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FOREWORD 

This document presents the results of an investigation into the stability of uncooled cone 
boundary layers at hypersonic speeds. The work described in the report was carried out at 
the Jet Propulsion Laboratory, California Institute of Technology, under contract NAS7-913, 
RD-182, A-216 with the National Aeronautics and Space Administration (NASA), pursuant 
to AFWAL MIPR Nos. FY1456-82-N0021,FY1456-83-N0001, and FY1456-84-N0006. This 
report is the final report for Work Unit 2307N453. 
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SECTION I 
INTRODUCTION 

The stability theory of compressible boundary layers has been largely developed on the 
basis of numerical calculations made for flat-plate boundary layers (see e.g., Mack, Refs. 1 
and 2). Even with the simplification of a zero pressure gradient, the dependence on Mach 
number and the ratio of surface temperature to recovery temperature introduces enough 
complexity to bring out a wide range of physical phenomena that have no counterparts in 
low-speed stability theory. The stability of sharp-cone boundary layers at zero angle-of-attack 
has been commonly supposed to be closely related to flat-plate stability, but except for a series 
of calculations by Malik (Ref. 3) at supersonic Mach numbers, the numerical consequences 
of the difference in geometry have not been extensively investigated. 

Because of the simplicity of the geometry, cones were popular test models in early tran- 
sition experiments. A celebrated flight experiment by Sternberg (Ref. 4) achieved an ex- 
ceptionally high transition Reynolds number on the nose cone of a V2 rocket. Wind-tunnel 
transition experiments on sharp cones were carried out by Laufer and Marte (Ref. 5), Van 
Driest and boison (Ref. 6), Potter and Whitfield (Ref. 7) and Pate (Ref. 8), among others. In 
addition, a "standard" cone was tested in a large number of transonic wind tunnels and the 
transition Reynolds number was used as a calibration device for the disturbance level in the 
tunnels, (Dougherty and Steinle, Ref. 9). The same cone was later used in a significant flight 
test (Dougherty and Fisher, Ref. 10). A cone was also the model of choice in ballistic-range 
experiments, (Potter, Ref. 11; Sheetz, Ref. 12; Reda, Ref. 13). 

Transition experiments, where nothing is measured except a transition Reynolds number, 
are difficult to relate directly to stability theory, although a consistent!/ calculated N factor 
has been shown by Malik (Ref. 3) to be useful as a correlation device. Stability experiments, 
where disturbance growth is measured in the boundary layer prior to transition, offer better 
possibilities of relating theory to experiment. The only cone stability experiments are those of 
Kendall (Ref. 14), of Demetriades (Ref. 15), and of Stetson, Thompson, Donaldson and Siler 
(Refs. 16,17, 18). These experiments are discussed in Section III, and numerical comparisons 
between stability calculations and the sharp-cone measurements of Stetson et al. (Ref. 16) 
are given in Section V.2. 

Transition on blunt cones has been investigated by Brinich and Sands (Ref. 19), Stetson 
and Rushton (Ref. 20), Stainback (Ref. 21), Softley (Ref. 22), Muir and Trujillo (Ref. 23) 
and Stetson (Ref. 24). All of these experiments are in accord that small bluntness increases 
the transition Reynolds number, but that large bluntness decreases it. The only stability 
experiment on the effect of cone bluntness has been carried out by Stetson et al. (Ref. 17). 
A theoretical work on bluntness effects has been carried out by Khan and Reshotko (Ref. 25) 
for a flat plate. 

Transition on cones is believed to be caused by boundary-layer instability in much the 
same way as on flat plates, and the explanation of the effects of bluntness should therefore 
lie within the scope of stability theory. Any such demonstration is critically dependent on 
having an exact calculation of the flow over the blunted cone, and this requirement has 
so far precluded the application of stability theory to this problem. However, no specific 
demonstration of the applicability of stability theory to transition on a cone has been given 
even for the simple case of a sharp cone at zero angle-of-attack. The mean boundary layer in 

-. ■„   .  v v ■- v •   -.   . -. 
^Vl^^vl 



*Q*Qmmf*m*m&^wX9it**Qmf^^ 

this case can be obtained by the Mangier transformation from the flat-plate boundary layer 
if the boundary-layer thickness is considered to be negligible with respect to the cone radius. 
The result is that the cone boundary layer at a given x-Reynolds number Re is identical to 
the flat-plate boundary layer at Re/S. The consequences of using this transformation for the 
mean flow together with the planar stability equations were worked out by Battin and Lin 
(Ref. 26) for two-dimensional (2D) waves. Although the critical Reynolds number of a given 
frequency on the cone is three times that on the flat plate, the cone amplitude ratio A/AQ is 
equal to the cube of the flat-plate amplitude ratio at the same boundary-layer thickness. This 
result concerning the critical Reynolds numbers led originally to the unwarranted conclusion 
that the transition Reynolds number on a cone should be three times that on a flat plate. 
A modification by Tetervin (Ref. 27) gave the result that the ratio should be three only at 
low transition Reynolds numbers, and should decrease to unity at high transition Reynolds 
numbers. No actual stability calculations directed to the cone-flat plate comparison have 
been published, although it is appar^it that because of the faster growth on a cone there 

must be instances where the amplituie ratio on a cone is greater than on a flat plate at the 
same Reynolds number. 

The experimental evidence on the ratio of cone to flat-plate transition Reynolds numbers 
is confusing. Comparisons of experimental data on cones and on flat plates and hollow 
cylinders (considered to be equivalent to a flat plate) have been made by Potter and Whitfield 
(Ref. 7), Whitfield and lanuzzi (Ref. 28) and Pate (Ref. 8). The extensive comparison by 
Pate of all available experiments showed, in agreement with Potter and Whitfield and with 
Whitfield and lanuzzi, that the ratio is about 2.5 at M^ = 3 and decreases steadily to 1 at 
hypersonic Mach numbers, in general agreement with Tetervin. All authors compared what 
is essentially the end-of-transition Reynolds numbers. However, Laufer and Marte (Ref. 5) 
measured transition on a 2.5° half-angle cone in two wind tunnels, and compared the results 
with flat-plate transition measurements in one of the wind tunnels at similar unit Reynolds 
numbers between M^ = 2 and 5. The comparison showed the end-of-transition Reynolds 

numbers, in the authors words, to be "not very different." The reason for this difference with 
the conclusions of Refs. 7 and 28 is that the flat-plate transition Reynolds numbers of Laufer 

and Marte were much higher than the flat-plate and hollow-cylinder transition Reynolds 
numbers of the other investigators at low Mach numbers. 

Tlie original aim of the present work was to investigate the hypersonic stability charac- 
teristics of both sharp and blunt cones with normal-mode stability calculations based on con- 
ventional linear stability theory. The mean flow over blunt cones was to have been obtained 
from the AFWAL state-of-the-art parabolized Navier-Stokes code. However, the viscous 
shock-layer profiles produced by this code were found to not be of the quality required in a 
stability analysis. Therefore, this report is restricted to a study of the stability of sharp-cone 
boundary layers at zero angle-of-attack. Standard linear stability theory is used to carry out 
a thorough numerical study of normal-mode stability characteristics on a cone with special 
reference to the conditions of the Stetson et ai (Ref. 16) stability experiment (referred to 
hereafter eis STDS). In Section V.2 comparisons of the calculations with experimental mea- 
surements bring out major areas of disagreement which remain to be resolved even in this 
supposedly simple case. In addition, a series of calculations in Section V.3 of both cone and 
flat-plate N factors at three Mach numbers show what one might expect the relation between 
transition on a cone and a flat plate to be on the basis of stability theory. 
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SECTION II 
COMPRESSIBLE STABILITY EQUATIONS 

The same compressible stability equations will be used as in planar flow. The coordinate 
system is Cartesian with the x* axis along the cone surface in the flow direction, the y* axis 
normal to the surface, and the z* axis in the spanwise (azimuthal) direction. All quantities 
with asterisks are dimensional. The derivation starts with the Navier-Stokes equations for a 
perfect gas. The flow quantities, denoted by an overbar, are divided into a mean flow and an 
unsteady term. 

(1) 

These quantities are, respectively, the velocity components, pressure, temperature, density, 
viscosity coefficient, thermal conductivity coefficient and second viscosity coefficient. The 
first term on each RHS is the steady mean-flow term; the second is an unsteady fluctuation. 
The latter are denoted by lower-case letters except for the transport terms, where a prime 
is used. The equations are linearized with respect to the fluctuations, the mean-flow terms 
subtracted out, and, finally, the assumption of locally parallel, or quasiparallel, flow is made. 
The resulting equations are made dimensionless with respect to the local freestream, or 
boundary-layer edge, velocity U*, a reference length L', and the edge values of all state 
variables including the pressure. Both viscosity coefficients are referred to /i* and K* is 
referred to c*U*, where c* is the specific heat at constant pressure. The transport coefficients 
are functions only of temperature, so that their fluctuations can be written 

J = {dnldT)9,    K' = {dK/dT)9,   X' = {dX/dT)9 (2) 

Therefore, /i, K and A in the following equations, along with p, are mean-flow quantities, not 
fluctuations. 

The dimensionless, linearized x-momentum equation is 

/du    „du      dU    „, du\ 
Yz) '' 

1    dp 
7M2 dx 

+ 
R 

2/i 
di5 + /i 

+> 

+ 

M) 

5LU 
dy1 + d\ 

+ d\ + a2 
Ml 

dxdy     dxdz 

dh 
+ a2t + 

a2 
w djidT (du 

dx2      dxdy      dxdz I      dt dy \dy 

dv\ 
dx) 

(3) 

dp f(PU_ 

dT \dyy' 
+ 

dy dy) 
+ dV dT dU 
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The y-momentum equaticn is 

H\dt       a.:      dzj 
1    dp 

iMj dy 

1 
+ R ^ay2 + ^ I ai3'+ a^2 + aiay+ aya« 

(4) 
2.x    . / a2u    a2«    a2 lw\     du ( dTdv     dU de     dW 

idz        dT \  dy dy      dy dx      dy dz) 

+ 
Z\df     dTJ dyKdz* dy* dz). 

The i-momentum equation is 

fdw 
vat 

rTdw       dW     „, au; 
+U— + V—+W — 

dx dy dz )- 
1    dp 

7M2 dz 

1 
+ R 

d2w 

a^2 
a2 u;    a2«;     a2v     a2u 
 1 -\ h  
ay2    ai2    aya«   aiaz 

2/t    , /a2u;    a2v     a2uy 

+ d/idT /aw    a^N 
dTdy Uy + dz) 

(5) 

dv(d?W_6     *W_?i\  , dV d7W( 
+ cfT I dy2    +  dy dy) * dT2 dy dy ' 

The continuity equation is 

dr        /du      dv      dw\        dp        dr     M/ar _ 
at        Vai      ay      dzj        dy        dx dz 

The energy equation is 

fde      a«?     dT   „,de\      ,      ./au   dv   dw\ 
P[rt+Ud-x + VTy+Wd-z)--^-1Arx + dy + ^) 

(6) 

+ 

+ 

m 
aR 

dH     dH     dH     }_^ifZß    l^WM 
M* W* d?+Kdf'd^   +KdT'd^d^ 

1 d2K /dry 
KdTi Vdy/ 

+ 7(7 - l)^2 

R 
„  dU/du     dv 

dy \dy     dx 

(7) 

n  dW fdv     dw\     dfi/dUW     dp fdWy „ 
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The equation of state is 

p = r/p + e/T. (8) 

Other quantities that appear in these equations are Mt, the local edge Mach number; 
R -■ UgL'/vl, the reference Reynolds number; 7, the ratio of specific heats; and a - c*///*'. 
the Prandtl number, which is a function of temperature. These equations are valid for a 
three-dimensional (3D) disturbance in a 3D mean flow. 

The boundary conditions at y = 0 are 

u(0) = 0, v(0) = 0, u;(0) = 0, 0(0) = 0. (9) 

The temperature-fluctuation condition is suitable for a gas flowing over a solid wall.   The 
boundary conditions at y —► 00 are 

«(y). v(y). «'(y). My). ö(y)   bounded as y -> oo. 

The solutions to these equations are specialized to 

[u.v.tw.p.r.tf]1" = [ü(y))t)(y),u'(y),p(y)>f(y))ö(y)]   exp  if/  adx + ßz - ut\ 

(10) 

(11) 

where a and ß are the wavenumber compenents, and u; is the frequency. These solutions 
are locally normal modes, but are also suitable for a mean flow that is varying with x and 
constant in z and t. For a constant frequency, Eq. (11) represents a spatial wave train. 

When the individual components of Eq. (11) are substituted into Eqs. (3)-(8), a system 
of ordinary differential equations is obtained for ü(y)) etc. These equations are not yet in a 
form that is suitable for numerical computation. With the dependent variables defined by 

Zi ~ aü+ßw, Z2 = DZU Zs = v, ZA= p/iM?, Zb == 9, 

ZQ = D9, Z7 = aw- ßü, Ze = DZ7, 

where D ~ d/dy, the equations can be written as eight first-order differential equations 

(12) 

Z)2.(y) = £a.>(y)Z.(y),     (. = 1,8). (13) 
j=« 

The lengthy equations for the coefficient matrix elements a^y are listed in the Appendix. The 
boundary conditions ap 

Zi{0) = 0, ZiiO) = 0, Zs{0) = 0, 27(0) = 0, 

Zi{y), Zs(y), Zs{y), Z7{y)   bounded as y -^ 00. 

(14) 
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Equations (13) plus the boundary conditions, Eq. (14), constitute an eigenvalue problem for 
the wave parameters a, ß and w. In general all of these parameters are complex. Two of the 
six real parameters can be determined as eigenvalues; the other four must be specified in some 
way. There is a different eigenvalue relation to solve for each value of the Reynolds number, 
even when the boundary layer is self-similar. For the spatial waves used in this report, the 
frequency is real and specified, and the span wise (azimuthal) wavenumber component ß is 
also real and specified. The way it is specified is discussed in Section V.l in connection 
with Fig. 10. With ß and w known, the complex wavenumber component a = ar + «aj is 
determined as an eigenvalue by a Newton-Raphson local search procedure. The real part, 
ar, is the streamwise wavenumber component, and the negative of the imaginary part, -a,, 
is the spatial amplification rate. 

With the spatial amplification rate known, it can be integrated with respect to i for a 
constant frequency to give the N factor. With the length scale defined to be 

r = Kx7^)1/2. (is) 

the reference Reynolds number is 

R=u:L-/u: = {u:x'yt)
i/\ w 

which is just the square root of the usual i-Reynolds number. The N factor can be written 
in terms of R for a zero pressure-gradient boundary layer as 

rR 

N = ln(A/Ao) = -2 /    a, dR, (17) 
JRo 

where A can be considered an amplitude, and AQ is the value of A at the initial Reynolds 
number RQ- It is usual, as in this report, to take RQ to be the critical Reynolds number of 
the given frequency. For a pressure-gradient or nonsimilar boundary layer, more complicated 
expressions for N are needed. 

^^^^^^^^^ 



SECTION III 
CONE STABILITY EXPERIMENTS 

The three stability experiments that have been carried out with sharp cones at zero angle 
of attack are those of Kendall (Ref. 14} at M 00 = 7.7 and of Demetriades (Ref. 15) and STDS 
(Stetson et cl., Ref. 16} at M00 = 8.0. The latter two experiments are closely related as they 
were performed in the same wind tunnel and used some of the same equipment and data~ 
reduction techniques. Kendall used a cooled 4.5° half-angle cone with the ratio of surface 
temperature to recovery temperature equal to 0.6. Demetriades used a 4° cone, both cooled 
and uncooled, and STDS an uncooled 7° cone. Reference 15 also includes some results from 
an earlier experiment with an un.:ooled 5° cone. There is some disagreement in detail among 
the experiments, but general agreement that at a fixed Reynolds number there is a band of 
unstable frequencies with the lower frequencies being only weakly amplified and the higher 
frequencies more strongly amplified with a marked peak in amplification rate that is closer 
to the upper-branch neutral frequency than to the lower-branch neutral frequency. If the 
disturbances are assumed to be waves moving at phase velocities nearly equal to the edge 
mean velocity, the wave lengths of the most unstable disturbances are about two boundary~ 
layer thicknesses. This fact identifies the disturbances as tw~dimensionalsecond-mode waves . 
All three experiments gave another band of unstable frequencies starting at a f:equency above 
the upper-branch neutral frequency of the second mode. These unstable frequencies have no 
counterparts in linear stability theory. 

Kendall (Ref. 14} obtained his amplification rates by first finding , at an initial x station, 
the y at which the narrow~band response for a selected frequency w&' 3 maximum. This 
position is well defined near the edge of a hypersonic boundary layer where there is a gen~ 
eralized infiection point. The hot- - i e probe was then traversed downstream at the yjy6 of 
maximum response, subject to occasional checks to see if the response was still a maximum, 
and with an appropriate adustment in position if it waa not. The slope of the amplitude vs 
x curve that resulted gave the spatial amplification rate. 

The experimental amplification rates of Demetriades (Ref. 15) and STDS (Ref. 16) were 
obtained from power spectra as measured by a hot wire (STDS) or hot film (Demetriades) . A 
spectrum was measured at one x station, then the hot wire was moved to another station and 
a second spectrum measured . At each x, the hot wire or film was placed at they position of 
maximum wide-band respons ~ The sequence of amplitudes for a given frequency determined 
the spatial amplification rate. Thus at each frequency) any shift of spectral amplitude from 
one x-station to the next is interpreted to be a result of instability; an am litude increase 
is amplification; a decrease is damping. This procedure ignores the possibility that the 
spectrum in certain frequency ranges may change from other infiuences than instability, such 
as receptivity. Also, unlike Kendall's experiment, no allowance was made for the fact that 
different frequencies may have their peak responses at different y / Y6 . 

The experiment of STDS will be used for all experimental comparisons because of the 
detail of the published measurements. The measurements that will be used are not raw hot
wire data, but the results of computerized data procedures. In addition to the discussion 
of these procedures and the data included in the original paper (Ref. 16), the appendices 
of Ref. 18, particularly Appendices A and D, give a further discussion of the data and their 
interpretation which applies to the sharp-cone experiment at zero angle-of-attack, and several 
figures in Ref. 18 give the results of a reassessment of some of the Ref. 16 data. 

7 
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SECTION IV 
NUMERICAL PROCEDURES 

1. MEAN BOUNDARY LAYER 

The boundary layer on a sharp cone at zero angle of attack in supersonic flow can be obtained 
from a flat-plate boundary layer at the same edge Mach number by the simple transformation 
mentioned in the Introduction, which is a special case of the general Mangier (Ref. 29) trans- 
formation for axisymmetric bodies. The transformation states that on a cone the boundary 
layer at 3Re is identical to a flat-plate boundary layer at Re. This transformation is valid 
where there is no interaction between the shock wave and the boundary layer. Even so, it 
ignores the effect of transverse curvature, which is important whenever the boundary-layer 
thickness is not negligible compared to the cone radius. 

Two computer programs were used to produce the boundary-layer profiles used in the 
stability calculations. The first, BL-1, developed by the author, uses a Jet Propulsion Lab- 
oratory (JPL) variable-step, variable-order Adams-Moulton integration subroutine to solve 
the exact zero pressure-gradient planar compressible boundary-layer equations for a perfect 
gas. The viscosity and thermal conductivity coefficients have exactly the same form as in the 
stability equations [see Appendix, Eqs. (All) and (A12)]. There is an option for a constant 
Prandtl number that is used when it is necessary to make stability calculations to compare 
with other authors. The code produces tables of U, DU, D2U,T, DT, D2T which can be read 
directly by the input subroutines of the stability codes. 

The second program, BL-2, is based on the boundary-layer portion of the TAPS code 
(Gentry and Wazzan, Ref. 30). This is basically a finite-difference Cebeci-Smith code (Ref. 31) 
and can be applied to incompressible (water and air) and compressible boundary layers on 
planar surfaces, including infinite-span swept wings, and on axisymmetric bodies. For the 
latter, an option allows the transverse curvature effect to be included. The I/O subroutines 
and the subroutine that calculates the thermodynamic properties were completely rewritten 
to be compatible with the program BL-1. A feature of code BL-2 b that self-similar solutions 
may also be produced, which allows a direct check to be made against results obtained with 
BL-1. 

2. STABILITY CALCULATIONS 

The stability codes used in this investigation are descendants of the 2D temporal viscous 
code described by Mack (Ref. 32). This code was extended to 3D temporal waves by use of 
the Squire transformation, and then largely rewritten in single-precision complex arithmetic 
in about 1970 to allow spatial, temporal and spatial/temporal calculations to be carried 
out. The complex Squire transformation was used for 3D spatial waves and Gram-Schmidt 
orthonormalwation adopted to remove the limitation to low Reynolds numbers. The code 
underwent another significant change in 1977 when the complex Squire transformation WEIS 

abandoned as the method c' treating 3D waves and 3D boundary layers in favor of the 
system of equations given in the Appendix. During this same period the original Adams- 
Moulton integrator was replaced by a Runge-Kutta integrator, subroutines w«.re added to 
allow the automatic calculation of large numbers of eigenvalues in a single computer run, 
the capability to analyze nonsimilar boundary layers was added, and the I/O portions of the 
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code were rewritten to enable the code to be operated conveniently in a time-sharing rather 
than a batch environment. 

Although code development was not an objective of the present contract, much time had 
to be devoted to this type of work in order to be able to carry out the large number of 
stability calculations that were required. The original plan to use the AFWAL computer for 
most of the stability calculations as well as the mean-flow calculations, had to be abandoned 
because no satisfactory communications link was available. Therefore, the calculations that 

were done during the original period of performance of this contract used the JPL Univac 

1100/81 computer, where the cost is based largely on the product of the program size in 
main memory and residence time. To reduce this cost, a simplified version (called SFREQ) 
of the current JPL code was developed for a single frequency. The new code contained 
numerous improvements, which were then incorporated into an extensively revised version 
of the complete code, called BLS. Most of the numerical results given in this report were 
obtained from code BLS, Even with all of this programming effort, difficulties were still 
encountered in carrying out the eigenvalue calculations, and these difficulties are mentioned 
in Section V. 

Finally, in the course of preparing this report a Hewlett-Packard 9000, Series 500, Model 
550, 32-bit dual-processor super-microcomputer became available at no cost. A number of 
additional numerical calculations, which could not be made on the Univac because of cost 
considerations, were made with this facility. The three-megabyte memory of this computer 
allowed storage arrays to be enlarged, and because the computation time was no longer a 
major consideration, more use could be made of double-precision arithmetic in the critical 
parts of the calculation, and finer integration meshes and additional iterations could also be 
used. Also the user interface was greatly simplified and made more convenient by taking 
advantage of the UNIX operating system of the new computer. The porting of the codes 

SFREQ and BLS to the new computer, and the writing of the new interface, were done 
under NASA sponsorship. 

s .• 
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Figure 1. Multiple 2D temporal eigenvalues vs wavenumber at Ä = 9000 : temporal amplifi- 
cation rat .• (top); phase velocity (bottom). M« = 6.8, cone; TQ = 512° K  (922° R). 
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SECTIONV 
NUMERICAL RESULTS 

The numerical results in this Section are divided into three parts. In Part 1, results are 
given at M, = 6.8 for the Reynolds number range of the experiment of STDS. In Part 2, 
comparisons are made with the measurements of STDS. In Part 3, cal ulations that cover a 
wider range of Reynolds numbers are given at M, = 4.5, 5.8, and 6.8 for both cones and flat 
plates. 
1. RESULTS AT M, = 6.8 

There is no large body of hypersonic cone stability calculations as there is for a flat plate 
(Mack, Refs. 1 and 2). To ~emedy this lack, extensive calculations of normal-mode strlbility 
characteristics have been carried out in cone variables at the edge Mach number of STDS. 
All of the calculations are for an insulated-wall boundary layer. Three different methods 
were used to obtain the necessary mean-flow boundary layers. The first method used the 
transformed flat-plate profiles calculated from either code Blr1 \lr Blr2. This method has 
the advantage that the profiles are self-similar and the results depend only on the edge Mach 
number and tagnation temperature, not on the cone angle. In the second method, code 
Blr2 was used to calculate self-similar cone profiles from the axisymmetric boundary-layer 
equations for a cone without the transverse curvature term. Calculations made with these 
profiles served as a check that the transformation was done correctly in the first method. 
Lastly, the transverse-curvature effect was included in the axisymmetric equations, and the 
nonsimilar boundary layer calculated from code Blr2. The lat r calculation, where the cone 
angle is a parameter, was restricted to the STDS half angle of 7°. 

To properly carry out the eigenvalue calculations, and to understand a major numerical 
difficulty that was encountered, it is necessary to have some information about the different 
families of eigensolutions that exist for hypersonic boundary layers. For this purpose, it is 
convenient to start with the temporal theory and the transformed flat-plate boundary layer 
with a freestream temperature of T,• = 50° K (90" R), the aame as in the calculations of Mack 
(Ref. 1). The stagnation temperature is T0 = 512° K (922° R). One feature of hypersonic 
stability calculations with the present numerical method that is quite different from low
speed calculations is that very good guesses of eigenvalues are required for the local search 
procedure to converg to he least-stable solution. With this choice of a boundary layer and 
a high Reynolds number, the fiat-plate temporal 2D in viscid eigenvalue diagrams of Mack 
(Ref. 1) at M, = 7.0 can be used to give the much-needed eigenvalue guesses. The first 
calculations were carried out at R = 9000. The temporal amplification rate w; and the phase 
velocity c are given as functions of the wavenumber et in Fig. 1. Three families of solutions are 
shown. Family Su starts at et = 0, c = 1 + 1/M, and contains the first-mode, second-mode 
and third-mode unstable solutions. All three modes are merged into a single unstable region 
extending from et = 0 to et = 0.492. The second mode is the moat unstable, and the third 
mode is barely discernible. Family S111 starts at et = 0, c = 1 + 1/M, and is composed only 
of damped solutions. For et < et11 = 0.142, the phase velocity c is greater than 1, and for 
et > 0.23 the phase velocity is supersonic with respect to the freestream. Family 8112 starts 
at et = 0.21, c = 1 + 1/M, and also consists only of damped solutions. Foret< et12 = 0.417, 
c is greater than 1. Note that in the inviscid theory all waves with c > 1 are neutral; here, 
even at the high Reynolds number of 9000, they are damped. 

11 
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Figure 2. Multiple 2D spatial eigenvalues vs wavenumber at Ä = 1732 : spatial amplification 
rate (top); phase velocity (bottom). Mt = 6.8, cone; TQ = 728° K (1310° R). 
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The eigenvalue diagrams of the multiple spatial solutions are similar to those of the 
temporal solutions. Also, with the 2D eigenvalues known, the eigenvalues for oblique waves 
can readily be calculated. The effect of wave obliqueness is to destabilize the first mode, and 
to stabilize the second and higher modes and move them to higher wavenumbers. The higher 
modes, and all of the multiple solutions, depend on the existence of a region of flow in the 

boundary layer that is supersonic with respect to the phase velocity. As the wave angle xp 
increases, this region of relative supersonic flow becomes thinner and vanishes completely at 
some ip > 0. Above this wave angle, there is only a single family of solutions. 

With the multiple viscous solutions known at i? = 9000, they can be extended to the 
lower Reynolds numbers of interest here.   Figure 2 gives the results for spatial 2D waves 
at Ä =  1732. The spatial amplification rate a (=  -a,) is given in the upper part anr! 
the phase velocity in the lower part.   The stagnation temperature has been increa?' 
728°K (1310°/?). The effect of stagnation temperature is discussed immediately belr 
this lower Reynolds number, there is a change in the appearance of the amplificatio 
diagram.   All traces of the third mode have disappeared, and the unstable wave-nun 
extend only to ar = 0.3245. A principal effect of the lower Reynolds number is that the 
damping rates are much larger than at R = 9000. The phase-velocity diagram still has the 
same general appearance as at the higher Reynolds number. A fourth solution, 5^3, is shown. 
This solution is also present at i? = 9000, but was not calculated. Note that at the limiting 
lower wavenumber of 5^3 (ar = 0.420) at Ä = 1732, the phase velocity does not approach 

1 + l/Me, but a value a few percent higher.   Indeed, solution S^ also approaches a value 
slightly higher than 1 -f- 1/Me. 

The flat-plate hypersonic boundary-layer calculations of Ref. 1 were all for T* = 

50°K {90°R). As the experiments of Demetriades and STDS were with higher temperatures, 
the sensitivity of the results to the stagnation temperature for an insulated-wall boundary 
layer must be established. With the assumption of a perfect gas, the temperature enters 
through the viscosity and thermal-conductivity coefficients. Figure 3 gives the spatial am- 
plification rate of 2D waves as a function of the dimensionless frequency F = (w*&»*/£/* ) 
for two insulated-wall boundary layers with T* = 50°A" (90°^) and 73.30Ä' (1320fi). The 
latter temperature corresponds to TQ = 728°K (1310°fi), which is the freestream stagnation 
temperature used in most of the measurements of STDS. 

Figure 3 shows that increasing the stagnation temperature has a considerable stabilizing 
influencing at Me = 6.8. The amplification rate is lowered at almost all frequencies, and the 
unstable frequency band is narrowed by about 15%. In view of this large effect, which is 

particularly pronounced in A^-factor calculations, the subsequent stability calculations will 
be for the stagnation temperature of 728°K {1310ofl). There is a further slight stabilization 
at the highest stagnation temperature of the STDS experiments, 1350°ü, but this is not 
significant. 

Some parameters of the self-similar insulated-wall cone boundary layer with T0* = 
7280Ä' (1310°/?) are: wall temperature, TJ, = 609°A" (1096°.R); temperature recovery fac- 
tory, 0.819; dimensionless displacement thickness referenced to L*, 11.01; dimensionless mo- 
mentum thickness, 0.3421; boundary-layer thickness, defined as the y where U = 0.999, 
yi = 13.42; generalized inflection point, y,n//y« = 0.876 [U — 0.956); relative sonic point for 
c = 0.956, y./y« = 0.511. Note that T^/T0* = 0.837, which compares well with the measured 
0.84 in Ref. 16 at i* = 15.1 in. from the cone tip. 
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Figure 3. Effect of stagnation temperature on 2D spatial amplification rate vs frequency at 
R = 1732. Me = 6.8, cone. 
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Figure 4.  Spatial amplification rate vs Reynolds number for several frequencies; 2D waves. 
Me = 6.8, cone; TQ* = 728° K (1310° R). 

Next, program BL-2 was used to calculate the cone boundary layer with T0' = 
7280Ä' (13100Ä) and the transverse curvature term included for a cone half angle of 7°. 
This boundary layer is nonsimilar, so that in the stability calculations a different profile must 
be used at each x station along the cone. The stability codes are set up for this type of input, 
and a calculation of the growth of a constant frequency wave as it propagates downstream 
is carried out in exactly the same way as for a self-similar boundary layer, except that the 
Reynolds numbers are restricted to those at which profiles are available. A considerable num- 
ber of calculations were performed with the nonsimilar profiles, and no important differences 
were found in comparison with the results obtained with the self-similar profiles. For exam- 
ple, including transverse curvature at Ä = 1732 reduced the amplification rate of a wave with 
F = 1.0 x lO-4 from 3.94 x lO-3 to 3.80 x lO-3, and the N factor from 1.87 to 1.75. in view 
of these small differences, all subsequent calculations were performed without the transverse 
curvature term. This procedure has the advantage that the results are applicable to any cone 
angle, and also makes the stability equations completely consistent with the boundary-layer 
equations. 

The 2D stability characteristics for the Mt = 6.8 boundary layer without transverse 
curvature were calculated for several frequencies with the stagnation temperature equal to 
7280Ä' (1310°i?), as it will be in all of the subsequent calculations. The complex wavenumber 
is obtained as an eigenvalue for the given F and R with ß = 0. Each value of F may be 
considered to represent a single 2D wave that is excited at some upstream location, and at 
each downstream location corresponds to the 2D normal mode for that particular F and R. 
The spatial amplification rate is given as a function of R for several frequencies in Fig. 4. The 
higher frequencies, to the left in the figure, belong completely to the second mode. The two 
lowest frequencies have a first-mode region, as is apparent from the smaller slope, followed 
by a second-mode region where the slope increases. A 2D wave can only have appreciable 
amplification at this Mach number, as at all hypersonic Mach numbers, when it is a second- 
mode wave.  Note that as with all self-similar boundary layers, the maximum amplification 
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Figure 5.   Phase velocity vs Reynolds number for three frequencies; 2D waves.   Mt — 6.8, 
cone; TQ* = 728° A" (1310° Ä). 
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Figure 6. N factor vs Reynolds number for several frequencies together with envelope curve; 
2D waves. Mt = 6.8, cone; TQ* = 728° K (1310° R). 
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rate for each frequency increases monotonically with decreasing frequency. 
The phase velocity of three 2D waves is given in Fig. 5 as a function of Reynolds number. 

The characteristic feature of this figure is that, while phase velocity decreases with increasing 
R there is a range of Reynolds numbers for each frequency where the phase velocity decreases 
with increasing R. This behavior is characteristic of the second mode, so that it is in these 
regions that the most unstable waves are located. The maximum amplification rate is located 
just past the center of each reverse-slope region where c is approximately 0.936 for each of the 

three frequencies. Interestingly, c is not far from this value all along the A^-factor envelope 
curve. It is 0.935 at Ä = 970 (where F = 2.2 x 10-4), and increases very slightly with 
increasing R. 

The N factors for seven frequencies, as calculated from Eq. (17), are given in Fig. 6 as a 
function of R. In this figure, all substantial amplification is second mode in character. The 
separate curves for F x 104 = 0.8 and 1.0 show clearly the difference between weak first-mode 
amplification and strong second-mode amplification. In Fig. 6, the envelope curve, which is 
the maximum value of N that is possible at any R, has been drawn graphically. The stability 
program BLS is provided with an automatic procedure for calculating A^-factor envelope 
curves that is intended to obviate the need to draw the curve graphically. Howeve/, this 
procedure, which works well in incompressible flow and at low Mach numbers, could not be 
used because of a numerical difficulty. 

This difficulty arises from the small radius of convergence at hypersonic Mach numbers 
of the eigenvalue search procedure for the least-stable solution. If no convergence at all is 
obtained at some F when calculating eigenvalues for the unstable frequency band at a given R, 

the code reduces the F increment until convergence is obtained and the calculation continues. 
It so happens that at a given F, R the 5^ damped solutions have a much larger radius of 
convergence, and there is likely to be convergence to one of these solutions. By tracking the 
phase velocity, the unwanted eigenvalues are disregarded by the program and the F increment 
reduced just as when no convergence is obtained. The net effect of the convergence failures 
and the false convergences was to so increase the amount, of computation that the automatic 
procedure could no longer be used, and the envelope curve had to be drawn graphically. 

In Fig. 7, the neutral-stability curves in ar, R and F, R space are shown for 2D normal 
modes. Also shown in the figure are two other curves that give the loci of the maximum spa- 
tial amplification rate and the ^-factor envelope curve of Fig. 6. It is of interest that at the 
higher Reynolds numbers the latter two curves are virtually independent of R in the ar, R 
plane. A constant dimenaionless ar means that the dimensional wavelength A* {— 2nL'/a') 
is proportional to the boandary-layer thickness. This result is due to the primarily inviscid 
nature of second-mode instability. The ratio of wavelength to boundary-layer thickness (de- 
fined as the y where U = 0.999) is 1.9 on the TV-factor envelope curve at ß = 2000, and 
this value is characteristic of second-mode waves of maximum growth. The fact that c is also 
nearly constant along the envelope curve means that the dimensional frequency scales with 
the boundary-layer thickness just as does the wavelength. 

The previous results are all for 2D waves. Although 2D second-mode normal modes are 
the most unstable, oblique waves are also unstable and must be looked at. Figure 8 shows the 
effect of wave angle on the spatial amplificatior. rate of three frequencies at ß = 1245. The 
actual independent variable of the calculations was the spanwise wavenumber component ß, 
but it is more convenient to plot the results in terms of the angle rp. The direction of wave 
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Figure   7.      Neutral   boundaries,    ;   locus  of maximum spatial  amplification   rate, 
 ; locus of maximum amplitude ratio, ; 2D waves; wavenumber vs Reynolds num- 
ber (top); frequency vs Reynolds number (bottom). Me = 6.8, cone; TQ = 728° K (1310° R). 
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Figure 8. Effect of wave angle on spatial amplification rate of three frequencies at i? = 1245. 
Me = 6.8, cone; r0* = 728° K (1310° R). 

growth, which is a free parameter for spatial normal modes, has been taken as the freestream 
direction. This choice is suitable for a 2D boundary layer where the wave-train solution 
Eq. (11) simulates a physical wave whose initial amplitude is independent of z. The wave 
with F = 1.4 x 10-4 has its maximum amplification rate as a 2D wave, as is characteristic of 
second-mode behavior. It is only at wave angles near the neutral point that this frequency 
betrays a hint of first-mode behavior in the existence of an inflection point in the <T vs t/» curve 
that moves the neutral point to a slightly higher wave angle than for a pure second-mode 
wave. At F = 1.2 x 10"4, the inflection point has moved to a smaller \p and the first-mode 
character is more pronounced for the larger wave angles. At F = 1.0 x 10-4, all of the oblique 
normal modes, as well as the 2D normal mode, are first mode and the maximum amplification 
rate occurs at V1 = 45°. 

Figure 9 is similar to Fig. 8 except that it is for R = 1732. At this higher Reynolds number, 
F = 1.0 x lO-4, which was purely first mode at R= 1245, is now almost entirely of second- 
mode character except near the neutral point &t rp = 55°. The frequency F = 0.9 x 10-4 has 
first-mode character for %!> greater than about 30°, and F = 0.7 x 10-4 is a first-mode wave 
at all wave angles. It is apparent from Figs. 8 and 9 that as the Reynolds number increases, 
lower and lower values of F take on second-mode character. 

Another way to show the demarcation between first and second-mode behavior at a given 
Reynolds number is to plot the maximum amplification rate, where the maximum is with 
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Figure 9. Effect, of wave angle on spatial amplification rate of three frequencies at Ä = 1732. 
Me = 6.8, cone; T0* = 728° K (1310° R). 

respect to spanwise wavenumber, as a function of frequency. This is done at Ä = 1245 
in Fig. 10. With the criterion for a first-mode wave that there is a local maximum in 
the amplification rate at some ^ > 0°, the highest frequency with first-mode character is 
F = 1.1 X 10~*, where the maximum occurs at 0 = 39°. All higher frequencies have their 
maximum amplification rates at ^ = 0°. Consequently, the wave angle of amai does not 
increase gradually from zero as F decreases, but jumps suddenly from zero to a value near 
40°. 

When single normal modes are used at each Reynolds number to represent the propaga- 
tion of a constant-frequency oblique wave, a condition has to be imposed on the spanwise 
wavenumber component. The condition adopted here is taken from kinematic wave theory, 
and is that the wavenumber vector is irrotational. This is actually a continuity condition 
on the phase. For a wave in a 2D planar boundary layer with a and ß independent of z, it 
reduces to the condition that the dimensional spanwise wavenumber component is constant. 
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Figure 10. Maximum spatial amplification rate vs frequency at i? = 1245; wave angle noted 
where different from zero. Me = 6.8, cone; TQ = 728° K (1310° Ä). 

In dimensionless terms, the condition is that ß/R is a constant. The effect of this condi- 
tion is that the wave angle increases slightly as the wave propagates downstream. There 
is also in general a similar condition on the imaginary part of ß, but in this report only 
normal modes with ß real are used. For a cone, the irrotationality condition is that the 
azimuthal wavenumber component ß$ is constant. In the wavenumber definitions used here, 
ß$ = ßRsin <f>Cy where 4>c is the cone half angle, and the condition is that ßR is constant. The 
effect of this condition is that an oblique wave straightens out as it propagates downstream, 
and the wave angle V" tends towards zero as R becomes large. 

As an example of oblique-wave propagation on a cone, the stability characteristics of four 
waves with F = l.Ox 10-4 are given in Figs. 11-13 and compared with a 2D wave of the same 
frequency. As this frequency has first-mode character up to about R = 1400 for a 2D wave, it 
is of interest whether the increased amplification rates of the oblique waves in the first-mode 
region can outweigh the decreased amplification rates in the second-mode region and result 
in larger ^V factors than the 2D wave. In any case, the decrease in the wave angle because 
of the condition ßR — const., means that eventually any oblique wave grows (or damps) as 
a 2D wave with only an increment or decrement in the N factor to betray its origin as an 
oblique wave. 
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Figure 11. Wave angle vs Reynolds number for four oblique waves; F = 1.0 x 10~4 

(a) ßR = 59.83, (b) ßR = 98.92, (c) ßR = 170.8, (d) ßR = 319.5. Me = 6.8, cone; 
TQ* = 728° A-(1310° Ä). 

An oblique wave on a cone is characterized by the value of ßR. The four waves examined 
here have the following values ofßR : (a) 59.83; (b) 98.92; (c) 170.8; and (d) 319.5. Figure 11 
gives the variation of wave angle with R. These waves cannot all be started at the same R in 
the calculations because of the above mentioned numerical difficulty in the stability codes. 
For any frequency and Reynolds number, the radius of convergence of the eigenvalue search 
procedure decreases with increasing ^ As a result there is a limiting wave angle beyond 
which eigenvalues cannot be found. This limit becomes smaller as R increases for a given 
F, or as F increases for a given R. Thus the starting angles in Fig. 11 are about the largest 
that can be used. In Fig. 12 the amplification rates of the four waves are compared to a 2D 
wave. Wave 'a' initially has oblique first-mode behavior, but for R > 1400 it is close to a 
2D second-mode wave with only slightly smaller amplification rates. Waves 'b' and V have 
larger first-mode amplification rates than wave 'a', but correspondingly smaller second-mode 
amplification rates. Wave 'd* has first-mode behavior only for the largest wave angles, and 
its second-mode amplification is much reduced compared to wave 'c'. 

The N factors of the four waves are compared to a 2D wave in Fig. 13. Wave 'b' has 
the largest N factors in the first-mode region, and in the second-mode region has a slightly 
larger N factor (not shown) than the 2D wave. Wave 'a' has lower N factors in the first-mode 
region than wave 'b', but in the second-mode region it is the wave with the largest N factors. 
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Figure 12. Spatial a-nnplification rate vs Reynolds number for four oblique waves and com- 
parison with 2D wave; F = 1.0 x lO-4 : (a) ßR = 59.83, (b) ßR = 98.92, (c) ßR = 170.8, 
(d) ßR = 319.5; Me = 6.8, cone; ro* = 728° «-(1310° R). 

The other two waves have reduced N factors in the second-mode region compared to a 2D 
wave. Note that even in the optimum case, the increment in N over a 2D wave is quite small, 
and that locally the wave grows almost as a 2D wave. Consequently, pre-transition linear 
wave growth at Me = 6.8 in a cone boundary layer is dominated by 2D second-mode waves. 

2. COMPARISON WITH EXPERIMENT 

In this Section, some comparisons will be made between the stability calculations and the 
measurements of STDS. First, some comments are in order regarding these comparisons and 
what may be expected of them. The experiments measure power spectra in the boundary 
layer of whatever disturbances happen to be present. There is no way to control the origin 
of the disturbances, or to identify the fluctuations as instability waves, or to determine 
the spanwiae wavenumber spectrum of what is measured. Amplification rates in the STDS 
experiment were obtained from the spectra at the y locations of the peak wide-band response, 
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Figure 13. N factor vs Reynolds number for four oblique waves and comparison with 2D wave; 
F = l.Ox lO"4 : (a) ßR = 59.83, (b) ßR = 98.92, (c) ßR = 170.8, (d) ßR = 319.5; Me = 6.8, 
cone; Tc* = 728° ^(1310° R). 

which ars not necessarily the locations of the peaks of the individual frequency components. 
As to the calculations, they are of particular normal modes and two points must be kept in 
mind. First, the "amplitude" A in the definition of N does not correspond to the physical 
wave amplitude, which, unlike A, is dependent on both the physical quantity being measured 
and the y measurement station in the boundary layer. However, it is convenient to think 
of A as an actual amplitude measured in some consistent manner, such as was done in the 
experiments where the maximum amplitude point in the boundary layer, either wide or 
narrow-band, was used. Second, although the normal modes have been selected to represent 
possible wave motion, they are definitely not the response of the boundary layer to any 
specific input such as a point source, much less to whatever the actual input is in the wind 
tunnel. Consequently, while normal modes with frequencies near the calculated most-unstable 
frequency can be expected to be present in the experiment, the measured amplitude ratios 
and amplification rates cannot be expected to agree with normal-mode calculations of these 
quantities. 

In Fig. 14, the calculated maximum spatial amplification rate a.t R = 1732, where the 
maximum is with respect to spanwise wavenumber, is given as a function of the dimensionless 
frequency, F, and compared with measurements at i? = 1728. The numerical relation between 
F and /* (in khz) is F = 1.16 x lO"6 /* for Re^/ft = 1.0 x 106 {Rejft = 1.42 x 106). 
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Figure 14. Spatial amplification rate vs frequency at Ä = 1731 : , calculated maximum 
with respect to ß (wave angles noted where different from zero); o - experimental points from 
Stetson et al. (Ref. 16), Re^/ft = 1.0 x 106. Me = 6.8, cone; T0* = 728° K (1310° Ä). 
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Figure 15. Experimental spatial amplification rate vs Reynolds number for three frequencies 
from Stetson ti al. (Ref. 16), Äe«, /ft = 1.0 x 106. Me = 6.8, cone; TQ* = 728° 7^ (1310° Ä). 

Although the experimental amplification rates are shown as data points for clarity, they are 
taken from the tabulated results of the STDS procedure of fitting a fourth-degree polynomial 
to the hot-wire amplitude measurements. These results were provided to the author by 
Stetson (Ref. 33). In Fig. 14, the measured frequency of the maximum amplification rate 
is within 10% of the calculated value. The measured second-mode amplification rates are 
for the most part considerably smaller than the theoretical, but differences in this quantity, 
as mentioned in the previous paragraph, are not surprising. The measured upper-branch 
neutral frequency is only about 78% of the calculated value. A notable difference between 
the calculations and measurements is the low values of the measured first-mode amplification 
rates. Indeed, the measured amplification rates are in much better agreement with calculated 
2D first-mode amplification rates (see Fig. 3) than with the oblique-wave amplification rates 
of the figure. This difference could merely be a reflection of some of the factors mentioned 
above, or it could possibly be an indication that instability waves are produced so far upstream 
that the oblique waves of the spectrum have been mostly straightened out by the time that 
fi = 1728 is reached. 

In Fig. 15, experimental amplification rates for three frequencies are given as a function 
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Figure 16. Comparison of calculated maximum 2D spatial amplification rate vs Reynolds 
number with experimental values from Stetson et al. (Ref. 16), ße^, /ft = l.OxlO6. Me = 6.8, 
cone; TQ* = 728° K (1310° R). 

of Reynolds number. What are plotted as data points are again taken from the tabulated 
data of Ref. 33. Comparison with Fig. 4 shows that there are major discrepancies with the 
calculations. The experimental peak amplification rate of F = 1.4 x 10~4 occurs at Ä = 1380, 
well downstream of the calculated peak at Ä = 1250. However, this difference decreases with 
decreasing F, and the calculated and measured peaks of f = 1.0 x 10~4 are close together. 
The measured upper-branch neutral points are at lower Reynolds numbers than the calculated 
neutral points, and this difference increases with decreasing F. The slowly decreasing parts 
of the a \B R curves of Fig. 4 do not exist in the experiment. 

A striking discrepancy between Figs. 4 and 15 is in the behavior of the maximum 
amplification rate, ffmaz, as a function of R. Figure 16 compares the calculated amaz, with the 
tabulated values of Ref. 33. Not only are the measured values subtantially smaller than the 
calculated, but the calculated <7mai increases with increasing R, as in all stability calculations 
for self-similar boundary layers, while the STDS values decrease about 30% with increasing 
R for 1400 < Ä < 2000. The frequencies, Fm, that correspond to amax, are given in Fig. 17. 
The experimental frequencies differ by as much as 15% from the calculated frequencies at the 
lower Reynolds numbers, but as R increases they approach the calculated frequencies more 
closely. 

In Fig. 18, the calculated 2D N factor for F = 1.20xl0-4 is compared with A^ = \n{A/Ai), 
the logarithm of an experimental amplitude ratio for /* = 102 khz determined from the faired 
amplitude curve given in Fig. 15 of STDS. The relative vertical positions of the two curves 
are without meaning, as the experimental reference amplitude Ai is not the theoretical Ac, 
but comparison of the slopes show that this particular frequency grows more slowly in the 
experiment than in theory. Perhaps the most significant difference is that the measured 
maximum amplitude occurs at an R far below the calculated upper-branch neutral point. 
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Figure 17. Comparison of calculated frequency of maximum 2D spatial amplification rate 
with experimental values from Stetson tt al. (Ref. 16), fie«, /ft = 1.0 x 106. Me = 6.8, cone; 
r0* = 728° Ä" (1310° Ä). 
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Figure 18. Comparison of calculated 2D N factor vs Reynolds number with faired ampli- 
tude-growth curve from Fig. 15 of Stetson et al. (Ref. 16), fica, /ft = 1.0 x 106. Me = 6.8, 
cone; F = 1.2 x lO"4, ro* = 728° K (1310° R). 
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Figure 19.   Comparison of calculated 2D ^T-factor envelope curve with experimental peak 
amplitudes:  , calculated 2D ./V-factor envelope curve; o - In (Amai/Ai) from Fig. D-2 
of Stetson tt a/. (Ref. 18), ßc« //t = 1.0 x 106. Me = 6.8, cone; T0* = 728° K (1310° R). 

The early leveling off of the growth, which is consistent with Fig. 15, could possibly be 
related to the start of transition, or at least to the end of the linear region. The start-of- 
transition Reynolds number estimated by STDS in Ref. 18 from considerations of spectral 
broadening is about i?« = 4.6 x 106 (Ä = 2150). 

In Fig. 19, the calculated 2D ./V-factor envelope curve is compared with In (Amax//Ji), the 
maximum experimental N factor at each R as given in Fig. D-2 of Ref. 18. The quantity 
Amox is the rms spectral amplitude peak at each Reynolds number. The logarithm of this 
amplitude referenced to Ai, the extrapolated Amai at Ä = 1094, is what is plotted in Fig. 19 
as the experimental data (Ai is slightly different from the Ai of Fig. 18). As in Fig. 18, 
the magnitudes of the calculated and experimental iV factors are not comparable because 
Ao and Ai are different quantities. However, the curves do show relative amplitude growth 
provided that AQ is independent of frequency as in Ai. It is seen that initially the measured 
maximum disturbance growth is faster than calculated, but at about R — 1700 a break occurs 
in the slope and the subsequent growth is slower. This break is about where amai of the 
corresponding F starts to decrease with increasing R in Fig. 16. It is also downstream of 
where the high-frequency unstable zone was first noted by STDS (see Ref. 18, Fig. 6) at 
R = 1420, but is close to the Reynolds number where the frequency bandwidth of this zone 
is a maximum. 

The frequencies, Feno, that correspond to the amplitudes of Fig. 19 are shown in Fig. 20. 
Because of the graphical determination of the envelope curve, the Reynolds numbers at which 
the calculated frequencies are tangent to the envelope curve are not as accurate as other 
calculated quantities. The experimental frequencies are the frequencies of the peaks of the 
first bumpa in the faired amplitude spectra given in Fig. 17 of STDS. The agreement between 
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Figure 20. Comparison of calculated and experimental frequencies of peak amplitude: , 
calculated 2D envelope-curve frequencies; o - measured frequencies of peak amplitude from 
Stetson et al. (Ref. 16), Re^ /ft = 1.0 x 106. Mt = 6.8, cone; T$ = 728° K (1310° R). 

theory and experiment is remarkable. The experimental values follow the theoretical curve 
within 3% up to about R - 1860; at higher Reynolds numbers the difference increases to 9%. 
The fact that the measurements agree less well with the calculations at the higher Reynolds 
numbers is the opposite of the situation with the frequency of the peak amplification rate. 

As already mentioned in Section III, STDS interpreted all spectral amplitude changes as 
an indication of instability. This procedure seems to be justified when there is a definite bump 
in the spectrum, but for certain frequencies there are large amplification rates indicated even 
though no bump appears in the spectrum. It is of some interest to locate the prominent 
first spectral bumps of Fig. 17 in Ref. 16 in the F, R plane. Figure 21 shows the upper 
and lower boundaries of the bump as determined from the large-size plots of Ref. 33. Also 
shown in the figure are the calculated 2D upper and lower neutral boundaries, as well as the 
calculated boundary between the first and second modes. The latter is not clearly defined; 
it has been taken as the frequency where the 2D amplification rate starts to increase rapidly. 
Note that the upper frequency limit of the spectral bump falls on the calculated upper neutral 
boundary, and the lower limit falls on the lower boundary of the second-mode region. As the 
calculated boundaries are determined from amplification rates, not amplitudes, no particular 
explanation can be offered for this result, which may be coincidental, but it does serve to 
further define the spectral bump as a second-mode phenomenon. Note that the upper bump 
limit also corresponds to a neutral boundary in STDS, but there it is the lower neutral 
boundary of a second unstable region. 

A major difference between the stability calculations and the three stability experiments 
is that there is nothing in the linear theory to correspond to the second unstable region 
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Figure 21.   Calculated neutral boundaries,  ; calculated boundary between first and 
second mode, — ; D, measured upper limit of first spectral bump (Fig. 17 of Ref. 16); 
O, measured lower limit of first spectral bump (same reference).    Afe = 6.8, cone; T0* = 
728° K (1310° R)\ experimental points, Re^ /ft = 1.0 x 106. 
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Figure 22.   Comparison of 2D cone and flat-plate JV-factor envelope curves.    Mt 

To* = 311° A-(560°-R). 
4.5, 

that appears in the experiments above the second-mode region. In the STDS experiment, 
this instability eventually shows up as a second spectral bump at about R = 1700 with a 
peak frequency not far from twice the peak frequency of the first bump. For R > 1900, 
the peak frequency of the second bump is quite close to twice the frequency of the first 
bump. According to the linearized stability equations used in this report, the frequencies of 
the second unstable region are all damped, and the damped region that separates the two 
unstable regions in the experiments is unstable. 

3. CONE VS FLAT PLATE 

As a final topic, some results of normal-mode stability calculations for flat plates and cones 
are presented in order to compare amplitude growth curves. Such curves may be used to 
indicate what one might expect the difference in transition Reynolds numbers to be in these 
two cases based solely on linear stability theory. Figure 22 shows the 2D envelope curves 
for a cone and flat plate at Me = 4.5 and a stagnation temperature of Z110K (560°/?). At 
this Mach number, the first and second-mode unstable regions are separated by a damped 
region (Mack, Ref. 1). The waves with F x 10* < 1.4 pass through all three regions. The 
iV-factor reference amplitude AQ is the amplitude on the first-mode lower branch as long as 
the first-mode total amplification exeeds the inter-region damping, which is the usual case. 
Otherwise, it is the amplitude on the second-mode lower branch. Only the flat-plate envelope 
curve was calculated; the curve for the cone was obtained by the Battin-Lin transformation 
rule (Ref. 26). It is evident that 2D cone A^ factors are greater than 2D flat-plate N factors 
except at very low Reynolds numbers, and at the same Reynolds number the cone frequencies 
are larger that for a flat plate. 

In the first-mode region, oblique waves are the most unstable.  Figure 23 compares the 
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Figure 23. Comparison of 2D cone TV-factor envelope curve with curves of N factor vs 
Reynolds number for three flat-plate oblique waves with ip = 55° at critical Reynolds number. 
Af. = 4.5, TJ = 311° K (560° R). 

2D cone envelope curve with flat-plate N factors for three low-frequency oblique waves which 
have wave angles approximately equal to 55° at their lower-branch neutral points. The 
irrotationality condition, ß/R = const., has been applied in calculating the flat-plate N 
factors. An envelope curve has not been drawn, because these waves are not necessarily 
those with the maximum growth. However, the results demonstrate that not only do these 
first-mode oblique waves have appreciably larger N factors on a flat plate than 2D waves, but 
they also have somewhat greater growth than 2D waves on a cone. The frequencies of these 
waves on a flat plate are much lower than the frequencies on the 2D cone envelope curve at 
the same Reynolds numbers. 

Oblique first-mode waves are also more unstable than 2D first-mode waves on a cone. 
Only actual calculation can establish whether this greater instability of low-frequency waves 
results in greater growth than the 2D, mostly second-mode, waves of greatest growth in 
view of the decrease in wave angle that occurs on the cone because of the irrotationality 
condition. Figure 24 compares the 2D cone envelope curve with the results of calculations for 
two first-mode oblique waves with ßR = 201.7. This value ofßR has not been optimized, but 
it is evident that on a cone, just as on a flat plate, low-frequency first-mode oblique waves 
can have greater growth than higher frequency 2D waves. A comparison with Fig. 23 shows 
that, at least for R > 1800, a cone still has slightly greater N factors than a flat plate even 
when oblique waves are considered. Also the frequencies of the oblique waves of maximum 
growth are comparable on a cone and flat plate. Thus at this Mach number, normal-mode 
stability calculations would not lead one to expect an appreciable difference between the 
transition Reynolds numbers on a cone and flat plate, and certainly offer no support for a 
higher transition Reynolds number on a cone. 

The 2D cone and envelope curves at M, = 5.8 are given in Fig. 25 for a stagnation 
temperature of 386°^ (6960Ä). A comparison with Fig. 22 shows that both boundary layers 
are more unstable to 2D waves at this Mach number than at Me = 4.5. Indeed the cone 
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Figure 24. Comparison of 2D cone N factor envelope curve with curves of N factor vs 
Reynolds number for two oblique waves on a cone with ßR = 201.7. Me = 4.5, T0* = 
311° A" (560° Ä). 
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Figure 25.    Comparison of 2D cone and flat-plate TV-factor envelope curves.   Mt 

TQ* = 386° if (696° Ä). 
= 5.8, 
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Figure 26.   Comparison of 2D cone and flat-plate TV-factor envelope curves.   Mt 

TQ* = 728° A" (1310° A). 
= 6.8, 

envelope curve of Fig. 25 has greater growth than any of the growth curves at Me = 4.5. Also 
Fig. 25 shows that, just as at M€ = 4.5, the maximum 2D wave growth on a cone is greater 
than on a flat plate. No N factors for oblique waves have been calculated at Mt — 5.8, but 
as the Mach number increases in the hypersonic region, 2D second-mode waves become of 
more relative importance than first-mode oblique waves. 

Finally, in Fig. 26 a 2D cone envelope curve at Mt = 6.8 and a stagnation temperature 
of 728°A" (1310°/f) that covers a wider Reynolds number range than in Fig. 6 is compared 
to a 2D flat-plate envelope curve. Again the cone iV factors are greater than the flat-plate 
TV factors everywhere except for R < 740. The frequencies along the cone envelope curve are 
about 65-70% higher than those at the same Reynolds numbers on the flat-plate curve. Note 
that the stabilizing effect of Mach number in the hypersonic speed range is starting to assert 
itself and that the N factors in Fig. 26 are less than in Fig. 25. A number of calculations 
with oblique waves of different frequencies were carried out at this Mach number for both 
the cone and flat plate, and in no case could an N factor greater than given in Fig. 26 be 
found excr.pt for the small increment already noted in Fig. 13. Thus, at this Mach number, 
as at M« = 4.5 and 5.8, there is no support from normal-mode linear stability calculations 
for cones having a transition Reynolds number higher than, or even the same, as on a flat 
plate. 
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SECTION VI 
CONCLUSIONS 

The numerical calculations and comparisons with the experiment of STDS have led to 
some conclusions and a number of uncertainties concerning the stability of the flow over sharp 
cones at zero angle of attack. These are summarized below. 

a. The stagnation temperature is an important parameter for insulated-wall boundary 
layers. An increase of TQ from 512°^ (9220i?) to 7280Ä' (1310°Ä) has been shown to lead to 
a significant stabilization of the boundary layer. 

b. Locally planar flow has been assumed in the stability analysis with the neglect of all 
1/r* terms in the stability equations, where r* is the cone radius. Although the boundary- 
layer thickness is small compared to the cone radius for a 7° half-angle cone, the importance 
of the neglected terms should be checked by actual calculation. The effect of including 
transverse curvature in the mean flow only was investigated and found to be small. 

c. The calculations show that the only significant instability at Me = 6.8 comes from 2D 
waves of the second mode. The experiment of STDS confirms this by failing to show any 
appreciable response at first-mode frequencies, and by the strong response in the second-mode 
frequency range. The excellent agreement between the calculated frequencies of the most- 
amplified normal modes and the measured frequencies of the amplitude peaks demonstrates 
that these normal modes are indeed present in the actual flow and are responsible for the 
maximum growth. 

d. There are important disagreements between the amplification rates determined from 
the spectra of the naturally occuring disturbances in the boundary layer and the amplification 
rates of the normal modes used in the calculations both as to frequency and magnitude. There 
are at least two reasons why this is so. First, the interpretation of all changes in spectral 
amplitude as due to instability may not be correct. The boundary-layer response to the input 
disturbances, which is determined by receptivity, is not limited to instability waves. Second, 
the part of the response that consists of instability waves is not limited to the individual 
spatial normal modes of the calculations. It can be expected that an entire frequency and 
Epanwise-wavenumber spectrum of phase-related normal modes will be excited, and it is the 
superposition of these normal modes that determines the actual wave motion. If a dominant 
normal mode exists, it is likely to be not a spatial wave, but a mode with complex u and ß. 

e. When the frequency limits of the primary spectral amplitude bump of STDS are plot- 
ted in F, R space, the lower limit falls in the calculated boundary between the first and 
second modes, and the upper limit on the upper-branch (second-mode) neutral boundary. 
No explanation can be offered as to why boundaries determined from measured amplitudes 
should agree with boundaries calculated from amplification rates. 

f. Apparently the only way to verify the spatial normal-mode calculations, other than 
measuring a 2D spectrum with complete phase information and performing a Fourier decom- 
position, is by introducing controlled disturbances into the boundary layer that excite only 
the assumed normal modes. 

g. The theoretical problem that is of more interest than normal-mode calculations is 
the determination of the wave motion produced by the same input as is responsible for the 
instability waves in the experiments. A simpler problem is to calculate the response to a 
source, such as a harmonic or pulsed point source, that can be duplicated experimentally. 
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h. A major unsettled question is the origin of the unstable frequency band that lies above 
the second-mode frequencies in the stability experiments. This unstable band, which is 
separated from the second-mode unstable band by a damped region, does not exist in linear 
stability theory. Indeed, its lower neutral boundary is dose to the calculated upper neutral 
boundary of the second mode. 

i. No criterion is known by which to judge where the processes that follow linear in- 
stability, such as nonlinear wave interactions or secondary instabiliiy. start in a hypersonic 
boundary layer. In a hypersonic boundary layer, the velocity fluctuations are small and the 
density fluctuations large. As the second unstable region does not exist in the present linear 
calculations it is probably the result of nonlinearity. The frequency band where it occurs 
suggests a first harmonic of the second mode. 

j. The existence of a surface temperature gradient in the STDS experiment should not 
have had an important effect on the measurements. Second-mode instability is not strongly 
affected by small amounts of heat transfer. This was confirmed by calculations (not reported 
in the preceding text) with the ratio of surface temperature to recovery temperature equal 
to 0.95. No significant effects were found. 

k. The comparisons between cone and flat-plate N factors for Me > 4.5 offer no support 
^ for the experimental finding of a greater transition Reynolds number for a cone than for a 

flat plate. At M« = 4.5, the maximum cone N factors are at least as large as for a flat plate 
except at low R where there is not much growth, and at Me = 5.8 and 6.8, the cone N 
factors are greater than for a flat plate. However, it cannot be emphasized too strongly that 
there is an enormous gap between normal-mode N factors and transition. The disturbances 
present in the wind tunnel, their receptivity into the boundary layer, the actual forms of the 
instability waves that are generated, nonlinear processes and secondary instabilities, and the 
whole final breakdown to turbulent flow, all influence the transition Reynolds number. What 
can be concluded is that one has to look elsewhere than to normal-mode calculations based 
on the planar, quasi-parallel, linear stability equations to explain the measured differences 
between the end-oftransition Reynolds numbers on cones and flat plates. 

J 
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APPENDIX 
COEFFECIENT MATRIX OF COMPRESSIBLE 

STABILITY EQUATIONS 

There are 30 non-zero elements of the coefficient matrix a,;(y) of Eq. (13).   The Zi 
equation has only one non-zero coefficient: 

an = 1 (Al) 

The Z2 equation has six non-zero coefficients: 

a2i = ^|(at; + /W-a>) + Q2 + ^, 

a22 = ---£DT, 
/i aT 

fil fi al 
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(A2) 

-.](! +2d){a2 + /92)^( 

«24 = -(a2 + ß2) - 1(1 + 2d){a
2 + ß2hM?{aU + ßW - u), 

fi 6 

an=   ^{l + 2d){a2 + ß2)^{aU + ßW-u>) 

-^{aD2U + ßD2W)--^DT{aDU + ßDW), 

aK = -±^;{aDU + ßDW). 
fi dl 

The Z3 equation has four non-zero coefficients: 

asi = -«, 

DT 
033= -y-, 

dM^-iiMliaU + ßW-u), (A3) 

asl = ^QLU + ßW-u,). 
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The Z4 equation is the only one that requires a lengthy manipulation to derive. With 

£ = - + 4(2 + d)iMf{aU + ßW - UJ), 
fM 3 

the six non-zero coefficients are: 
l 

04! = -■ 
2 du 2 1 

E [nDT 

(A4) 

0« = -r 

0.»= ![-(*'+^(2+^;>T)' 

+|(2 + d)iYL-~(^ + ^-«) 

*u=   -^(2+d)7Me
2 Dr(aC/ + ßW -u) 

+aDU + /SDW + -DT{aU + ßW + oj) 

a45=M^(aDt/+^w')+^2+d) 

J_dM 
/iTdT 

DT{aU + ßW -u) + ^{aDU + )9DW)11, 

1 2 

The Zs equation has only one non-zero coefficient: 

056= 1, 

The Ze equation has six non-zero coefficients: 

«62 = -2<r(7 - \)Ml{aDU + ßDW^a1 + ß*)-\ 

oes = -=;DT - i2ff(7 - l)MJ{aDU + ßDW), 

064 = - 
iRa 

{l-^MfiaU + ßW -u), 

(A5) 

(A6) 

(A7) 

065=   ~{aU + ßW -u;) + a2 + ß2 - ±^D2T 
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aM=-- — DT, 
K at 

aes = ~2a{i - l)Mj{aDW - ßDU){a2 + ß2)'1. 

The Zi equation has only one non-zero coefficient: 

078 = 1. (A8) 

The Z% equation has five non-zero coefTicients: 

ass = ^ocDW - ßDU), 

a86 = --^{aD2W - ßD2U) - i^L>r(aD^ - ßDU), 
fi at n al * 

aw = --^;{aDW-ßDU), (A9) 
/i al 

asi = ^{aU + ßW - UJ) + a2 + ß\ 

a8g = -DT. 88        ndT 

In these equations, the ratio of the second to the first viscosity coefficient 

d = X/fi (A10) 

is taken to be a constant and equal to 1.2 (Stokes' assumption corresponds to A — 0). 
In the numerical computations, the viscosity coefficient is given by the Sutherland law 

plus a linear variation with temperature for T* greater than the Sutherland constant. In cgs 
units, 

/ x 105    = 1.458r3'2/^* + 110.4), r > 110.4°ÜT, ,       N 

= 0.06938737*, T* < 110.4°^. 

The thermal conductivity coefficient in cgs units is given by a formula of Keyes (Ref. 34): 

K* = 0.6325 T*1/2 [l + (245.4/T*) x lO-12/7"*] ~1. (A12) 

The  Prandtl  number  a   -■   c*py.*/K*  is computed  as a function  of temperature from 
/i*(r*), K.*{T*) and a constant specific heat of c* = 0.24. 
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