .
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By using Eq. 5.8, Eq. 5.6 may be written

(I 1- ) (1 - 2(1M-) (M2)-(+')dM2 1 1 2jMb 'df

Consequently, if we define

. J(Y) = (I - z)(1 - 2-. z)-(-')z-(i+')dz

(where, again, = 1(_1 - 1)1(-12 + 1)), then

* _iY(Mb) _ 1-2(M
2) = _L I2 - °  

(5.10)_0 - Y= M6 M b C

Since Oi, is a monotone function, Eq. 5.10 may be solved for M' in terms of , which
gives e and 0 as functions of C through Eqs. 5.8 and 5.9. Furthermore, by imposing the
boundary condition that M = 0 at = 0, we obtain an equation for co/Co as a function
of -7 :

.U* _1 [+ 1 (1- 2 -eM b) (5.11)
to + 2 co/(y -1) CO -If [ 2- ik 7 (Ml) 1M- - 51

. Notice that the function 9., may be expressed in terms of incomplete beta functions,
'which are defined by

B(p,q; y) = f z (1- Z),-'dz

when p and q have positive real parts. In fact,

-- (y) = (2-ye(-') B (j - f,t; 2-jy) - (2-)( )B ( - ,e; y)

For 1 < -1 < o, t is bounded byO < t < [4(1 + v2)]-' = 0.10355..., so , is well-defined.
a. To confirm these analytical results, and to demonstrate of the accuracy of the random

choice method, Fig. 5 shows a comparison of the analytical results with the results of solving
the partial differential equations governing the rarefaction reflection flow. In this problem,
a rarefaction wave connecting a pressure po - 1 and density po 1 to a vacuum expands
from z = 0 and strikes a rigid wall at x 0 1 at time r 0 0; the fluid is a polytropic

.1.. gas with -1 = 1.4. Two calculations were performed, one a free expansion for which v0 = 0,
and one in which the expanding material has been shocked to v0  2/y(y - 1)cO, which
corresponds to an infinite-strength shock. The short-time asymptotic solution predicts that
the pressure at the wall should rise as (r/to) 2 / 

( ) and that the speed of the reflected
shock should tend to U. 0.036494. (vo + 2co/(-y - 1)). In this computation, the flow iII
the region 0.9 < z 1 and 0 -- r <_ 0.3 was simulated using 100 mesh cells. Fig. 5 shows
the agreement with the asympt)otic pressure rise, and a contour plot of pressure in the

.. . %-r_ .



10-1
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shocked

10-3 expansion pressure
pressure at the

lo- wall

10-5

10-6 free
expansion

10-7

10-8
0.001 0.01 0.1 0.5r.-. time

Figure 5. Pressure at the wall for the reflection of a rarefaction wave expanding into a
vacuum. The pressure at the rigid wall, plotted as a function of time, is shown for two
sets of initial conditions. In both cases the initial density and pressure in the expanding
material are po = 1 and p0 = 1. For the free expansion, the initial velocity is vo = 0,
whereas for the shocked expansion vo corresponds to driving the expanding material with
an infinite-strength shock. In these computations, the rarefaction wave originates at x --0,
and the flow in the region 0.9 _ x < 1 and 0 r i < 0.3 was simulated using 100 mesh
cells. Superimposed are the short-time asymptotic solutions, which appear as straight

.: lines. Both solutions confirm the predicted short-time asymptotic behavior of the pres-
sure, viz., that it should rise as 5 when y= 1.4. Also, the solutions are accurate over 8
decades in pressure, in contrast to other numerical methods.
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space-time plane shows that the reflected shock speed agrees as well. One may ascertain
that the short-time asymptotic solution is valid for r/to < 0.1, roughly speaking.

We point out that the random choice solution is accurate over more than 8 decades in
pressure; this contrasts with serious discrepancies, over only 3 decades in pressure, among
several numerical methods applied to this problem, as reported by McCall.' 0

Suppose now that the wall is replaced with a thin metallic plate that is allowed to
accelerate. The behavior of the pressure at the plate is the same as for a rigid wall until
the plate has accelerated significantly. The rising pressure generates a compressive wave
inside the plate, and we wish to determine whether this wave collapses into a shock wave
within the plate.

Simple geometry shows that the sound characteristics inside the plate will cross within
the plate if

C26z- Ced

dc/dt
is less than the thickness of the plate. If the plate is modeled as a stiffened gas with
adiabatic exponent -yo, then

2-yo p + Poo (5.12)
6z = c *-(.2

"7o - 1 dp/dt

because the flow is isentropic. According to Eq. 5.3,

dp 2 p
dt -1 r

so in the limit p < poo,

6 2-yo o -0-1 /_ 2,yoI- lP+ p.
-Yo- lC °  -poo  2 p

- -1 poo ( I- 1

where co, denotes the sound speed in the plate at zero pressure.
When -y = 5/3 and the propellant material has been shocked with an infinite-strength

shock, P(O) = 51.678 po by the results above. Therefore if we consider tungsten (coo =
0.404 cm/s, yo = 3.14, p.o = 1 Mbar) accelerated by piastic foam that has been shocked
to Po = 0.24 Mbar and Po = 0.12 g/cm 3 and that is separated from the plate by a
5 cm gap, one calculates that bz > 0.5 cm during the initial stages of the acceleration,
r < 0.1 to 0.06 jis. This agrees with the estimate given by McCall.' 0
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Computational Results

In Figs. 6-9 are shown the results of a shockless acceleration experiment in which
the cavity has be evacuated to 10-4 bar (the remaining fluid being a gas with -y = 5/3)_
The foam, which is modeled as a polytropic gas with -y 5/3, is initially at atmospheric
pressure and density 0.03 g/cm 3 . The foam is then shocked to 0.24 Mbar and 0.12 g/cm 3

the particle velocity in the shocked foam is 2.45 cm/ps.
walIn this computation the tungsten plate is tracked, with the plate modeled as a movable
walwith an areal mass density of 0.5 g/cm , corresponding to a thickness of 0.025 cm. A

3:1 mesh refinement is used for 4 < z < 6 cm, with a total of 300 mesh cells: the mesh
spacing near x = 5 cm is Am ; 0.013 cm, while near x = 10 cm it is Am s~ 0.035 cm.

Figs. 6 and 7 show the space-time development of the flow in terms of the contours of
density and pressure, respectively. At time t = 0 the shock reaches the end of the foam at
x = 0, whereupon the foam expands into the cavity. A very weak shock, which is not visible
in these plots, is transmitted into the gas in the cavity and leads the expanding foam; its
arrival at the tungsten plate is indicated in the figures. The foam decelerates when it
strikes the plate, so a reflected shock forms and strengthens. The increasing pressure in
the foam that builds up behind the plate serves to accelerate the plate.

The pressure behind the tungsten plate is plotted as a function of time in Fig. 8.
Because the cavity has been evacuated, the pressure rise is much smoother than if no
cavity had been there. The velocity of the tungsten plate is plotted as a function of time
in Fig. 9. The velocity of the plate at t = 3.85 ps is 2.69 cm/ps.

- .. Fig. 8 may be used to obtain another estimate for the crossing distance for char-
acteristics in the plate. The rate of pressure rise is estimated from the graph to be
dp/dt ;z: 1.1 Mbar/p~s, so Eq. 5.12 gives

6X > 2,yo -0 Po cm,
-yo - 1 dp/dt

which is 40 times the thickness of the plate.
In Figs. 10-13 are shown the results of a shockless acceleration experiment in which

the cavity is filled with air (with -y = 5/3) at standard conditions. The foam is shocked
as in the previous computation. In this computation, both the foam-air contact and the
tungsten plate are tracked. The tungsten plate is modeled as a movable wall with an areal
mass density of 0.5 g/cm 2 . A 3:1 mesh refinement is used for 4 <zx < 6 cm, as before.

Figs. 10 and 11 show the space-time contours of density and pressure, respectively.
At time t = 0 the shock reaches the end of the foam at x = 0, whereupon the foam
expands into the cavity and compresses the air, thereby accelerating the tungsten plate.
Because the cavity is not evacuated, the weak shock that is transmitted to the air has more
noticeable effects; its arrival at the plate is marked by a shock reflected from the plate.
The contact discontinuity between the foam and the air interacts with waves reflected from
the plate, which strengthen into a reflected shock that overtakes the expansion wave in the
foam. A layer of compressed air moving with the plate separates the foam from the plate.

There is much more structure in the flow near the plate in this computation as corn
£ pared to the previous one. The succession of shock waves reflecting between the foam-air

contact discontinuity and the tungsten plate can clearly be seen by comparing Figs. 10
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2.5

tungsten plate
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4" 1.5

arrival of air shock

reflected shoc

0.5
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4'. Figure 6. Density contours for shockless acceleration using an evacuated cavity. The
foam, initially at atmospheric pressure and density 0.03 g/cm 3, is shocked to 0.24 Mbar
and 0.12 g/cm 3; the particle velocity in the shocked foam is 2.45 cm/jis. At time t = 0
the shock reaches the end of the foam at x = 0, whereupon the foam expands into the
cavity, which is evacuated to 10-4 bar; the expanding foam accelerates a tungsten plate.
A reflected shock forms in the rarefied foam upon its arrival at the plate. The velocity of
the plate at the t = 3.85 .is is 2.69 cm/ is. In this computation the tungsten plate is
tracked, with the plate modeled as a movable wall with an areal mass density of 0.5
g/cm 2. A 3:1 mesh refinement is used for 4 < x < 6 cm, with a total of 300 mesh cells:
the mesh spacing near x = 5 cm is Ax z 0.013 cm, while near x 10 cm it is Ax 0.035
cm.
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Figure 7. Pressure contours for shockless acceleration using an evacuated cavity. The

space-time contours of pressure are shown for the comput-tion described in the caption

for Fig. 6.
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Figure 8. Pressure behind the plate. The pressure behind the tungsten plate is plotted as
a function of time for the computation described in the caption for Fig. 6.
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Figure 9. Velocity of the plate. The velocity of the tungsten plate is plotted as a func-
tion of time for the computation described in the caption for Fig. 6.
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1.85 foam-air contact

reflected shock

0arrival of air shock
0.85 ... _________________________
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Figure 10. Density contours for shockless acceleration using an air-filled cavity. The
foam is shocked as in the computation described in Fig. 6. At time t = 0 the shock
reaches the end of the foam at x = 0, whereupon the foam expands into the cavity and
compresses the air, thereby accelerating the tungsten plate. The air is initially at standard
conditions, and the tungsten plate has an areal mass density of 0.5 g/cm 2. A weak shock
is transmitted to the air; its arrival at the plate is marked by a shock reflected from the
plate. The contact discontinuity between the foam and the air interacts with waves
reflected from the plate, which strengthen into a reflected shock that overtakes the expan-
sion wave in the foam. A layer of compressed air moving with the plate separates the
foam from the plate. The velocity of the plate at the t = 3.85 Ps is 2.69 cm/Ps. In this
computation the foam-air contact and the tungsten plate are tracked, with the plate
mxeled as a movable wall. A 3:1 mesh refinement is used for 4 < x < 6 cm, as in Fig. 6.
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Figure 11. Pressure contours for shockless acceleration using an air-filled cavity. The
space-time contours of pressure are shown for the computation described in the caption
for Fig. 10. The succession of shock waves reflecting between the foam-air contact
discontinuity and the tungsten plate can clearly be seen by comparing this figure with
Fig. 10. Some waves, such as the first air shock that reflects from the foam-air contact,
are visible in this figure but not in Fig. 10, whereas the secondary contact discontinuitv InI
the foam is visible only in the density contour plot.
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* Figure 12. Pressure behind the plate The pressure behind the tungsten plate is plotted
ais a func.tion of time for the computation described in the caption for Fig 10 The pre,,-
',Lire jumip at 1) 87 is caused h-. the air shock hitting the plate, and the junips that t '1
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Figure 13. Velocity of the plate. The velocity of the tungsten plate is plotted as a func-
tion of time for the computation described in the caption for Fig. 10
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a'., 11 some waves, Su(h an the first air shock that reflects from the foam air corntat

ar, Ibitble in pressure tontours plot but not in the density contours plot, whereas the

,., ,i ,iary contact discontinuity in the fom is visible only in the density contour plot

Itie pressure t)ehind the tungsten plate is plotted as a function of time in Fig 12

I i, nooth rise it; pressure seen in Fig. 8 has now become jagged during the early stagye,

r:. Hlow development, and the peak pressure is higher The pressure jump at t () t,

A i.,ed by the air shock hitting the plate, and the jumps that follow correspond t,,

'., sk ession of shock waves that reflect from the plate, as seen in Fig 11 The hump

%t t -z 1 7 corresponds to the arival at the plate of signals from the right edge of the

,.\;,risior wave in the foan: thin is also seen in Fig. 11. Fig. 13 shows the velocity of the

rigste, plate, plotted as a function of time The kinks in this plot correspond to the

. i,ntnuites in Fig 12 'he velocity of the plate at t 3 85 ps is again 2.69cm ps,

Aithough the short-time development of the flow changes markedly when the cavity

pr"ure is raised to as small a presure as 10 ' Mbar, the long-time behavior of the flow

dr:1 the accelerating plate is little affected. This is evident in the contour plots and the
.. ts f the velocity of and pressure behind the plate. In fact, at late times the velocity

.m pressure for the aur-filled cavity agree quantitatively with these quantities when the

,- " . evacuated

it, reverberating shock waves that are present in the flow when the cavity has not

, .,. eiated may cause damage to the accelerating plate, for instance through shock

'& ".r,g I, t:. certain the effect that these air shocks have on the plate, the experiment

'., air tiied cavity was simulated, during the early stages of the interaction, with
" '.. ':,gsten plate modeled as a thin (0.025 cm) layer of fluid. In this computation the

.t! 0,, 4f state of the tungsten is a stiffened gas, with - - 3.14 and p, - 1.0 Mbar. The

'"', .seles of the plate are tracked, am Is the foam-air contact discontinuity. A 10.1 mesh

-. :.ernent is used for 4 95 x - 5.25 cm, with a total of 300 mesh cells. With this mesh

.r.,nt there are approximately 10 mesh cells inside of the plate.

I ., results are shown in FIgs 14- 18. Fig. 14 shows the space-time contours of pressure,

. rr h the shocks that forn inside the plate are evident. An expanded view of the

;''-,ure contours in the vicinity of the accelerating plate is shown in Fig. 15. The detailed

* . ',r,.a, structure of the flow inside the plate is evident in this plot. The corresponding

f the pressure behind the plate, plotted as a function of time, is shown in Fig. 16.

r,. 'resstire jump at t 0 $7 is caused by the air shock hitting the plate, and the jumps
-t ,,i.(1 correspond to the succession of shock waves that reflect from the plate, as seen

* I d I , I S *

I .,!o' r,' -iye veiowity of the two sides of the plate is plotted as a function of time in

i 7 A posit voc relative %elocit y indicates expansion of the plate. The jumps in the

, ;,.i:,,r. ,eiOtry correspond to waves in the air arriving at the plate and to waves in

- . , retlet i ng from the ends of the plate, as seen in Fig. 15. Shock waves in the air

-_ '1' ,'K t the baA k end of the plate transmit a shock wave into the plate and cause the

" * ~ i . 1 (drop The transmitted shock reflects from the front end of the plate a.

, t , ,i,ri Wave. an'l caises the relative velocity to rise. This simple ringing of the plate

.., , .r i'era ti,) s bet °evni waves creates broad rarefaction waves that complicate
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Figure 14. Pressure contours for shockless acceleration using an air-filled cavity. The
space-time contours of pressure are shown for the early-time development in the compu-
tation described in the caption for Fig. 10. In this computation the tungsten plate is
modeled as a stiffened gas. The two sides of the plate are tracked, as is the foam-air
contact discontinuity. A 10:1 mesh refinement is used for 4.95 < x < 5.45 cm, with a
total of 300 mesh cells. With this mesh refinement there are approximately 10 mesh cell
inside of the plate. The combination of mesh refinement, front tracking, and the random
choice method is crucial to resolving the shock waves that can be seen propagating inside
the plate.
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. Figure 15. Expanded view of the plate. Th rsuecnorsfrth mpt,,,

'tdescribed in the caption for Fig. 14 are shown in the vicinity of the accelerating plaie
U The detailed internal structure of the flow Inside the plate Is evident in this plot.
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Figure 16. Pressure behind the plate. The pressure behind the tungsten plate is plotted
* . is a tunction of time for the computation described in the caption for Fig. 14. The pres-

-,ure jump at r = 0 87 is caused by the air shock hitting the plate, and the jumps that fol-
",,w otorrespond to the succession of shock waves that reflect from the plate, as seen in
I iec 14 and 15
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Figure 17. Expansion of the plate. The relative velocity of the two sides of the plate is
plotted as a function of time for the computation described in the caption for Fig. 14. A
positive relative velocity indicates expansion of the plate. The jumps in the expansion
velocity correspond to waves in the air arriving at the plate and to waves in the plate
reflecting from the ends of the plate, as seen in Fig. 15.
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Figure 18. Shock heating inside the tungsten plate. An approximation AQ to the heat
deposition inside the plate is shown. The maximum and the spatial average of AQ across
the plate is plotted as a function of time. For comparison, the latent heat of fusion of
tungsten at standard conditions is 0.0019 cm2/gs2.
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Although the ringing of the plate is rather violent, the rarefaction waves never combine
to put the material in tension, as they do in a spall experiment. (This is confirmed by
plotting the minimum pressure in the plate as a function of time.) Within the confines of
this simplistic model for the equation of state, therefore, it is expected that the plate will
not spall when it is accelerated in the manner being investigated.

As another diagnostic measure for possible structural damage to the plate, the heat
deposition in the plate due to shock waves should be determined. This heat deposition is to
be compared to the heat of melting of tungsten to determine whether the plate melts. Since
the plate is being accelerated by a light fluid, it is subject to Rayleigh-Taylor instability.
Were the plate to melt, its material strength might not sufficiently dampen the growth of
these instabilities, and it could be destroyed.

The stiffened gas equation of state is not complete, in that the temperature and
entropy is not determined. In place of using a complete equation of state, an approximation
to the heat deposition in the plate is determined by comparing the computed specific
energy in the plate with the specific energy that would be in the plate if the plate had
been isentropically compressed. Let

1 p + Po + ( .- 1)p.,

be the specific energy in a given computational mesh cell inside the plate, and let

Es. 1 (p/poY(po + P.) + (Y - 1)Po
E s - 1 p

be the corresponding specific energy of the cell were it to have been compressed isen-
tropically from its initial state with density p0 and pressure Po. (See Eq. 2.1.) We then
define

AQ = E- Eso 0  TAS

to be an effective heat deposition in the cell. The maximum of this quantity over the plate
and its spatial average is plotted as functions of time in Fig. 18. Since the latent heat of
fusion of tungsten at standard conditions is 0.0019 cm 2 /ss 2 , which is of the same order of
magnitude as AQ, no definitive conclusion can be drawn from the calculation, although it
suggests that the plate might melt.

.4

-:.

-37-

-r.-'

%a %



Conclusions

These computations demonstrate the ability of our numerical method to resolve the
highly complicated flows that arise in McCall's method for accelerating thin plates. The
combination of mesh refinement, front tracking, and the random choice method is crucial
to resolving shock waves propagating inside the plate.

The short-time asymptotic solution and the computational results confirm that shock
waves do not form inside a sufficiently thin plate, provided that the cavity between the
propellant foam and the plate has been evacuated. The computations do show, however,
that it is critical to have a good vacuum in the cavity: pressures of only 10' on the scale
of pressures being considered give rise to significant shock waves in the plate. These shock
waves cause violent ringing of the plate, but they never put the plate into tension; thus
according to the model used, the plate does not spall. The shock waves also heat the plate,
and a simple estimate of this effect indicates that the plate might melt. This melting would
make the plate more susceptible to Rayleigh-Taylor instability.

In combination with a better model of the structural properties of the tungsten plate,
the results of these hydrodynamic calculations can be used to more conclusively determine
the feasibility of McCall's method for shockless acceleration of thin plates.
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