SECURITY CLASSIFICATION OF THIS PAGE

				REPORT DOCU	MENTATION I	PAGE		
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED					16 RESTRICTIVE MARKINGS			
2a. SECURITY CLASSIFICATION AUTHORITY					3. DISTRIBUTION/AVAILABILITY OF REPORT			
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE					Approved for public release; distribution unlimited.			
4. PERFORMI	G ORGANIZAT	ION REP	ORT NUMB	ER(S)	5. MONITORING C	ORGANIZATION REPO	ORT NUMBER(S)	
NRL Re	port 9041							
6a. NAME OF	PERFORMING	ORGANI	ZATION	6b. OFFICE SYMBOL	OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION		ZATION	
Naval R	esearch Lab	oratory		5554				
6c. ADDRESS	(City, State, an	d ZIP Co	de)		7b. ADDRESS (City	y, State, and ZIP Coo	de)	
Washing	gton, DC 203	375-500	00					
8a. NAME OF ORGANIZA Office o	FUNDING/SPC ATION f Naval Reso	ONSORIN earch	G	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
8c. ADDRESS	City, State, and	ZIP Coo	le)	1 <u></u>	10. SOURCE OF F	UNDING NUMBERS		
Arlingto	n, VA 2221'	7			PROGRAM ELEMENT NO. NO. RX21,221 NO. ACCESSION NO. 62721N (STP5110) XE21 221 100 DN 291 241			
11. TITLE (Inc	lude Security C	lassificat	tion)		0272111	(5115110)	121-221-100 Dit 271-241	
Ground	Wave Path I	Loss ov	ver Ice-Co	vered Sea at Freque	ncies Between 0.	1 and 10 MHz		
12. PERSONA Kennedy	AUTHOR(S) , Edward J.							
13a. TYPE OF Inter	REPORT		13b. TIME C FROM 1	OVERED /86 to 7/86	14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUN 1987 May 6		y) 15. PAGE COUNT	
16. SUPPLEMENTARY NOTATION				i)or maj		52		
17.	COSATI	CODES	0	18. SUBJECT TERMS (Continue on reverse	if necessary and io	dentify by block number)	
FIELD	GROUP	SUB	-GROUP	Ground wave Propagation ov	Ground wave Propagation over ice			
	12		-	Arctic commu	nication			
19. ABSTRACT	(Continue on	reverse	if necessary	and identify by block i	number)			
Th ice-cove presente 0.1 to 1 various	e ground-wa ered sea surf ed, and a nu 0 MHz freq ice thickness	ave atte face. A imber c juency ses.	enuation fi review of of practica range and	unction has been stud of the techniques that al sea-ice paths are of consist of curves sh	died for an appli can be used in t evaluated numeri howing propagati	cation involving the analysis of a cally. Results a ion loss as a func	propagation over an multilayer ground is re presented for the ction of distance for	
It differen than for range.	is shown tha t than for th seawater o	t the van open nly is a	ariation of ocean ca dependent	f the attenuation fund ise. A range of free on the path length	ction with distanc quencies over wh and is shown to	the and with frequ nich path loss is a lie in the media	ency is significantly predicted to be less um frequency (MF)	
20 DISTRIBU	20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION							
LUUNCLASSIFIED/UNLIMITED L SAME AS RPT. DTIC USERS			UNCLASSIFIED					
Edward J. Kennedy					(202) 767-3	677	Code 5554	
DD FORM 1	4/3, 84 MAR		83 AI	² K edition may be used ur All other editions are of	itil exhausted bsolete	SECURITY CLA	ASSIFICATION OF THIS PAGE	

aval Research Laboratory ,

ashington, DC 20375-5000

NRL Report 9041 .

LIBRARY RE EARCH REPORTS DIVISION Notice POSTGRADUATE SCHOOL MONTEREY, CALIEORNIA 93940

Ground-Wave Path Loss over Ice-Covered Sea at Frequencies Between 0.1 and 10 MHz

EDWARD J. KENNEDY

Transmission Technology Branch Information Technology Division

May 6, 1987

CONTENTS

I.	INTRODUCTION	1
II.	GROUND-WAVE ATTENUATION FUNCTION	2
III.	NUMERICAL RESULTS	3
IV.	SUMMARY	13
V.	REFERENCES	14
API	PENDIX A — Program Listing	16
AP	PENDIX B — Useful Approximation for the Ground-Wave Attenuation	25

GROUND-WAVE PATH LOSS OVER ICE-COVERED SEA AT FREQUENCIES BETWEEN 0.1 AND 10 MHz

I. INTRODUCTION

Electromagnetic energy may travel between two terminals by any of several propagation mechanisms depending on the distance and nature of the path separating the terminals. Some propagation modes such as meteor scatter are found to vary on a short-term basis while others, including sky-wave ionospheric refraction, may vary in a longer, yet still time-dependent manner.

When the distance between terminals is within or somewhat beyond line-of-sight (LOS), the ground-wave mode may be the predominant propagation mechanism. In general, the ground wave consists of direct and ground-reflected components (existing when the terminals are within LOS), and a surface-wave component that may persist to distances well beyond LOS depending on the frequency and ground characteristics.

The nature of the ground wave has been studied and reported by numerous investigators for a variety of path characteristics including flat and spherical smooth earth. While a number of useful paths have been studied, including seawater and lossy earth, in most cases the electrical parameters of the ground have been assumed to be uniform with depth. Most paths of practical interest including the important case of intratask force communication in the open sea can be analyzed using these models. Barrick [1] provides a useful extension of the theory for a rough sea.

The variation of the ground wave excited over a flat earth surface whose electrical parameters are not uniform with depth was studied by Wait [2] and extended to the spherical surface case [3]. With this analysis, it became possible to predict the important path characteristics for many links of current interest to the Navy, including propagation over an ice-covered sea. In papers by Hill and Wait [4,5], it was shown that at high frequency (HF), the effect of the ice layer is to produce an enhanced field strength (over the seawater only case) at shorter ranges, but with serious degradation as the distance is increased beyond a point that is strongly dependent on frequency.

Whether propagation occurs over homogeneous or stratified earth, the ground-wave mode exhibits a number of important advantages over other propagation types. These include:

- path loss is not time dependent over intervals associated with typical message traffic;
- optimum frequency can be predicted in advance of communication sessions and does not require active channel probing as may be the case for sky-wave or meteor-scatter modes;
- frequency dispersion is insignificant (although for propagation over sea ice, this may be a factor at some ranges and frequencies);
- unaffected by natural or man-made ionospheric disturbances, and

Manuscript approved December 11, 1986.

EDWARD J. KENNEDY

• there is a built-in advantage over interceptors and jammers located beyond the communication range because of the sharp increase in attenuation at such distances.

The purpose of this report is to extend the work presented by previous investigators to include the low-frequency (LF) and medium-frequency (MF) range beginning at 0.1 MHz where the electrical properties of an ice-covered sea will be shown to produce enhanced link performance over distances of practical importance.

II. GROUND-WAVE ATTENUATION FUNCTION

Under unrestricted conditions and following the general analysis of Hill and Wait [6], the electric field strength, E, produced at a distance from a vertical electric dipole, is given by:

$$E = E_0 W, (1)$$

where E_0 is the field strength produced by the same source over a plane, perfectly conducting surface and W is the attenuation function that includes effects caused by the spheroidal and stratified surface shown in Fig. 1. Medium 1 is the layer having a conductivity σ_1 and dielectric constant ϵ_1 . The lower region, assumed to extend to great depth, is characterized by conductivity σ_2 and dielectric constant ϵ_2 . The upper half-space is assumed to be equivalent to free space with no conductivity and dielectric constant ϵ_0 . The permeability in all regions is equal to μ_0 .

Figure 1 — Propagation over stratified, spherical earth

When the height of the dipole source and the point at which the field strength is measured are both at the upper surface of medium 1, W can be written as the residue series:

$$W = \sqrt{\frac{\pi x}{i}} \sum_{s=1}^{\infty} \frac{e^{(-ixt_s)}}{(t_s - q^2)},$$
 (2)

where $x = \left(\frac{ka}{2}\right)^{1/3} \left(\frac{d}{a}\right)$ is the numerical distance, $q = -i \left(\frac{ka}{2}\right)^{1/3} \Delta$, $\Delta = \frac{Z}{120\pi}$, $k = \omega \sqrt{\epsilon_0 \mu_0}$, *a* is the radius of the earth, and $\omega = 2\pi f$ is the angular frequency.

The surface impedance Z at the boundary between medium 1 and the upper half-space is given [4] by:

$$Z \cong K_1 \frac{K_2 + K_1 \tanh u_1 h_1}{K_1 + K_2 \tanh u_1 h_1},$$
(3)

where

$$K_{1} = \frac{u_{1}}{\sigma_{1} + i\epsilon_{1}\omega}, \qquad u_{1} = \sqrt{\gamma_{1}^{2} + \lambda_{s}^{2}},$$
$$K_{2} = \frac{u_{2}}{\sigma_{2} + i\epsilon_{2}\omega}, \qquad u_{2} = \sqrt{\gamma_{2}^{2} + \lambda_{s}^{2}},$$
$$y_{1}^{2} = i\mu_{0}\omega (\sigma_{1} + i\epsilon_{1}\omega), \qquad \gamma_{2}^{2} = i\mu_{0}\omega (\sigma_{2} + i\epsilon_{2}\omega), \text{ and}$$

$$\lambda_s = k + \left(\frac{ka}{2}\right)^{1/3} \left(\frac{t_s}{a}\right).$$

The values t_s , which make up the poles of Eq. (2) and appear in the definition for λ_s , are roots of the equation,

$$\frac{dw(t)}{dt} - qw(t) = 0, \qquad (4)$$

where

$$w(t) = \sqrt{\pi} \{Bi(t) - iAi(t)\}.$$

The symbols Ai(t) and Bi(t) refer to Airy functions [7]. The system of Eqs. (3) and (4) can be solved iteratively for the roots t_s (the program listing given in Appendix A provides this procedure). However, as pointed out by Hill and Wait [4], for the case of Arctic ice overlaying a highly conductive sea, a reasonable approximation for Z in Eq. (3) can be obtained by setting $\lambda_s = 0$.

A general procedure for solving Eq. (4) for the roots t_s is given in Hill and Wait [6] and is briefly summarized in Appendix B. Two simpler forms for the ground-wave attenuation function Wcan be used at relatively short numerical distances x. The first of these, called the *small curvature expansion*, is a modification to the flat earth attenuation function for a spherical surface and is useful for large |q|. The second form, called the *power series representation*, is most useful at short ranges and small |q| (e.g., a nonlayered, highly conducting surface such as open ocean). Both of these approximations along with their regions of validity are presented in Appendix B.

III. NUMERICAL RESULTS

The equations for the ground-wave attenuation function have been solved for the case of sea ice of various thicknesses overlaying seawater. In the results that follow, a dielectric constant $\epsilon_{r2} = 80$ and conductivity $\sigma_2 = 4$ Siemans was assumed for the seawater constituting medium 2. (A description of a special, multilayer case follows in which a lower conductivity seawater layer exists just below the ice sheet as a result of melting.) For the sea-ice layer, the conductivity and dielectric constant are known to be dependent on frequency, temperature, and the age of the ice with cold or multiyear ice being much less conductive than warm or first-year ice. Since the variation of conductivity with frequency is less pronounced, a constant value for $\sigma_1 = 0.000333$ Siemans was used for the sea-ice layer of medium 1. This corresponds to one-year-old ice at -10° C as given by Wentworth and Cohn [8]. The variation of dielectric constant ϵ_{r1} with frequency is more strongly dependent on frequency and is also derived from data given in Ref. 8 (see Fig. 2). Another useful quantity that can be used to describe the electrical quality of the ice sheet is the loss tangent defined as $\tan \delta = \sigma/\omega \epsilon_r \epsilon_0$ [9].

One of the major difficulties in analyzing a sea-ice path is the considerable range of electrical parameters that is possible for the ice layer depending on season and geographic location. It is important to note that the results presented here are based on the particular values chosen for the dielectric constant and conductivity of the ice layer. Although they are believed to be representative of a typical Arctic path, some variation in link characteristics can be expected depending on the specific geography chosen.

The total path loss is presented in the results that follow, including effects due to the attenuation function W as well as the distance dependence of the term E_0 in Eq. (1). Furthermore, it is assumed that for any given case, the electrical properties of the surface over the complete path are constant and that the thickness of the layer is uniform. Although techniques are available for analysis of a mixed path in which the ice layer varies in its electrical properties and thickness, this has not been considered here.

Figure 2 — Relative dielectric constant variation as a function of frequency used in calculations of ground-wave path loss

Figures 3 to 12 show the numerical results of the path attenuation in decibels as a function of distance in kilometers for frequencies between 0.1 and 10 MHz. Table 1 provides a summary of the data presented in each figure as well as the dielectric constant and loss tangent used in the calculation. Each figure also includes two curves for a uniform earth (medium 1 = medium 2), one for seawater only and one for sea ice only, for comparison with the layered cases. Ice thicknesses up to 7 m were chosen for study since thicker layers are rarely encountered over a large horizontal scale. A typical thickness of 3 m is frequently given for the central Arctic. Only thinner ice sheets are considered at the higher frequencies because of the much stronger effect on the path attenuation.

Figure 3 — Ground-wave attenuation as a function of distance over smooth spherical earth for uniform ice and seawater surfaces and for three layered cases. The frequency is 100 kHz.

Figure 4 — Ground-wave attenuation as a function of distance over smooth spherical earth for uniform ice and seawater surfaces and for three layered cases. The frequency is 200 kHz.

Figure 5 — Ground-wave attenuation as a function of distance over smooth spherical earth for uniform ice and seawater surfaces and for three layered cases. The frequency is 300 kHz.

Figure 6 — Ground-wave attenuation as a function of distance over smooth spherical earth for uniform ice and seawater surfaces and for two layered cases. The frequency is 500 kHz.

Figure 7 — Ground-wave attenuation as a function of distance over smooth spherical earth for uniform ice and seawater surfaces and for three layered cases. The frequency is 700 kHz.

Figure 8 — Ground-wave attenuation as a function of distance over smooth spherical earth for uniform ice and seawater surfaces and for three layered cases. The frequency is 1 MHz.

Figure 9 — Ground-wave attenuation as a function of distance over smooth spherical earth for uniform ice and seawater surfaces and for two layered cases. The frequency is 3 MHz.

Figure 10 — Ground-wave attenuation as a function of distance over smooth spherical earth for uniform ice and seawater surfaces and for two layered cases. The frequency is 5 MHz.

Figure 11 — Ground-wave attenuation as a function of distance over smooth spherical earth for uniform ice and seawater surfaces and for three layered cases. The frequency is 7 MHz.

Figure 12 — Ground-wave attenuation as a function of distance over smooth spherical earth for uniform ice and seawater surfaces and for three layered cases. The frequency is 10 MHz.

Figure	Frequency (MHz)	Ice Thickness (m)	Relative Dielectric Constant	Tan δ
3	0.1	3,5,7	22	1.2
4	0.2	3,5,7	16	1.9
5	0.3	3,5,7	13	1.3
6.	0.5	3,5	10	1.0
7	0.7	3,5,7	8	1.0
8	1.0	1,3,5	7	1.0
9	3.0	1,3	6	0.333
10	5.0	1,3	6	0.200
11	7.0	.5,1,3	6	0.143
12	10.0	.5,1,2	6	0.100

Table 1 — Data Summary

In the calculation of these results, one of the three techniques described in Appendix B was used. In general, for a given case, either the power series or small curvature approximation was used at the short range and the residue series for the longer ranges. To obtain a smooth fit at the transition range, 50 terms were used in the residue series summation.

The general characteristic of the variation of path loss for the layered case can be described in terms of three regions. The lower frequency curves (Figs. 3 to 6) show only the first of these zones, a region at short ranges where the surface wave mode dominates and the field strength is enhanced over the seawater only case. The effect is minor for the thicknesses studied (and of practical interest) at the lowest frequencies but is significant at 300 and 500 kHz where the path loss is as much as 25 dB better than seawater alone at a range of 1000 km (546 nmi). The region of enhanced propagation is evident in all higher frequency curves although at distances that become shorter as the frequency increases. At the two highest frequencies studied, 5 and 7 MHz, the enhanced zone still exists but at distances too short to be useful for most communication purposes.

The second, intermediate zone is a region in which the field strength decreases rapidly and nonmonotonically with distance. The great increase in path loss over this interval is caused by the decay of the surface-wave component of the total field in this region. At some distance beyond the onset of this rapid increase in path loss, the surface-wave mode decays to a magnitude that is comparable to the other normal ground-wave modes, and an interference region consisting of maxima and minima in the attenuation function is evident. Although not shown here, there is a corresponding oscillatory effect in the phase of the electric field as a function of range [5] rendering this portion of the path dispersive.

Because the surface-wave mode has a greater exponential attenuation than the other modes making up the total ground-wave field, its effect on the behavior of the total path loss is no longer important beyond the intermediate region. In the third zone, the attenuation function returns to a smooth, monotonically decreasing function of range but at a much greater loss than for seawater alone, in spite of the existence of a seawater substrate. Moreover, in this region the shape of the layered case curves matches the ice-only curve, indicating that the ground wave in this zone is dominated by the ice and not by the seawater substrate. It is readily apparent that at frequencies above approximately 2 to 3 MHz for ice thicknesses likely to be encountered over deep Arctic ground-wave paths, the path loss is much greater than for an open ocean geometry, limiting the range of available frequencies for communication purposes to the MF and lower HF ranges.

This effect is seen more graphically in Fig. 13 where the path loss is plotted as a function of frequency for an ice thickness of 3 m for four distances, 50, 200, 800, and 1600 km. For comparison, the dashed curve shows the attenuation as a function of frequency for a smooth seawater-only case at a range of 50 km. (In the solid curves, the oscillatory behavior associated with the layered cases at intermediate ranges has been smoothed for clarity.) Several interesting characteristics are evident in Fig. 13 including:

- For any given range, at the lowest frequencies, the layered and uniform earth curves are asymptotic. Apparently the layer thickness (and its effect) is trivial at these frequencies in comparison with the wavelength of the electric field in air.
- There is a frequency or set of frequencies where the layered earth propagation enhancement over uniform seawater is optimized. For a distance of 50 km, this frequency is near 1 MHz while at the much longer distance, 1600 km, the optimum frequency has dropped to approximately 500 kHz.
- The expected increasing trend of attenuation with frequency that is evident in the uniform seawater and short-range layered cases is reversed for the two longer distance cases plotted. At 1600 km, for example, frequencies near 500 kHz have less path loss than lower frequencies in the range 100 to 300 kHz.

Figure 13 - Ground-wave attenuation over spherical earth as a function of frequency

- Each of the solid curves contains a sharp knee in its variation with frequency. This feature becomes more prominent as the distance increases. At 1600 km, for example, the difference in path loss between 600 and 800 kHz is on the order of 40 dB. The effect is similar to waveguide cutoff and highlights the importance of careful choice of frequency in a practical case.
- Frequencies in the HF band (3 to 30 MHz) are of value only for short distance links via ground-wave propagation. Longer distance links are better addressed using frequencies in the MF range (0.3 to 3 MHz). The availability of communication hardware capable of matching this need, however, is limited.

Figure 14 shows the variation of path loss as a function of layer depth for 10 and 50 km at a fixed frequency of 7 MHz. The two curves approach the seawater-only case (shown as horizontal lines at the ordinate axis) as the thickness is reduced to zero. At the right edge of the figure, the curves asymptotically approach the case of propagation over uniform sea ice as the thickness increases indefinitely. For small ice depths, a modest enhancement over uniform seawater is shown for both curves. As the thickness increases, the path loss increases rapidly reaching a maximum attenuation at a thickness of approximately 4.745 m and then reversing this trend to reach a minimum near 9.44 m. A succession of maxima and minima follow the envelopes shown for further thickness increases. This effect is a consequence of the impedance transformation effect due to the ice layer and described in Eq. (3). The underlying highly conductive sea substrate is alternately transformed by this mechanism in a manner similar to a conventional transmission line to produce a surface impedance that is, alternately, a good conductor and a poor conductor. Since the ice is not a perfect dielectric and possesses some loss, successive maxima and minima do not reach preceding levels and the underlying sea is eventually masked by ice losses as the thickness continues to increase.

Figure 15 shows three cases of a multilayer geometry at 700 kHz for comparison with a uniform 3-m thick sea-ice layer. In the curve identified as case A, six layers of sea ice, each 0.5-m thick are used in the computer model to form a piecewise approximation to the variation of conductivity with depth in a 3-m thick sheet. Table 2 gives the values used that were obtained from Wentworth and

EDWARD J. KENNEDY

Figure 14 — Ground-wave attenuation at fixed distances of 10 and 50 km as a function of ice layer thickness at 7 MHz

Figure 15 — Ground-wave attenuation as a function of distance for propagation over an ice covered sea surface where the electrical properties of the layer vary with depth

NRL REPORT 9041

Depth	Curve A		Curve B		Curve C	
(m)	ϵ_r	σ	ϵ_r	σ	ϵ_r	σ
0.5	5.5	0.000100	5.5	0.000154	5.5	0.000100
1.0	6.5	0.000159	6.0	0.000210	6.5	0.000159
1.5	8.0	0.000251	6.0	0.000280	8.0	0.000251
2.0	10.0	0.000398	6.5	0.000341	10.0	0.000398
2.5	12.0	0.000631	7.0	0.000423	12.0	0.000631
3.0	18.0	0.001000	7.5	0.000467	18.0	0.001000
3.5	80.0	1.000000	80.0	4.000000	80.0	4.000000
>4.0	80.0	4.000000	80.0	4.000000	80.0	4.000000

Table $2 -$	Ice	Electrical	Properties	Used	in	Fig.	15

Cohn [10]. In certain seasons, ice melt can produce a layer of fresh water that tends to stratify at the ice-water boundary since it is less dense than regular seawater. For case A, this fresh-water layer has been included in the model with a thickness of 0.5 m and a conductivity $\sigma = 1$ Sieman. Curve C is identical in its parameters to Curve A with the exception that the layer of fresh water is not present. Curve B contains data obtained from a core sample in the marginal ice zone during an Arctic field test.

Differences in the curves are not significant until the distance increases to beyond approximately 200 km. At the greatest range shown, the maximum difference between curves is on the order of 10 dB. Curves A and C are plotted for ice parameters that are significantly less lossy than for the ice used for Curve B, but Curve A shows significantly more attenuation at the greatest range because of the less conductive seawater substrate. Note that curves B and C, which describe a more realistic ice layer, are still within 3 dB of the uniform parameter 3-m case even at the longest range considered.

IV. SUMMARY

The ground-wave propagation mode has been studied for applications involving a sea-ice path. In general, the advantages of this propagation mechanism are:

- The path loss is not time-dependent over intervals associated with normal communication message length. The optimum frequency can be predicted in advance of communication sessions and does not require active channel probing as may be the case for skywave or meteor scatter propagation.
- Frequency dispersion is insignificant (although for propagation over ice, this may not be true at some ranges and frequencies).
- There is a large margin against jammers or interceptors who are located beyond the communication range.
- Ground-wave propagation is unaffected by natural or man-made ionospheric disturbances and, in fact, may be enhanced during such events since external noise and interference levels can be expected to diminish in response to ionospheric failure.

EDWARD J. KENNEDY

In the Arctic, some of these advantages are magnified. The normal knee in the attenuation curve for seawater is changed appreciably for an ice-covered path as a result of the rapid decay of the surface wave component of the total field. Correct choice of operating frequency can simultaneously optimize communication link performance while discriminating against potential interceptors or jammers.

It has been shown that the path characteristics are sensitive to the electrical properties of the surface, particularly the ice thickness, but also the conductivity and dielectric constant of the ice. During those times of the year when the ice melts, path loss will probably be affected by the presence of a fresh water layer.

The general behavior of the attenuation as a function of range is given to a good degree of accuracy by considering the layer to be of uniform electrical characteristics throughout its thickness. An analysis of the effect of changes in layer thickness over the path length has not been done. It is expected that the higher frequencies will be most strongly affected by ice thickness variability since small changes will represent a significant portion of a wavelength.

In the Arctic, the best frequencies for use in ground-wave links range from 100 kHz or below to approximately 2 MHz depending on path length. When the attenuation characteristics are combined with other system parameters such as antenna efficiency and external noise level, the optimum communication frequency is expected to be readily identifiable as a peak in system performance over a small range of frequencies in the MF band.

Complete system analysis must also consider the effects of ionospheric refraction on link performance. Electromagnetic energy reaching a distant terminal by this mode may be of comparable magnitude to the ground wave leading to a zone of interference between the two components. In addition, the Artic ionosphere is known to be highly variable with frequent periods of ionospheric failure. Under these conditions, external noise and interfering signals that reach the Arctic by sky wave modes can be expected to decrease markedly leading to improved link performance.

V. REFERENCES

- 1. D.E. Barrick, "Theory of HF and VHF Propagation Across the Rough Sea, 2, Applications to HF and VHF Propagation Above the Sea," *Radio Sci.* **6**(5), 527 (1971).
- 2. J.R. Wait, "Radiation from a Vertical Dipole over a (Plane) Stratified Ground," Trans. IRE AP-1, 9 (1953).
- 3. J.R. Wait, "Radiation from a Vertical Antenna over a Curved Stratified Ground," J. Res. Nat. Bur. Standards 56(4), 237 (1956).
- 4. D.A. Hill and J.R. Wait, "HF Ground Wave Propagation over Sea Ice for a Spherical Earth Model," *IEEE Trans. Antennas Propag.*, AP-29(3), 525 (1981).
- 5. D.A. Hill and J.R. Wait, "HF Radio Transmission over Sea Ice and Remote Sensing Possibilities," *IEEE Trans. Geos. Rem. Sens.* GE-19(4), 204 (1981).
- 6. D.A. Hill and J.R. Wait, "Ground Wave Attenuation Function for a Spherical Earth with Arbitrary Surface Impedance," *Radio Sci.* 15(3) (1980).
- 7. M. Abramowitz and I.A. Stegun, *Handbook of Mathematical Functions*, National Bureau of Standards (Applied Mathematics Series 55, Nov. 1970).

- 8. F.L. Wentworth and M. Cohn, "Electrical Properties of Sea Ice at 0.1 to 30 Mc/s," Radio Sci., J. Res. NBS 68D, 681 (1964).
- 9. S. Ramo, J.R. Whinnery, and T. Van Duzer, Fields and Waves In Communication Electronics (New York, John Wiley & Sons, 1967).

Appendix A

PROGRAM LISTING

ĩo OVERLAP 20 30 RAD COM W.E0, U0, Er(10), Si(10), Hi(10), Gr(10), Gi(10), Kfs, Re, Nrt, Nla COM Tar(101), Tai(101), Acr(10), Acr(10), Acr(101), Qi(101), Qi(101), Zr(10), Zi(10), DIM Yi1r(100), Yi1i(100), Yi2r(100), Yi2i(100) 40 50 60 Nr t=100 20 DISP . WAIT - MATRIX INITIALIZATION" 80 PRINTER IS 16 90 CALL Cexp(0,-PI/3,Rr,Ri) 100 - DATA 1.01879297,3.24819758,4.82009921,6.16330736,7.37217726,8.48848673_ 110 DATA 9.53544905,10.52766040,11.47505663,12.38478837 120 RESTORE 100 130 FOR J=1 TO 10 140 READ X5 150 Yiir(J)=X5*Rr 160. Yili(J)=X5*Ri 170 NEXT J DATA 2.33810741,4.08794944,5.52055983,6.78670809,7.94413359,9.02265085 DATA 10.04017434,11.00852430,11.93601556,12.82877675 180 190 200 RESTORE 180 FOR J=1 TO 10 210 220 READ X5 230 Yi2r(J)=X5*Rr 240 Yi2i(J)=X5*Ri 250 NEXT I FOR J=11 TO Nrt Ais=3*PI*(4*J-1)/8 260 270 2. 1 Aisp=3#PI#(4#J-3)/8 290 CALL Azero(Ais,X3) CALL Azerop(Aisp,Y5) 300 310 Yilr(J)=Y5#Rr 320 Yi1i(J)=Y5#Ri Yi2r(J)=X5#Rr 330 340 Yi2i(J)=X5*Ri 350 NEXT J MAT. TSP=ZER 360 370 380 MAT Or=ZER MAT Di=ZER 390 MAT EN CON 400 410 MAT SI=ZER 420 MAT Hi=ZER 430 N0=120+PI MAT Zr=(N0) MAT Zi=ZER 440 450 460 MAT Gr=7FR 470 MAT GI=ZER 480 Nrt=50 490 PRINT PAGE 500 INPUT "ENTER NUMBER OF ROOTS TO BE FOUND (50)", Nrt 510 Xdd=.2 520 En=Qqr=1 530 Qqi=Fc=Fss=0 E0=8.854E-12 540 550 Re=6378000+4/3 560 U0=PI*4E-7 570 C=1/SQR(E0+U0) 580 590 600 Lfs=C/(F*1E6) 610 Kfs=2*PI/Lfs 620 FOR L=1 TO 10 630 DISP "ENTER DIELECTRIC CONSTANT OF LAYER ";L;" (-1 TO STOP)"; 640 INPUT Er (L) 650 IF Er(L)()-1 THEN 680 660 IF L=1 THEN 630 670 GOTO 730 DISP "ENTER CONDUCTIVITY OF LAYER ";L; 680 INPUT SI(L) DISP "ENTER THICKNESS OF LAYER ";L; 690 -700

710 INPUT HI(L) 720 NEXT L 730 740 INPUT "DO YOU WANT HARD COPY? (Y/N)", P1\$ IF P1\$="Y" THEN PRINTER IS 7,6,WIDTH(132) 750 760 Nla=L-1 PRINT "LAYER # ";0;": Eps=";1;TAB(30);"CONDUCTIVITY=";0 770 780 FOR L=1 TO Nla-1 790 PRINT "LAYER # ";L;": Eps=";Er(L);TAB(30);"CONDUCTIVITY=";Si(L);TAB(60);"THICKNESS=";Hi(L);"Meters" 800 810 320 830 DISP WAIT - SURFACE IMPEDANCE CALCULATIONS" 840 FOR L=1 TO N1a 850 Gr(L)=-Er(L)*E0*W*W*U0 360 Gi(L)=Si(L)*W*U0 PRINT "Gamma ";L,Gr(L),Gi(L) 870 880 NEXT L 890 Niter=+1 900 FOR N=1 TO Nrt+1 910 CALL ZEURF(TER(N), TEI(N), ZE, ZI) 920 Der=Zr/NO 930 Dei=Zi/N0 940 Qr(N)=A1*Dei Qi(N)=-A1*Der 950 IF Qr(1)>0 THEN 1000 960 970 Fas=1 780 Xdd=1000 998 GOTO 1010 1000 NEXT N 1010 Niter=Niter+1 1020 Qr=Qr(1) 1030 Qi=Qi(1) 1040 Qmag=SQR(Qr*Qr+Qi*Qi) 1050 Argg=180/PI*ATN(Qi/Qr) 1060_Fn=1 1070 IF Qmag(=1 THEN 1100 1080 Fn=2 1080 Fn=2 1090 CALL Cdivid(1,0,Qr,Qi,Qqr,Qqi) 1100 PRINT "F=";F;" MHz","Qr=";Qr,"Qi=";Qi 1110 PRINT CHR\$(124)&"Q"&CHR\$(124)&"=";SQR(Qr*Qr+Qi*Qi);TAB(30);"(Q=";Argq,LIN(1) 1120 PRINT CHR\$(124)&"D"&CHR\$(124)&"=";SQR(Der*Der+Dei*Dei);TAB(30);"(D=";180/PI*ATN(Dei/Der) 1130 PRINT LIN(1);"NUMBER OF ITERATIONS = ";Niter;LIN(1) 1140 IF Fss=1 THEN 1450 1150_Jadd=Fc=0_ 1160 IF Argq<-30 THEN 1300 1170 IF Argq>-19.2 THEN 1200 1180 Fn=1 1190 GOTO 1300 1200 IF Qmag(=1 THEN 1300 1210 IF Qmag)5 THEN 1270 1220 IF (Qmag)2.5) AND (Argg)-.01) THEN 1270 1230 CALL Kutta(0,0,200,Qr,Qi,Yi1r(1),Yi1i(1),Tsr(1),Tsi(1),1) 1240 CALL Rt0(Qr,Qi,Atr,Ati). 1250 PRINT "Tsr(g)=";Atr, "Tsi(g)=";Ati 1260 GOTO 1280 1270 CALL Rt0(Qr,Qi,Tsr(1),Tsi(1)) 1280 PRINT USING 1390; "Tsr(",1,")=", Tsr(1), "Tsi(",1,")=", Tsi(1), "Qr=",Qr(1), "Qi=",Qi(1) 1270 Jadd=1 1300 FOR J=1 TO Nrt_ 1310 Js=J+Jadd 1320 DISP " ITERATION #";Niter;" ROOT #";Js 1330 IF Fn=2 THEN 1360 1340 CALL Kutta(0,0,50,Qr(Js),Qi(Js),Yi1r(J),Yi1i(J),Tsr(Js),Tsi(Js),1) 1350 GOTO 1380 1360 CALL Cdivid(1 ,0,Qr(Js),Qi(Js),Qqr,Qqi) 1370 CALL Kutta(0,0,50,Qqr,Qqi,Yizr(J),Yi2i(J),Tsr(Js),Tsi(Js),2) 1380 PRINT USING 1390;"Tsr(",Js,")=",Tsr(Js),"Tsi(",Js,")=",Tsi(Js),"Qr=",Qr(Js),"Qi=",Qi(Js) 1390 IMAGE 2(4X,4A,DD,2A,DDDD,DDDD,2X),3X,2(4X,3A,MDDD,DDDD) 1400 NEXT J 1410 BEEP 1420 Q\$="N" 1430 INPUT "Iterate Roots Again (Y/N)?",Q\$ 1440 IF Q\$="Y" THEN 900 1450 INPUT "ENTER DISTANCES: Start, Multiplier, Number (in km)", Din, Dmult, Ndi 1460 Dd=Din*1000 1470 Ns=Nrt+Jadd 1480 W1=20*LGT(Lfs/(2*PI)) 1490 Wm=1 1500 IF Qmag>1 THEN 1520 1510 CALL Ac(Gr, Gi) 1520 FOR Kin=1 TO Ndi 1530 X=A1*Dd/Re 1540 IF X>Xdd THEN 1660 1550 IF Qmag<1 THEN 1620 1560 CALL Scurv(X,Qr,Qi,Wr,Wi,Rns,Nfp,Mer) 1570 IF Nfp=2 THEN 1600

1500 N=="Small Curvature=1" 1500 GDT 1680 1600 Ms="5. sll_Curvature=2" 1610 JOTD 1680 1620 CALL Pseries(X,Qr,Qi,Wr,Wi) 1630 GDTD 1680 1640 Rns=10 1650 GDTD 1680 1640 Rns=10 1650 Ms="Residue Series" 1670 N=="Residue Series" 1670 N=="Residue Series" 1680 CAL Cabs(Wr,Wi,Wn) 1690 CAL Cabs(Wr,Wi,Wn) 1690 CAL Cabs(Wr,Wi,Wn) 1690 PRINT USING 1710 JDd/1000,Wpl,Ms,"*TERHS= ",Rns,"Error=",Her 1710 IMGC 4X,DDD.DDD.PD,9X,SDDD.D.,10X,10A,5X,8A,DD.4X,6A,D.DE 1720 D=DdSDmult 1720 D=DdSDmult 1720 G=="N" 1740 Q=="N" 1750 IFQUT =Nue Distances (Y/N)?",Q\$ 1760 IF Q=="N" 1770 IFQ=="N" 1770 IFQ=="N" 1770 IFQ=="N" 1770 IFQ=="N" 1820 IF ABS(X):10 THEN 1870 1830 IF ABS(X):10 THEN 1970 1840 EX=(X) 1840 EX=(X) 1840 EX=(X) 1840 RETURN Tanh 1870 D2=EXP(2x)-1 1860 RETURN Tanh 1970 Tanh=1 1970 IFQ==YN 1970 Tanh=1 1970 IFQ==YN 1970 Tanh=1 1970 IFQ==YN 1970 Tanh=1 1970 Tanh=1 1970 Tanh=1 1970 IFQ==YN 1970 Tanh=1 1970 Tanh=1 1970 Tanh=1 1970 FRUEN Tanh

1930 SUB Cdivid(A1, B1, A2, B2, R, I)

1940 C=A2*A2+B2*B2 1950 IF C(>0 THEN 2000 1960 PRINT LIN(2),"ERROR IN SUBPROGRAM Cdivid." 1970 PRINT "DIVISOR IS ZERO.",LIN(2) 1980 PAUSE 1990 SUBEXIT 2000 SUBEXIT
2000 R=(A2*A1+B2*B1)/C 2010 I=(A2*B1-B2*A1)/C 2020 SUBEND !
2030 SUB Cexp(A,B,R,I) 2040 R=EXP(A)*COS(B) 2050 I=EXP(A)*SIN(B) 2060 SUBEND !
2070 SUB Cabs(X,Y,Cabs) 2080 X1=ABS(X) 2090 Y1=ABS(Y)
2100 IF X1(>0 THEN 2130 2110 Cabs=Y1 2120 SUBEXIT
2130 IF Y1<>0 THEN 2160 2140 Cabs=X1
2160 IF X1>Y1 THEN Cabs=X1*SQR(1+(Y1/X1)^2) 2170 IF X1(=Y1 THEN Cabs=Y1*SQR(1+(X1/Y1)^2) 2180 SUBEND !
2190 SUB Csqrt(A,B,R,I) 2200 IF (A()0) DR (B()0) THEN 2230 2210 R=I=0 2220 SUBEXIT 2220 SUBEXIT
2240 R=SQR((ABS(A)+Cabs)*.5) 2250 IF A(0 THEN 2280 2250 I=B/(R+R)
2270 SUBEXIT 2280 IF B<0 THEN I=-R 2290 IF B>=0 THEN I=R
2300 R=B/(I+I) 2310 SUBEND !
2320 SUB Zsurf(Tsr,Tsi,Zr,Zi) 2330 COM W,E0,U0,Er(10),Si(10),Hi(10),Gr(10),Gi(10),Kfs,Re,Nrt,Nla <u>2340 CDM Tsr(101),Tsi(101),Acr(10),Aci(10),Qr(101),Qi(101),Zr(10),Zi(10)</u> 2350 A1=(Kfs*Re/2)^(1/3)/Re 2360 Lsr=Kfs+A1*Tsr
2370 Lsi=A1*Tsi 2380 Lsr2=Lsr*Lsr-Lsi*Lsi 2390 Lsi2=2*Lsr*Lsi 2400 FOR M=N1a TO 2 STEP -1
2410 CALL Csqrt(Gr(M-1)+Lsr2,Gi(M-1)+Lsi2,Uir,Uii) 2420 CALL Csqrt(Gr(M)+Lsr2,Gi(M)+Lsi2,Uwr,Uwi) 2430 CALL Cdivid(Uir,Uii,Si(M-1),E0*Er(M-1)*W,Kir,Kii) 2440 IF M=Nla THEN 2480 2450 Kwr=Zr(M)
_2460_Kwi=Zi(M) 2470_GDTD_2490 2480_CALL_Cdivid(Uwr,Uwi,Si(M),E0*Er(M)*W,Kwr,Kwi) 2490_Ar=ENTanb(Uir*Hi(M=1)) 2500_Ai=TAN(Uir*Hi(M=1))
2510 CALL Cdivid(Ar,Ai,1,Ar*Ai,Tr,Ti) 2520 Nr=Kir*Tr-Kii*Ti+Kwr
2330 AI-AIAAIATAIXIITAIXIITAU 2540 Dr=Kwr*Tr-Kwi*Ti+Kir _ 2550_ Di=Kwr*Ti+Kwi*Tr+Kii

2560 CALL Cdivid(Nr,Ni,Dr,Di,Ar,Ai) 2570 Zr(M-1)=Kir*Ar-Kii*Ai 2580 Zi(M-1)=Kir*Ai+Kii*Ar 2590 NEXT M 2600 Zr=Zr(1) 2610 Zi=Zi(1) 2620 SUBEND ! 2630 SUB Rseries(X,Ns,Wr,Wi,Rns,Mer) 2640 CDM W,E0,U0,Er(10),Si(10),Hi(10),Gr(10),Gi(10),Kfs,Re,Nrt,Nla 2650 COM Tsr(101),Tsi(101),Acr(10),Aci(10),Qr(101),Qi(101),Zr(10),Zi(10) 2660 Fr=Ei=Sr=Sii=Es=0 2670 Er=1E-6 2680 CALL Cdivid(PI*X,0,0,1,Ar,Ai) 2690 CALL Csurt(Ar, Ai, Br, Bi) 2700 FOR S=1 TO Ns 2710 Qr2=Qr(S)*Qr(S)-Qi(S)*Qi(S) 2720 Q12=2*Qr(S)*Q1(S) 2730 CALL Cexp(Tsi(S)*X,-Tsr(S)*X,Ar,Ai) 2740 CALL Cdivid(Ar,Ai,Tsr(S)-Qr2,Tsi(S)-Qi2,Cr,Ci) 2750 Er=Fr+Cr 2760 Fi=Fi+Ci 2770 IF S(10 THEN 2830 2780 Err=ABS((Fr-Sr)/Sr). 2790 Eri=ABS((Fi-Sii)/Sii) 2800 IF Err)Er THEN 2830 2810 IF Eri)Er THEN 2830 2820 Fs=1 2830 Sr=Fr 2840 Sii=Fi 2850 IF Fs=1 THEN 2870 2860 NEXT S 2870 Mer=MAX(Err,Eri) 2880 Wr=Br*Sr-Bi*Sii 2890 Wi=Br*Sii+Bi*Sr 2900 Rns=S-1 2910 SUBEND 1 2920 SUB Kutta(Ar, Ai, N, Br, Bi, Yntr, Ynti, Yr, Yi, Fn) 2930 RAD 2940 DIM Kr(3), Ki(3) 2950 Hr=(Br-Ar)/N 2960 Hi=(Bi-Ai)/N 2970 Eps=1E-6 2980 Xr=Ar 2990 Xi=Ai 3000 Hhr=Hr/2 3010 Hhi=Hi/2 3020 Ysvr=Yr=Yntr 3030 Ysvi=Yi=Ynti 3040 Xsyr=Xr 3050 Xsvi=Xi 3060 FOR L=0 TO 3 3070 CALL Func (Fn, Ysvr, Ysvi, Xr, Xi, Fr, Fi) 3080 Kr(L)=Hr*Fr-Hi*Fi 3090 Ki(L)=Hr*Fi+Hi*Fr 3100 ON L+1 GOTO 3110,3110,3160,3200 3110 Xr=Xsvr+Hhr 3120 Xi=Xsvi+Hhi 3130 Your=Yr+Kr(L)*,5 3140 Ysvi=Yi+Ki(L)*.5 3150 GOTO 3200 3160 Xr=Xsvr+Hr 3170 Xi=Xsvi+Hi 3180 Ysvr=Yr+Kr(L) 3190 Ysvi=Yi+Ki(L) -----

3200	NEXT L
3210	Yr=Yr+(Kr(0)+2*(Kr(1)+Kr(2))+Kr(3))/6
3220	Yi=Yi+(Ki(0)+2*(Ki(1)+Ki(2))+Ki(3))/6
3230	IF Xr>Br-Eps THEN SUBEXIT
3240	Ysur=Yr
_3250	Ysvi=Yi
3260	GDTO 3040
3270	SUBEND !
7000	OUT Fund /Fr Your Your Yo Yi En Eil
<i>ತಿಜೆ</i> ೮೪ ಸಾರಾಗ	508 FUNC(FN,1507,1501,X7,X1,F7,F1)
3300	
3310	IF En=2 THEN 3340
3320	CALL Cdivid(1.0.Ysur-Ar,Ysui-Ai,Fr,Fi)
3330	SUBEXIT
3340	Br=Ysvr*Ar-Ysvi*Ai
3350	Bi=Ysur*Ai+Ysui*Ar
3360	CALL Cdivid(1,0,1-Br,-Bi,Fr,Fi)
3370	SUBEND !
7700	CUT Character (N. V. V. V. V.)
3380	SUR LDOWERIN, Xr, X1, Ir, II)
3070	
3410	
3420	SUBEXIT
3430	Yr=Ar=Xr
3440	Yi=Ai=Xi
3450	IF N=-1 THEN 3570
3460	IF N=1 THEN SUBEXIN
3470	FOR L=1 TO ABS(N)-1
3480	Zr=Ar*Xr-Ai*Xi
3490	ZI=Ar*XI+AI*Xr
2510	
3510	
3520	TENA THEN 3570
3540	
3550	Yi=Ai
_3560	SUBEXIT
3570	CALL Cdivid(1,0,Ar,Ai,Yr,Yi)
3280	SUBEND !
3590	
3600	
3610	CALL CDOUWER(-1, X, L, H), HI (-1)
3630	
3640	Ai=Ai+,5×Bi
3650	CALL Cpower(-4,X,Y,Br,Bi)
3660	Ar=Ar+Br/B
_3670	Ai=Ai+Bi/B
3680	CALL Cpower(-7,X,Y,Br,Bi)
3690	Ar=Ar+5*Br/32
3700	A1=A1+5*B1/32
3710	CALL Cpower(-10,X,Y,Br,Bl)
3/20	Armariix07/32
3740	CALL Chower(-13, X, Y, Br, Bi)
3750	Ar=Ar+539*Br/512
3760	Ai=Ai+539*Bi/512
3770	CALL Cpower(3,X,Y,Cr,Ci)
3780	Cr = -1 - Cr * 4/3
3790	Ci=-Ci*4/3
3800	CALL Cpower(-3,X,Y,Br,Bi)
3810	Cr=Cr-7*Br/12
3820	Ci=Ci-7*Bi/12

3830 CALL Cpower(-6,X,Y,Br,Bi) 3840 Cr=Cr-31*Br/48 3850 Ci=Ci-31*Bi/48 3860 CALL Cpower(-9,X,Y,Br,Bi) 3870 Cr=Cr-397*Br/288 3880 Ci=Ci-397*Bi/288 3890 CALL Cexp(Cr,Ci,Br,Bi) 3900 CALL Cpower(2,X,Y,Cr,Ci) 3910 T0r=Ar+2*Br*Ci+2*Bi*Cr 3920 T0i=Ai+2*Bi*Ci-2*Br*Cr 3930 SUBEND ! 3940 SUB Azero(Z,R) 3950 R=1+5/(48*Z^2)-5/(36*Z^4)+77125/(82944*Z^6)-108056875/(6967296*Z^8) 3760_R=Z^(2/3)*(R+162375596875/(334430208*Z^10)) 3970 SUBEND ! 3980_SUB_Azerop(Z,R)_ 3990 R=1-7/(48*2^2)+35/(288*Z^4)-181223/(207360*Z^6) 4000 R=Z^(2/3)*(R+18683371/(1244160*Z^8)-91145884361/(191102976*Z^10)) 4010 SUBEND 1 4020 SUB Pseries(X,Qr,Qi,Wr,Wi) 4030 COM W, E0, U0, Er(10), Si(10), Hi(10), Gr(10), Gi(10), Kfs, Re, Nrt, Nla 4040 COM Tsr(101),Tsi(101),Acr(10),Aci(10),Qr(101),Qi(101),Zr(10),Zi(10) 4050 Wr=Wi=0 4060 CALL Cexp(0, PI/4, Ar, Ai) 4070 Br=(Qr*Ar-Qi*Ai)*SQR(X) 4080 Bi=(Qr*Ai+Qi*Ar)*SQR(X) 4090 FOR M=0 TO 10 4100 CALL Cpower(M,Br,Bi,Ar,Ai) 4110 Dr=Acr(M)*Ar-Aci(M)*Ai _4120 Di=Acr(M)*Ai+Aci(M)*Ar 4130 Wr=Wr+Dr 4140 Wi=Wi+Di _4150_NEXT_M_ 4160 SUBEND ! 4170 SUB Ac(Qr,Qi) 4180 COM W,E0,Ú0,Er(10),Si(10),Hi(10),Gr(10),Gi(10),Kfs,Re,Nrt,Nla 4190 COM Tsr(101), Tsi(101), Acr(10), Aci(10), Qr(101), Qi(101), Zr(10), Zi(10) 4200 P2=SQR(PI) 4210 Acr(0)=1 4220 Aci(0)=0 4230 Acr(1)=0 4240 Aci(1)=-P2 4250 Acr(2)=-2 4260 Aci(2)=0 4270 CALL Cpower(-3,Qr,Qi,A3r,A3i) 4280 CALL Cpower(-6,Qr,Qi,A6r,A6i) 4290 CALL Cpower (-9, Qr, Qi, A9r, A9i) 4300 Acr(3)=-(A31/4)*P2 4310 Aci(3)=(1+A3r/4)*P2 4320 Acr(4)=4/3*(1+A3r/2) 4330 Aci(4)=4/3*A3i/2 4340 Acr(5)=P2/4*(3*A31/4) 4350 Aci(5)=-(P2/4)*(1+3*A3r/4) $4360 \text{ Acr}(6) = -(8/15) \times (1 + A3r + 7 \times A6r / 32)$ 4370 Aci(6)=-(8/15)*(A3i+7*A6i/32) 4330 Acr(7)=-(P2/6)*(5*A3i/4+27*A6i/32)_ 4390 Aci(7)=P2/6*(1+5*A3r/4+27*A6r/32) 4400 Acr(8)=16/105*(1+3*A3r/2+27*A6r/32) 4410 Aci(8)=16/105*(3*A3i/2+27*A6i/32) 4420 Acr(9)=P2/24*(7*A3i/4+5*A6i/4+21*A9i/64) 4430 Aci(9)=-(P2/24)*(1+7*A3r/4+5*A6r/4+21*A9r/64)

_4440_Acr(10)=-(32/945+64*A3r/945+11*A6r/189+7*A9r/270)

4450 Aci(10)=-(64*A3i/945+11*A6i/189+7*A9i/270) 4460 SUBEND 1 4470 SUB Scurv(X, Qr, Qi, Wr, Wi, Sns, Nfp, Mer) 4430 Wr=Wi=0 4490 Ar=Qr*Qr-Qi*Qi 4500 Ai=2*Qr*Qi 4510 Pr=-X*Ai 4520 Pi=X*Ar 4530 Pmag=SQR(Pr*Pr+Pi*Pi) 4540 Psr=Pr*Pr-Pi*Pi 4550 Psi=2*Pr*Pi 4560 IF (Pmag>12) DR (Qr(0) THEN 4600 4570 CALL Fp1(Pr,Pi,Fr,Fi,Sns,Mer) 4580 Nfn=1 4590 GOTO 4620 4600 CALL Fp2(Pr,Pi,Fr,Fi,Sns,Mer) 4610 Nfp=2 4620 CALL Csqrt(Pr*PI,Pi*PI,P2r,P2i) 4630 CALL Cpower(-3,Qr,Qi,A3r,A3i) 4640 CALL Crower (-6. Qr, Qi, A6r, A6i) 4650 Br=1+P2i-Fr-2*Pr*Fr+2*Pi*Fi 4660 Bi=-(P2r+Fi+2*Pr*Fi+2*Pi*Fr) 4670 Wr=Fr+.25*(A3r*Br-A3i*Bi) 4680 Wi=Fi+,25*(A3r*Bi+A3i*Br) 4690 Br=1-P2r*Pi+P2i-P2i*Pr-2*Pr+5/6*Psr+.5*Psr*Fr-Fr-.5*Psi*Fi <u>4700 Bi=P2r*Pr-P2r-P2i*Pi-2*Pi+5/6*Psi+.5*Psr*Fi-Fi+.5*Psi*Fr</u> 4710 Wr=Wr+,25*(A6r*Br-A6i*Bi) 4720 Wi=Wi+.25*(A6r*Bi+A6i*Br) 4730 SUBEND ! 4740 SUB Fp1(Pr,Pi,Fr,Fi,Sns,Mer) 4750 Cr=Ci=Fr=Fi=Fs=0 4768 Er=1E-4 4770 CALL Csqrt(Pr,Pi,Ar,Ai) 4280 Tr=-Pr-4790 Ti=-Pi 4800 Gr=Br=-Ai 4810 Gi=Bi=Ar 4820 FOR N=1 TO 40 4830 F1=-(1/N)*((2*N-1)/(2*N+1)) <u>4840</u> Cr=F1*(Br*Tr-Bi*Ti) _ _ 4850 Ci=F1*(Br*Ti+Bi*Tr) 4860 Br=Cr 4870 Bi=Ci 4880 Gr=Gr+Br 4890 Gi=Gi+Bi 4900 IF N(3 THEN 4960 4910 Err=ABS((Fr-Gr)/Fr) 4920 Eri=ABS((Fi-Gi)/Fi) 4930 IF Err)Er THEN 4960 4940 IF Eri)Er THEN 4960 4950 Fs=1 4960 Fr=Gr 4970 Fi=Gi 4780 IF Fs=1 THEN 5000 4990 NEXT N 5000 Mer=MAX(Err,Eri) 5010 Sns=N-1 5020 Cr=1-2/SQR(PI)*Fr 5030 Ci=-(2/SQR(PI))*Fi 5040 CALL Cexp(-Pr,-Pi,Br,Bi) 5050 Gr=Br*Cr-Bi*Ci 5060 Gi=Br*Ci+Bi*Cr 5070 CALL Csgrt(Pr*PI,Pi*PI,Ar,Ai) 5080 Er=1+Ar*Gi+Ai*Gr

5090	Fi=Ai*Gi-Ar*Gr
5100	SUBEND !
5110	SUB Fp2(Pr,Pi,Fr,Fi,Sns,Mer)
5120	Gr=Gi=Fr=Fi=Fs=0
5130	Er=1F-4
5140	IF ATN(Pi/Pr)(0 THEN 5190
5150	CALL Csort(PI*Pr,PI*Pi,Cr,Ci)
5160	CALL Cexp(-Pr, -Pi, Dr, Di)
5170	Gr=2*Dr*Ci+2*Di*Cr
5180	Gi=2*Di*Ci-2*Dr*Cr
5190	CALL Cdivid(1,0,-2*Pr,-2*Pi,Ar,Ai)
5200	Tr=Ar
5210	Ti=Ai
5220	Gr=Gr+Tr
5230	Gi=Gi+Ti
5240	FOR M=2 TO 20
5250	Br=-(2×M-1)×(Ar×Ir-Ai×Ti)
5260	Bi=-(2×M-1)*(Ar*Ti+Ai*Tr)
5270	Tr=Br
5280	Ti≕Bi
5290	Gr=Gr+Tr
5300	Gi=Gi+Ti
5310	IF M(4_THEN_5370
5320	Err=ABS((Fr-Gr)/Fr)
5330	Eri=ABS((Fi-Gi)/Fi)
5340	IF Err > Er_ THEN 5370
5350	IF Eri>Er THEN 5370
5360	Fs=1
5370	Er=Gr
5380	Fi=Gi
5390	IF Fs=1 THEN 5410
5400	NEXT_M
5410	Mer=MAX(Err,Eri)
5420	Sns=M-1
5430	SUBEND

Appendix B

USEFUL APPROXIMATION FOR THE GROUND-WAVE ATTENUATION

Solutions for the ground-wave attenuation function can be found by using one of three techniques. Two of these are approximations valid at short numerical distances while the third uses a residue series summation that is technically accurate at any range, but which becomes increasingly inefficient (in the number of terms required) as the distance between source and receiver is decreased.

Calculation of the attenuation function using the residue series representation requires knowledge of the poles t_s , which are roots of the equation:

$$\frac{dw(t)}{dt} - qw(t) = 0, \qquad (B1)$$

where

$$w(t) = \sqrt{\pi} \{Bi(t) - iAi(t),$$

in which Ai(t) and Bi(t) are Airy functions [B1].

An efficient procedure for solution of Eq. (B1) has been described by Hill and Wait [B2]. A summary of this procedure and the regions of validity are presented in Fig. B1. In the first region, denoted by "1," the differential equation

$$\frac{dt_s}{dq} = \frac{1}{t_s - q^2},\tag{B2}$$

is integrated numerically using a complex, Runge-Kutta technique (Appendix A provides a listing of the numerical techniques employed to solve for the attenuation function) starting from the initial conditions:

$$t_s \mid_{q=0} = t_s(0) = \alpha'_s e^{\left(-\frac{i\pi}{3}\right)}, \qquad (B3)$$

in which the set of values α'_s (s = 1 to ∞) are the real zeroes of Ai'($-\alpha$).

In the second region identified by "II" in Fig. B1, the transformation $Q = q^{-1}$ is made to obtain the differential equation:

$$\frac{dt_s}{dQ} = \frac{1}{1 - Q^2 t_s}.$$
 (B4)

This equation is integrated using the same numerical technique starting from the initial conditions:

$$t_{s} \mid_{Q = 0} = t_{s}(\infty) = \alpha_{s} e^{\left[-\frac{i\pi}{3}\right]}, \qquad (B5)$$

in which the values α_s (s = 1 to ∞) are the real zeroes of $Ai(-\alpha)$.

In the region of Fig. B1 in which the ground constants produce |q| > 1 and phase of $q > -30^{\circ}$, an additional root t_0 represents a trapped surface wave mode. Depending on the exact value of q,

Figure B1 — Methods used for solution of the roots t_s and their regions of validity

two methods are used to obtain this root. The first (given as "III" in Fig. B1) uses the asymptotic expansion [B3]:

$$t_{0} \sim q^{2} + \frac{1}{2q} + \frac{1}{8q^{4}} + \frac{5}{32q^{7}} + \frac{11}{32q^{10}} + \frac{539}{512q^{13}} - 12q^{2} \exp\left(-\frac{4q^{3}}{3} - 1 - \frac{7}{12q^{3}} - \frac{31}{48q^{6}} - \frac{397}{288q^{9}}\right).$$
(B6)

The second method (given as "IV" in Fig. B1) uses equation (B2) in the region shown for the solution of the root t_0 only, with the initial condition $t_0|_{q=0} = t_1(0)$. All other roots within the applicable region are found using Eq. (B4).

Two approximations are useful for calculation of the ground wave attenuation function at short numerical distances x. The first of these is a modification to the flat earth attenuation function for spherical earth and is given [B2] by:

$$W = F(p) + \frac{1}{4q^3} \left[1 - i\sqrt{\pi p} - (1+2p)F(p) \right]$$

+ $\frac{1}{4q^6} \left[1 - i\sqrt{\pi p} (1-p) - 2p + \frac{5p^2}{6} + \left(\frac{p^2}{2} - 1\right)F(p) \right],$ (B7)

where

$$F(p) = 1 - i\sqrt{\pi p} e^{(-p)} \operatorname{erfc}(i\sqrt{p}), \qquad (B8)$$

in which $p = ixq^2$ and *erfc* is the complementary error function [B1].

The approximation is useful at short numerical distance x < 0.2 and for values of |q| > 1 as shown in Fig. B2. Typically, these conditions can apply to a uniform lossy surface as well as certain layered cases.

Figure B2 — Methods used for calculation of the ground wave and the regions over which they are most suitable

The second short distance approximation is a power series due to Bremmer [B4] given by:

$$W = \sum_{n=0}^{\infty} A_n (e^{\frac{i\pi}{4}} q \sqrt{x})^n ,$$
 (B9)

in which the first five coefficients are:

$$A_{0} = 1,$$

$$A_{1} = -i\sqrt{\pi},$$

$$A_{2} = -2,$$

$$A_{3} = i\sqrt{\pi} \left[1 + \frac{1}{4q^{3}}\right], \text{ and}$$

$$A_{4} = \frac{4}{3} \left[1 + \frac{1}{2q^{3}}\right].$$

Additional terms through A_{10} are available [B2] and, while they are not included here, have been used in the calculations presented in this report. The power series approximation is most useful for a numerical distance x less than approximately 0.2 and for a surface characterized by |q| < 1 such as unlayered seawater or thin ice over seawater at low frequencies.

REFERENCES

- [B1] M. Abramowitz and I.A. Stegun, *Handbook of Mathematical Functions*, National Bureau of Standards (Applied Mathematics Series 55, Nov. 1970).
- [B2] D.A. Hill and J.R. Wait, "Ground Wave Attenuation Function for a Spherical Earth with Arbitrary Surface Impedance," *Radio Sci.* 15(3) (1980).
- [B3] N.A. Logan, "Numerical Investigation of Electromagnetic Scattering and Diffraction by Convex Objects," Tech. Report AFCRL 66-153, Air Force Geophys. Lab., Air Force Systems Command, Hanscom AFB, Bedford, MA.
- [B4] H. Bremmer, "Applications of Operational Calculus to Ground-Wave Propagation, Particularly for Long Waves," *IRE Trans. Antennas Propag.* AP-6, 267 (1958).

U2291 44 Washington, D.C. 20375-5000 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

DEPARTMENT OF THE NAVY POSTAGE AND FEES PAID THIRD CLASS MAIL DoD-316

