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ABSTRACT 

In this report, a new theory analyzing the relations between 3-D convex objects 
and their silhouettes in orthographic projections is presented. The theory is based on 
ihree new representations of 3-D surfaces in terms of scalar, vector and tensor func- 
1 ions on the Gaussian sphere, and the matching representations of 2-D curves by f unc- 
lions on the Gaussian circle. The key advantage of these representations is that a slice 
through the spherical representation of a 3-D object is closely related to the circular 
representation of the silhouette of the object in a plane parallel to the slice. This rela- 
tion is formalized in three Silhouette-Slice theorems, which underline the duality 
between silhouettes in object space and slices in the representation space. These 
theorems apply to opaque objects and have a conceptual similarity with the 
Projection-Slice theorem, which applies to absorbing objects. 

Silhouette construction with the theorems is demonstrated by examples of 
silhouettes of complex curved surfaces. Applications to the reconstruction of object 
shapes from silhouette measurements and to the recognition of objects based on their 
silhouettes are suggested. 

in 
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1.0 INTRODUCTION 

Visual information is a prime communication medium for humans. Analysis of 
this visual information and of its processing is important and serves multiple pur- 
poses. Visual information generally consists of images of scenes in the three- 
dimensional world projected on two-dimensional surfaces such as paper, film, video 
screens or the human retina. Information intrinsically contained in these images is 
best characterized by regions with intensities, colors and texture, and discontinuities 
between these regions. On the other hand, scenes are better described by the sets of 
objects present in the scene, shapes, surface properties and spatial arrangement of these 
objects and the illumination of the scene. Substantial work has been accomplished in 
studying the relations between scene properties and image properties. Theories 
developed so far have permitted for example, the development of systems for syn- 
thesizing realistic images, for enhancing images, and for recognizing objects in images. 

In most theoretical analyses of the relations between scenes and images, only one 
or a few image properties are related to their correspondent properties in the scene. In 
addition, assumptions are made which decouple these relations from other effects. The 
decoupled problems are amenable to analysis, and their solutions are often found 
valuable outside the simplified context. The present report follows this approach by 
considering only relations between silhouette shapes in images and object shapes in the 
scene. 

1.1. SILHOUETTES 

The word "silhouette" is generally used in two similar senses. The first 
corresponds to portrays or scenes depicted as outlines filled in with black, whereas the 
second corresponds to just the outlines themselves; see Fig. 1.1. Clearly, these two con- 
cepts are closely related, and it is easy to transform one form into the other. For the 
sake of clarity, we have decided to use the word "silhouette" for the outline only, and 
the expression "filled-in silhouette" for the outline filled-in with black. More pre- 
cisely, the silhouette of an object in an image will refer to the curve which outlines 
the image region covered by the projection of the object. 

Among a variety of features which can be identified in an image, silhouettes are 
known to convey a strong perceptual content for humans [2, 3]. For example, most of 
us recognize without difficulty the various animals represented by filled-in silhouettes 
in Fig. 1.2. In this report, a new theory is developed to relate shapes of silhouettes to 
shapes of the corresponding 3-D objects. 

1.2. THREE BASIC PROBLEMS 

Although the initial motivation for our work came from the domain of machine 
vision, relations between objects and silhouettes can be exploited in a variety of con- 
texts. A majority of the applications are closely tied to one of three basic problems, 
namely silhouette construction, reconstruction from silhouettes and recognition from 
silhouettes.  These three basic tasks are now outlined as a motivation for the analysis 



Fig. 1.1. Silhouette as a) a filled-in outline, b) an outline, (from [l].) 

of object-silhouette relations. 

The first problem is that of silhouette construction from a description of the 3-D 
shape of the object and the imaging geometry. This construction is required for exam- 
ple for the synthesis of blueprints from 3-D object models. Presently, most synthetic 
renditions are in the form of shaded images. For these, silhouette construction is not 
explicitly required but can be used for anti-aliasing processing or for outlining areas to 
be covered by surface painting processes. 

The second problem is that of reconstructing the shape of a 3-D object from 
silhouette data. It is easy to see that the reconstruction of the shape of a 3-D object 
from one silhouette is largely underconstrained. Reconstruction of general shapes is 
possible only when multiple silhouettes are available for processing; this occurs in 
some examples of medical imaging and non-destructive testing, and for vision systems 
where several views of the object are available [4]. 

The third problem is that of 3-D object recognition from silhouette data. A 
silhouette recognition system would exploit silhouette data obtained from an image, 
and compare this with a description of the 3-D shape of a known object. The system 
must determine if there is evidence in the silhouettes suggesting the presence of the 
given object in the imaged scene, and estimate its position and orientation in the scene. 
A large number of solutions to this problem have been proposed for the case where the 
viewing direction relative to the object is known a-priori. In that case, the silhouette 
can be precomputed up to a rotation and a translation in the image plane, so that the 
matching process is greatly simplified. When there is no a-priori estimate of object 
orientation relative to the camera, the same object can produce very different 
silhouette shapes, and the problem is much more complex. 



Fig. 1.2. Filled-in silhouettes of animals (from [l]). 

1.3. PREVIOUS WORK ON SILHOUETTES 

Previous approaches to silhouettes are briefly sketched here; they will be dis- 
cussed in greater detail in Section 2. Most algorithms presented in the past for solving 
the problems mentioned in the previous section have been based on the well-known 
relation between coordinates of points in the scene and coordinates of their projection 
in the image [5]. In order to relate object shape and silhouette shape, this relation must 
be combined with the knowledge of which points of the object in the scene are pro- 
jected onto the points of the silhouette in the image. Silhouette analysis based on pro- 
jections of points is satisfactory for the development of many computer graphics algo- 
rithms, has helped to develop methods for reconstructing objects from silhouettes and 



methods for recognizing block objects from their silhouettes. However, there are 
several drawbacks in the classical formalism. First, the classical method does not 
explicitly analyze the relation between curved 3-D shapes and their silhouettes. 
Shapes of generalized cones have been related to the shapes of their silhouettes [6], but 
these relations are approximate and apply to simple generalized cones only. Second, 
the classical method does not easily support intuitive reasoning when several object 
points are related simultanesouly to the corresponding silhouette points. Third, no 
intermediate representation has been proposed where information from different 
silhouettes is readily combined. Finally, the relations between silhouette points and 
object points must be supplemented by various ad hoc arguments to solve different 
problems. 

Deficiencies of the classical silhouette theory are most severe for the problem of 
recognition, but the other two application areas can also benefit from new results on 
silhouette analysis. 

1.4. OVERVIEW OF THE REPORT 

Solving any of the three basic problems described in Section 1.2. requires a good 
understanding of the relation between the shape of a 3-D object and the shape of its 
silhouette obtained for any given viewing direction. In this report, we present new 
representations for objects and silhouettes, and the relations between these representa- 
tions for corresponding object-silhouette pairs. Specifically, silhouette curves will be 
represented by functions on the Gaussian circle, and object surfaces by functions on 
the Gaussian sphere. The functions describing these shapes are chosen in such a way 
that the relation between object functions and silhouette functions is particularly sim- 
ple. The representation of a given silhouette is simply related to a slice of the 
representation of the object on the sphere. The new theory hence relates silhouettes of 
objects to slices of their representations, and the theorems formalizing these relations 
have been named "Silhouette-Slice" theorems. 

The theories presented in this report apply to the case of orthographic projection 
only, and are initially developed for smooth strictly convex objects, such as the super- 
quadric in Fig. 1.3. Although the class of smooth convex shapes is somewhat res- 
tricted, the theorems will be extended to cover objects with corners, edges and flat 

a) b) 

Fig. 1.3. Superquadric and its Silhouette for the Viewing Direction V\ 



components, which include convex polyhedral objects such as in Fig. 1.4. As a conse- 
quence, the same theories are capable of analyzing silhouettes of curved objects and of 
polyhedral objects. Furthermore, some of the results are applicable to non-convex 
objects such as the torus depicted in Fig. 1.5. However, silhouettes of non-convex 
objects may contain singularities such as inflections and cusps which are not well 
analyzed with the Silhouette-Slice theorems, but which have been studied in detail in 
other work [7, 8, 9]. Finally, the scope of the results can be extended considerably 
when Boolean combinations of objects are considered. Indeed, combinations of simple 
primitives such as the superquadric in Fig. 1.3 have been shown to adequately model 
complex objects [10]. 

The new theorems allow the derivation of closed form expressions for the 
silhouettes of complex 3-D shapes, when these are defined analytically. In addition to 
these mathematical relations between silhouette and surface shapes for the class of 
objects of interest, ihe new theory also provides an elegant qualitative interpretation 
of these relations. The framework of the Silhouette-Slice theorems is well suited to 
develop an intuitive understanding of the relations between silhouette shape and 

a) b) 

Fig. 1.4. Cube and its Silhouette for the Viewing Direction v*. 

a) b) 

Fig. 1.5. Torus and its Silhouette for the Viewing Direction V. 



object shape. The representations proposed for 3-D shapes can be thought of as inter- 
mediate representations in which information from silhouettes corresponding to 
different viewing angles is readily combined. Finally, the representations of an object 
by functions on the sphere can be interpreted as a compact representation for the set of 
all the silhouettes of the object. 

1.5. ORGANIZATION OF THE REPORT 

Section 2 of the report reviews some earlier work on silhouettes in the context of 
the three basic problems outlined in Section 1.2. As object modeling plays an impor- 
tant role in the analysis of relations between object shape and silhouette shape in gen- 
eral, and in the analysis presented in this report in particular, previous work on that 
subject is also reviewed. 

Section 3 reviews some basic concepts of analytic and differential geometry. In 
addition to the review of classical concepts, a number of original geometrical concepts 
are presented. The firsi is the definition of an invariant measure of surface curvature. 
The second concept is the definition of local reference directions at each point of the 
Gaussian sphere, in order to support the discussion of object functions with vector and 
tensor values. Finally, a relation is proposed between representations of normals with 
gradients in a Monge parameterization on one side and with coordinates on the Gaus- 
sian sphere on the other side. 

In Section 4, the classical approach to silhouette construction is reviewed. This 
approach consists of a two-step process, where the first step is the selection of object 
points which contribute to the silhouette, and the second step is the projection of these 
points. This approach is illustrated in the case of a simple object, a cone. The 
equivalent formalism is also presented in the dual space of tangents. For both 
methods, surface normal orientation is shown to be the key parameter to silhouette 
construction with orthographic projection. This conclusion motivates representations 
of objects and silhouettes where normal orientation is explicit. 

Sections 5 and 6 present the major developments in this report. A set of represen- 
tations is developed for 2-D curves and for 3-D surfaces, with the relation between 
these representations for an object-silhouette pair. 

Section 5 introduces three different representations for the shapes of 3-D object 
surfaces and for the shapes of 2-D silhouette curves, as functions on the Gaussian 
sphere and on the Gaussian circle respectively. All three representations are unique 
and uniquely invertible for objects in the class of interest, and are explicitly phrased 
in terms of normal orientations. A close parallel is followed in the discussion of the 
representations in 2-D and 3-D. 

Section 6 presents three theorems expressing the relations between corresponding 
silhouette circular functions and object spherical functions. A unified proof method is 
presented for the three theorems corresponding to each of the three representations. 
The spherical transforms of 3-D objects are also interpreted as compact representations 
of the set of all their silhouettes. 

Section 7 extends the theories presented in Sections 5 and 6 to the case of object 
surfaces with edges, corners and planar faces. 



In Section 8, examples of silhouette construction with the Silhouette-Slice 
theorems are provided. Other applications of the method are suggested, such as a stra- 
tegy for reconstructing objects from silhouette data, and the principles of a recognition 
scheme for silhouettes. 

Finally, Section 9 concludes by summarizing the key contributions of this report 
and suggesting directions for future work. 



2.0 LITERATURE REVIEW 

In this section, previous work on silhouette analysis is reviewed. As no general 
framework previously existed for this analysis, much of the work on silhouettes pub- 
lished in the literature is found in application areas and considers relations between 
object shape and silhouette shape only in the context of particular tasks. Literature is 
most abundant for the problem of recognition, but it is also instructive to consider 
how silhouettes have been handled in other application areas. Section 2.1 examines 
existing approaches to the three basic problems outlined in Section 1. 

In order to relate silhouette shapes and object shapes, it is necessary to base the 
relations on some description of the shape of the object surfaces. Therefore, surface 
modeling procedures play a central role in any analysis of the silhouette problem. In 
addition, one of the key contributions of this report is a set of surface representations 
for which the relations between objects and silhouettes are greatly simplified. Section 
2.2 reviews previous work on surface modeling, with special emphasis on the relations 
between 1he proposed representations and the shapes of silhouettes. 

2.1. LITERATURE ON SILHOUETTES 

2.1.1. Construction of Silhouettes 

Most examples of numerical evaluation of silhouettes are found in the synthesis 
of images in the field of computer graphics. Several references, such as [11, 12], pro- 
vide a good introduction to the field. The synthesized image can take different forms, 
such as wireframe diagrams, blueprints, or shaded renditions. In the case of blue- 
prints, the output image consists of lines and curves representing creases in the object 
surface and silhouettes of the object and of its parts. For this type of output, explicit 
silhouette construction is necessary. In the case of shaded images however, explicit 
construction of silhouettes can be avoided, as they are implicitly generated on boun- 
daries of rendered surfaces. Although explicit construction of the silhouettes is not 
indispensable for the synthesis of shaded images, it can be useful for example in the 
elimination of jagged outlines, known as anti-aliasing processing. In the synthesis of 
both shaded renditions and wireframe drawings, silhouettes can also be used to deter- 
mine a-priori which regions of the image will be covered by which objects. With this 
information, the rendition can be divided into several processes without risk of 
interferences if the processes are run in parallel. Silhouettes can also be useful for the 
rendition of shadows. The determination of the shadow of an object on a planar sur- 
face is equivalent to the determination of a silhouette of the object for an appropriate 
imaging geometry [13]. Results obtained for silhouettes are hence immediately appli- 
cable to shadows. In summary, the construction of silhouettes is used or has a poten- 
tial for use in several facets of image synthesis. 

Computer graphics is a relatively mature field, and some silhouette construction 
methods are well known. Most of these are based principally on the relation between 
coordinates of points in the scene and coordinates of their projection in the image 
plane; these relations are nicely illustrated in the context of graphics in [5]. 



In addition to the relation between point coordinates, the exact shape of the silhouette 
depends on which points of the object are projected onto the points of the silhouette; 
this set of object points is referred to as the silhouette generator in this report. 
Methods for determining the silhouette generator depend on the type of representation 
for the objects. In the case of polyhedral objects, the silhouette generator is the set of 
all edges touching a face oriented towards the eye position and a face oriented away 
from the eye position. The selection of this set of edges usually requires a search 
through all the edges of the polyhedron. Objects with curved surfaces are often 
described as collections of curved surface patches, such as segments of spheres, 
cylinders, general quadrics, superquadrics, Bezier patches, B-spline surfaces ... In this 
case, the silhouette is a 3-D curve containing all the points where the viewing rays are 
grazing the object surface; this curve is twisted in general. For quadrics and some 
higher order surfaces, closed-form expressions have been determined for the silhouette 
generator and for the silhouette itself. For other surfaces, accurate approximations 
have been proposed. 

2.1.2. Reconstruction from Silhouettes 

In a significant number of cases, images contain little more information than the 
silhouettes of the imaged objects. This arises for example in some nondestructive test- 
ing x-ray images, in images of backlit objects, and in some range images [14, 15]. It is 
often desirable to estimate the 3-D shape of the imaged objects in those circumstances. 
It is intuitively obvious that a large number of different 3-D objects could have gen- 
erated any given silhouette, so that reconstruction of a 3-D object shape from the 
shape of one silhouette is ambiguous. Several ways have been proposed to reduce or 
resolve this ambiguity, e.g. by considering restricted object classes, by using more than 
a single silhouette, or by applying regularization methods. Previous work on these 
three facets of reconstruction from silhouettes is now reviewed. 

Exact reconstruction of a 3-D shape from one silhouette can be guaranteed only 
by considering a restricted class of 3-D objects. An interesting class which has been 
considered is the class of axisymmetric objects. For these objects, the silhouette con- 
struction is invertible in the absence of self-occlusions, for known object orientation. 
However, the orientation of the object axis is usually unknown a-priori and must be 
estimated from the image data. Methods have been proposed for estimating this orien- 
tation from the shape of the silhouette of the object base, or from a self-shadow on the 
object image [13]. In a recent paper, the author has proposed an alternative method 
based on the Silhouette-Slice theory, for determining the orientation of the axis [16]. 

A second approach to the reconstruction of object shape from silhouette data is to 
consider the problem as improperly posed and to apply regularization techniques [17]. 
A unique shape estimate is obtained by maximizing some smoothness constraint while 
matching the observed silhouette. Strong constraints are imposed by the silhouette 
observations when object surfaces are assumed to be continuous along the silhouette 
generator, so that the surface must be tangent to the viewing rays corresponding to the 
silhouette. The object surface orientation is uniquely determined at these points by 
the silhouette orientation in the image and by these viewing rays. Reconstruction 
results obtained with this method seem to be in acceptable agreement with the human 
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perception of shape from silhouette images. 

Complete and accurate reconstruction of 3-D shapes from silhouette data is possi- 
ble for a large class of objects, when multiple silhouettes are available. A well-known 
solution to this problem consists of first considering, for each projected silhouette, the 
object outlined by the corresponding viewing rays. This object, referred to as the 
extruded silhouette by some authors, is a prism for parallel projection, a generalized 
cone for perspective projection. The orientation of each extruded silhouette in a world 
reference frame can be determined from the imaging geometry for the corresponding 
silhouette so that all extruded silhouettes can be combined in the world reference 
frame. Among all objects with shapes consistent with the measured silhouettes, the 
intersection of all these extruded silhouettes is the object with the largest volume. 
This maximal volume object can be considered as an estimate of the object shape. 
Implementations of this reconstruction procedure are discussed in [4, 18]. 

2.1.3. Recognition from Silhouettes 

Object recognition from image data is a major concern in the field of machine 
vision. Several books, such as [19,20,21], provide a good introduction to the field. 
Silhouettes are important features in images of objects, so that substantial research has 
been accomplished in the area of recognition from silhouette data. A summary of 
some important published research on this topic is sketched below. 

Whereas objects in a scene are generally three-dimensional, their silhouettes in 
images are necessarily two-dimensional. As a result, object shapes can not be directly 
related to the shape of their silhouettes. Several strategies have been proposed to cir- 
cumvent this apparent mismatch. The first approach consists of precomputing 
silhouettes for the known objects and performing the match at the 2-D level. In the 
second approach, only planar objects or planar object parts are considered, but their 
plane is not required to be parallel to the image plane. The third approach consists of 
first processing the observed silhouette to estimate the shape of the corresponding 3-D 
object, then performing the match at the 3-D level. The fourth approach consists of 
devising judicious models for both objects and silhouettes so that the match can be 
performed between features of these models. Most algorithms proposed for recogni- 
tion from silhouettes can be related to one of the above classes. 

Systems which compare the observed silhouette with synthesized silhouettes 
must perform matches between 2-D outlines differing by only translations and rota- 
tions in their plane. Numerous methods have been proposed for performing this opera- 
tion on complete silhouettes [22,23,24,25,26,27,28,29,30]. However, these 
methods require the knowledge of the correct 3-D object orientation and work well 
only when this orientation can be estimated a-priori. Otherwise, a large number of 
orientations must be tried, requiring matching and either computation or storage of 
large numbers of silhouettes for each object in the data base. These requirements may 
easily become excessive for medium to large object data bases. 

When only planar objects are considered in the scene, the object outline is related 
to the observed silhouette by an affine transformation. A method has been proposed to 
characterize planar objects by features invariant in affine transformations [31]. With 
this method, general polyhedral objects can be recognized by building a separate model 
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for each planar face and matching each of these to image features. 

A different strategy consists of first performing an approximate reconstruction of 
the 3-D shape of the object using procedures similar to those described in the previous 
section. The reconstructed shape is then matched with known object models. When a 
restricted object class can be hypothesized or when a large number of silhouettes is 
available, accurate reconstruction of the 3-D object shape is possible, and the problem 
becomes one of 3-D shape matching. When the approach is applied to a single 
silhouette with no constraints on the 3-D shape, the information is insufficient to accu- 
rately reconstruct the 3-D shape so that this strategy is difficult to implement. Work 
has been done on qualitative estimation of object shape from silhouette data, and on 
the use of this information for recognition (see for example [32, 33]). 

A number of systems have been reported where nontrivial 3-D object features are 
compared to 2-D silhouette features. Two characteristic examples are described here. 
The first example is given by the ACRONYM system [34], where object features are a 
collection of generalized cones which describe the object shape. These features have 
"ribbons" for silhouettes and the relations between corresponding cone/ribbon parts are 
readily evaluated. A parsing mechanism converts each measured ribbon into sets of 
inequality constraints on the parameters of corresponding object cones. These con- 
straints are collected and the matching is converted into a decision procedure for the 
large resulting set of inequalities. Success of this approach is partially linked to the 
astute choice of cones and ribbons, a set of corresponding features which judiciously 
relate silhouette information to object information. The second approach considered 
here consists of extracting edge features from both the silhouette and the object and of 
performing the match based on these edges. Goad proposes a fast implementation of 
this procedure [35]. In this case too, the choice of features is appropriate since relation- 
ships between image edges and object edges are straightforward. 

In many of the approaches discussed above, the measured silhouette must be com- 
plete. If part of the silhouette is missing, recognition can be much more complex. 
Missing silhouette parts may be due for example to occlusions in the scene or segmen- 
tation errors in early processing of the image data. Although recognition of 2-D 
objects has been demonstrated in cases of partial occlusion, for example in [36], the 
problem of 3-D object recognition from partially occluded silhouette data still requires 
substantial work. 

In addition to the work presented above which is intrinsically related to applica- 
tions, some more general analyses of silhouettes have been presented. Shafer reviews 
some basic silhouette construction methods, referred to as "classical" in this report, and 
draws a number of conclusions for the analysis of silhouettes of generalized cones [13]. 
In other work, Koenderink has considered the relation between characteristic events on 
the silhouette curve and corresponding surface features [7]. His work is the only 
reference known to the author where relations between shapes of surfaces and shapes 
of their silhouettes are analyzed in detail. He independently discovered the dual of 
Euler's theorem [ii] presented in Appendix 3. 
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2.2. LITERATURE ON OBJECT MODELS 

This section gives a brief overview of modeling methods for 3-D shapes and their 
consequences for silhouette analysis. Quite different approaches to modeling must be 
followed, depending on whether the models are used for synthesizing or for recogniz- 
ing shapes. Modeling methods intended for synthesis are used in CAD/CAM systems, 
and the theories are covered in texts such as [37, 38]. Modeling for recognition is 
addressed in texts on computer vision and in a number of articles such as [39, 40]. As 
models for synthesis pertain to silhouette construction and models for recognition per- 
tain to recognition, both aspects of modeling are addressed here. Since silhouettes 
depend only on the exterior surfaces of objects, modeling methods specifying the inte- 
rior of objects such as constructive solid geometry or solid patches are not addressed 
here. 

The synthesis of a complex shape usually starts by breaking up the surface into 
simpler parts (surface patches), then independently describing each part by some 
atomic surface element using a limited number of parameters. Basic elements include, 
in order of increasing complexity, planar facets, segments of spheres, cylinders, cones, 
quadrics, superquadrics and parametric surfaces such as Bezier patches or B-spline 
patches. In order to determine silhouettes of the synthetic shapes, closed-form expres- 
sions are desirable for the silhouettes of the set of basic element types. 

When defining a model for the shape of a given object by the above method, it is 
generally attractive to position the element boundaries at some meaningful surface 
boundaries, although this is not necessary. It is usually possible to define or closely 
approximate the same shape by several different descriptions. In the field of machine 
vision however, careful attention is paid to the uniqueness of the representation of the 
objects. Difficult issues arise in recognition when the same shape can be described by 
different representations. Therefore, representations used for shape synthesis are usu- 
ally not appropriate as such for recognition applications. 

In some early machine vision systems, 3-D objects were represented by 2-D views 
corresponding to different aspects. The major problem of this method is the large 
number of different views required for describing each object. Although 3-D represen- 
tations are now generally preferred, interesting approaches based on 2-D representa- 
tions are still proposed [41]. Analysis of complex silhouettes such as the ones in 
Fig. 1.2 is difficult because natural objects such as these animals have extremely com- 
plex and variable shapes. Analysis of their silhouettes requires the combination of an 
understanding of image processing and geometry on one side, and of representation 
mechanisms for the structure of complex shapes on the other side. Some authors in 
the computer vision community have adopted a representation of 3-D objects in terms 
of generalized cones [6, 13, 19, 34, 42]. These models are viewpoint independent and 
are well adapted to the representation of complex shapes. When applied to silhouette 
analysis, the proposed method is attractive because silhouettes can be approximately 
predicted by a simple method for a large class of generalized cylinders. There are 
however a number of drawbacks to modeling with generalized cones. Generalized cone 
models are not always unique and, for complex surfaces, the usual approximations 
involved may lead to incorrect conclusions [43]. 
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A very different modeling approach is taken by Horn with the Extended Gaussian 
Image [44]. The Extended Gaussian Image represents a complex shape in one step, 
specifying the shape by a scalar function on the Gaussian sphere. The value of the 
function on the sphere defines the inverse Gaussian curvature of the surface at the 
corresponding point of the object. This representation is known to be complete and 
unique for convex objects. An algorithmic inversion has been proposed and its imple- 
mentation reported in [45]. The Extended Gaussian Image combines information 
related to different viewpoints in an elegant way. It has been successfully used in 
recognizing and positioning 3-D objects [46]. It will be shown in this report that the 
Gaussian mapping greatly simplifies the selection of silhouette generator points. How- 
ever, the Gaussian curvature of the object is not related to silhouette properties in a 
straightforward way, a fact that makes the Extended Gaussian Image inappropriate 
for work on silhouettes. 

2.3. CONCLUSION 

To summarize our analysis of the literature on silhouettes, we notice that work 
published on silhouettes suffers from the lack of a basic theory which would summar- 
ize most of the individual results. In addition, a detailed analysis of the relation 
between complex curved shapes and their silhouettes has not been presented. Finally, 
our survey of classical modeling techniques reveals that silhouette shapes cannot usu- 
ally be related to the 3-D representations. This report tries to overcome these 
deficiencies by contributing a basic theory of silhouettes for objects with curved sur- 
faces. It will be shown that the theory based on curved surfaces can be easily 
extended to surfaces with edges, corners and planar faces, so that the same theory can 
be used in many situations. 

The new theory is based on a set of three new representations for the shape of 3- 
D surfaces, and the corresponding representations for planar curves. The new object 
representations presented in this report retain a basic concept of the Extended Gaussian 
Image, namely the description of object shapes by functions on their Gaussian sphere. 
The functions used in the representations proposed in this report specify points, 
tangent planes and complete curvature of the object surfaces. These functions are 
easily related to the corresponding functions for silhouettes corresponding to any 
viewing direction. Some of the functions on the Gaussian sphere are substantially 
more complex than the the function represented in Extended Gaussian Image function 
and require the definition of vectors and tensors at each point of the Gatissian sphere. 
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3.0 BACKGROUND 

In this section, the framework in which the silhouette analysis will be developed, 
is reviewed. As silhouettes refer to outlines of image projections, the study of 
silhouette shapes is equivalent to the study of the shape of closed curves. A key issue 
addressed by this report is the relation between silhouette shapes and shapes of the 
corresponding objects. Opaque objects are completely determined by their bounding 
surface so that object shapes are equivalent to shapes of closed surfaces. It will hence 
be possible to phrase the relations between object shapes and silhouette shapes in terms 
of curves and surfaces. Both curves and surfaces are sets of points which can be 
specified by expressions for their coordinates in appropriate frames. These sets will be 
analyzed in this report with tools from analytic geometry and differential geometry. 
Basic concepts from these fields are reviewed here, and notations used throughout the 
report are defined. 

In Section 3.1, geometry of points, lines and planes is reviewed. Coordinates are 
defined for these elements and effects of transformations of axes on these coordinates 
are studied. Specification of the imaging projection is addressed. Relations between 
coordinates of points and planes in the scene and the coordinates of their projections in 
the image are developed. 

In Section 3.2, the geometry of curves and surfaces is reviewed. Representations 
in terms of global parametric equations and in terms of local Monge parameterizations 
are discussed. Curvature is defined in terms of a Taylor expansion of the Monge 
parameterization. For curves, the resulting definition is identical to the classical cur- 
vature k , which is also the inverse of the radius of curvature p = k . In the case of 
surfaces however, our method defines curvature by two new invariant tensors which 
are inverses of each other, and will be denoted here as the tensor of curvature and the 
tensor of radius of curvature. 

In Section 3.3, the Gaussian mapping is reviewed, and definitions of silhouette and 
object properties in terms of functions on the Gaussian sphere and on the Gaussian cir- 
cle are proposed. Geographical coordinates on the sphere are introduced, and represen- 
tations of vector and tensor valued functions on the sphere are formally addressed. 
Finally, the global definition of normal orientations on the Gaussian sphere is related 
to local definitions in terms of Monge parameterizations. 

In our review of concepts of geometry, it will often be useful to develop the 
arguments in the simpler case of two dimensions first, and to use this formulation to 
introduce the more complicated case of three dimensions. However, for some problems 
which are essentially meaningful in three dimensions only, the case of three dimen- 
sions is analyzed first. 

A pragmatic approach is followed through this section. More rigorous accounts of 
differential geometry are provided in textbooks such as [47, 48]. 
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3.1. GEOMETRY OF POINTS 

3.1.1. Coordinates of Points and Vectors 

Cartesian Coordinates (x ,z ) and (x ,y ,z ) are used for the representation of 
points in 2-D and 3-D respectively; see Fig.3.1. Axis orientation corresponds to a 
counterclockwise rotation from Ox to Oz in 2-D, and to a right-handed trihedron in 
3-D. Vectors are denoted as X = ( x z )T and 3? = ( x y z ) . The notations n and 
n are reserved for vectors normal to a curve and to a surface respectively. Unit vec- 
tors are denoted as, for example, Tx for a unit vector along X in 2-D, and ln for a 
unit vector along n in 3-D. 

We have chosen the letters x and z to denote the axes in the plane instead of the 
usual x and y to emphasize the relation between the vertical axis z in 2-D and 3-D. 

3.1.2. Tangential Coordinates 

Tangential coordinates, also referred to as dual coordinates, will be considered for 
the characterization of lines tangent to a silhouette and planes tangent to an object. 
These coordinates are discussed in some detail here since no reference consistent with 
our notation could be found.  Additional material and insight can be found in [49]. 

Curves and surfaces are usually described in terms of their points and the coordi- 
nates of these points. However, it is also possible to describe curves and surfaces by 
the sets of their tangents; these descriptions will be referred to here as tangential 
representations. Tangential representations require the definition of coordinates for 
lines and planes. As in the case of points, coordinates for a tangent ( a line or a plane ) 
represent the position of this element relative to a system of axes. One set of coordi- 
nates used in this text to specify tangents is the set of inverse intercepts with the axes. 
In 2-D, a line intersecting the axes at (l/kx ,0) and (0,l/ky ) will be given coordinates 
(kx ,ky ) and a plane intersecting the axes at (1/A.^ 0,0), (0,1/A-y »0) and (0,0,1/X.Z ) 
will be given coordinates (X.x ,ky ,kz ); see Fig.3.2. These coordinates for lines and 
planes will be referred to as Cartesian tangential coordinates in this text. They can be 

z 

Fig.3.1. Cartesian Coordinates in 2-D and 3-D. 
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*. X 

Fig.3.2. Tangential Coordinates. 

viewed as coordinates of elements (lines and planes) represented by points in an other 
space, which will be referred to here as the tangential space; this space is isomorphic to 
the dual space. Elements in the tangential space can be referred to by sets of coordi- 
nates or also by vectors in the tangential space, X = (kx kz) in 2-D and 
k - (kx ky kz Y in 3-D. 

It is sometimes useful to consider a different set of coordinates for elements in 
tangential space, which will be referred to as polar tangential coordinates. For both 
lines in 2-space and planes in 3-space, the polar coordinates specify the distance p to 
the origin and the normal orientation. Orientations are specified in 2-D by the polar 
angle t// and in 3-D by the longitude £ and latitude r\; see Fig.3.2. 
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The conversion from polar coordinates (p ,»//) to Cartesian coordinates (kx ,ky ) of a 
line in 2-D is given by 

kx   =  cos\})/p 

x •   // (3-° /ty   =   smy/p 

The corresponding relations between 3-D Cartesian coordinates (kx ,ky ,kz ) and polar 
coordinates (p ,£,1)) for a plane are given by 

kx   =  cosgcosri/p 

ky   =  sin£cos7)/.P (3.2) 

kz   =  sin-q/p 

Points of a line with tangential coordinate vector k have coordinates which 
satisfy 

x kx + y ky = \   , also written Xr X = 1 (3.3) 

The vector X in tangential space defines a line in point space which is perpendicular to 
X considered as a vectoMn point space. Similarly, the equation for points of the plane 
with coordinate vector k = (kx ky kz )    is given by 

x kx + y ky + z kz = 1   , also written kT x = 1 (3.4) 

The equation for points on a line with polar tangential coordinates (p ,»/;) is given 
by 

x cost/; + y sim// = p (3.5) 

which is sometimes referred to as the normal equation of the line. Points of a plane 
with polar tangential coordinates (p ,£,r)) satisfy the equation 

x cos£cosi7 + y sin£cosr) + z siwq = p (3.6) 

which is referred to as the normal equation of the plane. 

3.1.3. Transformations of Axes 

Coordinates of points, lines and planes depend on the choice of a system of axes. 
The same physical point, line or plane is described by different sets of coordinates in 
two sets of axes. Relations between these coordinates are investigated in this section. 

Three systems of axes will be considered in this report for the description of 
curves and surfaces; these systems will be referred to as global, rotated, and local 
axes. The local axes are rotated and translated with respect to the global axes; they 
are centered at P0. The rotated axes are parallel to the local axes but centered at the 
origin of the global axes. The three systems are sketched in Fig.3.3, for both 2-D and 
3-D space. 
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o 
Fig.3.3. Global, Rotated and Local Systems of Axes 

3.1.3.1. Transformations for Point Coordinates 

Denoting coordinates in rotated axes by the subscript R , coordinates in local axes 
by the subscript I, and coordinates in the global axes by symbols without subscripts, 
the various coordinates in 2-D are related by 

cosily — sinv/j0 

sini/j0   cosv/»0 

X = R2
/?~G(i/;o)xi 

ZR 

(3.7) 

X *0 
ss + z ^0 

cost/;0 —sini//0 

sinvji0   cosi/;0 

Xo + R^GKM (3.8) 

where the symbol R2 denotes the matrix of the 2-D rotation from rotated to global 
axes and X0 is the coordinate vector of P0 in global axes. The corresponding relations 
for coordinates in 3-D are given by 

COS£0COST)0 -sin£0 -cos£0sinr)0 

sin£0cosT}0     cos£0  -sin£0sinT)0 

sinr)0 0 cosr)0 

x = R3
/?-G(^0,r]o)xJP 

*R 

yR 

ZR 

(3.9) 
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X 

1 

x0 

y = yo + 
z 

1 20 

cos£0cos7)0 -sin^o -cos^0sinr)0 

sin£0cosr/0    cos£0  
_sin£0sin7)0 

sinrj0 0 COST)0 

x = x0 + R3?"G(^o.T7o)^ 

yi 

(3.10) 
r> r* 

where the symbol R3 denotes the matrix of the 3-D rotation between the rotated 
frame and the global frame, and x0 is the coordinate vector of P0 in global axes. In 
the above expressions, \jj0 is the counterclockwise angle from the global axes to the 
rotated axes in 2-D and £0, T)0 are the longitude and latitude of the orientation of the 
rolated OxR axis with respect to the global frame in 3-D, a notation consistent with 
angular coordinates introduced for the Gaussian circle and Gaussian sphere in a later 
section. 

As is done repeatedly in this report, both expanded and compressed notations are 
provided for the same equation. The abridged notation stresses the similarity between 
relations in 2-D and 3-D, whereas the expanded notation is more explicit. 

3.1.3.2. Transformations for Tangential Coordinates 

After having considered the transformation of point coordinates between 
different reference frames, transformations of tangential coordinates are now derived 
for the case of pure rotations of axes. Coordinates for a plane in rotated axes are 
obtained by first writing the equation in global axes for the coordinates of the points 
of the plane. These coordinates are related to the coordinates in the rotated axes using 
ihe transformation discussed in the previous section. An equation is obtained for the 
coordinates of the points of the plane in the rotated axes, from which the tangential 
coordinates of the plane can be extracted. It will be concluded that the transforma- 
tions of Cartesian coordinates of planes are identical to the transformations of Carte- 
sian coordinates of points. The same argument and the same conclusions also apply to 
the coordinates of a line in 2-D. 

Consider a plane with global coordinates A.. This plane contains the points x for 
which; see equ. (3.4) 

V x= 1 

The equation of the plane of interest in the new axes has the form 

A-R  XR =   1 

(3.11) 

(3.12) 

where k# has to be determined. Equation (3.11) is transformed into a form more 
similar to (3.12) by applying the transformation in equation (3.9) to the point coordi- 
nates x. 

kTRf-GxR = \ (3.13) 
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Identifying this form with equation (3.12) produces 
rr = FR3*"G .also written X = R3*_G X, (3.14) 

The tangential coordinate vectors for planes hence transform in Jiie same fashion as 
point coordinate vectors. This is not surprising, since the vector k in point space is a 
normal to the plane at hand. Transformations of tangential coordinates between 
translated axes is less straightforward and is not discussed here. 

3.1.4. Imaging Projections 

This section describes how the imaging geometry is specified, and how coordinates 
of points and lines in the image can be obtained from the coordinates of points and 
planes in the imaged scene. For a general perspective projection, the imaging geometry 
is completely defined by the position and orientation of the "camera frame" and by the 
focal length of the "camera". In this report, only orthographic projections are con- 
sidered; these projections are completely defined by the viewing direction. 

It is customary in machine vision to relate the camera frame to the reference 
frame of a particular object in two steps by considering an intermediate world frame 
attached to the scene being analyzed. The "camera" is defined by a system of axes 
xc yc zc ; its position and orientation are specified with respect to the world frame 
xwywzw and account for the position and orientation of the imaging device relative 
to the scene. On the other hand, each object is described in an individual reference 
frame, say xQ y0 zo» tne relation between this frame and the world frame accounts 
for the position and orientation of the object in the scene; see Fig.3.4. The geometry of 
the imaging projection relative to the object is hence determined by the composition of 
the transformation from x0y0ZQ to xwyw zw, then to xcyczc. In this report, 
only the combination of these two steps is considered, by describing the imaging 
geometry directly in the object frame. 

xw 

Fig.3.4. Traditional Definition of Positions and Orientations. 
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For orthographic projections, the imaging geometry is entirely specified by the 
viewing direction, which is parallel to the vector V pointing away from the scene 
towards the viewer. The vector V itself is referenced by its longitude <f> and latitude 0 
in the object frame; see Fig.3.5. 

Cartesian coordinates for the unit vector 1 v. are given by 

lv = ( cos0cos0 sin0cos0 sinO )J (3.15) 

In the discussions of this report, the global frame Oxyz defined in Section 3.1.3. 
denotes a frame in which the object is described, hence a frame similar to x0 y0 zG. 
The local frame PQX{ yt zt defined in Section 3.1.3. is not related to the frames intro- 
duced here. It is used to locally define the geometry of of the object in the neighbor- 
hood of P0. 

Relations between coordinates of points and planes and coordinates of their pro- 
jections in the image plane are now investigated. Points and planes of 3-D space are 
referenced to the global object-centered frame Oxyz . A cartesian frame Onx nzn is 
chosen in the image plane II, where O n is the projection of the origin O and Onzn is 
the projection of the Oz axis. Coordinates in these axes of the projection plane will be 
denoted by a subscript TT. In order to simplify the projection operation, it is useful to 
first consider a rotated system of axes, in which the viewing direction is parallel to one 
of the axes. This particular rotated frame is referred to as the camera frame here, and 
coordinates in these axes are denoted by a subscript C. The system Oxc yc zc is 
chosen so that Oxc is parallel to the viewing direction, Oyc parallel to Onxn and 
Ozc parallel to O wz n; see Fig.3.6. 

Fig.3.5. Relative Orientation of the Object and the Viewing Direction. 

22 



Fig.3.6. Coordinate Frames in 3-D and in the Projection Plane. 

The coordinates of points in this system of axes are related to global coordinates by 

(3.16) yc 

cos0cos0     sin0cos0   sinG 

—sin0 cos0 0 

—cos0sin0 —sin0sin0 cosO 

xc =R3
G"cx 

Similarly, coordinates of planes in the camera frame are related to global coordinates 
by 

*xC 

Kc 

cos0cos0     sin0cos0   sinG 

—sin0 cos0 0 

—cos0sin0 —sin0sin0 cos0 K, 

(3.17) 

Xc =R ?~ck 

Projections are meaningful for planes only when they are parallel to the viewing 
direction, in which case kxC = 0. For such planes, the projection in the image plane 
consists of a line, whereas the projection of all other planes in the scene covers the 
entire image plane. 
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This property will be useful when considering the projection of surfaces defined in 
tangential coordinates. Note that a plane is parallel to the viewing direction if 

kxC = kx cos0cos0 + ky sin0cos0 + kz sin0 = 0 (3.18) 

In the rotated axes, the viewing direction is parallel to the Oxc axis. As a conse- 
quence, the coordinates in the image plane are related to coordinates in the camera 
frame by the straightforward expressions 

*ir 0  1  0 
xc 

ZjT 0 0  1 yc 

zc 

*ir=I 23 XC (3.19) 

^XTT 0     1      0 ^xC 

^•ZTT 0 0  1 
Kc 

"•n — ^23 ^C (3.20) 

where I23 denotes the 2x3 matrix including the 2x2 matrix in the above expressions. 
Note that the last equation relates coordinates of lines in the image to coordinates of 
planes parallel to the viewing direction in the scene. 

Coordinates of the projected points and lines can be obtained directly from coor- 
dinates in the global object frame by combining the above projection operations with 
the rotation from global axes to camera axes in (3.16) and (3.17). 

x n 0  1   0 

*TT 0 0  1 

cos0cos0     sin0cos0   sin0 

—sin0 cos0 0 

—cos0sin0 —sin0sin0 cos0 

—sin0 cos0 0 

-sin0cos0 —sin0sin0 cosO 

X7T  =   123 R 
G-C (3.21) 
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^XTT 0  1  0 

KTT 0 0  1 

cos0cos0    sin0cosO   sinG 

—sin0 cos0 0 

—cos0sin0 —sin0sin0 cosO 

K 

—sin0 cos0 0 

-sin0cos0 —sin0sin0 cosO 

K 
ky 

K 

*""" ~ ^23 ^3 ^~ k7r (3.22) 

3.2. CURVES AND SURFACES 

In this section, a number of classical results on representations of curves and sur- 
faces are reviewed, and an original definition of curvature is proposed. In the first 
subsection, definitions of curves and surfaces in point space are presented, followed by 
definitions in tangential space and conversions between the two representations. In the 
second subsection, the Monge parameterization, a particular specification method for 
curves and surfaces, is presented. In the third subsection, curvature is defined in 
terms of the coefficients of the second order Taylor expansion of a local Monge parame- 
terization. This definition of curvature is equivalent to commonly used definitions in 
the case of curves, and provides a new intrinsic definition of curvature in the case of 
surfaces. 

3.2.1. Definitions 

Precise definitions of curves and surfaces require careful attention to avoid the 
possibility of pathological cases. However, refinements will be omitted here for the 
sake of conciseness. A curve in 2-space is defined as the set of points 

{P(x ,y ) I x =x (t ), y =y (t); t eT) (3.23) 

where T is some domain for the parameter t . A surface in 3-space is defined as the set 
of points 

{P(x ,y ,z ) I x =x (u ,v ), y =y (u ,v ), z =z (u ,v ); (u ,v )eW}        (3.24) 

where W is some 2-D domain for the parameters u , v . Note that in both cases, curves 
and surfaces are defined as sets of points. Although parametric equations are used to 
define the sets, the sets themselves exist independently of the parametric equations. 
Two curves or surfaces are identical if they contain the same points. For example, the 
curve 

{P(x,y) I x=x(t(s)),y=y(t(s));s€t~1(T)} (3.25) 

where s (.) is a monotonic function, is identical to the curve defined in (3.23). The 
same curves or surfaces may also be specified in different ways, for example the points 
can be defined by an implicit equation for their coordinates, F (x ,y ) = 0 for a curve 
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and F (x ,y ,z ) = 0 for a surface. The distinction between curve/surface points and 
curve/surface equations is stressed here. In a later section, a new representation of 
surface curvature is presented, which depends only on the surface defined as a set of 
points. In contrast, definitions of surface curvature in most differential geometry text- 
books also carry information about the equations used for defining the surface. This 
difference is investigated in Appendix 4. 

Unless otherwise specified, only smooth curves and surfaces are considered in this 
report. Smoothness refers here to the existence and continuity of second order deriva- 
tives of parametric equations defining the surface. Other important concepts such as 
regularity are not discussed here. Partial derivatives will be denoted by subscripts as 
in xu = ftx/Qu , except when confusion is possible. It can be shown that first deriva- 
tives of the parametric eqiiations are related to tangent directions. Specifically, Xt it 0) 
is a vector parallel to the tangent to the curve %{t ) at x(j 0). Similarly, xu (u0,v0) 
and xv. (u0,v0) are tangent to the surface x(u ,v) at x(u0,v0). The vector 
n = xu Xxv. defines a surface normal. First derivatives of parametric equations are 
hence related to tangent and normal orientations. In a later section, second derivatives 
will be related to curvatures. 

3.2.2. Convexity 

As mentioned in the introduction, the silhouette problem is first analyzed in this 
report for convex objects only. For a convex object, the straight segment joining two 
points of the object is completely included in the object. In order to avoid the presence 
of straight components in the object surface, a stronger definition of convexity will be 
required. For a strictly convex object, the open straight segment joining two points of 
the object must be completely included in the interior of the object, even when the 
two points are on the boundary of the object. Examples of a non-convex object, a con- 
vex object and a strictly convex object are given in Fig.3.7. 

Later in the text, curves and surfaces will be described by equations in terms of 
normal orientations, instead of parametric equations in terms of the generic parameters 

a) b) c) 

Fig.3.7. Smooth 2-D Objects: a) Non-Convex, b) Convex, c) Strictly Convex. 
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t, u , v. The parameters chosen for this purpose are the polar angle t// of the normal 
for curves and the longitude £ and latitude T) of the normal for surfaces. Representa- 
tions in terms of angular parameters are unique and regular for the class of strictly 
convex smooth surfaces considered in this report. Relations between this type of 
parameterization and generic parameterizations are addressed in Appendix 2. 

3.2.3. Tangential Space Representations 

As indicated in section 3.1.2., it is sometimes useful to define curves and surfaces 
by their sets of tangents instead of their sets of points. As in the case of point 
specification, both parametric and implicit equations are possible. For example, a curve 
can be specified by the set of tangent lines L as 

{L (kx ,ky ) I F (Kx ,ky ) = 0 } (3.26) 

A surface can be specifed by 1he set of tangent planes P 

{P(Kx ,ky ,\z ) I F(kx ,ky ,kz ) = 0 } (3.27) 

where implicit equations were used in both cases to prescribe coordinates of the 
tangents. Conversion from a tangent representation to a point representation is now 
considered. This conversion corresponds to determining curves and surfaces as the 
envelopes of their sets of tangents. In the general case, the set of lines tangent to a 
planar curve is a one-parameter family. Points of these lines satisfy equations such as 
F (x ,y ,a) = 0 where a: is a parameter for the lines. An equation for the envelope of 
these is obtained by eliminating the parameter <x between 

F(x,y,a) = 0 
(e/dcOF(x,y,a) = 0 (*'M) 

Similarly, when all the planes tangent to a surface are given by a two-parameter fam- 
ily with equation Fix ,y ,z ,a,/3) = 0, an equation for the envelope is obtained by 
eliminating the parameters oc and j8 between 

F(x ,y ,z ,a,j3) = 0 

(d/d°<)F (x ,y ,z ,a,j3) = 0 (3.29) 

Wd$)F(x,y,z,<x,&) = 0 
The above formalism will be exploited in Section 5, for the discussion of a representa- 
tion which explicitly specifies curves and surfaces by the sets of their tangents. 

3.2.4. Monge Parameterizations 

This section reviews a description of curves and surfaces by explicit equations of 
the form x = f (z ) and x = / (y ,z), which are referred to as Monge parameteriza- 
tions. Several features of these descriptions have prompted their use for describing 
surfaces in the machine vision literature. These features include a direct relation to 
image-plane coordinates and straightforward expressions for surface normals. In our 
work, Monge parameterizations will not be used as general object models because of 
their strong dependence on the reference frame, but will be used to define surface cur- 
vature in local axes.  Monge parameterizations in local axes will be related to global 
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descriptions in a later section. Monge parameterizations have been studied mainly for 
surfaces, which are therefore analyzed first. Subsequently, a simple equivalent is 
sketched for the case of 2-D curves. 

The Monge parameterization for a surface can be considered as a special form of 
parametric equations, in which the parameters are two of the three Cartesian coordi- 
nates, say y and z ; see Fig.3.8. 

x = /(y,z) 

y = y (3.30) 

z = z 

Viewing these equations as a parametric form X* = x(y ,z ), a surface normal is easily 
obtained as 

(3.31) 

where my = Qx /Qy and mz = Qx /Qz are referred to as gradients of the surface. In 
other work, these gradients are often denoted by the symbols p , q ; this notation is not 
followed here because of possible confusions. The simple expression for surface nor- 
mals in (3.31) makes Monge parameterizations convenient in surface-reconstruction 
problems from a single image, such as the shape-from-shading problem [21]. 

In the equivalent formalism for 2-D curves, the parametric equations in the plane 
x , z have the form 

1 1 
n = xy x xz = -/, 

= —m 

-/« —m 

y 

Fig.3.8. Monge parameterization for a Surface. 
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x = f (z ) 

z = z 

A normal vector for points on the curve is given by 

n = 
1 

-/: 

1 

—m, 

(3.32) 

(3.33) 

3.2.5. Curvature 

In this section, definitions for curvature will be proposed and justified.   The 
simpler case of 2-D curves is addressed first, followed by the case of 3-D surfaces. 

3.2.5.1. Curvature of 2-D Curves 

In the case of a planar curve, curvature corresponds to the intuitive notion of 
how fast the curve diverges from its tangent. The definition chosen here for curvature 
is based on this notion, as it is the first non-zero coefficient of a Taylor expansion of the 
Monge parametric form of the curve in a local coordinate frame. Consider the curve C 
around the point P0, and the local system of axes PQXI zl where PQ^I is along the 
normal at P0; see Fig.3.9. The Monge parameterization of the curve in these local axes 
has the form xl = / (zt ). Since P0 is on the curve and since P'oZt is tangent to C at 
P0, the Taylor series of / {zL ) contains no terms of order zero and one in zt. The first 
nontrivial expansion is hence given by 

xl = -V2 zt kzt + O (z,3) (3.34) 

where the term kzt    has been decomposed for similarity with the corresponding 
expression  for  surfaces.   The error  term Oiz^) indicates  that  the error of  the 

z 

A, 
4 

j<* 

^ 
f£U 

1 pi xl 

Fig.3.9. Local Axes for the definition of Curvatures in 2-D and 3-D. 
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expansion is upper bounded by a third order polynomial in zL. The curvature of C at 
P0 is defined in this report as the coefficient k in the above expansion, a choice con- 
sistent with the intuitive notion of curvature since large values of k imply a fast 
divergence of the curve away from its tangent at P0. Note that the coefficient k in the 
above Taylor expansion is identical to the second derivative Q xL l§z2 at the origin, so 
that curvature is formally related to second derivatives of the equations of the curve. 
This definition of curvature is equivalent to the classical definition k = d \}j/ds , as is 
shown in Section 5. The inverse of the curvature k is defined as the radius of curva- 
ture p = k~*. A justification of the definition is now presented by showing that the 
radius of curvature of a circle is equal to the radius of the circle. The equation for a 
circle of radius R tangent to zL at the origin is given by 

(xl+R)2 + zl
2 = R2 (3.35) 

Considering only the branch through the origin, then expanding to second order in z^, 
the following explicit equation is obtained. 

xl = -R + ^/R^-lp 

z2 z2 

= -R +(/? --r^-) + 0(z,3)=-V2-^-+0(z,3) (3.36) 
ZR R 

Comparing this expression with the expression used to define curvature in equation 
(3.34), it is clear that the curvature for the above circle is given by k = \/R , which is 
the desired result. 

3.2.5.2. Curvature of 3-D Surfaces 

In the case of a surface, curvature is also related to the intuitive notion of diver- 
gence rate away from the tangent plane. Curvature of a surface will be defined here 
in the same way as it was defined for a curve, namely as the coefficients of the first 
non-zero term in the Taylor expansion of a local Monge parameterization of the sur- 
face. Specifically, consider the surface Z in a neighborhood of the point P0; see Fig.3.9. 
Consider also the local frame ^oX; v/ zi where xL is along the normal at P0. The 
second order expansion of the surface equation in these axes can be written as 

* 11 £ I 2    yi 

k 12   k 22 

where the error term O ((yj z{ ) ) indicates that the error of the expansion is bounded 
by a third order polynomial in yl, zt. The above equation will also be written in vec- 
tor form as 

x{ = -V2 Z, Kz, + O (Zz
3) (3.38) 

which stresses the similarity with the 2-D equation (3.34). Characterizing the curva- 
ture of a surface is more involved than in the case of a curve, as divergence from the 
tangent plane may depend on the direction chosen along the tangent plane. In equation 
(3.37),   there  are  three  independent  coefficients  in  the  second  order  term,   thus 

= -V2      yi + 0((yl,zl)
3) (3.37) 
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emphasizing the added complexity of surface curvatures over curvatures of curves. 
Curvature of the surface Z at P0 will be taken as the set of second order coefficients of 
(3.37), namely as the symmetric 2x2 matrix K. It is now shown that this matrix is 
really a tensor by showing that it transforms as a tensor in transformations of axes 
[47]. 

Consider a second system of local axes, PoX^y^^ related to the original local 
frame PQ^I yi zi DV a rotation with angle v/; around the PQ^I axis; see Fig.3.9. Coordi- 
nates in the two frames are related by xt = xt ^ and 

(3.39) 
yi cosv/; — sinv/i       yi\/f 

zL sirn//   cost/;        zlxj, 

A Taylor expansion of the Monge parameterization of the surface in the rotated frame 
is obtained by combining equations (3.37) and (3.39) 

>i\p -V2    y, *   zlxj, 

= -Vz y^ zixi/\ 

cost/;   sim/; ^11   ^ 12 

—sini/> cosv/; k 12   ^22 

* llvfr   * 12i/r y** 
k 12\l/   k 22\jt 2^ 

cosv/; —sim/; 

sirn/;   cosv/; 

yi* 
Zlx// 

(3.40) 

where the 2x2 curvature matrix in the rotated axes is given by 

12\Zr   * 22</r 

cost/;   sim/; 

—sim/; cosv/; 

* n   * 12 

^12   ^22 

cosv/; —sim/; 

sim/;   cosv/; 
(3.41) 

The matrix K transforms as a covariant tensor in coordinate transformations such as 
the one studied above, and is therefore a covariant tensor. Therefore, it will be 
referred 1o as the tensor of curvature of the surface at P0. In differential geometry, 
the name of tensor of curvature is usually reserved for a tensor with 4 indices due to 
Riemann which is not directly related to K. 

The components of our tensor of curvature are related to second derivatives of 
the surface equation; for example, k n = d^/fry;2 at yt = zl = 0. Preserving the 
parallelism with the case of curves, the inverse of the tensor of curvature will be 
defined as the tensor of radius of curvature 

-l 

R = r' = ^ 11   ^ 12 

^12   ^22 

rll   r12 

r12   r22 
(3.42) 

The above definition of curvature by a tensor in local axes is original. Its relation 
with other definitions is discussed in Appendix 4. For a general surface, there exists at 
each point an orientation v/; of the axes Poyi^i^ in the tangent plane for which the 
2x2 tensors R and K are diagonal. In these axes, values on the diagonal of /C are 
referred to as the principal curvatures k 1 and k 2. The diagonal values of R are 
referred to as the principal radii of curvature P\ — k f" and p2 = k 2~l • The Gaussian 
curvature of a surface is defined as the product of the two principal curvatures, 
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k = k j k 2; in general axes, k = detE. The mean curvature of a surface is denned 
as the mean of the two principal curvatures, km = l/z{k i + k 2); in general axes, 
km = 1/2trK. Note that in the case of a strictly convex surface and an outward nor- 
mal pointing towards positive xt, the curvatures k 1( k 2, km and kR are all strictly 
positive. 

To illustrate the above definitions, the tensor of curvature is evaluated for a 
sphere of radius R through P0, tangent to the Poyi zt plane at P0. The equation of 
this sphere is given by 

(xl+R)2 + yl
2 + zl

2= R2 (3.43) 

Solving for x(, considering the branch through the origin, then expanding to second 
order produces 

-R +jRT-yi' 

= -l/2 

:~2 — 

yi zL 

-R +(R - yi' -/' 

2R      2R 
) + O (iyi ,zL )

3) 

\/R    0 

0    \/R 

yi 
+ 0((yl,zl)

3) 

(3.44) 

(3.45) 

The curvature tensor and the radius of curvature tensor for the sphere are thus 
respectively given by 

K = /R 0 R 0 
0 \/R , 5 = 0  R 

(3.46) 

The form of the tensor of radius of curvature, i.e. a unit tensor scaled by the constant 
R , expresses the fact that the curvature of the sphere is isotropic and that normal sec- 
tions all have a radius of curvalure equal to R . For the sphere, both principal curva- 
tures and the mean curvature are equal to \/R . Both principal radii of curvature are 
equal to R . The Gaussian curvature is equal to R~ . 

3.3. THE GAUSSIAN MAPPING 

In this section, the theory of the Gaussian mapping is reviewed, together with its 
application to curve and surface representations. The Gaussian Mapping is presented 
as a mapping between points on a 3-D surface and points on a unit sphere, and also as a 
mapping between points on a 2-1) curve and points on a unit circle. The images of the 
mapping are usually referred to as Gaussian circles and Gaussian spheres, and also col- 
lectively as Gaussian images. It turns out that the Gaussian images can also represent 
the normal orientations of curves and surfaces. This construction is then exploited to 
define representations of curve and surface properties as functions on the Gaussian 
images, referred to as Property Circles and Property Spheres. Coordinates used in this 
report to parameterize the Gaussian circle and Gaussian sphere are also defined in this 
section. 

Two new concepts are proposed in addition to the classical theory of the Gaussian 
mapping. First, local reference frames are defined on the Gaussian images and the 
problem of representing vector and tensor fields on the Gaussian sphere is formally 
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addressed. Second, gradients in local Monge parameterizations of curves and surfaces 
are related to normal orientations and their specifications by angles on the Gaussian 
sphere. The advantage of the Gaussian sphere over the Monge gradients for represent- 
ing normal orientations is two-fold. First, gradients are able to represent only half of 
the complete set of normal orientations. In contrast, the Gaussian sphere is capable of 
describing all surface normals [44]. Second, the representation of surface normals 
with the Gaussian sphere does not favor specific viewing directions as is the case for 
the Monge gradients. 

The Gaussian mapping was initially developed in the context of 3-D surfaces, see 
for example [50]. We will therefore also start with the case of 3-D surfaces, then 
show thai 1he equivalent formalism for 2-D curves is trivially obtained. 

3.3.1. Definitions 

The 3-D Gaussian mapping is a relation between points on a surface and points on 
a unit sphere, referred to as the Gaussian sphere. To each point Pr of the surface 
corresponds a point PG on the sphere so that the normals at Pj_ and PG are parallel 
and have the same direction; see Fig.3.10. 

Poinls on the Gaussian sphere will be referenced by coordinates, namely by the 
longitude £ from the x-axis and latitude r\ from the Oxy equator; see Fig.3.11. Points 
on the sphere are related to normal orientations in 3-D through the Gaussian mapping. 
Hence, the coordinates (£,T)) can also be used to specify directions in 3-D. 

The corresponding unit vector is given by 

COS^COST) 

sin£cosr) (3.47) 

sinrf 
In   = 

The 2-D Gaussian mapping is a relation between points on a curve and points on a 
unit circle. Corresponding points on the curve and on the circle have parallel normal 
orientations; see Fig.3.10. Points on the Gaussian circle and the corresponding orienta- 
tions in the plane are referenced in this text by the polar angle i/> measured counter- 
clockwise from the x-axis; see Fig.3.11. The polar angle \p can be used as a coordinate 
for directions in the plane, namely to refer to directions parallel to the unit vector 

1, = 
cost// 

(3.48) 

For strictly smooth convex 2-D curves and 3-D surfaces, the Gaussian mapping is 
one-to-one. Examples of the Gaussian mapping are presented in Appendix 1, when 
deriving the transforms of various geometrical shapes. 
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a) b) 

c) d) 

Fig.3.10. Examples of 3-D and 2-D objects, their Gaussian images, 
and the normal orientations at corresponding points. 

a) 3-D object, b) Gaussian sphere of a). 
c) 2-D object, d) Gaussian circle of c). 

34 



Fig.3.11. Coordinates and local orientations on Gaussian Images. 

3.3.2. Property Circles, Property Spheres 

In his work on object recognition, Horn defined the extended Gaussian image, a 
representation of surfaces by scalar functions on the Gaussian sphere [44]. The basic 
concept of the extended Gaussian image is to represent a function of surface points in 
terms of normal orientation, then as a function on the sphere, since each point on the 
sphere is uniquely related to a specific normal orientation; the name of "properly 
spheres" was given to this type of representations in [51]. In this report, three new 
representations of 3-D objects in terms of property spheres will be defined. A major 
conceptual difference between previously proposed property spheres and two of the 
new representations stems from the vector and tensor ranges of the new object func- 
tions as opposed to a scalar range for the extended Gaussian image. In order to 
represent vectors and tensors, it is necessary to describe their values in terms of com- 
ponents in a system of axes. We propose to use axes aligned with local orientations on 
the Gaussian sphere, which are hence different for each point of the sphere and each 
corresponding object_point. The axes chosen in this report are oriented in the directions 
of the unit normal ln , the unit tangent 1^ to the parallel and the unit tangent 1_ to 
the meridian; see Fig.3.11. The components of those unit vectors in global object axes 
Oxyz are given by 

In   = 

cos£cosrj 

sin£cos7) 

sinrj 
>u = 

-sin£ 
cos£ >T,= 

—cos^sinr) 
—sin£sinr) 

0 COST) 

(3.49) 

Note that these vectors are functions of the angles £ and r\. 
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At a later stage, it will be helpful to consider the derivatives 

gin —» 
= COST) 1 ^ 

gin 

-    d1* -cosr)l_ + sin-nl-  —- 

smrfU —-L 

= 1. 

= 0 

= -1, 

(3.50) 

The above system of reference frames is singular at the poles of the sphere. 
Unfortunately, the topology of the sphere does not permit the definilion of a continu- 
ous field of axes at each point, without singularities. For our choice of frames, the 
singularities correspond to multiply defined frames at the poles. These singularities 
create some problems, but these can be overcome by requiring special equivalences 
between the multiple definitions. For r\ — ±7772, all the values of £ refer to the same 
point, namely the pole. Compatibility between the potentially different values of a 
property sphere function for all £ must hence be ensured. In the case of a scalar func- 
tion / (£,T)), the consistency condition between the multiple definitions is simply 

/(X±7r/2) = /(0,± 77-/2)   foralU (3.51) 

In the case of vector and tensor fields, the consistency is more complex since the com- 
ponents are referred to different axes for each value of £ at the poles. The necessary 
consistencies for a vector function v and a tensor function T are given by 

v(£,7r/2) 
cos£    sin£ 

—sin£ cos£ v(0,7r/2) 

T(£,77-/2) = 
cos£    sin£ 

—sin£ cos£ T(0,TT/2) 
cos£  — sin£ 

sin£   cos£ 

(3.52) 

(3.53) 

for the north pole. Consistency relations at the south pole are similar, except that the 
transformation matrices must be transposed. 

Representations equivalent to the property spheres are now considered for planar 
curves. Properties of planar curves expressed in terms of normal orientation can be 
represented as functions on the Gaussian circle of the curve, these functions being 
referred to as property circles. Three representations of curves in terms of property 
circles will be defined in this report; they are exactly equivalent to the three new pro- 
perty spheres proposed for surfaces. A key contribution of this report will be a set of 
relations between the 2-D and 3-D representations when these are applied to an 
object-silhouette pair. As in the case of property spheres, non-scalar property circles 
rely on the definition of rotated axes for each point on the Gaussian circle. 
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The axes chosen here are oriented along the unit normal ln and the unit tangent Tt ; 
see Fig.3.11. The components of these vectors in the global axes Oxz of the image 
plane are given by 

1„ = 
cost/; 

sini/» It = 
—sirn/i 

cosi/i 
(3.54) 

Derivatives of these vectors with respect to the orientation parameter \j) are given by 

(3.55) din      _T dh_ _j 

d^ e</> 
3.3.3.   Relations  between  Monge Gradients  and  Coordinates  of  the Gaussian 
Image 

In this section, a relation is obtained between two different specifications of sur- 
face normals. Specifically, normal orientations can be defined in terms of gradients in 
Monge parameterizations, but also by points on the sphere and by angular coordinates 
for these points in the Gaussian sphere representation. Relations between these two 
representations are described here, first in the case of 3-D surfaces, where both Monge 
parameterizations and Gaussian spheres are especially meaningful. A similar formal- 
ism is then briefly developed for the case of 2-D curves. 

Consider a small surface element AE in the neighborhood of the point P0, and a 
Monge representation of AE in the local axes PQXL yL zt where X; is normal to AE. Let 
the normal orientation n0 at P0 be defined by the angles £0, T)0 on the Gaussian 
sphere. The normal n at a points on AE can be defined by its coordinates £, TJ on the 
Gaussian sphere, but also by its local gradients myl, mzt in the local PQP^I yi zi axes. 
Relations will be obtained between the gradients and the differences £—£0, T\—T\Q in 
angles on the Gaussian sphere, for small values of the gradients; see Fig.3.12. The 
result is obtained by considering the general form of a normal vector in global axes, 
transforming this expression to local axes and comparing with the expression in terms 
of the Monge gradients. 

A normal vector is defined in local axes by an expression similar to (3.31). 

n, = 

1 

-myl 

~mzl 

(3.56) 

On the other hand, the same normal vector is expressed as a function of angular coor- 
dinates on the Gaussian sphere as 

n cos£cos7) 

n=    n sin£cosr) (3.57) 

n sinrj 

where n  is the length of the normal vector.  This last expression for normal orienta- 
tion is now expressed in local axes as 
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Fig.3.12. Angular Coordinates for Normals on the Gaussian Sphere. 

n, =R3
G-*I? = 

COS£0COST)0    sin|0cosT)0 sinrj0 

-sin£0 cos£0 0 

-cos£0sinT)0 —sin£0sinr/0 cosr)0 

n cos£cosr) 

n sin^cosr) 

n sinrj 
(3.58) 

= n 

cos7)cosr/0cos(£ — £0) + sinT)sinrj0 

cosrjsinC^ - £0) 

—cos7)sinT)0cos(£ — £0) + sinrjcosr/o 

For small values of (£—£0) and (TJ—r)0), the above form of the normal in local axes is 
given to first order by 

n, =« 
1 

cosr)sin(£-£0) 

sin(Tj-r)o) 

(3.59) 

Comparing components in the above expression with the corresponding components in 
(3.56) produces the following first order relations between Monge gradients and global 
normal angles 

•yi % ~ ( i - £o ) cos7)0 
_     ( ^ (3.60) 

These expressions underline the close relation existing between local gradients and glo- 
bal angular orientation coordinates. Note the COST)0 coefficient which takes into account 
the shortening of longitude units at higher latitudes. 

38 



An argument similar to the one developed above can be developed for the Monge 
parameterization of curves in 2-D. The relation between the local gradient mzi and 
the polar angle vj> is obtained as 

m* %-(«f»-<fo) (3.61) 

3.4. SUMMARY 

A number of tools from geometry have been reviewed or presented in this section. 
The combination of these will allow us to develop an elegant theory for the relations 
between object shapes and silhouette shapes. Section 4 reviews the classical analysis of 
silhouette shapes and motivates some of the directions chosen in our analysis of 
silhouettes. The main results of this report are then presented in Sections 5 and 6. 

39 



4.0 CLASSICAL SILHOUETTE THEORY 

In this section, a number of silhouette construction methods are discussed and 
illustrated by the simple example of the silhouette of a cone. This section aims at the 
double goal of familiarizing the reader with classical silhouette analysis methods, and 
of discussing some basic concepts which introduce our original formulation of the rela- 
tion between objects and silhouettes. 

First, the well-known silhouette construction based on the silhouette generator is 
presented; this is the approach primarily used in the literature, and is very similar to 
the methods presented in [2, 13]. In the second step, silhouette construction is investi- 
gated with tangential space representations. Finally, silhouette construction is 
developed with the Gaussian mapping. These last two approaches are not intrinsically 
new, but their application to silhouette analysis has not received much attention in the 
computer graphics and computer vision communities. Through the discussion of these 
silhouette construction methods, it becomes apparent that normal orientations on the 
object surface play a prominent role in silhouette construction, and that the represen- 
tation of surface normals with the Gaussian mapping is particularly convenient for 
silhouette analysis. This conclusion motivates the development of representations 
based on the Gaussian mapping and the development of relations between the 
representations of an object and the representations of its silhouettes. 

4.1.   SILHOUETTE CONSTRUCTION BASED ON THE SILHOUETTE GENERA- 
TOR 

In this section, we discuss a classical method for obtaining the shape of a 
silhouette given the shape of the corresponding object and the viewing direction rela- 
tive to the object. It is straightforward to see that the silhouette is the projection of a 
set of points on the surface of the object. This set is a smooth curve for a smooth con- 
vex object, and is referred to as the silhouette generator in this report; other authors 
use different terms such as contour generator or boundary rim. The geometry of the 
projection and the silhouette generator are illustrated in Fig.4.1 for the example of a 
superquadric. For this example, the silhouette generator is a complex twisted curve. 
Marr has shown that the silhouette generator is planar for all viewing directions only 
when the object surface is quadratic [2]. The silhouette generator is the set of points 
of the object surface where the projection rays are grazing the surface; for a smooth 
object, this corresponds to the set of points where the tangent plane is parallel to the 
viewing direction. An equivalent property of the points on the silhouette generator is 
that the normal orientation is perpendicular to the viewing direction. The tangent 
plane and the normal at one point of the silhouette generator are displayed in Fig.4.1. 

The silhouette of a smooth convex object in orthographic projection can be deter- 
mined in two steps. The first step consists of selecting which points of the object sur- 
face have a tangent plane parallel to the viewing direction, thereby defining the 
silhouette generator. The second step consists of projecting the points of the silhouette 
generator onto the image plane, thereby producing the silhouette itself. 
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Viewing 
Direction 

Tangent Plane 

Object 
Silhouette 
Tangent 

Projection 
Plane 

Fig.4.1. Imaging Geometry for Orthographic Projection 

This procedure is outlined in the diagram of Fig.4.2. 

In order to gain better insight into the relation among object, silhouette and 
silhouette generator, it may be useful to consider an analogy with shadows. If the 
projection is replaced by a beam of light parallel to the viewing direction, the object, 
presumed opaque, will cast a shadow on the projection screen. The outline of that sha- 
dow is identical to the silhouette in the previous setup. In the shadow setup, only part 
of the object surface is illuminated by the light beam, as the other part is self- 

Object 
Selection 

Silhouette 
Generator 

Projection 
Silhouette 

Fig.4.2. Silhouette Construction with Point Representations. 
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shadowed. The boundary between the illuminated and self-shadowed parts of the 
object is identical to the silhouette generator. Light rays emanating from the light 
source graze the object at the points of the self-shadow boundary. Similarly, in the 
case of silhouettes, rays parallel to the viewing direction graze the object at each point 
of the silhouette generator. 

4.1.1. Example: Silhouette of a Cone 

The silhouette construction method described above is now illustrated with the 
simple example of a circular cone; the geometry of the projection is sketched in Fig.4.3. 
The geometry of the cone itself and of its silhouette are depicted in Fig.4.4. The stra- 
tegy for determining the shape of the silhouette consists of first computing the normal 
orientation at each point of the surface. Then, the surface points with a normal per- 
pendicular to the viewing direction lv. are determined; these constitute the silhouette 
generator. Finally, the silhouette generator points are projected onto the image plane, 
producing the desired silhouette. In all the developments, the sets of points are 
defined by parametric equations. Therefore, the final result is a set of parametric 
equal ions for the silhouette from which the silhouette shape can be interpreted. 

Viewing 
Direction 

Fig.4.3. Geometry for the Projection of the Cone. 
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Fig.4.4. a) Circular Cone, b) Silhouette. 

In a system of axes centered at a distance z0 below the vertex of the cone, with 
the z-axis along the axis of symmetry, the points of the cone can be described by 

x = x(u ,v ) = 

u sinT)0cosv 

u sinr)0sinv 

z 0 — u cosr)0 

(4.1) 

where u e R+, v e(0,27r] are parameters and r)0 is a constant, equal to the half-angle 
of opening of the cone. The choice of positive values for u corresponds to the choice of 
the lower sheet of the cone illustrated in Fig.4.4a). 

A vector normal to the surface is obtained by a formula decsribed in Section 3.2., 
by 

(4.2) 

which is proportional to 

n = xu Xx,. 

n = 

COSV COS7)0 

sinv COST)0 

sinr)0 

(4.3) 
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In   = 

Comparing this vector with the canonic form of a unit normal vector ln in terms of 
the angles (£,TJ) on the Gaussian Sphere, 

COS^COST) 

sin£cosT) 

siriT) 

it appears that the canonic orientation angles of the normal are related to the parame- 
ters of the surface by £=v, TJ=T)0. Consider now the orthographic projection with a 
viewing direction specified by the angles (0,0) in object-centered axes. The viewing 
direction unit vector is given by 

1,. = ( cos0cos0 cos0sin0 sinG Y (4.4) 

Points of the silhouette generator are the points for which ln *lv. = 0, i.e. 

COS0COS0COST)OCOSV + cos0sin0cosr)osim' + sin0sinr)o = 0 

also writtten 

cos(0 — v ) = — tanr)otan0 

This equation has two solutions for v , which will be denoted by 
V

SG l = 0 + acos(—tan7)otan0) 
V

SG 2 = 0 ~~ acos(—tanT)otan0) 

The silhouetle generator is hence defined by 

x = u sinT)0cosvSG,. 

y = u sinT)oCosv5G/ (4.7) 

Z  = ZQ — U COSTJ0 

for u eR , i =1,2. These are the equations of two straight lines parameterized in u. 
The projected silhouette is obtained by applying the projection operation to the coordi- 
nates of points of the silhouette generator. The projection transformation for point 
coordinates was determined to be 

(4.5) 

(4.6) 

—sin0 cos0 0 

-sin0cos0 —sin0sin0 cosG (4.8) 

The  result  of  applying  this  transformation  to the  parametric equations of the 
silhouette generator in (4.7) is 

x n = u sinT)0 sin(v5G/ - 0) 
(4.9) 

z n = —u sinr)osin0cos(v5G;- — 0) — u COST)OCOS0 + z ocos0 

fori- 1,2. 
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The following equations are obtained after replacing vGSi by its value in (4.6), 

xjr=±u sinrjo-yi-— tarpTfotarF^ 

cos2r)ocos20 — sin2T)osin20 (4.10) 
z n = zocos0 — u- 

cosr)ocos0 

These equations for the silhouette define two lines parameterized in u. These lines 
intersect at the point (x w,z „.) = (0,2 ocos0) in the projection plane and are symmetric 
about the Oz n axis. The half-angle opening v/;0 of the two silhouette lines is defined in 
Fig.4.4b), and can be evaluated as 

x n -\fi~~ tarFrjotafP^ 
tani//0 = = sinr)0cosrj0cosO 

(4.11) 

z 0costJ — z n coszrjQcosz9 — sinzr}0sin 9 

- sin7?o 
•y/cos1® — sirPrjo 

A simpler expression can be oblained for the sine of xjj0, namely 

tarn//0 sinrj0 
sim/i0 = —       =  — (4.12) 

^/\ + tan xfjQ       cost) 

The above relation between the opening angle of the cone r)0 and the opening angle \p0 

of the silhouette is a relation between 3-D object orientation and silhouette slope. It 
will become clear later on thai this type of relation, obtained here in the context of a 
particular example, is independent of object shape. Furthermore, similar relations will 
be obtained with much less effort in Section 6 using arguments on the Gaussian sphere. 

It is worthwhile to note that the simple example of the cone has interesting appli- 
cations. Indeed, different circular cones can be obtained by choosing different values 
for the ordinate z0 and for the opening T)0. A large class of axisymmetric objects can 
be defined as stacks of sections of such cones, so that a silhouette theory for axisym- 
metric objects can be developed based solely on this simple analysis for the cone. 

4.2. SILHOUETTE CONSTRUCTION IN TANGENTIAL SPACE 

In this section, silhouette construction is discussed with a method based on 
tangential representations; these representations were reviewed in Section 3.1.2. A 
tangential representation describes a 3-D object by the set of all its tangent planes. It 
is easy to see that only the planes tangent at the points of the silhouette generator 
effectively contribute to the shape of the silhouette. Since the surface normal is per- 
pendicular to the viewing direction for points on the silhouette generator, the planes 
tangent to the object on silhouette generator are all parallel to the viewing direction. 
This set of planes will be referred to as the silhouette generating planes. The 
silhouette generating planes are also perpendicular to the image plane, so that their 
projections are equivalent to their traces in the image plane. These projections are a set 
of lines tangent to the silhouette, so that this procedure provides a tangential represen- 
tation  of  the  silhouette.   One silhouette generating  plane and  its  projection are 
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illustrated in Fig.4.1. The construction procedure in tangential space is outlined in the 
block diagram of Fig.4.5. 

Silhouette construction in tangential space can be more convenient than in point 
space. Indeed, the crucial operation of selecting the silhouette generating planes can be 
much simpler than the corresponding selection of the silhouette generator points. As a 
consequence, even when the object is initially described in point space, it may be 
advantageous to evaluate a tangential description of the object from the given point 
representation first, perform the silhouette construction in tangential space and finally 
convert the silhouette representation back to a point space representation. The block 
diagram of Fig.4.6 outlines this scheme. 

Object 
(tangeni 

representation) 

Selection Silhouette 
Generating 

Planes 

Projection Silhouette 
(tangent 

representation) 

Fig.4.5. Silhouette Construction with Tangential Representations. 

Object 
(point 

representation) 

Silhouette 
(point 

representation) 

\ ' 

i \ 

Object Selection Silhouette 
Generating 

Planes 

Projection Silhouette 

represei itation) represei itation) 

Fig.4.6. Silhouette Construction with Conversion to Tangential Representation. 
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4.2.1. Example: Silhouette of a Cone 

Silhouette construction in tangential space is now illustrated with the same exam- 
ple developed previously in point space. In order to determine the silhouette of the 
cone, the first step is to determine parametric equations for the tangential coordinates 
of the cone. The silhouette generating planes are then determined as the tangent 
planes parallel to the viewing direction. The coordinates of the traces of these planes 
in the image plane are determined by applying the imaging transformation. This 
derivation produces parametric equations for the tangential coordinates of the 
silhouette in the image plane. Finally, the shape of the silhouette is interpreted from 
these equations. 

Equations for the planes tangent to the cone may be obtained by noting that in 
general, for a poinl x0 with surface normal n0, the tangent plane is the set of points 
with coordinate vector x satisfying 

n0-(x-x0) = 0 (4.13) 

The plane tangent to 1he cone at the point with parameter values (u0,v0) is obtained 
by applying the above formula to (4.1) and (4.3), which produces 

x COST)0COSV0 + y cosT)0sinv0 + z sinTj0 — z0sinr)0 =0 (4.14) 

This equation is compared with the canonic equation of a plane, 
x kx + y ky + z kz = 1, to determine the tangential coordinates (kx , ky, kz) of 
the tangent planes 

kx   = COtT)0COSV  / 2 0 

ky = cotT)0sinv / z0 (4.15) 

X, = l/*o 

Note that these coordinates are undefined for z0=0 since in that case, all tangent 
planes pass through the origin. The case of z0= 0 can be addressed rigorously using 
homogeneous tangential coordinates, although this is not done here. The equations 
obtained above are a set of parametric equations for the tangential coordinates of the 
circular cone. Note that the parameter u does not appear in the parametric equations. 
The tangent planes are only a one-parameter family in the case of the cone, as opposed 
to a two-parameter family in general. This degeneracy stems from the fact that the 
cone is a special ruled surface, for which each tangent plane is tangent to the surface 
along a whole line of points. 

The silhouette generating planes are now determined by selecting the planes 
parallel to the viewing direction. The vector k determining a plane in tangential space 
can be considered as a poinl-space vector normal to the plane defined. The silhouette 
generating planes have a normal vector perpendicular to the viewing direction and are 
therefore determined by 

kTTv = 0 (4.16) 
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cotrj0cosv cos0cos0 + cotT)0sinv cos0sin0 + sin0 = 0 (4.17) 

cos( v —(f)) = —tan0tanr)o (4.18) 

which produces exactly the same two solutions for v as obtained in Section 4.1.1. 
These solutions are referred to as vSG1, vSG2. The silhouette generating planes are 
characterized by the parametric equations 

kx = cot7)0cosv5Gl- / z o 

ky = cotT)0sinv5G/ / z0 

kz = 1/ z0 

(4.19) 

for i—1,2, and wilh \'5G/ given by equation (4.6). The projection transformation 
defined in Section .4.1.4. is now applied to the tangential coordinates of the planes in 
(4.19) to obtain the coordinates A.*,,-, kz7r of the tangents to the silhouette. The pro- 
jection transformalion for tangents was determined to be 

K 
—sin0 cos0 0 

—sin0cos0 —sin0sin0 cos0 

\, 

K Z 7T 

(4.20) 

The  result of  applying this transformation to the parametric equations fpr the 
silhouette generating planes in (4.19) is given by 

K,, n = cotTj0cosv5G sin0 — cotr)0sinv5G cos0   = cotr)0sin(v5G — 0) 
(4.21) 

kzn = — sin0cotr)ocos(0 — v5G ) + cos0 =  1/COS0 

The tangential coordinates of the silhouette take on just two values, determined by 
the above equations for v5G=v5Gi, v5G 2. Therefore, the silhouette is composed of 
two straight lines. The silhouette is degenerate since, in the general case, a parametric 
equation for the silhouette tangents would be obtained instead of the fixed values in 
(4.21). 

The two silhouette lines defined in (4.21) are symmetric about the Ox n axis. The 
half-angle i//0 between the lines is obtained by noting that a line with coordinates kx n, 
kzn crosses the axes at the points (l/kxn,0) and (0,1/A.z7r); see Fig.4.4b). Note that 
I/J0 is also the polar angle of the normal orientation of one of the silhouette lines in the 
image plane. It is given by 

\/kxw   _ tanTjo  tanTto  

\/kz7T       cos0sin(v9G, —0)       cosG-yT—tan^otari2^ 

sinr)0 

-y/cos2© — sin^o 

which matches the result obtained previously. 

(4.22) 

49 



In the above example, it appears that, given an object description in tangential 
coordinates, the determination of the silhouette equation can be much simpler than 
with point coordinates. When the object is initially defined by a point coordinate 
representation, the relative merits of the direct construction method depicted in Fig.4.2 
and the indirect method depicted in Fig.4.6 depend on the effort required for convert- 
ing the representation. For example, if many silhouettes must be computed numeri- 
cally for the same object, the tangential description must be computed only once, 
thereby providing a larger potential advantage for the indirect method. 

4.3. SILHOUETTE CONSTRUCTION WITH THE GAUSSIAN MAPPING 

In this seel ion. we will see that the Gaussian mapping suggests a very simple 
method for selecting the silhouette generator or the silhouette generating planes. 
Although silhouette construction with the Gaussian mapping can be related directly to 
silhouette conslruction in point space, it is instructive to introduce it through the dis- 
cussion of silhouette construction with polar tangential coordinates, which is 
presented in the first subsection. Phrasing the construction method developed in the 
previous section for tangential space representations in terms of polar coordinates pro- 
vides a relation bei ween normal orientations on the object surface and normal orienta- 
tions on the silhouette; this relation is independent of object shape. In a second subsec- 
tion, this relation is re-interpreted by mapping normal orientations on the Gaussian 
sphere and discovering that the silhouette generator corresponds to a slice of the Gaus- 
sian sphere. 

4.3.1. Silhouette Construction with Polar Tangential Coordinates 

A particular case of silhouette construction in tangential space is considered in 
this section, where polar coordinates (p ,£,T)) are chosen to represent planes to the 3-D 
object, and polar coordinates (p ,\fj) to describe lines tangent to the 2-D silhouette; 
these coordinates are defined in Section 3.1.2. First, in order to avoid confusion 
between the perpendicular distance p in 3-D and 3-D, this distance will be represented 
by the symbol p ^ for the silhouette in 2-D. 

Consider a description of the surface of a 3-D object by parametric equations for 
the polar coordinates (p ,£,7)) as a function of two independent parameters, say u and 
v. 

(4.23) 

For smooth strictly convex objects and for a regular parameterization in (u ,v ), the 
functions defining the angles (£,7)) in terms of the parameters (u ,v ) are invertible. 
The parameters (u ,v ) in (4.23) can then be replaced by inverse functions in terms of 
(£,T)). Examples of this parameter change are presented in Appendix  1. 

p p(u,v) 

i = i(u ,v) 

•n Tj(u ,V ) 
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When this change of parameters is performed in equation (4.23), identities are 
obtained for £ and r), and an explicit equation is obtained for p , 

P=p(£,ri) (4.24) 
The above representation form is now discussed in some detail, as it will be the basis 
for new representations of 3-D surfaces. Equation (4.24) represents, for each point P0 

of the object with a normal orientation (£,17), the perpendicular distance p between 
the origin and the tangent plane at P0. This explicit equation describes the shape of 
the object surface by expressing the dependence of one polar tangential coordinate on 
the other two, and can be compared in this respect with the Monge parameterization 
z = x (y ,z ) which expresses one Cartesian coordinate as a function of the other two. 
In both cases, the explicit equations are invariant in transformations involving only 
the independent variables. The Monge parameterization is therefore invariant in 2-D 
translations of the Oyz plane, whereas the form in (4.24) is invariant with 3-D rota- 
tions around the origin. Hence, this last representation elegantly casts a surface 
representation in a form invariant with viewing direction. The function p (£,7)) is 
sometimes referred to as the support function, as it describes the distance from the ori- 
gin to a potential support plane when the object is oriented with the direction (£,T)) 
towards nadir. 

Silhouette construction is now investigated for an object shape described by an 
equation such as (4.24), by first considering the selection of silhouette generating 
planes, then their projection onto the image plane. 

For a plane with polar tangential coordinates (p ,£,T}), the normal orientation is 

ln = ( COS£COST) sin£cosrj sinrj )T (4.25) 

The silhouette generator equation is ln lv, =0, more explicitly 

( COS£COST) sin£cosr) sinr) ) ( cos0cos0 sin0cos0 sinO )T = 0 (4.26) 

cos(£ — 0) = — tanrjtanG (4.27) 

This equation defines a set of values for (£,T)) which correspond to silhouette generat- 
ing planes. The following expression for the one-parameter family of solutions will be 
derived in Section 6. 

€SG (O = 0 + 7r/2 + atari (tan? sinO ) 
,  . ... a, (4.28) 

VSG 'Z ) = asln ' Slnr cos" ' 

where t e(0,27r] is a parameter. The subscript in gsc ,rjsc emphasizes that these 
expressions apply to the silhouette generating planes. The result in (4.28) can be 
justified by inserting the proposed solution in equation (4.27), then performing simple 
trigonometric manipulations to obtain an identity; this justification is omitted here. 

Once the silhouette generating planes are determined, the next operation consists 
of obtaining the coordinates of their traces in the projection plane. The transformation 
of polar tangential coordinates in the projection can be obtained by exploiting the pro- 
jection transformation for Cartesian tangential coordinates in (3.22) and by replacing 
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the Cartesian coordinates in terms of the polar tangential coordinates, as given in (3.1) 
and (3.2). The resulting projection equation for polar tangential coordinates is 

cos£sinT)//> cos\}}/p n 

sm\^/pw 

—sin0 cos0 0 

—sin0cos0 — sin0sin0 cosO 
sin£cosT)//? 

sin-q/p 

(4.29) 

The above relation applies only to planes perpendicular to the projection plane, i.e. to 
planes determined by (4.27) or (4.28). The following expressions for polar tangential 
coordinates of the silhouette can be obtained after trigonometric manipulations, by 
replacing £ and TJ in the right-hand side of the above projection equation by their 
values in equation (4.28). 

xp=    t 

Pn=     P 
(4.30) 

The first equation above provides an interpretation for the generic parameter t in 
(4.28). The second equation can be combined with (4.28) to obtain an explicit equation 
for the silhouette in polar tangential coordinates. 

P-M) = P(£sG <^)> %G W ) 

= p ( 0+7r/2+atan(tanv/> sinG), asin(sim// cos0) ) (4.31) 

The expressions obtained above for silhouette construction in polar tangential 
coordinates are remarkable in several respects. First, equation (4.28), determines the 
silhouette generating planes based on the independent variables (£,T)) only. This 
result is hence independent of object shape. Selection of the orientations of silhouette 
generating planes depends only on viewing orientation and can be precomputed for a 
set of viewing angles; the resulting selection procedure applies to any object. Second, 
correspondences between the silhouette orientation coordinate ijj and the object orien- 
tation coordinates £, t] are also independent of object shape, and are given by equations 
(4.28) after replacing the parameter t by the angle xfj. 

£SG = <fi + TT/2 + atari (tani/fsinO ) 
•   (   •   i      a\ (4-32) 

r\SG — asm ( sini//cos0 ; 

Finally, the normal distance pn for points of the silhouette is related to the normal 
distance p at the corresponding point of the object by the trivial relation p n = p . 

4.3.1.1. Example: Silhouette of a Cone 

In order to apply the method developed in the previous section to the derivation 
of the silhouette of the cone, it is necessary first to determine parametric equations for 
the polar tangential coordinates of the cone, second to convert these into the form of 
equation (4.24), and third to determine an equation for the silhouette with (4.31). 
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Polar tangential coordinates for the cone are easily determined by comparing 
equations (4.15) and (3.2). 

kx = COtTJo cosv Iz 0  = cos£ COST) lp 

ky = cotrj0sinv /z0  = sin£cosT)//? (4.33) 

kz = 1 lz o = sinT) //? 

It is clear from the above equations, that 

i-v ,   T)=T)0 ,   p=z osinrjo (4.34) 

This result shows again that the cone is a degenerate case since r/=cst, /> =cst and only 
£ is variable, whereas in general, both £ and r\ would be variable and p would be a 
non-trivial function of (£,T)). The tangential coordinates of the silhouette are easily 
determined with (4.31) and (4.32). 

sinr)0 
PIT = 20sinrj0 ,   sim/>0 =        ,* (4.35) 

After conversion of these polar coordinates to Cartesian tangential coordinates using 
(3.1), the above results are found to be identical to those obtained previously in (4.21) 
and (4.22). 

4.3.2. Silhouette Construction with the Gaussian Mapping 

In the previous section, relations between normal orientations on the object sur- 
face, on the silhouette generator and on the silhouette were obtained by analyzing 
silhouette construction in polar tangential coordinates. These relations are interpreted 
in this section by considering normal orientations in the Gaussian sphere and Gaussian 
circle representations. The resulting interpretation is much more attractive visually 
than the one obtained in the previous section, although no new equations are derived. 
Indeed, it is much easier to visualize points on the sphere than orientations in 3-D 
space. Finally, the relation between silhouette analysis and the Gaussian mapping is 
extended by introducing property spheres and property circles. 

The relation in (4.32) between normal orientations in 3-D and normal orienta- 
tions in the projection plane has a double interpretation. First, considering xfj as a gen- 
eric independent parameter, these equations characterize the set of normal orientations 
of points on the silhouette generator, for a given viewing direction (0,0). These nor- 
mal orientations are defined by the polar angles (£,T)). Second, it relates points on the 
silhouette parameterized with the normal angle i/; to the corresponding points of the 
silhouette generator. 

It is interesting to interpret these relations in representations particularly suited 
for normal orientations, namely the Gaussian sphere for the object and the Gaussian 
circle for the silhouette. The silhouette generator on the object surface is the set of 
points for which the normal orientation is perpendicular to the viewing direction. As 
the Gaussian mapping preserves normal orientation, the image of these points on the 
Gaussian sphere is the set of points for which the normal orientation is perpendicular 
to the viewing direction or, in other words, the silhouette generator of the sphere for 
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the same viewing direction. It is straightforward to see that this set of points is the 
great circle perpendicular to the viewing direction. In addition, surface normals at the 
points of the silhouette generator are parallel to the projection plane and remain 
unchanged in the projection operation, so that normal orientations on the silhouette are 
identical to normal orientations at the corresponding points on the silhouette genera- 
tor. The consequence is that the great circle of the Gaussian sphere is also a Gaussian 
circle for the silhouette. The relations discussed above are illustrated in Fig.4.7. 

In the above discussion, equation (4.32) has been interpreted in terms of the 
Gaussian mapping. Although this interpretation indicates a relation between object 
points and silhouette points, it does not suggest a complete method for inferring the 
shape of the silhouette from the shape of the object. A complete relation is obtained, 
however, by combining equation (4.31) with the Gaussian mapping and considering 
object descriptions by property spheres and silhouette descriptions by property circles. 
Indeed, the support functions p (£,T)) and p w(yjj) represent perpendicular distances to 
tangent planes in terms of normal orientations. Mapping normal orientations on Gaus- 
sian images produces functions defining p and p n on the Gaussian sphere and on the 
Gaussian circle. These can be considered as property spheres and property circles as 
defined in Section 3.3.2. For these representations, equation (4.31) suggests that the 
silhouette property circle function values pn are identical to the property sphere 

Viewing 
Direction 

Object 
Gaussian Sphere 

Silhouette 
Generator 

Great 
Circle 
Slice 

Gaussian Circle 

Fig.4.7. Silhouettes and the Gaussian Mapping 
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function p on the slice corresponding to the silhouette. Hence, the silhouette property 
circle can be considered as a slice of the property sphere of the object. 

In this section, we have interpreted silhouette analysis with polar tangential coor- 
dinates by representing the 3-D object by a property sphere for the distance between 
origin and tangent planes, and the 2-D silhouette by a property circle for the distance 
between origin and tangent lines. The silhouette property circle is identical to a slice 
of the property sphere of the object by a plane perpendicular to the viewing direction, 
through the center of the sphere. 

4.3.2.1. Example: Silhouette of a Cone 

Construction of the silhouette with the Gaussian Mapping is now illustrated by 
the example of the cone. First, the distance p to the tangent is the constant z0sinT)0 

for all points of the cone. As a consequence, the distance pn to silhouette tangents is 
simply equal to the same constant everywhere on the silhouette. 

The investigation of silhouette normal orientations leads to a more interesting 
discussion. As derived in previous sections, the normal orientations of points on the 
surface of the cone are determined by 

i e (0,2TT] ,   rj=T)0 (4.36) 

This set of orientations is represented by the parallel at latitude Tj0 on the Gaussian 
sphere; see Fig.4.8. Considering a projection along the direction (0,0), the silhouette 
corresponds to the great circle slice perpendicular to the viewing direction, which is a 
Gaussian circle for the silhouette.  In the case of the cone, this slice intersects the small 

Viewing 
Direction 

^ 

Slice 

T)=TJ0 

Gaussian Sphere 

Fig.4.8. Silhouette of the Cone and Gaussian Sphere. 
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circle T]=T)0 at two points with polar angles i/>0, 7T—v//0 in the slice plane. The 
silhouette is hence characterized by only two distinct normal orientations, so that it is 
composed of two lines with those normal orientations. The exact position of these lines 
is determined by the distance p ^ to the origin, which was determined previously. The 
exact value of the orientation t//0 in the silhouette plane can be obtained in terms of rj0 

and 0 by resolving the right-angled spherical triangle in bold lines in Fig.4.8. The 
relation obtained with standard expressions of spherical trigonometry is 

sinr)0 = cos0 sini//0 (4.37) 

which is consistent with the results obtained previously with other methods (e.g. 
equation (4.12)). 

Although the Gaussian mapping does not provide new numerical expressions for 
the relation between silhouette shape and object shape, it is well adapted to conduct 
qualitative prediction of the resulls. Indeed, the following conclusions can be drawn 
by considering the Gaussian sphere of the cone and the silhouette slice in Fig.4.8. 
First, the intersection points between ihe parallel of the cone and the great circle slice 
are on the opposite side from the viewing direction. As a consequence, the silhouette 
generator on the object is on the same side of the object as the projection plane; this is 
clearly seen in Fig.4.4. Second, by an appropriate choice of the elevation 0 of the 
viewing direction, it is possible to give the half angle if)0 of the silhouette any value 
between 7)0 and n/2; this is valid for any value of the opening angle T)0 of the cone 
itself. Hence, if a pair of lines observed in the image plane are presumed to be the 
silhouette of a cone, nothing can be determined about the shape of the cone without 
estimating its orientation with respect to the projection plane by some other method. 
Finally, for very large elevations 9 of the viewing direction, namely for 0>7r/2—T)0, 
the great circle does not intersect the parallel T7=T)0, and there is no silhouette. It is 
not hard to see that this corresponds to a case where the viewer is "above" the cone so 
that its image fills the whole projection plane. Similarly, when 0<— 7T/2+T)0, there is 
no intersection on the Gaussian sphere, and this corresponds to the case where the 
viewer is "inside" the cone, so that, once again, no silhouette is obtained in the image 
plane. 

We have shown in this section that interesting qualitative arguments on 
silhouettes can be developed based on the Gaussian mapping. This advantage of 
representations with the Gaussian mapping is extremely useful in developing a 
thorough understanding of the relation between silhouette shape and object shape. 

4.4. CONCLUSION 

In this section, we have developed a number of silhouette construction methods 
and their illustration on a simple example. Starting from the method used most fre- 
quently in the literature, we have gradually progressed to methods based on tangents, 
then to methods based on tangent orientations. In the last method, the Gaussian map- 
ping was introduced to interpret first a relation between object points and silhouette 
points, and second a relation between object properties and silhouette properties. Both 
relations are independent of object shape, and the first is independent of the choice of 
object property.  The second relation depends on which object property is represented 
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on the Gaussian sphere, and is independent of object shape only for adequate choices of 
object properties and silhouette properties. 

The key contributions of this report are first the formal analysis of the property 
sphere for the distance to tangents introduced in Section 4.3.2., and the demonstration 
of its relation with corresponding silhouette property circles, and second the develop- 
ment of two additional object properties for which the relation between sphere and 
circle are independent of object shape. 

In Section 5, three representations of 3-D objects in terms of property spheres are 
proposed and analyzed, together with the corresponding representations of silhouettes 
with property circles. In Section 6, the relation between these silhouette property cir- 
cles and object property spheres is formally developed. 
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5.0 REPRESENTATIONS FOR CURVES AND SURFACES 

BASED ON THE GAUSSIAN MAPPING 

In this section, three property circle representations of 2-D curves and the 
corresponding property spheres of 3-D surfaces are proposed. The advantages of this 
type of representation for silhouette analysis were suggested in Section 4 and will 
become more clear in Section 6, when simple relations are developed between each of 
the representations for an object surface and the corresponding representations for its 
silhouettes. 

The three pairs of representations describe three different properties of the objects 
being described as functions on Gaussian circles and spheres. The first representation 
describes the normal distance between tangents and a reference point; this scalar pro- 
perty sphere/circle is named the Support Transform (ST). The second representation 
describes coordinates of object points in rolated axes and is named the Vector Support 
Transform (VST). The VST has three components for 3-D surfaces, two components 
for 2-D curves, and it turns out that in each case, one component is identical to the 
scalar ST. Finally, the third representation describes local curvatures and is named 
the Curvature Transform (CT). The three representations are collectively referred to 
by the name of transforms, in part to emphasize that these representations are com- 
plete and therefore uniquely invertible, and in part to preserve the similarity between 
our silhouette theory and the Projection-Slice theorem in computerized tomography. 

The particular choice of object properties for these three representations is 
justified a-posteriori by the existence of simple relations between each transform of an 
object and the corresponding transforms of its silhouettes; these relations are demon- 
strated in Section 6. The existence of such simple relations was suggested for the ST in 
Section 4. In the case of the VST, it can be expected that simple relations exist between 
point coordinates in 2-D and 3-D. Finally, in the case of the CT, the dual of Euler's 
theorem indicates a relation between silhouette curvature and object surface curva- 
ture. The dual of Euler's theorem is demonstrated independently of the Gaussian 
mapping in Appendix 3, and it turns out to be also a corollary of the relations between 
the 3-D CT of an object and the 2-D CT of its silhouettes. 

The definitions of the transforms presented in this section are accompanied by the 
derivation of conversions to and from Cartesian representations. These relations are 
useful when evaluating or inverting the transforms for specific object shapes. In addi- 
tion, the conversion relations are used in Section 6 to develop the relations between 3- 
D transforms of an object and 2-D transforms of its silhouettes. 

In this section, all arguments are developed for curves and surfaces which are 
outlines of smooth strictly convex objects. It is possible to describe these curves and 
surfaces by equations parameterized with the normal orientation angles \j) in 2-D, 
(£,7)) in 3-D. Only these parameterizations are considered here for Cartesian coordi- 
nates. Relations between these and other parameterizations are briefly discussed in 
Appendix 2.  Extensions of the representations to include object surfaces with edges 
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and their silhouette curves are discussed in Section 7. 

The concepts of the three transforms are very similar in 2-D and 3-D, a similarity 
emphasized by the vector notation used in this section. As the algebra is more 
straightforward in the 2-D case, we have chosen to discuss the 2-D transforms in Sec- 
tion 5.1 and the 3-D transforms in Section 5.2. The algebra supporting the discussion 
of 3-D surface models is more involved than in the 2-D case, but the parallelism of 
concepts substantially improves readability. In order to preserve the similarity of 
notations, some aspects are presented with considerable detail in the case of 2-D 
curves. 

5.1. REPRESENTATIONS FOR PLANAR CURVES 

In this section, three property circle representations of 2-D curves are defined, 
and iheir transformations to and from Cartesian coordinates are developed. The 
representations, collectively referred to as transforms, define curve shapes by property 
fund ions on the Gaussian circle. The object properties are represented in a different 
set of rotated axes for each object point, so that the rotations of coordinates defined in 
equalion (3.7) appear in both the direct and inverse transform expressions. Relations 
among 1he three transforms of the same curve are developed at the end of this section; 
these relations are exploited to develop consistency constraints for the ST and the 
VST. 

5.1.1. Support Transform of a Planar Curve 

Definition: The Support Transform of a planar curve is the property circle defining 
the normal distaricc between the origin and the tangent at each object point. This dis- 
tance is denoted by the symbol p . 

The ST is equivalent by definition to a representation of the distance p to the 
tangent as a function of the normal orientation angle i/i, and is hence a representation 
of tangents to the curve equivalent to the explicit equation p (v/;) for the polar tangen- 
tial coordinates. The function p (I|J) is sometimes referred to as the support function, 
a name which has determined our choice for the name of the Support Transform. 

Figure 5.1 illustrates the definition of p0 for the point P0 on the curve C. Let 
t//0 be the polar angle of the normal at P0. The distance p0 is measured along the nor- 
mal at P0, which is parallel to the OxR axis of the rotated frame OxRzR for t//=i/>0. 
The ST function is hence related to Cartesian coordinates by p0 = xR (PQ). This rela- 
tion is given, for a generic point of the curve, by 

p (</>) = xR (</>) =     1   0 2*0/0 
i o 

cosv/;    siru/j 

—sini// cost/; zixfi) 

cosv/; sini/; 
x(\l>) 
z(\ft) 

p (i/i) = ef xR i» = E{ R?-R x(t|>) = i,fx(</0 (5.1) 

where 5j denotes the canonical unit vector (10)   .  The transformation from ST to 
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»•   X 

Fig.5.1. Tangent to the curve C at P0 and normal distance p 0- 

Cartesian coordinates is now derived by first considering the equation for the Carte- 
sian coordinates of the points on a tangent line with polar tangential coordinates p (i/;), 
</,. 

x cost/; + z sirn/; = p (i/>) (5.2) 

The above equation describes a one-parameter set of tangents to the curve, where xf) is 
the parameter. The curve itself is the envelope of these lines and its equation can be 
evaluated by eliminating the parameter \j) between the equation for the tangent and 
the derivative of this equation with respect to xfj. These two equations are given by 

x cost/; + z sim/; =   p (t//) 

—x sirn/; + z cosi|/ =   p^i^i) 

cosi/>   sirn/; 

—sirn/; cosv/; 
P 

P + 
(5.4) 

where p^= dp/d\\).   Comparison of these equations with the transformation from 
global to rotated coordinates, namely 

ZR 

COSI/;   sirn/; 

—sirn/; cosi/; 

_ o G -R „ XP =R (5.5) 

reveals that the coordinates of points of the curve in the rotated frame are given by 

XjeO/0 PW 
(5.6) 

and that global Cartesian coordinates are related to the ST by 

61 



cosv/r —sini/j 

sim/>   COSI/J 

XW = R2«-G(xjj) 
PW 
Pifap) 

(5.7) 

The following alternate vector notation emphasizes the contribution of the ST along 
each local unit vector on the Gaussian circle. 

xO/0 = />0/») l„ +/»*ty)T« (5.8) 

5.1.2. Vector Support Transform of a Planar Curve 

Definition: The Vector Support Transform of a planar curve is the property circle 
defining the Cartesian coordinates of each point in a rotated frame oriented along the 
normal and the tangent at that point. These coordinates are denoted by n and t for the 
coordinates along the normal and along the tangent respectively. The vector combining 
these coordinates is denoted by 5~ = [ n t ]   . 

The above definition emphasizes that the VST describes object point coordinates. 
However, it is easy to see that the first component of the VST is identical by definition 
to the scalar ST. Therefore, the VST is a superset of the ST and it explicitly describes 
tangents to the curve in addition to points of the curve. The presence of two com- 
ponents in the VST and its relation to the ST justify the name of Vector Support 
Transform. 

Figure 5.2 illustrates the definition of the VST for the   point P0 on a curve C 
described in global axes Oxz.   If i//0 is the normal orientation angle at P0, the VST 
defines the coordinates of P0 in rotated axes OxR zR   for ip=\ft0.  The transformation 
between VST and coordinates in the global axes is given by the transformation of 

»- x 

Fig.5.2. VST of PQ as Coordinates in the Rotated Frame. 
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coordinates between rotated and global axes in equation (3.7). The transformation is a 
rotation with an angle V/J0 for the point P0 and, for a general point, the normal angle 
v/». This angle has a different value for each point on the curve. The transformation 
from the VST to equations for Cartesian coordinates in the global frame is given by 

x(i/0 

z(i/>) 

cosxfj — sint/f 

sim/j   cosi// t(xp) 

x(v/>) = R2*-%//)5(t/;) (5.9) 

The following alternate veclor notation emphasizes the contributions of the VST along 
each local unit vector of the Gaussian circle. 

Xfv/O = n(4>) ln +t(4>) 1, (5.10) 

The transformation from Cartesian coordinates to the VST is the inverse of the above 
transformation, namely 

cosv/;    sinv/; 

—sini/; COSI/J 

x(t/>) 

50/i) = R2
&-*G/»)xty) (5.11) 

5.1.3. Curvature Transform of a Planar Curve 

Definition: The Curvature Transform of a planar curve is the property circle 
defining the radius of curvature at each corresponding object point. This radius of cur- 
vature is denoted by the symbol p. 

The CT defines the radius of curvature p for each given normal orientation i// and 
is hence equivalent to the intrinsic equation p(t/>), a representation which is well 
known in differential geometry [52]. Our motivation for defining curvature by the 
radius p as opposed to the curvature k is the simplicity of object/silhouette relations 
for this choice of representation for curves and for the corresponding representation 
for surfaces. 

The definition of radius of curvature at the point P0 of a curve C introduced in 
Section 3.2.5. is based on the Taylor expansion of the Monge parameterization in local 
axes PQXI V; Z[ oriented along the tangent and normal at P0. 

xt - -VizlPolzl +0(zl
3) (5.12) 

where p0 is, by definition, the radius of curvature at P0. Local axes for the above 
Monge parameterization are sketched in Fig.5.3. Note that for a convex curve without 
straight segments, p(t//) > 0 for all i/>. 

The transformation from the CT function p(i/0 to Cartesian coordinates is now 
determined. In contrast with the ST and the VST, the CT defines the shape of the 
curve only locally. As a result, it is not possible to determine direct relations between 
parametric equations x(i/;) and the CT representation, although a relation will be 
obtained   between  the  first  differential  dx(\ft)  and  the  CT.    The curve  is  first 
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-*»   X 

Fig.5.3. Local axes for Defining the Curvature of AC at P0. 

considered in a small neighborhood of the point P0 and analyzed in the fixed local 
reference I ranie PQXL Z^ . An expression for the differential d X; (i//) in the local axes is 
obtained by the chain rule 

d X, (v//) = —  —- d 0 
dzl        dmzl     d \p 

(5.13) 

where mzl was defined in Section 3.2.4. as the gradient of the local Monge equation. 
The first two derivatives in the right-hand-side of (5.13) depend on the particular 
curve shape a1 P0 expressed in (5.12). The last derivative in (5.13) depends on the 
relation between the local gradient and the global orientation angle, a relation dis- 
cussed in Section 3.3.3. Each of the factors in (5.13) is evaluated in Appendix 6; the 
resulting expression for d X^ is given by 

dxt 

dx\) + 0 («/r-i//0) d 4> = Po 

(5.14) d Xz = p0 lzl d\}) + 0 (t//-t//0) d \\s 

The above expansion is exact for \p = v/;0, which corresponds to the point P0 

d X, (0O) = p0 \zl d \fi 

The differential of global coordinates is obtained by applying the coordinate transfor- 
mation from X; to X, defined in equation (3.8) 

dx (i//0) 

dz (XJJQ) 

COSI/J0 —sini/>0 

sini/j0    COSV/J0 

p0d\}} = 
—sinv/;0 

cosv/;0 
p0d\\> 

dx(i//0) = R2*  G(i/>0) ^2Podrp=lt0Podyp (5.15) 
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As the point P0 is generic, the above relation is valid for all the points of the curve, so 
that 

dx 

dz 

—sim/> 

cost/; pC\l>)dxf, 

d xty) = Tt p(\\,)d xf, = Rf-0^) E2 p(xfj) d 0 (5.16) 

The above equation is a first-order differential which can be integrated to produce an 
expression for Cartesian coordinates of points on the curve 

JCO/0 

z(v/») 

*0 <A 
+ / pG/0 

<Ao 

—sini// 

cosxj) dx}) 

4' 
x(</0 = x0 + / P(^)Tt (0) d \f) (5.17) 

For a simple closed curve, the vector function X(i//) must be periodic in \jj with a 
period of 2n. Therefore, the CT function p(i|0 must satisfy the following constraint 

27T 

/P(</0 
—sim/; 

cosi/; dip=0 

277" 

f pi\l>)lt(\l>)d\f,= 0 (5.18) 

One interpretation of the above relation is that p(v/»), considered on a 2n interval, 
must have no Fourier series term of order one. The relation in (5.18) has also been 
interpreted by considering p(i/>) as a distribution of mass on the unit circle [53]. The 
consistency relation is then equivalent to requiring the center of mass of the distribu- 
tion to be at the center of the unit circle. 

Two expressions for the CT in terms of Cartesian parametric equations are now 
obtained, the first by multiplying both members of equation (5.16) by lt , the second 
by taking the modulus of (5.16). 

o(xb) =   <W)-T    =    l<**(0)l 
HV dxfi       l dip 

(5.19) 

Note that the right side of the above expression is identical to a classical definition for 
the radius of curvature of a convex curve [52]. 

5.1.4. Relations among the ST, the VST and the CT of a Curve 

Relations among the three transforms of a 2-D curve are developed in this section. 
Based on these relations, a number of consistency criteria are developed for the ST and 
the VST. 
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By definition, the first component of the VST is identical to the scalar ST. As a 
consequence, the VST is a superset of the ST and is therefore redundant, since the ST is 
complete.   Comparing equations (5.8) and (5.10), it is straightforward to determine 
that 

n = p 

(5.20) 

t = n >A 

where the first two equations express the relation between the ST and the VST, and 
the third equation is a consistency relation for the VST. 

In addition to the above relations, a consistency criterion for the ST and for the 
VST can be obtained by relating these to the CT, then expressing the convexity con- 
straint p>0 on the CT. The relation between the ST and the CT is obtained by con- 
sidering the inverse ST equation 

x(</0 = p (i/») T„ + p /i/0 Tt (5.21) 

and by comparing the differential of this expression with (5.16).  The differential of 
(5.21) is easily obtained, using the derivatives of unit vectors in (3.55). 

x*0/0=   />0/0 + />wO/>)   Tt (5.22) 

Comparing this expression with (5.16), the relation between the ST and the CT is 
determined to be 

p(\l>) = p(\p)+Pto,W (5-23> 
The corresponding relation between the VST and the CT can be obtained by a similar 
argument. 

p(i/0 = n(i/>)+ **(«/>) (5.24) 

For a convex curve, p(i/>) > 0 for all i/;. As a consequence, the following inequalities 
must apply to the ST and to the VST components: 

PW + PWW > ° (5-25) 

n (\f>) + t fbli) > 0 (5.26) 

It is instructive to consider the relations between each of the three transforms 
and derivatives of the support function p (i/;). 

PW = p 
5(0) = [p p^Y (5.27) 

p(i//) = p +pH, 

The above relations emphasize the dependence of the ST, the VST and the CT on 
derivatives of p   up to orders 0, 1 and 2 respectively; similar conclusions will be 
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observed for 3-D surfaces. These relations will be useful in Section 7 when analyzing 
discontinuities of these functions for curves and surfaces with straight edges. 

5.1.5. Examples of 2-D Transforms 

In Appendix 1, the three 2-D transforms are derived analytically for superconics. 
Graphs of the transform functions are presented in Fig.5.4 for a superconic with major 
axis half-lengths a =2.0, c = 1.0 and an exponent of n = 1.2. The property functions 
are drawn on polar plots in Fig.5.4, with the origin of the plots offset from the center 
to allow the representation of negative values in t (i/;). 

5.2. REPRESENTATIONS FOR 3-D SURFACES 

In this section, three property sphere representations for 3-D surfaces are defined. 
These representations are extensions to 3-D of the three representations defined for 
2-D curves in the previous section. The representations of surfaces will be referred to 
by the same names as their 2-D counterparts, namely the ST for a property sphere 
specifying normal distances to tangent planes, the VST for a property sphere of object 

a) b) 

c) 

Fig.5.4. 2-D Curve and Polar plots of 2-D Transforms. 
a) Superconic with exponent 1.2, b) Support Transform, 

c) Tangential Component of Vector Support Transform, d) Curvature Transform. 
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point coordinates, and the CT for a property sphere of curvatures. Transformations to 
and from Cartesian coordinates are derived for the three transforms. Relations among 
the three transforms are developed and exploited to develop consistency constraints 
for the ST and for the VST. In addition to the above relations, relations between the 
extended Gaussian image and the three surface transforms are determined. A close 
parallel has been preserved with the notation used in the case of 2-D silhouettes, as 
this association improves the readability. 

5.2.1. Support Transform of a 3-D Surface 

Definition: The Support Transform of a 3-D surface is the property sphere defining 
the normal distance from the. origin to the tangent plane at each point of the object. This 
distance is denoted by the symbol p . 

The ST function on the Gaussian sphere specifies the normal distance p to the 
tangent plane with the given orientation and is hence equivalent to the representation 
of planes tangent to the surface by the explicit equation p =p (£,T)) for the polar 
tangential coordinates. In other work, the function p (£,7)) is referred to as the sup- 
port function for the surface. As illustrated in Fig.5.5, the normal distance p0 for the 
point P0 on the surface element E is the distance between the origin and the tangent 
plane at P0. This distance is measured along the normal, and is equivalent to the xR - 
coordinate of P0 in rotated axes for £=£(> r)=r)o- 

Fig.5.5. Tangent Plane IT to the surface E at P0 and normal distance p0. 
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The ST function is hence related to Cartesian coordinates for the curve by 

Pd,ri)   =xR = ( 1  0 o| 

cos£cosr)     sin£cosT)  sinrj 

-sin£ cos£       0 

—cos£sinT) —sin£sinT) COST) 

x (£,T,) 

=    COS£COST) sin£cosr/ sinT)       y (£,"<)) 

pit-r)) = ef^U.T)) = efR3G-*x(£,r,) = Tn
r^,r)) (5.28) 

where^j denolcs the canonical unit vector (100) . The transformation from ST to 
Cartesian coordinates is now derived by first considering the equation for the Carte- 
sian  coordinates  of   points  on  a  tangent  plane  with  polar tangential  coordinates 

\p(£,rO. £<V\ • 

x COS£COST) + y sin£cosr) + z sinrj = p (£,T)) (5.29) 

The above equation describes a two-parameter set of planes tangent to the surface. 
The surface is the envelope of these planes and its equation can be evaluated by elim- 
inating the parameters £,T) among the equation of the tangent plane and its derivatives 
with respect to £ and T). The three equations are given by 

COS£COST) x + sin£cosT)  y +  siirn  z = 

—sin£cosrj x + COS£COST) y = 

—cos^sinT) x —  sin£sinr)  y + COST) Z = 

P 

Pi (5.30) 

where the subscripts in p ^ and p ^ denote partial derivatives. After scaling of the 
second equation by COST), the above equations can be rewritten in the following matrix 
form. 

COS£COST)     sin£cosT)  sinT) 

—sin£ cos£        0 

—cos£sinr/ — sin£sinT) COST) 

X p 
y = P ^/COST) 

z 
Pr, 

(5.31) 
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Comparison of this equation with the transformation from global coordinates to coor- 
dinates in rotated axes, namely 

ZR 

COS£COST)     sin£cosT) sinr/ 

—sin£ cos£       0 

—cos^sinrj —sin^sinr) COST) 

2p = R,G~** (5.32) 

reveals that the coordinates of the surface points in the rotated frame are related to 
the ST by 

XR 

yR 

zR 

p 
p |/C0ST) 

Pn 

(5.33) 

and that Cartesian equations for the surface are expressed in terms of the ST by 

y(t-n) 
z(i,r)) 

cos^cosr/ — sin£ — cos^sinrj 

sin£cosrj     cos£  — sin^sinr) 

sinrj 0 COST) 

P£(£,r\)/cosr) 

P-qU.V) 

x(^,r,) = /?f-G(^,r,) P {(iff))/COST) 

Pr,U<V) 

(5.34) 

The following alternate vector notation emphasizes the contribution of the ST along 
each local unit vector on the Gaussian sphere. 

x(£,r)) = p (£,T}) T„ + p {(£,7))/COST) !*£ + p^Uri Ty (5.35) 

5.2.2. Vector Support Transform of a 3-D Surface 

Definition: The Vector Support Transform of a 3-D surface is the property sphere 
defining the three Cartesian coordinates of each surface point in a rotated frame 
oriented along the local normal, parallel and meridian of the Gaussian Sphere. The com- 
ponents are denoted individually as n , h and v respectively. The vector combining 
these components is denoted by~s= ( n h v )   . 

The above definition emphasizes that the VST specifies point coordinates, but it is 
easy to see that the first component of the VST is identical to the scalar ST, so that the 
VST is a superset of the ST and defines tangent planes in addition to points. 

Consider on the surface Z, the point P0 with normal orientation n0(£0 T)0), as 
illustrated in Fig.5.6. The VST^ components n 0, h 0, v0 for the point P0 are the Carte- 
sian coordinates of P0 in the rotated axes OxR yR zR for P0. 
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Fig.5.6. Tangent Plane II to the surface £ at P0, 
VST sg = (n 0,h o»v o)    an<i principal orientation vectors. 

The transformation between this frame and the global object frame is defined in equa- 
tion (3.9), for £ = £0 and T) = T)0. This relation is valid for each point of the surface, 
when £ and r) represent the corresponding normal orientation. The Conversion from 
Cartesian parametric equations x = x(£,T)) to the VST is hence given by 

n (|,TJ) 

h (|,T)) 

v(£,r,) 

COS£COST)    sin£cosr) sinr) 

—sin£ cos£       0 

-cos£sinr) —sin£sinrj COST) 

st^r))=R3
G-^,r,)x(^r)) 

*(£,T)) 

(5.36) 

The transformation from the VST to equations for the Cartesian coordinates is 
the inverse of the above 3-D rotation, namely 

x(f.Tf) 
yiM 
z(£,r)) 

cos£cosr) — sin£ —cos£sinr) 

sin£cosr)    cos£  — sin£sinr) 

sinr) 0 cosr) 

h (£,r,) 
v (£,T)) 

(5.37) 
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The following alternate vector notation emphasizes the contribution of the VST along 
each local unit vector on the Gaussian sphere. 

x*(|,rj) = n (£,TJ) Tn + h (£,7j) T^ + v (|,7|) T„ (5.38) 

5.2.3. Curvature Transform of a 3-D Surface 

Definition: The Curvature Transform of a 3-D Surface is the property sphere 
defining the tensor of radius of curvature of the surface expressed in axes oriented along 
the parallels and meridians of the Gaussian Sphere. The components of the tensor are 
referred to as r n, r 12 and r22- with the index I corresponding to the direction of the 
parallel. The tensor itself is represented by the symbol R. 

This definition of the CT is a natural extension of the CT defined for 2-D curves 
in Section 5.1.3. A different extension of the 2-D CT to 3-D is given by the extended 
Gaussian image[44, 53] Relations between the extended Gaussian image and our 3-D 
transforms are developed in a later section. 

The curvature of a surface £ at the point P0 was defined in Section 3.2.5., based 
on the Taylor expansion of the Monge parametric form in local axes at P0, 

x, = -y2 

0^0 
-1 1 

V ' 11    r 12 yi 
yi zi - 0     ^0 + 0 ((y, ,zt )

3) 
r12   "22 

zi 

xt   = -V2 Zj R*0    Zj   + O (Z;3) 

(5.39) 

(5.40) 

where xt is_ along the normal and yt ,zL in the tangent plane at P0. In the above 
expression, R0 is, by definition, the tensor of radius of curvature at P0, and T.t denotes 
the 2-vector ( yt z{ ) in the local tangent plane. The surface and the local axes at P0 

are sketched in Fig.5.7. 

The transformation from the CT representation to Cartesian coordinates is now 
determined. As the CT representation describes only local properties of the object sur- 
face, it can not be directly related to Cartesian coordinates, although it will be related 
to the first differential <ix(£,r)) of these coordinates. For this purpose, a small surface 
element AZ in the neighborhood of P0 is analyzed in the fixed local axes PQX^^Z; . 
An expression for the differential is first obtained in the local axes by the chain rule 

D5?,(Zi)     Dli     Dffizi 
dxl = — 7rr-d€ (5.41) 

Dz,       Dmz,      D£ 

where expressions such as Dx; /DZ; denote Jacobian matrices, ITIZ; = (myl mzl )
T is 

the 2-vector of local gradients, and d £ is the vector of normalized global angle 
differentials d £ = ( cosrjd £ d rj ) . The first two Jacobian matrices in the right hand 
side of (5.41) depend on the shape of the particular surface around P0, defined by 
(5.39). The last Jacobian matrix in (5.41) depends on the relation between local gra- 
dients and global orientation angles, a relation which was discussed in Section 3.3.3. 
Each of the factors in (5.41) are evaluated in Appendix 6.  When inserted in equation 
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Fig.5.7. Local Axes for the Definition of the Curvature of £ at P0. 

(5.41), they produce an expression for the differential d^ in local coordinates, valid 
to first order around P0. The expression is exact at P0, and since P0 is generic, the 
differential in local axes at a given point is represented by a similar expression. 

dxt 0 0 rll   r12 cosr)d £ 
dyi — 1  0 

r12   r22 dr) 
dzt 0  1 

d% - I32Erf? (5.42) 

where I32 is a 3x2 matrix consisting of only zeros and ones. A differential for the sur- 
face in global coordinates is obtained by applying the transformation in (3.10). 

dx 

dy 

dz 

COS£COSY) — sin£ — cos£sinr) 

sin£cosT)    cos£  — sin£sinr) 

si 117) 0 COST) 

0 0 rll   r12 
1   0 

r12   r22 
0  1 

cos-qd £ 

dr\ 

dx = R _ D£-G i32ndt (5.43) 

In principle, the above differential can be integrated to produce Cartesian equations for 
the surface. As the integration domain is two-dimensional, an integration path must be 
prescribed; this question is addressed in the next section. 
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Transformations from Cartesian equations to the CT are easily developed based 
on equation (5.43). Indeed, explicit expressions for the partial derivatives of X* can be 
obtained from (5.43) as 

X^/COST) 

x, 

n 12 

12   ' 22 
(5.44) 

An expression for determining the CT of a surface given by parametric equations 
x(£,T)) is hence 

n 12 

12   ' 22 

 » —-9 

lg'Xg/cosr)  1^-X^/COST) 
(5.45) 

5.2.3.1. Consistency Constraints for the 3-D CT 

In this section, consistency constraints are determined for the CT function defined 
on the Gaussian sphere. Equation (5.44) relates first derivatives of Cartesian coordi- 
nates to the CT. This expression has a conceptual similarity to the expression for sur- 
face reconstruction from needle maps [21]. In both cases, first derivatives of a func- 
tion are given on a two-dimensional domain. In the case of the needle map, surface 
reconstruction is possible only if the gradient field corresponding to the needle map is 
curl-free. The curl-free condition, also referred to as an integrability constraint, 
corresponds to a zero elevation gain on all closed loops in the image plane, and is 
equivalent for smooth surfaces to equality of the mixed derivatives. This condition 
guarantees that integration of the Cartesian coordinates is independent of integration 
path and is a necessary and sufficient consistency constraint for a needle map. A simi- 
lar condition is derived here for the CT by requiring equality of the mixed derivatives 
5?*- and x^. These mixed derivatives are first evaluated from (5.44), taking into 
account the derivatives of local unit vectors given in equation (3.50). 

a d *in =   TT^" ii COST?) 1i + -^-(r 12 COST)) lT1-rn COST) 1„ 

x-n£ = 
-£r''i2-'-22sinr) 1* + •^-r 22 + r12sinrj 

(5.46) 

l.-r^cosTjl,, 

The consistency constraints are obtained by comparing individual components of the 
above expressions for the mixed derivatives. 

-( rn COST)) = -?pr 12 - 

.   _ a 
ar? d£ 

r22sinT) 

(5.47) 

- r22= ^-(ri2COST))-r12sinT) 

When the above consistency relations are verified, the integral of the differential d x is 
independent of integration path. 
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A second type of constraint must be satisfied by the components of the CT of a 
convex object. Specifically, positivity of mean and Gaussian curvatures implies posi- 
tivity of the trace ( r u + r 12 ) and of the determinant ( r nr 22 "~ f 12 )• 

5.2.4. Relations Among the ST, the VST and the CT of a Surface 

In this section, relations among the three transforms of a given 3-D surface are 
developed. From these relations, consistency constraints are determined for the ST 
and for the VST. 

By definition, the first component of the VST is identical to the scalar ST. Since 
the ST representation is complete, the above relation indicates that the VST is redun- 
dant. Comparing equations (5.38) and (5.35), it is straightforward to determine that 

n — p 

h = p i/cosT) 

h = n ^/COST) 

(5.48) 

(5.49) 

where the first group of equations expresses the relations between the ST and the com- 
ponents of the VST. The equations in the second set are relations among the three VST 
components. 

In addition to the above relations, a set of inequality constraints can be developed 
for the ST and VST by relating these representations 1o the CT, then expressing the 
convexity of the surface in terms of the CT representation. The relation between the 
ST and CT is derived by considering the inverse ST equation, 

*(&*?) = P (£.*)) In   + />f(£,T|)/C0S7} T| + />„(£,Tj) T,, (5.50) 

and by comparing the derivatives of this expression with (5.44). The derivatives of 
(5.50) are easily obtained with the derivatives of unit vectors in (3.50). 

x^/cosr) 

Xr, 

p +p^/cos2r\ — p^tanr)     p fa/cos T) + p t sinT)/cos T) 

p frj'cos rj+pgsinr)/'cos2!rj p +pm 

1 

(5.51) 
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Comparing this expression with (5.44) produces the following expression for the CT 
tensor in terms of the ST function p (£,T)). 

11 12 

r12   r22 

p + p ££/cos2T) — p ^tanT)     p £y/cos r\ + p ^ sinT)/cos2T) 

pg^/cos r\ + pg sinT)/cos2T) p + pm 

(5.52) 

For a convex object surface, both the determinant and the trace of K must be positive. 
The following inequalities must therefore be satisfied by p (£,T|). 

2p + /?^/cos2T) + pm — p^ian-q > 0 (5.53) 

(p +p^/cos2ri — prjlan'q)(p +pvv) _ 0>|T/COST) +/> £sinr)/cos2T))2 > 0 

Relations similar to (5.52) can be formulated between the VST and CT; these also 
allow the development of convexity constraints for the VST. The relation between 
VST and CT is given by 

n + h g/cosri — v tanT) v g/cos r) + h tarrr) n 12 

12   ' 22 hr, n +vv 

(5.54) 

The resulting convexity constraints are 

2n + ft^/cosr) + v,, — v tanrj > 0 (5.55) 

( n + h ^/COST} — v tanr) )( n +v7)) — h7)(v ^/COST) + h tanrj) > 0 

Considering equations (5.48) and (5.52), it can be observed that the ST, VST and 
CT depend on derivatives of p up to orders 0, 1 and 2 respectively. This conclusion is 
identical to the corresponding observation made for the transforms of planar curves. 

5.2.5. Relations between the Extended Gaussian Image and the CT, VST, ST 

In this section, relations between the extended Gaussian image (EGI) and the three 
property sphere representations are developed. The EGI is a property sphere for the 
inverse of the Gaussian curvature. The Gaussian curvature is the determinant of our 
curvature tensor K and is also the inverse of the determinant of the radius of curva- 
ture tensor K; see Section 3.2.5.  Hence, the EGI is equal to the determinant of the CT. 

G(£,T)) = det£(£,-n) (5.56) 

where G denotes the EGI function. The CT function is hence a redundant superset of 
the EGI. In the case of 2-D curves, the CT is identical to the EGI defined in [53]. The 
3-D EGI and the 3-D CT can be considered as two different generalizations to 3-D sur- 
faces of the same representation for 2-D curves. 
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The ST can be related to the EGI by combining (5.56) and (5.52). 

G(£,T)) =   (p +p t*/cos2T) - p „tanT))0> + p „ J 
(5.57) 

— (p ^cosr) + p |Sinr)/cos2T))2 

The above relation should prove useful in combining EGI and ST representations, such 
as for the work presented in [45]. Finally, a relation between VST and EGI is obtained 
by combining (5.56) and (5.54). 

G(£,r}) =   ( n + h f/cos-q — v tanrj )( n + v _ ) 

— h v ( v g/cos-q + h tanr/) 

5.2.6. Examples of 3-D Transforms 

In this section, the three transforms of a simple object are derived. These deriva- 
tions illustrate the computation of transforms from parametric equations. The object 
considered here is a sphere of radius R offset from origin, centered at P0(x 0,y0,Zo). 
Transforms of more complicated object shapes are derived in Appendix 1. 

Parametric equations for the sphere are given by 

x = x 0 + R cos£ COST) 

y = y0 + R sin£ cosrj (5.59) 

z = z0 + R sinT) 

The ST of this sphere is obtained by applying (5.29) to the above parametric equations 

p(£,T)) = xQ cos£cosrj + y 0 sin£cosr) + z 0 sint) + R (5.60) 

In the particular case where the center P0 of the sphere is at the origin, the above 
expression simplifies to p (£,17) = R . 

The VST of the sphere can be derived by applying equation (5.36) to (5.59). 

x 0 COS£COST) + v0 sin^cosT) + z 0 sinr) + R 

sU.T)) = -x0sin£ + v0cos£ (5.61) 

—x 0 cos^sirrn — y 0 sin£sinr) + z0 cost) 

In the particular case that x0 = 0, the VST is given by st£,T)) = (R 0 0)r. 

It is possible to derive the CT from the parametric equations in (5.59) by different 
methods. Indeed, the CT can be determined directly from (5.59) with equation (5.45), 
indirectly from the ST with equation (5.52), or indirectly from the VST with equation 
(5.54) The indirect derivation via the ST is developed here. 
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Partial derivatives of the ST can be evaluated as 

p £    = —x0 sin£cosr) + y 0 cos£cosr) 

/? ££  = — x 0 COS£COST) — y o sin|cosT) 

p fo = x 0 sin|sinr) - y 0 cos£sinT) 

/> „    = — x o cos£sinrj — y 0 sin^sinrj + z 0 COST) 

/> _- = — x o COS£COST) + y 0 sin£cosr) — z 0 sinT) 

Using the above derivatives, the 3-D CT function is determined as 

p + p tt/cos2Tj — p Tjtanr)     p g^/cos rj + p g sim7/cos2r) 

(5.62) 

rll   r12 

12   ' 22 /?grjcos "H + pt sinrj/cos2r) p + p^ 

R 0 

0 /? 
(5.63) 

Note that this result is independent of the position of the center of the sphere. The CT 
function is identical to the curvature tensor of the sphere determined in Section 3.2.5.. 

Each 3-D transform contains large amounts of information, so that it is not easily 
displayed on one graph. In Section 8, some 3-D transforms will be represented by 
polar plots of their components on meridians of the Gaussian sphere. 

5.3. SUMMARY 

Three representations for closed curves and the corresponding representations for 
3-D surfaces have been defined in this section. The motivation behind the study of 
these representations is the simplification they introduce in the analysis of relations 
between object shapes and silhouette shapes. In Section 6, three theorems will be 
demonstrated, relating the transforms of a 3-D object to the transforms of its 
silhouettes. Specifically, it will be shown that the property circle of the silhouette in 
an orthographic projection can be obtained by slicing the property sphere of the object 
by a plane perpendicular to the viewing direction and going through the origin, then 
appropriately projecting the vector or tensor information onto the slice plane. The 
specific object properties represented by the three transforms were carefully chosen to 
lead to such simple relations. 

Aside from their interest in silhouette analysis, the transforms presented in this 
section can also be analyzed simply as representations of 2-D curves and 3-D surfaces. 
Each of the transforms is now discussed individually in this respect. 

In both 2-D and 3-D, the ST is quite similar to the support function, an explicit 
equation for polar tangential coordinates. Although this form is known, it has not 
received much attention in the graphics and vision fields. 

The 2-D and 3-D VST are simply related to descriptions in terms of Cartesian 
point coordinates, but their relation with the ST and CT is interesting for at least two 
reasons.   First, the relations between the ST and CT on one side, and the VST on the 
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other side are quite simple, so that the VST may be used as an intermediate step when 
converting the ST or the CT to a description in terms of Cartesian coordinates. In 
some applications, when a Cartesian representation is required, the VST itself may be 
appropriate, thereby eliminating the need for a different Cartesian representation. For 
example, it should be easy to synthesize a shaded rendition of an object for a general 
view-point, based on the VST only. A second interesting feature of the VST is that it 
forms with the ST and CT, a range of representations depending on derivatives of p 
up to orders 0, 1,2. Instead of the VST which combines normal and tangential com- 
ponents of rotated Cartesian coordinates, it is possible to describe property circles and 
spheres describing only the tangential components. These representations would avoid 
the trivial redundancy with the ST, but would not be uniquely invertible. For exam- 
ple, the VST of a sphere centered at the origin is zero everywhere and does not depend 
on the radius of the sphere. We have therefore preferred the definition of the VST 
proposed in this section, and its interpretation as a complete description of point coor- 
dinates of the object. 

The CT representation of 2-D curves and 3-D surfaces will now be discussed. 
Forms closely related to the 2-D CT have been proposed by various authors 
[23, 53, 54]. The 2-D CT is closely related to the intrinsic form relating radius of cur- 
vature and normal orientation. Intrinsic descriptions of the shape of curves have been 
extensively studied in differential geometry and are well known [52]. However, to the 
best of the author's knowledge, equivalent representations have not been proposed for 
surfaces. The 3-D CT can be considered as such an intrinsic form for surfaces and 
should therefore be of interest when analyzing the shapes of 3-D surfaces. Represen- 
tations of surface shapes presented in textbooks of differential geometry usually rely 
on two tensors, referred to as the tensor of the first fundamental form and the tensor 
of the second fundamental form. The two tensors convey information about both the 
shape of the surface and the parameterization used to define the surface. With this 
formalism, it is not possible to retain a complete description of surface shape without 
interfering with the description of the parameterization. The literature on surface 
representation in machine vision seems strongly influenced by this description of sur- 
faces in terms of fundamental form tensors. Characterizations of surface curvature 
by local invariants have also been proposed. These invariants combine information 
from the two fundamental tensors and are independent of parameterization. For 
example, the extended Gaussian image defines surface shapes by one invariant, the 
Gaussian curvature; a description of surfaces by two invariants, the Gaussian and 
mean curvatures, has also been proposed [40]. These representations, although inverti- 
ble with appropriate boundary conditions, do not carry a complete local characteriza- 
tion of surface shape. The 3-D CT representation proposed here is an elegant alterna- 
tive to the classical shape description methods. It combines a new invariant curvature 
tensor function with the parameterization used to represent normal orientations in the 
extended Gaussian image. Relations between the CT and classical descriptions of sur- 
face curvature are further addressed in Appendix 4. 

The framework developed in this section for representating shapes stresses the 
similarities between 2-D and 3-D, and suggests straightforward generalizations to 
representations of n-dimensional hypersurfaces in (n+l)-dimensional space. These 
generalizations are not addressed here. 
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6.0 SILHOUETTE-SLICE THEOREMS 

In this section, relations between the transforms of 3-D convex object surfaces 
and the corresponding transforms of their 2-D silhouettes in orthographic projections 
are determined. It turns out that these relations prescribe pointwise correspondences 
between property-function values on the Gaussian sphere of the object and property- 
function values on the Gaussian circle of the silhouette. Hence, there are two aspects 
to the relation between 2-D and 3-D transforms. The first part of the relation deter- 
mines which values of the 3-D object property sphere directly contribute to the 
silhouette, whereas the second part specifies how the values of the 2-D transforms are 
related to the values of the 3-D transforms at the corresponding points. These two 
aspects of the relation are closely tied to the selection and projection steps of the clas- 
sical silhouette construction method reviewed in Section 4. 

The exact form of the relation between the transforms of the object and the 
transforms of its silhouettes will be determined by applying the classical silhouette 
construction method sketched in Fig.4.2 to the surface shape expressed as the inverse 
transform of each of the three representations. The first step of the classical method 
will indicate an equivalence of points on the Gaussian circle of the silhouette and 
points on a slice of the Gaussian sphere of the object. The slice is the intersection of 
the Gaussian sphere with a plane through the center and perpendicular to the viewing 
direction. The second step of the classical silhouette construction will indicate how 
transform values on the slice of the Gaussian sphere of the object are related to 
transform values on the Gaussian circle of the silhouette. Specifically, it will be 
shown that the silhouette ST values are identical to the object ST values on the slice, 
and thai the values of the VST and CT of the silhouette can be obtained by projecting 
onto the slice plane the vector or tensor values of the corresponding 3-D transforms on 
the slice of the object Gaussian sphere. The relations among 3-D objects, 2-D 
silhouettes and their transforms have a strong conceptual similarity with the 
Projection-Slice theorem of computerized tomography. The theorems describing the 
relations in the case of silhouettes have been named Silhouette-Slice theorems to 
underline this similarity. 

In Section 6.1, the relation between Gaussian circles of silhouettes and slices of 
the Gaussian sphere of the object is demonstrated. Relations among angular coordi- 
nates on the sphere, the angular coordinate on the silhouette slice circle and the view- 
ing direction are determined. In Section 6.2, the transformation between local systems 
of 3-D axes corresponding to the slice of the Gaussian sphere and local systems of axes 
on the silhouette is derived. It will be shown that this transformation is the composi- 
tion of two 3-D rotations and a projection, and that its expression can be substantially 
simplified. In Section 6.4, relations between silhouette property circle functions and 
object property sphere functions are determined by applying the transformation 
derived in Section 6.2 to coordinates of points of the silhouette generator of the object, 
expressed in terms of the ST, VST and CT representations. Finally, the results are dis- 
cussed and compared with the Projection-Slice theorem of computerized tomography. 
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6.1. SILHOUETTES, GAUSSIAN SPHERES AND GAUSSIAN CIRCLES 

The first step in determining relations between silhouette properties and object 
properties is to determine which object points contribute to the silhouette, and which 
points of the silhouette are affected by which points of the object. It is shown in this 
section that only the points on the great circle slice of the Gaussian sphere perpendicu- 
lar to the viewing direction contribute to the silhouette, and that the points of the slice 
are related to corresponding points of the silhouette by the Gaussian mapping. 

The following discussion refers to Fig.6.1 which illustrates a 3-D object and its 
orthographic silhouette in the image plane. Consider a point PSG on the silhouette 
generator of the object, its projection Ps in the image plane and its image PG on the 
Gaussian sphere. First, by definition of the Gaussian mapping, the normal to the object 
surface at PSG is parallel to the normal to the sphere at PG. Second, since PSG is on 
the silhouette generator, the normal at PSG is parallel to the projection plane, so that 
its direction is unaffected by the projection operation. Hence, the normals to the 
silhouette at Ps , to the object at PSG and to the sphere at PG are all parallel. The 
image of the silhouette generator on the Gaussian sphere is thus the set of points of the 
sphere for which the normal orientation is perpendicular to the viewing direction. 
This set of points is the great circle of the Gaussian sphere perpendicular to the 

Viewing 
Direction 

Object 
Gaussian Sphere 

Silhouette 
Generator 

Great 
Circle 
Slice 

ssian Circle 

Fig.6.1. Relation between the Silhouette Generator and a Slice of the Gaussian Sphere. 
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viewing direction. Individual points of the silhouette and of the slice corresponding to 
the same object point, such as Ps and PG , are related by the parallelism of their nor- 
mals. Therefore, the slice of the Gaussian sphere of the object is a Gaussian circle for 
the silhouette. This conclusion is formalized as follows: 

Silhouette-Slice Theorem 0: Each great circle slice of the Gaussian Sphere of a 
smooth convex object is the Gaussian Circle of the silhouette of the object in an ortho- 
graphic projection on a plane parallel to the slice. 

The above theorem is now complemented by trigonometric relations between the 
angular coordinates (£,TJ) of points on the slice, the angular coordinate 0 on the Gaus- 
sian circle of the silhouette, and the angles (0,0) specifying the orientation of the 
viewing direction. Consider the point PG on the slice of the Gaussian sphere 
corresponding to the viewing direction V, as illustrated in Fig.6.2. For this point, the 
five angles of interest appear in the spherical triangle APG C , drawn in bold in the 
figure. This triangle is also displayed "flattened out" with the values of all its ele- 
ments on the same figure. The sixth element of the triangle ABC is related to the 
angle a characterizing the orientation of the slice plane in local axes PG xt y; zL at PG . 
Applying the standard relations between elements of a right-angled spherical triangle 
in[55] to the above triangle produces the following identities 

sinT) =  tan(£—0— TT/2) tana 

—cos(£—0) =  tan 7) tanO 

sin0 =  tan(£—0— TT/2) cotv/i 

sine* 

cost/; 

sinr) 

-cos(£-0) 

sin0 

= tanr) 

= tan0 

= COS0 

= cose* 

cotv/> 

tana 

sin0 

sin0 

cosa 

COS0 

(a) 

(b) 

(c) 

(d) 

(e) 

(/) 

(*) 
(h) 

(O 

(6.1) 

sin(£-0)   0) 

=    COST] 

sina =   sin(£—0) 

COSl/l   =    COST) 

Note that the angles £, 0, 0 are defined over the range [—7r,+7r] and the angles T), 0 
over the range [—ir/2,ir/2]. The full range of these parameters is covered by relating 
the quadrants of the arguments in the tangent trigonometric functions in expression 
(6.1)(c). 

For a fixed viewing direction (0,0), the silhouette point with normal orientation 
0 in the image plane corresponds to the object point with normal orientation (£,T)) for 
the values of these angles satisfying (6.1). Specifically, (6.0(c) implicitly relates the 
angles ip and £, whereas (6.1)(f) relates the angles 0 and r\. Explicit forms for these 
relations are given by 

i = £SG (0) = 0 + TT/2 + atan ( sin0 tan0 ) 

T) = r)SG (0) = asin ( cos0 sin0 ) 

where the subscripts SG   indicate that the angles correspond to points of the slice 
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.4 

V 

£-0-77/2 

Fig.6.2. Great Circle Slice and Angles on the Gaussian Sphere 

which are the images of points on the silhouette generator. In the above expression, 
the range of the arcsine is (—7772,77/2) and the quadrant of the arctangent must be the 
quadrant of i// when 0>O and the quadrant symmetric with respect to the x-axis 
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otherwise. The above expressions can be considered as parametric solutions for equa- 
tion (6.1)(b); this equation is equivalent to the equation of the silhouette generating 
planes in (4.27). The solutions in (6.2) of this last equation were anticipated in Sec- 
tion 4. The angle a is the tilt of the slice at each point relative to the local axes 
PG x{ yt zt. This angle is useful when projecting vectors and tensors defined by their 
components in local axes, onto the slice plane. 

Equations (6.1) and (6.2) can be further exploited to derive expressions for the 
differentials d £ and d T) in terms of d i// on the slice for a fixed viewing direction. 
These relations are sketched in Fig.6.3; they will be useful when projecting 
differentials of Cartesian coordinates expressed in terms of the CT. The differentials 
of £ and T) along the silhouette generator could be evaluated from derivatives of (6.2), 
but are evaluated here instead from the corresponding implicit forms (6.0(c) and 
(6.1)(f). For a fixed viewing direction, the differential d £SG along the silhouette gen- 
erator is obtained by differentiating a form equivalent to (6.0(c), namely 

—coti// = sin0 tan(£—0) 

d\b          . n        d£ 
—f- = sinG r-^—- 
sin i/; cos (£—0) 

which can be simplified, using (6.0(g) and (6.0(h). 

cosa 
disc = 

COST) 
dip (6.3) 

V* 

f 

/d\f) 

COST) 

Fig.6.3. Relation between Angle Differentials on the Slice. 
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disc = d\\> (6.5) 

The expression for d r)SG is obtained by differentiating (6.1 )(f). 

sinr) = cos0 sini/; 

—COST) dr\= —cosG cosi/> d t// 

This can be further simplified using (6.0(d). 

d r\SG = sina d a (6.4) 

As a result, the normalized differential d gSG has the following form 

cosr/5G d £SG cosc*5G 

d r\SG sina5G 

where ocSG refers to the value of ex on the silhouette generator. This relation confirms 
the geometrical intuition suggested by Fig.6.3. 

6.2. PROJECTION OF THE SILHOUETTE GENERATOR 

In the previous section, the set of points of the object property sphere which are 
directly related to the silhouette was determined. In this section, a procedure for 
relating values of the property functions of the silhouette to the values of the pro- 
perty functions of the object is developed. This procedure consists of formally 
expressing coordinates of silhouette generator points in terms of the transforms of the 
object and applying the classical projection operation to these forms. Expressions for 
the inverse transforms of the property spheres are simplest when object coordinates 
are expressed in rotated axes at each point; they are given by 

x# (£,Tf) = 

X/? (£,rj) = 

dxR(£,r)) = 

h (£,T)) 

V (£,T)) 

0 0 
1   0 
0  1 

= sU.r,) 

rnC^) r12(|,T)) 

(6.6) 

d £/COST) 

dr) = l32S(t,ri)d£ 
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The rotated coordinates of points on the silhouette generator are easily obtained from 
the above expressions by replacing (£,T)) by their values on the silhouette generator as 
given in equation (6.2). 

P Use W.VSG W) 
%R ty) =        P i(£sG (^).%G (^)VcOSYJ5G (» 

P^USG^^SGW (6.7) 

J?A>(t/>) =   'SCisG fyXflsG W) 

Note that the variables (£,rj) must be considered as independent when evaluating 
derivatives p t, p ^ for the expression of the ST. However, the differentials d £, d r\ in 
the expression for the CT must be taken along the great circle slice; their relations to 
d i// are given in (6.5). 

The projection of points of the silhouette generator is now addressed. Coordinates 
of silhouette points can be obtained by first converting the coordinates in rotated 
frames in (6.7) to coordinates in global object axes by the transformation in (3.9). then 
applying the projection transformation (3.21). Coordinates of silhouette points in glo- 
bal axes of the projection plane are hence obtained from the rotated coordinates of the 
object by 

*M) = I23 R3
G_C Kf^iso WrtsG W) x* (i/0 (6.8) 

The operations described in the above equation correspond to the 3-D rotation R/-G 

from rotated to global coordinates, followed by the 3-D rotation RG~c from global to 
camera axes, and finally the projection I23 along the first coordinate axis of the camera 
frame. The composition of the two rotations in the above equation is a third rotation 
which will be denoted by R3 and which relates coordinates in the camera axes to 
coordinates in rotated axes. This rotation is explicitly written as 

(6.9) R3*-C=R 3
G"CR R-G 

3 

cos0cos0     sin0cos0   sin6 

—sin0 cos0 0 

—cos0sin0 —sin0sin0 cos0 

COS£COST) — sin£ — cos£sinrj 

sin£cosT)    cos£  — sin£sinr) 

sinrj 0 COST) 

COS0COST)COS(£—</>) + sinOsinT)   — cos0sin(£—<f>) — cos0sinT)cos(£—<f>) + sinflcosT) 
cos7)sin(£—</>) cos(£—<f>) — sin7)sin(£—<f>) 

—cos7)sin0cos(£—<f>) + sinr)cos0    sin$sin(£—<f>)     sin7)sin0cos(£—</>) + COS&COST) 

When only rotated axes corresponding to points on the silhouette generator are con- 
sidered, the angles in the above rotation matrix are related by the expressions in (6.1). 
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R-C The expression of R3        can  then  be simplified substantially.  After tedious but 
straightforward trigonometric manipulations, it can be shown that 

0 — sin<*sG cosa5G 

R3      (£SG 'VSG ) — cost/; —cosa5G sim/> —sinc*5G sini// 

sini//   cosa5G cos»|>    sina5G cost/; 

1 0 0 0      1 

cost/; — sirn/j 0 

sini/;   cost/;   0 

0 

0   cosa5G    sinc*5G 

0 —sina5G   cosa5G 

(6.10) 

This result can also be derived derived through geometrical reasoning on the composi- 
tion of the two rotations in equation (6.9). Referring to Fig.6.4, the rotation from 
rotated to camera axes links coordinates in axes parallel to the local orientations 1„ , 
It, I7,, with coordinates in the global silhouette axes xn, zn, which are parallel to 
T„0> lt_Q; I* is clear that these two axes can be aligned with 1„ , 1^ by a rotation 
around 1„ with an angle a, followed by a rotation with an angle 1/1 around the rotated 
1^ axis. 

The transformation from rotated object coordinates x# to global silhouette coor- 
dinates %„ in the image plane is obtained by combining the above rotations with the 
projection operator I23, producing 

Fig.6.4. Illustration of the Composition of Rotations. 
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X-ry- I23 R3      x^ 

x w 0  1  0 

ZTT 0 0  1 

0        — sinc*sG cosc*sG 

cosi/; —cosa5G sint|/ —sina5G sini/; 

sini/;   cosa$G cost/;     sina5G cosi/; 

cost/; —cosa5G sini/; —sina5G sini/; 

sini/;   cosa5G cosi/;     sina5G cosi/; 

xR 

ZR 

*R 

yR 

ZR 

(6.11) 

cost/; —sini/; 

sini/;   cost/; 

1        0 0 

0 cosa5G   sina^G 

*R 

yR 

ZR 

where the last form was obtained using the factorization of R3 in (6.10). Com- 
parison of this form with (3.7) suggests that a simpler expression for the imaging 
transformation is obtained by expressing silhouette coordinates in rotated 2-D frames. 

*** =R2
G~*(</')x7r = 

1       0 0 

0 cosa5G   sina5G 

XR 

yR 

ZR 

(6.12) 

This expression is now rewritten for the individual components of the silhouette coor- 
dinate vector in the rotated frame. 

xnR    — X
R 

Z
ITR    = yR cosasc + zR sina5G 

(6.13) 

This simple expression is a key element in the derivation of the three Silhouette- 
Slice theorems described in the next section. It formally expresses that for points on 
the silhouette generator represented by coordinates in rotated axes, normal components 
are unaffected by the projection operation. Components along the tangent plane are 
projected as a 2-vector in the tangent plane to produce the corresponding silhouette 
coordinate along the tangent in the projection plane. This relation between rotated 
coordinates on the silhouette generator of the object and on the silhouette is illustrated 
in Fig.6.5. The orientation involved in the above projection is the angle aSG character- 
izing the orientation of the slice in local axes of the Gaussian sphere. Note the 
equivalence of the first equation with the relation derived for the normal distance to 
tangents in Section 4, specifically in equation (4.31). 
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Viewing 
Direction 

Silhouette 
Generator 

Fig.6.5. Projection of Rotated Coordinates. 

6.3. PROPERTY CIRCLES OF SILHOUETTES 

In this section, formal expressions for silhouettes in terms of the 3-D transforms 
of the object are obtained by applying the projection transformation in (6.13) to the 
coordinates of points on the silhouette generator in terms of the 3-D object transforms 
in equation (6.2). The resulting expressions are then related to the corresponding 2-D 
transforms of the silhouettes to obtain a direct relation between 3-D transforms of the 
object and 2-D transforms of its silhouettes. These relations will be formalized as 
three Silhouette-Slice theorems. 
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6.3.1. Silhouette-Slice Theorem for the Support Transform 

When the imaging transformation for rotated coordinates in (6.13) is applied to 
the rotated coordinates of silhouette generator points expressed in terms of the ST in 
(6.6), the following equation is obtained for the silhouette coordinates in rotated local 
axes. 

irR 
(6.14) 

nR p | cosa5G / COST)5G +pV) sina5G 

where p  and its derivatives in the right hand side must be evaluated at £=£SG • 
17~T)5G • so that the right hand side is implicitly parameterized in \jj through £SG , r\SG 

and ocSG . This expression can be compared with the expression for rotated coordinates 
in terms of the 2-D ST, namely 

77-/? 

2 nR 

Pn 

dpJd*l> 
(6.15) 

where the index in pw indicates that this normal distance is relative to the silhouette 
in the image plane. The equality between the first components in (6.15) reveals that 
the ST function of the silhouette, p^iifj), is identical to the 3-D ST on the slice of the 
Gaussian sphere of the object. 

PM& = P UsG WrtSG (</>)) (6.16) 
The identity between the second components of (6.15), and (6.14) is consistent with 
the following evaluation of the partial derivative ftp n/tyb- 

where (6.5) was used to determine d £/d v/> and d r\/d i//. The relation between the ST 
of the silhouette and the ST of the object is formalized as follows: 

Silhouette-Slice Theorem 1: The 2-D Support Transform of an orthographic 
silhouette of a smooth convex object is the restriction of the 3-D Support Transform of 
the object surface to the great-circle slice parallel to the projection plane. 

This theorem indicates a silhouette construction method identical to the last 
method presented in Section 4. 

6.3.2. Silhouette-Slice Theorem for the Vector Support Transform 

When the imaging transformation for rotated coordinates in (6.13) is applied to 
the rotated coordinates of silhouette generator points expressed in terms of the VST in 
(6.6), the following expression is obtained for the silhouette coordinates in rotated 
axes. 

TTR 

Z TTR 

n 

h cosocSG + v sina5G 
(6.18) 
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where the components (n ,h ,v ) must be evaluated for £=£sG > rl=rlsG • so that tne 

right hand side implicitly depends on t/> through £SG , f)SG and <xSG . This expression 
can be compared with the expression of coordinates in rotated axes in terms of the 
VST, namely 

n XnR 

z irR 

where the indices in the components nn, tn indicate that these correspond to the 
silhouette in the image plane. This comparison implies that the relation between the 
3-D VST of the object and the 2-D VST of the silhouette is given by 

n jrixff) =    n (£5G (\lt),T)sG (i/O) 

t M) =    h (£SG (\l)),r)SG (\})))cosaSG (t/>) + v (£5G (iA),rj5G (i//))sinaSG (t/;) 

(6.19) 

1 he above equation for the projection of the VST components has the same geometrical 
interpretation as the projection of rotated coordinates illustrated in Fig.6.5. The rela- 
tion between the 3-D VST and the 2-D VST is formalized in the following theorem: 

Silhouette-Slice Theorem 2: The 2-D Vector Support Transform of an ortho- 
graphic silhouette of a smooth convex object is obtained by considering the restriction of 
the 3-D Vector Support Transform of the object surface to the great-circle slice parallel 
to the projection plane. The normal component of the 2-D VST is identical to its 3-D 
counterpart on the slice, and the tangential component of the 2-D VST is obtained by 
projecting the tangential part of the 3-D VST as a 2-vector onto the projection plane. 

6.3.3. Silhouette-Slice Theorem for the Curvature Transform 

When the imaging transformation (6.13) is applied to the differentials of coordi- 
nates of silhouette generator points in rotated coordinates in terms of the CT represen- 
tation (6.6), then combined with the expression for the differentials of the angular 
variables on the slice in (6.5), the following differentials are obtained for the 
silhouette coordinates in rotated axes 

dXwR 

dZnR 

1        0 0 

0 cosa5G   sina<;G 

0 0 rll   r12 cosa5G 

1  0 
0  1 

r12   r22 sina5G 
d tj)        (6.20) 

Combining the first two matrices on the right-hand side reveals that dxnR =0 and 
that 

dz nR =    COSOCSG   sina5G 

1 

rll   r12 cosa5G 

r12   r22 sinaSG 
dxji 

Comparison of this equation with the expression of the 2-D differential of silhouette 
coordinates in terms of the 2-D CT, namely dz nR = p(\p)d \f), reveals that the CT 
function p(v/») of the silhouette is related to the 3-D CT function by 
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p(l/>) = cosc*5G   sina5G 

r115G r125G 

\2SG    ' 22SG 

cosocSG 

sincx5G 
(6.21) 

where the dependence of the right-hand side on xjj is implicit through aSG and 
rijSG = rij (£SG '"HSG )• The right-hand side of (6.21) is the projection of K along the 
direction given by cosaSG , sina5G . As the tensor of curvature is defined in the 
tangent plane, (6.21) exactly corresponds to a projection of this tensor onto the trace 
of the image plane in the tangent plane. This relation between silhouette curve CT and 
object surface CT is formalized as follows: 

Silhouette-Slice Theorem 3: The 2-1) Curvature Transform of a?i orthographic 
silhouette of a smooth convex object is obtained by considering only the restriction of the 
3-D Curvature Transform of the object surface to the great-circle slier parallel to the 
projection plane, and projecting the tensor-valued object function on the slice onto the 
projection plane. 

In addition to relating the property functions for the CT, equation (6.21) indi- 
cates a remarkable result relating the radius of curvature of the silhouette to the 
radius of curvature tensor at the corresponding point of the object surface. 
Remembering that <xSG is the angle between the local yi -axis and the plane of the 
slice, the above equation indicates that the radius of curvature of the silhouette is the 
projection of the tensor of radius of curvature on the plane of the slice. This result is 
the dual of a well known theorem due to Euler in the geometry of surfaces. Both 
Euler's theorem and its dual are discussed in more detail in Appendix 3. 

6.4. EXAMPLE: SILHOUETTE OF A SPHERE 

The Silhouette-Slice theorems are illustrated in this section by the simple example 
of a sphere of radius R centered at P0(x 0,y0,z0), as illustrated in Fig.6.6. The three 
transforms of this sphere were evalualed in Section 5.2.6. Although this particular 
example could be solved by a number of alternative methods, the approach used here 
provides insight into the mechanism of analytic silhouette evaluation with the 
Silhouette-Slice theorems. More complex illustrations of the Silhouette-Slice theorems 
are provided in Section 8. 

The 3-D ST of the sphere is given by 

p(£,r)) = x:0 COS£COST) + y()sin£cosT7 + z0sinr) + R (6.22) 

For a viewing direction (0,0), the 2-D ST of the silhouette is obtained from the above 
expression with equation (6.16), as 

P ir(*/») = x o cos£5G COSTJ5G + y 0 sin£5G COSTJ5G + z0 sinrj5G + R (6.23) 

where £5G ,T\SG  implicitly depend on (0,0,i/;) by equation (6.2).   Replacing £5G ,T)5G 

by these expressions, performing trigonometric manipulations and rearranging terms 
produces 

p n    = (—x 0 sin0 + y 0 cos0) cosi/; 

+ (—x 0 sin0cos0 — y 0 sin0sin0 + z 0 cos0 )sim/i + R 
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Fig.6.6. Projection of a Sphere 

The coefficients of COSI/J and sirup in the above expression can be recognized as the coor- 
dinates x0n, z 07r of the projection in the image plane of P0, the center of the sphere. 
Indeed, these coordinates are related to the 3-D coordinates (x0,y0,z0) by 

cos0cos0     sin0cos0   sinG 

—sin0 cos0 0 

—cos0sin0 —sin0sin0 cos© 

The 2-D ST of the silhouette is hence given by 

Pir(\p) = xoncos\}j + z0v.sin\j) + R 

x0n 0  1   0 
ZOtT 0 0  1 

*o 

yo 
zo 

(6.25) 

(6.26) 

This expression  is identical  to the 2-D ST of a circle of radius R   centered at 
(X 077- >Z Off)' 

The 3-D VST of the sphere is given by 

x o COS£COST) + y 0 sin^cosT) + z 0 sinr) + R 

s(£,r))= -x0sin£ + y0cos£ 

—x 0 cos^sin-n — y 0 sin^sinT) + z 0 COST) 

(6.27) 
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The 2-D VST of the silhouette is obtained from the above expression by applying 
equation (6.19). The resulting normal component of the VST is, by definition, identi- 
cal to the 2-D ST derived above. The tangential component is given by 

t J$) = cosc*5G h iiSG ,t]SG ) + sinc*5G v (£5G ,rj5G ) (6.28) 

The angles £,T),c* in the above expression are replaced in terms of 0,0,i// using (6.1) and 
(6.2). After trigonometric manipulations, the result is found to be 

t n(\f)) = —x 07r sini// + z 0v. cost/; (6.29) 

where x0lT, z 0n are as defined above. The above result is identical to the tangential 
component of the VST of a circle centered at (x 0v.,z 0n). 

The 3-D CT of the sphere was obtained in Section 5.2.6. as 

R 0 
S = 

0 R 
(6.30) 

The 2-D CT of the silhouette is obtained from the 3-D CT of the object with equation 
(6.21) as 

P(il>) cosc*5G   sina5G 

R 0 

0 R 

cosocSG 

sinaSG 
= R (6.31) 

which is obviously the 2-D CT of a circle of radius R. Note that the ST is indepen- 
dent of translations so that the position of the silhouette cannot be predicted by the 
construction with the CT. The independence of the CT on translations is an advantage 
in some applications, a disadvantage in others. Relative merits of the various 
transforms and Silhouette-Slice theorems are discussed in Section 8 in the context of 
applications presented there. 

6.5. DISCUSSION 

In this section, theorems have been proposed to relate representations of 
silhouette curves in terms of functions on their Gaussian circles to the corresponding 
representations of object surfaces in terms of functions on the Gaussian sphere. Two 
additional aspects of the Silhouette-Slice theory will be discussed in this section, 
namely its relation with the Projection-Slice theorem in computerized tomography, 
and an interpretation of the 3-D transforms as compact representations of the collec- 
tion of all silhouettes of an object. 

6.5.1. Comparison: Silhouette-Slice Theorems and Projection-Slice Theorem 

The formal relations among an opaque convex object, its silhouettes, and their 
representations on Gaussian images are sketched in Fig.6.7. The concept of this 
diagram bears a strong similarity with that relating an absorbing object, its line- 
integral projections and their Fourier Transforms, sketched in Fig.6.8. This last set of 
relations is important in the field of computerized tomography, and is referred to as 
the Projection-Slice Theorem to stress the duality between projection in object space 
and slicing in transform space.   The similarity  between this result and the new 
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Fig.6.7. Block Diagram for the Silhouette-Slice Concept 
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Attenuating 

Object 

Projection 

2-D 
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3-D Fourier 
Transform 
of Object 

Slice 

2-D Fourier 
Transform 

of Projection 

Fig.6.8. Block Diagram for the Projection-Slice Theorem 

relations presented in this report has suggested the name of Silhouette-Slice Theorems 
for the new relations, to stress the duality between silhouette construction in the 
object domain and slicing in the model domain. 

In spite of the formal similarity between the Projection-Slice theory and the 
Silhouette-Slice theory, there are substantial differences between the two formalisms. 
First, the Projection-Slice theorem applies to absorbing objects which can be defined by 
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a real-valued function defined in 3-space, whereas the Silhouette-Slice theorems apply 
to opaque objects which can be described by functions of two variables, or by func- 
tions with binary values defined in 3-space. Second, the Fourier transform used in the 
Projection-Slice theorem is an integral transform, where each value of the transform 
depends on all the values of the function specifying the object. On the other hand, the 
transforms of opaque objects defined in Section 5 of this report are point transforma- 
tions where each value of the transform depends only on the value of a function 
defining the object at one point. 

It is possible that a theory of silhouettes comparable to the one presented in this 
report could be obtained by modeling an opaque object as an object with a finite uni- 
form absorption coefficient, to which the Projection-Slice theory applies, then consider- 
ing the limit of the line-integral projection when the absorption coefficient becomes 
infinite. This approach to silhouette analysis would provide a nice bridge between 
theories for absorbing objects and for opaque objects, but we have not been able to find 
an appropriate formulation for the limiting argument. 

6.5.2. 3-D Transforms as Compact Representations of Silhouettes 

The relation between slices of 3-D transforms of objects on the Gaussian sphere 
and 2-D transforms of silhouettes leads to the interpretation of the 3-D transforms as 
indirect representations of the set of all silhouettes of a convex object. Indeed, for any 
given orientation of the viewing direction, simple representations of the silhouette, 
namely the ST, the VST and the CT, are obtained by slicing the corresponding 3-D 
representation of the object. It is worthwhile to emphasize that this type of construc- 
tion is possible only for selected representations of the silhouettes. It is tempting to 
investigate the existence of other 3-D representations of objects, for which a slice 
woxild be related to the silhouette by expressions simpler than the inverses of the ST, 
VST and CT. For example, one could try to construct a "dual" object, such that a 
silhouette of the original object is identical to a slice of the dual object. A simple 
counter-example suggests that this construction fails in most cases. 

Consider a cube and the silhouettes of this cube obtained for a set of viewing 
directions covering a 180° arc around the cube; this set of directions and one particu- 
lar silhouette are represented in Fig.6.9 a). If a "dual" object of the cube exists, it can 
be constructed by superimposing the set of silhouettes corresponding to the viewing 
directions in Fig.6.9 around a center, while keeping their respective orientations. The 
resulting object is shown in Fig.6.9b), where the contribution of the particular 
silhouette illustrated in Fig.6.9a) is drawn in bold. It is easy to see that this object 
does not have the desired property by considering a viewing direction outside the set 
used to synthesize this candidate dual object. One such viewing direction is shown in 
Fig.6.9a) and the corresponding slice in Fig.6.9b). This slice is quite different from the 
actual silhouette, which is a perfect square. As each silhouette of a 3-D object is two- 
dimensional and as the set of viewing directions is two-dimensional also, a "dual" 
object whose slices are the silhouettes of the original object is necessarily four- 
dimensional, unless special relations among individual silhouettes are exploited. 

The three transforms presented in Section 5 are compact representations of the set 
of all silhouettes of the object, as they are only three-dimensional as is the object 
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b) 

Fig.6.9. Counter-Example of a Direct Representation of all Silhouettes. 
a) Object, a particular silhouette and the set of viewing directions. 

b) Dual object constructed from a set of silhouettes, and a test slice. 

itself. In order to obtain this compactness of representations, redundancies among 
individual silhouettes must be detected and exploited. The existence of redundancies 
between the set of all silhouettes of a single object are now discussed, together with 
their impact on the representations of silhouettes and 3-D objects. 

Redundancies among silhouettes of an object can be expected in the general case 
only when relating the contribution of the same surface element in different 
silhouettes. Consider the set 5, of all silhouettes for which the point P0 on the object 
surface is on Ihe silhouette generator. This set of silhouettes corresponds to all the 
viewing directions perpendicular to the normal n0 at P0; see Fig.6.10. Let Poni be the 
projection of P0 on each silhouette 5;. We have identified three properties of the 
silhouette curves around the points Poni which have a high degree of redundancy 
among the different silhouettes S,-. The first two properties are the projections onto 
the normal and tangent at PQ^I of the vector from the origin O^,- to Poni. The third 
property is the radius of curvature, p,-, of the silhouette curve at Poni. It is straight- 
forward to show that the normal components of the vector OwP0wi are identical for 
all silhouettes and that the tangential components of these vectors are the result of the 
vector projection of a single 2-vector in the tangent plane.   Finally, the relation 

98 



Fig.6.10. Set of Viewing Directions for which P0 is on the Silhouette Generator. 

between the curvatures of the S, 's at Poni is given by the dual of Euler's theorem 
discussed in Appendix 3. This theorem shows that the radii p, depend on the orienta- 
tion of the viewing direction as a function specified by only three independent parame- 
ters, namely the components of the 2x2 tensor of curvature of the surface at P0. 

The above argument clarifies the redundancy between silhouettes corresponding 
to different viewing directions. This redundancy is now related to property circles 
and spheres by considering the image PQQ of P0 on the Gaussian sphere, the property 
sphere value at PQQ , and the values of the various silhouette property circles at PQQ . 
It is easy to see that the slices corresponding to the set 5,- are all the great circles pass- 
ing through PQQ drawn on Fig.6.11. The relations between property circles defined on 
these slices at the point PQQ correspond to the relations between silhouette properties 
at PQTTI • For the transforms defined in Section 5, the ST property functions have the 
same value on each slice at PQQ , the VST tangential functions are projections of a sin- 
gle 2-vector, and the CT functions are projections of a 2x2 tensor. 

We have shown in this section that the Silhouette-Slice theorems provide an 
interpretation of the 3-D transforms as compact representations of the set of all 
silhouettes of a convex object. In addition, we have shown which type of constraints 
must be satisfied by property circles for constructing compact 3-D representations of 
silhouettes. It is conjectured that, aside from higher order properties corresponding to 
terms of order 3 and higher of Taylor expansions of curves and surfaces, there are no 
property spheres and circles representing metric information, other than the ST, VST 
and CT, for which the Silhouette-Slice theory applies. 
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Fig.6.11. Slices of the Gausian Sphere corresponding to Silhouettes including P0. 

6.6. SUMMARY 

In this section, theorems have been proposed to relate representations of 
silhouette curves in terms of functions on their Gaussian circles to the corresponding 
representations of object surfaces in terms of functions on the Gaussian sphere. It was 
first shown that the silhouette representations are directly related to a great-circle 
slice of the object representations. In the second step, the silhouette property func- 
tions on the Gaussian circle were related to the object property functions on the slice 
of the Gaussian sphere. The relations are an identity for the ST function and for the 
normal component of the VST function, a vector projection for the tangential part of 
the VST function and a tensor projection for the CT function. It is interesting to note 
the correspondence between the projection operations applied to great circle slices, 
which are projections of scalars, vectors and tensors, and the observation that the ST, 
VST and CT depend on derivatives of p (i/;) up to orders 0, 1 and 2 respectively. 

The silhouette theory developed in this section is applicable to smooth strictly 
convex objects only. In the following section, these results will be extended to objects 
with corners, edges and planar faces, and to their silhouettes. In Section 8, a number 
of examples of silhouette construction with the three theorems are presented; one of 
these examples shows that the results are sometimes valid even for non-convex 
objects. Other potential applications of the Silhouette-Slice theorems are also dis- 
cussed in Section 8. 
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7.0 EXTENSIONS TO SURFACES WITH EDGES 

AND CORNERS AND THEIR SILHOUETTES 

In Sections 5 and 6, a theory relating the shapes of smooth strictly convex object 
surfaces and the shapes of their silhouettes was developed. In this section, extensions 
of this theory to more general types of objects will be investigated; specifically, object 
surfaces with abrupt changes of curvature, edges, corners and embedded straight seg- 
ments will be considered. Using limiting arguments, it will be shown that most of the 
results developed so far for smooth surfaces can be extended to these types of sur- 
faces. In Section 7.1, the basic method for obtaining the extensions is developed. In 
the subsequent sections, the extensions themselves are analyzed successively for the 
circular transforms of 2-D curves, for the spherical transforms of 3-D surfaces, and 
finally for the Silhouette-Slice theorems relating the transforms of the object to the 
transforms of its silhouettes 

7.1. EXTENSIONS OF THEORIES DEVELOPED FOR SMOOTH SURFACES 

Extensions of the theories developed so far, to include abrupt changes of curva- 
ture are trivial. Indeed, continuity of curvatures, which is identical to continuity of 
second derivatives, was exploited only in the derivation of consistency constraints for 
the 3-D CT in Section 5.2.3.1. Except for these conclusions on consistency, all the 
theories developed in Sections 5 and 6 are valid for surfaces with curvature discon- 
tinuities and their silhouettes. The other extensions of silhouette analysis will be 
developed with the following argument. Each convex surface T,NS .whether or not 
smooth and strictly convex, can be considered as the limit of a sequence {LSi } of 
smooth strictly convex surfaces. In the presence of edges and corners in T,NS, the 
sequence {L5, } could be constructed as dilations [56] of the object with balls with 
radii \/i. For each surface £5, , the 3-D spherical transform is well defined and can 
be evaluated by the methods developed in Section 5. For a given viewing direction, the 
Silhouelte-Slice theorems apply to these spherical transforms and determine the circu- 
lar transforms of the silhouettes corresponding to each ZSi. Finally, these transforms 
can be inverted to determine the silhouettes SSi of all surfaces ZSi. If the initial 
object surface LNS is smooth and strictly convex, the sequence of 3-D transforms of 
the ZS7 converge to the 3-D transform of LNS, the 2-D transforms obtained with the 
Silhouette-Slice theorem converge to the 2-D transform of the silhouette SNS of T,NS , 
and the silhouettes S, themselves converge to SNS . 

Convergence of the above sequences is now investigated in the case where T,NS 

does not satisfy the smoothness and/or strict convexity constraints required for the 
theories developed in Sections 5 and 6. Although the surface LNS is not smooth, its 
silhouette SNS is well defined, and it is obvious that the sequence of silhouettes {SSi } 
of the surfaces E5, converges to the silhouette SNS. However, convergence of the 
spherical transforms of the ZSi and of the circular transforms of the SSi is not 
guaranteed.  Since the transforms are defined as functions on the Gaussian images of 

101 



curves and surfaces, convergence must be analyzed for both the Gaussian mapping 
itself and for the property functions defined on the Gaussian circle/sphere. Conver- 
gence of the mapping is analyzed first. During our analysis of particular discontinui- 
ties, it will become apparent that the Gaussian mapping converges to singular map- 
pings in the neighborhood of each discontinuity. Two basic types of singularities will 
be observed. In the first type, one point of the object is mapped onto many points of 
the Gaussian image. In the second type of singularity, many points of the object are 
mapped to the same point of the Gaussian image. For the first type of singularity, each 
point of the Gaussian image of ZNS corresponds to a single point of the surface. We 
will show that in this case, the spherical transforms of ZNS are well defined and equal 
to the limits of the transforms of the T,Sl. For the second type of singularity how- 
ever, only the CT converges in the space of continuous functions. The limits are func- 
tions of class C0 for the VST and generalized functions for the CT. 

The extension of the class of surfaces of interest has implications also on the 
inverse transforms of the circular and spherical functions. The case of the 2-D inverse 
transforms is considered first. The result of the inverse circular transform is a set of 
equations parameterized with the normal orientation angle »/;. For a curve with 
straight segments, a set of equations parameterized with i// cannot explicitly define all 
the points of the curve, as is now illustrated by the example of a square with rounded 
corners; this curve is sketched in Fig.7.la). 

a) b) 

Fig.7.1. Curve with Straight Edges, a) Complete Curve, 
b) Points explicitly defined by the parametric equations. 
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It is defined by the parametric equations 

cosv// + sign (COSI/J) 

sim/j + sign (sirn/0 
0^I//<2TT (7.1) 

where 

sign (x) = 
1   forx>0 

—1  otherwise 

By definition, a curve is the set of points obtained as the image of the domain in 
parameter space in the transformations specified by the parametric equations. Hence, 
only the four arcs of circle displayed in Fig.7.1b) are defined by (7.1). In order to 
define the curve in Fig.7.1a) by parametric equations such as (7.1), it is necessary to 
consider this representation in a wider sense, namely that the image of the mapping 
(7.1) from the parameter space to R~ is a set of arcs such as those in Fig.7.lb), and that 
these arcs must be implicitly joined by straight segments. Equivalent arguments show 
thai inverse transforms of surfaces for which the Gaussian mapping has singularities 
of the second type also represent surface patches with gaps corresponding to the 
straight components. These inverse transforms must also be considered in a wide 
sense, with straight segments implicitly bridging the gaps. 

In order to make precise conclusions about the limits of the sequences of surfaces, 
silhouettes and transforms defined above, several issues must be addressed. For exam- 
ple, the type of convergence of the sequences of 2-D curves and 3-D surfaces must be 
defined and it must be shown that the limits of the sequences depend only on the sur- 
face being approximated, not on the particular sequence {LSi }. These and other issues 
are important to develop a mathematical theory, but we have decided instead to rely 
on inuitive reasoning and to focus on qualitative interpretations of the results. 

7.2. EXTENSIONS OF THE CIRCULAR TRANSFORMS OF 2-D CURVES 

In this section, the circular transforms are extended to curves with corners and 
edges. In the neighborhood of a corner, a curve is considered as the limit of a sequence 
of curves with a rounded corner, as the radius of the corner tends to zero. In the 
neighborhood of a straight edge, the curve is considered as the limit of a sequence of 
arcs, as the curvature of the arc tends to zero. Finally, the extensions are illustrated 
by defining a rectangle as the limit of a sequence of superconics of degree n for n —»oo. 
The rectangle has both corners and straight edges; its circular transforms obtained 
with the sequence of superconics are consistent with the results obtained for indivi- 
dual corners and straight edges. 

7.2.1. Circular Transforms for a Curve with Corners 

The circular transforms are considered here for a corner joining two edges with 
normals n y, n 2 and corresponding normal orientations 0lf \p2', see Fig.7.2. The corner 
is modeled as the limit of a sequence of arcs joining the two straight edges, as the 
radius of the arc tends to zero. Each one of these arcs is mapped to the arc [uVj, i/>2] of 
the Gaussian circle.   The image of the corner on the Gaussian circle is hence the arc 
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Fig.7.2. Curve with a Corner. 
a)Sequence of curves approximating the corner, b) Gaussian circles. 

[i/jj, \\}2] joining the images of the sides of the corner. The singularity of the Gaussian 
mapping is of the first type. Each point of the Gaussian circle represents one point of 
the object and the sequence of transforms converges to continuous functions. In addi- 
tion, the values of the three transforms are well defined everywhere in the limit. The 
inverse transforms correctly reconstruct all the points of the original curve. Among 
all the transforms, the presence of the corner is conspicuous only in the CT, where the 
radius of curvature is zero over the image of the corner on the Gaussian circle. The 
length of the null arc representing the corner in the CT is equal to the exterior angle 
{p2~xP\ °f tne silhouette corner. 

7.2.2. Circular Transforms for a Curve with Edges 

In this section, the circular transforms are considered for a straight edge of length 
/ and normal orientation I/J0. from A to B; this edge is considered as the limit of a 
sequence of arcs joining A and B , when the radius of curvature of the arcs increases 
without bound; see Fig.7.3. The image of each arc AB on the Gaussian circle is a 
small segment of the circle around i/;0 as for example, the bold arc in Fig.7.3b). In the 
limit, all points of the edge AB map to the single point v^=t/>0 of the Gaussian circle. 
As the normal orientation is identical for all points on a straight edge, it is natural 
that the limiting process defines the Gaussian image of the segment as the single point 
i/f=i//o corresponding to this orientation. For an edge then, the Gaussian mapping has a 
singularity of the second type. One consequence is that parametric equations defining 
a curve with edges in terms of normal orientation must be considered in the wide 
sense defined in Section 7.1. 

The effect of the singularity of the mapping is now investigated for each of the 
three circular transforms. In the simple case of a straight edge, it is possible to obtain 
the resulting transforms without applying the limiting argument. In the case of the 
ST, the normal distance to the tangent is, by definition, identical for all points on a 
straight edge. As a consequence, this unique value unambiguously determines the 
value of the ST for \j)=\jj0. Examining the tangential component t of the VST next, it 
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Fig.7.3. Curve with a Straight Edge. 
a) Sequence of curves approximating the straight edge, b) Gaussian images. 

can be observed that t , by definition the distance between the contact point and the 
projection of the origin on the tangent, varies continuously along the edge, with a total 
variation equal to the length I of the edge. The t -component of the VST has hence a 
step discontinuity of height I at xj)0. Finally, the effect of the edge on the CT can be 
predicted with equation (5.20), p(\j)) = p (t/i) + t ^(t/>). As p (i//) is continuous and 
t (i/;) has a step discontinuity of height I, it can be predicted that t ^ and therefore p 
have an impulse of height I. This conjecture can be verified by noting that, if 5 
represents the arc length along the curve, 

i/r2 

5(i/;2)-5(i/;1)= f pkfidty (7.2) 

so that 

/ = lim 
€—0 

s (i/>0+€) - 5 (\}}0~e) = lim J    p(il))d i/; 
6-0 <Ao-€ 

Therefore, 5 (i//) must have an impulse with height / at i/»0. 

p(xff) * I 8(iM>o) 

(7.3) 

(7.4) 

7.2.3. Example: Transforms of a Rectangle 

The extensions of the circular transforms obtained in the previous sections are 
illustrated here by the example of a rectangle, considered as the limit of a sequence of 
superconics.  A superconic can be defined by the implicit equation 

n 
r 7. + 
a b 

f    = 1 (7.5) 
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This curve is smooth and strictly convex for 1 <n <oo, and tends for n —»oo to a rec- 
tangle with sides 2a , 2b centered at the origin: see Fig.7.4. The circular transforms of 
the superconic are derived in Appendix 1; the property functions are given by 

l/k +1 
acosxp\k+1 + \bsinxp\k+1 

s = 
.* +1 

= p-k 

p(t/l) = 

simjrcos\p(-ak +11 cost/; I *_1 + bk +11 sini/i Ik_1) 

k(ab)k+i \cosKfjsinxj)\k-1 

,k +1 I a cosxjj I * +' + \b sinxjj I k +1 

Ik +1 
k +1 

(7.6) 

(7.7) 

(7.8) 

where k — l/(n—l).   The limits of the above transforms are now considered for 
n —»oo, so that k —»0. 

lim p (i|/) = I a cosxjj 1 + 16 sinxjj1 
£->0 

lim t (\jj) = —a sinxjj sign (cosxjj) + b cost//sign (sim/0 
£ —'0 

lim p(xjj) = 
k-+o 

oo for xjj = 0, 7r/2, 7r, 377-/2 

0   otherwise 

(7.9) 

(7.10) 

(7.11) 

It is clear from the above expressions that the ST is continuous, although it has slope 
discontinuities at t// = 0, IT12, n, 3TT/2. The expression for t reveals discontinuities 
with alternating heights 2b and 2a for the same values of i//. Finally, the CT func- 
tion contains impulses at these four values of xjj. The strengths of the impulses in the 
limit for k —*Q can be determined by integration. For example, the height h of the 
impulse at xjj = 0 is determined as 

+ € 

h = lim lim   / p(xjj)d \b 
€—0 k — o ** —€ 

+ € 

= lim lim k(ab)k+i  f 
k-l I cosxjj sinxjj I       d xjj 

e—0 * —0 -€ 

\acosxjj\k+l + \bsinxjj\k+1 

= lim lim 2bk fxbk~l d\b = 2b 
e—0 i —0 i, 

2k +1 
* +1 
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n —»oo 

n —>oo 

Curves Support Transforms 

,n —»oo 

n —>oo 

1-component of VST's Curvature Transforms 

Fig.7.4. Circular Transforms of a Rectangle and of a Sequence of Superconics. 
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The height of the remaining impulses can be determined by symmetry, so that 

lim p(il/) = 2a 
k— 0 

dCxft-rr/2) + 8(\lt~3ir/2) + 2b 6(</0 + 8G/>-ir) (7.12) 

The above result confirms that the value of the CT is zero for the segments of the 
Gaussian circle corresponding to the corners of the rectangle. The impulses are located 
at the images of the sides on the Gaussian circle and have strengths equal to the 
lengths of the edges. Parametric equations for the rectangle can be obtained by invert- 
ing any of the circular transforms determined above; the result is given by 

x =a sign(cos\j)) 

y = b sign (sint//) 

Note that these equations explicitly represent only ihe four corners of the rectangle. 
The limits of the transforms for the rectangle are displayed together with transforms 
of the superconics in the limiting sequence, in Fig.7.4. The various discontinuities of 
the circular transforms of the rectangle are consistent with the relations t —p^, 

P=P+Pw 
Summarizing the extensions of the 2-D transforms, curves with corners are 

readily accomodated by the formalism developed for the ST, VST and CT in terms of 
smooth curves. The direct and inverse transforms also apply to curves with straight 
edges, when generalized functions are considered for the CT, and when the parametric 
functions in terms of normal orientation are considered in an extended sense. 

7.3. EXTENSIONS OF THE SPHERICAL TRANSFORMS OF 3-D SURFACES 

Extensions of the spherical transforms are considered in this section successively 
for surfaces with curved edges, developable surfaces, surfaces with straight edges, 
corners, and planar faces. 

Each non-smooth surface is considered as the limit of a sequence of smooth sur- 
faces, and its transforms are defined as the limit of the transforms of the surfaces in 
the sequence. It can be shown by arguments similar to the ones exploited for curves, 
that the extension of the forward and inverse transforms is straightforward when the 
Gaussian mapping has only singularities of the first type, which is the case for surfaces 
with curved edges and corners. Furthermore, it turns out that the extensions are also 
straightforward for the ST of surfaces with any of the discontinuities listed above. 
Extension of the VST to all these surfaces requires only to allow step discontinuities 
in the tangential components of the spherical function. The discussion of this section 
will therefore emphasize the two remaining aspects, namely the definition of the Gaus- 
sian mapping for non-smooth surfaces, and the singularities introduced in the CT ten- 
sor when representing straight surface components. 
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7.3.1. Curved Edges 

The first singularity considered here is a curved edge, such as the edge joining two 
segments of sphere in the object illustrated in Fig.7.5a). This type of edge can be con- 
sidered as the limiting case of a torus patch which smoothly joins the two faces of the 
edge, when the section radius of the torus tends to zero. A sample of the limiting 
sequence is illustrated in Fig.7.5c). In this example, the torus patch smoothly "fills" 
the gap between the surfaces on each side of the edge, which have normals with lati- 
tudes T)j, T)2-  As the section radius goes to zero, the image of the smooth edge on the 

b) 

c) d) 

Fig.7.5. Surface with a Curved Edge 
a) Surface with sharp edge, b) Gaussian image of a point on the edge. 

c) Surface with smooth edge, d) Gaussian image of smooth edge. 
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Gaussian sphere is unchanged. In the limit then, each point on the curved edge is 
mapped to an arc of points on the Gaussian sphere, namely the great circle arc joining 
the limits of the normals on both sides of the edge. For example, the point P0 at long- 
itude £0 on the curved edge in Fig.7.5a) is mapped to the arc between n^oi'Hi) and 
nido'Vx) on tr»e Gaussian sphere, see Fig.7.5b). The Gaussian mapping has a singular- 
ity of type 1, so that the three transforms and their inverses are well defined. The 
presence of the curved edge is not clearly apparent in the ST and the VST of the sur- 
face, but the limiting argument can be used to determine that the CT has special 
values on the Gaussian image of the corner. In Appendix 1, the CT of a torus patch 
with cross-section radius r and principal radius R is determined to be 

R + r COST) 

COST) (7.14) 

0 i 
R torus TJ,  < 77 < T)2 

The CT value corresponding to the curved edge is obtained as the limit of the above 
expression as /—•(), namely 

R/cosrj 0 

0       0 R = Vi <Vi (7.15) 

In our example, the edge is oriented along the local axis 1*. More generally, the CT 
tensor on a curved edge is singular, i.e. its determinant is zero. The principal values in 
our example are zero and R /COST/, the second of which is related to but not equal to 
the radius of curvature of the edge. In addition to being curved, a general edge may 
also be twisted. However, torsion of a curve is related to third order derivatives of 
the equations of the curve [47, 52]. Therefore, the expression of the CT for a twisted 
edge is similar to that for a planar curved edge. 

7.3.2. Developable Surfaces 

The case of a developable surface is considered in this section, and illustrated by 
the example of a section of cylinder with radius r and length I ; see Fig.7.6a). This 
section of cylinder will be considered as the limit of sections of tori with constant sec- 
tion radius r , increasing principal radius R and constant length I = R (^2—£i) along 
the principal axis. One of these torus sections is illustrated in Fig.7.6c). The image of 
the section of torus on the Gaussian sphere is the area between the two meridians with 
longitudes £j, £2> shown on Fig.7.6d). As the radius R increases to oo, the longitude 
interval £2~~£i = ' t& decreases to zero. In the limit, all points on each generatrix of 
the cylinder are mapped onto a single point of the Gaussian sphere, and the cylinder 
surface is mapped to a single meridian £=£o> sketched in Fig.7.6b). The Gaussian 
mapping has a singularity of the second type . 
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a) b) 

c) d) 

Fig.7.6. Developable Surfaces. 
a) Section of a Cylinder, b) Gaussian Image of Cylinder. 

c) Section of a Torus, d) Gaussian Image of Torus. 
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The CT values corresponding to the torus patch are obtained by the limiting pro- 
cess 

Krv;   — lim "-torus 

lim 
R —oo. R (£2-£i)=l 

R +rcos7]   n 

COST) 

0 r 

where 

u(x) = 
1  x ZO 

0 x <0 

*cy*   - 

iKt-te o 
COST) 

0 r 

["(Hi)-"(H2)1 

(7.16) 

7.3.3. Straight Edges 

A straight edge E with length I joining two faces with normals nlF n2 is now 
considered, and defined as the limit of a cylinder patch joining the two faces when the 
radius of the cylinder goes to zero. The edge is depicted in Fig.7.7a), and a rounded 
surface in the limiting sequence in Fig.7.7c). The image on the Gaussian sphere of the 
cylinders in the limiting sequence is the great circle arc Hj, n2 sketched in Fig.7.7d), 
and is defined in the limit as the image of the edge E: see Fig.7.7b). The singularity of 
the Gaussian mapping for this edge is complex, as each point and all points on the edge 
are mapped to the arc fij n2. 

The behavior of the CT corresponding to this edge is now investigated. The CT of 
the edge is determined as the limit of the CT's of cylinders in (7.16), as /—*0. As a 
consequence, impulses with strength I /COST/ are introduced in the tensor component 
parallel to the edge, at all points of the Gaussian image of the edge. For example, for a 
horizontal edge with longitude £Q joining faces with normal latitudes T)j, Tj2, the con- 
tribution of the edge to the CT tensor is the impulse ridge 

R edge 
COST/ 

1    0 

0 0 ( u(rj—r),)-u(T)—r/2) ) (7.17) 

Note that  the CT value at the points of the Gaussian sphere corresponding to the 
straight edge has one zero eigenvalue while the other eigenvalue has an impulse. 
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b) 

d) 

Fig.7.7. Surface with a Straight Edge. 
a) Sharp straight edge, b) Gaussian image of edge. 

c) Smooth straight edge, d) Gaussian image of smooth edge. 

113 



7.3.4. Corners 

The Gaussian mapping and the transform values are now considered for surface 
corners. A corner is defined as the limit of a rounded corner when the size of the 
rounding becomes arbitrarily small. A polyhedral corner P0 is considered first, at the 
intersection of three faces with normal orientations n1, n2, 113, as illustrated in 
Fig.7.8a). The image on the Gaussian sphere of a rounded corner approximating the 
corner at P0 covers the area between the three great circle arcs nin2, n2n3, ^Hj 
illustrated in Fig.7.8b). The limiting process defines the Gaussian image of the sharp 
corner to be the same area. The Gaussian mapping has a singularity of the first type, so 
that the spherical functions and their transforms are well defined. Among the three 
transform functions, only the CT has a special value at a corner, namely the null ten- 
sor 

0 0 
0 0 

(7.18) 

Polyhedral corners with three or more faces are mapped to spherical polygons on the 
Gaussian sphere. In general, the image of convex corners is a convex area on the Gaus- 
sian sphere. An example of a corner surrounded by a smooth curved surface is given 
by the tip of an object similar in shape to a football; the image of the corner on the 
Gaussian sphere is an area limited by a small circle. The surface and the Gaussian 
image of the corner are displayed in Fig.7.9. 

a) b) 

Fig.7.8. Surface Corner, 
a) Polyhedral Corner, b) Gaussian Image of the Corner. 
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a) b) 

Fig.7.9. Surface Corner, 
a) Corner on a single curved surface, b) Gaussian image of the corner. 

7.3.5. Planar Faces 

The discontinuity corresponding to a planar face with normal orientation n0 is 
now addressed. The image of this face in the Gaussian mapping is first considered. All 
points of the face have the same normal orientation n0, and are therefore mapped to 
the corresponding point of the Gaussian sphere: see Fig.7.10. The Gaussian mapping 
has a singularity of the second type on a neighborhood containing the face. The 

n, n. 

a) b) 

Fig.7.10. Planar Face, a) Surface element, b) Gaussian Image. 
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representation in terms of normal orientations is hence defined only in the extended 
sense, as are the inverse spherical transforms. 

The values of the spherical transforms are now considered. First, the normal dis- 
tance between the origin and the tangents is identical for all points on a planar face. 
The ST value is hence well defined for the point corresponding to n0 on the Gaussian 
sphere. However, the tangential components of the VST are measured in the plane of 
the face and have therefore a different value at each point of the face. The tangential 
VST components are hence undefined at n0 and the VST function has step discontinui- 
ties at this point of the Gaussian sphere. Considering the behavior of the CT around 
n0, the correspondence with the case of an edge for a planar curve suggests describing 
the planar face by a tensor impulse in 1he CT. This conjecture happens to be false 
however, as it is not possible to explicitly define the shape of any face boundary by 
only three numbers, the three CT components. It is not possible in general to ade- 
quately describe a planar face locally by the CT function on the Gaussian sphere. 

The results obtained in this section lor ihe description of non-smooth convex 3-D 
surfaces by the three spherical transforms are now summarized. At corners and edges 
of a surface, one point of the surface is mapped to many points on the Gaussian sphere. 
The values of the spherical transform functions are well defined, and special values 
are obtained only for the CT, where the tensor is null on a corner, and has a zero 
eigenvalue on an edge. When a straight component is present in the surface, all points 
of the segment are mapped to the same point on the Gaussian sphere. This is the case 
for developable surfaces, straight edges and planar faces. The ST is well defined at the 
corresponding points of the sphere, but tangential components of the VST have step 
discontinuities. In the case of the CT, impulses must be introduced in one eigenvalue 
of the CT tensor at points corresponding to a straight edge or a developable surface. 
The other eigenvalue is finite in the case of a developable surface and null for a 
straight edge. Finally, the shape of a planar face cannot be modeled adequately by the 
CT. 

7.4. SILHOUETTE-SLICE THEOREMS 

In this section, extensions of the three Silhouette-Slice theorems presented in Sec- 
tion 5 for smooth surfaces are discussed. Ihe appropriate extensions are obtained in 
most cases by the limiting process described in Section 7.1. Specifically, the extended 
theorems describe the relations between the limit of the spherical transforms of the 
LSi and the limit of the circular transforms of the S$i . When the spherical transform 
of £#5 is a function in the strict sense, the limiting process defines the circular 
transform of the silhouette as the appropriate projection of the great circle slice of the 
corresponding spherical transform, exactly as in the case of smooth objects. This argu- 
ment shows that the Silhouette-Slice theorems for the ST and VST can be extended 
without modifications to cover surfaces with corners, edges and faces, and also develo- 
pable surfaces. By the same argument, the Silhouette-Slice theorem for the CT can be 
extended to surfaces with corners and curved edges. 

The extension of the Silhouette-Slice theorem for the CT to surfaces with straight 
edges and to developable surfaces cannot be obtained only by the formal argument 
used for the other cases, since the corresponding sequences of spherical and circular 
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transforms do not converge in the space of strict-sense functions. This remaining issue 
concerning the extensions is investigated in a first subsection. The second subsection 
considers some corollaries of the extended Silhouette-Slice theorems. 

7.4.1. Silhouette-Slice Theorem for CT*s with Impulses 

In the two cases to be analyzed here, namely straight edges and developable sur- 
faces, the 3-D CT was determined in Section 7.3. to contain ridges of impulses. The 
main issue is then to determine how a ridge of impulses intersecting the silhouette slice 
contributes to the CT on the slice. To simplify the analysis, the issue of slicing a ridge 
of impulses is first considered for a scalar function in the Euclidean plane Oxz . Con- 
sider a function f xz (x ,z ) on R , and a slice of this function along a line through the 
origin, with an angle a with the Oz axis; see Fig.7.11. The slice points can be 
represented by the parametric equations 

x = l sina 

z = t cosa 
(7.19) 

where t is a metric parameter along the slice axis. When f xz is a strict-sense func- 
tion, the values of the function along the slice, ftU), are obtained by introducing 
(7.19) into f xz (x ,z ), giving 

ft (* ) — f xz ( t sina, t cosa ) (7.20) 

A generalized function is now considered for f xz , namely a ridge of impulses of unit 
height along the x axis, 

n     0<z<l/n 
fzx(x,z) = d(z) = lim     0   otherwise (7.21) 

Oi slice 

Fig.7.11. Geometry of the Slice in the Oxz plane. 

117 



The correct value of the slice is obtained by applying the slicing operation to the 
sequence of functions in the above definition. 

ft(t) = lim 

= lim 
n —»oo 

ftit)   = 
COSOt 

n    O^t cosck<\/n 

0   otherwise 

n    O^t <l/ncosa 

0   otherwise 

6(0 

(7.22) 

The same result is also obtained by formally introducing (7.19) directly into (7.21) 
and carefully considering the scaling of the impulse. 

ft (X ) = / xz (l sina, t cosa ) = S( t cosa ) 

1 
I cosa I 

S(r) 

Hence, the correct result of the slice of an impulse ridge can be formally obtained by 
simply replacing the two variables of the function being sliced by their expressions in 
terms of the parameter on the slice, then applying the scaling expression for the S(.) 
distribution. 

The analysis of the slicing of impulse ridges in the Euclidean plane suggests that 
the result of slicing a ridge of impulses in the 3-D CT function on the Gaussian sphere 
can be evaluated by applying the equation used for predicting the silhouette CT for a 
smooth surface, equation (6.21) 

p(v/>) = cosa5G   sina5G 

r115G    r X2SG 

r 12SG    r 22SG 

cosaSG 

sina5G 
(7.23) 

and considering the change of variables in the impulses present in the components of 
K. This procedure leads to the correct silhouette CT function, as is illustrated below 
for the case of a straight edge with length I. The object axes are chosen so that Oy is 
parallel to the edge. The contribution of the edge to the 3-D CT is given by (7.17) as 

R = ly-edge 
I 

COST) 
6X£) 

1  0 

0 0 
(7.24) 

For a viewing direction specified by the angles 0, 9, the contribution of the edge to the 
silhouette 2-D CT is given by introducing (7.24) in (7.23). 

p(t/>) =  &X£5G (</>)) cos2a5G 
COST)5G 
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The appropriate scaling of the delta function is accounted for by writing 

- 8(X}J-\})0) cos2a5G P(^) = 
COST)5G di so 

>Ao dip 

where i/i0 is determined by £SG (V/J0) = 0. The derivative in the above equation was 
determined in (6.3) as d £SG /d\})= cosa5G /COST)5G . Therefore, 

p(\})) = I cosa5G 8(x}}—\j)0) (7.25) 

Comparing this result with (7.4) shows that the predicted contribution of the 3-D edge 
to the silhouette is a 2-D edge with length I cosa5G . This result is consistent with the 
well-known result of the projection of an edge making an angle aiG with the projec- 
tion plane. 

The Silhouette-Slice theorem for the CT is now considered for surfaces with 
planar faces. As the contribution of planar faces to an object shape cannot be modeled 
by the 3-D CT, the corresponding contributions to the silhouette shapes cannot be 
predicted with the CT either. However, planar faces are mapped only to individual 
points of the Gaussian sphere. Considering a surface with planar faces as the limit of a 
sequence of smooth convex surfaces, the planar faces will prevent convergence of the 
sequence of silhouette circular transforms only when the great circle slice passes 
through some of the points corresponding to the faces. In all other cases, the CT's are 
well defined on the slice and the Silhouette-Slice theorem applies without 
modifications. The set of viewing directions for which the slice intersects the image of 
a face has a measure zero for surfaces with a finite number of faces. As a consequence, 
the Silhouette-Slice theorem for the CT applies to surfaces with planar faces, for 
almost all viewing directions. 

7.4.2. Corollaries of the Extensions 

Two particular consequences of the extended Silhouette-Slice theorems are 
covered in this section. The first is the relation between the angle of a silhouette 
corner and the shape of the corresponding corner of the object. The second is an 
expression for the curvature of the silhouette generated by a flat surface with a curved 
boundary. 

7.4.2.1. Silhouette of a Corner 

In Sections 7.1. and 7.2, it was shown that the presence of a corner on a surface 
and on its silhouette is apparent mainly in their CT's. Specifically, the 3-D CT of the 
object surface is the null tensor in the region of the Gaussian sphere corresponding to 
the object corner, so that the 2-D CT of the silhouette has a zero value for the arc of 
the slice circle inside the image of the corner. II is clear that whenever the slice 
corresponding to the viewing direction traverses the image of the 3-D corner on the 
Gaussian sphere, a corner will appear on the silhouette. The size of the null gap on the 
2-D CT of the silhouette is given by the arc length of the slice inside the image of the 
corner on the Gaussian sphere: see Fig.7.12.   As the arc length of the image of the 
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a) b) 

Fig.7.12. Silhouette of a cube corner, a) Corner. 
b) Gaussian image, with a slice corresponding to 

the silhouette with the largest exterior corner angle. 

corner on the Gaussian circle is equal to the exterior angle of the silhouette corner, the 
above discussion provides a qualitative procedure for relating corner angles on the 
silhouette with the geometry of the 3-D corner of the object. This procedure can be 
used for example to determine the largest exterior angle of the silhouette corner that 
can be generated by a given 3-D corner. This angle is given by the largest arc of great 
circle in the image of the 3-D corner on the Gaussian sphere. This argument shows 
that a cube corner can generate only right-angled or obtuse silhouette corners: see 
Fig.7.12. 

7.4.2.2. Curvature of the Silhouette of a Planar Object 

In this section, the curvature of the silhouette of a planar object with a curved 
boundary is related to the curvature of the object boundary itself. This result pro- 
vides an expression for the radius of curvature of the orthographic projection of a 3-D 
curve, as a function of the radius of the curve and the orientation of the viewing 
direction. 

The problem is first analyzed in a system of axes where Oxy is in the plane of the 
object and in which 0=0. In the Oxy plane, the object has a 2-D CT pQ (£) where £ is 
chosen to characterize the normal angle in the Oxy plane. In the Gaussian mapping of 
the object considered as three-dimensional, the two faces of the object are mapped to 
the poles of the Gaussian sphere, and each point of the boundary to a half meridian 
with a longitude £ corresponding to the normal orientation of the curve in the Oxy 
plane. 
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The 3-D CT of the object can be obtained with equation (7.15) 

p0(£)/C0S7)   0 
E = o 0 

(7.26) 

The radius of curvature ps  of the silhouette is obtained with the Silhouette-Slice 
theorem for the CT, as 

2 Po Use ) ps = cos aSG 
COST)5G 

(7.27) 

It is useful in this case to specify the viewing direction in terms of angles with respect 
to the Frenet trihedron of the curve at each point. The angles £, 0 are chosen for this 
purpose: see Fig.7.13. The angle 0 is the angle between the viewing direction and the 
osculating plane of the curve, whereas £ is the angle between the projection of the 
viewing direction in the osculating plane and the principal normal to the curve. Equa- 
tion (7.27) can be expressed in terms of these angles with (6.1)(h) and (6.1)(i). 

_ (l-sin2£cos2e)3/2 

sin0 Ps = PoiO (7.28) 

The above equation expresses the radius of curvature of the orthographic projection of 
a 3-D curve, in terms of the radius of curvature of the 3-D curve and the orientation 
of the viewing direction in the Frenet trihedron of the curve. This result can also be 
obtained by a classical method, as is done in Appendix 5; it is also valid for non-planar 
curves, since torsion only affects third order derivatives. When £=0, the viewing 
direction   is   in   the   normal   plane   of   the   curve   and   the   relation   simplifies   to 
Ps = Po /sir>0- 

Fig.7.13. Planar Curve and 
Angles Specifying the Viewing Direction in the Frenet Trihedron. 
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7.5. SUMMARY 

In this section, the silhouette theories developed in Sections 5 and 6 for smooth 
surfaces have been extended to cover surfaces with discontinuities, edges and planar 
faces. It is remarkable that theories supported by differential geometry of smooth sur- 
faces provide correct results when extended to surfaces with sharp edges and corners. 
In addition to the analytic expressions for the silhouette shapes, a number of powerful 
qualitative relations between silhouettes and 3-D shapes have been derived. These 
qualitative relations prove to be useful when developing algorithms for object recogni- 
tion from silhouettes. This is briefly explained in Section 8. 
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8.0 EXAMPLES AND APPLICATIONS 

This section presents a number of examples of silhouette construction with the 
Silhouette-Slice theorems. In addition, applications of the new theories to the recon- 
struction of the shapes of 3-D objects from silhouette data are suggested, followed by 
the principles of a system for recognizing polyhedral objects from their silhouettes. It 
must be pointed out that the main results of this report are theoretical. Applications 
presented in this section prove that these theories are useful for solving practical prob- 
lems, but they have not been developed in great detail. 

It is tempting to develop algorithms for solving each of the three basic silhouette 
problems by sampling the spherical and circular object functions introduced in Section 
5, and relating these discrete transforms to Silhouette-Slice theorems for discrete 
transforms. However, sampling questions inlroduce difficult obstacles in the develop- 
ment of a discrete theory. First, sampling continuous functions defined on the sphere 
is a complex problem which has not been adequately solved. In addition, great circle 
slices corresponding to given viewing directions do not typically intersect the sampling 
grid on the sphere at sample points. As a result, interpolations between the sample 
values of the spherical transforms are necessary to generate samples of the silhouette 
transform in almost all cases. The choice of sample points on the sphere was 
addressed in [44, 57] for the case of the Extended Gaussian Image. It was shown that 
the largest number of regularly spaced sample points on the sphere is equal to the 
largest number of faces on a regular polyhedron, namely 20. For any larger number 
of samples, an irregular sampling must be considered. In addition to the choice of 
sample points, both the choice of sample values in terms of the continuous function 
being represented and the interpolation of sample values to recover the corresponding 
continuous function must be considered, but these have not been studied in detail. At 
this point, the unsolved sampling issues make it difficult to apply the new theories 
directly to the development of numerical algorithms. However, the theories developed 
in this report provide valuable tools for qualitative reasoning which the examples of 
applications presented in this section attempt to illustrate. In addition to the relations 
between objects and silhouettes, the CT representation for 3-D surfaces presented in 
Section 5 is a valuable contribution to the understanding of surface shapes, both for 
geometry and for computer applications. Since this aspect of the theory is nol directly 
related to silhouette analysis, its discussion is relegated to Appendix 4. 

8.1. SILHOUETTE CONSTRUCTION 

In this section, a number of examples are presented to illustrate silhouette con- 
struction with the Silhouette-Slice theorems. These examples demonstrate that 
numerically correct answers are obtained with the proposed formalism. They further 
provide insight into the form of the three transforms and the result of the slicing 
operations. In a number of cases, qualitative reasoning with the Silhouette-Slice 
theorems is proposed to predict the gross aspect of the silhouette. 

123 



As mentioned in the introduction of this section, sampling of the spherical and 
circular functions raises non-trivial issues. To generate the examples presented in this 
section, sampling of the transforms on the Gaussian sphere has been circumvented by 
using closed-form analytic expressions for the spherical functions. On the other hand, 
the circular functions and the corresponding silhouettes must be sampled, at least for 
display purposes. The sampling issues have been largely eliminated by using a large 
number of samples for the circular transforms of the silhouettes. Our approach to the 
sampling question is tractable when closed-form expressions are available for the 
transforms of the surface shapes considered. It will be shown that accurate 
silhouettes can be determined by this method for many surface shapes. The 
Silhouette-Slice theorem can provide the shape of silhouettes for surfaces for which no 
closed-form silhouette expressions are available, for example, for superquadrics. The 
three spherical transforms for superquadrics are derived analytically in Appendix 1. 
Although it relies on analytical formulas, our treatment of the sampling problem is 
compatible with the computation of silhouettes for surface models designed wilh a 
CAD system. These surfaces are defined as combinations of a number of surface 
patches, where each patch is described by a relatively simple analytic equation. The 
silhouette problem can be solved with the proposed method when spherical transforms 
can be evaluated analytically for the primitive surface elements. 

Although continuous spherical transform functions are used in the examples 
presented in this sedion, silhouette shapes have also been obtained by considering sam- 
ples of the transform functions on the Gaussian sphere and by relating these to sam- 
ples of the silhouette transforms on the appropriate slice. This discrete formulation of 
the Silhouette-Slice theorems requires a large number of interpolations between sam- 
ple points on the sphere to determine samples of the silhouette circular transforms on 
the great circle slice. In addition, sampling effects introduce degradations in the shapes 
of the computed silhouettes. These degradations become negligible for dense sam- 
plings, but the number of samples required to ensure a given accuracy cannot be 
quantified because of the lack of a sampling theory for this problem. The sampling 
questions are beyond the scope of the report, which concentrates on the theories for- 
mulated in terms of continuous functions. 

Silhouette construction will be illustrated for three different types of objects, 
namely a cylinder, superquadrics, and a torus. In the context of these examples, a 
number of qualitative aspects of the theory are discussed. Qualitative aspects of the 
circular transform graphs such as signs, extrema and zero crossings are related to the 
silhouette shape. The effect of the choice of a reference frame on the transforms is dis- 
cussed. A qualitative prediction of the shape of silhouettes of polyhedra with the 
Silhouette-Slice theorem is presented. This result is then extrapolated to predict the 
shape of silhouettes of smooth surfaces which are closely approximated by polyhedra, 
such as some superquadrics. Finally, silhouettes of a torus illustrate the application of 
the results to a non-convex object and raises issues related to the extension of the 
results to these objects. 
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8.1.1. Silhouettes of a Cylinder 

The first example is that of a simple axisymmetric object, namely a cylinder of 
height 2H and radius r , sketched in Fig.8.1. The various transforms of the object are 
also axisymmetric, when the reference point is positioned on the object axis. For a 
reference point at the center of the cylinder, the 3-D VST of the cylinder is given by 

T 
{r COST) + H sinT)) 0 ( H COST) — r sinT)) 

s = 
(rCOST) — HsinT)) 0 (—//COST) —rsinT)) 

0°  ^ T) ^ 90° 

-90°  ^ T) ^0° 
(8.1) 

The CT of the Cylinder is given by 

n = r /COST) 0 

0       2H Strj) + r OXT)-TT/2) + r S(T)+77-/2) 
(8.2) 

Except for h and r 12 which are identically zero, profiles of the components of the 
transforms are displayed in Fig.8.2. The profile of an axisymmetric function on the 
Gaussian sphere is, by definition, a 1-D function representing the values of the 
axisymmetric function for a fixed value of £. The profile is defined for 
-90° ^ T) ^ 90° , but the profiles were extended to the range of -180° < T) ^ 180° 
for display purposes. In this form, the profiles correspond to a vertical section of the 
Gaussian sphere. These extended profiles are represented by polar diagrams in Fig.8.2. 
In these diagrams, the zero value is offset from the center to allow the representation 
of negative values. 

The  cylinder  does   not   satisfy   smoothness  and  strict  convexity   constraints 
required in the theories of Sections 5 and 6, because of the presence of edges and 

r =2 

Fig.8.1. Cylinder with radius r =2, height 2H = 5. 
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Profile of 3-D ST Profile of v-component of 3-D VST 

Profile of r ! ^component of 3-D VST Profile of r 22-component of 3-D VST 

Fig.8.2. Profiles of the Spherical Transforms of the Cylinder in Fig.8.1. 

embedded straight components. As a result, the ST displays discontinuities in the first 
derivative, the v-component of the VST displays step discontinuities, and the CT con- 
tains impulses. These discontinuities are all related to the length of the corresponding 
straight surface components, as discussed in Section 7. Specifically, the discontinuities 
in the slopes of the ST, the step discontinuities in v and the lateral impulses in r 22 are 
equal to the height 2H of the cylinder. 

Circular transform functions for silhouettes of this object are obtained by pro- 
jecting the spherical function values on the appropriate great circle slice onto the plane 
of  the  slice,  according  to the Silhouette-Slice  theorems developed  in  Section  6. 
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Silhouettes and the corresponding circular functions are displayed in Fig.8.3a)-b) for 
two different orientations of the viewing direction. The circular silhouette functions 
were computed at 200 equally spaced samples of the appropriate great circle slice; 
points of the silhouette were generated by inverting the silhouette VST with equation 
(5.9) applied to the sample values. The following characteristics can be observed on 
these silhouettes and their circular transforms. The ST is strictly positive every- 
where, because of our choice of the origin inside the 3-D object. The angular points in 
the graph of the ST correspond to the flat sections of the silhouette. The t-component 
of the VST has values with alternating signs, since it must integrate to 0 over the 2TT 

Silhouette for 0 = 10° Support Transform 

t-component of VST Curvature Transform 

Fig.8.3a). Silhouette of the Cylinder for 0 = 10° , and Corresponding Transforms. 
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Silhouette for 0= 50° Support Transform 

t-component of VST Curvature Transform 

Fig.8.3b). Silhouette of the Cylinder for 6 = 50° , and Corresponding Transforms. 

interval. The zero crossings of t correspond to points for which the normal goes 
through the reference point. The 2-D CT's of both silhouettes contain two impulses 
corresponding to the straight sections on the sides of the silhouette, which correspond 
themselves to the lateral surface of the cylinder. In addition, the 2-D CT of the 
silhouette contains two maxima corresponding to the top and bottom parts of the 
cylinder. Note that the silhouette CT's contain impulses related to the lateral 
impulses of r 21 in Fig.8.2, but none related to the top and bottom impulses in r22« 
This observation can be justified by considering the 3-D graph of r 22 on the Gaussian 
Sphere in Fig.8.4.   In the 3-D CT of the cylinder, the lateral surface generates an 
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Fig.8.4. Graph of the r 22 component of the 3-D CT of the cylinder 

equatorial ridge of impulses. The impulses on the 2-D CT of the silhouette correspond 
to the intersection of the great circle slice with the equator, as is shown in the figure 
for a slice corresponding to 0=30°. As all slices cut the equator, the equatorial 
impulses related to the lateral surface appear on all silhouettes. However, the 
impulses of the 3-D CT corresponding to the top and bottom parts of the cylinder are 
located only at the poles of the Gaussian Sphere. Therefore, they affect only great cir- 
cle slices through the poles, which correspond to silhouettes with 0 = 0°. 

The effect of translations of the reference point on the various surface spherical 
transforms and the corresponding silhouette circular functions is now investigated. 
The effect of origin position on the VST is characterized by the expression 

COS£COST)     sin£cosT)  sinr) 

—sin£ cos£       0 

—cos£sinr) — sin£sinr) COST) 

X(£,T)) 
xo 

ytf.T)) — yo 
z(Z,r\) zo 

(8.3) 

where (•*0,y0,zo) are the coordinates of the reference point in fixed object-centered 
coordinates. The ST is identical to the first component of the VST, and the CT is 
unaffected by the choice of origin. The effect of the choice of origin on the ST and on 
the VST components of the silhouette is illustrated in Fig.8.5a)-d) for the silhouette of 
the cylinder with 0 = 20° , 0=0° , and for four excentric positions of the reference 
point. It can be observed in these figures that significant changes of the ST and VST 
result from the displacement of the origin. Specifically, negative values appear in nn 

when the reference point is outside the object, the number and locations of zero- 
crossings of t n and extrema of n n, t n are modified; of course, the numerical values of 
the transforms are considerably affected. 
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Cylinder and Reference Point 
Silhouette 

Support Transform t-component of VST 

Fig.8.5a). Normal and Tangential Components of the VST of a Cylinder Silhouette 
with the Reference Point (0,0,-1). 
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Cylinder and Reference Point 
Silhouette 

Support Transform t-component of VST 

Fig.8.5b). Normal and Tangential Components of the VST of a Cylinder Silhouette 
with the Reference Point at (0,0—4). 
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Cylinder and Reference Point 
Silhouette 

Support Transform t-component of VST 

Fig.8.5c). Normal and Tangential Components of the VST of a Cylinder Silhouette 
with the Reference Point at (0,1,0). 
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IT 

Cylinder and Reference Point 
Silhouette 

Support Transform t-component of VST 

Fig.8.5d). Normal and Tangential Components of the VST of a Cylinder Silhouette 
with the Reference Point at (0,3,0). 

133 



n n 
X + 1 + Z 

a b c 

8.1.2. Silhouettes of Superquadrics 

In this section, silhouette construction is demonstrated for a subclass of super- 
quadrics [58]. The subset of superquadrics considered here is defined by the implicit 
equation 

n n 

-      = 1 (8.4) 
c 

The parameters a ,b , c correspond to the intersections with the coordinate axes. They 
hence control the size and elongation of the surface shape. The parameter n , however, 
controls the smoothness of the surface. For \<n <oo, surfaces defined by (8.4) are 
smooth and strictly convex. Examples of superquadrics with a =4, 6=3, c=2 are 
displayed in Fig.8.6 for n = 1, 1.2, 4.5, oo. Ellipsoids are a special case of superqua- 
drics for n=2. In the limit for n —»oo, the superquadric becomes a parallelepiped, 
whereas the limit I or n —*] corresponds to an octahedron. 

It is possible to evaluate the three spherical transforms in closed form for the 
surfaces specified by (8.4), and therefore to compute the shape of their silhouettes in 
orthographic projections. The analytic computations of the spherical transforms 
require relatively tedious algebra and are therefore relegated to Appendix 1. Examples 
of silhouettes of 1he 1wo smooth superquadrics in Fig.8.6 are shown in Fig.8.7a)-d). 
As mentioned in Appendix 1, the CT of superquadrics contain discontinuities when 
n >2. These discontinuities are apparent in Fig.8.7d) for n =4.5. They correspond to 
the six slowly curving parts in the corresponding silhouette. Such discontinuities in 
the CT of superquadrics with n >2 present an additional obstacle to discrete represen- 
tations of the CT. 

An example of qualitative predication of the shape of silhouettes with the 
Silhouette-Slice theorems is now presented, first for the polyhedra (n = 1, oo), then 
for the smooth superquadrics (n = 1.2, 4.5). The qualitative shape of silhouettes of 
the octahedron and the parallelepiped can be readily estimated with the Silhouette- 
Slice theorem for the CT. The CT of the two polyhedra have ridges of impulses on the 
great circle arcs which are the images of the polyhedron edges on the Gaussian sphere. 
In Fig.8.8, these arcs have been plotted on the Gaussian sphere for the two polyhedra, 
for the same values for the diameters as in Fig.8.6. Slices of the 3-D CT of the polyhe- 
dra are composed of impulses so that the silhouettes are polygons with a number of 
edges equal to the number of great circle arcs sliced by the silhouette great circle. 
Except for special coincidences, the number of silhouette edges is 6 for the paral- 
lelepiped and can be 4 or 6 for the octahedron. The similarity betwen superquadrics 
with small values of n and the octahedron (n =1 ), and between superquadrics with 
large values of n and the parallelepiped (n =co) is preserved in the silhouettes. As a 
result, the silhouettes of the smoolh superquadrics in Fig.8.6 can be predicted to be 
polygons with bent edges and rounded corners, with a number of edges equal to the 
numbers for the corresponding polyhedra. It can be observed in Fig.8.7a)-d) that the 
silhouettes of both superquadrics contain the numbers of bent edges qualitatively 
predicted by the above argument. The presence of these bent edges in the silhouette is 
also apparent as maxima in the CT, which are maxima of the radius of curvature. 
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n = \ n=1.2 

n =4.5 n=oo 

Fig.8.6. Superquadrics with a =4, b =3, c =2. 
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Silhouette Support Transform 

t-component of VST Curvature Transform 

Fig.8.7a). Silhouette and corresponding Circular Transforms for the superquadric 
withn = 1.2, for the viewing direction (0,0) = (10°, 10°) 
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Silhouette Support Transform 

t-component of VST Curvature Transform 

Fig.8.7b). Silhouette and corresponding Circular Transforms for the superquadric 
with n = 1.2, for the viewing direction (0,0) = (40° ,20° ) 
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Silhouette Support Transform 

t-component of VST Curvature Transform 

Fig.8.7c). Silhouette and corresponding Circular Transforms for the superquadric 
with n = 4.5, for the viewing direction (0,0) = (10° ,10° ) 
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Silhouette Support Transform 

t-component of VST Curvature Transform 

Fig.8.7d). Silhouette and corresponding Circular Transforms for the superquadric 
with n = 4.5, for the viewing direction (0,0) = (40° ,20° ) 
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Parallelepiped. (0,0) = (10° , 10° ) Parallelepiped, (0,0) = (40° , 20° ) 

Octahedron, (0,0) = (10° , 10° ) Octahedron. (0,0) = (40° , 20° ) 

Fig.8.8. 3-D CT of the superquadrics with n—\ (octahedron) and n =oo (parallelepiped) 
The CT's have ridges of impulses along the lines drawn on the Gaussian sphere. 
Also shown are the great circle slices corresponding to two viewing directions. 

8.1.3. Silhouettes of Tori 

The example of silhouette construction for the torus presented in this section 
introduces issues arising from the application of the Silhouette-Slice theorems to non- 
convex objects. It is clear that each point of the Gaussian sphere corresponds to two 
points of the torus surface (see Fig.8.9) except for the poles of the sphere; each pole 
corresponds to an infinite number of object surface points. To determine its 
silhouettes, the torus surface is cut into two parts, which will be called the interior 
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Torus Gaussian sphere 

Fig.8.9. Gaussian Mapping of the Torus. 
Both poinis marked on the torus surface map on the same point of the unit sphere. 

and exterior parts, see Fig.8.10. The set of points along the separation line between the 
two parts has a zero measure and is not considered here. The Gaussian Mapping is 
one-to-one for each of the two parts. The exterior part consists of elliptic surface 
points only, so that the Silhouette-Slice theory applies without restriction. The inte- 
rior surface points are all hyperbolic however. As the ST and VST do not specifically 
depend on surface curvatures, these representations and the related silhouette theory 
apply without modifications for the interior part.   In the case of the CT, the main 

Exterior Surface Interior Surface 

Fig.8.10. Interior and Exterior parts of the torus surface. 
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difference is that the tensor 5 is no longer positive definite. The Spherical transforms 
of the torus are given by 

(8.5) 

R = 

n ±/?cosr) + r 
h = 0 
V —( ±/?sinT)) 

( ±R + r cosr) ) /COST) 0 
0 r 

(8.6) 

where r is the radius of the section, R is the radius of the principal axis, and the posi- 
tive and negative signs in the above equations have to be considered for the exterior 
and interior parts respectively. These spherical transforms are axisymmetric. Polar 
plots of the profiles of the non-zero components of these transforms are displayed in 
Fig.8.11 for both the interior and exterior surfaces. Transforms for the silhouette can 
be obtained by slicing the above 3-D object transforms. The silhouettes are then 
obtained by inverse transformation of the silhouette functions. Two examples of 
silhouettes are developed for a torus with R=3, r = l, for viewing directions 
corresponding to 0=40° and 0=25°. The two silhouette parts corresponding to the 
interior and exterior parts of the object surface are generated separately, then superim- 
posed in the final figure. For the case of 0=40° , the silhouettes of both parts and their 
transforms are displayed superimposed in Fig.8.12a). The corresponding diagrams are 
presented for the case where 0=20° in Fig.8.12b). 

After the silhouettes are evaluated separately for the inlerior and exterior parts 
of the torus, issues of registration may arise when combining the individual silhouette 
parts. When the silhouettes are obtained with the ST or VST, both parts are referred 
to the same point in the projection plane and registration is trivial. However, 
silhouette parts generated with the CT are not related to an origin. In the case of the 
torus, accurate superposition of the two parts was possible thanks to the symmerty of 
the surface shape. In the case of a surface in the shape of a distorted torus, the interior 
and exterior silhouettes could not be accurately registered. 

The silhouettes evaluated with the Silhouette-Slice theorems correspond to the 
projection of all object surface points with a normal perpendicular to the viewing 
direction. For a non-convex object, some of these points may be occluded by other 
object parts, so that they do not effectively contribute to the silhouette. The set of 
silhouette points of a non-convex object determined with the Silhouette-Slice theorems 
must therefore be considered only as a set of candidate silhouette points. The 
silhouette itself may be equal to this set, as in the example of Fig.8.12a, or may be a 
subset of the candidate silhouette, as in the example of Fig.8.12b. Indeed, spurious 
silhouette parts appear on this figure. They correspond to the projection of points of 
the object surface for which the normal is perpendicular to the viewing direction, but 
which are occluded by other parts of the object. When occluded silhouette parts are 
removed from the interior silhouette, the result displayed in Fig.8.13 is obtained. Note 
that in this figure, there are two segments of silhouettes in the interior of the object. 
These must also be eliminated if the silhouette is considered as the set of outline points 
in the image plane, but are included in the silhouette if it is considered as the set of 
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Profile of 3-D ST (exterior) Profile of t-component of 3-D VST (exterior) 

Profile of 3-D ST (interior) Profile of t-component of 3-D VST (interior) 

Profile of r x rcomponent of 3-D VST Profile of r 22-component of 3-D VST 

Fig.8.11. Spherical Transforms of the two parts of the torus 
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Silhouette Support Transform 

t-componenl of VST Curvature Transform 

Fig.8.12a). Silhouette of the Torus and Circular Transforms. 
Viewing Direction: 0=40°. 
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Silhouette Support Transform 

t-component of VST Curvature Transform 

Fig.8.12b). Silhouette of the Torus and Circular Transforms. 
Viewing Direction: 0=25°. 
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Fig.8.13. Silhouette of the torus for 0=25° 
The occluded parts have been removed. 

discontinuity points of a range map in the image plane. Note that, in the example of 
Fig.8.12a generated for 0=40°, the correct silhouette is obtained directly. It can be 
observed that, for 0=40° , the CT of ihe silhouette part corresponding to the interior 
surface has a negative radius of curvature while the Gaussian curvature of the surface 
is negative. In this circumstance, all silhouette points generated with the Silhouette- 
Slice theorem are true silhouette points. In the case of 0=25° , the CT of the 
silhouette contains alternating signs and zero crossings. The curve of candidate 
silhouette points has cusps corresponding to the zero crossings. It has been shown by 
Koenderink[33] that when candidate silhouette points corresponding to a surface with 
negative Gaussian curvature have a positive curvature, these points are necessarily 
self-occluded. This property allows us to eliminate the two lateral parts of the inte- 
rior silhouette in Fig.8.12b. Points on the two remaining longitudinal silhouette parts 
cannol be tested for visibility by arguments on local surface shapes. On the other 
hand, the presence of self-occluded silhouette parts suggests the presence of additional 
silhouette segments for which occlusion occurs due to remote surface elements. 

Summarizing our discussion on non-convex objects, each point of the Gaussian 
sphere may correspond to several points of a non-convex object. The surface can be 
decomposed into parts so that for each point, the Gaussian mapping is 1:1. When 
applied to these parts, the Silhouette-Slice theorems provide the correct silhouettes in 
some cases. More generally, the theorems provide a set of candidate silhouette points 
in which the silhouette points are included. The actual silhouette points are deter- 
mined by testing the candidate points for visibility. One necessary visibility condition 
requires corresponding signs for the curvature of the silhouette and the Gaussian cur- 
vature of the surface on the silhouette generator. 

8.1.4. Discussion 

In this section, silhouette construction has been demonstrated with all three 
Silhouette-Slice theorems. Through simple experiments, we have observed that con- 
struction with the VST is less sensitive to sampling problems than the other two 
methods, although accurate results are obtained with the three transforms when 
sufficiently fine samplings are used.  We have generated the examples presented in this 
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section with a mixed analytical/numerical method; this strategy can be exploited only 
when analytical expressions can be determined for the 3-D transforms of the surface 
shapes of interest. The ST and the VST of a surface can be determined in closed form 
only for surfaces which can be explicitly parameterized with the normal orientation 
angles (£,TJ). Although such parameterizations can be derived for several surface 
shapes, this indicates a limitation of the method. However, it is shown in Appendix 2 
that the CT values can be determined analytically for any surface represented by 
parametric equations. Silhouette construction with the CT is hence applicable to a 
larger set of surfaces than with the ST and the VST. 

In addition to numerical silhouette construction, the Silhouette-Slice theorems 
can also be exploited to predict qualitatively the shapes of silhouettes. Qualitative 
shape features of silhouettes include mainly corners, edges and curvatures. These 
features are best represented by the 2-D CT of the silhouette, and can be easily related 
to the corresponding features of the object by the Silhouette-Slice theorem for the CT. 

We conclude that the CT should be preferred for prediction of qualitative 
silhouette shape, that the VST is numerically less sensitive than the ST and CT for 
silhouette construction, but that the CT can be evaluated analytically for a larger set 
of surfaces than the VST. 

8.2. RECONSTRUCTION FROM SILHOUETTES 

The formal problem of reconstructing the shape of a convex object from a set of 
silhouettes is addressed in this section, and a strategy for solving this problem with 
the Silhouette-Slice theory is suggested. Due to the lack of a good understanding of 
sampling issues on the sphere, a practical algorithm for applying the proposed strategy 
has not been implemented. However, interesting conclusions can be drawn from a for- 
mal analysis of the reconstruction problem. 

The reconstruction problem addressed in this section can be described as follows. 
A convex object of unknown shape is projected orthographically onto a number of pro- 
jection planes II, , and the corresponding silhouettes 5, are recorded in each plane. 
The viewing directions are referred to by their longitude/latitude 0, , 0, . Given this 
collection of silhouettes, a method for constructing a description of the 3-D shape of 
the object is desired. In addition to devising a reconstruction method, it is useful to 
determine what range of viewing angles 0, 0 must be covered in order to obtain com- 
plete reconstruction. 

In the first stage, it is assumed that all silhouette measurements are referred to a 
global frame Oxyz . In each projection plane II, , the silhouettes are measured in 
orthogonal axes Onxnzn, where O nz n is the projection of the global Oz axis, see 
Fig.8.14. 

The scheme of the reconstruction procedure is to evaluate a circular transform 
for each measured silhouette, to relate these 2-D transforms to great circle slices of the 
corresponding 3-D transform of the object, to use this relation to reconstruct the 
spherical transform, and finally to invert this transform for the object shape. 

As reference axes are available in each projection plane, the evaluation of the cir- 
cular transform of each silhouette is straightforward, and is formally obtained with 
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Fig.8.14 Reference frame for the projection plane 

equations (5.1), (5.11), (5.19). Each circular transform function pni(yf)), H) (>/>), 
p, (i/O is related to the great circle slice of the corresponding spherical transform of the 
object, which is perpendicular to the viewing direction 0, , 0, , namely P(£SG '"OSG )• 
ST£SG MSG )• R(£SG 'VSG )• The exac* relation between the transform value at one 
point of the silhouette Gaussian circle and the corresponding value of the transform of 
the object on the slice of the Gaussian sphere depends on the particular transform in 
question and is given by the appropriate Silhouette-Slice theorem. These relations and 
their consequences for the reconstruction of 3-D transforms are now investigated in 
sequence for the ST, the VST, and the CT. 

In the case of the ST, the silhouette transform values on the Gaussian circle are 
exactly equal to the object ST values on the great circle slice of the Gaussian sphere. 
Therefore, the value of the 3-D ST of the object at one point of the Gaussian sphere is 
obtained directly as the value of the silhouette ST on a slice passing through that 
point. In order to recover the complete ST function on the sphere, it is hence necessary 
to process silhouetles obtained from a range of viewing angles such that the 
corresponding great circles entirely cover the sphere. One sel of such viewing angles is 
obtained by turning the observer around the object by a 1 80° arc, see Fig.8.15. 

Reconstruction using the VST is now considered. First, the normal component of 
the VST is equal to the ST for which reconstruction has been already discussed. The 
discussion is hence focused on the reconstruction of the horizontal and vertical com- 
ponents h , v of the 3-D VST from the tangential component t of the 2-D VST's of the 
silhouettes. The Silhouette-Slice theorem for the VST identifies the value of t w on the 
Gaussian circle of the silhouette to the projection onto the slice plane of the vector 
(h v ) at the corresponding point of the great circle slice. Estimating h and v is hence 
equivalent to estimating a 2-D vector from projections of this vector, and is possible 
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Fig.8.15. A sufficient set of viewing directions for reconstruction with the ST 

when at least two different projections are known. The vector (h v )T can hence be 
reconstructed at a point of the Gaussian sphere if and only if its projection I is given 
on two distinct slices through the point. As a consequence, the set of viewing direc- 
tions must provide a coverage of the Gaussian sphere by two distinct greal circle slices 
at each point, in order to reconstruct the 3-D VST of the inspected object. A set of 
viewing directions satisfying this criterion almost everywhere is given hy Ihe combi- 
nation of two different sets of measurements similar to those proposed for the ST. An 
example of a sufficient set of viewing directions is given in Fig.8.16. 

It can be observed that the 2-D VST of each silhouette specifies two values for 
each point of the Gaussian circle, as opposed to one in the case of the 2-D ST. 
Although these components are redundant, it is tempting to consider that the VST cap- 
tures "more informal ion" about the silhouette at each point of the Gaussian circle. 

Fig.8.16. A sufficient set of viewing directions for reconstruction with the VST 

149 



Therefore, it seems counterintuitive that the reconstruction using the VST requires a 
larger set of silhouettes than reconstruction with the ST. This stronger requirement in 
the case of the VST arises because the redundancy of the 3-D VST was not exploited in 
the reconstruction method. 

Consider now the reconstruction of the object shape through the reconstruction of 
its 3-D CT. The relation between the 2-D CT of the silhouette at a point of its Gaus- 
sian circle and the 3-D CT of the object at the corresponding point on the slice of the 
Gaussian sphere is that the silhouette 2-D CT, a scalar, is the projection on the slice 
plane of the object 3-D CT, a 2x2 symmetric tensor. In order to reconstruct a 2x2 
symmetric tensor from projections, three projections on different axes are required. In 
order to reconstruct the value of the 3-D CT of the surface at one point on the Gaus- 
sian sphere then, silhouette 2-D CT's on three different great circle slices through the 
point must be used. The requirement on the minimum set of viewing directions is that 
the Gaussian sphere must be covered everywhere by three layers of great circle slices. 
This requirement is satisiied almost everywhere by three orthogonal 180° arcs of 
viewing directions, such as depicted in Fig.8.17. In this case again, consistency con- 
straints on the 3-D CT are not exploited in the above reconstruction strategy. These 
constraints could be used to relax the requirements on the minimal set of viewing 
directions. 

A substantial difference between 3-D shape reconstruction with the CT on one 
side and reconstruction with the ST and VST on the other side is that the CT is 

Fig.8.17. A sufficient set of viewing directions for reconstruction with the CT. 
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independent of translations whereas the other two transforms strongly depend on 
translations of the origin. It was assumed up to now that measurements in each pro- 
jection plane are referred to axes O nx vz w, and that each of these sets of axes is accu- 
rately related to the global system of axes Oxyz . As silhouette CT's are independent 
of translations of the origin in their plane, the requirement on registration of the 
observed silhouettes can be relaxed when reconstruction is performed with the CT. 
Specifically, only a reference orientation such as the projection of the global Oz direc- 
tion must be known relative to the global axes in each projection plane, in addition to 
the orientation of the plane itself. Uncontrolled translations of the reference axes in 
each projection plane do not affect the reconstruction mechanism. This conclusion can 
be exploited to determine an interesting difference between the reconstmction of a 3-D 
object from 2-D silhouettes and the reconstruction of a 2-D object from 1-D 
silhouettes. Indeed, in the latter case, reconstruction is ambiguous in the absence of an 
origin for each silhouette. Typical examples of this ambiguity are given by ovals of 
constant breadth [59]. These 2-D objects have silhouettes of constant length for all 
orientations, just as circle. These two objects could not be differentiated by unre- 
gistered silhouettes. 

In the previous paragraphs, reconstruction of 3-D transforms of an object surface 
from silhouettes has been investigated. Although reconstruction of the object itself 
merely consists of inverting the reconstructed transform, additional issues may arise 
in the case of the VST and CT, because of their intrinsic redundancy. It is clear that 
for a set of silhouettes which actually correspond to the same convex object, con- 
sistency of the silhouette circular transforms guarantees consistency of the recon- 
structed object spherical transform, in the absence of noise and biases. In practical cir- 
cumstances, however, degradations are inevitable so that the reconstructed 3-D spheri- 
cal transform is inconsistent in general. When and how to exploit the consistency con- 
straints in the reconstruction is an open question. These constraints could be forced on 
the reconstructed spherical transform before reconstruction of the object shape, or 
they could be exploited earlier, during the construction of the spherical transform, 
thereby potentially relaxing the requirements on the number of viewing directions. 

8.2.1. Discussion 

Strategies for reconstructing the shape of a 3-D object from silhouette measure- 
ments have been discvissed, using the transforms defined in Section 5 and the 
Silhouette-Slice theorems developed in Section 6. In order to develop numerical algo- 
rithms for implementing these strategies, sampled circular transforms must be con- 
sidered for representation of the measured silhouettes, and interpolation schemes must 
be developed for reconstruction of the spherical transforms. As the discrete versions 
of the Silhouette-Slice theorems have not been formulated yet, the interest of the stra- 
tegies presented in this section is conceptual at this point. 

Reconstruction methods based on the three silhouette-slice theorems are now 
compared, assuming that satisfactory solutions can be provided for the sampling 
issues. When consistency constraints of the 3-D transforms are not exploited, the ST 
seems preferable since it is least redundant and requires the smallest set of viewing 
directions.  For reconstruction using the constraints, the 3-D VST should be preferred, 
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since it incorporates more measurements from the silhouette. In addition, the inversion 
of the 3-D VST is only a set of 3-D rotations, while derivatives must be estimated for 
inversion of the 3-D ST. Finally, reconstruction with the CT should be considered 
when registration of the origins in the various silhouette planes is absent or imprecise. 

Incorporating consistency constraints in the reconstruction of a 3-D transform 
could be implemented as an optimization problem where the solution would have to 
satisfy the constraints while minimizing the total deviation from the slices 
corresponding to the measured silhouettes. The solution could be obtained by iterative 
methods similar to the ones used to solve other surface resontruction problems such as 
the shape-from-shading problem [21]. 

8.3. RECOGNITION FROM SILHOUETTES 

This section suggests an application of the Silhouette-Slice theory to the deriva- 
tion of constraints for a system performing object recognition from silhouettes. The 
arguments are based on the extension of the Silhouette-Slice theorem for the CT to 
polyhedral objects developed in Section 7. 

It was demonstrated in the previous section that a large number of silhouettes 
corresponding to different viewing directions are required for accurately reconstruct- 
ing the shape of a 3-D object. It would seem then that one silhouette contains too lit- 
tle information to discriminate between different objects. Although some different 
objects may produce exactly the same silhouettes when viewed from selected direc- 
tions, shapes of objects of interest are sufficiently different in general so that these 
singularities of the problem are rare. As a result, one silho\iette is often sufficient to 
specify one object in a set of known objects. 

The principles of a system for recognizing polyhedral objects from one of their 
silhouettes are now presented. The system is based on a well-known approach in 
model-based vision. Primitive features such as points, edges or facets are first 
extracted from the inpul data. These features are then matched to corresponding 
model features, implicitly creating a large matching tree. The tree is explored and 
pruned by constraints resulting from the pairing of small sets of measured features to 
sets of model features. Finally, the remaining hypotheses are tested more thoroughly 
for correspondence with the models. Implementation of this approach has been 
reported for recognizing 2-D objects from 2-D measurements, and for recognizing 3-D 
objects from 3-D measurements [60]. In the case of 2-D models and data, powerful 
constraints arise from the pairing of two object features to two model features, so that 
the pruning is very effective. When matching 2-D data such as silhouettes to 3-D 
models, the constraints resulting from the pairing of two primitives are much weaker 
since there are six degrees of freedom. In the proposed approach, constraints are con- 
sidered for the pairing of three silhouette features to three model features. 

The proposed recognition method is based on primitive features consisting of 
polyhedral edges. Its scope is restricted to polyhedra or shapes with a sufficient 
number of straight edges. For a number of objects expected in the input images, it is 
assumed that geometric models explicitly describing the edges are available. An unk- 
nown silhouette is analyzed by first detecting straight edges and measuring their 
length and orientation.   Pairings are hypothesized between measured edges and edges 
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of the 3-D models. As the number of potential global matches may be astronomical, 
pairings between sets of only three silhouette edges and three model edges are con- 
sidered first. Each such set of pairings is tested against a set of constraints, an example 
of which is derived later in this section. After discarding the pairings that fail these 
tests, additional edges are added to the remaining hypotheses, and further testing is 
applied. In a favorable case, a large fraction of the search tree is eliminated by the 
constraints, leaving only a few potential interpretations of the data. Each of these 
interpretations is then tested in more detail by an appropriate method. 

A number of constraints are now derived for the matching of three silhouette 
edges to three particular model edges. The derivation of the pruning constraints is 
substantially simplified by reasoning with the Silhouette-Slice theorems. First, it is 
worthwhile to note that position and orientation of a detected object are unknown a- 
priori in recognition problems. The ST and VST strongly depend on the choice of an 
origin, as was illustrated in Section 8.1. Therefore, these transforms are not appropri- 
ate for recognition applications. The derivations in this section are based solely on the 
Silhouette-Slice theorem for the CT. 

The contribution of three edges e j, e 2, e 3 to the 2-D CT of the silhouette is given 
by three impulses at orientations \j)1, i/»2. 1^3 corresponding to the normals of the edges. 
The strengths of these impulses are given by the lengths Z j, 12, 12 of the silhouette 
edges, see Fig.8.18. Note that the orientation of the object is unknown a-priori, so that 
the reference orientation in the silhouette plane cannot be related to the object model. 
The angles to be considered in the constraints are hence the differences i/>12 = v/>2

—i/>i 
and i/>23 = i/;3—i/i2-  These angles can be directly estimated from the image, and can be 

*-n 

Measured Silhouette 2-D CT 

Fig.8.18. Three Silhouette Edges and the corresponding CT 
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related to angles in the object model. 

Consider now a hypothetical match between the three measured edges ej.e2.e3 
and three model edges Elt E2, Ey The three model edges each correspond to an arc of 
great circle on the Gaussian sphere, as illustrated on Fig.8.19. When the silhouette 
great circle slice intersects one of these arcs, the image of the corresponding edge is 
present in the silhouette, and has a normal orientation determined by the orientation 
of the intersection in the slice plane. The strategy for accepting or rejecting the match 
consists of first deciding if there is an orientation 0, 0 of the viewing direction for 
which the slice cuts the model arcs at points separated by the measured angles v//12, 
1//23. When the hypothesis is accepted on the basis of these orientations, the viewing 
direction is fixed. For this viewing direction then, the lengths lj^\, l\i2< ^A/3 of the 
silhouette edges corresponding to the model edges Elt E2, £3 can be evaluated. For a 
convex object not obscured by other objects, the measured edge lengths lt musl match 
the estimated lengths lMi within some tolerance bounds. For non-convex objects, par- 
tial self-occlusions may occur, and, more generally, object edges may be partially 
obscured by other objects. A better test in those cases is to require the measured edges 
Z, to be smaller than the estimated lMi, within a tolerance bound. 

Expressions for the orientations 0, 0 and acceptance constraints are now derived 
for three silhouette edges such as those depicted in Fig.8.18. The derivation is 
simplified by considering three model edges perpendicular to one another, such as the 
ones displayed in Fig.8.19. The case of three right angles arises frequently in man- 
made parts; extensions to include one or two acute or obtuse angles are tractable. Con- 
sider hence matching the three silhouette edges e,  depicted in Fig.8.18 with the three 

Model Polyhedron 3-D CT 

Fig.8.19. Three Model Edges and the corresponding CT arcs 
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model edges depicted in Fig.8.19. The great circle slice corresponding to the match is 
drawn on Fig.8.19; the angles of interest appear in the two spherical triangles \A 2, 
2B 3, which are displayed "flattened out" in Fig.8.20. We consider the angles i/i12, t/>23 
as positive. In order to match the great circle slice, the silhouette edges must be such 
that \fj12 + ^23^^^ The orientation of the corresponding viewing direction is deter- 
mined by 0 and 4>=£i~W2. Standard relations of trigonometry for right-angled 
spherical triangles[55] are applied to the triangles of Figure Fig.8.20 to produce 

tan£2coti/;12 

tan(zr/2—£2) coti/i23 

sirn/j12 costtj 

sin\|/23 cosa2 

cos(xr/2—0) 

COS(TT-/2-0) 

sin£2 

cos£2 

(8.7) 

(8.8) 

The angles 9 and £2 can be extracted from the first two equations above. 

tanf 2 = ^JtentynCoWn 

sinf)     = ^/cotv/;12coti/;23 

The    above    relations    imply    the    necessary    constraints    that    i/>12,    i|;23<7r/2; 
012 + <|»23>jr/2. 

tyis/ 

A ii 2y\ 
w/2-0) S TTI2-ZI 

/^\2 

77-/2—C*! 

TT/2—OC2 

B 

Fig.8.20. Two spherical triangles of interest for deriving the matching constraints. 
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The predicted lengths of the silhouette edges corresponding to Elt E2, E3 are given by 

sin£2 
I IS  = l\M COSaj   = I 1M -7—7— 

smxp12 

lis =l2M cosO    = 12M ('1 " COti/>12 coti//23 )
% (8.9) 

COs£2 

^35  — * 3M COSCX3   — I3M 
siru/; 23 

These predicted silhouette edge lengths ^5   must be tested against the measured 
silhouette edges l{. 

Although the above system has not been implemented, there are indications that 
this type of system has a potential for success. 

8.3.1. Discussion 

A formal application of the Silhouette-Slice theorems to a problem of object 
recognition was presented in this section, thereby illustrating the use of the 
transforms and of the theorems in reasoning about silhouettes, and in applying the 
intuition to practical recognition problems. As object position and orientation are usu- 
ally unknown a-priori in recognition tasks, the Silhouette-Slice theorem for the CT 
seems the most useful one for recognition, since the CT is independent of origin loca- 
tion. In addition, many applications to recognition are based on qualitative relations 
between silhouette shapes and object shapes. These relations are also obtained most 
easily with the CT. The theories developed for the CT are hence the most important 
for applications in object recognition. 

8.4. SUMMARY 

In this section, several applications of the theoretical results of this report have 
been suggested. Examples shown in the section on silhouette construction are close to 
actual implementations of the Silhouette-Slice theorems to problems in computer 
graphics. Other examples presented in this section are of a more conceptual value. This 
section has suggested the wide applicability of the Silhouette-Slice theorems as reason- 
ing tools in problems of computer graphics and computer vision, and their potential 
for developing new algorithms in these domains. 
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9.0 SUMMARY 

9.1. CONTRIBUTIONS 

In this report, a new formalism for relating the shapes of objects to the shapes of 
their silhouettes has been proposed. Three representations of 3-D object surfaces and 
the equivalent representations of 2-D curves have been defined. It has been shown 
that the representations of a 2-D silhouette curve are simply related to the representa- 
tions of the corresponding 3-D object surface. More specifically, object surfaces have 
been represented by scalar, vector and tensor functions on the Gaussian sphere, and 
curves by scalar and vector functions on the Gaussian circle. It has been demonstrated 
that a slice of the Gaussian sphere perpendicular to the viewing direction is a Gaussian 
circle for the silhouette. Furthermore, the property functions on the Gaussian circle 
of a silhouette are related by a projection to the property function of the object on the 
slice corresponding 1o the silhouette. 

The relalions belween an opaque object, its silhouette and their transforms is con- 
ceptually similar to the relations between an absorbing object, its line-integral projec- 
tion and their Fourier transforms, which are formalized in the Projection-Slice 
theorem of computerized tomography. These similarities have prompted the use of the 
name of Silhouette-Slice theorems for the new relations presented in this report. 

The theory relating property circles of silhouettes to slices of property spheres of 
objects provides substantial insight into qualitative and quantitative relations between 
silhouette shapes and object shapes. This insight is useful when reasoning about par- 
ticular problems involving silhouettes, and provides straightforward explanations of 
known results. Applications of the theories to three basic problems have been con- 
sidered, namely silhouette synthesis, reconstruction from silhouettes and recognition 
from silhouettes. The theories have been demonstrated in this report for convex 
objects and orthographic projections only; in addition, difficult issues remain to be 
solved before discrete versions of the continuous transforms and Silhouette-Slice 
theorems can be developed. As a consequence, it has not been possible to develop 
direct implementations of the theory into general numerical algorithms for solving the 
three basic problems. However, methods based on continuous functions have been 
proposed for applying the results to each of the three problems. Mixed continuous- 
space / discrete-space algorithms have been proposed and demonstrated for the syn- 
thesis of silhouettes of complex curved surfaces such as a torus and superquadrics. A 
general strategy has been proposed for reconstructing the shape of a convex 3-D object 
from silhouette observation. The method consists of first constructing the circular 
transform of each silhouette, then combining these into the spherical transform of the 
object. Finally, the object shape is obtained by inverting the 3-D transform. In the 
context of recognition from silhouettes, several quantitative and qualitative relations 
between object features and silhouette features have been proposed. These relations 
are typically exploited in recognition algorithms as constraints on pairings of 
silhouette features with object features. An example of the use of edge constraints has 
been proposed as a strategy for recognizing polyhedral objects from their silhouettes. 
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The spherical transforms of 3-D surfaces presented in this report can be inter- 
preted as com pad representations of the set of all silhouettes of the object. In addi- 
tion, these transforms have potential applications for representing surfaces indepen- 
dently of viewpoint. In particular, the 3-D Curvature Transform is an intrinsic form 
for surfaces, which specifies surface curvature as a function of normal orientation. 
Compared to most characterizations of surfaces in computer vision [39] and in 
differential geometry [47], the originality of the Curvature Transform is two-fold. 
First, curvature is completely described by an invariant tensor of curvature, as 
opposed to two tensors in classical differential geometry, and a partial description by 
one or two scalar invariants in machine vision. Second, the curvature is described 
with a canonic parameterization, as opposed to generic parameterizations in differential 
geometry, and to image plane descriptions generally used in machine vision. 

The key contribution of this reporl is a new basic theory for analyzing 
silhouettes. The theory provides useful insighl in many questions of relations between 
silhouette shapes and object shapes, and also in analyzing complex curved surfaces. A 
number of straightforward applications have been proposed or suggested. It is shown 
in the next section that there is substantial room for additional work on the theory 
and on its applications, and thai this work is promising. 

9.2. FUTURE RESEARCH 

There are several directions in which the present work can be pursued. Most 
promising areas are a careful analysis of the sampling questions, and an investigation 
of extensions to non-convex objects. These two areas are now discussed with more 
detail. 

At this time, to the best knowledge of the author, there is no theory comparable 
to the Shannon sampling theory for the discrete representation of functions defined on 
non-Euclidean manifolds such as the sphere. This problem has several facets. First, 
sets of sample points must be defined on the domain of the function. It has been 
shown that regular samplings of the sphere are impossible for practical numbers of 
samples. Irregular samplings have been proposed, but they have a number of disad- 
vantages. The second issue is the definition of sample values; a sample value could be 
the value of the continuous function at the sample point, or a weighted average of the 
function values in a neighborhood of the sample point. The third issue is the choice of 
interpolation algorithms, i.e. algorithms for estimating the value of the continuous 
function from the sample values, at points other than the sample points. The fourth 
issue is the characterization of a class of functions for which sampling followed by 
interpolation leaves the function unchanged. These four issues are tightly coupled, 
and their solulion is likely to involve complex arguments. A precise formulation of 
the sampling questions would permit the development of algorithms for synthesizing 
silhouettes, applicable to shapes specified both analytically or numerically. The 
development of numerical algorithms for shape reconstruction from silhouettes using 
the circular and spherical transform would also be greatly simplified by solutions of 
the sampling question. 
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Extensions of the theory to cover non-convex objects are essential for direct 
applications of the theories to real-world objects. These extensions include principally 
the definition of the transforms for non-convex objects in 2-D and in 3-D, and the 
analysis of the occlusion problem. One method for defining the Gaussian mapping and 
therefore the spherical transforms for non-convex objects consists of separating the 
object surface into several patches such that each part has a well-defined Gaussian 
image. A different method is to consider several Riemann "sheets" on the Gaussian 
sphere. The same methods are applicable to Gaussian circles of silhouette curves. 
When relating Gaussian circles of silhouettes to slices of the Gaussian sphere of the 
object, different silhouette parts or sheets on the Gaussian circle must be related to 
their counterparts on the Gaussian sphere of the object. This correspondence is readily 
preserved in silhouette synthesis, but may raise difficult issues in reconstruction from 
silhouettes. Indeed, when several sheets are defined on the Gaussian circles of 
different silhouettes, care must be exercised in preserving a consistent pairing of the 
sheets when combining the circles as slices on the Gaussian sphere of the object. 

In addition to issues involving multiplicity of the Gaussian image, silhouette 
analysis is more complex for non-convex objects due to the possibility of occlusions. 
When applying the silhouette construction method with the silhouette generator to 
non-convex objects, a superset of the silhouette is obtained instead of the silhouette 
itself. Indeed, some of the points generated by this method may correspond to 
occluded object surface patches so that they do not appear in the silhouette. The set of 
points generated by the silhouette construction method for convex objects is hence a 
set of candidate silhouette points when applied to a non-convex object. This set must 
then be pruned for occluded points. In the context of reconstruction from silhouettes, 
the occlusions imply that less information may be obtained from each silhouette. As a 
consequence, a larger set of viewing directions may be required to reconstruct the com- 
plete shape of a non-convex object. The question of which non-convex objects can be 
reconstructed from the set of all their silhouettes has not been answered yet. These 
objects have been called "tangible objects"; for each point on the surface of a tangible 
object, there must be at least one tangent line which does not intersect the surface [61]. 
Convex objects are a subset of tangible objects, and some non-convex objects are also 
tangible objects. It is easy to construct non-tangible objects by considering a long flexi- 
ble cylinder and tying "knots" in this object. A simpler and more striking example is 
that a torus is not a tangible object, whereas a toroidal object with a square section is. 

In addition to the extensions to discrete transforms and to non-convex objects, 
there is clear potential for extending the theories presented in this report in two other 
directions. One extension would be to consider property spheres of third and higher 
order terms of Taylor expansions of surface equations, and to relate these to 
corresponding property circles of silhouettes. A different extension is to define 
transforms on hyperspheres Sn for n-dimensional hypersurfaces in (n+l)-dimensional 
space. These two extensions seem conceptually straightforward, would involve tedi- 
ous algebra, and may not be very useful. 

Aside from extensions of the theories developed in this report, there is a large 
potential for applications. Once sampling issues are resolved, algorithms for numerical 
synthesis of silhouettes and numerical reconstruction of 3-D shapes from silhouettes 
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can be developed. The mixed analytical/numerical silhouette synthesis method used 
in this report to generate examples could be extended to more surface types by deriv- 
ing a table of transforms for many known surface patch equations. This project could 
be implemented on a system for symbolic algebra such as MACSYMA. 

The theory presented in this report is rich in potential applications in the areas of 
computer graphics and computer vision. The work presented here provides new 
insights in the geometry of surfaces which could be useful in understanding 
differential geometry. This report has provided a new basic theory and provides ample 
room for future research. 
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APPENDIX 1 

EXAMPLES OF TRANSFORMS 

In this appendix, the three transforms are analytically determined for a number 
of curves and surfaces. Specifically, the Support Transform, Vector Support 
Transform and Curvature Transform are evaluated for conies, superconics, torus 
patches, quadrics, and superquadrics. 

In each case, the curve or surface is first described by parametric equations for its 
Cartesian coordinates. With this form, a normal vector is determined at each point, 
then compared to the unit vector expressed in terms of the canonical normal angles. 
This comparison provides relations between the generic parameters and the canonical 
angles, from which canonical parametric equations can be determined, parameterized 
with the polar angle \}J of the normal orientation for a curve, and with the geographi- 
cal coordinates (£,T)) of the normal for a surface. The transformations in (5.1), 
(5.11), (5.19) are then applied to the equations of a curve to determine its three circu- 
lar transforms. Similarly, the three transforms of a surface are obtained using equa- 
tions (5.29), (5.36), (5.45). 

A 1.1. Transforms of Planar Curves 

Al.1.1. Conies 

Conies are curves described by quadratic implicit equations for the Cartesian 
coordinates of their points. The general form of this equation in the Oxz plane is 

A x2 + 2B xz +C z2 + 2D x +2E z + F =0 (Al.l) 

When the quadratic form in the left-hand side is not degenerate, the linear terms can 
be eliminated by a translation of axes, and the mixed second-order term by a rotation 
of axes. As a result, each non-degenerate quadratic curve can be described by an equa- 
tion of the type 

2 

± X ± Z 

a c 
—     ±    —    = 1 (A1.2) 

in an appropriate system of axes. When both signs are positive, the above equation 
describes an ellipse with half-diameters a and c along the Ox and Oz axes respec- 
tively; see Fig.Al.l. A set of parametric equations for the ellipse in (A1.2) is given by 

X = 
a cost 

c sint 
(A1.3) 
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*-x 

Fig.A 1.1. Ellipse with semi-axes a =4, c =2. 

Al. 1.1.1. Normal Vector 

The first derivative of X is a vector t tangent to the ellipse 

—a sin? 
t = X, = c cos? 

(A1.4) 

A normal vector is then obtained by noting that, in 2-D, (?z —tx )    is a vector perpen- 
dicular to (tx ?z )  . 

n' = 
C COST 

a sin? 
(A1.5) 

To preserve the similarity with the case of quadratic surfaces in 3-D, the above nor- 
mal vector will be scaled by ac . 

n = 
(1/a )cos? 

(1/c ) sin? 
(A1.6) 

Al.1.1.2. Canonical Parameterization 

The normal vector in (A 1.6) is compared with the unit vector in terms of the 
polar normal angle»// 

n = 
(1/a )cos? 

(1/c ) sinr 
= in 

COSl// 

sini/; 

cos? 

sinr 
= Inl 

a cosi/; 

csini/j 

(A1.7) 

Using the identity cos2? + sin2? = 1, it it easy to determine that 

Inl = (a2cos2v|; + c2sin2i/;)~1/2 (A1.8) 

and therefore that the relation between t and \\i is given by 

(A1.9) 
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The equations of the ellipse in terms of the normal orientation v/; are hence given by 

a 2cosi/» 
x= in 

c sinxf} 
(Al.lO) 

A 1.1.1.3. Circular Transforms 

The three transforms of the ellipse are determined by applying the transforma- 
tions in (5.1), (5.11), (5.19) to the canonic equation (Al.lO). The ST and VST are 
given by 

p =xln = (a2cos2i/; + c2sin2i/;)1/2 = I Hi-1 (ALU) 

= Inl 

5= R 

a 2cos2v/» + c 2sin2i/; 

(c 2 — a 2) sinij/cosv/i 

— T>G-R 

= ?-' (c2 — a2) sim/;cosi/> 

In order to determine the CT, the derivative X^, must be evaluated 

—sini/; 
Xl/r= \Ti\a2c2 

The CT function is then obtained as 

p(i/») = X^-T, =(ac)2lnl3 = 

cosv/> 

(acV 

(a 2cos2i/> + c 2sin2v/i)3/2 

(A1.12) 

(A1.13) 

(A1.14) 

A 1.1.2. Superconics 

Superconics are a class of curves which includes conies, and which are described 
in centered axes by implicit equations such as 

n 
r 7. ± 
a b 

±   — ^   = 1 (A1.15) 

When both signs are positive and n is a real number in (l,oo), the curve specified by 
(A1.15) is smooth and strictly convex. It can also be described by the parametric equa- 
tions 

X = O^t <2TT (A1.16) 
a I COST 15 sign (cost ) 

b I sint Is sign (sinf ) 

with 5 = 2/n .  Special cases include an ellipse for s = 1, a rectangle in the limit for 
s —*0 and a rhombus for s —*2; see Fig.A1.2. 
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n->l n=2 

— x - x 

n =4.5 n ->°° 
Fig.A1.2. Examples of superconics with half diameters a =4, b =2. 
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The circular transforms of the superconic are first derived for the first quadrant 
of the variable t, so that 

X = 
acos*f 

b sin51 
O^t ^n/2 (A1.17) 

Al.1.2.1. Normal Vector 

A tangent vector is determined by 

t = X, = 

The normal vector is then obtained as 

—as cos5   1t sinr 

6ssinx-1r cost 
(A1.18) 

n' = 
bs sin5-1? cosr 

as coss~1t sint 

A simpler form is obtained by scaling the above vector by ab coss~1t sins~1t 

(\/a)cos2~st 
n = 

(l/6)sin 2-s 

(A1.19) 

(A1.20) 

Al.1.2.2. Canonical Parameterization 

The normal vector in (A 1.20) is compared to the unit normal in terms of the 
polar angle i/i to determine the relation between t and i/>. 

' (\/a)cos2~st 

(\/b)sin2-st 

Using the trigonometric identity cos2? + sin2Z = 1, it is easy to determine I n I then 
X in terms of i/>. 

In I = A7-i/(*+i> (A1.22) 

n = = In I 
COS\f) 

sin\f) 
(A1.21) 

—   \T      *+l X = A> 
ak +1cos* i/> 

6*+1sin*^ 

with* =5/(2-5)= l/(n-l)and 

N =(a cost/;)* +1 + (b sint/;)* +1 

(A1.23) 

(A1.24) 
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A 1.1.2.3. Circular Transforms 

It is straightforward to determine the VST of the superconic by applying the 
transformation in (5.11) to (A1.23). 

(acosi/i)*+1 + 0> sim/;)*+1 

sim/icosi/; (—ak+1cos\f/c~i +b     sini/r     ) 

The first component of the above equation is also equal to the ST function 
k l 

p = N   k+1[(a cosi/0* +1 + (ft sini/0* +1]=Nk +1 

s=N   k+1 (A1.25) 

(A1.26) 

An expression for the ST valid in the four quadrants of the normal angle t/> is given by 
l l 

(A1.27) 

(A1.28) 

p =[\a cost/;!**1 + \b sim/;l*+1]*+1 = W*+1 

where 
k +1 N = \a coster +J + I6sint/H /c +1 

The corresponding expression for the VST is 
k 

k +1 
,k +1 i„rt„.i. i*-l   i   Lt+li -j_.|. \k-\ 5 = A 

W 

sini/rcostj; ( -ak +11 cost/; I * _1 + ft* +11 sim/> I* _1 ) 
(A 1.29) 

The CT of the superconic is determined by first evaluating the derivative x^, 
then evaluating the CT function with (5.19). The derivative is given in the first qua- 
drant by 

2k + 1 

Xxf/=k(ab)k+1 N    *+1 
—cos*   'i/isin^t/i 

,*-i sin      v/>cos i/i 
(A1.30) 

The CT function, i.e. the radius of curvature, is given by the  following expression 
valid in the four quadrants. 

k(ab)k+i\cosxl>sin\)>\k-1 

(A1.31) 
p(t|0 = 

lacosv/;r+1+ 16 sim/i I k +i 

Ik +1 
* +1 

Polar diagrams of the transform functions are illustrated in Fig.A 1.3. for a superconic 
with n =4.5. 
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Superconic Support Transform 

t-component of VST Curvature Transform 

Fig.Al .3. Transforms of a superconic with n =4.5 
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A 1.2. Transforms of 3-D Surfaces 

A 1.2.1. Torus 

The torus is an axisymetric surface obtained by rotating a circle of radius r 
around an axis in its plane. The surface generated by the circle is simple when the dis- 
tance R from the center of the circle to the axis is larger than r . Consider a system of 
axes Oxyz as illustrated in Fig.A1.4. Parametric equations for the circle are given, in 
the Oxz plane, by 

x 
x = 

R +r COST) 

r sinT) 
(A1.32) 

where T) is the polar angle of the normal in the Oxz plane. Equations for the torus 
itself are easily determined as 

(R +r COSTJ)COS£ 

x=    (R + r COST)) sin£ (A1.33) 

r sinT) 

where (£,TJ) are the geographical coordinate angles for the normal vector. The identity 
of the parameters (£,T)) as canonical angles in the above equations is easily verified by 
evaluating a surface normal 

cos£ COST) 

n = xu xxv, — r ( R +r COST) ) sin£ COST) 

sinT) 

(A1.34) 

Fig.A1.4. Torus generated by Revolution of a Circle 
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A 1.2.1.1. Spherical Transforms 

The VST of the torus is easily determined by applying the transformation in 
(5.36) to the parametric equations of the torus in (A 1.33). 

R COST) + r 

s = *?-** = 0 (A1.35) 

—R sinrj 

The scalar ST is identical to the first component of the above equation, namely 

p = R cosT) + r (A1.36) 

In order to determine the CT of the torus with (5.45), it is useful to first evaluate the 
derivatives x^ and x^ 

X*   =  r 

—cos£ sinr) 

—sin£ sinT) 

COST) 

The components of the CT are then determined to be 

x*£ =   ( R + r COST) ) 

-sin£ 

cos£ 

0 
(A1.37) 

r,, = n 

12 

22 

_ %*{ _ R +r COST) 

COST) COST) 

= x* -T   = r 

(A1.38) 

Some particular features of the transforms of the torus can be observed in the above 
equations, and it can be shown that these observations are also valid for all axisym- 
metric objects. Specifically, the h component of the VST and the r l2 component of the 
CT vanish for axisymmetric objects, the n and v components of the VST are identical 
to the n , t components of the VST of the generating curve, here the circle of radius r . 
Finally, the r 21 component of the 3-D CT is identical to the 2-D CT of the generating 
curve and the r Xl component is equal to the distance of the points of the curve to the 
rotation axis, divided by the cosine of T). 
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A 1.2.2. Quadratic surfaces 

Quadratic surfaces are sets of points in 3-D denned by an quadratic implicit equa- 
tion in Cartesian coordinates. When the quadratic form is not degenerated, the linear 
terms in the quadratic equation can be eliminated by a translation of axes and the 
mixed second degree terms can be eliminated by a rotation of axes. As a result, each 
generic quadratic surface can be expressed, in an appropriate system of axes, by an 
equation of the form 

±     ^ 
2 f 2 2 

X ± i ± Z 

a b c 
1 

= 1 (A1.39) 

When the signs in (A 1.39) are all positive, the surface is an ellipsoid with semi-axes a , 
b , c , as illustrated in Fig.A1.5. A set of parametric equations for this ellipsoid is 
given by 

x = 
a cosu cosv 

b sinu cosv 

csinv 

(A 1.40) 

Fig.A1.5. Ellipsoid with semi-axes a =4, b =3, c =2. 
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A 1.2.2.1. Canonical Parameterization 

In order to determine the spherical functions of the ellipsoid, the parametric 
equations in (A 1.40) will be converted into equations in terms of the normal angles 
(£,T)). For this purpose, a normal vector to the surface is first evaluated. A scaled 
normal to the surface determined by (A 1.40) is easily obtained as 

(1/a )cosucosv 

-xu Xx\, = n = 
abc cosv 

(l/6)sinucosv 

(1/c )sinv 

(A1.41) 

where the particular scale factor was chosen to simplify the final expression. This 
expression is compared with the expression of the normal unit vector as a function of 
the parameters £, T), specifically 

(1/a )cosu cosv 

(1/6 )sinucosv 

(1/c )sinv 

= Inl 
COS^ COST) 

sin£ COST) 

sinr) 

(A1.42) 

2,, _ 

-% 

Using the identity cos u cos v + sin u cos v + sin v = 1 and the above equation, it 
is easy to show that 

Inl =    a 2cos2£cos2T) + b 2sin2£cos2r) + c 2sin2T) 

and to determine a relation between the parameter sets (u ,v ) and (£,T)), namely 

a COS^COST) cosu cosv 

sinu cosv 

sinv 

= Inl b sin£cosT) 

csinr) 

(A1.43) 

The parametric equations can then be expressed in terms of (£,T)), as 

a 2COS£COST) 

b 2sin£cosr) 

c2sinr) 

(A 1.44) 

A 1.2.2.2. Spherical Transforms 

The VST of the ellipsoid is easily derived by applying the transformation in 
(5.36) to equation (A 1.44), producing 

a 2cos2|cos2T) + b 2sin2£cos2rj + c 2sin2r) 

(b 2 — a 2) cosrjsin£cos£ (A 1.45) 

(c 2 — a 2cos2£ — b 2sin2£) sinrjcosr) 

s = R3
G-^ 

The first component in the above equation is also equal to the scalar ST function 
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Its expression can be simplified as 
y2 

p =n = \a 2cos2£cos2T) + b 2sin2£cos2T) + c 2sin2T)       = In I   1 (A 1.46) 

Using the above relationship, the expression of the VST can be rewritten as 

_2 

-      1 s = — 
P 

(b2 — a2) cosT)sin£cos£ 

(c 2 — a 2cos2£ — b 2sin2£) sinTjcosT) 

(A1.47) 

The CT of the ellipsoid will be determined with equation (5.45).  For this pur- 
pose, the partial derivatives of x(£,T)) are first evaluated 

Xt = 
(b 2 — a 2) cos2T)sin£cos£ 

a 2COS£COST) 

b 2sin£cosT) 

c 2sinr) 

+ i 
P 

—a 2sin£cosT) 

b 2COs£cOST) 

0 

COST) 

=  P3 

—a 2sin£ ( b 2cos2rj + c 2sin2T) ) 

b 2cos£ ( a 2COS
2

TJ + c 2sin2T) ) 

(a2 — b2)c2 sin£cos£sinr)cosT) 

(A1.48) 

— . —a 2cos2i — b 2sin2£ +c2 

•X.J. = —SinT)COST)  2 r 5  
P 

—a 2cos£sinT) 

—b 2sin£sinr) 

( a 2cos2£ + b 2sin2£ ) cost) 

a 2cos£cos7) 

b 2sin£cosT) 

c 2sinT) 

+ 
—a 2cos£sinr) 

—6 2sin£sinT) 

C 2COST) 

(A1.49) 

The components r n, r 12, r 22 of the symmetric 2x2 CT tensor R are then obtained as 

r , 1 =    *   ^ = — (6 2c2cos2£sin2T) + a2c2sin2£sin2T) + a2b2cos2T))        (A 1.50) 
COST) pJ 

r12 = xT)-l£= —=• (a 2 — b2) sin£cos£sinT) 

2 
r 22 = x-n'lr, = —r (a 2cos2£ + 6 2sin2£) 

p J 

(A1.51) 

(A1.52) 
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A 1.2.3. Superquadrics 

Superquadrics are generalizations of quadrics to a class of higher order surfaces 
[58]. A subclass of superquadrics has implicit equations similar to (A 1.39), except that 
the exponents, equal to 2 in the case of a quadric, are replaced by a parameter n in the 
case of a superquadric. In particular, the superellipsoid generalizes the ellipsoid and is 
defined by the following explicit equation 

n n 
X + L + Z 

a b c 
(A1.53) 

For n fixed to a real value in (l,oo), the surface described by the above equation is 
smooth and strictly convex. The limiting cases correspond to an octahedron for n —* \ 
and a parallelepiped for n —» oo, as illustrated in Fig.A1.6. The ellipsoid displayed in 
Fig.A1.5 is a particular case of a superellipsoid corresponding to n =2. The part of the 
superellipsoid surface in the first octant can be parameterized as 

a cos* u coss v 

b sin5 u cos5 v 

c sin v 

(A1.54) 

where s = 21 n . The derivation of the transforms of the superellipsoid is relatively 
tedious. It is helpful to first read the simpler case of the ellipsoid, or the derivation of 
the 2-D transforms of superconics. 

A 1.2.3.1. Canonical Parameterization 

The spherical transforms of the superellipsoid are now evaluated. As a first step, 
the parametric equations in (A 1.54) are transformed into a form parameterized with 
the normal orientation angles. For this purpose, the normal orientation is evaluated. 

n' = xu Xxv, = 

fee sin5   ^cosusin5   *vcos*+1v 

ac sinu cos5 ~1u sin5 -1v cos5 +1v 

'ucos5   ^sinvcos25   1v ab sins 

(A1.55) 

A simpler expression of the normal orientation is obtained by scaling the above vector 
by abc (sinu cosu sinv )5-1cos v . The scaled normal vector is then compared to 
the unit normal vector expressed in terms of (£,77). 

(Ma )cos2-5 u cos2-5 

n = (l/6)sin2_5ucos2_5v 

(l/c)sin2_5v 

= Inl 
cos£ COST) 

sin£ COST) 

sinr) 

(A1.56) 
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X   — 

n = \ n = 1.2 

n=4.5 n =00 

Fig.A 1.6. Super-ellipsoids with semi-axes a =4, b =3, c =2, 
for n = 1, 1.2, 4.5, 00. 
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Using the identity cos2u cos2v + sin2u cos2v +. sin2v = 1 and the above equation, it 
is easy to show that 

2-s 

In I = (a COS^COSTJ) 
2 s + (b sin£cosrj)2 x + (c sinrj) 2 s 

2   CA1.57) 

and 

x = In I 2~s 

a      cos      i cos    s rj 
2 s s 

b    * sin 2 s£ cos 2 s n 
2 s 

c 2_s sin 2~s T) 

(A1.58) 

As several manipulations of the above equation will be necessary to obtain the spheri- 
cal functions of the superquadric, it is helpful to simplify it by introducing the 
parameter £ =s/2—s = \/(n— l)and 

N = I n l_(* +1) = ( a COS^COSTJ )* +1 + ( b sin£cosr) )* +1 + ( c sinTj )k +1 

(A 1.59) 

The parametric equations can then be rewritten as 

k +1        k t-        k a      cos £ cos  T) 
-    A7      ^+1 3?= N b      sin £ cos r\ 

k +1   •   k c      sin  n 

(A 1.60) 

A 1.23.2. Spherical Transforms 

The expression of the VST of the superellipsoid is easily derived by applying the 
transformation in (5.36) to the above parametric equation, giving 

s = 

COS£COST)     sin£cosT) sinT) 

—sin£ cos£       0 

—cos^sinr) —sin^sin-n cosn 
y (6t?) 

= N k +1 
(a coslcosT))1 +1 + (b sinlcosT))* +1 + (c sinT))* +1 

( 6* +1sini -1£ — a1 "^cos* _1£ ) sin£cos£cos* 7) 

( c* +1sin* -1T) — a * +1cos* +1^cosi -1T) — bl +1sin* +1|cos* _1T) ) suvncosr) 

(A1.61) 

The first component in the above equation also specifies the scalar ST function p (£,Tj). 
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Its expression can be simplified as 

p = n = ( a COS£COST) )       + ( b sin^cosrj )       + ( c sinr) ) \k +1 /k +1 

(A1.62) 

Comparing the above expression of p with the expression of N in (A1.59), it is clear 
that N = pk +1, and therefore that 

- „-* *=/> 

,*+1 

sin£cos|cos* T) ( 6 * +1sin*   l£ — a k +1cos*   J£ ) 
sinTjcosT) ( ck +1sin* -1T) — ak +1cos* +1^cosi -1i) — bk +1sin* +1£cos* -1T) ) 

(A1.63) 

The third spherical function, the CT, is now evaluated for points in the first 
octant of the superellipsoid. In order to derive the components of the CT tensor with 
(5.45), it is necessary to evaluate the partial derivatives of X(£,TJ). Considering the 
expression of this vector in (A 1.60), it is useful to first evaluate 

( a COS£COST) ¥ +1 + ( b sin|cos7) )k +1 + ( c sini) )k +1 "T+T 

2k +1 

= kN    k +1 cos; +1T) ( a1 +1sin£cos* £ - bk +1sin* £cos£ ) (A1.64) 

a-H 67) 
= -4. ( a cos£cosT7 )* +1 + ( b sin£cosr) )* +1 + ( c sint) ¥ +i i+l 

2* +1 

= kN   k +1 cos* +1T] (a* +1cos* +1£sin7)cos* 7] + bk +1sin* +1|sinT)cos* T) — ck +1sin* TJCOST) ) 

(A1.65) 
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The derivatives X*£ = ()x/d£ and x^ = dx/ftrj are then evaluated as 

Xt = = A 

k COS   T) 

p2k+1 

k +1 i;  ^ £ a      cos $ cos T) 

6*+1sin*£cos* T) 
fc +1 • fc c      sin  T) 

+ £/>" 

k. +\   •    t-       k—\t-       k —a      sin£cos      £cos  T) 

bk +1sin*_1£cos£cos* TJ 

0 

-a* ^sin^cos*"^ ( fc* +1sin* _1£cos* +1T) + c* +1sin* +17) ) 

bk +isin*-i^cos| ( a* + W-1£cos* +1r) + ck +1sin* +1rj ) 

c*+1sin£cos£sin* T)COST)( ak +1cos*_1£ — bk*1smk~1£ ) 

(A 1.66) 

71    dn ^ 

a* +1cos* £ cos* T) 

ft* + 1sin* | cos* TJ 

jfc +1   •   /k c      sin  T) 

+ £/> -A 
—a * +1 cos* £sinr)cos*   lT) 

—6* +1sin* ^sinrjcos*_1rj 
A- +1    .    fc —1 

c        sin       TJCOST) 

.     <fc +1   •   fc —1 /fc — 1 kc      sin      TJCOS      T) 
p2k+l 

k +1       k t  • —a      cos gsinrj 

—fe*+1sin* |sinT) 

( a* +1cos* + 1£ + bk +1sin* +1£ ) cosr) 

(A1.67) 

From the partial derivatives above, it is easy to determine the components rn, r12, 
r 22 of the CT tensor K. 

rn = _ %1< 
COST) 

_ A: (sin^cos^cos?))*   * 
p2k+l 

(ab cosr))4 +1 + (c sim))* +,(a* +1sin3-' £ + bk ""cos3-* £) 

(A 1.68) 

r12 = ^'^ 

fcc      sin£cos£sin  TJCOS      n 
^2*+1 

a*+1cos*_1^-ft*+1sin*-^ 

(A1.69) 

r22 — *V*i7 

fcc*+1sin*   ^cos*   1,n 
,2* +1 a*+1cos*+1£+6*+1sin*+1£ 

(A1.70) 
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Outside the first octant, some of the trigonometric functions take negative values. 
As fractional powers are undefined for negative numbers, it is necessary to separate 
the magnitude and sign of the trigonometric functions. The following parametric 
equations specify the surface points of the superellipsoid in the eight octants. 

3C = AT k+i 
a       I COS£COST) I   sign (cos£cosr)) 

b k +11 sin£cosr) Ik sign (sin£cosr)) 

ck +11 sinr) Ik sign (sinrj) 

where 
k +1 N = I acos£cosT) I       + I &sin£cosr) I     J+ I csinr) I ik+\ 

The ST is given by the following expression valid in the eight octants 

P = 
k +1 I a COS£COST) I   + I b sin£cosT) I   + I c sinr) i*+i k +1 

The VST is given by the following vector equation valid in the eight octants. 

(A1.71) 

(A1.72) 

(A1.73) 

— „-* * = /> 

,*+i 

sin£cos£ I COST) I' sign (COST)) ( bk +11 sin£ I*   l — a*+1 lcos£ I*   ') 

sinrjcosT)    c* +11 sinr) I * -1 — (a I cos£ I )* +11 COST) I * -1 — (i I sin£ I Y +11 COST) I * -1 

(A1.74) 

It can be observed by comparing the previous relations with the corresponding rela- 
tions in the first octant, that integer powers and k th powers of the trigonometric 
functions retain their signs, and that trigonometric functions raised to the powers 
k—\ and k+\ are taken in absolute value. This conjecture also produces valid 
answers when applied to the expressions for the CT components in (A 1.68), (A 1.69), 
(A1.70). 

The spherical functions in (A1.73), (A1.74), (A1.68), (A1.69), (A1.70) can be 
used to determine the circular functions of silhouettes of superellipsoids in ortho- 
graphic projections. For example, Fig.A 1.7 displays a silhouette of the superquadric 
with a =4, b =3, c =2, n =4.5, and the three corresponding circular functions. 

178 



Silhouette Support Transform 

t-component of VST Curvature Transform 

Fig.A1.7. Silhouette of Super-ellipsoid and corresponding circular functions 
f or 0 = 30° , 0 = 40° . 
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In addition to the three spherical functions presented in the text, it is also possible 
to determine the EGI function for the superellipsoid with (5.56). 

G(£,T))= rnr22-r 12 

 k 2 ( abc )k+1 \ sin^cos^sinTjcos2^ Ik -1  
3/k+l 

I acos^cosT) I     * + I fesin^cosT) I       + I csinr) I 
fc+i 

(A1.75) 

For s ^2 and therefore k ^ 1, the EGI is continuous over the whole sphere. For s >2, 
k —1 <0 and the EGI has discontinuities along the equator T)=0 and along the meridi- 
ans g=—rr/2,0,7r/2,7r on the Gaussian Sphere. These discontinuities account for the 
fact that the surface expansions around the corresponding points contain only terms of 
order larger than 2. For s —•<», k —>0, the EGI vanishes almost everywhere because of 
the factor k in the numerator of (A1.75); impulses remain at the six discontinuity 
points (£,17) = (.,—77-/2), (0-77-/2), (0,0), (0,7r/2), (O.TT), (.,TT/2). The strengths 
of these impulses can be evaluated as Aab for the poles (.,—TT/2), (.,7r/2), Abc for the 
points (0,0), (0,7r) and Aac for the points (0,—77-/2), (0,77-/2). These values 
correspond exactly to the areas of the faces of the parallelepiped which is the limiting 
case of the superellipsoid for 5 —»oo, see Fig.A1.6. 
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APPENDIX 2 

PARAMETERIZING CURVES AND SURFACES 

WITH NORMAL ORIENTATION 

This appendix addresses the issue of converting parametric equations in terms of 
generic parameters into equations parameterized in terms of normal orientation. The 
problem is first addressed in the case of planar curves, then in the case of surfaces in 
3-D. 

A2.1. Planar Curves 

Consider a curve specified by parametric equations 

xO) 
x = xO )= zit) 

(A2.1) 

where t is a generic parameter. The problem addressed here is the conversion of this 
form into an equation X(i//) for the same curve, in terms of the polar angle i/> of the 
normal orientation. A relation between i/; and t can be obtained by considering the 
orientation of the tangent vector X, (t ). The relation is given by 

i// = atan4z-v = <K' ) 
x(r) 

(A2.2) 

where dots indicate derivatives with respect to t. The inverse function of {pit ) is for- 
mally written as t (I/J), and is inserted into (A2.1) to obtain the desired result, namely 

X = X(r (i/>)) = X(</>) (A2.3) 

For a strictly convex planar object, the inverse t (i/>) is well defined and unique every- 
where. However, it is possible to explicitly determine the inverse function t («/») only 
in particular cases. In other cases, there is no closed-form inverse of (A2.2) but 
derivatives of x (v/>) can be determined using the formal inverse t (i/;) and the relation 
between derivatives of direct and inverse functions. 

dthjj) .. 1 
dt d t//(r )/dt 

(A2.4) 

To illustrate the use of derivatives of the formal inverse of i/i(? ), an expression for the 
radius of curvature of a curve is determined in terms of a generic parametric equation 
such as (A2.1). The radius of curvature can be determined by 

P = 
rfx 
d\\> 

= 
dx 
dt 

dt 
dxp 

dX. 
dt 

_1  
dxfj/dt 
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i//(r) = atan 
X 

d i/> _  zx — xz 
dt x2 + i2 

dX. 
dt 

= (x2 + i2)1/2 

_ (x2 + y2)3/2 

(A2.5) 
zx —xz 

A2.2. 3-D Surfaces 

Consider a surface specified by the parametric equations 

x (u ,v ) 
x = x(u ,v ) = 

z(u ,v) 
(A2.6) 

The problem addressed in this section is the conversion of parametric equations similar 
to the above form, to a set of equations x(£,T)) for the same surface, where the angles 
(£,TJ) characterize normal orientation. 

First, a relation between the generic parameters (u ,v ) and the angles (£,T)) is 
obtained by comparing the normal vector n = xu Xx,, with the normal vector 
expressed in terms of (£,T)). 

n 

nx 

ny = 

nz 

=  In I (A2.7) 

3u *V 3\' *u 

Explicit expressions for the angles £ and TJ can be derived from the above equations as 

n,. 

COS^ COST) 

sin£ COST) 

sinT) 

£ = atan 

TJ =    atan 

n. 

n, 
2 V/i (nx

2 + ny
2 ) 

= £(u ,v ) 

= TJCM ,V ) 

(A2.8) 

The formal inverses of the above equations will be denoted by 

U   = U (£,Tj) 

v = V(£,TJ) 
(A2.9) 
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For a strictly convex object, the above inverse functions are well defined everywhere, 
and can be inserted in (A2.6) to obtain the desired parametric equations 

x = x(u (£,T)),V (£,T))) = x(£,r/) (A2.10) 

In many instances, it is not possible to find explicit forms for the inverse equations 
u (£,T)), v (£,T)), but the expression in terms of the formal inverses can be used to 
determine derivatives of x(£,T)), using the relation between derivatives of direct and 
inverse functions, 

d" dv dt an 
d£ d£ d" d" 
a« dv dt 6-n 
dm dv dv dv 

-1 

(A2.ll) 

The derivatives of x with respect to the angular coordinates are given by 
-l 

d"   ft. x^, 

The derivatives in the second matrix can be readily evaluated from (A2.8), 

xv, 
(A2.12) 

d£ nyu nx - ny nxu 

6" nx2 + ny2 

M. nyv nx ~ ny nXv 

dv nx2 + ny2 

6" 

nzu (nx 2 + ny2) — nz (nx nxu + nynyu ) 
(A2.13) 

( nx2 + ny2 + nz2 ) ( nx2 + ny2 )* 

fin       nzv (nx 2 + ny2) — nz (nx nxv + nynyx. ) 

dv ( nx 2 + ny 2 + nz 2 ) ( nx 2 + ny 2 )'h 

where subscripts in the components of the normal vector have been replaced by 
postfixes to avoid confusion with partial derivatives; for example, nx has been 
replaced by nx . 

An example of the use of the above formulas is the derivation of the radius of 
curvature tensor R from generic parametric equations. The relation between partial 
derivatives and components of this tensor is given by 

x\> 

r ncosT) 1^ + r 12cosr)lr) 

r\2 1^ + r221T) 

(A2.14) 
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The unit vectors 1*, 1„ can easily be determined in terms of components of the normal 
in (A2.7), 

(A2.15) 

where n2 = n2 + ny
2 + n2 and nxy — n2 + ny

2. The components of the tensor can 
then be determined from the derivatives in (A2.12), as 

r£ = 

~ny/nxy 

nx /nxy >     *T) 

-nx nz /nxy n 

—ny nz /nxy n 

0 nxy/n 

%-\ £H 
11 

COST) 

^12 = XT)-T^ 
(A2.16) 

22 = X^1 T) *T) 

It is also possible 1o evaluate the tensor R from generic parametric equations by 
first evaluating the tensors of the first and second fundamental forms, then applying 
an appropriate transformation to these tensors. This method was presented in[62] and 
is briefly reviewed in Appendix 4. 
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APPENDIX 3 

DUALITY BETWEEN SLICES AND SILHOUETTES, 

EULER>S THEOREM AND ITS DUAL. 

In this appendix, the duality between slices and silhouettes of quadratic forms is 
reviewed, and an application of this analysis to curvatures of slices and silhouettes is 
developed. Silhouettes and slices are firsl derived for ellipses in 2-D and for quadratic 
surfaces in 3-D. In both cases, it is shown 1ha1 silhouettes can be obtained in tangen- 
tial space (dual space) by exactly the same operation that produces slices in point 
space. The expressions for slices and silhouettes in the two examples are exploited to 
formulate two different derivations of Filler's theorem of differential geometry and of 
its dual. 

Throughout this appendix, the vector and matrix notation used in the equations 
of geometric objects emphasize the dualily between equations for curves and surfaces 
in point space and their correspondents in tangential space. The formulation also 
clarifies the proposed duality between silhouettes and slices of quadratic forms. 

A3.1. Slices and Silhouettes of an Ellipse in 2-D 

In this section, the slice of an ellipse by an axis through the center is determined 
in terms of the polar orientation angle a of the axis; then, the orthographic silhouette 
of the ellipse on the same axis is also evaluated. The problem is first solved for a=0, 
so that the axis is horizontal, then extended to different values of a by combining the 
previous result with rotations of the coordinate frame. 

An ellipse centered at the origin of the Oyz plane can be defined by the following 
implicit equation in point space. 

y z 
a 12 

a\2 

a 22 
1 (A3.1) 

The equation for the tangents of the ellipse in dual space is derived by first considering 
the equation of the tangent at the point Po(y o,z0) of the ellipse. 

y ai2 

a\2 yo 
= l (A3.2) 

The tangential coordinates of a line, also named dual coordinates, are the coefficients 
A.x , Vy of the equation of the line written as kx x + ky y = 1. 
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The coordinates of the line in (A3.2) are hence given by 

<*n  a12 

a 12   "22 

yo 

20 

(A3.3) 

Conversely, a line with tangential coordinates (ky ,kz ) is tangent to the ellipse iff the 
point P0 with coordinates 

yo 

20 

all   a12 

a 12   a22 
(A3.4) 

is on the ellipse. The equation of the ellipse in tangential space, which is the equation 
specifying all the tangents to the ellipse, is obtained by requiring the coordinates of P0 

in (A3.4) to satisfy the equation of the ellipse in (A3.1). 

ky kz 

all   a12 

a12   a22 

ky kz 

-1 
an ai2 an an 

-l 
», 

a 12   a22 a12   a22 K 
all   «12 

a12   a22 

-1 ky 

K 
1 

= l      (A3.5) 

(A3.6) 

The explicit tangential equation of an ellipse is hence a quadratic form with a kernel 
equal to the inverse of the kernel of the quadratic form describing the ellipse in point 
space. 

The slice of the ellipse by the horizontal Oy axis and the silhouette on the same 
axis are now determined. As seen in Fig.A3.1, both slice and silhouette consist of two 
points symmetric with the origin, which will be specified by the absolute value of 
their y-coordinates, ysiice and ysll. 

y 

Fig.A3.1. Slice and Silhouette of an Ellipse on the Oy Axis. 

186 



First, the slice of the ellipse is determined as the points for which z =0, namely 

Jsiic 0 = 1 
an  an 

a 12   a22 

An alternative expression for the half-width ystice is given by 

J slice 

o 
(A3.7) 

1 

yslice 
i o 

a\\   a\2 

a 12   a22 
(A3.8) 

The silhouette on the Oy axis is now determined as the intersection of the Oy 
axis with the vertical tangents to the ellipse, see Fig.A3.1. For these tangents, A.z =0 
and ky=ksil is determined by 

(A3.9) 
«11 a 12 

-1 A ystl 

Aysil 0 
<* 12 

i 

all 0 ~— 

—1 

1 
X2 
^ysil 

all   a12 I 
  1   0 

a12   a22 0 (A3.10) 

The coordinates ysit of the silhouette points are given by ysil = \/kysil, so that 
-l 

ysfi =ho 
all   a12 

d 12   «22 
(A3.ll) 

The projections and slices on an axis with a polar angle a are now determined by 
first evaluating the equation of the ellipse in a set of axes Oy ^z a obtained by rotating 
the axes Oyz by an angle a; see Fig.A3.2. The coordinate transformation between the 
two systems of axes is given by 

cosa  —sina 

sina    cosa 

y<* 

z„ 
(A3.12) 

An equation for the ellipse in the rotated axes is obtained by inserting (A3.12) into 
(A3.1), which produces 

cosa    sina «11    a\2 cosa    sina ya 

y a   z a. —sina cosa a 12   a22 —sina cosa za 
= 1 (A3.13) 

The equation of the ellipse in the rotated axes has the same form as (A3.1), but the 
2x2 matrix is now the product of the three matrices in the above equation. Slices and 
silhouettes on the Oya axis can be obtained by applying equations (A3.8) and (A3.ll) 
in the rotated axes, resulting in 

1 

yslice 

=    cosa sina 
all   <*12 

a12   a22 

cosa 

sina 
(A3.14) 
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Fig.A3.2. Slice and Silhouette of an Ellipse on a Rotated Axis. 

ysfi = cosa  sina 

-1 
cosa 

sina 
(A3.15) 

It is useful to consider a particular case where the principal axes of the ellispe are 
oriented along the coordinate axes. Let d x and d 2 be the half diameters along the Oy 
and Oz axes respectively. The 2x2 matrix of the ellipse is in this case 

au  a12 

a12   all 

Mdl     0 

0     Mdl 
(A3.16) 

The expressions for the abscissas of the slice and the silhouette are given in this case 
by 

1 

Jslice 

1 2 1-2 -cos^a + —-sin a 
d2 df u2 

ysa — d \ cos2a + d 2
2 sin2a 

(A3.17) 

(A3.18) 

A3.2. Slices and Silhouettes of 3-D Quadrics 

In this section, the slice of a quadric by a plane and its orthographic silhouette are 
evaluated. The expressions of these curves are derived with the same strategy that 
was used to determine slices and silhouettes of ellipses. First, the slice and silhouette 
on a particular plane, here the Oxy plane, are evaluated, then the result for a general 
plane is obtained by combining the previous result with transformations of axes. Only 
the first step is discussed here. 

188 



In order to show a different facet of quadratic equations in point space and in 
tangential space, general systems of axes will be considered, as opposed to axes with an 
origin at the center of the figure used in the discussion of ellipses. In order to describe 
quadrics in general axes, it is advantageous to use homogeneous coordinates (x ,y ,z ,t ) 
for points in 3-D space. Any quadratic surface can be expressed in point space by an 
implicit equation of the form 

x y z t 

al\ a12 a13 a14 

d 12 a22 a23 a24 

a13 a23 a33 a34 

a 14 a24 a34 a44 

= 0 (A3.19) 

The equation of the above quadric in tangential space is obtained by first considering 
the equation of the plane tangent to the quadric at the point P0(x 0y QZ Q£ 0), namely 

x y z t 

a n a 12   a 13 14 

a 12 a22 a23 a24 

a13 a23 a33 a34 

a14   a24   a34   a44 

*0 

yo 
z0 

to 

= 0 (A3.20) 

The tangential coordinates of the tangent plane at P0 are given by 

K 

a ll a 12   a13 a 14 

a 12 a22 a23 a24 

a13 a23 a33 a34 

a 14   a24   a34   a44 

^0 

yo 

z0 

to 

(A3.21) 

Conversely, a plane with tangential coordinates (kx ky kz A, ) is tangent to the quadric 
if the coordinates (XQVQZQZO) obtained by inverting (A3.21) satisfy the equation of 
the quadric in (A3.19). Therefore, the set of planes tangent to the quadric is charac- 
terized by the equation 

kx ky kz A, 

all   a12   a13   a 

al2 a 22 a 23 a 

a 13   a23 33 a 

a14   a24   «34   a 

14 
-1 

K 
24 ky 

34 K 
44 K 

= 0 (A3.22) 

It will be useful in the sequel to explicitly consider the inverse matrix in (A3.22), 
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An A 12 

A 12   A 22 

13 23 

A 14 A 24 

A 13 /114 

^23 ^24 

^33 ^34 

A 34 A 44 

an  a12 a13 a 14 

012   a22 a23 a24 

a13   a23 a33 a34 

a14   a24 a34 a44 

-1 

(A3.23) 

The slice of the quadric by the plane z =0 is first considered. This intersection is 
the set of points satisfying 

x y Or 

a li a 12   a13 a 

an   <* 12   «23   a24 

13   "23 a 33 

a 14 24   "34 a a 

14 X 

24 y 

34 0 

44 
t 

= 0 (A3.24) 

This equal ion can be rewritten as an equation for homogeneous coordinates (x ,y ,t ) of 
points in the Oxy plane, 

x y t 
n a 12 a 14 

= 0 (A3.25) a12   a22   a24 

a14   a24   a44 

The above equation shows that the slice is a quadratic curve in 2-D, also called a conic. 

The silhouette of the quadric in the Oxy plane is now evaluated. For that 
matter, it is useful to first consider the silhouette generating planes which are in this 
case, the planes with kz =0. For the quadric in (A3.19), the tangential coordinates of 
these planes satisfy 

A u /•» 

K K, ®K 

A 12 A 13 A 

A \2   A 22   A 23   A 

A 13   A 23   A 33   A 

14 24 34 

14 K 
24 ky 

34 0 

44 K 

= 0 (A3.26) 

It is easy to verify that the trace of a vertical plane (kx ,A.V ,A.2 =0,At ) in the Oxy 
plane is a line with coordinates (kx ,Ky ,Xj ). The silhouette of the quadric is hence a 
curve with tangential equation 

K \y ^T A 12   ^22   ^24 

A iA   A 24   A 44 

which is the tangential equation of a conic. 

^n  ^12  A 14 

= o (A3.27) 
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The point equation of the conic is then obtained as 

^11   -^12   A 14 

A12 A 22 A24 

^14   ^24   ^44 

-1 

= 0 (A3.28) 

In summary, the slice of a quadratic surface by the Oxy plane is a conic; The 
matrix of its equation in point space is obtained by removing the third column and 
third row in the matrix of the quadric. The orthographic silhouette of a quadratic 
surface on the Oxy plane is also a conic; the matrix of its equation in tangential space 
is obtained by removing the third column and row of the matrix of the tangential 
equation of the quadric. The matrix of the silhouette in point space is obtained from 
the matrix of the quadric in point space by first inverting this matrix, then removing 
the third row and column and finally inverting the resulting matrix. 

A particular case is now considered, namely the case of a paraboloid with equa- 
tion 

x = -Vziay 2 + 2byz + cz2) = y z 
a b 
b c 

y 
z 

(A3.29) 

The above equation can be written as a quadratic form similar to (A3.19) for the 
homogeneous coordinates (x ,y ,z ,t ). 

x y z t 

The tangential equation of the paraboloid is 

kx ky kz X? 

0 0 0  1 X 

0 a  b 0 y 
0 b c 0 z 
10 0 0 t 

where 

A  B 

B C 

a b 

b c 

-l 

= 0 (A3.30) 

0  0   0   1 K 
0 A B 0 ^y 

0 B C 0 K 
10   0  0 K 

= 0 (A3.31) 

(A3.32) 
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The slice of this paraboloid by the Oxy plane is given by 

0 0  1 X 

x y t 0 a  0 
1 0 0 

y 
t 

= 0 (A3.33) 

which is equivalent to 

= -l/2 1   0 
a b 
b c 

1 
0 

(A3.34) 

The silhouette of the paraboloid is now determined. From the discussion on 
silhouettes of general quadrics, it is known that its equation is quadratic; the matrix of 
this equation is obtained by suppressing the third row and third column in the matrix 
of equation (A3.31), then inverting the resulting 3x3 matrix. 

x y t 

0    0     1 X 

0 A~l 0 y 
1     0    0 t 

= 0 (A3.35) 

which is equivalent to 

= -y2- 

i o 
a b 

b c 

-l 
(A3.36) 

When the paraboloid in (A3.29) is sliced by or projected on a plane Oxt making 
an angle a with the Oxy plane, both the slice and the silhouette are parabolas; see 
Fig.A3.3. The equations of these parabolas can be obtained by first applying a rotation 
around Ox , similar to that in (A3.12). 

Slice Silhouette 

Fig.A3.3. Slice and Silhouette of the Paraboloid 
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The equation of the slice is then 

x = —V2    cosa sina 

The equation of the silhouette is given by 

x = -i/2  

a b 

b c 

cosa 

sina 

1 

cosa sina 
a b 

b c 

~ 
cosa 

sina 

(A3.37) 

(A3.38) 

A3.3. Euler's Theorem and its Dual 

Euler's theorem in differential geometry relates the curvature of normal slices of 
a surface to the principal curvatures of the surface itself. At a point of the surface 
with principal curvatures fcj, k2, the curvature kslice of a normal slice making an 
angle a with the first principal direction is given by 

kslice = k !COS2a + k 2sin2a (A3.39) 

The dual of Euler's theorem relates the curvature of orthographic silhouettes of a 
surface to the principal curvatures at corresponding points of the surface. When a 
point of the surface with curvatures k j, k 2 is on the silhouette generator, the curva- 
ture ksil at the corresponding point of the silhouette on a plane making an angle a 
with the first principal direction is given by 

1 1        2 1 — = -—cos a + — sin2a (A3.40) 
-sil 

An equivalent formulation of the dual of Euler's theorem in terms of radii of curva- 
ture is given by 

(A3.41) Pstl PiCOS2a + p2sin2a 

Our proofs of these two theorems will be based on the relation between curva- 
tures and coefficients of quadratic terms in the Taylor expansion of Monge parameteri- 
zations. Our analysis is done for one point on the surface, which is chosen as the ori- 
gin of the system of axes; the Ox axis is chosen along the normal of the surface. 
Planar curves are also considered in a system of axes centered at the point of interest 
and with Ox along the normal. The expansion for a curve is given by 

x =-Vzk y2 + 0(y3) 

where k is the curvature at (0,0). The equation for a surface is given by 

(A3.42) 

= -y2 y z + O ((y ,z )3) (A3.43) 
*• 11  * 12      y 

k \2 ^22      z 

where K = k( •. is defined as the tensor of curvature of the surface at (0,0). Finally, it 
is easy to see that second order expansions of both slices and silhouettes depend only 
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on the second order expansion of the surface at the corresponding point. 

The proposed theorems will be obtained in two different ways. First, the results 
of Section A3.2 are applied to the second order term in (A3.43), then, the curvature of 
the slice and of the silhouette are obtained with (A3.42). The second proof is obtained 
by considering the two operations of slicing and projecting in a plane parallel to and 
close to the tangent plane, say the plane x =—e. The slice of (A3.43) in this plane is 
an ellipse so that the results derived in Section A3.1 can be applied. This last analysis 
of curvatures in terms of a section by a plane parallel to the tangent plane is well 
known. The ellipse in question is usually referred to as the Dupin indicatrix. 

A3.3.1. Proof by Operations on Quadrics 

The second order expansion of the surface at (0,0) in (A3.43) corresponds to a 
paraboloid to which equations (A3.37), (A3.38) can be applied. The slice by a plane 
Oxt at an angle a with Oxy is the curve specified by 

x = — Vz    cose* sina 
11   ^12 cose* 

sine* t A3.44) 
- 12   *• 22 

Comparing this expression with (A3.42) reveals that the curvature kslice of the slice is 

ksUce =    cosa sine* 
* n  * 12 

^12   ^22 

cosa 

sine* 
(A3.45) 

This expression reduces to (A3.39) when k \i=0.  The expansion of the orthographic 
silhouette of the surface on the Oxt plane is obtained with (A3.38), 

1 .7 = -v2 

cose* sine* 
K n  A. 12 

k 12 k 22 

cosa 

sina 

(A3.46) 

The curvature of the silhouette is obtained by comparison with (A3.42), 

=    cosa  sin a 
-sil 

^11   ^12 

^ 12   ^ 22 

cosa 

sina 
(A3.47) 

This expression can be rewritted for Psu = Vks[l in terms of the radius of curvature 
tensor R = K 

Psii =    cosa sina 
11   '  12 

12   ' 22 

cosa 

sina 
(A3.48) 

The above form reduces to (A3.40) when r ^^O. 

A3.3.2. Proof by Operations on Dupin's Indicatrix 

The slice of a surface by a plane parallel to the tangent plane at the origin is a 
quadratic form when the slice plane is close to the tangent plane. A curve with the 
same shape is also obtained by slicing only the second order of the expansion in 
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^11   ^12 .V 
y z 

^12   ^22 z 

(A3.43) at any distance from the tangent plane. Considering the section plane 
x = — Vz, the slice is the Dupin indicatrix 

k„ 
= 1 (A3.49) 

The expressions obtained in Section A3.1 for slices and silhouettes of an ellipse are 
now applied to Dupin's indicatrix. The slice by x = —V2 of the second order expan- 
sion of a curve such as in (A3.42) is given by ky = 1, which indicates that half diam- 
eters d in the plane x = —V2 are related to curvatures k by d = k . This relation 
between half diameters and curvatures, combined with (A3.14) and (A3.15) produces 
the same expressions for the curvatures as in (A3.45) and (A3.47). 

A number of additional properties of Dupin's indicatrix can be easily shown. 
First, the surface of the ellipse is given by 

S = irdxd2= irk f2* 22 = "Kg2 (A3.50) 

where K is the Gaussian curvature of the surface. It is interesting to note thai diam- 
eters of the ellipse are related to curvatures of slices, and that the area of the ellipse is 
related to the Gaussian curvature. A further property of the silhouette curvature can 
be easily demonstrated by reasoning on Dupin's indicatrix. This property, due to 
Koenderink [43], relates the silhouette curvature ksd , the curvature krad of a slice 
parallel to the viewing direction and the Gaussian curvature kR . The relation can be 
obtained by considering the slice yrad of Dupin's indicatrix in the direction with orien- 
tation (c*+7r/2) perpendicular to the silhouette axis with orientation oc. The expres- 
sion for yrad is obtained with (A3.17), 

1 I.2 1 2 
~7T~ = TTsin a + TTcos a (A3.51) 
drad °i d 2 

The product yrad ysU can readily be evaluated, and the result transposed to curva- 
tures. 

Therefore, 

yrad  y*U   -dyd2 (A3.52) 

'rad   ^sil   ~ Kg (A3.53) 

A3.4. Summary 

In this appendix, we have first shown that silhouettes of quadratic curves and 
surfaces can be evaluated in tangential space in the same way that slices are evaluated 
in point space. Second, we have exploited the relations between curvatures and qua- 
dratic forms to derive expressions for curvatures of slices and silhouettes of surfaces. 
These two expressions can be considered as duals of one another. Finally, we have 
shown that the concept of the Dupin indicatrix, proposed initially for the representa- 
tion of curvatures of slices of a surface, can also be exploited as a representation of 
silhouette curvature, radial curvature, Gaussian curvature and of their relations. 
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APPENDIX 4 

REPRESENTATIONS OF SURFACE CURVATURE 

In this appendix, several descriptions of surface curvature are reviewed and com- 
pared, including the classical method of differential geometry [47], representations 
proposed in computer vision [44, 40, 63], and the representation proposed in this 
report. The various representations will be compared by relating them to the classical 
representation of differential geometry in terms of the two fundamental tensors. 

Features of representations of surface curvature investigated in this appendix 
include expressions for curvatures of slices and silhouettes of the surface, parameteri- 
zation of the representation, consistency of the representation, and recovery of the glo- 
bal shape of the surface from the description of its local curvature. 

A4.1. Representation of Surface Curvature by Two Fundamental Tensors 

This section reviews the classical definition of surface curvature; further material 
is found in any textbook of differential geometry. 

Consider a surface £ and a specification of the points of this surface by 
parametric equations 

3?=x(u,v) (A4.1) 

The lines u =cst, v = cst define a coordinate chart on this surface, as pictured on 
Fig.A4.1. In general, this chart is not orthogonal, its spacing is different in u and v , 
and its local shape varies along the surface. At each point, the metric implied by this 
chart defines the expression for the length ds of a small arc specified by its increments 
{du ,c?v ). 

ds2 = d x-d x = du dv 
*-u '*-u      **U **l' 

i\. I ,    • -^v , . .A. , .    • J\. , - 

du 

dv 
(A4.2) 

The above expression is referred to as the first fundamental form, and the 2x2 matrix 
on the right hand side, as the tensor of the first fundamental form. This matrix is 
denoted by G and its components by E, F , G , so that 

c = 
xu ,xu   xu .xv, E F 

F G 
(A4.3) 
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u 

Fig.A4.1. Coordinate Charts Defined by the Parameterization 

Denoting the 2-vector of the arc differentials (cfu dv )    by 3s, the first fundamental 
form can be written in compact notation as 

ds2 = 3sT Cds (A4.4) 

The curvature of the surface is related to the rate of deviation of the surface 
from its tangent plane, and can be described by the form 

-dx-dln = du dv 
-x   1 ^(xvT^ + xVXj 

-v2(x„.Tn +xr.Tn) -x    1 

du 

dv 

(A4.5) 

where 1„ is the unit normal vector. The above form is referred to as the second fun- 
damental form, and the 2x2 matrix on the right hand side as the tensor of the second 
fundamental form. This malrix is denoted by D and its components by e , / , g , so 
that the second fundamental form can be written as 

—d x-d 1 „ =    du dv 

or, in compact form, as 

e   f 
f   8 

-dx-d~\„ = clsj Dds 

du 

dv 
(A4.6) 

(A4.7) 
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It can be shown that the tensor D is also related to projections of the second deriva- 
tives of equations of the surface onto the unit normal 

D = e  / 
/   8 

X       1 

1, 

X*      1 

X       1 
(A4.8) 

Transformations of the matrices D, G in changes of parameterization are now 
investigated. The resulting expressions justify referring to these matrices as tensors, 
and characterize the types of these tensors. 

Consider a different parameterization (UJ.VJ) of the surface E discussed above, 
where the old parameters (u ,v ) are related to the new parameters (u , ,v j) by 

u  = u(u !,V j) 

v = v(u,,v,) 

The fundamental tensor Gj is given, in the new parameterization, by 

Cj = jJ 5 j 
where J is the Jacobian matrix of the transformation (A4.9), 

(A4.9) 

(A4.10) 

6^7 
(A4.ll) 

Similarly, the tensor D is modified as 

Dj = JJ 0 j (A4.12) 

Matrices which transform as in (A4.10) and (A4.12) in coordinate transformations are 
twice covariant tensors. This justifies referring to G and D as tensors. 

A4.1.1. Curvatures of Slices and Silhouettes 

When the surface is sliced by a plane perpendicular to the surface at some point, a 
curve for which the principal normal is identical to the normal to the surface is 
obtained. It is interesting to relate the curvature of these curves to the two tensors of 
the surface. Curvatures of normal slices and their dependence on orientation of the 
slice completely characterize the local shape of the surface at a given point. 

199 



For a curve oriented locally along ds and with a principal normal along the normal ln 

to the surface, the curvature is given by 

K slice 

\du dv\ 
e f 

f   8 

du 
dv &JG& 

du dv\ 
E F 
F G 

du 
dv 

aiJGai 
(A4.13) 

Both tensors D and G contribute to determine the curvature of slices of the surface, 
and hence of the surface itself. This is due to the fact that D determines the deviation 
of the surface from its tangent plane, relative to the parameterization in (u ,v ). At 
the same time, the metric implied on the surface by this parameterization is described 
by G. In order to determine the shape of the surface independently of the parameteri- 
zation and the curvature Ksilce of its slices, it is hence necessary to combine the infor- 
mation contained in both tensors. 

The dependence of the curvatures of slices of a surface on characteristics of the 
surface is formalized in Euler's theorem, which is analyzed in detail in Appendix 3. 
The iheorem stales 1ha1 the expression of the curvature in (A4.13) has a maximum 
value /Cj and a minimum value K2, and that these extrema correspond to orientations 
3s which are 90° apart. The extrema of (A4.13) are investigated in the next section, 
during the discussion of curvature invariants. 

It will be shown in a later section that the curvature of a silhouette of the surface 
I in a plane parallel to the section plane corresponding to cli can be related to the two 
Tensors at the corresponding point of the silhouette generator, by the expression 

Ksil  ~ 

E F du 
du dv F G dv 

E F e   f 
-l 

E F du 
du dv F G f   8 F G dv 

ai7CcTi 
cTiJ5D '0c£ 

(A4.14) 

In summary, given the two fundamental tensors and an orientation defined in the 
local parameterization of the surface, it is easy to determine the curvature of the slice 
or the silhouette of the surface along the given direction. Note however that, when 
the orientation is specified with respect to a global system of axes, it may be difficult to 
describe this orientation with the local parameterization. 
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A4.1.2. Consistency and Inversion of the Representations 

It is well known in differential geometry that the six components of the tensors 
G\ D are not independent; they are related by a series of relations known as the 
Mainardi-Codazzi relations. Furthermore, it has been shown (Bonnet's theorem) that 
given any set of six functions (E ,F ,G ,e ,f ,g ) which satisfy the Mainardi-Codazzi 
relations, it is possible to synthesize a surface for which the two fundamental tensors 
have the given forms. The reconstructed surface is unique up to a solid translation 
and rotation. The Mainardi-Codazzi relations are hence necessary and sufficient con- 
sistency relations between the components of G amd D. These relations can be found 
in any textbook of differential geometry; their form is relatively obscure for the non- 
ex pert. 

A4.1.3. Parameterization 

When the surface shape is defined by the tensors G and D, these tensors are refer- 
enced to the values of the parameters (w ,v ) at the corresponding surface points. If 
this representation is used as a model for a known surface in a recognition system, 
matching with a measured surface may be extremely complicated if the measured sur- 
face cannot be defined in the same parameterization. In order to relate parameteriza- 
tions of the model and of measured surfaces, it is necessary to define "canonical" 
parameterizations. Examples of proposed parameterizations are Monge parameteriza- 
tions [40], parameterizations along lines of curvature [63], and coordinates on the 
Gaussian sphere [44]. The advantages of each of these description modes is that the 
Monge descriptions are easily obtained from image measurements, the lines of curva- 
ture are intrinsic to the surface itself, and representations with the Gaussian sphere 
are invariant with viewing direction. 

It is possible to use any of the above three parameterizations to define surfaces 
with the two fundamental tensors. When lines of curvature are used, it turns out 
that the tensor D is diagonal. In that case, the shape of the surface is determined by 
the five functions E ,F ,G ,e ,g [63]. The redundancy of the representation is reduced, 
but not eliminated. 

A4.2. Definition of Curvature by the Shape Matrix and its Invariants 

Since' the intrinsic curvature of a surface is expressed in the combination if the 
tensors D and G, il is tempting to develop combinations of these tensors, in order to 
describe curvature by a_single form.  An example of this type of combination is given 

by the "Shape Malrix" j5 [64] 

j3 = 5  'D (A4.15) 
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It is easy to derive the rule for the transformation of p in changes of parameteriza- 
tion, from the rules for G and D: 

Jx = G;% = (jrGj)-i(Jrt5j) = r^Bj 

p\ = r^J (A4.16) 

The above transformation rule determines that p is a once covariant, once contravari- 
ant tensor. It is easy to show that for this type of tensor, the determinant and the 
trace are invariant in coordinate transformations 

tr (3i) = tr (r^J) = tr (JJ"^) = tr (3) 

det(j3,) = detCJ^/Sj) = deU-1 detj3 detj = detj3 (A4.17) 

As a result, the eigenvalues of p are also invariant in changes of parameterizations. 

The relation between the eigenvalues of p and the principal curvatures is now deter- 
mined. The principal curvatures KX, K2 are defined as the extrema of normal curva- 
tures 

min  3iJDcE ,AA.^ 

It is clear that the right hand side of the above expression does not depend on scale fac- 
tors in 3s. Therefore, the extrema are also obtained for vectors 3s with a fixed scale. 

K, 2 = dsrDd"i;   constraint: ds7 G 5s = 1 (A4.19) l>*     max 

The above constrained optimization can be solved by introducing a Lagrange multiplier 
for the constraint, 

:12= dVDds-M 5sJG5s-1 1U     max \ 
(A4.20) 

The stationary points of the above expression can be evaluated by equating its deriva- 
tive with respect to 5i    to 0. 

2Dd"s-2\GcIs = 0 (A4.21) 

The above expression is left-multiplied by the matrix G , which is nonsingular, to 
yield 

G^D-AJ     cls = 0 (A4.22) 

The stationary joints of the curvature in (A4.18) are hence obtained when ds is an 

eigenvector of p. It can_be verified that these points are true extrema. Let the nor- 

malized eigenvectors of p be 3j, 52> and the corresponding eigenvalues be X.lt \2. 
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*1,2 _ 

The extrema of the curvature are given by 

3ir2^31>2       3u"31>2 3f2Calf2 

The tensor j3 has hence the remarkable characteristic that its eigenvalues are the prin- 

cipal curvatures. As a consequence, the trace of p is equal to twice the mean curva- 

ture and the determinant of p is equal to the Gaussian curvature of the surface. 
These properties show that p is closely related to intrinsic curvature properties of the 
surface. However, it will be shown in the next section that curvatures of slices and 
silhouettes of the surface with generic orientations cannot easily be determined with 

only the tensor j3. 

A4.2.1. Curvatures of Slices and Silhouettes 

The curvature of a slice of the surface oriented along the vector 3s on the surface 
is given by 

av di7 Ddi GjSdi 
* slice (A4.24) 

3s7 G 3s 3sr 0 3s 

It is clear f rom J_he above expression, that when a slice is defined by its contravariant 

vector 3s, both p and G must be known to determine its curvature. 

The curvature of a silhouette of the surface can be obtained by applying to the 
above expression, the duality between the curvature of a slice and the curvature of a 
silhouette on a plane parallel to the slice. This duality is demonstrated in Appendix 3, 
and it is shown that the radius of curvature of the silhouette depends on the principal 
radii of curvature of the surface by the same expression that determines the curvature 
of the slice in terms of the principal curvatures.  The dependence of the curvature of 

the slice on the principal curvatures is explicitly  obtained by decomposing p  in 
(A4.24) into its diagonal factorization 

0 
ai7' 5L 0    K, 

v ai 
(A4.25) 

'slice ai7 5ai 
where L is the matrix formed by the two normalized eigenvectors 3lt 32 of p.  The 
duality argument determines that the curvature of the silhouette is given by 

air cai  
(A4.26) 

Ksil   — 

&T GL 
\/KX     0 

0     \/K2 
v ai 

The three factors in the denominator of the right hand side are easily recognized as the 

diagonal factorization of p     so that 
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3ir 5 3s 5s7 5 9s 
Ksu —       „ _ --1       -   __r »«F-I- T- (A4.27) 

A4.2.2. Consistency, Completeness and Reconstruction 

A number of representations of surfaces based on the shape matrix p or on its 
invariants have been proposed in the computer vision literature. 

First, the extended Gaussian image[44] represents a surface shape by only one 
invariant, the Gaussian curvature, parameterized with the normal orientation of the 
surface. It can be shown that this representation is complete for a closed convex sur- 
face, and that its consistency can be expressed globally by three scalar constraints. 
These constraints are easily formulated when the extended Gaussian image is specified 
as a distribution on the Gaussian image of the surface, specifying the inverse of the 
Gaussian curvature of the object. The constraint is then equivalent to requiring the 
center of mass of the distribution to be at the center of the sphere. The inversion of 
the extended Gaussian image is laborious [45]. Because of the consistency constraints, 
it is not possible to modify the value of the extended Gaussian image at one point only 
and therefore to assess the effect of point values on the global surface shape, but there 
are strong indications that the global shape of the surface is affected by any local 
change of the Gaussian curvature function. Whether or not the above conjecture is 
true, there are no simple relations for determining the local shape of the surface from 
only the Gaussian curvature function, and as a consequence, no simple relations for 
evaluating the curvatures of slices and silhouettes of the surface. Aside from the 
disadvantages discussed above, the extended Gaussian image has a number of desirable 
characteristics, such as its invariance with rotations and the ease of computation of 
this representation from experimental range maps or needle maps. 

In other work, Besl and Jain_have proposed a representation of surface shapes by 

the two invariants of the tensor p, namely the mean curvature Km = VZ(K1 + K2) and 
the Gaussian curvature K = K^K2 [40]. The parameterization proposed for indexing 
the values of the invariants are image plane coordinates, a choice equivalent to a 
Monge parameterization of the surface with a base plane perpendicular to the viewing 
direction. Since this representation specifies more information than the extended Gaus- 
sian image does, it is likely that it is complete and redundant, so that consistency con- 
straints must be satisfied by the two invariants. However, the parameterization is 
different than in the extended Gaussian image, and the uniqueness and consistency 
issues have not been carefully addressed in this case. Although the mean and Gaus- 
sian curvatures determine the local aspect of the surface shape, they do not determine 
the orientation of this shape with respect to a global reference, so that this representa- 
tion does not provide simple expressions for the curvatures of slices and silhouettes of 
the surface. To the best knowledge of the author, there is no algorithm for recon- 
structing the surface shape, given the two invariants as functions of coordinates in the 
image plane. 
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A4.3. Representations Proposed in this Report 

The Curvature Transform (CT) introduced in this report specifies a single tensor 
representing the local curvature of the surface, as a function of normal orientations. 
The parameterization of this representation is identical to the one used in the extended 
Gaussian image, but the function represented is more complex. As defined in Sections 
3 and 5, the characteristic represented by the CT is the inverse of the "tensor of curva- 
ture" of the surface, expressed by its components in axes parallel to the local axes on 
the Gaussian sphere. The curvature tensor K can be defined in terms of second deriva- 
tives of local Monge parameterizations of the surface 

K = 
d2*t/dyidzi    d2Vd^2 

(A4.28) 

where xt is along the normal, yL parallel to the corresponding parallel on the Gaussian 
sphere, and zl parallel to the meridian of the Gaussian sphere. Comparing this expres- 
sion with (A4.8), it can be shown that the tensor K is equal at each point of the sur- 
face to the tensor D for a Monge parameterization in local axes at the point. In order 
to define K at a given point PQ, a change of parameters (u ,v ) —• (u ,v ) must be 
found such that, at P0, 

K = J*rDj* (A4.29) 

C* = J*70j* =I22 (A4.30) 

Indeed, the metric of the local Monge parameterization at P0 is Euclidean, so that the 
metric tensor must be the unit matrix I22- It is important to note that the parameteri- 
zation by (u ,v ) applies only to the point P0 and that, although the tangent vectors 
x(i», xv.» are along the local directions 1^, 1^, the parameters (u ,v ) are not directly 
related to the orientation angles £, r) themselves. Assuming that J is regular, equa- 
tion (A4.30), can be modified to 

J*J*J=G-1 (A4.31) 

Any matrix J satisfying the above equation is the Jacobian of a parameter change 
which leads to a Euclidean metric around P0. A solution of this equation will be 
written formally as 

j* = 51/2 

The solution of (A4.31) is ambiguous since a product of J by any orthonormal 2x2 
matrix is also solution of the equation. The ambiguity is resolved by requiring the 
vector xu to be horizontal. The expression for the tensor of radius of curvature is 
written formally as 

K = GJ-1/2D(T/2 (A4.32) 

E = 5J1/2D"1G1/2 (A4.33) 
Explicit expressions for obtaining the components of K in terms of the components of 
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G and D were determined in[62] 

[ez2-2fzuzv+gz2] 
*n= 

*u= 

k 22= 

[ezv (Gzu -Fzv )+ f{Ez2-Gz2)-gzu {-Fzu +Ezv )] 

Z-y/BC -F2 

[e (Gzu -Fzv )2+2f (Gzu -Fzv )(-Fzu +Ezv )+g (-Fzu +Ezv )2] 

Z(EG -F2) 

(A4.34) 

where zu , zv denote partial derivatives of z . It turns out that the tensor K is invari- 
ant in changes of the parameterization (u ,v ), and that its eigenvalues are identical to 

the eigenvalues of p.  It is interesting_to note the similarities and differences between 

the tensors K defined in (A4.32) and p defined in (A4.15). Major differences between 

K and p are that K is symmetric while P is not, in general; as a consequence, K has 
three independent components while p has four components.   Furthermore, R is 

related to local axes on the Gaussian sphere while p is related to local axes determined 
by the parameterization. 

A4.3.1. Curvatures of Slices and Silhouettes 

It has been shown during the demonstration of the Silhouette-Slice theorems that 
the radjus of curvature of the silhouette is simlpy related to the radius of curvature 
tensor R, which is the inverse of K, by 

Psil cose* sine* 
cose* 

sina 
(A4.35) 

where a directly characterizes the orientation of the projection plane in the local axes. 
Similarly, the curvature of a slice of the surface is given by 

'slice cose* sina 
cosa 

sina 
(A4.36) 

The above expressions emphasize that the shape of slices and silhouettes of the surface 
are easily determined from only the tensor R specified by the CT. 

A4.3.2. Consistency, Completeness and Reconstruction 

In Section 5, simple first order differential equations were determined for 
parametric equations of a surface, given its CT. The existence of these equations 
implies the completeness of the CT. In addition, consistency relations for the CT were 
derived simply by requiring equality of the mixed derivatives of the parametric equa- 
tions in terms of the CT. These relations are equivalent to the Mainardi-Codazzi equa- 
tions for the representation with the two fundamental tensors, but they are much 
simpler. 
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A4.4. Discussion 

When comparing the various representations of surfaces reviewed in this appen- 
dix, it appears that the Curvature Transform has a number of advantages for describ- 
ing surface curvature. The CT has only three independent components, while preserv- 
ing completeness both locally and globally. It is easy to determine the shape of slices 
and silhouettes of a surface defined by its CT. Finally, the consistency relations and 
the reconstruction of the surface shape are straightforward for the CT representation. 
An additional advantage of the CT is the existence of closed-form relations with the 
other two representations proposed in this report, namely the Support Transform and 
the Vector Support Transform. The major disadvantage of the CT is its limitation to 
convex objects. 

When choosing a representation for a particular application involving descriptions 
of surface shapes, several factors must be considered. An aspect which was not dis- 
cussed in Hi is appendix is the estimation of the representation from experimental 
measurements and the robustness of these estimates. Experiments with the new 
representation must be performed before it can be compared with other representations 
based on this criterion. 
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APPENDIX 5 

CURVATURE OF THE PROJECTION OF A 3-D CURVE 

In this appendix, the radius of curvature of the projection of a 3-D curve is com- 
puted in terms of the radius of curvature at the corresponding points of the 3-D curve 
and the orientation of the viewing direction relative to the local Frenet trihedron. 

Consider a point O on the curve C , and the system of axes Oxyz oriented along 
1he principal normal n =x , the tangent t —y and the binormal b=z at O; see 
Fig.A5.1. Including terms up to the second order, the curve can be described around 
O by 1 he equations 

u» 
2p0 

(A5.1) 
y 
z 

s 

0 

where p0 is the radius of curvature at O. The viewing direction V is defined in the 
axes Oxyz by its latitude 0 and longitude —£. A rotated system of axes OxR yR zR is 
also considered, such that OxR is along the viewing direction v and OyR is on the 
Oxy plane, see Fig.A5.1. The projection operation is trivial in the rotated axes, as it 
corresponds to retaining the y# and zR coordinates and discarding x# . 

Fig.A5.1. Curve C , local axes Oxyz and rotated axes OxR yR zR 
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The transformation between the two systems of axes Oxyz , OxR yR zR is given by 

XR 

yR 

ZR 

cos^cosO   — sin£cos0 sinO 

sin£ cos£ 0 

—cos^sinO   sin£sin0   cosG 
(A5.2) 

For points in the Oxy plane, the projection is obtained by merely applying (A5.2) to 
the x , y coordinates of each point, then discarding the xR coordinate in the rotated 
frame. 

yR sin£ cos£ 

—cos£sin0 sin£sin0 
(A5.3) 

Applying the above transformation to the parametric equations of the curve in (A5.1), 
produces parametric equations for the projected curve 

,.2 

yR =  -sin£ 
2P0 

+ cos£ 5 

(A5.4) 
s 

Zo =  cos£sin0——  + sin£sinO s R 2Po 

The radius of curvature is now evaluated at the origin, using the standard expression 

(y/ + i*2)3/2 

p = (A5.5) 
yRZR ~yRzR 

where the dots stand for derivatives with respect to the parameter of the curve, here 
5 . The derivatives in the above expression are evaluated at the origin as 

yR(0) = cos£, zR(0) = sin£sin0, yR(0) = *-, zR(0) = •    (A5.6) 
ro ro 

As a consequence, the radius of curvature of the projection of the curve around O is 
given by 

(cos2£ + sin2£ sin20)3/2 (1 - sin2£ cos20)3/2 
n     =   - 2 2 p      =    *  

This result is consistent with that obtained in Section 7.4.2. 

•Po (A5.7) 
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APPENDIX 6 

EVALUATION OF TWO DIFFERENTIALS IN SECTION 5 

In this appendix, the differentials of local coordinates of a curve and of a surface 
are evaluated in terms of global angle differentials, providing the expansions of equa- 
tions (5.13) and (5.41) in the text. 

The case of a curve is addressed first; it is illustrated in Fig.5.3 in the text. In 
fixed local axes, an expression for the differential <f x(i/r) in the neighborhood of P0 is 
obtained by the chain rule 

.     , ,^      dXiiZi)    dzt     dmzl 
a X; (v/0 = — —— a \ff (A6.1) 

dzl       dmzi     d \f) 

where mzi is the gradient of the local Monge equation defined in Section 3.2.4. The 
first two derivatives in the right-hand-side of (5.13) are obtained for the particular 
curve shape at PQ from (5.12). The last derivative in (5.13) depends on the relation 
between the local gradient and the global orientation angle, a relation discussed in Sec- 
tion 3.2.4. 

Each of the factors in (5.13) is now evaluated. 

Parametric equations for the curve C around P0 are easily obtained from (5.12), 
namely 

-/ 
zx + {-*hzlp£lzl ) + 0(V) 

zi +0(zt
2) 

X, =z, lzl +Oizi2) (A6.2) 

The first derivative of the above equation with respect to the parameter zt is given by 

dxl 

0 
1 

+ 0(zL) 

d X; ldzl = \zl +0 (z, ) (A6.3) 
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The derivative dzt ldmzl is now evaluated. In the neighborhood of P0, the local 
gradient mzl on the curve C is given by 

•zi = d*z / dzi = ~Polzi +0(zt
2) (A6.4) 

It follows that 

zt = -p(jmzl + O (mzf) (A6.5) 

so that 

dzl 

dm, 
= -p0 + O (mzl ) (A6.6) 

Finally, the local gradient is related to the global orientation angle \f) by (3.61) 

(A6.7) 

so that 

mz{ =-(t/>-i/>o) + 0((i/>-i/>0)
2) 

dmzl 

d\j) 
= -1 + O(i//-i/»0) (A6.8) 

The derivatives obtained above are inserted in equation (5.13) to obtain the differential 
d X; in local axes 

dxL 

(~Po) (-1) <f 0 + O (Hb) = Po fi?Z7 
c? \\} + O (iM»o) 

<* Xj  = Po lz;^ «/> + O (<//-l/i0) (A6.9) 

which is the result exploited in the text, in equation (5.14). 

Differentials of coordinates of a surface are now investigated in a local reference 
frame around the point P0; This frame is illustrated in Fig.5.7 in the text. An expres- 
sion for the differential in the local axes Popct yt zt is obtained by the chain rule 

DX*, (Z,)    Dz,     Dm2, 
d%=      l_l     -zrz--^rdt (A6.10) 

Dzt      Dmzl     D£ 
where expressions such as Dx; /Dz^ denote Jacobian matrices, TRzi = (my[ mzl ) is 
the 2-vector of local gradients, and d% is the vector of normalized global angle 
differentials d £ = ( COSTJC? £ dr\Y. The first two Jacobian matrices on the right 
hand side of (A6.10) are obtained for the particular surface shape around P0 from 
(5.39). The last Jacobian matrix in (A6.10) is a relation between local slopes and glo- 
bal orientation angles which can be derived from relations obtained in Section 3.2.4. 
Each of the factors in (A6.10) is now evaluated in sequence. 
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Parametric equations for the surface around P0 are given by 

yi *i 

*l 0 0 yi 1 

yi = 1  0 
Z, 

-V2 0 

*l 
0   1 0 

1 
r°r° rll   r12 

-1 

yi 

1 r ° r ° r12   r22 Zl 
+ 0((y,,z,)3) 

0 0 
1 0 

0  1 

yi 

Zl 
+ 0((y^)2) 

x, = I32Z, + 0(z,2) 

where I32 is a 3x2 matrix whose columns are the canonic vectors <?2, ^3- I32 is 

matrix of the injective transformation from the local tangent plane Poyi zL 

space referenced by Popct yt zz. The Jacobian matrix of the above expression 
by 

(A6.ll) 

also the 
into 3- 

is given 

dyi 

to 

dyi 

dzL 

dyi 

dzt 

dzj_ 
bzt 

Dx 

0 0 
= 1  0 

0  1 
+ 0((yl,zl)

2) 

Dz, 
- = I32 + O (z,2) (A6.12) 

The Jacobian matrix 
Dz, 

Dffiz, 
is now evaluated. The local gradient TRzl on the sur- 

face E in the neighborhood of P0 can be obtained from (5.39) 
1 

myl 

mzl 

0 
11 

0 
12 

r °    r ° r12  r 22 

yi 

Zl 
+ 0(z2) 

m, = -RQ 
l z, +0 (z,2) (A6.13) 
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This equation is inverted to produce 

yi 
_ o       0 
r 11   ; 12 myl 

*l 
_ o       0 
r12   r22 n-zl 

+ 0(mj) 

z, = -RQ mt +0 (ffiz*) 
The desired Jacobian matrix is then obtained by differentiation. 

(A6.14) 

dyi to 

6•yl Smzl 

dzi fa 

d"lyl dmzi 

D7.L 

r ° rll r ° r12 

r ° r 12 r22 
+ 0(mj|) 

Dm 
= -J*0 + O(ffij) (A6.15) 

z; 

Finally, the local gradients are related to the global angles by (3.61) from which 
the following form is derived for the last Jacobian matrix in equation (A6.10). 

dmyi       dm 
yi 

cosT)r)£ 

Smzi 
COST)fl£ 

&mzl 

1  0 
0  1 + o«£-Wn-Tio)2) 

= -i22 + o ((f-£0)2) CA6.16) 

where I22 is the 2x2 unit matrix. The expressions obtained above for the Jacobian 
matrices are inserted in equation (A6.10) and produce an expression for the differential 
d X; in local coordinates, valid to first order around P0. The expression is exact at P0, 
and since P0 is generic, applies to all regular points in appropriate local axes. 

dxL 0 0 rll    r12 cosr)d £ 
dyi — 1   0 

r12   r22 d T) 

dzt 
0   1 

dx: = I32 5 d g (A6.17) 
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A differential for the surface in global coordinates is obtained by applying the coordi- 
nate transformation in (3.10) to the above differentials 

dx cos£cosr) — sin£ —cos£sinT)       0 0 

dy    =    sin£cosT)    cos£  — sin£sinrj       1  0 

dz sinrj 0 cosrj       0  1 

dl?=Rf-Gl32&d£ 

which is the result exploited in the text, in equation (5.42). 

r\2 

r 22 

COSTJG? £ 

dr] 
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