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ABSTRACT

Within the last five years, increased emphasis on secondary instability analysis

along with the experimental observations of subharmonic instabilities have changed the

picture of the transition process for boundary layers in low-disturbance environments.

Additional efforts with Navier-Stokes computations have formed an impressive triad of

tools that are beginning to unravel the details of the early stages of transition. This paper

reviews these recent efforts.

SYMBOLS
A disturbance amplitude

Ao amplitude at R=Ro, usually Branch I

Cp pressure coefficient

F o/R = 2xfv/Uo2 : dimensionless frequency

f dimensional frequency [hz]
S L -fvx*/Uo boundary-layer reference length.

N ln(A/Ao) amplification factor

R - M = UoLv : boundary-layer Reynolds number

Ro initial boundary-layer Reynolds number, usually Branch
Rx Uox*/v : x-Reynolds number or chord Reynolds number

U basic-state chordwise velocity normalized by Uo

Uo freestream velocity, [m/s]
W basic-state spanwise velocity normalized by Uo

x* dimensional chordwise coordinate [m]

x chordwise coordinate normalized with L

y normal-to-the-wall coordinate

1 . z spanwise coordinate
,a chordwise complex wavenumber normalized by L

V kinematic viscosity [m2/s]

0 2xfl.Lo: dimensionless circular frequency

V 1. INTRODUCTION

The problems of understanding the origins of turbulent flow and transition to

turbulent flow are the most important unsolved problems of fluid mechanics and

aerodynamics. There is no dearth of applications for information regarding transition
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location and the details of the subsequent turbulent flow. A few examples can be given
here. (1) Nose cone and heat shield requirements on reentry vehicles and the "aerospace

airplane" are critical functions of transition altitude. (2) Vehicle dynamics and
"observables" are modulated by the occurrence of laminar-turbulent transition. (3)
Should transition be delayed with Laminar Flow Control on the wings of large transport
aircraft, a 25% savings in fuel will result. (4) Lack of a reliable transition prediction
scheme hampers efforts to accurately predict airfoil surface heat transfer and to cool the

blades and vanes in gas turbine engines. (5) The performance and detection of
submarines and torpedoes are significantly influenced by turbulent boundary-layer flows
and efforts directed toward drag reduction require the details of the turbulent processes.

(6) Separation and stall on low-Reynolds-number airfoils and turbine blades strongly
depends on whether the boundary layer is laminar, transitional, or turbulent.

The common thread connecting each of these applications is the fact that they all
deal with bounded shear flows (boundary layers) in open system (with different
upstream or initial amplitude conditions). It is well known that the stability, transition,

and turbulent characteristics of bounded shear layers are fundamentally different from
those of free shear layers (Morkovin, 1969; Tani, 1969; Reshotko, 1976). Likewise, the
stability, transition, and turbulent characteristics of open systems are fundamentally

different from those of closed systems (Tatsumi, 1984). The distinctions are vital.

Because of the influence of indigenous disturbances, surface geometry and roughness,
sound, heat transfer, and ablation, it is not possible to develop general prediction schemes

for transition location and the nature of turbulent structures in boundary-layer flows.
There have been a number of recent advances in the mathematical theory of chaos

that have been applied to closed systems. Sreenivasan and Strykowski (1984), among
others, discuss the extension of these ideas to open systems and conclude ha: the
relationship is still uncertain. It appears from a recent workshop and panel discussion
(Liepmann et al. 1986) that the direct application of chaos theory to open systems is still

some distance away. However, the prospect of incorporating some of the mathematical
ideas of chaos into open system problems and of encouraging the transfer of data to the

mathematicians is good. Since there is still some uncertainty in the direct application of
chaos theory to transition no further mention of this will be given here.

The purpose of this report is to bring into perspective certain advances to our
understanding of laminar-turbulent transition that have occurred within the last five

years. In particular, these advances have been made by simultaneous experimental,

theoretical, and computational efforts.

3



1.1 Basic Ideas of Transition
With the increased interest in turbulent drag reduction and in large scale

structures within the turbulent boundary layer, researchers in turbulence have been
required to pay attention to the nature of laminar-turbulent transition processes. It is
generally accepted that the transition from laminar to turbulent flow occurs because of an
incipient instability of the basic flow field. This instability intimately depends on subtle,
and sometimes obscure, details of the flow. The process of transition for boundary layers
in external flows can be qualitatively described using the following (albeit, oversimp-
lified) scenario.

Disturbances in the freestream, such as sound or vorticity, enter the boundary

layer as steady and/or unsteady fluctuations of the basic state. This part of the process is
called receptivity (Morkovin, 1969) and although it is still not well understood, it
provides the vital initial conditions of amplitude, frequency, and phase for the breakdown
of laminar flow. Initially these disturbances may be too small to measure and they are
observed only after the onset of an instability. The type of instability that occurs depends
on Reynolds number, wall curvature, sweep, roughness, and initial conditions. The
initial growth of these disturbances is described by linea[ stability theory. This growth is

weak, occurs over a viscous length scale, and can be modulated by pressure gradients,
mass flow, temperature gradients, etc. As the amplitude grows, three-dimensional and

nonlinear interactions occur in the form of secondary instabilities. Disturbance growth is
very rapid in this case (now over a convective length scale) and breakdown to turbulence

occurs.
For many years, linear stability theory, with the Orr-Sommerfeld equation as its

keystone, served as the basic tool for predictors and designers. Since the initial growth is
linear and its behavior can be easily calculated, transition prediction schemes are usually
based on linear theory. However, since the initial conditions (receptivity) are not
generally known, only correlations are possible and, most importantly, these correlations
must be between two systems with similar environmental conditions. The impossibility

of matching or fully understanding these environmental conditions has led to the failure
of any absolute transition prediction scheme for even the simple Blasius flat-plate

boundary layer.
The preceding is not always follow the observed behavior. At times, the initial

instability can be so suong that the growth of linear disturbances is by-passed (Morkovin,
1969) in such a way that turbulent spots appear or secondary instabilities occur and the

,?, flow quickly becomes turbulent. This phenomenon is not well understood but has been
documented in cases of roughness and high freestream turbulence (Reshotko, 1986). In
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this case, transition prediction schemes based on linear theory fail completely.

1.2 Review of the Literature

The literature review follows the outline of the process described above and
begins with Reshotko (1984a, 1986) on receptivity (i.e. the means by which freestream
disturbances enter the boundary layer). In these papers, Reshotko summarizes the recent
work in this area and points out the difficulties in understanding the problem. Indeed, the
receptivity question and the knowledge of the initial conditions are the key issues
regarding a transition prediction scheme. Of particular concern to the transition problem
are the quantitative details of the roles of freestream sound and turbulence. Aside from
some general correlations, this is still an opaque area. However. in section 3.2 below, a

V demonstration of the role of initial conditions on the observed transition phenomenon is
discussed.

The details of linear stability theory are given in Mack (1984b). This is actually a
monograph on boundary-layer stability theory and should be considered required reading

for those interested in all aspects of the subject. It covers 58 pages of text with 170
references. In particular, his report updates the three-dimensional (3-D) material in Mack
(1969), covering in large part Mack's own contributions to the area.

The foundation paper with regard to nonlinear instabilities is Klebanoff et al.
(1962). This seminal work spawned numerous experimental and theoretical works (not
all successful) for the period of 20 years after its publication. It was not until the

experimental observations of subharmonic instabilities by Kachanov et al. (1977),
Kachanov and Levchenko (1984), and Saric and Thomas (1984), along with the work on
secondary instabilities, that additional progress was made in this area. Recent papers of
Herbert (1984a,b,c; 1985; 1986a,b) cover the problems of secondary instabilities and
nonlinearities i.e. those aspects of the breakdown process that succeed the growth of
linear disturbances. It should be emphasized that two- dimensional waves do not

completely represent the breakdown process since the transition process is always three-
dimensional in bounded shear flows. Herbert describes the recent efforts in extending the
stability analysis into regions of wave interactions that produce higher harmonics, three-

dimensionality, subharmonics, and large growth rates--all harbingers of transition to
turbulence. Recent 3-D Navier-Stokes computations by Fasel (1980,1986), Spalart

(1984), Spalart and Yang (1986), Kleiser and Laurien (1985, 1986) Reed and co-workers
(Singer et al. 1986, 1987; Yang et al. 1987) have added additional understanding to the
phenomena. More is said about this in section 3.2.

The paper by Arnal (1984) is an extensive description and review of transition

5



prediction and correlation schemes for two-dimensional flows that covers 34 pages of

text and over 100 citations. An analysis of the different mechanisms that cause transition

such as Tollmien-Schlichting (T-S) waves, Gortler vortices, and turbulent spots is given.

The effects that modulate the transition behavior are presented. These include the

influence of freestream turbulence, sound, roughness, pressure gradient, suction, and

unsteadiness. A good deal of the data comes from the work of the group at

ONERA/CERT part of which has only been available in report form. The different
transition criteria that have been developed over the years are also described which gives

an overall historical perspective of transition prediction methods.

In a companion paper, Poll (1984b) extends the description of transition to 3-D

flows. When the basic state is three-dimensional, not only are 3-D disturbances
important, but completely different types of instabilities can occur. Poll concentrates on

the problems of leading-edge contamination and crossflow vortices, both of which are

characteristic of swept-wing flows. The history of these problems as well as the recent
work on transition prediction and control schemes are discussed. We return to a

discussion of 3-D flows in section 4.
Reshotko (1984b, 1985, 1986) and Saric (1985b) review the application of

stability and transition information to problems of drag reduction and in particular,
laminar flow control. They discuss a variety of the laminar flow control and transition

control issues which will not be covered here.

2. REVIEW OF T-S WAVES

The disturbance state is restricted to two dimensions with a one-dimensional basic
state. The 2-D instability to be considered is a viscous instability in that the boundary-
layer velocity profile is stable in the inviscid limit and thus, an increase in viscosity (a

decrease in Reynolds number) causes the instability to occur in the form of 2-D traveling
waves called T-S waves. All of this is contained within the framework of the Orr-
Sommerfeld equation, OSE. The historical development of this work is given in Mack

(1984b) and a tutorial is given by Saric (1985a).

The OSE is linear and homogeneous and forms an eigenvalue problem which

consists of determining the wavenumber, a, as a function of frequency, co, Reynolds
number, R, and the basic state, U(y). The Reynolds number is usually defined as R =
UoL/v = (Rx)1 /2 and is used to represent distance along the surface. In general, L =

(,ux*/Uo)1/2 is the most straightforward reference length to use because of the simple
form of R and because the Blasius variable is the same as y in the OSE. When

comparing the solutions of the OSE with experiments, the dimensionless frequency, F, is
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introduced as F = W/R = 2xfu/Uo 2 where f is the frequency in Hertz.

Usually, an experiment designed to observe T-S waves and to verify the 2-D
theory is conducted in a low-turbulence wind tunnel (u'/Uo from 0.02% to 0.06%) on a
flat plate with zero pressure gradient (determined from the shape factor = 2.59 and not
from pressure measurements!) where the virtual-leading-edge effect is taken into account

by carefully controlled boundary-layer measurements. Disturbances are introduced by
means of a 2-D vibrating ribbon using single-frequency, multiple-frequency, step-

function, or random inputs (Costis and Saric, 1982) taking into account finite-span effects
(Mack, 1984a). Hot wires measure the U + u' component of velocity in the boundary

layer and d-c coupling separates the mean from the fluctuating part. The frequency, F,
for single-frequency waves remains a constant.

When the measurements of are repeated along a series of chordwise stations, the
maximum amplitude of the waves varies. At constant frequency, the disturbance

amplitude initially decays until the Reynolds number at which the flow first becomes

unstable is reached. This point is called the Branch I neutral stability point and is given
by RI. The amplitude grows exponentially until the Branch II neutral stability point is
reached which is given by RH. The locus of RI and RII points as a function of frequency
gives the neutral stability curve shown in Fig. 1. If the growth rate of the disturbances is

defined as o = o(R,F), Fig. 1 is the locus of o(R,F) = 0. For R > 600 the theory and

experiment agree very well for Blasius flow. For R < 600 the agreement is not as good
because the theory is influenced by nonparallel effects and the experiment is influenced

by low growth rates and nearness to the disturbance source. Virtually all problems of
practical interest have R > 1000 in which case the parallel theory seems quite adequate
(Gaster, 1974; Saric and Nayfeh, 1977).

By assuming that the growth rate, a = a(R,F), to hold locally (within the quasi-

parallel flow approximation), the disturbance equations are integrated along the surface

with R = R(x) to give:
A/Ao = exp(N)

where dN/dR = a, A and Ao are the disturbance amplitudes at R and RI, respectively, and
RI is the Reynolds number at which the constant-frequency disturbance first becomes
unstable (Branch I of the neutral stability curve).

The basic design tool is the correlation of N with transition Reynolds number, RT,

for a variety of observations. The correlation will produce a number for N (say 9) which
is now used to predict RT for cases in which experimental data are not available. This is
the celebrated eN method of Smith and von Ingen (e.g. Arnal, 1984; Mack, 1984b). The

basic LFC technique changes the physical parameters and keeps N within reasonable
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limits in order to prevent transition. As long as laminar flow is maintained and the
disturbances remain linear, this method contains all of the necessary physics to accurately
predict disturbance behavior. As a transition prediction device, the eN method is
certainly the most popular technique used today. It works within some error limits only
if comparisons are made with experiments with identical disturbance environments.
Since no account can be made of the initial disturbance amplitude this method will
always be suspect to large errors and should be used with extreme care. When bypasses
occur, this method does not work at all. Mack (1984b) and Arnal(1984) give examples of
growth-rate and eN calculations showing the effects of pressure gradients, Mach number,
wall temperature, and three dimensionality for a wide variety of flows. These reports

contain the most up-to-date stability information.

3. SECONDARY INSTABILITIES AND TRANSITION
There are different possible scenarios for the transition process, but it is generally

accepted that transition is the result of the uncontrolled growth of unstable three-
dimensional waves. Secondary instabilities with T-S waves are reviewed in some detail
by Herbert (1984b, 1985, 1986), Saric and Thomas (1984) and Saric et al.(1984).

Therefore, only a brief outline is given in section 3.1 in order to give the reader some
perspective of the different types of breakdown. Section 3.2 discusses the very recent

results.

3.1 Secondary Instabilities

The occurrence of three-dimensional phenomena in an otherwise two-dimensional
flow is a necessary prerequisite for transition (Tani, 1981). Such phenomena were
observed in detail by Klebanoff et al. (1962) and were attributed to a spanwise
differential amplification of T-S waves through corrugations of the boundary layer. The
process leads rapidly to spanwise alternating "peaks" and "valleys", i.e., regions of

enhanced and reduced wave amplitude, and an associated system of streamwise vortices.
The peak-valley structure evolves at a rate much faster than the (viscous) amplification
rates of T-S waves. The schematic of a smoke-streakline photograph (Saric et al. 1981)
in Fig. 2 shows the sequence of events after the onset of "peak-valley splitting". This

represents the path to transition under conditions similar to Klebanoff et al. (1962) and is
called a K-type breakdown. The lambda-shaped (Hama and Nutant, 1963) spanwise

corrugations of streaklines, which correspond to the peak-valley structure of amplitude
variation, are a result of weak 3-D displacements of fluid particles across the critical
layer and precede the appearance of Klebanoff's "hair-pin" vortices. This has been

8
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supported by hot-wire measurements and Lagrangian-type streakline prediction codes

(Saric et al.,1981; Herbert and Bertolotti, 1985). Note that the lambda vortices are

ordered in that peaks follow peaks and valleys follow valleys.

Since the pioneering work of Nishioka et al.(1975, 1980), it is accepted that the

basic transition phenomena observed in plane channel flow are the same as those

observed in boundary layers. Therefore, little distinction will be given here as to whether

work was done in a channel or a boundary layer. From the theoretical and computational

viewpoint, the plane channel is particularly convenient since the Reynolds number is

constant, the mean flow is strictly parallel, certain symmetry conditions apply, and one is

able to do temporal theory. Thus progress has been first made with the channel flow

problem.

Different types of three-dimensional transition phenomena recently observed (e.g.

Kachanov et al. 1977; Kachanov and Levchenko, 1984; Saric and Thomas, 1984; Saric et
al. 1984, Kozlov and Ramanosov, 1984) are characterized by staggered patterns of peaks
and valleys (see Fig.3) and by their occurrence at very low amplitudes of the fundamental
T-S wave. This pattern also evolves rapidly into transition. These experiments showed

that the subharmonic of the fundamental wave (a necessary feature of the staggered
pattern) was excited in the boundary layer and produced either the resonant wave

interaction predicted by Craik (1971) (called the C-type) or the secondary instability of

Herbert (1983) (called the H-type). Spectral broadening to turbulence with self-excited

subharmonics has been observed in acoustics, convection, and free shear layers and was

not identified in boundary layers until the results of Kachanov et al. (1977). This paper

re-initiated the interest in subharmonics and prompted the simultaneous verification of C-
type resonance (Thomas and Saric, 1981; Kachanov and Levchenko, 1984). Subhar-
monics have also been confirmed for channel flows (Kozlov and Ramazanov, 1984) and
by direct integration of the Navier-Stokes equations (Spalart, 1984). There is visual

evidence of subharmonic breakdown before Kachanov et al. (1977) in the work of Hama

(1959) and Knapp and Roache (1968) which was not recognized as such at the time of

their publication. The recent work on subharmonics is found in Herbert (1985, 1986a,b),
Saric, Kozlov and Levchenko (1984), and Thomas (1986).

The important issues that have come out of the subharmonic research is that the

secondary instability depends not only on disturbance amplitude, but on phase and fetch

as well. Fetch means here the distance over which the T-S wave grows in the presence of
the 3-D background disturbances. If T-S waves are permitted to grow for long distances
at low amplitudes, subharmonic secondary instabilities are initiated at disturbance
amplitudes of less than 0.3%Uo. Whereas, if larger amplitudes are introduced, the

9
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breakdown occurs as K-type at amplitudes of l%Uo . Thus, there no longer exists a
"magic" amplitude criterion for breakdown.

A consequence of this requirement of a long enough fetch for the subharmonic to

be entrained from the background disturbances is that the subbarmonic interaction will

occur at or to the right of the Branch H neutral stability point (see Fig. 1). Since this is in

the stable region of the fundamental wave, it was not likely to be observed because the

experimenters quite naturally concentrated their attention of measurements between

Branch I and Branch II.

3.2 Recent Results
The surprise that results from the analytical model of Herbert (1986a,b) and the

. Navier-Stokes computations of Singer, Reed, and Ferziger (1986), is that under

conditions of the experimentally observed K-Type breakdown, the subharmonic H-Type
is still the dominant breakdown mechanism instead of the fundamental mode. This is in

contrast to Klebanoff's experiment, confirmed by Nishioka et al. (1975, 1980),Kachanov
et al. (1977), Saric and Thomas (1984), Saric et al. (1984), and Kozlov and Ramazanov

(1984) where only the breakdown of the fundamental into higher harmonics was
observed. Only Kozlov and Ramazanov (1984) observed the H-type in their channel

experiments and only when they artificially introduced the subharmonic.

This apparent contradiction was resolved by Singer, Reed, and Ferziger (1987).
Here the full three-dimensional, time-dependent incompressible Navier-Stokes equations

are solved with no-slip and impermeability conditions at the walls. Periodicity was

assumed in both the streamwise and spanwise directions. The implementation of the

method and its validation are described by Singer, Reed and Ferziger (1986). Initial

conditions include a two-dimensional T-S wave, random noise, and streamwise vortices.
No shape assumptions are necessary, the spectrum is larger, and random disturbances

whether freestream or already in the boundary layer can be introduced and monitored for
growth and interactions (Singer, Reed, and Ferziger, 1986). Other advantages realized by

Ru. couiputations are 1) the inclusion of boundary-layer growth, neglected in linear theory

but important to the growth of secondary instabilities, 2)the generation of ensemble

averages, 3) the visualization of flow phenomena for comparison with experiments
(advanced graphics capability), and 4) the calculation of vorticity and energy spectra,
often unavailable from experiments.

The streamwise vortices can alter the relative importance of the subharmonic and
fundamental modes. Streamwise vortices of approximately the strength of those that

might be found in transition experiments can explain the difficulty in experimentally

10
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identifying the subharmonic route to turbulence (Herbert 1983).

The corresponding computational visualizations of Singer et al. (1987) are shown

in Pip. 4 and 5; flow is from lower right to upper left. Figure 4 shows the vortex

s$etums, commonly seen in the transition process, under the conditions of a forced 2-D

T-S wave and random noise as initial conditions. The subharmonic mode is present as

predicted by theory but not seen experimentally. Other views of the vortical structure are

given by Herbert (1986a). However, when streamwise vorticity (as is present in the flow

from the turbulence screens upstream of the nozzle) is also included, the subharmonic

mode is overshadowed by the fundamental mode (as in the experiments!). The resulting

pattern, ordered peak-valley structure, is seen in Fig. 5. Here is a case in which the

computations have explained discrepancies between theory and experiments.

In the presence of streamwise vorticity, the fundamental mode is preferred over

the subharmonic; this agrees with experimental observations, but not with theory (which

does not account for this presence). Without streamwise vorticity, the subharmonic

modes dominate as predicted by theory and confirmed by computational simulations. In

the presence of streamwise vorticity characteristic of wind-tunnel experiments, the K-

type instability dominates and the numerical simulations predict the experimental results.

Direct numerical simulations are playing an increasingly important role in the

investigation of transition; the literature is growing, especially recently. This trend is

likely to continue as considerable progress is expected towards the development of new,

extremely powerful supercomputers. In such simulations, the full Navier-Stokes

equations are solved directly by employing numerical methods, such as finite-difference

or spectral methods. The direct simulation approach is widely applicable since it avoids

many of the restrictions that usually have to be imposed in theoretical models.

The Navier-Stokes solutions are taken hand-in-hand with the wind tunnel

experiments in a complementary manner. The example of Singer, Reed, and Ferziger

(1987) illustrate that these two techniques cannot be separated. The next step in the

simulations will be to predict the growing body of detailed data being developed by

Nishioka et al. (1980, 1981, 1984, 1985) on the latter stages of the breakdown process.

4. THREE-DIMENSIONAL BOUNDARY LAYERS

Three-dimensional flows offer a rich variety of instability mechanisms and the 3-D

boundary-layer flow over the swept-wing is no exception. This type of flow is

susceptible to four types of instabilities that lead to transition. They are leading-edge

contamination, streamwise instability, centrifugal instability, and the topic of this section,

crossflow instability. Leading-edge contamination occurs along the attachment line and

r j d
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is caused by disturbances that propagate along the wing edge (Pol 1979, 1984a,b).

Streamwise instability is associated with the chordwise component of flow and is quite

similar to processes in two-dimensional flows, where T-S waves generally develop. This

usually occurs in zero or positive pressure-gradient regions on a wing. The general

theory is given by Nayfeh (1980). Centrifugal instabilities occur in the shear flow over a

concave surface and appear in the form of Gortler vortices (Floryan and Saric, 1979;

Hall, 1983). Attachment-line contamination problems are important for transition control

but not discussed here because of the existing reviews cited above. At the same time, a

review of Gortler vortices is beyond the goal of this report.

A wide body of literature exists on stability and transition problems of rotating

disks, cones, and spheres. These are classic problems of three-dimensional boundary

layers that exhibit the same generic stability characteristics. The protagonists are Malik

et al. (1981), Kobayashi and Kohama (1984), and Kohama and Kobayashi (1983).

These, along with others, are reviewed by Reed and Saric (1986) and will not be

discussed here.
The focus of this section is on the crossflow instability which occurs in strong

negative pressure gradient regions on swept wings. In the leading-edge region both the

surface and flow streamlines are highly curved. The combination of pressure gradient

and wing sweep deflects the inviscid-flow streamlines inboard as shown in the schematic

• "of Fig. 6. This mechanism re-occurs in the positive pressure gradient region near the
trailing edge. Because of viscous effects, this deflection is made larger in the boundary

layer, and causes crossflow, i.e. the development of a velocity component inside the

boundary layer that is perpendicular to the inviscid-flow velocity vector. This is

illustrated in the schematic of Fig. 7. This profile is characteristic of many different
three-dimensional boundary-layer flows. The crossflow profile has a maximum velocity

somewhere in the middle of the boundary layer, going to zero on the plate surface and at

the boundary-layer edge. This profile exhibits an inflection point (a condition which is
known to be dynamically unstable) causing so-called crossflow vortex structures to form
with their axes in the streamwise direction. These crossflow vortices all rotate in the

same direction. Descriptions of this instability are given in the classic paper by Gregory,

Stuart and Walker (1955) and in the reports by Mack (1984b) and Poll (1984b).

In the past ten years considerable progress has been achieved in calculating the

stability characteristics of three-dimensional flows. The state-of-the-art transition

prediction method still involves linear stability theory coupled with an eN transition

prediction scheme (Mack, 1984b; Poll, 1984b). Malik and Poll (1984) extend the

stability analysis of three-dimensional flows, analyzing the flow over a yawed cylinder,
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to include curvature of the surface and streamlines. They show that curvature has a very

stabilizing effect on the disturbances in the flow. This is compared with the experimental

results of Poll (1984a) which show good agreement with the transition prediction
scheme. They also find that the most highly amplified disturbances are traveling waves

and not stationary waves. Here again Malik and Poll (1984) obtain good agreement with

Poll's (1984a) recent experimental work where Poll identifies a highly amplified
". traveling wave around one kHz near transition. Malik and Poll obtain N factors for the

fixed-frequency disturbances between 11 and 12 which agreed with the work of Malik,
Wilkinson and Orszag (1981) on the rotating disk. In both cases (the disk and cylinder),
when the extra terms involving curvature and Coriolis effects are omitted in the stability
analysis, the N factors are much larger which illustrates the need to do the realistic

stability calculations.

Michel, Arnal and Coustols (1984) develop transition criteria for incompressible
two- and three-dimensional flows and in particular for the case of a swept wing with
infinite span. They correlate transition onset on the swept wing using three parameters:

-;' a Reynolds number based on the displacement thickness in the most unstable direction of

flow, the streamwise shape parameter, and the external turbulence level. They simplify
the problem by not including curvature effects and assuming locally parallel flow and
even with these simplifications, the comparison with experiment shows good agreement.

The current experimental work of Poll (1984a) focuses on the crossflow instability
where he shows that increasing yaw has a very destabilizing effect on the flow over a

swept cylinder. He characterizes the instability in two ways. The first is by fixed
disturbances visualized by either surface evaporation or oil-flow techniques. These
disturbances are characterized by regularly spaced streaks aligned approximately in the
inviscid-flow direction, leading to a "saw-tooth" pattern at the transition location. The

second way is with unsteady disturbances in the form of a large-amplitude high-
frequency harmonic wave at frequencies near one kHz. At transition near the wall
surface, he obtains disturbance amplitudes greater than 20% of the local mean velocity.
Initially he tries to use two parameters to predict transition. They are the crossflow
Reynolds number and a shape factor based on the streamwise profile. However, based
on the results of his research, he found that two parameters alone are not enough to
predict transition, and that one needs at least three parameters to accurately describe the

crossflow instability.
Michel, Arnal, Coustols and Juillen (1984) present some very good experimental

results on the crossflow instability, conducted on a swept airfoil model. By surface
visualization techniques they show regularly spaced streaks that are aligned practically in
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the inviscid-flow direction, with a "saw-tooth" pattern near the transition area. They

perform hot-wire measurements on the stationary waves. Their results show a spanwise

variation of the boundary layer before transition that becomes chaotic in the transition

region. The variations are damped in the turbulent region. They also find a small peak in

the spectra around one kHz (like Poll, 1984a), which is due to a streamwise instability.

In addition to this they provide some theoretical work on the secondary velocities, and

show counter rotating vortices in the streamwise direction. However, when these

4components are added to the mean velocities the vortices are no longer clearly visible.

Even with all this progress there are very little experimental data with which to compare

the theoretical models.

A major unanswered question concerning swept-wing flows is the interaction of

crossflow vortices with T-S waves. If the vortex structure continues aft into the mid-

chord region where T-S waves are amplified, some type of interaction could cause

premature transition. In fact, the unsteadiness at transition observed by Poll and Michel

et al. could be due to this phenomenon. Indeed early LFC work of Bacon et al. (1962)

show a somewhat anomalous behavior of transition when sound is introduced in the

presence of crossflow vortices. It is well known that streamwise vortices in a boundary

layer strongly influence the behavior of other disturbances. Nayfeh (1981) shows that
Gortler vortices produce a double-exponential growth of T-S waves. Malik (1986) in a

computational simulation of the full Navier-Stokes equations is unable to find this
interaction however, indicating a need for more work in this area. Herbert and Morkovin

(1980) show that the presence of T-S waves produces a double-exponential growth of

Gortler vortices, while Floryan and Saric (1980) show a similar behavior for streamwise

vortices interacting with Gortler vortices. Reed (1984) analyzes the crossflow/T-S

interaction in the leading-edge region by using a parametric-resonance model. Reed

shows that the interaction of the crossflow vortices with T-S waves produces a double

exponential growth of the T-S waves. The results of Bacon, Pfenninger and Moore

(1962) and Reed (1984) clearly show the need to experimentally study problems of this

kind.
Saric and Yeates (1985) established a three-dimensional boundary layer on a flat

plate that is typical of infinite swept-wing flows. This is done by having a swept leading

edge and contoured walis to produce the pressure gradients. The experimentally
measured Cp distribution is used along with the 3-D boundary-layer code of Kaups and

Cebeci (1977) to establish the crossflow experiment and to compare with the theory.

Some of the results of Saric and Yeates (1985) are discussed below because they

illustrate that not everything is as it should be in three-dimensional boundary layers.
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Boundary-layer profiles are taken at different locations along the plate with both the
slant-wire and straight-wire probes. Reduction of both the straight-wire and slant-wire

data at one location produces a crossflow profile which provides comparison with the
theory. The velocity component perpendicular to the inviscid-flow velocity vector is

called the crossflow velocity. By definition, since the crossflow profile is perpendicular
to the edge velocity, the crossflow velocity is zero in the inviscid flow.

Disturbance measurements of the mean flow are conducted (Saric and Yeates, 1985)
within the boundary layer by making a spanwise traverse (parallel to the leading edge) of
the hot wire at a constant y location with respect to the plate. These measurements are

carried out at many different x and y locations using two different mean velocities. The
results show a steady vortex structure with a dominant spanwise wavelength of
approximately 0.5 cm. The corresponding spectrum for this disturbance measurement
shows a sharp peak at a wavelength of about 0.5 cm, but it also shows a broad peak at a
larger wavelength of 1.0 cm, generally at a lower amplitude. The cause of this broad

peak at the larger wavelength is explained by the linear-theory predictions (Dagenhart,
1981) for crossflow vortices. This 0.5 cm wavelength does not agree with the flow-

visualization results nor with the theoretical calculations of the MARIA code (Dagenhart,
1981).

The naphthalene flow-visualization technique shows that there exists a steady

crossflow vortex structure on the swept flat plate. The pattern of disturbance vortices is
nearly equally spaced and aligned approximately in the inviscid-flow direction. The

wavelength of the vortices is on the scale of 1 cm and this spacing agrees quite well with

the calculated wavelength from the MARIA code.

While the flow visualization clearly indicates a spanwise wavelength of 1 cm on
the surface, the spectra of the hot-wire measurements show a dominant sharp peak at 0.5

cm and a smaller broad-band peak at 1 cm. This apparent incongruity can be explained

with the wave interaction theory of Reed (1985), who uses the actual test conditions of
this experiment. Reed shows that it is possible for a parametric resonance to occur

between a previously amplified 0.5 cm vortex and a presently amplified 1 cm vortex and
that measurements taken near the maximum of the crossflow velocity would show a

strong periodicity of 0.5 cm. Moreover, Reed's wall-shear calculations and streamline
calculations show the 0.5 cm periodicity dying out near the wall and the 1 cm periodicity
dominating. These phenomena are not observed by Michel et al. (1984) who measure
phenomena not measured by Poll nor Saric and Yeates.

Two important points need to be emphasized. First, one must, whenever possible,
use multiple independent measurements. This was the only way the 0.5 cm and the 1.0
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cm vortex structure could be reconciled. Second, the steadiness of the vortex structure in

the wind tunnel experiments in contrast to the unsteady predictions of the theory,

indicates that some characteristic of the wind tunnel is fixing the vortex structure. This is

directly analogous to the biasing of the K-type secondary instability in the flat plate flow.

Perhaps some very weak freestream vorticity is providing the fix for the crossflow vortex

structure. All of this serves notice that stability and transition phenomena are extremely

dependent on initial conditions.

5. TRANSITION PREDICTION AND CONTROL

When the recent work on subharmonics is added to the discussion at the end of

section 3 on the limitations of the eN method, one indeed has an uncertainty pinciple for

transition (Morkovin, 1978). Transition prediction methods will remain conditional until

the receptivity problem is adequately solved and the bypass mechanisms are well
understood. In the mean time, extreme care must be exercised when using correlation

methods to predict transition. Additional problems of transition prediction and laminar

flow control are discussed by Reshotko (1985, 1986). The main principle of laminar

flow control is to keep the disturbance levels low enough so that secondary instabilities

and transition do not occur. Under these conditions, linear theory is quite adequate and
eN methods can be used to calculate the effectiveness of a particular LFC device.

The idea of transition control through active feedback systems is an area that has

received considerable recent attention (Liepmann and Nosenchuck, 1982; Thomas, 1983;
Kleiser and Laurien, 1984, 1985; Metcalfe et al., 1985). The technique consists of first

sensing the amplitude and phase of an unstable disturbance and then introducing an

appropriate out-of-phase disturbance that cancels the original disturbance. In spite of

some early success, this method is no panacea for the transition problem. Besides the

technical problems of the implementation of such a system on an aircraft, the issue of

three-dimensional wave cancellation must be addressed. As Thomas (1983) showed,

when the 2-D wave is canceled, all of the features of the 3-D disturbances remain to

cause transition at yet another location. Some clear advantage over passive systems have
yet to be demonstrated for this technique.
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