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ABSTRACT 

Full  field  numerical  solutions  for  a  crack   which   lies  along   the   interface  of  an 

elastic-plastic   medium   and   a   rigid   substrate   are    presented. The   solutions   are 

obtained using a small strain version of the J^ deformation theory with power law 

strain hardening. In the present article results for loading causing only small scale 

yielding at the crack tip are described; in a subsequent article results for contained 

yielding   and   fully   plastic   behavior   will   be  presented. The   oscillatory  stresses   on 

the bond line and overlapping of the crack faces, characteristic of small strain linear 

elasticity,    are    shown    to    be    essentially    precluded    by    material    nonlinearity. In 

addition we find that, although the near tip fields do not appear to have a separable 

form as for the well known HRR fields in homogeneous media, they do bear 

interesting   similarities   to   certain   mixed   mode   HRR   fields. Numerical   procedures 

appropriate for solving a general class of interface crack problems are described. 

A description of a numerical method for extracting the mixed mode stress intensities 

for cracks at interfaces, and in homogeneous isotropic or anisotropic media, is 

included. 
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1.   INTRODUCTION 

Fracture, whether it occurs by fibrous or cleavage modes, invariably begins at 

interfaces. In structural alloys, precipitation or segregation of impurities at grain boundaries 

can lead to transitions from ductile to cleavage fracture and to concomitant losses in 

ductility and  toughness. In so-called advanced materials such as structural ceramics, 

composites, and polycrystalline intermetallic alloys, interfacial and intergranular fractures 

are common and may, in large part, determine the material's overall mechanical response. At 

present, however, what exists is only a relatively small group of solutions for the crack tip 

fields at the interfaces of isotropic linear elastic media (e.g. Williams, 1959; Erdogan, 1963, 

1965; Sih and Rice, 1964; Rice and Sih, 1965; England, 1965). A formal solution for the 

field of an isolated crack lying along the interface of linear anisotropic media has been given 

by Willis (1971) which, while perhaps not lending itself to a ready evaluation of the nature of 

the field, does allow for a computation of the energy release rate for crack extension along 

the interface. To our knowledge there are no solutions for the fields of interface cracks 

in elastic-plastic materials and this makes it difficult to analyze the legion of interface 

fracture phenomena alluded to above. One purpose of this study is to provide such solutions 

within a framework consistent with what exists for nonlinear fracture mechanics in 

homogeneous materials (Hutchinson, 1983). Another is to develop numerical procedures 

capable of accurately resolving the complex fields which develop at interfaces. Our 

present, on is to be given in two parts: in the present paper the structure of the asymptotic 

field under small scale yielding conditions is described; the fields that develop under 

contained yielding and fully plastic conditions will be presented in a subsequent publication. 

Implications of the characteristic stress and deformation fields that form at and near 

interfaces for fracture mechanics will be detailed in the latter. 

Specifically, the plane strain boundary value problem for a center cracked plate loaded 

with uniform remote stresses is solved and discussed here. This is illustrated along with a 

version of the finite element mesh used for numerical solution in Fig. 3.   The crack lies 
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on the interface between a rigid substrate and a nonlinear elastic-plastic material 

characterized by a Jj deformation theory. This problem serves as a prototype for a wide 

class of physically interesting phenomena involving microcracking and macroscopic 

fracture, while at the same time allowing for an unambiguous and definitive study of 

the structure of the fields of interface cracks within the context of a complete boundary 

value  problem. Crack  tip  fields  have  been  evaluated  numerically  for  linear  elastic 

materials and nonlinear elastic-plastic materials (characterized by a small strain J^ 

deformation theory) under small scale yielding, contained yielding, and fully-plastic 

conditions. In the present paper attention is focused on elastic behavior and 

elastic-plastic behavior under small scale yielding. For this analysis a domain 

formulation of an interaction energy release rate is employed to extract the complex 

stress intensity factors from the numerical fields. Some discussion of results for 

contained yielding is provided, but as noted above, a full treatment of these cases along 

with the fields for cracks under loading conditions that cause fully yielded behavior will 

be given in a subsequent article. 

In the context of interface cracks, small scale yielding is meant to pertain to 

loading conditions for which the plastic zone emanating from the crack tip is surrounded 

by elastic fields which are well approximated by the elastic singularity fields for the 

interface crack. We do not suggest that the plastic zones develop in a self-similar 

manner \s they do for cracks in homogeneous media. Indeed the change in plastic zone 

size and shape with increasing remote stress is detailed in Sections 4.3, and this should 

be kept in mind in interpreting the results presented in Sections 4.3 and 5. 

As mentioned, the calculations are performed for a material described by a small 

strain, isotropic J^ deformation theory. This was done in order to facilitate the 

connection between the interface crack solutions, the existing framework of nonlinear 

fracture mechanics, and specific solutions for crack tip fields in homogeneous media. 

Both qualitative and quantitative similarities between  the fields are highlighted in the 



results we present. It is found, for example, that the near-tip stress and strain fields 

are inherently mixed mode regardless of the far-field loading. Although the fields for 

the interface crack are not of the usual separable form, there are nonetheless strong 

similarities between them and the mixed mode fields for cracks in homogeneous media. 

(Thus far, our attempts to find fields near the tip of an interface crack which are of a 

separable form have not been successful.) These features have important implications for 

the mathematical characterization of the fields as well as for failure processes that may 

be induced at or near the interface. 

We note, however, that the stress histories that develop near the tip of the interface 

crack cannot be described as proportional stressing. At low remote stress levels, for 

example, the fields that develop near the tip are of a strongly mixed mode 

nature - reflecting the mixed mode character of the linear elastic field. At higher 

remote stresses our results show that the crack tip fields are more nearly like those 

corresponding to pure mode I fields of cracks in homogeneous media. The transition 

from strongly mixed mode fields to nearly mode I fields certainly involves 

non-proportional stressing. Thus interface crack tip behavior is more complex than is 

found for cracks in homogeneous media for which proportional remote loading induces 

proportional stressing near the crack tip. The link between the fields calculated here 

for a Jj deformation theory material and those appropriate to path-dependent 

incremc    al elastic-plastic theories is the subject of the current investigation. 

The plan of the paper is as follows. In the next section we present a summary of 

available results for crack tip stress and displacement fields in linear isotropic media. 

This introduces the notion of a stress concentration vector, or stress intensity factors, for 

interface cracks and provides the requisite background to analyze the elastic-plastic 

results. A complete description of the boundary value problem to be solved is also given. 

Numerical methods are then described, followed by the presentation of the full field 

solutions.   A short discussion on the nature of the computed fields concludes this paper. 



2.    PERSPECTIVES ON CRACKS AT BIMATERIAL INTERFACES 

2-1   Overview of Results for Linear Elastic Mcdin 

A number of solutions for the stress and displacement fields for cracks lying along 

bimaterial interfaces have been obtained for isotropic materials by, for example, Williams 

(1959), England (1965), Erdogan (1963,1965), Sih and Rice (1964) and Rice and Sih (1965). 

For anisotropic materials Willis (1971) has provided a formal solution which allows the 

energy release rate to be evaluated. Our concern in this section is to illustrate the 

nature of the tractions and the displacement discontinuities on the crack line at the 

crack tip, identify stress intensity factors and relate them to energy release rates. The 

discussion is confined to isotropic elastic media where the results are easily represented 

in a concise structure. 

We refer to Fig. 1 which shows a crack lying along an interface separating 

media 1 and 2. The shear moduli and Poisson's ratios are n^, n^ and \> , v . i. h the 

distance measured along the bond line from the crack tip such that 5 = r, the polar 

coordinate, when 9 = 0 and 6 = n. In what follows it is to be understood that 5 is 

directed along the bond line in the expressions for tractions, whereas it is directed back 

along the crack faces in the expressions given below for the displacement jumps across 

the crack face. Existing solutions show that the tractions on the bond line can be 

expressed in the form 

K^ cos(6/n(5/2a))      K2sin(e/n(5/2a)) 

22    - ;^— =  (2.1a) 
v2n        . nn 

and 

a 
K^sin(e/n(5/2a)) K2Cos(£/n(5/2a)) 

12    = = ~   + =  (2.1b) 
•2775 ^277? 

where € is the bimaterial constant introduced by Williams (1959), Erdogan (1963), Sih and 

Rice (1964), and England (1965), defined as 
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€    = 
277 

-In 

3-4v  I     J_ 

1 3-4v„ (2.2) 

Kj and K^ define two stress intensity factors which, we note, have units of 

stress-(length)^ in analogy with the definition of stress intensity factors in homogeneous 

media. It is convenient to introduce a complex stress intensity factor defined by 

K = K^ + iKj. This definition is related in a simple way to others available in the 

literature and, for example, is related to the complex stress intensity factor of Sih and 

Rice (1964), k = k^ + ikj, by K = ^77 cosh(77e)(2a)^^k. 

Combining (2.1) as in the original solutions cited above (see also Willis' (1971) eq. (4.4)), 

the tractions on the bonding surface can also be expressed as the complex vector 

t    =     '^22    +  i   °12 -^ gie/n (5/2a) ^ _^j_/^^ye 
V2n V2n^ 

(2.3) 

Explicit examples of K for three crack geometries and loading configurations, taken 

from the above references, are given in Fig. 2. We note that, in general, the two 

stress modes defined by K, and K^ each involve mixed tension and shear on the 

bonding surface  and, in  isotropic media, represent orthogonal  modes.       That is, if 

then 

ti   = 

t„    = 

J_.i6/n(?/2a) 
1/2775 

K 
^      ei{€/n(5/2a) + 77/2} 

V2ni 

(2.4a) 

(2.4b) 

which is oriented at a right angle to t^ when plotted on a graph with a^^ on the real axis 

and a^2 O" the imaginary axis. When the two media are identical, e = 0 and K^ and 

Kj reduce to the usual mode I and II stress intensity factors, Kj and KTT. 
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Displacement   jumps   across   the   crack   face   have   also   been   given   (explicitly   by 

England, 1965) and, at the crack tip, take the form, 

2f^. ill 
L Ml M,   J 

(l+2i6)cosh7Ze ^     -* 

This can also be written as 

^U   =    — KvU2ni^/2ay^c-'^ (2.6) 
(l+4e2)^cosh7r€ 

where 13 = tan-i2e.       Thus the contributions to AU associated with the stress modes K 

and K^ (call them AU^ and AU2) are also orthogonal but are not precisely aligned with t 

and tj.   In fact, if t^ and t^ are placed on a graph whose axes are a^^ ^nd a^^ then the 

orthogonal pair AU^, AUj, when graphed with respect to axes Auj and Au^, would appear 

to be rigidly rotated with respect to the orthogonal pair t^, t^ by the angle 6. 

As noted by Williams (1959), and in subsequent works, a characteristic of the linear 

elastic fields of interface cracks is that they violate compatibility at distances very close 

to the tip; the stresses and displacement fields on the crack line oscillate with unbounded 

amplitude and vanishing wavelength. Looking ahead to the problem of the center cracked 

panel under far field tension that we investigate numerically, we note that Rice and 

Sih's (1965) results yield the stress intensity vector K = a^^ vm (l+2i£). This means, 

for example, that the normal tractions on the bond line become compressive as soon as 

Re[(l+2i€)ei^^n(5/2a)J ^ 0^ ^^^^^ 

or using the definition for B introduced earlier,   when 

Re U[^lna/2a)+B]]   ^   Q 
(2.8) 



Since (5/2a) <  1, this first occurs as soon as 
V 

e/n(5/2a) + B <  - n/2   . (2.9) 

Thus   OQQ first becomes compressive at 

(5/2a)  =   e-["/2+e]/^    . ^2.10) 

For the case of a crack on a rigid substrate, where in the deformable half space v = 0.3, 

€ ^ 0.0935, and this leads to a value of ?/2a = VxlO'^. Our numerical results 

reproduced this (albeit non-physical) feature of the linear elastic field. In fact, looking 

ahead to Fig. 8, where the numerical solution for the interface crack in a linear elastic 

medium is presented, it may be noted that along a ray at an angle of 7.5° with the bond 

line (i.e. essentially on the bond line) OQQ becomes compressive at r/a = IxlO'^ which is 

completely consistent with this stress component first becoming compressive at 

5/a ^ 14x10-9 at e = 0°. However, we note that when the loading is a combined remote 

tension and shear, K = [(a~, - la^^e) + i(a"3 + 2eo';^)]vm and a similar analysis shows 

that OQQ first becomes compressive on the bond line when 

a/2R) = c-w^ + x]/€ ^^^^^ 

where 
X = tan-^a-^ + 2eo;^)/{o;^ - l.a'l^)). (2.i2) 

Now   suppose   a^2 >  0   but   a"^ = -lo';^;   then   X ^ -58.7°   and   5/2a =  IxlO'^ ! if 

^12 = ~^2 2' ^ = -38.2    and 5/2a = 3x10"^ Thus the regions where the stresses (based 

on small strain linear elasticity assumptions) oscillate are not always confined to vanishingly 

small regions near the crack tip and their extents are quite sensitive to the nature of the 

remote loading and the value of €. In Section 5 full field results are presented for the 

interface crack in nonlinear materials subjected to remote mixed loadings. They demonstrate 

that such oscillations are not present when the remote stresses are small fractions of the 

material's yield stress.     This is also shown, in detail, in Section 4 for the case of pure remote 



-9- 

tensile    loading.    It    may    be    noted    that    when    v =  1/2,    €  = 0    and    the    near-tip 

displacements vanish identically on the bond line for the plane strain problem. For this 

case the fields are non-oscillatory and are identical to the fields for the corresponding 

homogeneous media. This fact has been noticed by Knowles and Sternberg (1983). 

When written out in full the asymptotic crack tip stress field is given by 

2 
V       ^a (a) 

^ii   =   /    rr gij [6, €/n(r/2a);e] (2.13) 

(a) 
and, for completeness, the functions gj: are given in Appendix I in a form consistent 

with our definition of the complex stress intensity vector K.      It should be noted that 

the fields (2.13) are not of a separable form.   In contrast, the singular fields of cracks in 

homogeneous media are separable.     It should also be noted that with our definition of 

the   complex stress intensity factor, crack geometry appears in the angular functions as 

well as in the stress intensity factors. 

The energy  release  rate  is  readily  computed from the  given  expressions for the 

traction and displacement fields as the virtual work integral 

Aa 

t(5;0)-AU(5;0+Aa)d5 (2.14) 
Aa-K) 2Aa 

0 

where t(^;0) is the complex traction vector at the crack tip, given by (2.3), when the 

crack is at x = 0, and AU(5; 0+Aa) is the complex conjugate to the displacement jump 

vector when the crack has advanced to the position 0+Aa. The integral is easily reduced 

to the form 

rl -V, 1 -V 
|KH-^+—i] 1 
'       '       L    Ml ^2    J 1 |. 
   X   

2 77cosh 776 (l-2i€)   . 

l_t.^-i€ 
dt (2.15) 

0 
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where the last integral is recognizable as the complex Beta function B(l/2+ie, 3/2-ie). 

Upon evaluation of B, 

(K 
G   = 

2 2        \   +    I 
l+Kj)     I     Ml ^2      J 

4cosh''77e 

Orthogonality of the stress modes guarantees that they decouple such that there are no 

terms of the form Kj,K2. Note also that the integral in (2.14) has no imaginary part, a 

fact noticed in the general anisotropic case by Willis (1971). 

List of stress intensity factors 

We complete this section with the short list of stress intensity factors tabulated in 

Fig. 2. Included in this list is the center cracked panel we have studied numerically. It 

may be noted in these examples that with K defined by (2.3), the ratio of K, to K does 

not depend on the characteristic dimension 2a. 

2-2    The Interface Crack Small Scale Yielding Problem 

The specific problem we are concerned with here, illustrated in Fig. 3, is that of a 

large plate loaded remotely by uniform stresses. Crack length, 2a, is the characteristic 

dimension with respect to which the stress intensity factors listed in Fig. 2, and the 

asymptotic angular stress functions given in Appendix I, are evaluated. Uniform normal 

stresses are imposed on the external boundaries with the primary variable being 0°° . No 

remote shear is imposed although, as is evident from the elastic solutions, large shear 

stresses develop on and near the crack line due to the differences in material properties. 

This is also true for the elastic-plastic cases treated numerically. 

As noted by Rice and Sih (1965), continuity of the extensional strain e^^ across the 

bond line requires that the normal stress parallel to the bond line be discontinuous. 

They derived the required jump in a"^, viz. 



where 
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» ,-s          CO ,,,     (3+co)e^"^ - (3w+l)    „ 
a,,(2) = wo^^(l) +  — 0^2 (2.17) 

l+e""'^ ^ 

M2(I-Vi) 
u = 

MiCl-Vj)     ■ (2.18) 

For the present case of the crack on the rigid substrate, w - «> and the above relation 

takes the form 

-5 _ P 2 77€ V, 

OjiClj =  a,,   = -a„     . (2 19) 

In the numerical solutions described next the normal stress given by (2.19), for v = 0.3, 

was imposed on the side faces of the deformable medium shown in Fig.  3. 

The small scale yielding study is carried out within the context of small strain 

theory. The deformable medium is taken to be described by 3^ deformation theory for a 

Ramberg-Osgood stress-strain behavior. In uniaxial tension the material deforms 

according to 

e/e^ = o/a^ + 0(0/0^)'^ (2.20) 

where o^ and e^ are the reference stress and strain, a is a material constant (taken to be 

0.1 in this study) and n is the strain hardening exponent. Under multi-axial stress 

states  a-, the strain is 

1+v l-2v 3 

^°oJ 

n-1 Sij 
(2.21) E 

Here, s^j is the stress deviator, o^ = (3s|jSij/2)^ is the effective stress, and v and E are 

the elastic constants. In writing (2.21) we have used the connection a^ = e E. 

Numerical solutions under plane strain assumptions have been obtained for a range of 

hardening exponents. However, only results for n=3 (a high hardening material) and 

n=10 (a moderate to low hardening material) will be presented. In all the calculations we 

have used v equal to 0.3. 
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3.    NUMERICAL PROCEDURE 

3.1     Selective Integration 

The standard displacement-based serendipity and Lagrangian isoparametric 

quadrilateral elements perform poorly as the deformation progresses into the fully plastic 

(incompressible) range (Nagtegaal et al., 1974). These difficulties can be alleviated by 

selective/reduced integration and one implementation of this is the so-called B-bar 

method (Hughes, 1980). The strain-displacement matrix, referred to as the B matrix, is 

assembled in the following manner. The deviatric components of the B matrix are 

evaluated at the regular quadrature points. Volumetric components are evaluated at the 

reduced quadrature points; the volumetric B matrix associated with the regular 

quadrature points is obtained by interpolation/extrapolation using a lower order shape 

function. The volumetric and deviatoric components are then combined to give the 

desired matrix associated with the regular quadrature points. The latter matrix, denoted 

by B (to distinguish it from the usual B matrix, Zienkicwicz, 1977), is used in the 

formation of element stiffness matrix and for evaluating strains. 

The full Lagrangian shape functions are necessary for approaching the 

incompressible limit (Malkus and Hughes, 1978). In this regard it appears that an 

optimal element for treating nearly incompressible deformation is the 9-node Lagrangian 

quadrilateral element. For this element the deviatoric part of B is evaluated at 3x3 

Gaussian quadrature points while the volumetric part is evaluated at 2x2 quadrature 

points. The volumetric B at each of the 3x3 quadrature points is obtained by bilinear 

interpolation/extrapolation and combined with the deviatoric part to give B, i.e. 

B = B'^^^ +  B^°'   . (3 1) 

The (tangent) stiffness matrix for an element is given by the sum of the inner products 

at each Gauss point. 
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9 

(3.2) k^ =     ) (BrDB)w 

p=l 

where D is the matrix of material moduli evaluated at the 3x3 quadrature points and 
^P 

is the appropriate weight. It is known that the selective integration method gives rise to 

a spurious pressure mode in the 4-node quadrilateral element. For this element, B^°' is 

evaluated with one-point quadrature. Belytschko and Tsay (1983) have proposed a 

stabilization procedure to suppress such spurious modes. Spurious pressure modes are 

avoided  by using the 9-node Lagrangian element. 

We obtained results that are nearly identical in our numerical experimentations 

with the B-bar method and selective integration (2x2 quadrature on volumetric stiffness 

matrix and 3x3 quadrature on deviatoric stiffness matrix) on several boundary value 

problems based on the volume preserving plasticity relations (2.20). In this connection, it 

may be noted that accurate solutions to fully plastic crack problems in homogeneous 

media have been obtained using the 9-node Lagrangian element in conjunction with 

selective integration and parameter tracking (e.g. Shih and Needleman, 1984). For the 

present boundary value problem based on (2.21), the incompressibility constraint is more 

directly and efficiently accommodated by the B-bar method. In passing, we point out 

that the results plotted in the figures of this paper are the actual values computed at the 

quadrature points - smoothing has not been applied to any data. 

3.2    Parameter Tracking 

The solution to the nonlinear boundary value problem is obtained by the 

Newton-Raphson method. The iterative method is second order convergent if a close 

initial estimate of the solution is available. For highly nonlinear problems of the type 

being investigated here, the initial estimate is generated by parameter tracking. We begin 

by obtaining the solution to the linear elastic problem at the desired remote stress.     The 
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linear elastic solution is then employed as the initial estimate in the iterations for the 

mildly nonlinear problem with n=2. The convergent solution for the mildly nonlinear 

problem is then employed as the initial estimate for a more nonlinear problem, say n=3. 

In this manner solutions for material characteristics ranging from high hardening to 

nearly non-hardening are obtained. Similar tracking is performed on the remote stress 

levels; that is once a convergent solution is obtained for a given remote loading and 

nonlinear material description, it may be used as the initial guess for a new solution at a 

higher remote load. 

3.3    Domain Representation of J 

We consider the line integral (Rice, 1968) defined by 

J = 
9uj ^ 

W5,; -a;;  njdr   . (3.3) 

Here, r is a contour beginning at the bottom crack face and ending on the top face and 

Uj is the outward normal to r as shown in Fig. 4. For a nonlinear elastic solid or 

deformation theory solid, the integrand is divergence free. With regard to the crack 

between a deformable medium and a rigid substrate, the contour r begins on the bonding 

plane and ends on the upper crack face. Since there are no contributions to the integral 

along the traction free crack face and the interface X2= 0"^ (u| vanishes on the bond 

line), I .; value of J does not depend on the contour r, i.e. the integral is 

path-independent. For the general bimaterial problem, the contour r begins on the 

lower crack face and ends on the upper crack face. Path-independence is easily 

demonstrated for this general case once it is recognized that the contribution from the 

upper interface, x^= 0"*", negates the contribution from the lower interface, x^= 0". For 

monotonic loading conditions and proportional stress history at each material point, the 

above integral is also path-independent for elastic-plastic solids. 
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For numerical purposes it is more advantageous to recast the line-integral (3.3) as 

an area/domain integral. Such a representation is naturally compatible with the finite 

element method and very accurate values for J have been obtained using the domain 

representation. A domain integral formulation for the crack tip force (including the 

J-intcgral) for general material response and arbitrary crack tip motion has been detailed 

by Moran and Shih (1986) and has been applied to several crack problems in 

homogeneous media (e.g. Li et al., 1985, Shih et al., 1986). To obtain the desired 

domain representation for J, weighting functions qj are introduced. For two 

dimensional problems with the crack line oriented in the x^-direction, q^ is the only 

non-zero function and it has the value of unity on the contour r and zero on the outer 

contour CQ shown in Fig. 4. Within the area enclosed by r, CQ and the crack faces C^ 

and C., q^ is an arbitrary smooth function of x^ and x^ with values in the range from 

zero to one. The function q^(x^,X2) may be interpreted as the virtual translation of the 

material point at ix^,x^) due to a unit virtual extension of the crack in the 

Xj^-direction. Development along these latter lines has been given by Parks, 1977, Hellen, 

1975 and deLorenzi, 1982. 

For a function q^ that satisfies the above conditions, the integral in (3.3) can be 

restated as a line integral over the closed contour C which consists of r, CQ and the 

crack faces defined by 

C 

mjq^dC. (3.4) 

Here mj are the components of the unit vector normal to C that points away from the 

enclosed area. On the contour r, mj is equal to the negative of n: which has been 

defined earlier. The crack faces are assumed to be traction free. Applying the 

divergence theorem to (3.4) and using the equation of equilibrium, the equivalent domain 

representation of (3.3) is 
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J = 
3ui 9q, 

3xj 
dA (3.5) 

where A is the area enclosed by the closed contour C.     In deriving the expression (3.5), W 

is taken to be a potential function of stress, i.e., o- =  6\V/6e:-. 

3.4    Finite Element Representation of Domain J 

The finite element form of the domain representation (3.5) is briefly discussed. In 

isoparametric (JV^Hj) (-1 « n^ « I, i=I,2) space, the shape functions are constructed from 

the basic functions 

via 

1 1 
fl = -r^Cl-'^),    f2 = (l-n)(i+n),    f3 = - n(l+r?) 

N3J+I-3 = flC'l) fj(^2) '       U = 1,2,3 

(3.6) 

(3.7) 

The coordinates (Xj,X2) in the physical space and the displacements {u^,u^) are given by 

9 9 

Xi = )    N^XiK,        uj = )     N^UiK i = 1,2 (3.8) 

K=l K=l 

where Xj^^ are the nodal coordinates and U|j^ are the nodal displacements. 

The discrete form of J based on 3x3 Gaussian quadrature appropriate to the 9-node 

biquadratic Lagrange element is 

J = 

all elements  p=l 
in A 

au; 
O: 

■J 3.7 " *''i 
9qi 

9x7 

Cdx, 
det 

3n, (3.9) 

The field quantities, including q^ and its spatial derivatives, are evaluated at the   nine 

quadrature   points   and   weighted   by   Wp   and   the   determinant   of   Jacobian   matrix. 
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det (dx^^/drj^).   To be consistent with the isoparametric formulation the values of q^ and 

9qj/3xj at the quadrature points are evaluated from 

11 =)NIQII, 

9        2 
9qi        r        r    3Nj 3r7j^ 

9x: 
1=1 

1 ^ ^     9r)j^   dx- 
1=1      k=I 

Qll (3.10) 

where Nj is the biquadratic shape function and Qjj is the value of qj associated with 

the Ith node of an element. Nodal values Qjj are assigned in accordance with a 

smooth function. Numerical experiments have shown that the value of J is insensitive 

to the type of smooth function. Thus mesh design and convenience are the only 

considerations in selecting a smooth function. A detailed discussion of several aspects 

of the implementation of the domain representation of J, including candidate q- 

functions, has been given by Shih et al. (1986). 

3-5    Interaction Integral for Extracting Complex Stress Intensity Factors 

Under    the    assumption    of    linear   elasticity    C = J,    and    therefore   G   has    the 

line-integral representation 

r   fl 3"i ^ 
(2   ^^ ^^  ^J      iJ   8x,J   J (3.11) 

The inf-action energy release rate (see Appendix II, eq. (II.18)) is defined by 

•^int = <^tot ' ^ ~ ^z. (3.12) 

<^tot is the energy release rate of the total field (the actual field plus the auxiliary field) 

^^^ '^aux is the energy release rate of the auxiliary field. It follows from (3.11) and 

(3.12) that 

G: int ''ik(^ik)auxSlj-^ij 
r9uj ^ 

,9x1 . (<^ij)a 

9Ui   -, 

aux o 
aux °^1 

njdr (3.13) 
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We have used the reciprocity theorem to make the connection 

1 1 
(3.14) 

By virtue of (3.12) and the path-independence of the integral in (3.11), the integral in 

(3.13) is also path-independent for an elastic homogeneous medium and for the bimaterial 

problem under consideration. 

As mentioned in Section 3.3, it is more advantageous to work with domain 

representations in finite element computations. Using the weighting function q, 

discussed in Section 3.3, the domain representation of (3.13) is 

^int  = ''ik(«ik)auxSlj+   ^ij 
f^u.^ 

6x 
ij 

au; 
+ (^ii). 

aux "^1 

9qi" 
dA (3.15) 

where A is any annular domain surrounding the crack tip. Replacing the terms within 

the brackets [ ] in (3.9) by the terms within the brackets [ ] in (3.15), we have the finite 

element representation for G- ^. 

The method of extracting complex stress intensity factors will be explained using the 

particular boundary value problem under study. A more complete discussion is given in 

Appendix II. Let (a^j^)^^^, (£1^)^^^ and (du-^/dx^)^^^ be the singular fields for the deformable 

medium corresponding to unit value of the stress intensity factor K^ (designated by k^ in 

Appendix II). The singular stressses are given in Appendix I. The strains can be obtained 

using H ke's law and du^/dx^ can be obtained, after some effort, from available solutions 

(e.g., Sih and Rice, 1964). The integral in (3.15) is evaluated using the actual numerical 

fields o- and du^/dx^ evaluated at the Gauss points, and the auxiliary fields (from Appendix 

I) also evaluated at the same Gauss points. Let G[11 denote the value of the interaction 

integral. As discussed in Appendix II (see eqs. (11.22) and (11.23)), the value of K^ of the actual 

numerically determined fields for the problem at hand is given by 

2cosh^7re     ,,. 

^        (l-v)/M       '"' (3.16) 
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Similarly,  with  the  help of  auxiliary singular  fields  appropriate  to  unit  value of 

*^2' ^int ^^ evaluated.   The value of Kj of the actual numerical fields is then given by 

2cosh^ ne 

(l-v)/M 

.it-Ubll      lit        ,-■, 

^ ^   (l-v)/u    ^-'    ■ (3.17) 

It may be noted that the method can also be applied to inclined crack and 

three-dimensional crack problems. In the case of isotropic homogeneous bodies, the 

usual Kj, Kjj and Kjjj stress intensity factors are extracted from the numerical fields by 

using auxiliary fields appropriate to the isotropic homogeneous medium and the 

well-known relation between the energy release rate and Kj, Kjj and Kjjj. Such an 

approach, using the line-integral (3.13) to calculate what is in effect G-^^, has been 

employed by Yau et al.   (1980), and Stern et al. (1976) for isotropic homogeneous media. 

3.6    Computational Model 

With reference to the geometry depicted in Fig. 3a, only the right half of 

deformable medium need be considered in the finite element analysis since the problem 

possesses reflective symmetry with respect to the vertical plane bisecting the crack. The 

half crack length is a, and the half width and height of the deformable slab is 100a. 

The finite element model is constructed using 9-noded quadrilateral Lagrangian elements 

(see Fig. 3b) . We employ an arrangement of wedge-shaped 9-node elements in the 

immedi : crack tip region - short of embedding the actual singularity fields into the 

elements, such an arrangement of elements contains sufficient degrees of freedom to 

reproduce the qualitative features of crack tip fields. 

The wedge-shaped element has a radial length of lO'^^a. The arrangement of wedge 

elements is surrounded by semi-circular strips of elements as shown in Fig. 3c. Each decade 

of radial length is spanned by four semi-circular strips of elements - thus the domain between 

10"    a and a is spanned by 60 strips of elements which are  generated by a logarithmic scale. 
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Within each strip, the angular distance from 0 to 77 is   spanned by 12 equally sized elements. 

The mesh for the domain r   «  a, as laid out in this manner, has 732 elements. 

The domain beyond r > a, bounded by the remote boundaries and the symmetry plane, 

is modelled by 140 elements. All in all, there are 872 elements and 3639 nodes in the model. 

To test the adequacy of the mesh for the problem at hand, we carried out several elastic and 

elastic-plastic test calculations using the above mesh and a refined mesh which had twice as 

many elements. The results differed typically by less than 1 percent and we chose to use the 

coarser mesh to generate the results to be reported in the next section. The adequacy of the 

mesh design and the element type in conjunction with selective integration, and the accuracy 

of the domain representation for calculating J and the interaction integral will become 

evident in Section 4. 

4.    RESULTS 

4.1     Mixed Mode Crack Tip Fields in Homogeneous Media 

The plane strain elastic-plastic fields for the center cracked panel have been 

computed for the case where the upper and lower half materials are identical and 

are described by Jj-deformation theory with power law hardening. In this case the 

near tip fields are essentially of the type originally derived by Hutchinson (1968a,b) 

and Rice and Rosengren (1968) for pure modes I and II and by Shih (1974) for 

mixed jde. Hereafter, they will be referred to as HRR fields. Application of the 

J-integral to the mixed mode small-scale yielding problem reveals that the dominant 

singularity governing the asymptotic behavior of the stresses, strains, and 

displacements  near  the crack  tip has  the form 

o-j =  aoKPr-l/(^+l)aij(e;MP,n),    e..= ^[KP ]"r-"/(n+l)?.j(e;MP,n)   (4.1a,b) 

KP   "rl/(n+l)2.(e.MP,n),     a^ = a^KPr-l/Cn+l) 5^(e;MP,n).     (4.1c,d) 
CXOQ 

U:   =   
1 E 
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In the above expressions the dimensionless angular functions a- ?-, and u- 

depend parametically on the plastic mixity parameter, MP, and the hardening 

exponent, n.       The plastic mixity  is defined as 

MP = - tan"^ 
77 

OQQ(r,e=0) 
/im 
r-0   Oj.Q(r,e=0) 

(4.2) 

such that MP = 1 for pure mode I and MP = 0 for pure mode II. The amplitude of the 

HRR singularity field, KP (plastic stress intensity factor), is defined by Shih (1974) such 

that the angular distribution, a^, attains a maximum value of unity. With this definition, 

KP is related to the value of J by 

aa' 
In(KP) n+1 

(4.3) 

The factor Ij^ depends on the degree of mixity, MP, and n, and has been determined 

for a wide range of these parameters by Shih (1974). For our present purposes we 

find it convenient to rescale KP by setting Ij^ = 1. 

For strictly linear elasticity, the mixity parameter can be reinterpreted as 

MP - M® = - tan"^ 
n 

KT 

K II 
(4.4) 

For  small   scale   yielding,  where  the  stresses  beyond  the  plastic  zone  arc   those  of  the 

elastic K-field, M^ is also defined by 

I M^ = - tan 
oee(r*,e=o) 

(4.5) o^9(r*,9=0) 

where r* is within the zone of dominance of the elastic field.   In this case J is given  by 

J = 
(1-V2) 2 

(Kj+K„) (4.6) 



ip =  tan"^ 
12 

^22 
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For the case of a finite crack in an infinite homogeneous plate, two types of 

loading are analyzed, one for which the elastic K field corresponds to pure mode I, 

and  the other  for which  the mode is mixed.    We define  4) as     y. 

■oT„>, r^W) 
—-   =  77/2(1-M^) (4.7) 

Thus the two cases correspond to ip = 0° and -30°. We chose to display the results for 

4) = -30 because the mixed plastic field that develops under this loading bears 

noteworthy similarities to the field near the interface crack tip when the remote loading 

on the bimaterial plate is pure tension. 

Figures 5a and 5b show distributions of stress ahead of the crack tip in a nonlinear 

homogeneous medium. The hoop stress, ogg, and effective stress, a^, along the central row 

of quadrature points in the first row of elements, 9 = 7.5°, are shown for the cases 

where n = 3 and 10. The radial distances are normalized by r the length of the 

plastic zone along 6 = 0°. Note that the stresses plotted are the actual values computed 

at the Gauss points - we do not apply any smoothing to the data points in this and other 

figures in this paper. 

In Fig. 5a /n(stress/aQ) is plotted on the ordinate and the dotted line is the hoop 

stress   according   to   the   K   field. The   regions   of   elastic   K-field   dominance   are 

indicated. Within the plastic zone the curves indeed take on the slopes -1/4 and -1/11 in 

accorda -e with (4.1a). In Fig. 5b the normalized stress, stress/[oQ[J/(aoQ€Qr)]^/^ "+1)}, 

is plotted on the ordinate. The stress levels according to the HRR singularity fields 

(4.1a) for n = 3 and 10 are indicated. (These levels correspond to values of the 

dimensionless stress ogg which are 1.26 and 2.16 respectively.) The normalized stresses are 

nearly invariant for r < Tp and indicate fields that are entirely of pure mode I HRR 

form. Figures 6a and 6c show the angular distribution of normalized stress (defined as 

in   Fig.  5b) deep inside the plastic zone, for n =  3 and  10, and  tp = 0°. Figures 6b 

and 6d show the angular variations in stress for the mixed mode field corresponding to 
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0 = -30 . These normalized fields which are obtained from a full field analysis agree 

perfectly with the mixed mode asymptotic fields (Shih, 1974). One noteworthy feature of 

these fields is that the levels of normal stress, for a given overall value of the J-integral, 

are reduced for the mixed mode field. This is not only the case for the normal stress 

levels directly ahead of the crack, but is also true for the maximum values of stress over 

the full range of 9. Another interesting feature of the mixed mode solutions is the large 

shear stresses ahead of the crack tip. 

Plastic zones determined from the analysis of the full boundary value problem 

arc shown for these same values of n in Figs. 7a and 7b for pure mode I loading 

(0 = 0°)   and   mixed   mode   loading   (0 = -30°). The   plastic   zones   are   essentially 

identical to those obtained by Shih (1974) based on an analysis of the small scale 

yielding   boundary  value  problem. For  the  mixed   mode  case,  the   plastic   zones  are 

no longer symmetrical above and below the crack line and, for a fixed value of 

remote loading as measured by the value of J, extend further than for the pure 

mode  I case (note  the  difference in  the scale of  the  plots). 

Contours of hydrostatic stress are shown in Figs. 7c and 7d. Here again, it is 

noteworthy that with pure mode I loading the contours are, as expected, symmetric about 

the crack  line  but become  highly skewed  under mixed  mode  loading. A  feature of 

the hydrostatic stress field for the n=10 material is worth attention: at a fixed overall 

load level as measured by the value of J, the hydrostatic stress contour, a^ = a^, for the 

mixed mode field extends further than the contour for the pure mode I field; however, 

the zone of high hydrostatic stress, a^  ^ la^, is smaller under mixed mode field. 

4.2    The Interface Crack in Linear Elastic Media 

Figure 8 shows results for the near tip stress fields of the interface crack for 

V = 0.3. In Figs. 8a-8d normalized stresses are plotted in the form stress/(JE/r)^. The 

analytically  obtained asymptotic field (see Appendix I) is shown by the dotted line and 
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the essentially exact correspondence between it and our numerical solution is evident. At 

distances r/a < 0.05 from the crack tip, the differences between the numerical fields of 

the full boundary value problem of the center cracked plate and the analytic asymptotic 

fields are less than 5 percent (see Fig. 8a). This establishes a zone of dominance for 

the asymptotic  linear elastic field. 

Figure 8a, like Fig. 5, shows the radial distribution of stress along a ray 

connnecting the central row of quadrature points in the elements along the bond line. 

Note that the field is of a strongly mixed nature characterized by large shear stresses. 

As noted in Section 2.1, the stresses begin to oscillate as the crack tip is approached and, 

OQQ first becomes compressive at r/a = 10"^ at 9 = 7.5°. 

Figures 8b-8d show angular variations of stress at three radial distances from the 

crack tip. The strong dependence of the angular variations of the fields on the 

relative radial distance is evident. 

To extract the stress intensity factors K^ and K^ from the numerical fields, the 

interaction integral (3.15) was evaluated on several semi-circular strips of elements with 

mean radii ranging from lO'^a to a. The values of G-^^. obtained from the various 

strips differed only in the third or fourth significant digit. Specifically, for v ranging 

from 0.0 to 0.499, the value for K^ and K2, as determined by (3.16) and (3.17), agreed 

with the analytical solution given by Rice and Sih (1965) (see Fig. 2) to better than 2 

significant digits. The excellent agreement attests to the quality of the numerical fields 

and the accuracy of the domain interaction integral (3.15) for uncoupling and evaluating 

stress intensity factors. 

4.3    Small Scale Yielding for the Interface Crack Subject to Remote Tension 

As discussed previously a characteristic feature of the asymptotic linear elastic 

solution is the increasingly rapid oscillations of the fields as the crack tip is approached. The 

relative   crack   face   displacements,   given   by   (2.5),   imply   wrinkling   of   the   faces   and 
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interpenetration near the tip of the crack. The finite element solutions accurately 

reproduce the oscillation in the stress field (see Fig. 8) and crack face penetration into 

the rigid substrate for distances greater than 10"^^a from the crack tip. 

However, using the nonlinear model based on a power law hardening behavior, we 

find that at remote load levels which are a fraction of the yield stress, the crack face 

opens up smoothly. The finite element computations gave no indications that penetration 

into the rigid substrate would develop even at distances smaller than 10"^S. The stresses 

increase monotonically as we probe deeper into the plastic zone and there is no pattern 

that suggests that the stresses would reach a peak and then decrease as the distance 

within the plastic zone becomes vanishingly small. For one particular load level we 

repeated the entire calculation using a mesh which had twice as many elements. The 

numerical fields agreed to within two significant digits, strongly suggesting that fields at 

distances of 10"^°a to lO'^^a are accurately resolved by our computations. 

At each stress level the value of J was extracted from the numerical fields using 

(3.9) and the 'plateau' qj function. The values of J evaluated on annular domains with 

mean radii ranging from lO'^^a to a generally agreed to within 3 significant digits. At 

stress levels where the maximum plastic zone size is much smaller than the crack length, 

the value of J agreed precisely with the analytical result of (2.16), viz., 

4 cosh Tie 

The essentially exact path-independence of the numerically evaluated J and the precise 

agreement with (4.8) under small scale yielding demonstrate the quality of the numerical 

solution   and   the   accuracy   of   the   domain   method.    The   J   values   thus   obtained   are 

employed for the purpose of normalizing the fields to be discussed. 

We choose to present results for a high hardening material (n=3) and a moderate to 

low hardening material (n=10) to reveal the effect of plasticity on the near tip fields. 

In  particular, the behavior of the hoop stress ahead of the crack is shown in detail since 
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it is rather descriptive of the conditions at the interface and also plays an important role 

in fracture processes. Also, the variation of the hoop stress with radial distance is 

representative of the other stress components. In particular the hoop stress normalized 

by the remotely applied stress provides a direct indication of the intensification of the 

stress field. As before, the hoop stress at points on a radial line passing through the 

central row of Gauss points in the elements bonded to the interface (9 = 7.5°) is chosen 

for detailed examination. Since the distances under discussion range from lO'^^a to a it 

is necessary to plot log(r/a) on the absicca. Over distances that differ by 15 orders of 

magnitude, the normalized hoop stress varies by several orders of magnitude, and in some 

cases is compressive. With the exception of a small interval where the hoop stress goes 

to zero and changes sign, the magnitude of the normalized hoop stress is much larger 

than unity within the distances under discussion. To grasp an overall picture of the 

behavior of the fields, we confine our attention to normalized stresses with magnitudes 

greater than unity. This permits the results to be presented in a rather compact and 

informative way. Specifically we take the log of |aQQ/a°°| and to preserve the 

algebraic sign of the stress, the negative sign is appended. Accordingly, we plot 

sign(aeQ)log|a0Q/o°°|. 

The normalized stress determined by the finite element calculations for the strictly 

elastic material is plotted against normalized distance in Fig. 9a (see dashed-line curve). 

The break in the dashed-line curve near log(r/a) = -9.0 corresponds to the stress 

changing from tension to compression. It should be noted that the position of the break 

in the dashed-line curve is independent of the remote tensile stress level. We now 

examine the behavior of the stress for the strongly hardening (n=3) nonlinear material. 

At the lowest load level considered, O^/OQ = 2.0xl0"^ the plastic zone is confined to a 

distance of about lO'^^a. While the stress is negative within the plastic zone, the slope of 

the curve becomes positive for r/a < 10"^1 At the next load level, O^/OQ = 2.0x10"^ the 

stress  is  positive  over  the  entire  distance  studied,  however,  at  the  outer  fringe  of  the 
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plastic zone, lO'^ < r/a < 10-^ the trend of the surrounding clastic field is felt. At 

distances well inside the plastic zone the hoop stress increases monotonically as the crack 

tip is approached. At a still higher load level, a^/a^ = 6xl0-^ the hoop stress increases 

monotonically over the entire distance under discussion -- there is no trace of an 

oscillatory field. 

The behavior of the hoop stress for a moderate to low hardening material is shown 

in Fig. 9b. For comparison purposes, the linear elastic result is again included. At the 

very low remote stress level a^/o^ = 2.0xl0-^ the stress in the outer plastic zone is 

compressive in response, we note, to the compressive pressure of the surrounding elastic 

fields. Well within the plastic zone the stress is tensile. At the next remote stress 

level, o^/a^ = 2.0x10"^ the hoop stress in the outermost fringe of the plastic zone is 

weakly affected by the elastic fields. A short distance into the plastic zone, the hoop 

stress increases monotonically as the crack tip is approached. At the final load level, 

^°°/^o = 6.0x10-^ shown in the plot, there is no trace of any oscillatory field. (The solid 

line is terminated at log(r/a) = -12 because we were unable to complete the calculations 

for the n=10 material at this load level using a mesh which could resolve fields at 

distances of lO'^S from the crack tip.) We also note that, even at the largest remote 

stress level, the nonlinear crack tip region is surrounded by an annular zone, 

10" < r/a < 10" , in which the stresses are well approximated by the singular fields 

(2.13). 

To develop a better understanding of the plastic fields we detail their angular 

distribution at two radial distances within the plastic zone and at three load levels: 

O'^/OQ = 2xl0"^ o°/aQ = 6x10"^ and O'^/OQ = 2x10"^ We begin with the n=3 material. The 

length of the plastic zone as measured along the interface is denoted by r„. The relative 

plastic zone size, r^/a, corresponding to the three remote loads are 5.6x10"^, 3.2x10"^ and 

1.0x10"^ respectively. As mentioned previously, the asymptotic structure of the nonlinear 

crack tip fields has yet to be identified -- thus we do not have a definitive form  with 
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which to organize the numerically calculated fields. For reasons which will be evident 

shortly, the stresses are normalized using an HRR structure; in particular, the normalized 

stresses are explicitly defined as: 

^ij/^o a.. =    . (4 9^ 

(J/aao6or)l/(n+l) 

The angular distribution of the normalized stresses at a fixed relative distance 

r/rp = 1x10"^, are shown in Figs. 10a, c and e for the three remote load levels. The 

angular fields deep inside the plastic zone, r/rp = 1.0x10"^ are shown in Figs. 10b, d 

and e. It is clear from these plots that the fields are quite similar to the mixed 

mode HRR fields, for positive values of 9, shown in Fig. 6b. Specifically, within 

any given plastic zone the stress fields shift toward a mode I HRR type angular 

distribution as the distance moves deeper into the plastic zone (e.g. compare 

Figs. lOe and f). At a fixed distance relative to the plastic zone size, the angular 

fields also shift toward a mode I HRR type angular distribution as the remote load 

or the size of the plastic zone increases (e.g. compare Figs. 10c and e). Finally we 

point out that within the range of distances and loads examined, the normalized 

stresses are of order unity; the maximum value of the normalized hoop stress vary 

between 0.8 and  1.4. 

It is instructive to examine the changes in the size and shape of the plastic zone as 

the remote load increases. To facilitate comparisons with the usual presentation of these 

plots (e.g. Shih, 1974), the distances are normalized by JE/{(1-v2)a^}. The plastic zones at 

the three load levels are plotted in Fig.  11a, using these normalized distances 

X = x(l-v2)a2/JE    and        Y = y{l-v^)al/JE. (4.10) 

The relative size of the plastic zone decreases (when plotted on these non-dimensionalized 

axes)   and   changes   over   to   a   nearly   mode   I   pattern   as   the   remote   load   increases. 
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Hydrostatic stress contours for Oj^ = o^ and a^ = 2.00^ are shown in Figs, lib, c and d. 

The zone of high hydrostatic stress, Oj^ > la^, increases in size as the field shifts 

towards a mode I distribution. 

We detail the fields for the n=10 material at remote stress levels, O'^/OQ of 2x10"^ 

6x10-2 and 2x10"^ The respective plastic zone sizes, r /a, are 8.2x10-^ 4.2x10'^ and 

1.2x10-2. Plots of the angular fields at distances of r/rp= IxlQ-^ and IxiQ-* for the three 

remote stress levels are shown in Fig. 12. It is easily seen that the angular distribution 

of the plastic fields are nearly those of the mixed mode HRR type and that the fields 

deep inside the plastic zone (as in Fig. 12f) shift toward the mode I HRR distribution as 

shown in Fig. 6c. 

Plastic zones corresponding to the three remote stress levels are shown in Fig. 13a. 

Again the shift towards a mode I pattern with increasing remote stress is easily seen. 

Hydrostatic stress contours are plotted in Figs. 13b, c and d; note the increase in the size 

of  the zone of high hydrostatic stress, a^^  ^  1-70Q, in Fig.  13d. 

5.   DISCUSSION K 

Our results suggest that a finite element method which uses selective integration 

(Malkus and Hughes, 1978; Hughes, 1980) and 9-node Lagrangian quadrilateral element is 

well suited for studying the complex nonlinear stress-strain fields near the tip of an 

interface crack. We find the method to be highly stable; the reduced integrations of 

volumetric fields using 4 quadrature points display no hour glass or other spurious modes. 

The method is easily programmed and, we note, lends itself to coding which is readily 

vectorized for supercomputers. 

The full field numerical results presented in Section 4.3 indeed suggest that the 

near tip fields of the interface crack do not have a separable form of the type given by 

the HRR singularity (4.1). Nevertheless our small scale yielding solutions for the 

interface   crack   bear   remarkable  similarities   to   the   fields   for   cracks   in   homogeneous 
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media subject to mixed mode loading. Furthermore within the distances that we have 

examined, the elastic-plastic fields do not exhibit any of the non-physical incompatible 

displacements and oscillatory stresses that are characteristic of the small strain linear 

elastic solutions.     We discuss these features in turn. 

For the boundary value problem at hand we note that, under small scale yielding 

conditions. 

icQ)^mi\+4€^) 
(1-V)/M. (5.1) 

4cosh   ne 

If JQ is the value of J for a similar crack in a homogeneous plate then, for a  fixed 

remote stress  a^^. 

j (l+4e2) 

•'o 2cosh^77€ 

For the case of the crack on a rigid substrate with v = 0.3 in the deformable medium, 

6 = 0.0935 as already noted, and J/J^ = 0.475. We now recall the distributions in each 

of Figs. 6, 10 and 12 where the stresses are normalized by the quantity 

q = Oo[J/(°'*^o^o^)]^^^^^^^ ■ With this perspective it is clear that for a fixed intensity of 

remote loading, as measured by a^j, the stresses near the tip are generally lower for the 

interface crack than those for the crack in a homogeneous media. However, at a given 

value of J the stresses near the tip of the interface crack are generally higher; at larger 

distances from the crack tip, the stresses are comparable or lower than those for the 

homogeneous media. For example, the maximum value of (ogg/q) in a homogeneous 

medium, under mixed mode loading corresponding to I/J = -30°, is agg/q = 1.1 when n=3 

and agg/q = 1.7 when n=10. For the interface crack, the maximum stress levels, at 

each radial distance, depend on distance and remote stress level. At the normalized 

distance T/T^ = 1.0xl0"^ agg/q = 0.9, 1.1, and 1.25 for the three remote stress levels 

plotted  in   Fig.   10   n=3.       At   the  distance   T/V^ =  1.0x10"^   ogg/q = 1.2,   1.35,  and   1.45 
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which are considerably larger than those for a crack in a homogeneous medium. The 

same trends hold for n=10. It should be noted that the angular distribution of the 

stresses for the interface crack can be quite different from those for the crack in a 

homogeneous medium. An important difference is the large shear stresses and strains 

that develop near the bond line of an interface crack despite the tensile nature of the 

remote stresses. 

Another intriguing feature of the stress fields of the interface crack is how the 

degree of mixity of the near tip fields changes with the extent of plasticity. For 

example, comparing Figs. 12 and 6c and 6d for n=10, it may be seen that as the remote 

stress level increases, and as the positions examined are closer to the crack tip, the field 

more nearly resembles that of a pure mode I HRR field. Indeed, near tip fields for 

remote stress a^ja^ > 0.2 are essentially of pure mode I distribution. A discussion of 

these fields is deferred to a later paper. At lower stress levels, and at distances more 

remote from the crack tip, the field has features similar to the homogeneous mixed mode, 

for example that for 4> =  -30°. 

As noted in Sections 2 and 4, the small strain linear elastic asymptotic field for an 

interface crack is characterized by displacement incompatibilities and oscillatory stresses. 

In Section 2 it was noted that under combined remote tension and shear, the regions 

ahead of the crack where the stresses oscillate can be significant fractions of the crack 

length, thus rendering the solutions physically unacceptable. Within the nonlinear theory 

of plane stress Knowles and Sternberg (1983) have carried out an elegant asymptotic 

analysis of an interface crack between two neo-Hookean sheets. Their asymptotic fields, 

based on nonlinear kinematics and a linear relation between the Cauchy shear stress and 

shear displacement, are free of oscillatory singularities; they also found that the crack 

opens smoothly near its ends. Our full field solutions show that, even within the 

framework of linearized kinematics, accounting for nonlinear material behavior 

effectively precludes incompatible  displacements and stress oscillations.   This is true not 
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only for the case of remotely applied pure tension but, as we have noted, for the more 

general case of combined remote tension and shear. To demonstrate this we analyzed 

the case where a^^ > 0 and 0^2 = -20^2, or as described in connection with (2.11) and 

(2.12) where \ = -58.7 . The results shown in Figs. 14 and 15 were obtained by 

performing a boundary layer, small scale yielding analysis in which the stresses, given by 

the asymptotic field in Appendix I, were imposed at a distance which is large compared 

to the plastic zone size. The stress intensities for this case were prescribed as 

^1 = o"2{l-4e]v'7ra and K2 = a"2{2+2€}v^77a with a^^ taken to be the scalar stress 

variable (see Fig. 2c). 

Figure 14a shows the linear elastic results for the stress variations along a radial 

line at 9 = 7.5 for the combined remote tension and shear loading. It may be recalled 

from Section 2 that on the bond line OQQ is compressive at r/a = 2x10"^. At 6 = 7.5°, 

agg is compressive at r/a = SxlO'l Figure 14b shows the radial distributions of stress, 

again along the central row of quadrature points at 9 = 7.5°, for a nonlinear material 

with   n=3   and   for   three   remote   stress   levels. In   the   plot   the   hoop   stress   ogg   is 

normalized by a^^ which is labelled as a°°. Note that with combined loading of this sort, 

that is with 0^2 < 0, larger remote levels of a^^, as compared to the cases dominated by 

remote tension, are required to 'open the crack' and produce monotonically increasing 

stresses as the crack tip is approached. Nevertheless even at the rather low remote 

stress L ol of a^Ja^ = 1.0x10"^ oscillatory stresses and overlapping of the crack faces 

are precluded in a high hardening material. In a moderate to low hardening material, 

the oscillatory fields are precluded at substantially lower remote tensile stresses. Indeed, 

even at rather low stress levels, the characteristics of the plastic fields (which are totally 

different from those predicted by linear elasticity) prevail over significant length scales. 

Figure 15 shows the angular distribution of stresses at six radial distances within 

the plastic zone for the remote loading corresponding to o^Ja^ = 1.0x10"^ and 

'hJ^o =  -2.0x10-^       For  this  load  level,  rp/a = S.OxlQ-^  which   is  also   the  maximum 



extent of the plastic zone. A remarkable feature of these fields is the gradual shift 

towards a mode I like HRR field as the distance T/T^ becomes vanishingly small despite 

the relatively large remote shear stresses. This trend can be clearly seen by comparing 

the angular variations of the fields in Fig. 15 to the fields in Fig. 10 which are 

associated with pure remote tension. 

Despite the pathological nature of the linear elastic singular fields, we must point 

out that there is a finite annular region where the elastic singular fields (2.13) is a good 

approximation of the full field solution as can be seen in Fig. 9 and Fig. 14. It is in 

this more restricted sense, that we speak of small scale yielding; in the present context the 

term does not imply self-similar growth of the plastic zone. In a sequel to this paper, the 

near tip fields for an isolated crack and collinear arrays of cracks under contained 

yielding and essentially fully yielded conditions will be presented and implications for 

interface fracture will be discussed. 
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APPENDIX I 

Singular Fields Near the Tip of an Interface Crack 

As noted in the text, the asymptotic crack tip fields for the case of linear isotropic 

media take the form 

^ij = 
a=I 

v'277r 

a.       (a) 
gjj    [e,6/n(r/2a);e] (I.l) 

The stress intensity factors, K^, in (I.I) were defined in (2.1) with examples given in 

Fig. 2. For the bimaterial geometries shown in Fig. 2 the full form of the singular 

field in region 1 is given by (I.l) with the gjj defined as follows. Let (ij) denote the 

polar  indices (r9) and define A as 

Then 

grr   =   A 

2  COSh(776) 

^("■^)   p cos(e/2 + €/n(r/2a))  +2e sin9 cos(e/2 - e/n(r/2a)) 

(1.2) 

- sine sin(6/2 - e/n(r/2a)) 

■e^("-^) cos(39/2 + e/n(r/2a)) (1.3) 

(2) 
8rr 

(1) 
gee =   A 

A le"^("-^) |-3sin(e/2+  €/n(r/2a)) +26 sine sin(e/2 - e/n(r/2a)) 

+ sin9cos(e/2- £/n(r/2a))l 

+ e^("-^)sin(3e/2+ e/n(r/2a))l    , (1.4) 

e"^(""^)|cos(e/2 + €/n(r/2a)) -2€sine cos(e/2 - €/n(r/2a)) 

+ sine sin(e/2 - €/n(r/2a)) | 

+ e'("-^) cos(3e/2 + e/n(r/2a))l     , (1.5) 
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gee =   A|e"^("-^)|-sin(e/2+6/n(r/2a))-2e sinG sin(e/2 - e/n(r/2a)) 

- sine cos(e/2 - €/n(r/2a))l 

-e«("-Q)sin(3e/2 + e/n(r/2a))l    , (1.6) 

§re   = A le-^("-^) isin(e/2 + €/n(r/2a)) -2€ sine sin(e/2 -e/n (r/2a)) 

-sine cos(e/2 -e/n(r/2a))l 

+ e^(""^)sin(3e/2+€/n(r/2a))l    , (1.7) 

8re = A le"^("-^) lcos(e/2 + e/n(r/2a)) + 2e sine cos(e/2 -e/n(r/2a))      .';. 

-sine sin(e/2 -e/n(r/2a))] 

+ e^("-^) cos(3e/2 + e/n(r/2a))l . (1.8) 

These asymptotic fields can easily be rearranged into the form given by Sih and Rice 

(1964) by redefining K as their k as described in Section 2. 
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APPENDIX  II 

Crack Field Mode Interaction 

In this section we describe a method for calculating the individual stress modes for 

a crack subjected to mixed mode loading. The method is applicable to cracks in 

isotropic or anisotropic media. Our method is motivated by Eshelby's (1956, 1961) notion 

of interaction forces and, in the present context, this means an interaction energy release 

rate, G-^^^. To begin, consider the field of a finite size crack (such as shown in Fig. 1) in 

an arbitrary anisotropic but homogeneous elastic media. The remote tension loading, a^j, 

is augmented with the remote shear stress a^^ (as depicted in Fig. 2c). Let x^, Xj be the 

Cartesian coordinates such that the line crack lies along the x^-axis over the region 

-a   «  x^  « a.   Along the crack line 

CO Xi 

0\n     =     O: 12 "^12 1/    ' 

(x2- a^)"" 
1 

1 I  >   a, X2 = 0   ,    i = 1, 2, 3 . (II.l) 

At a vanishingly small distance from the right crack tip and, with  ?   defined as in the 

text (Fig.  1), 

<»   r  a   "1 
^i2   =   ^i2   [-^J     '      5    > a,      X2 = 0   . (II.2) 

Note t;   -  on the crack line the tractions are independent of elastic constants and are 

essentially set by static equilibrium (Barnett and Asaro, 1972). 

In homogeneous media the notion of stress intensity factors is tied to the symmetry 

in the stress fields which are expressed in the form (r,9 are polar coordinates centered on 

the crack tip) 

III 

^ij =   ^   K„/(2nr)^^ f|j^e) (II.3) 

a=I 
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where 

f 22 (9=0) = 1  ,     f^2(0)= 0 = ^32(0) (n-4i) 

f"2(e=0)    =     1    , f22(0)   =   0   =   f32(0) ' (11.42) 

and 

HI III in 
£32(6=0) =1     ,      f22(0) =0 = f,2(0) (II.43) 

For the problem at hand then, 

00      —     

Kj      = a22   •a/z ,   Kjj = o^j •a/z ,    Kju  = ajj  van   . (11-51,2,3) 

The displacement fields will not possess such simple symmetries, and again for the 

problem at hand we note that the jump in displacement across the crack tip is given by 

Barnett and Asaro (1972) as 

Aui   =   B-^- 0-2 va/n vx/2n    ,       |x|   «a      . (II.6) 

where B'   is the inverse of the so-called prelogarithmic energy factor matrix, B. 

For plane strain we can define a stress intensity vector with components 

K   =   {Kii , Kj} ^ (11.7) 

such that the crack traction vector and the displacement jumps on the crack line 

t   =   {c^2' '^22) (11.8) 

and 

Au = {Auj, Auj} (II.9) 

are given by 

1 
t   =           K ,    X > a (11.10) 

•277X 

and 

1      -1   
Au   =   — B    ■ K vx/277    ,     |x|<a   . (II.H) 
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The energy release rate can be calculated from the virtual work integral of  (2.14) 

and is given by Barnett and Asaro (1972) as 

where the indices a,0 can be interpreted such that 1 is identified with II and 2 with I. 

Note that for isotropic media B is diagonal, with components 

B..   = 5„   =  ;    and    5,„   =   , (11.13) 

and  the usual expressions  for t, Au, and G are recovered,  i.e., 

(1-v)    r   2 2 -, 1 2 
^    =    -^ [^i + ^n] + ^ I^iii   ■ (11.14) 

Stress mode decoupling in a given mixed mode stress field is accomplished through 

computation of what might be referred to as an interaction energy release rate. To 

appreciate the procedure, the details of calculating the Kj^ component of a total crack tip 

field are illustrated. 

We first note that for the actual (mixed mode) crack field the crack extension force 

is given by 

(terms not involving K^) . (11.15) 

Now suppose that an auxiliary pure mode I field, of intensity k^, is superimposed on 

the actual field and the crack extension force again computed; the result is 

1 
tot g„ (K,  +  k^)  i?ii(K^   +  k^) + 2(K,   +  k^) B\\   K^ 

2(K^   +  k^) 5^3   K3  + (terms not involving  K^   or k^)   .       (11.16) 
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The auxiliary field itself has the energy release rate 

-    ^ 1 -1 
•^aux    =    J^   ^\   ^n   ^1  ■ (11.17) 

From the above relations we can define an interaction extension force as 

C;„, =    C,„,   - G - G int tot aux o — 2k,   B[\   K,   +  2k, 5;^   K,+  2k,   B[1   K3]. 

(11.18) 

All three energy release rates, G, G^^^, and G^^^, including Gj^^ itself, are computable from 

either   line   or   domain   integrals   as   explained   in   Sections 3.3   to   3.5.     When   the  above 

calculations are  performed for the other two modes a simple linear system of equations of the 

(a)        1 -1 
^int = ^ l^a ^cG^s '      ("0 sum on a = 1, 2, 3) (11.19) 

form ^(^)        1 

results which may easily be solved for the Kg; when the k^^ are assigned unit values the 

solution for the Kg are 

(s) 
^a   =   "*" ^os ^int     ■ (11.20) 

It   may   be   noted   that   G-^^   is   readily   evaluated   with   high   precision   via   the   domain 

integrals described in Section 3.5. 

A completely analogous procedure can be applied to evaluate the respective 

intensities of the two stress modes K, and K2 for the present interface crack being 

investir    cd.   For plane strain we note by (2.16) that, if G is written in the form 

-1 

^   =   ^a^aS %   ' '• (11.21) 

that B is diagonal with the nonzero components 

^u  = ^^22  = ^'    = {(l-v,)//z,)/(4cosh277€)      . (11.22) 

(a) 
Once the two G-^^ are evaluated, the two stress intensities are determined from 

2 ^oc = ^ ^ '^int    ■ (11.23) 
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FIGURE CAPTIONS 

Figure  1:      Interface crack between two bonded dissimilar materials. 

Figure 2:       Stress intensity factors for three crack geometries. 

Figure  3:       (a)    Interface    crack    between    deformable    medium    and    rigid    substrate. 
(b) Finite     element     mesh     of     right     half     of     deformable     medium. 
(c) Arrangement of elements at crack tip. 

Figure 4:       Conventions  for  domain  J.     Domain  A  is  enclosed  by   r,  C,,  C_ and  C 
Unit normal mj = nj on CQ and m: = -n: on r. ' ° 

Figure 5: (a) Stresses ahead of crack tip in homogeneous medium; the zone of K 
dominance      is      indicated. (b)      Normalized      stress      versus      distance 
normalized by plastic zone size. 

Figure 6: Angular variations of normalized stresses in homogeneous medium subject to 
pure mode I and mixed mode loadings; (a) and (b) n=3 material; (c) and (d) 
n=10 material. 

Figure 7: (a) and (b) Plastic zones in homogeneous medium subject to mode I and 
mixed mode loadings; (c) and (d) Hydrostatic stress contours corresponding 
to mode I and mixed mode loadings. 

Figure 8: (a) Normalized stresses (from linear elastic calculations, n=l) near the bond 
line  versus  log  distance;  the  asymptotic  stresses  are  included,   (b),  (c)  and 
(d) Angular variations of normalized stresses at three radial distances. 

Figure 9: Plots of log of normalized hoop stress (near the bond line) against log of 
normalized distance for the interface crack; (a) n=3 material, (b) n=10 
material.   The elastic (n=l) result is included. 

Figure 10: Plots of angular variations of normalized stresses for the interface crack 
with n=3 at two distances within the plastic zone and for three remote 
stress levels. 

Figure 11: (a) Plastic zones for the interface crack with n=3 for three remote stress 
levels, (b), (c) and (d) Hydrostatic stress contours for three remote stress 
l_evels.      The   normalized   distances   are   defined   as   X  = x(l-v2)aVJE   and 
Y = y(l-v2)a2/JE. 

Figure 12: Plots of angular variations of normalized stresses for the interface crack 
with n=10 at two distances within the plastic zone and for three remote 
stress levels. 

Figure 13: (a) Plastic zones for the interface crack with n=10 for three remote stress 
levels, (b), (c) and (d) Hydrostatic stress contours for three remote stress 
l_evels.      The   normalized   distances   arc   defined   as   X = x(l-v^)o'^/JE   and 
Y = y(l-v2)a2/JE. 
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Figure 14: Hoop stress near the bond line due to combined remote tension and shear, 
(a) Normalized stresses from linear elastic calculations (n=l); the asymptotic 
stresses are included, (b) Normalized hoop stress for nonlinear material 
behavior with n=3. The elastic (n=l) result is included. 

Figure 15: Plots of angular variations of normalized stresses for the interface crack 
vvith n=3 at six distances within the plastic zone for remote stresses given by 
°iil^o = 0.1 and ol^la^ =  -0.2. 
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