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ABSTRACT 

The purpose of this thesis is to model a Combat System utilizing modern 

methods of nonlinear nonequilibrium statistical mechanics. This initiates development 

of methods which eventually can be used as a decision aid to the commander in force 

planning, battle management, budgeting decisions, doctrinal evaluations, and combat 

analysis. A general method is developed and then applied to a particular battle 

scenario using the combat wargame JANUS. The method fits empirical data to a 

functional form (a Lagrangian) which describes the short time probability distribution 

of a set of order parameters. A maximum likelihood fit is obtained using a simulated 

annealing optimization algorithm. The most likely states of the order parameters and 

the associated risks (variances) of those states ultimately depend on the detailed 

structure of the Lagrangian. A long time probability distribution of the order 

parameters can then be found by using the path integral. 
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I. INTRODUCTION 

Imagine you are the commander of a large force faced with the following 

situation. You have been ordered to defend a key piece of terrain. Intelligence sources 

estimate that an enemy force, approximately three times as large, is moving towards 

your position and is expected to arrive within a couple of hours. You now must make 

a decision on how to allocate your forces on the line of defense in order to repel the 

enemy's attack. You have several alternatives. You could leave your forces as is on a 

line defense. But you know the enemy will only attack a small portion of your front 

and use his overwhelming force to penetrate your position. You could place them in a 

dispersed defense. You ask your operations officer to develop other alternatives. You 

must have them quickly so that the defense plan can be promulgated to the units in a 

timely fashion. 

The operations officer and his plans/analysis officer, armed with PIACA 

(pronounced Pl-CA), Path Integral Algorithm for Combat Analysis, begin to develop 

the alternatives. PIACA is a hardware/software package designed to give the 

commander the most likely results of decisions and the risks associated with that 

decision. By inputing information about their own forces and those of the enemy, and 

information relating to the type of mission, PIACA will give them the most probable 

outcomes of the forces (levels) at the end of some pre-selected time interval. By 

modifying th«. scenario slightly as to initial force levels and other parameters, they will 

then have a good idea of the best alternatives to present to the commander. The 

commander has now an objective evaluation of his alternatives and is able to make a 

more informed decision. 

There will be occasions when the commander is under a severe time constraint 

and must make a decision based on incomplete information. He now has PIACA 

available as a powerful aid to combat planning and analysis. It is the purpose of this 

thesis to develop a stochastic model of combat and a generalized methodology based 

on that model for eventual use in PIACA. It is additionally shown how the model and 

the methodology can be used for a simple scenario based on data from the combat 

wargame JANUS. PIACA can also be used to evaluate new system hardware.i.e. 

weapons systems, analyze combat plans, and aid in the analysis of doctrinal changes. 

11 



Chapter 2 outlines the Lanchester theory of Combat systems. This chapter is 

provided as background. Chapter 3 introduces the concept of order parameters and 

discusses their relation with combat systems. Several possible order parameters for the 

combat system are presented. Chapter 4 develops the underlying mathematical theory 

and introduces the reader to the Lagrangian and the associated Path Integral, a 

mathematical physics approach to C3 systems developed by Ingber [Ref. 1,2]. Chapter 

5 develops PIACA as a generalized methodology for modeling combat systems. 

Chapter 6 gives several empirical examples. The first example uses a one order- 

parameter model with simulated data generated from a stochastic Lanchester equation 

with constant variance. This will be shown to be equivalent to a quadratic Lagrangian 

with the result that the distribution of the order parameters will be Gaussian with non- 

stationary means and variances. The second example is a two order parameter model 

using simulated data from a different stochastic Lanchester equation. The long time 

conditional distribution will be shown to be non-Gaussian even though the short time 

distribution is Gaussian with respect to the temporal changes of order parameters. 

These examples are provided to show the relationship between the stochastic 

Lanchester representation and the Lagrangian representation. The third example will 

begin with a Lagrangian representation. Data from the combat wargame JANUS is 

used to develop the functional form (Lagrangian). Then an analysis of the short time 

probability distribution of the order parameters using the Lagrangian is given. Chapter 

7 concludes the thesis with a summary of the methodology, its importance and utility, 

and discusses further applications of PIACA and development of the full decision aid. 

12 



II. AN INTRODUCTION TO LANCHESTER THEORY 

In this chapter, we outline the Lanchester model of warfare, both deterministic 

and stochastic. For a more detailed development, the interested reader should refer to 

Taylor [Ref. 3]. 

A.     DETERMINISTIC MODELS 
Lanchester originally formulated his model of combat as a set of differential 

equations, one being, 

X =• dX/dt =  -aY    where X(tg) - XQ 

Y - dY/dt -  -bX    where Y(t„) - YQ (2.1) 

where X and Y are the number of combatants for each side and a,b are called attrition 

rate coefficients. This is Lanchester's aimed fire model. The other is 

X -  -aXY 

Y -  -bXY , (2.2) 

where the variables are defined above.   Equation 2.1 when integrated yields the so- 

called "square-law" 

b(X0
2 - X2) - a(Y0

2 - Y2) (2.3) 

which gives the interpretation that the more initial force level a side has the less his 

casualties. This equation assumes the casualty rate is proportional to the number of 

combatants. It is also referred to as a state equation. Equation 2.2 is referred to as 

the state equation for area fire, and assumes fire is distributed uniformly by the 

combatants. When integrated, equation 2.2 yields 

b(X0 - X(t)) - a(Yß - Y(t)) (2.4) 

13 



and is called the Lanchester linear law.  Although the above equations model simple 

combat quite well, they are limited in scope and have several disadvantages [Ref. 3]: 

1. Constant rate coefficients 

2. No force movement 

3. Various aspects of logistics, C3I, terrain, geographies, etc. are not considered. 

This  has  led  to  various  modifications which attempt  to   overcome  the above 

shortcomings such as: 

1. using variable rate-coefficients 

2. modeling breakpoint or battle-termination conditions 

3. modeling morale 

4. modeling communications [Ref. 4], etc. 

The basic disadvantage with using deterministic Lanchester equations is that in reality 

combat is a severely stochastic system, which leads us to our next topic. 

B.     STOCHASTIC MODELS 
In attempting to define a stochastic model from a deterministic model we must 

recognize that this definition is not unique, i.e., there is a many-to-one mapping of 

deterministic systems into stochastic contexts. For example, one might arbitrarily add 

noise to equation 2.1 in the following manner, 

X - f{X+n) (2.5) 

X » RX) + f'(X)n+ higher order terms (2.6) 

where r\ has some distribution and zero mean. Another example might be to add noise 

in an additive way, such as 

X « -aY + gn (2.7) 

Y - -bX + gq (2.8) 

14 
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where g is some constant multiplying the standard deviation of the noise. We could 

also formulate a model stochastically by developing a set of Kolmogorov equations. 

Once developed, all models should be able to answer questions concerning the outcome 

of the battle and other factors such as: 

1. What is the probability of win for each side? 

2. How does win probability change with initial force levels? 

3. What is the expected length of battle? 

4. What is the probability distribution of the force levels? 

As is evident, there are a number of possibilities of stochastically modeling combat. In 

this thesis we will develop a stochastic model of combat which, as a side benefit, will 

incorporate an underlying physical explanation. It will have several advantages: 

1. to model the stochastic nature of combat 

2. to answer questions such as those above concerning the battle 

3. to incorporate non-linearities in the model 

4. with the methodology developed, to be able to fit empirical data to the model 
and thus have the potential of forecasting battle outcomes. 

15 



III. ORDER PARAMEYERS AND COMBAT 

A.     INTRODUCTION 
We will begin this discussion with assumptions and definitions. A battle will be 

defined as a combat engagement between two opposing forces constrained to a small 

geographic area. This will be our system that we will attempt to model. The state of 

the system will be defined as a collection of variables which, as a set describe the 

system at any time, t. 

This system will be nonlinear, dynamic and stochastic: nonlinear, since the 

moments of the distribution of the state variables may be described as nonlinear 

functions of the other state variables; dynamic, since the state variables could be 

functions of time; and stochastic, because the variables will be random due to inherent 

noise in the system. This noise will reflect imperfect knowledge of the enemy's forces, 

weather, equipment failure, etc., and also of the commander's own forces, and may also 

be a noniineai function of the state variables. 

When modeling this system we have several alternatives. One alternative would 

be to use generalized stochastic differential equations as our model with the variables 

denoting the microscopic state of the system. This is a very intuitive approach, but 

there are mathematical difficulties in solving such large sets of coupled stochastic 

differential equations, and even more difficulties in interpreting the numerical results. 

However, there may be alternative sets of variables which define the system 

appropriately enough for a study of combat at a middle, i.e. intermediate level of 

aggregation, or "mesoscopic" level. A probability distribution of these new variables 

would allow us to make predictions of the variables at any time, t. We will call these 

new variables order parameters [Ref. 5J. The order parameters of the system will 

contain all the information inherent in the system, relevant to a specific "coarse- 

grained" scale to be studied, and should be kept at a minimum to allow easy 

assimilation by the commander essentially defining the appropriate scale of aggregation 

to be considered. This is one of the problems associated with complex C I and combat 

systems; i.e. we must be careful not to pass on too much information to overburden 

the command nodes. 

16 



B.     REPRESENTATIONS OF COMBAT 

We could describe this battle in several different, equivalent representations. For 

example, consider the grid shown in Figure 3.1 as a "coarse" geographic representation 

of our battle. The jM represent tanks of force fi in cell i where (l« 1,2 and i= 1-9. 

Similar notation exists for the personnel, PP . The state variables would then 

incorporate all microscopic information such as velocity, position, ammo, etc. Another 

could be a time sequence event description, i.e. at each moment in time, a particular 

event occured and was duly noted in some log book. From a bird's eye view, a 

description could include movements of the forces geographically, and rates of change 

of both forces. In a global view, the overall evolution of the battle in time, and the 

search for underlying patterns in that evolution might be sufficient to describe the 

battle. 

*i »; T1 l
2 •i T1 

'3 p; 

J\ P> i A A pi 

TJ  p; ii >; < pi 

t * T2 

p] 
< pi 

T1   P1 
'7   r7 T1 

p; < P1 

■A   p2 
7   «7 

T2 
*8 pi < p2 

*9 

Figure 3.1   Coarse Grid Representing Geographic Position. 
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At each stage, or level of command, there is a need for a differing view of the 

battle, since at each level, the information needed is different. At the lowest level, 

concern might be for resupplies, i.e., ammo, fuel, requests for transportation or support 

external to the lower organization. At a higher level, concern is for allocating the 

resources among competing requests and determining the priorities associated with 

those requests. At still a higher level, only the developing outcome of the battle might 

be relevant. 

We will attempt to describe an intermediate ("mesoscopic") level between the 

upper (commander's or "macroscopic") level and the lower (units or "microscopic") 

level which incorporates all the relevant information a commander would need in order 

to make his decision. In defining this level, a set of order parameters needs to be 

developed. Order parameters represent this mesoscopic level and are a specific 

aggregation of the microscopic or state variables. For instance, in the tank example in 

the previous section, the state variables represent the detailed information about the 

tank, i.e. velocity, position on the battlefield, training level of the crew, ammo supply, 

etc. A simple example of an order parameter in this case might just represent the 

number of tanks in a particular cell of the battlefield. An order parameter model 

would then develop the necessary interactions among cells, resupply considerations, 

capability degradation, etc. We will see an application of this through the examples 

discussed later. 

As a first representation, both forces could simply be described as a certain 

number of personnel. We are then interested in describing this battle, given a set of 

initial conditions, in terms of force losses per unit time. This is equivalent to a 

Lanchester approach with noise, alluded to earlier. This is only one of several ways to 

derive a stochastic Lanchester equation. This is referred to as a Langevin equation in 

the physics literature. This could be mathematically described as shown: 

dX/dt - fx(X,Y) + gx(X,Y)n , 

dY/dt = f?(X.Y) + gy(X,Y)r| , (3.1) 

where X ■ the number of blue forces available to engage the Y forces, Y = the number 

of red forces available to engage the X forces, f x'* =   functions relating average 

18 
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numbers of blue forces and red forces, gx'y= functions multiplying (square-root) 

variances of the background noise, aj:*3 coefficients relating rates of blue force and red 

force losses, and i\ ■ background noise. For example, functional forms might be 

ajjX + a^Y (3.2) 

f? * a21X + a22Y , (3.3) 

with similar equations for gx'^. 

To attempt to solve this equation, we could put it on a computer, introduce some 

random noise (via a Monte Carlo simulation) and the aggregated output of many runs 

would give us at any time, t, via a probability distribution, the level of blue and red 

forces and any other variable which is dependent on these, such as force ratio, 

surviving maneuver force ratio, or some equivalent descriptive variable in which we are 

interested. 

We have selected the form (equation 3.1) because the current state-of-the-art 

mathematical physics then permits us to develop extremely general nonlinear means 

and variances into representations suitable for analysis by methods of statistical 

mechanics. 

C.     EXAMPLES OF ORDER PARAMETERS 
To better understand the concept of order parameters, let us take a physical 

system as an example, a gas confined to a box in thermal equilibrium. The gas can 

obviously be defined at a microscopic level by representing it as a collection of atoms 

with certain velocities, relative positions, collision rate vrith other atoms and the walls 

of the box, and some internal energy state. In analogy to the battle, the atoms would 

represent the individual personnel, their velocities and positions corresponding to their 

movements and geographical positions on the battlefield, and the collision rate could 

correspond to the engagement rate with the enemy. The internal energy state could 

relate to the amount of ammo, firepower, and possibly training level of the individual 

combatants. However, on a more global level, there is a pressure associated with the 

gas, a temperature, and a volume. One of the problems with the order parameter 

concept is to find these global variables associated with combat and relate them to 

something of use to the commander. 
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The order parameter concept can be used to describe systems far from 

equilibrium. Combat is obviously a system far from equilibrium, except possibly in 

some isolated cases. Since the objective of both commanders is to accomplish some 

mutually exclusive mission, the system will tend towards a solution which favors one or 

the other commander. In analogy with our gas in the box, suppose we lower the 

temperature of the gas. At a certain temperature, the gas becomes a liquid which is 

called a phase transition to a long range collective order. The question is then: Is there 

an analogous "phase transition" associated with our forces and how do such collective 

patterns of information represent themselves? At what "temperatures" related to the 

size of the gx,y functions does this occur? Is it a unique phenomenon, i.e. does it only 

occur at this "temperature"? What if we change the volume of the box, is there then 

some "phase transition" associated with our forces possibly relating to the change in 

geographic area of the battle? Are the order parameters of our physical system 

transformable to some similar order parameters of battle? 

In answering these questions, we can arrive at some understanding of combat 

and relate this to our understanding of other physical systems which undergo the same 

or similar transformations when the state of the system is changed. 

As a start, and following Bretnor [Ref. 6], two order parameters that seem likely 

are the destructive force and the vulnerability of the force. Destructive force is defined 

as the amount of combat potential which can be delivered to the enemy in order to 

destroy him. It includes the training, the readiness, the sustainability, the morale, the 

weapons mix, etc. of the force. It is obvious that these factors do change during the 

course of battle, and that their level certainly would indicate the success or failure of 

combat. The vulnerability of a force are those factors which degrade the capability of 

the force, i.e. position on the battlefield (terrain factors such as line of sight, cover, 

concealment, protective armor, etc.), lack of morale, discipline, or training, etc. As you 

can see, the vulnerability of a force is in some ways a degradation of the destructive 

force, yet they are not totally the opposite of the other. For example, a force in the 

open would have more vulnerability than one under cover, yet they would have the 

same destructive force. There are other examples, the point being that they are 

distinguishable order parameters, although we could effectively model the force using 

the destructive force and modifying it so that it is somewhat degraded wnen its 

vulnerability is increased. Nonlinear functions of the order parameters will be used to 

model scenarios in which the objective of the commander would be to attack the others 

vulnerability while exploiting his own destructive force. 

20 



IV. MATHEMATICAL FORMALISM OF THE MODEL 

A. INTRODUCTION 
In this chapter we develop the mathematical formalism of the model, and 

introduce mathematical objects such as the Lagrangian and the path integral. We will 

show there exist equivalent representations among the Langevin, Fokker-Planck and 

Path Integral descriptions of a stochastic system [Ref. 1,7]. We begin with a simple 

one order-parameter, non-linear model. The linear model is a special case of the non- 

linear model. We then fully develop the two order-parameter model which is used in 

the remainder of this thesis to illustrate the path integral method. Generalization to 

many order-parameters is made and included for completeness of the description. 

Assumptions of the model and their significance are given. The primary assumption is 

the requirement for a Gaussian-Markovian system Finally, the relation to classical 

deterministic systems and the usefulness to classical statistical systems of the 

Lagrangian will be discussed. 

B. ONE ORDER-PARAMETER, NON-LINEAR MODEL 
The one order-parameter (10P) model is not particularly useful in describing 

combat, but we present it for completeness and ease of illustration of the general 

model. The generalization to two or more order parameters can be easily made. Order 

parameters we could use are the ratio of the forces or the difference of the force levels. 

We begin by labeling our order parameter X, for example, the ratio of Blue forces 

to Red forces. We are interested in how X changes with time. Within a time 

increment, At, we can write 

X(t + At)-X(t) - AtflX(t))    , (4.1) 

where flX(t)) is some function to be fit. If At is assumed small and X is assumed to be 

continuous, we can then write 

X - dX/dt - f|X(t)) (4.2) 
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In the context of describing combat equation 4.2 is referred to as a Lanchester 

equation and simply represents the mean or expected path of the order parameter for a 

large system. 

We now want to add a noise term to equation 4.2 so we can model the severely 

stochastic nature of combat. Hence, the change in X can be written 

X = flX(t)) + g(X(t))n    , (4.3) 

where x\ is the background noise with zero mean and variance = I (assumed) and 

g2(X(t)) is the variance, which is not necessarily a constant. We also assume that r\ is 

Gaussian-Markovian (normally distributed "white noise"). The assumptions will be 

discussed in Section E. Equation 4.3 is referred to as a Langevin rate equation in the 

scientific literature, but we will refer to it as a generalized stochastic Lanchester (GSL) 

equation in the context of describing combat. This is only one way of obtaining a 

stochastic Lanchester equation. I.e., there is a many-to-one mapping of deterministic 

systems into stochastic contexts. 

Associated with this GSL is a Fokker-Planck equation [Ref. 8] defining a 

differential equation of the conditional probability distribution, P(X(t + At)|X(t)), given 

rs 

d?ldt - - d([P);dX + i/2d2(rP)/£X2 + VP . (4.4) 

The function f represents a drift term and g2 is the diffusion term of the probability 

distribution P(X(t + At)|X(t)). Sometimes a potential term, V, is present, which is often 

useful to analytically enforce boundary conditions. 

Another representation exists for describing P(X(t + At)|X(t)) (Ref. 8]. For small 

time increments At, we assume 

P(X(t + At)|X(t))- l/(2itg2At)I/2 exp(-LAt) (4.5) 

where L * (X - f)2/2g2 is the Lagrangian of the system, i.e. a Gaussian form for this 

conditional probability, with mean (X(t)+fAt) and variance g2At, as follows for short 

times from equation 4.4 .   It must be emphasized equation 4.5 is the short time 
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conditional probability distribution of P(X(t+At)|X(t)). With this representation, it is 

possible to obtain a long time conditional probability distribution P(X(t)|X(t0)) 

through a path integral description. This is defined as (more precisely defined in 

Langouche, et. al. [Ref. 7] and Schulman [Ref. 9]) 

PWOTtf) - i' • -JdXt.AtdXt.2At- • -dX^ + At (4.6) 

xP(X(t)|X(t-At))P(X(t-At)|X(t-2At)) 

x-'-x^Xdo+AOIX^)), 

J- • jßXexpf jTAtLfl) 

where 

fiX - (2Kg0
2At)'1'2     fl(2irgn

2At)-1/2 dX 
n«X 

tn« tQ+nAt and t-tg + sAt where tfl are the intermediate time increments in the limits 

s-» oo and At -»0. Equation 4.6 is called a path integral and is recognized as simply a 

Chapman-Kolmogorov equation. With the path integral, given some initial state at tQ, 

X(tQ), we can determine the probability distribution of X at some later time t. The 

path integral is discussed in Appendix B. 

The purpose of the previous discussion was to show the relationship between the 

GSL equations and the path integral description of combat. This will also be shown 

for the two order-parameter and the many order parameter models, but in the actual 

development of the model all that is required is a functional form of the Lagrangian. 

This will be discussed further in section F. 

C.     TWO ORDER PARAMETERS, NON-LINEAR MODEL 
We now develop the path integral representation of combat for two order 

parameters. We begin, as before, with a set of Langevin equations, show the related 

Fokker-Planck equation, and finally the path integral description. Our emphasis is on 
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the formulation and the notation of the path integral, whereas the Langevin equations 

are used to support our intuition. 

Suppose we are interested in our own force level and that of the enemy. We will 

use these as our order parameters and denote their level by X(t) and Y(t) for Blue and 

Red forces, respectively. 

As before in the I OP model, we will be interested in the change of X, and Y with 

time according to 

X(t+At) - X(t) = Atf l[X(t).Y(t)], 

Y(t +At) - Y(t) = Atf 2[X(t),(Y(t)] , (4.7) 

where the fl, i= 1,2 are some functions to be fit, and At is some small time increment. 

If we assume continuity of the order parameters and for small enough At, we can write 

equations 4.7 as 

X - dX/dt - fl , 

Y - dY/dt - f2 , (4.8) 

These are the Lanchester equations (deterministic). 

We now assume that multiplicative noise (Gaussian- Markovian on X and Y) is 

present and the order parameters are now modified according to 

x-f' + w+gy, 

Y- f2 + g^V+gVl2   . (4.9) 

where the g^ are functions multiplying the variance of the background noise. If the 

g*1. were constants, then the rj's would simply contribute "white noise". The mean of 

the T| j's are assumed to be zero. We will also assume the number cf noise terms is 

equal to or greater rUan the number of order parameters [Ref. 10]. Equation 4.9 is our 

generalized stochastic l mchester equation (GSL) for two order parameters. 
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The  Fokker-Planck  equation  describing  the  evolution   of the  conditional 

probability distribution P(X(t+At)|X(t)) where X(t+At) ■ {X(t+At), Y(t+At)} is 

d?,'dt - VP + d(-gP P)ldM^+ l^g^PJ/äM^M*1, (4.10) 

where M^X, M2"Y and V is a potential used to add constraints on the order 

parameters or to simulate boundary conditions. The indices n,v = 1,. . ., N where N 

is the number of order parameters (2 in this model). The e)1 and g^v are different 

functions from the g^ in the GSL and are defined as 

g»1- 1*» + l/2gv. ag^Mv , (4.11) 

g»»V « g^i gVi • (4.12) 

We are now using the Einstein summation convention, whereby repeated 'ndices in any 

term imply summation over those indices. In the 20P model these are, for example 

whenji* 1, 

da} de1 dp1 de1 

(The compactness of the Einstein summation convention is evident here) and for |i = 1, 

v-2, 

Note the gK which are the variances of the microscopic noise sources are summed over 

and contribution from individual sources need not be fit in the path integral 

description. The path integral description of equation 4.9 is 

P(X(t)|X(t0) - J • -fßXexpt- TAtLn) 
n*0 
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fiM = g*/2 (2wAt)-1/2   fl g*''2 IT! (27tAt)*1''2 dM»*n u n»l   n 11*1 n 

L = i/2(M^ - g * )g(lv(Mv - g v ) - V , 

§uv = '8    /   » 

8n " 
det (8|iv)n  • 

M*. 

(4.15) 

This is the long time conditional probability distribution of our order parameters. The 

short time conditional distribution is 

1/2 P(X(t + At)|X(t)) * g1'2(2JtAtr1^exp(-L1it) •1/2 (4.16) 

where L and g are as defined above. 

This description is correct as long as we adopt an Ito or pre-point discretization 

of our order parameter, i.e. 

yi* (tn) - M/ , 

^(^■(MVi-M^Vi-g 
(4.17) 

and t   " tQ + r At .  This afibrds us the luxury of a relatively simple Lagrangian. 

There exists a mid-point or Stratonovich discretization of the order parameter given by 

M^(tn)-   i/2(M»»n+1 + M\) , 

MM(tn).(MMn+1-M^n);(tn+1-tn) 

(4.18) 

This induces a curved or Riemannian space on the order parameter* with the 

subsequent requirement of additional terms being added to the Lagrangian. The 

presence of the noise actually induces the non-Euclidean geometry of the ji-space and 

the variance g^v is the inverse of the n-space metric, g„v .  The benefit of having a 
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mid-point discretized Lagrangian is that the associated Euler- Lagrange equations 

determine a variational principle. This allows us to derive a most likely path of the 

order parameter, without doing a full calculation of the long-time probability 

distribution [Ref. 1,7,11]. 

The preceding discussion was not meant to be rigorous, but to point out the 

subtleties in actually evaluating any of the functional forms. For simplicity we will use 

the pre-point discretization and not carry any of the Riemanian terms. An example of 

the two order-parameter model with an explicit form for the Lagrangian is given in 

Chapter 6. 

Although we have developed a Lagrangian from the GSL equations in the 

preceding discussion, it is not necessary to do this in general, i.e. we can begin our 

model by assuming a functional form for the Lagrangian without having first written 

down the associated GSL equations. This is an important point. There is an algebraic 

relationship between the Lagrangian representation and the GSL representation (under 

the assumptions) and one could, in principle, derive the GSL from the Lagrangian and 

vice versa. There exists a large body of literature on combat modeling with Lanchester 

equations and thus the experience gained using that approach can be transformed to 

the Lagrangian approach. There also exists a large body of literature dealing with the 

applications of the Lagrangian approach to other large, complex, physical systems 

which car. then be directly used to provide physical insight into the problems of 

modeling combat. 

D.     MANY ORDEP PARAMETERS, NON-LINEAR MODEL 

The extension to many variables can be made [Ref. 1,12]. Suppose now we are 

interested in modeling the spatial-temporal patterns of the order parameters and not 

simply the temporal patterns as before. To extend the 20P, where u - 1,2 , we now 

let p ■ 1,. . . , N, where N is the number of order parameters we want to model. For 

one example of a many parameter model, suppose we divide the battlefield into distinct 

cells, labeled by 0" 1 m.  For example, in each cell we would examine the Blue 

and Red force levels as composed of tanks and personnel and as shown in Figure 4.1. 

The l^,a, where pa forms an enlarged index of the n^o variable-space, and V can 

now incorporate NN (nearest-neighbor) interactions and N2N (next-nearest-neighbor) 

interactions to account for external forces, such as higher level constraints, resupplies 

from adjacent units, actual movement of forces from cell to cell, etc. The model would 

be as follows. 
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PWOIXfy) - J-' -JflXcxp(-  XAtLn) 

DM - g„1/2 (27iAt)"1'2   fl gn
1/2   ft   ft (27iAt)-1''2 mW 

- "" n»l   " (I     a n 

gn » det (g|lv>ap) (4.19) 

L = 1/21 <M^.f^)gjlvaß(Mv'ß-f^) (4.20) 

M » {M/'a ln= 1 N a* 1 m n-1 s} (4.21) 

It must be emphasized that we are only assuming a Gaussian distribution of the rate of 

change of the variables in time, and that the spatial distribution could be non- 

Gaussian. This is a modeling consideration when deciding on a functional form of the 

Lagrangian. It should also be emphasized the distribution is only Gaussian in the 

short time, and only in the post-point value of the variables, whereas the long time 

distribution could be any distribution. 

E.     ASSUMPTIONS 

The primary assumption of the general model is that the system to be modeled is 

a Gaussian-Markovian system in the rate of change of the variables. This means there 

must be sufficient order parameters available to describe the system as Markovian, i.e. 

that the future state of the system only depends on the present stats. This assumption 

comes into play in describing the short time conditional probability distribution of the 

order parameter. The Gaussian assumption states the short time conditional 

probability distribution is Gaussian in the post-point variables. This is a standard 

assumption made when dealing with many stochastic models. It is hoped the 

Lagrangian or path integral representation is very robust with respect to these 

assumptions. This means if the noise is non-Gaussian or there are not enough order 

parameters to ensure a Markovian description, then we can still obtain a reasonable 

path integral representation with these assumptions. 
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Figure 4.1   Battle Grid Showing Blue and Red Force Parameters. 

F.      INTERPRETATION OF THE LAGRANGIAN 
Suppose we have a functional form of the Lagrangian which can be plotted as in 

Figure 4.2. We now show how the Lagrangian contains information about the system: 

most likely states of the system; a measure of the risk associated with that state; and a 

measure of the transition probability between most likely states. 
The minima of the Lagrangian correspond to the most likely states of the system. 

We assume we arc looking only at the short time probability distribution, 1>S. The 

Lagrangian contains a widely varying expression containing factors of the dillcrcnce 

between the actual state and the average or mean state, i.e. L 3C [Xt+ j - (Xt + I'At))* 

where the term in the parenthesis is the past state corrected for the drift. Therefore, if 

the actual state is much dill'crent from the average state, then L will be a relatively 

large value compared to the other terms, and the corresponding value of the 

probability distribution will be correspondingly exponentially small. 
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Figure 4.2   Plot of Lagrangian vs Order parameter. 

The minima are shown as points A,B and C in Figure 4.2 and represent the most 

likely states of the system at time t. 

The Lagrangian also contains the g,lv term which is the metric of the order 

parameter space, i.e. it is a measure of the distance in this space. This space is curved 

for all metrics which are not constants, and we then have a short time Gaussian 

distribution in curved space. 

The g„v term is also related to the variance g^v - (gyv)*1 • °*" tne underlying 
microscopic sources of noise which is a measure of the "width" of the minima. The 

minima width of a most likely state can be seen as a "degree of risk" measure 

associated with that state, i.e. the wider the minima the larger the confidence interval is 

for that state. For example, look at the minima at point A. If we were trying to 

forecast the value of the order parameter X, then we could only say it is between X - 9 
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and X*13, with any degree of confidence (to be defined). At point B we have a 

minima which is more sharply defined. We have most likely states of X= 15, with a 

confidence interval of Xs"(14,16) and the g**v would be a much smaller term. The 

smaller the g**v the sharper the width of the minima. A measure of the transition 

probability between two most likely states is the relative height of the "peak" between 

the two "valleys" of the minima. For example, point D is much smaller than point E, 

and if the state of the system was at point B, then a transition to state A would be 

more likely than a transition to state C. 

Granted the above discussion is very qualitative, but quantitative results can be 

obtained. However, a graphical device portraying the information contained in Figure 

4.2 would be more useful as a qualitative tool than a quantitative one. 
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V. DESCRIPTION OF THE METHOD 

A. INTRODUCTION 
We will now present, in outline form, the generalized procedure for obtaining a 

path integral representation of combat systems. 

• Select, derive or develop the order parameters of the system thereby defining the 
independent variables 

• Obtain sufficient empirical data from the system you wish to model 

• Functional forms of the independent variables are developed in terms of 
theoretical parameters/coefficients to be fit to data, to model means and 
variances 

• Perform a maximum likelihood fit of the short time probability distribution, 
fitting coefficients of the functional form 

• Using the path integral technique, a probability distribution of the order 
parameters is found for long times. 

• Perform sensitivity analysis 

• With the probability distribution, you can then use the method to 

Analyze budget decisions in terms of hardware;software purchases 

Perform combat analysis for use in battle management 

Determine the efTect of proposed doctrinal changes 

Perform "What if scenarios for use in combat planning 

Have additional input to your decision making cycle 

The method is an iterative process.  We will collect some data, look for order 

parameters, attempt a fit, and if not very successful, try a new functional form of the 

Lagrangian.   This process will continue until we have decided our assumptions are 

satisfied and we have a reasonably good fit to the data. Of course, after examining the 

structure of the Lagrangian and discovering that the model gives results which are not 

correct, then we must go back to the beginning or try a different functional form for 

the Lagrangian. We will now cover each of the steps in detail. 

B. ASSUMPTIONS OF THE METHOD 

Before we begin describing the method in detail, it would be appropriate to look 

at the assumptions. These assumptions will guide our development, and selection of 

the order parameters. Selection of the order parameters will then guide our data 

collection efforts. 
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As stated before in Chapter 4, our primary assumption is that the system to be 

modeled is Gaussian-Markovian. This assumption was necessary in developing the 

path integral. This assumption has further consequences in defining the amount of 

data required in order to sufficiently model our complex combat system. 

There are several items which need to be addressed: 

• number of elements in the battle; these can be personnel, vehicles, aircraft, 

ships, etc. If they are to be used as an order parameter, then there must be 

enough individual elements to ensure approximate continuity. 

• number of runs of the experiment/war game/simulation; this is required in order 

to provide sufficient statistics for a good fit of the Lagrangian to the data, 

mainly in estimating the parameters of the g^v, i.e. the variance, and the means 

• number of order parameters; this is required to ensure the system is Markovian. 

If not enough order parameters are used, then even if the true system is 

Markovian, our model of it may not be Markovian, which could result in a bad 

fit of the Lagrangian. If the model is robust, then a good fit could still be 

obtained if the number of order parameters used is not too different from the 

actual number of underlying order parameters. There is a subtle but important 

feature of our modeling which helps to create a robust fit: when care is taken 

to handle all nonlinearities, e.g., including Riemannian terms in the midpoint 

discretized Lagrangian, equation 4.18, then the probability distribution is 

invariant under nonlinear transformations of the variables. (This is what 

induces the Riemannian geometry [Ref. 10].) Thus we are really fitting a wide 

clr.ss of functional forms whenever we do one generic fit to the data. 

• "uncertainty principle" 0<T = At < 1/L , L - <(Ax)>2/ (<(Ax)2> At) 

where "* means on the order of. This places a requirement on the amount of 

change in the order parameter in a particular time increment. This is also 

necessary to calculate the path integral. This states that in a time increment t, 

the average drift of the order parameter must be less than (or on the order of) 

the variance [Ref. 13]. Obviously, when considering actual data, i.e. from 

operational exercises or combat, then At will become part of the data and then 

we can only do the best fit we can with the data available. 
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•    Aggregation (co-location) of capabilities; it is possible this type of model may 

not be adequate if the system is composed of only a few large distinct entities 

which have several capabilities.   For example, a naval battle group may have 

large numbers of personnel and aircraft, but they ar„- aggregated into a 

relatively few number of ships. Destruction of one ship's capability may have a 

large impact on the outcome of the battle.  It still may be possible, however, to 

model some aspect of the naval battle, for example the group's outer air battle, 

which has sufficient numbers of elements i.e. aircraft. There is more interesting 

work that could be done here but is beyond the scope of this thesis. 

In summary, we need a combat system which has a large number of elements to 

ensure approximate continuity, a sufficient number of order parameters, and a 

sufficient number of experiments to provide for a good fit of the Lagrangian. Once a 

Lagrangian  is  developed   and  coupled  with  the  path  integral,  we  will  have  a 

"propagator" to describe the time evolution of the system from any initial time tQ to 

any final time, t. 

C.     SELECTION OF ORDER PARAMETERS 
The development of the order parameters is first dependent upon the system you 

wish to study. For example, if you were interested in the length of a battle as defined 

by some cutoff strength for either side, then the order parameters used might be just 

the force levels of each side. If you were interested in the relation of C3 to the 

outcome of a battle, then you might use some MOE of C3 of either side, together with 

the force levels. 

Second, the order parameters used must satisfy the aforementioned assumptions. 

Obviously, an order parameter must be something which changes value during combat 

and cannot be a constant or a very slowly changing variable. Otherwise there would 

be no need to model that particular order parameter. 

Some examples of order parameters (per side) are: 

1. number of vehicles (tanks, trucks, aircraft, etc.) 

2. number of aircraft 

3. number of elements firing (artillerytanks'aircraft) 

4. number of shots fired 

5. number of tanks (armor study) 

6. supply logistics availability 

7. troop carrying capacity (helicopters tactical troop carriers) 
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8. geographical position on the battlefield (appropriate for motorized infantry) 

9. number of aircraft/sector ( outer naval air battle) 

10.    log(bits) of information used in communications 

Through the appropriate use of the order parameters and the path integral other 

questions such as the outcome of the battle and duration of combat can be answered. 

D.     DATA COLLECTION 
The first step in the analysis is to obtain empirical data. This could be the result 

of simulations, war game results, field exercise data or data from actual combat. Each 

of the data sources has its advantages and disadvantages. If the data were available, 

the best source would be from actual combat. Obviously, there have been no large 

scale wars recently, but that does not prevent us from doing analysis on past wars. 

This will not be the approach here. There is data available from field exercises, but it 

is not in a suitable form for analysis at the present time. This includes data from 

CAX's (Combined Arms Exercises) which are held at Twentynine Palms, California by 

the Marines, or exercises conducted at Fort Irwin by the Army on their calibrated 

range. This could be done at a later time. War games are the next best place to 

obtain data. Several War Games available at NPS are JAN'US (after the mythological 

two-faced god) and IBGTT (Interactive Battle Group Tactical Trainer). TWSEAS 

(Tactical Warfare Simulation, Evaluation and Analysis System) is a war game available 

at the Marine Corps Development Center in Quantico, Virginia. These simulations are 

discussed in the Appendix C. Other simulations available are CARMONETTE, 

SOTACA, and FOURCE to name a few. A brief description of each is also included in 

Appendix C 

For the purposes of constructing a statistical mechanics model of combat, many 

trajectories of the order parameters are needed. What do we mean by trajectories of 

the order parameters? In the space defined by the order parameters, a point represents 

one possible state of the order parameters. A path which connects the initial state of 

the system to some final state is called a trajectory. The trajectory represents one 

possible realization of combat. For a Kcod fit of the model to the data many 

trajectories, and therefore, many stochastic experiments are needed. This will naturally 

leads us to select a war game or simulation as a source of data. In these cases, many 

experiments can be completed with variations in the noise. 
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E.  DEVELOPMENT OF THE LAGRANGIAN 
The next step in the analysis is to determine a functional form of the Lagrangian. 

The simplest and most versatile form is a ratio of polynomials. This defines a Pade 

approximant form and is suitable for approximating many functional forms. The 

Lagrangian is 

L- l/2(M^-f^)guv(Mv-fv) Hvv (5.1) 

where we need to assume functional forms for the f ^ , ft ■ 1,... , N (N is the number 

of order parameters) and the variance g^v . Since g„v is a metric it must be positive 

definite, i.e. det (g«v)>0. Except for this one condition, the Lagrangian can be of any 

form. Obviously, we would like to keep the form simple, yet model the data 

accurately. This might require several iterations of: 

1. select a functional form of the Lagrangian 

2. performing a maximum likelihood fit to determine the unknown coefficients, 

3. testing the fit of the Lagrangian with the data 

4. and if not satisfactory, go back to 1. 

If, after several iterations, a gooc. fit has not been attained, then we must look at our 

data to ensure we have satisfied our assumptions. This could be one test to see if we 

satisfy our assumptions. 

F.     MAXIMUM LIKELIHOOD FIT 

After deciding on a set of order parameters defining independent variables and a 

functional form of the Lagrangian, we are now in a position to estimate the 

parameters,'coefficients of our Lagrangian. This will be accomplished by using a 

maximum likelihood fit. 

The short time conditional likelihood function, M, is defined tc be 

M ■ (2nAt)'1/2 gi/2 exp(-LAt) - P(X(t + At)|X(t)) , (5.2) 

L- i,2(M»1-f»l)gflv(Mv-fv) (5.3) 
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where the other variables are as previously defined. Our data is in the form of I runs 

for JAt time periods, where one run is one realization of combat and J is the duration 

of combat. Our maximum likelihood function for many runs now becomes 

AT        -   rf    ft (2izMY1'2 g..1/2 expC-L.At) 
i»l   j»l l) IJ 

»   rfpfX^+jAOlX-Cto+ti-DAt) x... x P(X.(t0 + AOlXjdg» ,       (5.4) 

where X^ + j At)» {X^o+jAO.Y^ + jAt)} , 

and where the data is used to calculate specific values of the X's. We now wish to find 

the parameters in the Lagrangian which maximizes this function. To do this we first 

take the logarithm of AT to accommodate computer requirements on acceptable ranges 

of numbers which can be processed. Since the logarithm is a positive monotone 

function, the maximum of In AT will be in the same location as that of M'. Therefore we 

now wish to maximize 

z     J 
111M'        "      I  I I-i/2ln(2JcAt) + i/2ln g^ - I^At ]        (5.5) 

z     J 

- * £ Il-i/2ln(2«) +i/2ln(At). i/2ln gj. + L,.At ] 

The maximization of In AT is equivalent to a minimization of -In AC . Also the constant 

l/2ln(2fl) can be deleted from In AT since it will not affect the location of the minimum. 

In general, At will be part of the data and thus we will not drop this term. Therefore 

our problem is to locate the minimum (global, if possible) of 

« -  II [i/2ln(At) + LjjAt - i/2ln gy ] (5.6) 

Current algorithms for solving non-linear minimization problems are 

deterministic and only guarantee local minima. Therefore we have developed a version 

of the simulated annealing algorithm which guarantees convergence to the global 
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minima if certain conditions are satisfied. The algorithm uses a random sampling rule 

to select points from the parameter/coefficient space, and a criteria on which to base 

acceptance of that point as the new state of the fit. We use a Cauchy distribution tied 

into a "temperature" on which to sample the space, and as the temperature is lowered, 

the search is more localized. The Cauchy distribution (a long tailed, °o variance 

distribution) is used so that the localized search does not get trapped in a local minima, 

and there is some probability of leaving to find better optima. The Boltzmann 

distribution (from the Metropolis algorithm) is used as a criteria on which to accept 

the point. This distribution is particularly useful in our case, because the cost function 

is in the form of a Boltzmann distribution and thus there is a more efficient mapping to 

the parameter space. A description of the algorithm, the necessary conditions, and a 

FORTRAN program of the simulated annealing algorithm are contained in Appendix 

A. 

There are a few subtle points to mention concerning data, variables, parameters 

and spatial dimensions. The paths which are generated from a source of data are 

equivalent to a set of likely paths which can be sampled from the theoretical 

distribution of the variables. This is usually what is meant when discussing sampling 

statistics. The data are a sample from some theoretical distribution which is at present 

unknown. The parameters are the coefficients in the functional form of the Lagrangian 

and the g„v metric and are to be estimated from the data. At the time we are fitting 

the data, W becomes a function of the parameters with the variables being the data. 

Once the Lagrangian is fit to some set of the data, it then becomes the fitted 

distribution of the underlying order-parameter variables which attempts to mimic the 

unknown underlying theoretical distribution. The "dimension" of the space of variables 

is determined by the number of order parameters being considered. If two or three 

spatial dimensions are being considered, then typically separate cells within this space 

would contain independent order parameters, which would be functionally tied to the 

order parameters in other cells by the functional forms used to define the multivariate 

drifts and diffusions. 

It should be stressed that fitting the Lagrangian does not mean separately fitting 

the means and diffusions to the same accuracy. That is, we are fitting the functional 

form of the Lagrangian to the data and NOT finding a set of parameters, coefficients in 

the drift and diffusion terms of the data. Thus there may be a "wide" discrepancy 

between parameters'coefficients using similar data, but it is the resultant fit of the 

Lagrangian to the data that is most important. 
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G.     PATH INTEGRAL TECHNIQUE 

The most important part of the analysis is now complete, i. e. developing a 

functional form of the Lagrangian. With the Lagrangian in hand we are in a position 

to calculate the long time conditional probability distribution P1 defined as 

P1 » P(X(t)(X(g = S• • j fiX exp(-LAt) , (5.7) 

where t^ < t and t can be any time chosen in the future. This is the path integral and 

acts as a propagator of the system, i.e. once the path integral is known, given any 

initial state, the probability distribution of the order parameters at any other time can 

be calculated. For simple systems, Monte Carlo techniques are used for multi- 

dimensional systems. However, there is only one method, recently developed, that has 

proved to be accurate for a wide range of nonlinear, nonstationary problems, such as 

those we expect to be present in combat systems. At the present time, using this 

method, the path integral has been calculated in one dimension [Ref. 13,14,15] for 

many highly nonlinear systems, and it has recently been extended to two dimensions 

[Ref. 16]. Work is ongoing at Lawrence Livermore and Sandia National Labs to 

develop an algorithm for the many dimensional case. However, meaningful results can 

still be obtained by examining the static Lagrangian where X *" 0. This gives some 

indication of the characteristics of the system before doing long calculations. 

H.     VALIDATION AND SENSITIVITY ANALYSIS 

Now we are in a position to check the sensitivity of the model to changes in the 

data. The Lagrangian essentially contains all the elements of the model. This is why it 

is so important to obtain a good fit. This analysis could be done in two ways: 

1. With many runs of the data, we can separate (randomly) a set of runs to do our 

fit and then verdate the fit using the remaining set of runs. It is not clear at 

the present time how to determine a good fit but a method that seems 

reasonable is determining deviations from the most likely path in the following 

manner. First, at each time increment, calculate the sample variance of the 

data. This will be our weighting factor. Next, calculate the distance between 

each of the data points and the most likely state calculated from the 

Lagrangian. This will be our "width".  We then form the following statistic: 

l/(n,(iyl)) I(Awu)2;s2
t - l/fn^-l)©^)2/«2» (5.8) 
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where s2
t » l/(nt-l)£(xit-xt)

2, xt is the most likely value at time t, xt is the 

sample mean at time t, n is the total number of data points, ne is the number of 

experiments and nt is the number of data points time t. The distributional 

properties under our assumptions of this statistic remain to be seen. One 

property which is evident is if the long time conditional distribution is 

symmetric then xt and xt are equal and our statistic will be unity. Another is if 

the data were to fall within one standard deviation s of the most likely path for 

all time, then the statistic will be close to 1. In this case a good fit would be 

evident if the statistic were "close" to 1. 

2. Using a set of runs of a particular scenario, fit a Lagrangian. Now change a 

parameter of the scenario, for example, starting force levels. Next use a 

goodness of fit test such as described above to check the sensitivity of the 

Lagrangian to the change in the scenario parameter. This could be done for 

several parameters or several iterations of the same parameter. 

Only after a full sensitivity analysis has been completed and the Lagrangian can 

be shown to be robust, can we say the Lagrangian accurately models the scenario(s). 

I.      OPTIONAL USES 
We now present several generic uses of the path integral method and show some 

of its usefulness and versatility as a combat model. 

1. Procurement Decisions 
Suppose you are a commander in charge of procurement decisions. You are 

faced daily with comparing C3 systems to tanks to aircraft to field artillery' pieces and 

up to now have relied mainly on subjective or qualitative models. With PIACA, the 

comparison between different items of equipment weapons is summarized into 

comparing probability distributions and actually compare the items value in changing 

the outcome of combat. 

For example, suppose we are interested in comparing the relative worth of 

purchasing a new C3 system or purchasing more tanks. A study could be conducted as 

follows: 

1. Obtain a sufficient physical model of the C system which can be simulated or 

used in a war game. A similar requirement exists for the tanks. Although this 

seems somewhat complicated, this step is usually completed for most 

comparisons. 
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2. Once a sufficient physical model has been obtained, conduct many runs of a 

simulation'war game using first one system, then the other using various 

appropriate scenarios. 

3. We now fit a Lagrangian to both data sets and develop a short time conditional 

distribution and a long time propagator or path integral. 

4. We now have common objects, the Lagrangian and the path integral in which 

to compare the two different systems. We might then compare the most likely 

states of the two Lagrangians and determine if they are satisfactory. Or we 

might compare the long time distributions or develop some MOE which 

combines features of the Lagrangian and the path integral. 

The are several advantages to this approach. First, fewer simulations are 

required since the information present in the scenario is captured by the Lagrangian 

within a relatively small number of runs. Second, once the fit has been obtained it is 

possible to perform additional sensitivity studies using the Lagrangian without 

requiring more, expensive simulations. This leads to a quantitative and objective tool 

which can be used by procurement managers. 

2. "What If" Scenarios in Combat Planning 
Now that we have seen how to use the method in procurement decisions, it is 

not much of a jump to the use in combat planning. There is a common thread to the 

method, the comparison of similar quantities, the Lagrangian and the path integral. 

For illustrative purposes we present an example of the method in combat planning. 

We now suppose we want to examine the effectiveness of several combat 

plans. These are not as dissimilar objects as before, but we now have an additional 

objective evaluation which we may use. A study would follow similar lines as before: 

1. Perform many runs of simulations for each combat plan. This alone would aid 

in understanding the significance or utility of each plan. 

2. Fit a Lagrangian to each data set. Perform any required;desired sensitivity 

analysis. 

3. Calculate the long time distribution via the path integral. 

4. Develop any MOE's or compare the distributions in a qualitative manner. 

Another advantage of the method is the user becomes more involved and is 

able to see the consequences of each plan more fully. Examining the structure of the 

Lagrangian enables him to see transition points in the developing outcome of the battle 

which might be critical points. With this information, he can then make more 

informed decisions regarding the evolution of the battle. 
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3. Doctrinal Evaluations 
This use again follows the same procedure and we will suggest several 

examples. The procedure followed is the same as above. 

One example could be to examine the effect of a change in armor tactics due 

to a small change in the weapon system. A large change in the weapon system might 

require a new study and therefore a new Lagrangian. 

Another example is to look at a change in defensive tactics such as the 

difference between using a line defense and using a dispersed defense. 

We could look at a change in helicopter tactics as a final example. 

I have attempted to give the flavor of the possibilities of the method. It is 

extremely rich in applications and much interesting work can be accomplished. 

J.     SUMMARY 

We have provided a general methodology for developing a statistical mechanics 

model of combat in this chapter. It is as follows: 

• Derive or develop the order parameters of the system 

• Obtain sufficient empirical data from the system you wish to model 

• Functional forms of the order parameters are developed to model means and 
variances 

• Perform a maximum likelihood fit of the short time probability distribution, 
fitting coefficients of the functional form 

• Using the path integral technique, a probability distribution of the order 
parameters is found for long times. 

We have suggested several possibilities of the method for use in procurement, 

combat planning, and doctrinal evaluations. The utility of the method is being able to 

extract the essence of a combat system and representing it by a functional form, i.e. the 

Lagrangian. Once the Lagrangian has been found, it then becomes possible to predict 

future outcomes with some degree of statistical (uncertainty. 

We have also argued that although the Lagrangian is specific for a particular 

scenario, it may be robust enough to small changes in the scenario. A collection of 

Lagrangians is possible for example, to describe differing scenarios such as cold 

weather, desert, or jungle environments, defensive versus offensive tactics/strategies, 

differing force structures and differing advantage factors, i.e. either for or against the 

enemy. This collection after suitable testing can then be incorporated into the decision 

aid PIACA, for use by the commander and his staff. 
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VI. THREE EXAMPLES OF THE METHOD 

A. INTRODUCTION 
In this chapter we look at three examples of the use of the path integral or 

Lagrangian representation of combat. The first is a one order-parameter model with 

constant variance. This will lead to a quadratic Lagrangian which will imply a 

Gaussian distribution at each time step with means and variances being functions of 

the order parameters. The second example is a two order-parameter model with 

multiplicative noise. The fit becomes more difficult but results can be obtained. For 

both of these examples, simulated data from the associated GSL is used and it will be 

shown that the coefficients used in the GSL can be obtained from the fit using the 

Lagrangian representation. These two examples are provided to illustrate the 

relationship between the GSL and the Lagrangian representation, and as a test of the 

computer code of the maximum likelihood fit program. It must be emphasized that we 

will be fitting a Lagrangian to the data and not merely to find coefficients which are 

exactly the same as those in the GSL. Thus we will compare the theoretical Lagrangian 

(derived from the GSL) and the empirical Lagrangian which is fit from the data. In 

the third example we show how to proceed with the method when given a set of 

empirical data which was taken from the war game JANUS. Due to time constraints it 

was not possible to perform the necessary fit to the data. 

B. ONE ORDER-PARAMETER MODEL 
Although as stated before, the one order-parameter model may not be a good 

model for combat, we present it here as a simple exposition of the mathematics and the 

methodology. 

1. Data Collection and Order Parameter Used 
The data was generated from a generalized stochastic Lanchester equation of 

the form 

X = aX + grj (6.1) 

The x\ are distributed N(0,1).  (Note:  This is, in fact, an Ornstein-Uhlenbeck process.) 

The APL program used to generate the data for this example is given in Appendix D. 
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The order parameter represents, for our example, the Blue force level, which is 

being attrited through some process such as an essentially constant Red force level, i.e. 

a = oY. The data consists of 20 runs of the simulation for total time increments of 

s« 20, and At = 0.1. Therefore the total time of one simulation represents, sAt, or say 

2 minutes. We are assuming there is no explicit time dependence in the Lagrangian, 

and any time dependence is implicit in the variable X. Our GSL for the data is then 

X - -.IX + n where r\ ~ N(0,1) (6.2) 

For generating data we take the form 

X(t + (j+l)At) = X(t + jAt) + (-0.1X(t + jAt)+ti)At (6.3) 

Sample trajectories for 20 runs are shown in Figure 6.1. It should be noted here that 

all figures in this this chapter used the powerful statistical and graphics capability of 

GRAFSTAT. Figure 6.2 plots the sample distribution for each time increment and 

also connects the means of the distributions. It is obvious here that the expected value 

path is the solution of the deterministic equation, i.e. <X-aX=r|> = < X > - 

a<X> - 0 -» <X> - a<X> since <T|>=s 0. The notation <argument> 

signifies the expected value of the argument. This will be seen to be the case when the 

Lagrangian is quadratic. 

We now pick the short time conditional distribution representation to fit this 

data: 

P(X(t + At)|X(t)) = l/(2Jtg2At)1/2 exp(-LAt) (6.4) 

where L =  (X - f)2/2g2 "  (X-äjX)/2ä2
2 and where the a."s are parameters to be 

estimated. For this example, 

P(X(t+At)|X(t)) = (2nAt)-1'2exp{-i/2[X(t + At)-X(t) 

2/A 2, -{äjX^Atl^At} 

(6.5) 
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Figure 6.1   Trajectory of Order Parameter X 

and we can see this is in a Gaussian form with mean u « X-HäjXJAt , and variance 

a,2At. We also see the Lagrangian in equation 6.5 is in quadratic form. 

2. Maximum Likelihood Fit of the Lagrangian 
We will use a maximum likelihood fit to estimate the parameters ai and ä2 in 

the Lagrangian. Therefore we want to maximize 

JW- fl     finX.U-i-ü+OAOpUt + jAt))        (6.6) 
i»X     j»l        ' l 

or equivalently to maximize In M, 

lnW y   YlnP(X.(t+(j+l)At)|X.(t + jAt» 
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DISTRIBUTION OF ORDER PARAMETER X 
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m J I ' ' 
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TIME 

Figure 6.2   Distribution of Order Parameter X. 

T   £(i/2ln(2nAt) + i/2lng2 + L-At)   . 
i       3 

To use the simulated annulling algorithm described in Appendix A, we need our cost 

function (likelihood) in terms of a minimization. Therefore, we want to minimize 

Q        - -In H'     - 11 0/* ln (2,tÄt) + 1''2ln 82+ L,jAt) 

*     II {i/2ln (2*At) + i/2ln a2
2 + I/2AtlX(t + (j + l)At)- 

X(t + jAt) -(ajX(t + jAt))At]2} 

There is  an  algebraic relationship  between  the  GSL  and  the   Lagrangian.    The 

coefficients, parameters in the Lagrangian correspond to the coefficients in the GSL, if 
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defined properly. Therefore, a good fit would be obtained if the estimated parameters 

of the Lagrangian were "close" to the coefficients used to generate the GSL. However, 

it must be stressed again that we are fitting a Lagrangian to the data and not merely 

attempting to match the coefficients. We will compare the theoretical Lagrangian 

(derived from the GSL) to the Lagrangian fit from the data. 

3. Results of the Fit 

In addition to the above example, two other fits to data for different GSL's 

were performed to truly test the simulated annealing computer code. The results are 

listed in Table 1. In defining the model we will use the terms linear or non-linear to 

describe the functional form of the drift and additive or multiplicative to describe the 

form of the diffusion or noise terms. As is evident in the table, the fitted coefficients 

were "close" to the generated coefficients. The true test however, was how well the 

generated Lagrangian and the fitted Lagrangian agreed. 

TABLE 1 

ONE ORDER PARAMETER RESULTS 

Model GSL Generated Fitted 

Coefficients Coefficients 

I Linear Additive X = aX + gn a = -0.008 3^-0.0121649 

g = 0.2 a2 = 0.104862 

II Non-linear X = aX + bX2 + gn a = -0.008 äj =-0.0385419 

Additive b =-0.001 ä2 =-0.000818763 

g = 0.2 ä3 = 0.104391 

III Linear X = aX + gXq a = -0.008 äj =-0.0121295 

Multiplicative g = 0.01 ä2- 0.00482471 

Before comparing, the Lagrangians had to be renormalized. Due to the 

underlying noise the Lagrangians could only be fit within an arbitrary constant. This 

constant was chosen so that the renormalized Lagrangians were unitless (this was 

arbitrary)- A first choice was to use as a constant the Lagrangian evaluated at L^ 

(X = 0, X = Xf) where X^ is the value of X wäich L is a global minimum. However, 

LJ^O.XJ.) will more than likely be close to zero and this could cause numerical and 
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mathematical difficulties. Therefore, we chose to evaluate L^ « L(0,XjJ where X^ 

■ Xf + g2(Xf)v
/t. g2(Xf) is the variance evaluated at Xf. This seemed appropriate 

since we would like to incorporate into the normalization factor a measure of the 

curvature of the order parameter space and yet be "close" to the global minimum. 

Therefore 

LR = L(X,X)/LN(0,XL) (6.7) 

is our renormalized Lagrangian. These are plotted in Figures 6.3, 6.4, and 6.5. It can 

be seen that the agreement in the drift terms measured by the location of the minimum, 

are very good. The agreement in the variance measured by the shallowness of the well 

was fairly good. This was for 20 runs of the simulation from time 0 to time 2 at 

increments of 0.1. The estimated coefficients were determined by having the simulated 

annealing program run for 10000 generated points and selecting the minimum value 

obtained. More work is being done here in running the program for 1,000,000 points 

and also performing the fit with more data, i.e. more runs and more time increments to 

see the effect of these modifications on the location of the minimum. 

These simple examples were meant to illustrate the principles of the method 

and thus simple Lagrangians were obtained, i.e. those with only one minima. 

However, more complicated Lagrangians are admissible and this method is only limited 

by the ingenuity of the modeler. 

C.     TWO ORDER-PARAMETER EXAMPLE 

The two order-parameter example is now given. The Lagrangian for this 

example invoives a ratio of polynomials because of multiplicative noise. We again 

show the coefficients used to generate the data can be estimated quite well using the 

two order-parameter Lagrangian. This example tests our computer code, so that if the 

functions used in the Lagrangian are derived in a special way from the Langevin 

equations, then the short time conditional probability distribution will correspond 

directly to thw probability distribution of the variables generated by the Langevin 

equation. 

1. Data Collection and Order Parameters Used 

The data are generated from a GSL of the form 

X = anY + a12XY+ a^ + a14 Yn, 
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LINEAR ADDITIVE MODEL 

o \                                                           /            / o \                                                                                                                               II 
"*■ 

\                                                          I 
\Generated                                     /            / 

o \                                                        11 
8 

\                                                   I 
-I \                                                           / 

o \                      \                                                                                            I                   / o \                      \                                                                                         if 
CM \         \                                         1       / 

\       \                                     /     /Fitted 

O \      \                                1    / 
O W    // 
O * J 1  \^^-+^^ 1         .         ,         , 

3< 3.0 39.5                     40.0                     40.5                    41.0 
X(T+AT) 

Figure 6.3   Generated and Fitted Lagrangians for Linear Additive Model. 

Y - a2IX + a22XY+ a^Xr^ + a24n2 • (6.8) 

where cross terms are present in the drift (mean) and the diffusion (variance). The 

multiplicative noise is present in the coefficients of the ij's. The APL program 

LANCHESTER described in Appendix D was used to generate the data. Sample 

trajectories of X and Y are shown in Figures 6.6 and 6.7. Figures 6.8 and 6.9 plots the 

sample distributions. 

We now derive the form of ihe Lagrangian corresponding to the GSL in 

equation 6.8 . 

The theoretical Lagrangian, L, to be fit to the data is defined in equation 6.9. 

L- l/2(MM-gM)guv(Mv.gv) , J!V^ 

-pv <g"V. 
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NON-UNEAR ADDITIVE MODEL 
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Figure 6.4   Generated and Fitted Lagrangians for Non-Linear Additive Model. 

g>» - P + l/2gV. dgV,dMV  . 

g"v - g^ gv, • (6.9) 

where we have assumed V-0 and f1 - anY + a12XY.   Therefore, g1 is given by 

equation 6.10. 

«g ,i -^..V.^iV, ,x 
/1.2 <V !..,.>       ti 

2 ^WI^WJ aY   • (6.10) 

g1, - a13, g
l
2 - a14Y , g2j - a23X . g22 - a24 . (6.11) 
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LINEAR MULTIPLICATIVE MODEL 
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Figure 6.5   Generated and Fitted Lagrangians for Linear Multiplicative Model. 

g1 - anY + aI2XY + l/2a14a24 (6.12) 

For g2 we have 

,   £g2. ,   ^g2, •.   ^g2. *>   dg2, 
13) 

and f2 " a21X + a,2XY. Therefore, 

g2 - a2,X + a22XY + i/2a13a23 

Next we calculate the g^v terms. 

(6.14) 
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Figure 6.6   Trajectory of Order Parameter X. 

cll m o1 o1   + o1 o1   «a   2 + a   2Y2 

g » i* I T 8 2» 2      a13        a14 x (6.15) 

g12 - g\g2, + g'2g22 - a13a14X +a14a24Y (6.16) 

g21 - Z\s\ + g2^ " g12 (6.17) 

g22 - g2,g2, + g2
2g2

2 - a2JX2 + a24
2 (6.18) 
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Figure 6.7   Trajectory of Order Parameter Y. 

Next we need g„y.   The g^v form a 2 by 2 matrix whose inverse is g Hv 
Thus 

gMV-(detgMvr1 

,12 
g* * g 

\-g21 gU 

where det g**v = gng22 - g21g12 m (det g»v)    • The Lagrangian is 

L- l/2<X-g1)2gu + U2(X.g%2(\-s
2)t 

+ l/2(Y-g2)g21(X-g1)+i/2(Y-g2)2g22 

-l/2(detg»,v)-1l(X-g1):g21-2(X-g1XY-g2)g12 + (Y-g2)2gl,j 

(6.19) 

(6.20) 

(6.21) 
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Figure 6.8   Distribution of Order Parameter X. 

since all the terms contain the (det g»v)    factor and since g12 = g21 . 
The       short       time       conditional       probability       distribution 

■ P(X(t + At)|X(t + (n-l)At))is 

1>S. 

P*„ - 8„1/2 (2tAt)-i;2 exp(.L At) n      cn (6.22) 

where 

*n " dcl %v>n 

Ln-(l:2AtKMJ!(t + (n+l)At)-M^(t + nAt)-g,At) 
x gHV(MV (t + <n + l)At)-Mv(t + nAt)-g2At) 

(6.23) 
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DISTRIBUTION OF ORDER PARAMETER Y 
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Figure 6.9   Distribution of Order Parameter Y. 

and specifically, 

Ln- l/2At(g1Ig22-g1V1r1 l(Xn
+ - Xn.glAt)2g22 

-2g12(Xn
+ -X^'AtXY/ -Yn-g2At) + (Yn

+ - Yn-g2At)2g,,J 

where Xn + - Xn(t + (n + I)At) , Xn - Xn(t-f-nAt), and where similar equations exist 
forY. 

2. Maximum Likelihood Fit of the Lagrangian 

After a functional form of the Lagrangian has been derived (or guessed), the 

next step is to estimate the parameters in the Lagrangian. This is done using a 

maximum likelihood fit, that is, we wish to maximize 
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M   - fi ftp5 

i«l   j»l     1J 

where P8- = F5(Xj(t + (j+ l)At)|Xj(t + jAt)) is the short time conditional probability 

distribution for experiment i, at time t+(j+ l)At (post-point). As before, we will take 

the logarithm and pull the minus sign out front, and then minimize the resulting 

function. This becomes 

In«    =     I Imp», 

-      Z   S{l/2ln(2JtAtH/2lng.. + Lj.At} - -M 

I 
We minimize W with respect to the parameters/coefficients of the Lagrangian form. 

This will be a minimization problem of 8 parameters for our example.  W will likely 

contain many minima but we are only interested in the best fit, i.e. the global 

minimum. Therefore we will use the simulated annealing algorithm developed for this 

purpose of performing the best fit.   Again we are looking for the best fit of the 

Lagrangian to the theoretical Lagrangian and not attempting to extract any particular 

parameters/coefficients.   However, any constraints or conditions imposed on the 

parameters/coefficients based on phenomenological reasons  should and must  be 

included to obtain the best fit. 

3. Results of the Fit 

In addition to the above example, one other fit to data obtained from a 

different GSL is given to test the code and to examine the similarities between the 

Lagrangians.   The results are given in Tables 2 and 3.   Again we will normalize the 
vv 

Lagrangians.  For the two dimensional case we will use X»  ■ X   + gA"   (X ) where 
gj\;\ are tne diag0nai terms of the metric and are a measure of the curvature in the 

order parameter space. The renormalized Lagrangian becomes 

LR = L(X,X):LN(0,XL) (6.24) 

The generated Lagrangians are plotted in Figures 6.10 and 6.12. The fitted 

Lagrangians are plotted in Figures 6.11 and 6.13. Again we find good agreement in the 

drift terms or the location of the minimum of the Lagrangian.  These are located near 
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TABLE 2 

TWO ORDER PARAMETER MODELS 

Model GSL 

I Linear Additive X-anY+a12ii1 + a13H2 
Y=a21X+a22nj+a23ii2 

II Non-Linear Multiplicative    X = a1JY+a12XY + a13n1 + a14Yn2 

Y - a21 X + a22XY + a^Xijj + a24n2 

TABLE 3 

TWO ORDER PARAMETER MODEL RESULTS 

Model 

II 

Generated Fitted 

Coefficients Coefficients 

an--0.008 au- -0.0121839 

a12=*0.3 a12- 0.0787236 

a13-0.1 a13- 0.130564 

a21 - -0.004 a21 - -0.00655852 

a22 = 0.1 a22« 0.152455 

a23 = 0.3 ä23 = 0.0209012 

au-0.01 än »0.0550272 

a12 =-0.004 ä12 = -0.0073603 

a13 = 0.5 ä13 = 0.246917 

a14 = 0.01 ä14 = 0.00235102 

a21 - 0.02 ä21 = 0.0855577 

a22 =-0.001 ä22 = -0.00449816 

a23 = 0.015 ä23 = 0.00857855 

a24 = 0.7 ä24- 0.281460 
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the contour labeled 0.01 in the plots. The contour level spread is a measure of the 

variance and it is evident that there is more spread in the levels in both of the fitted 

Lagrangians. This is somewhat to be expected when dealing with a small sample from 

a probability distribution. More work.is being done here to extend the results to more 

complicated Lagrangians, using more data, and using the simulated annealing program 

to find a better minimum (by including more points in the search). These early results 

have been encouraging. 

Figure 6.10   Generated Lagrangian for the Linear Additive Model. 

D.     TWO ORDER-PARAMETER MODEL USING JANUS DATA 

1. Selection of Order Parameters 

To ensure a simple description we will assume here that our order parameters 

are the numbers of personnel in each force and that we will look, at the attrition, 

similar to a Lanchcstcr approach. 
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Figure 6.11   Fitted Lagrangian for the Linear Additive Modei. 

2. Data Collection 

JANUS was chosen as a source of data because of its easy accessibility 

(present at NPS on a number of computers) and the combat data is in an easily 

reducible form for analysis. The high degree of graphics support also gives us a broad 

overview of the scenario we are dealing with. A Blue defense versus a Red Offense 

scenario was used. Terrain was fictitious and generated using the graphics capability of 

JANUS. It was Hat with no foliage nor any built-up areas (cities). The defender had 

the capability to perform pop-up maneuvers, i. e. moving from full defilade to partial 

defilade. This was a separate condition fron« the terrain. The attacker moved across 

the terrain exposed. Blue was composed of 3 task forces of 12 M60A3 tanks and 4 

M901 TOW weapons each and was in a line defense. Red was composed of 3 task 

forces of 30 T72 tanks and 9 BMP troop carriers each and was in the attack.   Red 
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Figure 6.12   Generated Lagrangian for the Non-Linear Multiplicative Model. 

objective was to penetrate Blue's defense, and Blue's objective was to repel Red's 

attack (mutually exclusive missions). 

Twenty runs were collected using the batch mode of JANUS.  Data collected 

was driven by the attrition process, and each attrition was classified as an event.  At 

each event, clock time of the simulation and attrited side was recorded. Data consisted 

of a collection of clock times and status of forces at clock time. 

3. Development of the Lagrangian 
The first step in the development of the Lagrangian is to examine the sample 

paths of the data. This might suggest an appropriate model, such as Model I or Model 

II to begin with. It is probably best to begin with a simple model and move on to 

more highly non-linear models unles the data is known to be complicated. These 

functional  forms  can   be  as  complicated  as  you  wish,  combining  trigonometric, 
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Figure 6.13   Fitted Lagrangian for the Non-Linear Multiplicative Model. 

exponential, or polynomial terms. However, as mentioned before, a Pade approximant 

can approximate many functional forms and thus a ratio of polynomials would be your 

best first guess. 
4. Performing the Maximum Likelihood Fit 

Having selected a functional form we must now estimate the 

coefficients/parameters in the form. This is done by using a maximum likelihood fit as 

described in the two earlier examples and in Chapter 5. This requires the user, in order 

to use the simulated annealing program, to write a subroutine for his cost function, i.e. 

the function he wishes to maximize/minimize. This should be written in terms of a 

minimization for the program to work. The user must also decide how many points he 

wants to use in the search, starting temperatures, any constraints on the 

parameters/coefficients ho wants to impose, and a starting point.  These arc relatively 
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easy to incorporate into the program. One rule of thumb that has been found is to 

start with a small number of points in order to check your subroutine and then 

increase to the amount of points you want. The nunimum suggested number of points 

for one dimensional problem is 10000. This usually allows the simulated annealing 

algorithm sufficient time to find a good fit. Of course, the more 

dimensions/coefficients you have, the more points you will need in order to get a good 

fit. The minimum cost and the point associated with that cost is the final output. 

These are your fitted coefficients for your Lagrangian. 

With the Lagrangian, we can now test the fit using similarly obtained data, i.e. 

data from the same scenario. If the fit does not seem satisfactory based on some pre- 

selected conditions, then we must return to the development step and try a different 

functional form. This iterative process continues until we are satisfied we have a good 

fit. 

5. Path Integral Representation 
With a satisfactory Lagrangian we can now examine the long term behavior of 

the system using recently developed code for the path integral (not available at the 

time of this thesis). By using the path integral code we can numerically determine the 

probability distribution of our order parameters at any time t. For example, an item of 

interest may be when a particular transition point in a battle might occur. We would 

use the path integral to calculate the probability distribution at each subsequent time 

step and then look, for evolving trends of that distribution. For example, imagine we 

had a bistable probability distribution, i.e. one with two most likely states, and wanted 

to know how the system evolved from one minimum state to the other. We would 

then keep stepping through the calculation of the path integral until we found a 

noticeable change in the distribution. 

6. Sensitivity Analysis 

By using sensitivity analysis we can test the robustness of our fit and of our 

functional form. This might proceed as follows. First obtain sufficient data from some 

scenario you wish to study, e.g. our JANUS data. Our particular order parameters are 

the number of each vehicle on each side, so we have four order parameters. We decide 

on a functional form and perform the maximum likelihood fit. After having satisfied 

certain conditions, we are satisfied with our fit. We now return to our scenario and 

make a change in a microscopic variable, for example the pop-up rate of the tanks in 

the defense.   Using the same  functional form of the  Lagrangian, we perform a 
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maximum likelihood fit using the newly obtained data. Remembering that we are 

fitting the Lagrangians and not the individual coefficients/parameters, we are not 

concerned with agreement here. We plot the Lagrangians for both the original data 

and the modified data and determine if there is any significant change. We might 

continue this process for differing values of the pop-up rate or turn to a different 

variable, e. g. the initial force level of each side, max range of the weapons, 

manuevering speed, change in the terrain, weather, etc. If the Lagrangian has not 

changed appreciably we can feel confident that our model is appropriate. 

E.     SUMMARY 

In this chapter we presented three examples of the method using the one order- 

parameter and two order-parameter models. In each case we have assumed no explicit 

time dependence in the functional form. This was done to keep the examples simple. 

If the multiplicative noise is small compared to a constant noise term, then the 

Lagrangian is approximately quadratic in the post-point variable, and all distributions 

are Gaussian. However if the multiplicative noise is significant, if the mean is higher 

order than linear, then the long time distribution will be non-Gaussian even though the 

short time distribution is Gaussian. This must be emphasized. Otherwise the model 

would mimic a Gaussian distribution and be of limited use. 

We have also presented the use of the simulated annealing algorithm to perform 

the maximum likelihood fit. A relatively new algorithm, simulated annealing seems to 

be particularly useful, especially when little is known about the system. 
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VII. CONCLUSIONS 

A. INTRODUCTION 
We have presented in this thesis an alternative to modeling combat which 

incorporates its severely stochastic nature. We have found it is a promising model for 

different types of combat if certain assumptions are satisfied. A relatively large combat 

system is necessary to satisfy this assumption. This should be of battalion size or larger 

for land battles and a carrier battle group or larger to describe the outer air battle of 

naval engagements. 

A methodology has been developed which will allow the combat analyst to derive 

specific functional forms for use in the decision aid PIACA. The necessary 

mathematical theory has been developed and provides the foundation for the 

methodology. A simulated annealing algorithm to perform the maximum likelihood 

fits was developed. A FORTRAN program was written using the alogrithm and is in 

Appendix A. Three examples using the methodolgy and theory have been given with 

mixed results. These results are discussed next. Following that discussion, an outline 

for the development of the decision aid is given. Finally, the significance of the model 

is discussed. 

B. RESULTS 
The "truly-nonlinear" path integral method has been used sucessfully to describe 

such large scale systems as financial markets, the brain, and in nuclear physics 

[Ref. 8,17,18,19,20,21,22,23,24,25,26,27]. This is the first attempt to actually 

numerically calculate the nature of large scale combat using these methods 

[Ref. 1,2,12]. In the one order parameter example with constant variance, a 

Lagrangian was fit to the data with excellent results. In this case the path of the 

expected value of the order parameter followed the associated deterministic Lanchester 

equation which has been shown to model combat quite well under certain conditions. 

Other features of the one order parameter model was the incorporation of a drift and 

diffusion term of the order parameters. This is an improvement over the simple 

Lanchester approach. 

The two order parameter example was the first look at incorporating 

multrf,;.cative noise into the model.   This is a significant improvement  over the 
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Lanchester approach, stochastic or deterministic. Finally, using as our order 

parameters the level of the Blue and Red forces, a two order parameter model was 

developed for a JANUS simulation. 

Given the time constraints of the NPS program, the purpose of this thesis was to 

lay the formulation for future theses to build upc. The Lagrangian we have 

formulated can be further investigated using this approach, e.g., using the simulated 

annealing program to fit a Lagrangian to a specific scenario. 

C.     DEVELOPMENT OF THE DECISION AID 
We will now outline below the development of the decision aid PIACA and 

suggest some design requirements. 

First, to be useful as a decision aid under severe time constraints, PIACA should 

be graphically and qualitatively oriented. The Lagrangian should be presented in a 

form similarly developed in Chapter 4, i.e. a graphical portrayal of most likely state? 

and the risks associated with those states. This will allow easy assimilation by the 

commander and his staff. Of course, human factors should also be incorporated in this 

design. 

Second, PIACA should enable the user to develop his own form of the 

Lagrangian by using data from simulations he has selected. This would allow for 

Lagrangians to be developed which are terrain, scenario, or commander dependent. 

Third, once a Lagrangian is developed, the long time probability distribution, or 

path integral should be calculated easily, i.e. in real time. This is a heavy requirement 

since at present the path integral is not easy to calculate on supercomputers much less 

something which can be brought to the field. 

To summarize, to have the full decision aid will require: 

The development of efficient algorithms to solve the path integral. This will 
most likely be a joint improvement in software and hardware. 

Graphical devices to portray the evolving long time probability distribution 

User-friendlv software to interface with the user to develop Lagrangians of 
scenarios he' has selected with the capability of pre-selecting Lagrangians from 
standard scenarios. 

Graphical depiction of alternatives. This is a must requirement for anv decision 
aid. 

Abilitv to link to other users. This will then provide an easv information 
exchange in the meta-language of the model, i.e. passing values' of the order 
parameters, scenarios, etc. 
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Obviously, there is much research to be completed in all these areas. One 

purpose of this thesis was to lay the groundwork for the development of the full 

decision aid as well as provide a unified means of describing combat using physical 

concepts. 

D.     SIGNIFICANCE OF THE MODEL 
It has been shown that this model is extremely rich in applications.  We have 

kept the examples simple to illustrate the use of the method.  We have assumed only ' 

implicit time dependence and a free particle Lagrangian, i.e. V = 0. The significance of 

the model could be increased with the addition of these terms.  For example, it would 

tiien be possible to: 

• incorporate boundary conditions, i.e. constraints on the forces either 

geographically or from higher levels of command, by the addition of the 

potential teim, V. Such a model might be useful to describe relatively isolated 

combat. 

• The possibility to examine "phase transitions", such as during nuclear, 

biological, and chemical exchanges which drastically alter the evolving battle. 

Other relatively small "phase transitions" could be examined such as when a 

commander has reached a critical point in his force level and how he reacts. 

These "phase transitions" could be modeled by matching at the critical point the 

two Lagrangians, i.e. one from the left and one from the right of the critical 

point. 

• The full power of mathematical tools such as stability analysis and calculation 

of first passage times are available for examining the structure of the 

Lagrangian. These tools have been used by physicists and others to examine 

large and complex systems and many results could be applied to combat 

systems. 

Obviously, there is much work to be done in this area that was beyond the scope 

of this thesis. The author hopes more work is done ?.nd this thesis laved the 

appropriate groundwork for others. 
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APPENDIX A 
THE SIMULATED ANNEALING ALGORITHM 

Simulated Annealing is a stochastic optimization algorithm for Fmding global 

extrema. First, the algorithm is described, and a stochastic model, specifically the 

Markov process, is used to show that the algorithm converges to the global optimum. 

Second, the algorithm is used on several unconstrained minimization problems. 

1.      BACKGROUND 
We will begin this discussion by first asking the question, what is simulated 

annealing? In order to answer this question, we first need to know what is meant by 

annealing. Annealing is a process whereby a metal or crystal substance is first melted, 

then subsequently cooled to freezing temperature. At intermediate temperatures the 

substance is allowed to come to equilibrium. The purpose of an annealing experiment 

is to determine the ground or lowest energy state for that particular substance. The 

sequence of temperatures at which the substance is allowed to come to equilibrium is 

refered to as the annealing or "cooling" schedule. If this cooling schedule is too rapid, 

then the state of the substance will most likely be trapped in a metastable state and will 

not reach the ground state and it is said to have been "quenched". 

Simulated Annealing is then a simulation of this process using a computer. We 

generate an initial configuration of the system and calculate its energy, EQ. Then the 

state of the system is changed, and the new energy, Ej, is calculated. If AE " Ej - EQ 

^ 0, then the state of the system becomes this new state. If AE > 0, then the state of 

the system becomes the new state with probability = e"^' , where T is the 

temperature. Otherwise, it remains in the old state, and the process is repeated until 

T«0. In this case, we are interested in a cooling schedule which minimizes the total 

energy. The above procedure is refered to as the Metropolis algorithm after 

Metropolis, et. al. [Ref. 28] who developed it to perform equation of state calculations 

for substances at an equilibrium temperature. The algorithm is a useful one for 

performing simulation in statistical mechanics. In large physical systems, one is 

typically interested in the average properties of systems in equilibrium since these are 

the ones that are directly measureable. For example, the procedure has been used to 

simulate ferromagnetism of an Ising model [Ref. 29] and used to calculate <U>, the 
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average energy, and M, the magnetic moment. Also, the entropy of the amorphous 

magnetic state can be calculated using an algorithm similar to the Metropolis 

algorithm [Ref. 30]. 

Kirkpatrick, et. al. [Ref. 31] reformulated the algorithm to be used in the 

minimization of a general class of functions, analogous to the minimization of energy 

in the statistical mechanics system. They used the algorithm to calculate the optimal 

placement of integrated circuit chips on a computer circuit board, and also obtained a 

solution to the N-city traveling salesmen problem. Since that time, the simulated 

annealing algorithm has been used in various forms for problems in circuit design 

[Ref. 31], image reconstruction [Ref. 32,33,34], target tracking, [Ref. 35] layer 

assignment [Ref. 36], speech recognition [Ref. 37], and others [Ref. 38,39,40]. 

In section 2, we discuss the general class of problems associated with non-convex 

optimization. In section 3, the general simulated annealing algorithm is discussed with 

a description of the Markov chain model of simulated annealing. We show that if 

there exists a generation function, and an acceptance function that satisfy certain 

conditions which impose an irreducible, aperiodic Markov chain, then the algorithm 

will converge to the global optimum. In section 4, we give the results of an experiment 

which tested various combinations of generating and acceptance functions on the 

minimization of three different cost functions where the global optimum is known. 

Preliminary results of some modifications to the algorithm are also given. We conclude 

our results in section 5. 

2.      NON-CONVEX OPTIMIZATION (NCO) 
Non-convex functions are functions which have multiple extrema. In NCO, we 

are typically interested in obtaining the global minimum or maximum. Algorithms 

which attempt to find these ixtrema can be classified as being either deterministic, 

stochastic or mixed in origin. Some deterministic algorithms such as quasi-Newton 

(BFGS) or steepest descent methods typically locate only local extrema and are only 

guaranteed to find the global when the function to be optimized is convex. There are 

other deterministic methods which have achieved good performance such as Levy and 

Montalvo [Ref. 41] for locating multiple extrema. Stochastic methods include the class 

of algorithms associated with simulated annealing, and which are purely stochastic in 

nature. Mixed algorithms are typically of the multiple starting point, iterative 

improvement variety. An example of this is the IMSL routine ZXMWD which uses a 
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quasi-Newton method with multiple starting points and selects the lowest value. As 

the number of starting points is increased, the probability the global minimum has 

been found is also increased. 

The question now becomes, why use simulated annealing? Obviously, if there are 

algorithms which exploit the structure/properties of a class of problems, then these 

should be used. For example, there exist heuristics for the traveling salesmen problem 

which exploit the characteristics of the problem and probably would perform better 

than using simulated annealing. Simulated annealing becomes very useful if the 

problem you are interested in lacks any special structure or for which there are no 

heuristics available. Simulated annealing is easy to implement and gives good insight 

into the problem, if you can identify the cost function to be used. This will become 

more apparent when we describe the algorithm. 

3.      GENERIC SIMULATED ANNEALING ALGORITHM 
The algorithm is very simple and is stated as follows [Ref. 42]. 

STEPO 

• Pick a starting point xQ. This could be at random or set to some initial guess. 

If you ru>ve some idea of the space to be sampled, the algorithm will run much 

quicker if it is confined to a smaller space. 

• Set the initial temperature, TQ. Again if the sample space is confined, then TQ 

can be set at a lower temperature. If not, then set TQ to some high value. xQ 

and TQ are dependent upon the function to be minimized and are considered 

control parameters. 

• Select a cooling schedule. This will be dependent r,jon gj discussed in step 1 

below. This is equivalent to setting T(r.) = f|t) where t is the step counter. For 

example, set T(t) = T0/(l + t) (inverse linear cooling). 

STEP 1 
• Pick a new point, Xj. This new point will be picked according to some 

generating function gj which could be a function of the temperature, T. Some 

examples of generating functions are given in section D. 

STEP 2 

• Calculate AC s Cj - CQ where Cj = f{x.). This is where the dynamics of the 

cost function enter into the algorithm. 

• Generate a uniform (0,i) random variable, Li. 
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• If the acceptance function (discussed below) ay(AC,T) > U, then accept the 

point Xj as the new state of the system and let Xg m Xj, CQ * Cj. 

• If CQ < CJJJ^, CJJ^ = CQ, XJJ^ = Xg. (This keeps track of the lowest value 

obtained so far) 

• Otherwise, keep XQ. 

• Repeat step 1. 

Another control parameter is the number of iterations/steps to complete. This is 

dependent upon the starting temperature and the number of variables in the function 

to be optimized. Generally speaking, if the sample space is confined to a small region, 

the number of steps needed will be reduced. 

It is clear from the above, how we can model the algorithm as a Markov process 

and use those results to show global convergence. First, we consider the sample space 

as our Markov state space. We can consider this to be a finite state space if we take 

into account the resolution of our computer. Intuitively, it can be seen that if the 

generating function is capable of generating any point in the space, and the acceptance 

function has a finite probability of accepting the point, then every point could be 

visited/generated an inifinite number of times. Mathematically, this is equivalent to 

stating that our Markov chain is aperiodic and irreducible. For this to be true, the 

generating function must satisfy four conditions: 

1. gj be a bonafide probability distribution 

2. g^XQ, Xj) = gj(Xj, x0) symmetry. This condition is needed for aperiodicity of 

the Markov chain, i.e. that the generating function is symmetric and no cycles 

are present. 

3. gj(xQ, Xj) > 0 for all XQ.XJ S (sample space). This could be generated as a 

path from XQ to x.. This says that every state can be reached by any other 

state, although not necessarily in one step. 

4. lim gj(XQ,Xj) must exist. 

The three conditions that the acceptance function must satisfy are: 

1. a-j-(x0,x1),'ay(x1,x0) be a monotone positive function. 

2. If CQ < Cj, then ay(C0,Cj) > 0 i.e. there must be a positive probability of 

accepting a decrease in the cost function. 

3. lim a-j^XQ.Xj) must exist. 
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If the aforementioned conditions hold, and if it can be shown that every state can 

be generated an infinite number of times, then the algorithm will converge to the global 

optimum. The preceding results are stated here for completeness of the paper. The 

results are proven in the literature [Ref. 42,43]. 

It can be seen from the above that the simulated annealing algorithm is actually 

a whole class of algorithms depending on your choice of the generating and acceptance 

functions. For example, for the Metropolis algorithm and many other algorithms in 

the literature, gj is a uniform distribution over a neighborhood of fixed size. I.e. the 

next point generated is some fixed step distance from the previous point akin to a 

Random Walk process. A degenerate case would be to let gj equal some constant, i.e. 

the uniform distribution over the whole space. This would be equivalent to a random 

sampling algorithm, keeping the state with the least cost. In our experiments, we use 

generating functions which sample the whole space with a bias towards the current 

point. This is equivalent to a random "hop" process, where the process can "hop" 

around the state space, and hops farther at higher temperatures than at lower 

temperatures. For example, suppose we have some function with multiple hills and 

valleys (extrema). Now suppose we have a ball with a lot of energy (high temperature) 

bouncing about this surface of hills and valleys. The ball loses energy according to 

some friction function, ay, which is dependent on the energy of the ball. As the ball 

loses its energy, it will gradually fall into a valley corresponding to a minima. How the 

ball jumps around and how fast the ball loses energy will determine whether the valley 

reached is the lowest valley. 

4.      EXPERIMENTAL RESULTS 

Experiments consisted of testing various combinations of generating and 

accepting functions on three cost functions. The purpose was to determine the most 

effective combination in terms of a measure of performance (MOP). One MOP that 

could be used and has intuitive appeal is CPU time. Another MOP is the acceptance 

ratio which is the ratio of the number of accepted points divided by the total number 

of generated points. These MOP's are directly related. This can be seen if you 

consider that the times to generate a point for each generating function are essentially 

equal. Since the number of accepted points is equal to the number of steps (step 

counter is incremented when a new point is accepted), and this was held constant, the 

only variable in the ratio is the number of points generated.   Therefore, the only 
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difference in the runs was dependent on the number of points generated and so the 

acceptance ratio was used as a MOP.   Obviously, this MOP could only be used 

effectively if the algorithm was actually able to locate the global minimum. 

The cost functions used are as follows: 

C1 - x4 - 16x2 + 5x   . 

This has 2 minima at x=2.90, 0-78.33 (global) and x = 2.74, O-50.06 (local) 

[Ref. &szu2]. 

C2 - x2 - 2y2 - .3cos(37tx) - .4cos(4rty) + 0.7   . 

This has multiple minima with global at x=y = 0.0, C = 0.0 [Ref. 39]. 

C3 - x2 + 2y2 - .3(cos(37tx)cos(47ry)) + 0.3   . 

This has multiple minima with global at x = y = 0.0, C = 0.0 [Ref. 39]. 

The generating functions used are as follows: 

g-r1 = (l/n)T/(T + x2)   Cauchy 

gT
2 - 1V27NT2 e_x /2<T Normal (0, a2 =   1) 

gT
3 = VJ2K9* e'x ''2<T Normal (0, <T2 « 4) 

The Cauchy was chosen because of its infinite variance (wide tails) which should 

indicate a good sampling of the space and not have a tendency to get trapped in a local 

minima early. The normals were chosen to see if the variance had any effect on 

trapping in local minimas. If it did, then that would indicate further research is needed 

to determine if the variance could be used as a control parameter, or if faster cooling 

could be used. 

The acceptance functions used are as follows: 

h-r1 = 1,(1 + e + AC/T') Heat Bath 

2 _ .«ACT = e Boltzmann 

The Boltzmann function is used in the Metropolis algorithm and is a 

fundamental function in statistical mechanics. This form arises quite naturally in our 

problem, as our cost function for the parameters is the Lagrangian of the probability 
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distribution of the independent variables. One modification to the above acceptance 

functions for better performance is to link T, the control parameter, to the relative 

success of the acceptance function, instead of retaining the global temperature, T. That 

is, the temperature that the acceptance function uses would be a different temperature 

than the one tied to the number of steps or generation of points. We will call this the 

2-Temperature generic simulated annealing algorithm. This was developed for this 

thesis in an attempt to obtain better results in higher dimensions of the 

parameter/coefficient space. At this time it is only an ad hoc procedure, but it does 

satisfy the above conditions for the acceptance function. The two temperatures allow 

for a small degree of independence in sampling the space. The global temperature, T, 

controls the sampling of the space by scaling the amount of the jumps in the space. 

The control temperature or acceptance temperature, T', controls the amount of cost 

difference we are willing to accept at each step, and is subsequently connected to the 

state of the system since the state changes each time we accept a point. The 

FORTRAN" program is contained in Figures A.la-A.lh. 

For each run, 'iQ * 5, Xg = (10,10) (2Dim), and T(t) - 1/(1 + t) (inverse linear 

cooling) was used. (For 1-dimensional problem, XQ = 10). Table 4 gives results listed 

by generating function. Table 5 gives results listed by acceptance function. 

TABLE 4 

RESULTS BY GENERATING FUNCTION 

Gen Fen Ace Fen Cost Fen Global Loc Ace. Ratio 

1 1 1 Y .41 
1 1 2 Y .37 
1 1 3 Y .38 
1 2 1 Y .74 
1 2 2 Y .64 
1 2 3 Y .66 

2 1 1 N .48 
2 1 2 .47 
2 1 3 N .48 
2 2 1 N .89 
2 2 2 N .85 
2 2 3 N .87 

3 1 1 Y .35 
3 1 2 Y .28 
3 1 3 Y .31 
3 2 1 Y .60 
3 2 2 Y .44 
3 2 3 Y .49 
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TABLE 5 

RESULTS BY ACCEPTANCE FUNCTION 

Ace Fen Gen Fen Cost Fen Global Loc Ace. Ratio 

1 1 1 Y .41 
1 1 2 Y .37 
I 1 3 Y .38 
1 2 I N .48 
1 2 2 N .47 
1 i» 3 N .48 
1 3 1 Y .35 
1 3 2 Y .28 
1 3 3 Y .31 

2 1 1 Y .74 
2 1 2 Y .64 
2 1 3   • Y .66 
2 2 1 N .89 
2 2 2 N .85 
2 2 3 N .87 
2 3 1 Y .60 
2 3 2 Y .44 
2 3 3 Y .49 

First we compare the performance of the generating functions. We notice that 

gy did not converge to global optimum in any of the runs, so we discard it. For gj 

and gy we note that for every run, gy outperformed gy . Obviously, this is not 

conclusive since it is based on a small number of runs. Many different runs with 

different starting points and initial temperatures would be needed for more definitive 

conclusions. As to the acceptance functions, we can see that hy2 outperformed hy in 

every case. Therefore, based on these results, it would seem that the best combination 

is to use the Cauchy as the generating function, and the Boltzmann as the acceptance 

function. 

5.      CONCLUSIONS 

This experiment was intended to introduce the reader to simulated annealing and 

to show how it can be used for optimization problems. Further research is needed in 

the area of different generating and acceptance functions, applying the algorithm to 

different cost functions, and extending it to higher dimensions. Preliminary results with 

a normal generating function, with variance as a function of temperature, indicate there 

is more interesting work to be done in this area. 
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6.      FORTRAN PROGRAM 
Contained in Figures A.la-A.lh below, is the 2-Temperature version of the 

Simulated Annealing Algorithm FORTRAN program code. The subroutine COSTFN 

is for the 20P model. User must input the number of dimensions (corresponding to the 

number of parameters/coefficients to be fit and NOT to the number of order 

parameters), number of steps or total number of accepted points he wants generated, 

the starting temperature for the generating function, the starting temperature for the 

acceptance function, the starting point, number of accepted points to print, total 

number of generated points (controling the amount of time the program will run), the 

time increment of the data, the number of runs of the data, and the number of time 

increments. This information must be included as the first line of the data and can be 

unformatted. 

PROGRAM SA 
IHHHHHHW«WHHHHHHHHHHHHHHHHHHHHHIWHHW*»»<HHHHHHHHHHHHHHHH< 
«THIS PROSRAM IS A TWO TEMPERATURE VERSION OF SA 
IHHHHHHIWIHHHHHHWHHHHHH>««»»»#»<HHtWMHHHHHHHHHHHHHHHHHHHHHH> 

INTEGER NBIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2 
DOUBLE PRECISION    T0,TQA,X0(8),X1(8),XMINC8;, 

1TEMP6,TEMPA,C1,C0,0ELTAC,H,CMIN, 
1PERACCIPERACZK 1000,21 ),Z2< 1000,21 ),DELTAT 

COMMON /COMI/ NDIM,ACC,NACC,NTOT,INACC,INTOT.STEPS,TI.T2 
COMMON /COMR/ C0,C1,TEMPG,TEMPA,0ELTACH,PERACC,IPERAC,T0A, 

1X0,X1,XMIN,T0,CMIN 
COMMON /LAG/ Z1,Z2,DELTAT,NUMRUN,NTIM£ 
COMMON /Al/ NMOO 
COMMON /SA1/ MAXTOT 
READ  <2,*)NDIM,STEPS,T0,T0A,(X0<N),N«1,8),NM00,MAXT0T,DELTAT, 

1NUMRUN,NTIME 
DO 5 I«1,NUMRUN 

5        REAO 12,*)  (ZUI,N),N»1,NTIME*1),IZ2<I,N),N«1,NTIME+1) 
C NRITE  (3,»)  (Z1(I,N),N«1,NTIME+1) 
C5        MRITE  IS,»)  (Z2(I,N),N*1,NTIME«1) 

NRITE  13,*)   'NOIM    STEPS    TO    TOA    STARTING »OINTS    NMOO    MAXTOT 
1    DELTAT        NUMRUN    NTIME1 

HRITEf 3,*)NDIM,STEPS,TO,T0A,(X0(N),N=1,8),NMOO,MAXTOT,OELTAT, 
1NUMRUN,NTIME 

00 23 JN> 1.N0IM 
XMIN(JN) « XO(JN) 

23 XKJN)  ■ XO(JN) 
CALL SIMANN 
STOP 
END 

Figure A.la   FORTRAN Program for 2-Temperature Simulated Annealing Algorithm. 
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SUBROUTINE SIMANN 
INTEGER NDIM.ACCNACCNTOT.INACCINTOT,STEPS,TI,T2 
DOUBLE PRECISION T0,T0A,X0(8),XK8),XMIN(8), 

1TEMPG,TEMPA,C1,C0,DELTAC,H,CMIN, 
1PERACC,IPERAC,Z1U00,21),Z2(100,£1),DELTAT 

COMMON /Cml/ NDIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2 
COMMON /COm/ CO,C1,TEMPG,TEMPA,DELTAC,H,PERACC,IPERAC.TOA, 

1X0,X1,XMIN,T0,CMIN 
COMMON /SA1/ MAXTOT 
CALL COSTFN(XO.CO) 
CALL INIT 
DO 10 TI » 1, STEPS 
TEMPO » T0/(0FLOAT(TD) 

20  IF (NTOT.SE.MAXTOT) GOTO 11 
CALL GT 
CALL COSTFN IXI,CD 
CALL HT 
CALL PICKPT 
IF (ACC.EQ.l) THEN 

CALL ACCEPT 
ELSE 

GO TO 20 
ENDIF 

10 CONTINUE 
11 PERACC = NACC/REALINTOT) 

WRITE (3,100) NTOT.NACC,PERACC,CMIN,<XMININN) ,NN*1,N0IM) 
100 FORMAT IIX,'TOTAL GENERATED •,18,3X,'NUMBER ACCEPTED ',I8,3X, 

l'PERCENTAGE ACCEPTED ',F4.2,3X//1X,'MIN COST ',E12.6,3X, 
1/1X,'MIN POINT ',«<E12.6,1X)/1X,4<E12.6,1X)) 
WRITE (3,*) 'TEMPG'.TEMPG.'TEMPASTEMPA 
RETURN 
END 

Figure A.lb   FORTRAN Program for 2-Temperature Simulated Annealing Algorithm 
(com). 
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WHHHHHHHHHHHHHHHHHHHHtWHHBHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHI 
SUBROUTINE CQSTFNIP,COST) 
DOUBLE PRECISION P (NDIM),COST,X(1000,21),Y(1000,21) 

1,L1,L2,L3,L0,LX,LY,DELTAX,DELTAY 
INTEGER NDIM,ACCNACC,NTOT,INACC,INTOT,STEPS,TI,T2 
DOUBLE PRECISION T0,T0A,X0(8),X1(8),XMIN(8), 

1TEMPG,TEMPA,C1,C0,DELTAC,H,CMIN, 
1PERACC,IPERAC,Z1( 100,21 ),Z2( 100,21 ),DELTAT 
COMMON /COMI/ NDIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI.T2 
COMMON /COMR/ C0,C1,TEMP6,TEMPA,DELTAC,H,PERACC,IPERAC,T0A, 

1X0,X1,XMIN,T0,CMIN 
COMMON /LAG/ X,Y,OELTAT,NUMRUN,NTIME 
COST » 0.0 
DO 10 I « 1,NUMRUN 
DO 20 N > l.NTIME 
DELTAX > X(I,N+1)-X(I,N) 
DELTAY a Y( I.N+1 )-Y( I,N) 
H1=P( 1 )*Y( I,NHP( 2 )*X( I ,N )*Y< I ,N )+P<4 )*P( 8)/2.0 
en«p(3) 
G12=P(4)*Y(I,N) 
H2=Pl5)*X(I,N)+P(6)*X(I,N)*Y<I,NHP(3)*P(7)/2.0 
C21»P(7)*X(I,N) 
S22»P(8) 
911sGll*»2+G12**2 
Q12=G11*G21*G12*G22 
Q22»G2UH»2tG22**2 
DENsQU*Q22-Q12*»2 
IF (DEN.LE.0.0) THEN 
COST«1.0E25 
GO TO 99 

ENDIF 
DETGsl.O/DEN 
LX»0ELYAX-H1*DELTAT 
LY»0ELTAY-H2»DELTAT 
Ll>(LX»»2)M422/2.0 
L2*-1.0*<LX*LY)*Q12 
L3*(LY**2)«qil/2.0 
LD«DETG»(L1+L2+L3)/DELTAT 

C    IF (DEN.LE.0.0) THEN 
C    ENDIF 

TERMl'-l.0*0LOG(DETG/DELTAT)/2.0 
C0ST*C0ST+TERM1+LD 
NRITE (3,») •A',P(1),'B',P(2),,C,,P(3),,D,,P(4) 

'E,,P(5),,F,>P(6),
,6,,P(7),,H,,P(8) 

'EXPERIMENT NUMBER',I,'TIME STEP'.N 
'DEN OF DETG',DEN,>Qll',qil,'Q12',qi2,,Q22',Q22 
'LX',LX,'HI',H1,'Gil',611,'G12',G12 
'LY',LY,'HZ',H2,'G21',G21,'G22',G22 
•LI'.Ll.'LZ'.LZ.'LS'.LS 
•LD',LD,'TERM1',TERM1,'COST',COST 

C 
C 
C 
c 
C 
C 
c 
c 

I 
i 

20 
10 

99 

WRITE (3t») 
NRITE (3,«) 
HRITE (3,*) 
HR7TE (3,*) 
NRITE (3,*) 
NRITE (3,») 
NRITE (3,»> 

CONTINUE 
CONTINUE 
NRITE <3,«) NTOT,'GENERATED POINT ' ,(P( 11,1 = 1,NDIM),COST 
RETURN 

END 

Figure A.lc   FORTRAN Program for 2-Temperature Simulated Annealing Algorithm 
(cont). 
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MHHHHHHHHHHHHHHHHHHHHHt»W<HHHHHHHHHHHHHHHHHHHHHBHHHHHHHHHHHHHHHHHI 

SUBROUTINE INIT 
INTEGER NDIM,ACC,NACC,NTQT,INACC,INTOT,STEPS,TI,T2 
DOUBLE PRECISION    T0,T0A,XQ18),XK8),XMIN<8), 

1TEMPG,TEMPA,C1,C0,DELTAC,H,CMIN, 
1PERACC,IPERAC,ZK100,21J,Z2U00,21),DELTAT 

COMMON /COMI/ NOIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2 
COMMON /COMR.' C0,C1,TEMPG,TEMPA,0ELTAC,H,PERACC,IPERAC,T0A, 

1X0,X1,XMIN,T0,CMIN 
COMMON /Al/ NMOO 
INACC = 0 
INTOT ■ 0 
NACC » 0 
NTOT * 0 
CMIN a CO 
TEMPAsTOA 
T2=0 
RETURN 
END 

Figure A. Id   FORTRAN Program for 2-Temperature Simulated Annealing Algorithm 
(cont). 

»MMMMM)<MHMHHMMMMMWM»»)<MH»I>H>M»»MMMWMWMWMMMM«MMM)II<MMMMMM)<M>III)1)I>I)IIII<)I 

SUBROUTINE GT 
INTEGER NDIM.ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2 
DOUBLE PRECISION T0,TQA,X0(8),XK8),XMIN<8 J, 

1TEMP6,TEMPA,C1,C0,0ELTAC,H,CMIN, 
1PERACC,IPERAC,ZK100,21),Z2(100,21),DELTAT 
COMMON /COMI/ NOIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2 
COMMON /COMR/ C0,C1,TEMPG,TEMPA,DELTAC,H,PERACC,IPERAC,T0A, 

1X0,X1,XMIN,T0,CMIN 
DOUBLE PRECISION CHOP 
REAL HK(S) 
DOUBLE PRECISION DSEED/5959/ 
DO 10 I « l.NDIM 

5   CALL GGCAY(DSEED,1,HK,U) 
HOP«TEMPG»U 
XIII) ■ XOII) ♦ HOP 
IF <XKI).GT.2.0.0R.XKI).LT.-2.0J GO TO 5 
IF (Xl( 5).LT.0.0.OR.Xll'fJ.LT.0.0.OR.XK7J.LT.0.0.OR.XK8J.LT.0.0) 

1GO TO 5 
C    WRITE (3,100) HOP,I,XKI),X0(I),U 
C100  FORMAT!IX,'AMT OF HOP',5X,E12.6,5X,'I',2X,I2/1X,'NEHPT',5X,E12.6, 
C   15X,'0LDPT',5X,E12.6,1X,'CAUCHY RANDOM NO'»E12.6J 
10  CONTINUE 

RETURN 
END 

Figure A.le   FORTRAN Program for 2-Temperature Simulated Annealing Algorithm 
(cont). 
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SUBROUTINE HT 
INTEGER NDIM,ACC,NACC,OTOT,INACC,INTCT,STEPS,TI,T2 
DOUBLE PRECISION    T0,T0A,X0t8),Xlf.8),XMIN<8), 

1TEMPG,TEMPA,C1,C0,DELTAC,H,CMIN, 
1PERACCIPERACZK 100,21 ),Z2( 100,21 ),DELTAT 

COMMON /COMI/ NDIM,ACC,NACC,NTOT,INACC»INTOT,STEPS,TI,T2 
COMMON /COMR/ CO.CI.TEMPG-TEMPA.OEUACH.PERACCIPERACTOA, 

1X0,X1,XMIN,T0,CMIN 
REAL*8 Yl 
OELTAC » Cl - CO 
Yl « DELTAC/TEMPA 
IF (Yl.GT.  20.0) THEN 

H » 0.0 
GO TO 99 

ENDIF 
IF (Y1.LT.-1S.0) THEN 

H a i.o 
GO TO 99 

ENDIF 
H » OEXP (-YD 

C99      NRITE (3,»)   'OELTAC*,DELTAC,'TEMPA'»TEMPA,'TEMPG',TEMPG, 
C l'Yl'.Yl.'H'.H.'NTOT'.NTOT 

99      RETURN 
END 

Figure A.If  FORTRAN Program for 2-Temperature Simulated Annealing Algorithm 
(cont). 

i[ l<»)<»MI<MMM«HMHMMHM»HMMMM»»MMM»MMHMW»«MMMHMWMMMI»WI«MMII»WII>ll»ll»*IIM»)<»tt 

SUBROUTINE PICKPT 
INTEGER NDIM,ACC,NACC,NTOT,INACC,INTOT.STEPS,TI,T2 
DOUBLE PRECISION    T0,T0A,X0(8),X1(8),XMIN<8 I, 

ITEMPG.TEMPA.Cl,CO,OELTAC,H.CMIN, 
1PERACCIPERACZ1I 100,21), 22(100,21), DELTAT 

COMMON /COMI/ NDIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2 
COMMON /COMR/ C0,C1,TEMPG,TEMPA,DELTACH,PERACC,IPERAC,T0M, 

1X0,X1,XMXN,T0,CMIN 
REAL U 
DOUBLE PRECISION DSEED/6969/ 
CALL GGUBS(DSEED,1,U) 
ACC > 0 
IF (H.GT.U) ACC * 1 
NTOT ■ NTOT ♦ 1 
INTOT « INTOT ♦ 1 
RETURN 
END 

Figure A.lg   FORTRAN Program for 2-Temperature Simulated Annealing Algorithm 
(cont). 
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SUBROUTINE ACCEPT 
INTEGER NDIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2 
DOUBLE PRECISION T0,T0A,X0(8),X1(8),XMIN«8), 

1TEMPG,TEMPA,C1,CQ,DELTAC,H,CMIN, 
1PERACC,IPERAC,ZK100,21),Z2<100,21),DELTAT 
COMMON /COMI/ NOIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2 
COMMON /COMR/ C0,C1,TEMPG,TEMPA,DELTAC,H,PERACC,IPERAC,T0A, 

1X0,X1,XMIN,T0,CMIN 
COMMON /Al/ NMOO 
DO 15 J * l.NDIM 

15     XO(J) » XKJ) 
CO » Cl 
NACC s NACC + 1 
INACC « INACC ♦ 1 
IPERAC = REAL! INACC )/REAUINTOT> 
IF(IPERAC.GT.0.5) THEN 

T2 » T2 ♦ 1 
TfeMPA » T0A/IREALIT2)) 

ENOIF 
IF (HOD(NACCNMOO).EQ.O) THEN 
NRITE (5,*) "ACCEPT A POINT' 
HRITE (3,101) INTOT,INACC,IPERAC,NTQT,NACC, 

1TEMPG,TEMPA,(XKN),N»1,NDIM),C1 
101 FORMAT UX,I2,1X,I2,1X,F4.2,1X,I7,1X,I7,3X,2(E9.3,3X)/ 

UX,<»(E9.3,2XJ/1X,<ME9.3,2X),E12.6) 
ENOIF 
IF (CO.LT.CMIN) THEN 

CHIN ■ CO 
DO 17 JJ=1,NDIM 

17 XMIN(JJ) * XIIJJ) 
ENDIF 
INACC ■ 0 
INTO" » 0 
RETURN 
END 

Figure A.lh   FORTRAN Program for 2-Temperature Simulated Annealing Algorithm 
(cont). 
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APPENDIX B 
THE PATH INTEGRAL 

1.      INTUITIVE DESCRIPTION 
a. Sum over Paths 

We  begin  by  using   our  previous  definition  of the  path  integral,   and 

interpreting the integral as a specific sum over paths. The path integral is defined as 

P(X(t)|X(t0) = J- • -j5Xexp(-  YAtLn)   , 

fiX « (27tg0
2At)"1/2     fl (2Kgn

2At)-1/2 dXn 

which is a long time conditional probability distribution of a variable X at some time t, 

given its intial position at tQ . How is this a sum over paths? We will look at the one 

dimensional case but the intuitive extension to higher dimensions can be easily made. 

To easily see the path integral description we first look at the random walk 

problem. Suppose we have had a lot of drinks at Tun Tavern (a famous Marine Corps 

establishment of the late 1700's). Although we do not want to leave, we have an 

inspection tommorrow and need to get home. Tun Tavern is located as XQ and home 

is X(t). Being a true drunk, we would have a 50-50 chance of stepping out a certain 

distance in a time increment At. There will be associated with our walk a probability 

of never reaching home (depending on how many drinks we have had!) and thus there 

is a probability distribution of getting home by time t. Suppose we did this every 

night, then each night we would follow a different path home. This is an example of 

Brownian motion. The short time conditional distribution, i.e. the probability of being 

across the street at (z) at time t + At given you were at Tun Tavern (x) is 

P(across the street,t + At|Tun Tavern.O) = 

Pfz.tg + At|x,t0)- (4RDAI)'1'2 exp(-(x-z)2 4DAt) (B.l) 

where D is the diffusion coefficient or a measure of your drunken state. 

The long time distribution (being at home at time t given you started 
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at Tun Tavern) can be calculated and is 

P(home,t|Tun Tavern,0) = nlj4nö exp[(-x2/4Dt)/Vt] (B.2) 

Suppose again we are fairly drunk but now we have someone pushing us 

according to some rule. Again there is a chance of not making it home, and we want 

to look at our probability of making it home. We will assume our short time 

conditional distribution is given by 

P(X(t0 + At|X(t0) -  (27tAtg2)"1/2 exp(-LAt) (B.3) 

r-S* 

where L is the rale used by this person. We again have paths over which we travel 

going from Tun Tavern to home There are certain probabilities associated with each 

path and we wi'i sum over all the probabilities of the paths to determine our chance of 

making it home. In the limit as our step size becomes continuous and At-* 0, we will 

need to integrate over all positions and over all paths and find that our chance of 

making it home is 

P(X(t)|X(t0) = j---fDXexp(-jLdt) (B.4) 

which is our path integral. 

b. What doe« the Path Integral say? 

We can now easily see what the path integral gives us. If a particle (or drunk) 

follows a path which is determined by the Lagrangian, we sum over all possible paths 

(which have been weighted by the Lagrangian) and arrive at a probability distribution 

of the particle's position at some later time. 

The Lagrangian from classical mechanics is T-V where T is the kinetic energy 

and V is the poter.tial. In classical (deterministic) systems there is no path integral 

since there is only one path which is followed with certainty. This is the so-called 

classical trajectory.  In classical statistical mechanics the Lagrangian is given by 

L = (X-f)22g2 (B.5) 

where f is the drift a ad g2 the diffusion. 

..-"• S2 

h&_ 



2.      MATHEMATICAL DESCRIPTION 
a. Quantum Mechanics 

The utility of the path integral is in its ability to arrive at classical mechanics 

as a special case of quantum mechanics in which Planck's constant -ft* < < 1 represents 

the noise of the system.  In quantum mechanics the path integral is defined as 

K = J--'Jexp(iS/-ri)ßX (B.6) 

S=    ftb Ldt (B.7) 

where o is tne classical action. 

In contrast to the statistical mechanical classical sum over probability paths, 

in quantum mechanics we compute the sum over th** probability amplitudes of the 

paths. There are no paths that are followed with certain probabilities. 

For more information on path integrals in quantum mechanics see Feynman 

and Hibbs [Ref. 44]. 

b. Statistical Mechanics 

Statistical mechanics is a branch of physics which attempts to describe the 

relationship between the microscopic properties and the macroscopic behavior. It is 

trus characterized by the investigation of large scale, physical, chemical, and biological 

systems and the search for underlying similarities. A subfield of statistical mechanics is 

concerned with modeling nonlinear systems using the Fokker-Planck equation. This 

equation is the reduced master equation of nonlinear systems and seems to be 

fundamental to many physical systems. Thus its solution would greatly enhance the 

understanding of such systems, including combat systems. 

It is in this context that we have developed the path integral specifically as an 

application of statistical mechanics. For other applications of the path integral in 

statistical mechanics and applications in general see Schulman [Ref. 9] and Wiegel 

[Ref. 45]. 
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APPENDIX C 

SIMULATIONS/AVAR GAMES DESCRIPTION 

1.      JANUS 

JANUS is a computer simulation of combat developed by Lawrence Livermore 

National Labratory. It is an event-driven, stochastic simulation written in FORTRAN 

and work is underway of an ADA version. It models individual weapons, such as 

tanks, vehicles, helicopters, fixed wing aircraft and personnel as distinguishable entities. 

JANUS currently runs en Digital Equipment Corporation (DEC) mini-computers and 

has Tektronix 4125 color graphics workstations [Ref. 46,47]. JANUS is run from one 

or more workstations composed of a high resolution graphics terminal, 1 or 2 graphics 

V$r input tablets with mice, and a DEC VT-100 terminal to communicate with the 

operating system. 

JANUS can be run either in an interactive gaming mode or in batch mode. The 

graphics terminals display the terrain, location of all combat systems under control of 

that workstation and any enemy units which have been acquired by those combat 

systems. In the interactive gaming mode, a player first plans his operation by placing 

his forces where he wants them to start and can give subsequent movement orders. 

Once the game begins, the player interacts by giving orders to his forces by using the 

mouse and the menu on the graphics terminal. 

In the batch mode, a particular scenario is chosen including an initial plan and 

the computer simulates the combat with no player interaction. Results can then be 

captured via appropriate commands given at the beginning of the run. 

JANUS has a tremendous amount of flexibility in designing any particular 

scenario. User has complete control over graphics symbols, weapon system 

parameters, weapon platform parameters, terrain and weather parameters. 

Currently JANUS is not an optimum simulation to study C3 in batch mode 

because of relatively unsophisticated rules for decision-making, e. g., for a line of tanks 

to go around a lead tank stuck in a ditch. 

Currently JANUS 3.2 is installed at TRAC (TRADOC Analysis Center) 

Monterey at their Conflict Simulation Lab (TCSL). They have 4 workstations located 

ü 2 adjacent rooms to simulate the Blue and Red forces. 
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2. TWSEAS 

The Tactical Warfare Simulation Evaluation, and Analysis System (TWSEAS) is 

used primarily by the Marine Corps as an instructional tool at the Command and Staff 

College, Quantico, Virginia [Ref. 48]. The computer simulation is designed mainly as 

an aid to assist in the war gaming by providing casualty, intelligence, movement and 

supply reports. It also calculates positions of all forces both enemy and friendly. 

Controllers act as mediator between the computer and the players by inputing tactical 

commands from the players and then reporting to the players results of their 

commands. This can be done over real or simulated communications nets. 

The simulation is stochastic and all results are printed on high speed or PC dot 

matrix printers. This limits the capability of this simulation as an analysis tool. 

Current work is underway to correct this situation and provide an analytic as well as 

training tool. 

3. SOTACA 

The State of the Art Contigency Analysis (SOTACA) is a high resolution 

graphics device combined with powerful decision rule software to provide the 

commander a tool to select contigency alternatives. The software is written in 

FORTRAN and the hardware used is a DEC VAX. It is deterministic and uses as a 

selection process a series of decision rules which are entered by the user. The primary 

means of unit movement are through arcs which are placed by the user. The program 

then selects an optimal routing based on the decision rules and the characteristics of 

the arcs. Although very useful as a planning aid, it was not suitable as a source of 

data because of its non-stochastic nature [Ref. 49]. 

SOTACA was developed for use by the Pentagon and the CINC's (Commander 

in Chiefs, Atlantic and Pacific Forces). 

4. BGTT 

BGTT is the Battle Group Tactical Trainer and is primarily used as a computer 

simulation of the naval warfare environments. Its configuration consists of one control 

and three player stations. At NPS, the stations are subdivided physically in the C3 Lab 

by partitions. BGTT runs on a VAX-11 780 with RAMTEK Graphics Display 

Stations and has a high speed printer for paper output of game results. BGTT is used 

primarily as a staff trainer and as an analysis tool for students at NPS [Ref. 50]. 
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5.      OTHERS 
a. CARMONETTE 

CARM ONETTE is a high resolution computer simulation of combat using 

small unit combined forces. It is an event driven stochastic simultion which provides 

for intermediate and terminal results, and is used for feasibility studies of alternative 

weapon systems and tactics over varying scenarios [Ref. 51]. 

b. FOURCE 

FOURCE is a deterministic simulation of division level force-on-force combat. 

It is used primarily as a measure of command and control effectiveness in combat 

[Ref. 51]. 
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APPENDIX D 
APL SIMULATION PROGRAMS 

This appendix contains the APL programs LANGEVIN and LANCHESTER. 

They were used to generate data from the Langevin equation and a GSL as described 

below and in the text. 

1.      PROGRAM LANGEVIN 

The program LANGEVIN (shown in Figure D.l) generated data from the 

Langevin equation 

x = -.ix + gn (D.l) 

where f| ~ N(0,l) and g= 1 (constant variance). The user inputs two vectors, INIT 

and P which are described in the program. The output consists of a matrix where a 

row corresponds to one simulated trajectory of the Langevin equation. The columns 

are the value of the variable (X in this case) at each time increment (t + jAt) where 

\- 1,. . ..T.This data was then used by the simulated annealing algorithm described in 

Appendix A to perform the maximum likelihood fit. 

2.      PROGRAM LANCHESTER 

The APL program LANCHESTER (shown in Figure D.2) was used to generated 

data for the 20P example described in chapter 6. Data was generated from the 

following equation: 

X - aHY + a12XY+ a13rM + aJ4Yn2 

Y = a2,X + a22XY+ a^Xtij + a24q2 

The user inputs, as before, two vectors, INPUT and P, where the vector INPUT 

contains the initial values of X and Y, time increment At, number of experiments, and 

number of time increments to use. Output is in the form of 3 matrices, HISTX, 

HISTY, and EXP. The rows of HISTX and HISTY are the trajectories of the X and Y 
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V RIST+N LANGEVININIT 
C1 3 fiTHIS FUNCTION WILL PRODUCE A SET OF NUMBERS 
2 ^CORRESPONDING TO A SIMULATION OF A LANGEVIN EQUATION 
3 (WITH ONE NOISE TERM DISTRIBUTED NJO.1) 
X   ftTIS THE AMOUNT OF TIME THE SIMULATION IS RUN 
5 fiDELTAT IS THE TIME INCREMENT DESIRED 
6 R GCOEF IS THE COEFFICIENTS OF THE FUNCTION WHICH 
7 ^MULTIPLIES THE NOISE 
8 p HCOEF IS THE COEFFICIENTS OF THE DETERMINISTIC FUNCTION 
9] nETAIS THE GENERATED RANDOM VARIABLES 
10] T+INITlll 
11 DELTkT+INITtll 
,12 GCOEF+INITIZ t+ 5] 
13 HCOEF+INIT16 7] 
14 HIST+(Stl)p(S+l+T*DELTAT)pO 
15 HISTETA+X(S-1),1)pHIST 
16 J+l 
17 START:X+,INIT18] 
18 1*1 
19 ETAV+xO 
20 £OOP: H+HC0EF+. xPOLIX+X C J] , X til * 2 
,21 G+GCOEF+.xl,POLYX 
22 ETA+1 NORRAND 0 ,1 
23 X+X.XlIl+DELTATxH+GxETA 
24 EW+EZVlP.fiTA 
25 1*1+1 
26 +(IST*DELTAT)/LOOP 
27 HIST+RIST,121 X 
28 HISTETA+HISTETA ,121 ETAV 

,29    J+J+l 
30    +USN)/START 

,31    HIST*** 0 1 +ffI52' 
!32] ffisrErA+s o 1 FRISTET A 

Figure D.l    LANGEVIN Program. 

order parameters, respectively. The columns correspond to the values of the variables 

at the time, t + jAt, where ]= 1,. . .,T where T-NEXP * DELTAT. The matrix EXP is 

a concatenation of the HISTX and HI STY matrices and was used as input for the 

simulated annealing program of Appendix A. 
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V IN IT LAN CHESTER P: IN IT ? P 
1 prff J5 FUNCTION WILL PRODUCE A SET OF NUMBERS 
2 ^CORRESPONDING TO A SIMULATION OF A SET OF LANGEVIN 
3; aEQUATIONS WITH TWO NOISE TERMS DISTRIBUTED N(0,1) 

fiNUMRUN IS THE AMOUNT OF TIME THE SIMULATION IS RUN > 
5 aDELTAT IS THE TIME INCREMENT DESIRED 
6 aGCOEFl IS THE COEFFICIENTS OF THE FUNCTION WHICH 
7 MULTIPLIES THE NOISE OF THE X VARIABLE 
8 aHCOEFl IS THE COEFFICIENTS OF THE DETERMINISTIC 
X a FUNCTION FOR X 
io; aETAl IS THE GENERATED RANDOM VARIABLES FOR X VARIABLE 
11 ^SIMILAR VARIABLES EXIST FOR Y WITH A NUMBER 2 SUFFIX 
12 HISTX+HISTY+\Q 
13 NUMRUN+INITlll 
14 DELTAT+INIT121 
15 NEXP+INITZS1 

EXP+((2 *NEXP),NUMRUN+1)p 0 16 
17 HCOEFl+Ptml 
18 GC0EFl+Pln+\*2 

HC0EF2+Pl8+\*1 19 
20 GCOEF2+Pll2 + \m 
21 Vl+GCOEFl>Q 
22 V2+GCOEF2>0 
23 «7*1 
24 BEGIN:X+loINIT[3] 

Y+lpINITW 21 .26, 1*1 
27 LoopiPOLi+uxzn ,ici] .xciixrci] 

ETA+2 N0RRAND 0 ,1 
Hl+HCOEFl+.xPOLl 

28 
29 
30 H2+HCOEF2+.XPOLY 
31 Gl+Vl/GCOEFlxPOLI 
32 G2+V2/GCOEF2*POLY 

X+X,XLn+DELTAT*Hl+Gl + .xETA 
Y+Y,YIIUDELTATXH2+G2 + .*$ETA 

33 
3U 
35 1*1+1 
36 +(I*NUMRUN)/LOOP 
37 HISTX+HISTX.X 
38 HISTY+HISTY,Y 
39 EXPlJil+X 

EXPIJ+HI+Y 40 
41 J+J+2 
42 +(J<2*NEXP)/BEGIN 

HISTX+1NEXP,NUMRUN+1)p HISTX 
HISTY+iNEXP,NUMRUN+1IpHISTY 

>3 
*♦»* 

iV-V 

Figure D.2   LASCHESTER Program. 
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