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ABSTRACT

The purpose of this thesis is to model a Combat System utilizing mcdern
methods of nonlinear nonequilibrium statistical mechanics. This initiates development
of methods which eventually can be used as a decision aid to the commander in force
planning, battle management, budgeting decisions, doctrinal evaluations, and combat
analysis. A general method is developed and then applied to a particular battle
scenario using the combat wargame JANUS. The method fits empirical data to a
functional form (a Lagrangian) which describes the short time probability distribution
of a set of order prrameters. A maximum 'ikelihood fit is obtained using a simulated
annealing optimization algorithm. The most likely states of the order parameters and
the associated risks (variances) of those states ultimately depend on the detailed
structure of the Lagrangian. A long time probability distribution of the order
parameters can then be found by using the path integral.
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1. INTRODUCTION

Imagine you are the commander of a large force faced with the following
situation. You have been ordered to defend a key piece of terrain. Intelligence sources
estimate that an enemy force, approximately three times as large, is moi'ing towards
your position and is expected to arrive within a couple of hours. You now must make
a decision on how to allocate your forces on the line of defense in order to repel the
enemy'’s attack. You have several alternatives. You could leave your forces as is on a
line defense. But you know the enemy will only attack a small portion of your front
and use his overwhelming force to penetrate your position. You could place them in a
dispersed defense. You ask your operations officer to develop other alternatives. You
must have them quickly so that the defense plan can be promulgated to the units in a
timely fashion.

The operations officer and his plans/analysis officer, armed with PIACA
(pronounced P1-CA), Path Integral Algorithm for Combat Analysis, begin to develop
the alternatives. PIACA is a hardware/software package designed to give the
commander the most likely results of decisions and the risks associated with that
decision. By inputing information about their own forces and those of the enemy, and
information relating to the tvpe of mission, PIACA will give them the most probable
outcomes of the forces (levels) at the end of some pre-selected time interval. By
modifving the scenario slightly ac to initial force levels and other parameters, they will
then have a good idea of the best alternatives to present to the commander. The
commander has now an objective evaluation of his alternatives and is able to make a
more informed decision.

There will be occasions when the commander is under a severe time constraint
and must make a decision based on incomplete information. He now has PIACA
available as a powerful aid to combat planning and analysis. It is the purpose of this
thesis to develop a stochastic model of combat and a generalized methodology based
on that model for eventual use in PIACA. It is additionally shown how the model and
the methodology can be used for a simpie scenario based on data from the combat
wargame JANUS. PIACA can also be used to evaluate new system hardware,i.e.

weapons systems, analyze combat plans, and aid in the analysis of doctrinal changes.
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Chapter 2 outlines the Lanchester theory of Combat systems. This chapter is
provided as background. Chapter 3 introduces the concept of order parameters and
discusses their relation with combat systems. Several possible order parameters for the
combat system are presented. Chapter 4 develops the underlying mathematical theory
and introduces the reader to the Lagrangian wund the associated Path Integral, a
mathematical physics approach to C? systems developed by Ingber [Ref. 1,2]. Chapter
5 develops PIACA as a generalized methodology for modeling combat systems.
Chapter 6 gives several empirical examples. The first example uses a one order-
parameter model with simulated data generated from a stochastic Lanchester equation
with constant variance. This will be shown to be equivalent to a quadratic Lagrangian
with the result that the distribution of the order parameters will be Gaussian with non-
stationary means and variances. The second example is a two order parameter model
using simulated data from a different stochastic Lanchester equation. The long time
conditional distribution will be shown to be non-Gaussian even though the short time
distribution is Gaussian with respect to the temporal changes of order parameters.
These examples are provided to show the relationship between the stochastic
Lanchester representation and the Lagrangian representation. The third example will
begin with a Lagrangian representation. Data from the combat wargame JANLS is
used to develop the functional form (Lagrangian). Then an analysis of the short time
probability distribution of the order parameters using the Lagrangian is given. Chapter
7 concludes the thesis with a summary of the methodology, its importance and utility,
and discusses further applications of PIACA and development of the full decision aid.

12




I1. AN INTRODUCTION TO LANCHESTER THEORY

In this chapter, we outline the Lanchester model of warfare, both deterministic
and stochastic. For a more detailed development, the interested reader shouid refer to
Taylor [Ref. 3].

A. DETERMINISTIC MODELS
Lanchester originally formulated his model of combat as a set of differential

equations, one being,
X = dX/dt = -aY where X(tp) = X,
Y = dY/dt = -bX where Y(ty) = Y, (2.1)

where X and Y are the number of combatants for each side and a,b are called attrition
rate coefficients. This is Lanchester’s aimed fire model. The other is

X = .aXY

Y = .bXY , ' (2.2)

~ Where the variables are defined above. Equation 2.1 when integrated yields the sc-
called “square-law”

b(X,2 - X?) = a(Y,? - Y?) (2.3)

which gives the interpretation that the more initial force level a side has the less his
casualties. This equation assumes the casuaity rate is proportional to the number of
combatants. It is also referred to as a state equation. Equation 2.2 is referred to as
the state equation for area fire, and assumes fire is distributed uniformly by the
combatants. When integrated, equation 2.2 yields

B(Xp - X(1) = a(Y, - Y(1)) (2.4)

13




and is called the Lanchester linear law. Although the above equations model simple
combat quite well, they are limited in scope and have several disadvantages [Ref. 3]:

1. Constant rate coefficients

2. No force movement

3. Various aspects of logistics, C31, terrain, geographics, etc. are not considered.
This has led to various modifications which attempt to overcome the above
sliortcomings such as:

1. using variable rate-coefficients

2. modeling breakpoint or battle-termination conditions

3. modeling morale

4. modeling communications [Ref. 4], etc.
The basic disadvantage with using deterministic Lanchester equations is that in reality
combat is a severely stochastic system, which leads us to our next topic.

B. STOCHASTIC MODELS

In attempting to define a stochastic model from a deterministic model we must
recognize that this definition is not unique, i.e., there is a many-to-one mapping of
deterministic systems into stochastic contexts. For example, one might arbitrarily add
noise to equation 2.1 in the following manner,

X = X+n) | (2.5)

X = fX)+f(X)n+ higher order terms (2.0)

where | has some distribution and zero mean. Another example might be to add noise
in an additive way, such as

X = -aY + gn | 2.7)

Y = -bX + gn (2.8)

14
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where g is some constant multiplying the standard deviation of the noise. We could
also formulate a model stochastically by developing a set of Kolmogorov equations.
Once developed, all models should be able to answer questions concerning the outcome
of the battle and other factors such as:

1. What is the probability of win for each side?

2. How does win probability change with initial force levels?

3. What is the expected length of battle?

4. What is the probability distribution of the force levels?
As is evident, there are a number of possibilities of stochastically modeling combat. In
this thesis we will develop a stochastic model of combat which, as a side benefit, will
incorporate an underlying physical explanation. It will have several advantages:

1. to model the stochastic nature of combat

2. to answer questions such as those above concerning the battle
3. toincorporate non-linearities in the model
4

with the methodolo dqveloped, to be able to fit empirical data to the model
and thus have the potential of forecasting battle outcomes.

15




III. ORDER PARAMETYERS AND COMBAT

A. INTRODUCTION

We will begin this discussion with assumptions and definitions. A battle will be
defined as a combat engagement between two opposing forces constrained to a small
geographic area. This will be our system that we will attempt to model. The state of
the system will be defined as a collection of variables which, as a set describe the
system at any time, t.

This system will be nonlinear, dynamic and stochastic: nonlinear, since the
moments of the distribution of the state variables may be described as nonlinear
functions of the other state variables; dynamic, since the state variables could be
functions of time; and stochastic, because the variables will be random due to inherent
noise in the system. This noise will reflect imperfect knowledge of the enemy’s forces,
weather, equipment failure, etc., and also of the commander’s own forces, and may also
be a nonlinear function of the state variables.

When modeling this system we have several alternatives. One alternative would
be to use generalized stochastic differential equations as our model with the variables
denoting the microscopic state of the system. This is a very intuitive approach, but
there are mathematical difficulties in solving such large sets of coupled stochastic
differential equations, and even more difficulties in interpreting the numerical results.
However, there may be alternative sets of variables which define the system
appropriately enough for a study of combat at a middle, i.e. intermediate level of
aggregation, or “mesoscopic” level. A probability distribution of these new variables
would allow us to make predictions of the variables at any time, t. We will call these
new variables order parameters [Ref. 5] The order parameters of the system will
contain all the information inherent in the system, relevant to a specific “coarse-
grained” scale to be studied, and should be kept at a minimum to allow easy
assimilation by the commander essentially defining the appropriate scale of aggregation
to be considered. This is one of the problems associated with complex C31 and combat
systems; i.e. we must be careful not to pass on too much information to overburden
the command nodes.

16




B. REPRESENTATIONS OF COMBAT

We could describe this battle in several different, equivalent representations. For
example, consider the grid shown in Figure 3.1 as a "coarse” geographic representation
of our battie. The Ti" represent tanks of force p in cell i where p=1,2 and i=1-9.
Similar notation exists for the personnel, Pill . The state variables would then
incorporate ail microscopic information such as velocity, position, ammo, etc. Another
could be a time sequence event description, i.e. at each moment in time, a particular
event occured and was duly noted in some log book. From a bird’s eve view, a
description could include movements of the forces geographically, and rates of change
of both forces. In a global view, the overall evolution of the battle in time, and the

search for underlying patterns in that evolution might be suflicient to describe the
battle.
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Figure 3.1 Coarse Grid Representing Geographic Position.
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At each stage, or level of command, there is a need for a differing view of the
battle, since at each level, the information needed is different. At the lowest level,
concern might be for resupplies, i.e., ammo, fuel, requests for transportation or support
external to the lower organization. At a higher level, concern is for allocating the
resources among competing requests and determining the priorities associated with
those requests. At still a higher level, only the developing outcome of the battle might
be relevant.

We wili attempt to describe an intermediate ("mesoscopic”) level between the
upper (commander’s or “macroscopic”) level and the lower (units or “microscopic”)
level which incorporates all the relevant information a commander would need in order
to make his decision. In defining this level, a set of order parameters needs to be
developed. Order parameters represent this mesoscopic level and are a specific
aggregation of the microscopic or state variables. Fof instance, in the tank example in
the previous section, the state variables represent the detailed information about the
tank, i.e. veiocity, position on the battlefield, training level of the crew, ammo supply.
etc. A simple example of an order parameter in this case might just represent the
number of tanks in a particular cell of the battlefield. An order parameter model
would then develop the necessary interactions among cells, resupply considerations,
capability degradation, etc. We will see an application of this through the examples
discussed later.

As a first representation, both forces could simply be described as a certain
number of personnel. We are then interested in describing this battle, given a set of
initial conditions, in terms of force losses per unit time. This is equivalent to a
Lanchester approach with noise, alluded to earlier. This is only one of several ways to
derive a stochastic Lanchester equation. This is referred to as a Langevin equation in
the physics literature. This could be mathematically described as shown:

dXudt = F(XY) + g4X.Y)n ,

dY/dt = fF(X.Y) + g (X.Y)n , (3.1
where X = the number of blue forces available to engage the Y forces, Y= the number

of red forces available to engage the X forces, f *¥= functions relating average

18
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numbers of blue forces and red forces, g&Y= functions multiplying (square-root)
variances of the background noise, 3y coeflicients relating rates of blue force and red
force losses, and = background noise. For example, functional forms might be

*=a,X+apY, (3.2)

= ayX + anY , (3.3)

with similar equations for g%+,

To attempt to solve this equation, we could put it on a computer, introduce some
random noise (via a Monte Carlo simulation) and the aggregated output of many runs
would give us at any time, t, via a probability distribution, the level of blue and red
forces and any other variable which is dependent on these, such as force ratio,
surviving maneuver force ratio, or some equivalent descriptive variable in which we are
interested.

We have selected the form (equation 3.1) because the current state-of-the-art
mathematical physics then permits us to develop extremely general nonlinear means
and variances into representations suitable for analysis by methods of statistical
mechanics.

C. EXAMPLES OF ORDER PARAMETERS

To better understand the concept of order parameters, let us take a physical
system as an example, a gas confined to a box in thermal equilibrium. The gas can
obviously be defined at a microscopic level by representing it as a collection of atoms
with certain velocities, relative positions, collision rate with other atoms and the walls
of the box, and some internal energy state. In analogy to the battle, the atoms would
represent the individual personnel, their velocities and positions corresponding to their
movements and geographical positions on the battlefield, and the collision rate could
correspond to the engagement rate with the enemy. The internal energy state could
relate to the amount of ammo, firepower, and possibly training level of the individuai
combatants. However, on a more global level, there is a pressure associated with the
gas, a temperature, and a volume. One of the problems with the order parameter
concept is to find these global variables associated with combat and relate them to
something of use to the commander.
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The order parameter concept can be used to describe systems far from
equilibrium. Combat is obviously a system far from equilibrium, except possibly in
some isolated cases. Since the objective of both commanders is to accomplish some
mutually exclusive mission, the system will tend towards a solution which favors one or
the other commander. In analogy with our gas in the boX, suppose we lower the
temperature of the gas. At a certain temperature, the gas becomes a liquid which is
called a phase transition to a long range collective order. The question is then: Is there
an analogous “phase transition” associated with our forces and how do such collective
patterns of information represent themselves? At what “temperatures” related to the
size of the g®Y functions does this occur? Is it a unique phenomenon, i.e. does it only
occur at this “temperature”™? What if we change the volume of the box, is there then
some “phase transition” associated with our forces possibly relating to the change in
geographic area of the battle? Are the order parameters of our physical system
transformable to some similar order parameters of battle?

In answering these questions, we can arrive at some understanding of combat
and relate this to our understanding of other physical systems which undergo the same
or similar transformations when the state of the system is changed.

As a start, and following Bretnor [Ref. 6], two order parameters that seem likely
are the destructive force and the vulnerability of the force. Destructive force is defined
as the amount of combat potential which can be delivered to the enemy in order to
destroy him. It includes the training, the readiness, the sustainability, the niorale, the
weapons mix, etc. of the force. It is obvious that these factors do change during the
course of battle, and that their level certainly wouid indicate the success or failure of
combat. The vulnerability of a force are thosc factors which degrade the capability of
the force, i.e. position on the battlefield (terrain factors such as line of sight, cover,
concealment, protective armor, etc.), lack of morale, discipline, or training, etc. :\s you
can see, the vulnerability of a force is in some ways a degradation of the destructive
force, yet they are not totally the opposite of the other. For example, a force in the
open would have more vulnerability than one under cover, vet thev would have the
same destructive force. There are other examples, the point being that thev are
distinguishable order parameters, although we could effectively model the force using
the destructive force and modifying it so that it is somewhat degraded wnen its
vulnerabulity is increased. Nonlinear functions of the order parameters will be used to
model scenarnios in which the objective of the commander would be to attack the others

vulnerability while exploiting his own destructive force.
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IV. MATHEMATICAL FORMALISM OF THE MODEL

A. INTRODUCTION

In this chapter we develop the mathematical formalism of the model, and
introduce mathematical objects such as the Lagrangian and the path integral. We will
show there exist equivalent representations among the Langevin, Fokker-Planck and
Path Integral descriptions of a stochastic system [Ref. 1,7]. We begin with a simple
one order-parameter, non-linear model. The linear model is a special case of the non-
linear model. We then fully develop the two order-parameter model which is used in
the remainder of this thesis to illustrate the path integral method. Generalization to
many order-parameters is made and included for completeness of the description.
Assumptions of the model and their significance are given. The primary assumption is
the requirement for a Gaussian-Markovian system. Finally, the relation to classical
deterministic systems and the usefulness to classical statistical systems of the
Lagrangian will be discussed.

B. ONE ORDER-PARAMETER, NON-LINEAR MODEL

The one order-parameter (10P) model is not particularly useful in describing
combat, but we present it for completeness and ease of illustration of the general
model. The generalization to two or more order parameters can be easily made. Order
parameters we could use are the ratio of the forces or the difference of the force levels.

We begin by labeling our order parameter X, for example, the ratio of Blue forces
to Red forces. We are interested in how X changes with time. Within a time
increment, At, we can write

X(t+Ar) - X(1) = AtRX(Y)) , (4.1)

where f{X(t)) is some function to be fit. If At is assumed small and X is assumed to be
continuous, we can then write

X = dX/dt = fX(t)) . (4.2)
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In the context of describing combat equation 4.2 is referred to as a Lanchester
equation and simply represents the mean or expected path of the order parameter for a
large system.

We now want to add a noise term to equation 4.2 so we can model the severely
stochastic nature of combat. Hence, the change in X can be written

X = AX(V) + gX@Om (4.3)

where n is the background noise with zero mean and variance=1 (assumed) and
gz(X(t)) is the variance, which is not necessarily a constant. We also assume that 1} is
Gaussian-Markovian (normally distributed “white noise”). The assumptions will be
discussed in Section E. Equation 4.3 is referred to as a Langevin rate equation in the
scientific literature, but we will refer to it as a generalized stochastic Lanchester (GSL)
equation in the context of describing combat. This is only one way of obtaining a
stochastic Lanchester equation. l.e., there is a many-to-one mapping of deterministic
systems into stochastic contexts.

Associated with this GSL is a Fokker-Planck equation [Ref. 8] defining a
differential equation of the conditional probability distribution, P(X(t+ At)|X(t)), given

cs
AP/t = - J(fP)dX + 1/20%g*P)/0X2 + VP . (4.4)

The function f represents a drift term and g2 is the diffusion term of the probability
distribution P(X(t+ At)|X(t)). Sometimes a potential term, V, is present, which is often
‘useful to analytically enforce boundary conditions.

Another representatica exists for describing P(X(t + At)|X(t)) [Ref. 8]. For small
time increments At, we assume

P(X(t+ A)IX(1))= 1/(2ng2At)!'? exp(-LA1) (4.5)

where L = (}'( - f)z.’Zg2 is the Lagrangian of the system, i.e. a Gaussian form for this
conditional probability, with mean (X(t)+ fAt) and variance ngt, as follows for short
times from equation 4.4 . It must be emphasized equation 4.5 is the short time
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conditional probability distribution of P(X(t+ At)|X(t)). With this representation, it is
possible to obtain a long time conditional probability distribution P(X(t)|X(ty))
through a path integral description. This is defined as (more precisely defined in
Langouche, et. al. [Ref. 7} and Schulman [Ref. 9])

PXOIX(tg) = f* fdXe p % 0a0 ’dxt0+ At (4.6)
X P(X())X(t-At))P(X(t-At)|X(t-2A¢))

X+ + X P(X(tg+ ADIX(ty))

= {{DXexp(- nz;Ath) ,
where
DX = (2ng 2Ary12 nfll(ZRs,,zAt)"/ 24%

t,™ ty+nAt and t=t,+sAt where t_ are the intermediate time increments in the limits
s—=0 and At =0. Equation 4.6 is called a path integral and is recognized as simply a
Chapman-Kolmogorov equation. With the path integral, given some initial state at tg,
X(tg), we can determine the probability distribution of X at some later time t. The
path integral is discussed in Appendix B.

The purpose of the previous discussion was to show the relationship between the
GSL equations and the path integral description of combat. This will also be shown
for the two order-parameter and the many order parameter models, but in the actual
development of the model all that is required is a functional form of the Lagrangian.
This will be discussed further in section F.

C. TWO ORDER PARAMETERS, NON-LINEAR MODEL

We now develop the path integral representation of combat for two order
parameters. We begin, as before, with a set of Langevin equations, show the related
Fokker-Planck equation, and finally the path integral description. Our emphasis is on
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the formulation and the notation of the path integral, whereas the Langevin equations
are used to support our intuition.

Suppose we are interested in our own force level and that of the enemy. We will
use these as our order parameters and denote their level by X(t) and Y(t) for Blue and
Red forces, respectively.

As before in the 10P model, we will be interested in the change of X, and Y with
time according to

X(t+At) - X(t) = At [X(1) Y(v)],

Y(t+At) - Y(1) = Atf {X(0),(Y(V)] , (4.7)

where the f!, i=1,2 are some functions to be fit, and At is some small time increment.
If we asstme continuity of the order parameters and for small enough At, we can write
equations 4.7 as

X = dX/dt = fi |

Y =dyd =f2, (4.8)

These are the Lanchester equations (deterministic).
[ ] (]
We now assume that multiplicative noise (Gaussian-Markovian on X and Y) is
present and the order parameters are now modified according to

X=f!+gnm+gn,

Y=02+gni+ g’ (4.9)

where the g"'i are functions multiplying the variance of the background noise. If the
g"'i were constants, then the n.'s would simply contribute “white noise”. The mean of
the n ;'s are assumed to be zero. We will also assume the number cf noise terms is
equal to or greater r™an the number of order parameters {Ref. 10]. Equation 4.9 is our
generalized stochastic | inchester equation (GSL) for two order parameters.
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The Fokker-Planck equation describing the evolution of the conditional
probability distributior. P(X(t + At)|X(t)) where X(t+ At) = {X(t+ At), Y(t+At)} is

dP/dt = VP + 3(-gh P):aMP + 1/28%(ghVP)/aMYaMmH (4.10)

where M!=X, M?=&Y and V is a potential used to add constraints on the order
parameters or to simulate boundary conditions. The indices p,v = 1,.. ., N where N
is the number of order parameters (2 in this model). The g" and ghV are different
functions from the g"i in the GSL and are defined as

gh = ' + 2", agh /oMY (4.11)

ghV = gh. g% . (4.12)

We are now using the Einstein summation convention, whereby repeated :ndices in any
term imply summation over those indices. In the 20P model these are, for example
when p=1,

dg! dg! dg! dg!
gl =+ 12!, —g-1+1/2g12 %(—-’w 1/2) %—1+1/2g22 L]

: 4.13
oX aY (&1

{The compactness of the Einstein summation convention is evident here) and for u=1,
v=2,

gl? =~ 811321 i gl2g22 . (4.14)

Note the g“i which are the variances of the microscopic noise sources are summed over
and contribution from individual sources need not be fit in the path integral
description. The path integral description of equation 4.9 is

P(X(1)IX(ty) = § - "fDXexp(- n;Ath) :
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DM = g'/2 (2naryl2 1g 12 §<znAt)—l"2 Mk
n=1 =]

."dMun s ZAMpin , Mpo - MplO ’ Mlls-*-l = Mpl ’

L= 1/2(x\7l“-g")gpv(x\'dv-gv)-V,

gy = &™), (4.15)
g, = det (gpv)n .

This is the long time conditional probability distribution of our order parameters. The
short time conditional distribution is

PX(t+A0[X(1)) = g2 (2nAt)Y2 exp(-Lat) (4.16)

where L and g are as defined above.
This description is correct as long as we adopt an Ito or pre-point discretization
of our order parameter, i.c.

MvH (t) = Mn",
(4.17)
i (tn) = (Mpn+l " Mpn)"(tn'i' 1- tn) ;

and t = t; +rAt. This affords us the luxury of a relatively simple Lagrangian.
There exists a mid-point or Stratonovich discretization of the order parameter given by

MA@ ) = 12MB L+ M)
(4.18)
ME () = MR - ME it g - 1)

This induces a curved or Riemannian space on the order parameters with the
subsequent requirement of additional terms being added to the Lagrangian. The

presence of the noise actually induces the non-Euclidean geometry of the p-space and

the variance ghV is the inverse of the p-space metric, g, . The benefit of having a
nv




mid-point discretized Lagrangian is that the associated Euler-Lagrange equations
determine a variational principle. This allows us to derive a most likely path of the
order parameter, without doing a full calculation of the long-time probability
distribution [Ref. 1,7,11].

The preceding discussion was not meant to be rigorous, but to point out the
subtleties in actually evaluating any of the functional forms. For simplicity we will use
the pre-point discretization and not carry any of the Riemanian terms. An example of
the two order-parameter model with an explicit form for the Lagrangian is given in
Chapter 6.

Although we have developed a Lagrangian from the GSL equations in the
preceding discussion, it is not necessary to do this in general, i.e. we can begin our
model by assuming a functional form for the Lagrangian without having first written
down the associated GSL equations. This is an important point. There is an algebraic
relationship between the Lagrangian representation and the GSL representation (under
the assumptions) and one could, in principle, derive the GSL from the Lagrangian and
vice versa. There exists a large body of literature on combat modeling with Lanchester
equations an:d thus the experience gained using that approach can be transformed to
the Lagrangian approach. There also exists a large body of literature dealing with the
applications of the Lagrangian approach to other large, complex, physical svstems

modeling combat.

D. MANY ORDEF PARAMETERS, NON-LINEAR MODEL

The extension to many variables can be made [Ref. 1,12]. Suppose now we are
interested in modeling the spatial-temporal patterns of the order parameters and not
- simply the temporal patterns as before. To extend the 20P, where p = 1,2 , we now
leep = 1,..., N, where N is the number of order parameters we want to model. For
one example of a many parameter model, suppose we divide the battlefield into distinct
cells, labeled by a= 1, ..., m. For example, in each cell we would examine the Blue
and Red force levels as composed of tanks and personnel and as shown in Figure 4.1.
The %, where pa forms an enlarged index of the p X a variable-space, and V can
now incorporate N\ (nearest-neighbor) interactions and N2N (next-nearest-neighbor)
interactions to account for external forces, such as higher level constraints, resupplies
from adjacent units, actual movement of forces from cell to cell, etc. The model would
be as follows,
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P(X()IX(tg) = | - fDXexp(- n;Ath) ,

DM = g'/? amag /2 T g 2 i;l It omay /2 amite,

g2, ™ det (g"v’uﬁ) (4.19)
L = 1/2(&1"’“ - f’l’a)g’l\’,aB(Mv,B - rV,B) (4.20)
M= {Mn"?a “‘l= ]" . -’N a= l’- .M N= ],' . "S} (42])

It must be emphasized that we are only assuming a Gaussian distribution of the rate of
change of the variables in time, and that the spatial distribution could be non-
Gaussian. This is a modeling consideration when deciding on 2 functional form of the
Lagrangian. It should also be emphasized the disisibution is only Gaussian in the:
short time, and only in the post-point value of the variables, whereas the long time
distribution could be any distribution.

E. ASSUMPTIONS

The primary assumption of the general model is that the system to be modeled is
a Gaussian-Markovian system in the rate of change of the variables. This means there
must be sufficient order parameters available to describe the system as Markovian, i.e.
that the future state of the system only depends on the present statz. This assumption
comes into play in describing the short time conditional probability distribution of the
order parameter. The Gaussian assumpiioa states the short time conditional
probability distribution is Gaussian in the post-point variables. This is a standard
assumption made when dealing with many stochastic models. It is hoped the
Lagrangian or path integral representation is very robust with respect to these
assumptions. This means if the noise is non-Gaussian or there are not enough order
parameters to ensure a Markovian description, then we can still obtain a reasonable
path integral representation with these assumptions.
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Figure 4.1 Battle Grid Showing Bluc and Red Force Paranicters.

F. INTERPRETATION OF THE LAGRANGIAN

Suppose e have a functional form of the Lagrangian which can be plotted as in
Figure 4.2. We now show how the Lagrangian contuins information about the system:
most likely states of the system: a measure of the risk associated with that state; and a
mcasure of the transition probability between most hkely states.

The minima of the Lagrangian correspond to the most likely states ol the system.
We assume we arc looking only at the short time probability distribution, P*. The
Lagrangian contains a widelv varving expression containing factors of the dillerence
between the actual state and the average or mean state, i.e. L € [Ny - (X + fAuf?
where the term in the parenthesis is the past state corrected for the drift. Therefore, if
the actual state is much diflcrent from the average state, then L will be a relatively
large value compared to the other terms, and the corresponding value of the
probability distribution will be correspondingly exponentially small.
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Figure 4.2 Plot of Lagrangian vs Order parameter.

The minima are shown as points A,B and C in Figure 4.2 and represent the most
likely states of the system at time t.

The Lagrangian also contains the guy term which is the metric of the order
parameter space, i.e. it is a measure of the distance in this space. This space is curved
for all metrics which are not constants, and we then have a short time Gaussian
distribution in curved space.

The gy term is also related to the variance ghV = (gm,)’l , of the underlyving
microscopic sources of noise which is a mcasure of the “width” of the minima. The
minima width of a most likely state can be seen as a “degree of risk” ineasure
associated with that state, i.e. the wider the minima the larger the confidence interval is
for that state. For example, look at the minima at point A. If we were trying to
forecast the value of the order parameter X, then we could only say it is between X =9
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and X=13, with any degree of confidence (to be defined). At point B we have a
minima which is more sharply defined. We have most likely states of X =15, with a
confidence interval of X=(14,16) and the gt would be a much smaller term. The
smaller the g"V the sharper the width of the minima. A measure of the transition
probability between two most likely states is the relative height of the “peak” between
the two “valleys” of the minima. For example, point D is much smaller than point E,
and if the state of the system was at point B, then a transition to state A would be
more likely than a transition to state C.

Granted the above discussion is very qualitative, but quantitaiive results can be
obtained. However, a graphical device portraying the information contained in Figure

4.2 would be more useful as a qualitative tool than a quantitative one.




V. DESCRIPTION OF THE METHOD

A. INTRODUCTION
We will now present, in outline form, the generalized procedure for obtaining a
path integral representation of combat systems.

¢  Select, derive or develop the order parameters of the system thereby defining the
independent variables

¢ Obtain sufficient empirical data from the system you wish to model

¢ Fvnctiona! forms of the independent variables are developed in terms of
theoretical parameters/coefficients to be fit to data, to model means and
variances

¢ Perform a_maximum likelihood fit of the short time probability distribution,
fitting coefficients of the functional form

¢ Using the path integral technique, a probability distribution of the order
parameters is found for long times.

¢ Perform sensitivity analysis
¢  With the probability distribution, vou can then use the method to
- Analyze budget decisions in terms of hardware/software purchases
- Perform combat analysis for use in battle management
- Determine the effect of proposed doctrinal changes
- Perform "What if* scenarios for use in combat planning
- Have additional input to your decision making cycle
The method is an iterative process. We will coliect some data, look for order
parameters, attempt a fit, and if not very successful, trv a new functional form of the
Lagrangiaa. This process will continue until we have decided our assumptions are
satisfied and we have a reasonably good fit to the data. Of course, after examining the
structure of the Lagrangian and discovering that the model gives results which are not
correct, then we must go back to the beginning or try a different functional form for
the Lagrangian. We will now cover each of the steps in detail.

B. ASSUMPTICNS OF THE METHOD

Before we begin describing the method in detail, it would be appropriate to look
at the assumptions. These assumptions will guide our development, and selection of
the order parameters. Selection of thc order parameters will then guide our data
collection efforts.
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As stated before in Chapter 4, our primary assumption is that the system to be
modeled is Gaussian-Markovian. This assumption was necessary in developing the
path integral. This assumption has further consequences in defining the amount of
data required in order to sufficiently model our complex combat system.

There are several items which need to be addressed:

¢ number of elements in the battle; these can be personnel, vehicles, aircraft,
ships, etc. If they are to be used as an order parameter, then there must be
enough individual elements to ensure approximate continuity.

¢ number of runs of the experiment/war game/simulation; this 1s required in order
to provide sufficient statistics for a good fit of the Lagrangian to the data,
mainly in estimating the parameters of the g!V, i.e. the variance, and the means
gh.

¢ number of order parameters; this is required to ensure the system is Markovian.
If not enough order parameters are used, then even if the true system is
Markovian, our model of it may not be Markovian, which could result in a bad
fit of the Lagrangian. If the model is robust, then a good fit could still be

obtained if the number of order parameters used is not too different from the

"t-’,'. ’

actual number of underlying order parameters. There is a subtle but important
feature of our modeling which helps to create a robust fit: when care is taken
to handle all nonlinearities, e.g., including Riemannian terms in the midpoint
discretized Lagrangian, equation 4.18, then the probability distribution is
invariant under nonline~r transformations of the variables. (This is what
induces the Riemannian geometry [Ref. 10]).) Thus we are really fitting a wide
cless of functional forms whenever we do one generic fit to the data.

® “uncertainty principle” 0<t= At < LL , L ~ <(Ax)> 2% (<(Ax)®> Av)

et | it SR

where ~ means on the order of. This places a requirement on the amount of
change in the order parameter in a particular time increment. This is also
necessary to calculate the path integral. This states that in a time increment T,

the average drift of the order parameter must be less than (or on the order of)
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the variance [Ref. 13]. Obviously, when considering actual data, i.e. from
operational exercises or combat, then At will become part of the data and then
we can only do the best fit we can with the data available.
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e Aggregation (co-location) of capabilities; it is possible this tvpe of model may
not be adequate if the system is composed of only a few large distinct entities
which have several capabilities. For example, a naval battle group may have
large numbers of personnel and aircraft, but they ar: aggregated into a
relatively few number of ships. Destruction of one ship’s capability may have a
large impact on the outcome of the battle. It still may be possible, however, to
model some aspect of the naval battle, for example the group’s outer air battle,
which has sufficient numbers of elements i.e. aircraft. There is more interesting
work that could be done here but is beyond the scope of this thesis.

In summary, we need a combat system which has a large number of elements to
ensure approximate continuity, a sufficient number of order parameters, and a
sufficient number of experiments to provide for a good fit of the Lagrangian. Once a
Lagrangian is developed and coupled with the path integral, we will have a
“propagator” to describe the time evolution of the system from any initial time t, to
any final time, t.

C. SELECTION OF ORDER PARAMETERS

The development of the order parameters is first dependent upon the system you
wish to study. For example, if you were interested in the length of a battle as defined
by some cutoff strength for either side, then the order parameters used might be just
the force levels of each side. If you were interested in the relation of C? to the
outcome of a battle, then you might use some MOE of C3 of either side, together with
the force levels.

Second, the order parameters used must satisfy the aforementioned assumptions.
Obviously, an order parameter must be something which changes value during combat
and cannot be a constant or a very slowly changing variable. Otherwise there would
be no need to model that particular order parameter.

Some examples of order parameters (per side) are:
number of vehicles (tanks, trucks, aircraft, etc.)
number of aircraft
number of elements firing (artillery tanks’aircraft)
number of shots fired
number of tanks (armor study)

supply logistics availability

N o v e -

troop carrying capacity (helicopters, tactical troop carriers)
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8. geographical position on the battlefield (appropriate for motorized infantry)
9. number of aircraft/sector ( outer naval air battle)
10. log(bits) of information used in communications
Through the appropriate use of the order parameters and the path integral other
questions such as the outcome of the battle and duration of combat can be answered.

D. DATA COLLECTION

The first step in the analysis is to obtain empirical data. This could be the result
of simulations, war game results, field exercise data or data from actual combat. Each
of the data sources has its advantages and disadvantages. If the data were available,
the best source would be from actual combat. Obviously, there have been no large
scale wars recently, but that does not prevent us from doing analysis on past wars.
This will not be the approach here. There is data available from field exercises, but it
is not in a suitable form for analysis at the present time. This includes data from
CAX's (Combined Arms Exercises) which are held at Twentynine Palms, California by
the Marines, or exercises conducted at Fort Irwin by the Army on their calibrated
range. This could be done at a later time. War games are the next best place to
obtain data. Several War Games available at NPS are JANUS (after the mythological
two-faced god) and IBGTT (Interactive Battle Group Tactical Trainer). TWSEAS
(Tactical Warfare Simulation, Evaluation and Analysis System) is a war game available
at the Marine Corps Development Center in Quantico, Virginia. These simulations are
discussed in the Appendix C. Other simulations available are CARMONETTE,
SOTACA, and FOURCE to name a few. A brief description of each is also included in
Appendix C.

For the purposes of constructing a statistical mechanics model of combat, many
trajectories of the order parameters are needed. What do we mean by trajectories of
the order parameters? In the space defined by the order parameters, a point represents
one possible state of the order parameters. A path which connects the initial state of
the system to some final state is called a trajectorv. The trajectory represents one
possible realization of combat. For a gcod fit of the model to the data many
trajectories, and therefore, many stochastic experiments are needed. This will naturally
leads us to select a war game or simulation as a source of data. In these cases, many

experiments can be completed with variations in the noise.
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E. DEVELOPMENT OF THE LAGRANGIAN

The next step in the analysis is to determine a functional form of the Lagrangian.
The simplest and most versatile form is a ratio of polynomials. This defines a Padé
approximant form and is suitable for approximating many functional forms. The

Lagrangian is
L= 1Mt R g™ - V) (5.1)

where we need to assume functional forms for the f®, p = 1,..., N (N is the number
of order parameters) and the variance ghV . Since gy is @ metric it must be positive
definite, i.e. det (g"v)> 0. Except for this one condition, the Lagrangian can be of any
form. Obviously, we would like to keep the form simple, yet model the data
accurately. This might require several iterations of:

1. select a functional form of the Lagrangian

2. performing a maximum likelihood fit to determine the unknown coefficients,

3. testing the fit of the Lagrangian with the data

4. and if not satisfactory, go back to 1.
If, after several iterations, a gooc fit has not been attained, then we must look at our
data to ensure we have satisfied our assumptions. This could be one test to see if we

satisfy our assumptions.

F. MAXIMUM LIKELIHOOD FIT

After deciding on a set of order parameters defining independent variables and a
functional form of the Lagrangian, we are now in a position to estimate the
parameters,coefficients of our Lagrangian. This will be accomplished by vsing a
maximum likelihood fit.

The short time conditional likelihood function, M, is defined tc be

M= (2rAY Y2 gl 2 exp(-LAY = PX(t+ADIX(V) . (5.2)

L=12MP. (P )g"v(.\.dv i) (5.3)
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where the other variables are as previously defined. Our data is in the form of I runs
for JAt time periods, where one run ‘is one realization of combat and J is the duration
of combat. Our maximum likelihood function for many runs now becomes

W= T 11 2rAy Y2 g 12 exp(-L A
izl j=1 ) Y

= ﬂf(xi(toJriAt)lXi(toJr(i-l)At) X, L XPX (AKX () . (54)
where X,(t) +jAt) = {X,(t)+jAt),Y,(t;+jAt)} ,

and where the data is used to calculate specific values of the X's. We now wish to find
the parameters in the Lagrangian which maximizes this function. To do this we first
take the logarithm of M’ to accommodate computer requirements on acceptable ranges
of numbers which can be processed. Since the logarithm is a positive monotone
function, the maximum of In M* will be in the same location as that of M. Therefore we
now wish to maximize

I J
InM = ‘Z; ,Z; [-1/2In(2rAt) + 1/2In g; - LAt ] (5.5)

I J
= . ‘; ’;[-1,’zln(2n) +1/2In(At) - 12In g, + LAt ]

The maximization of In M’ is equivalent to a minimization of -In M’ . Also the constant
1,2In(2%) can be deleted from In M’ since it will not affect the location of the nunimum.
In general, At wii! b2 part of the data and thus we will not drop this term. Therefore
our problem is to locate the minimum (global, if possible) of

E N=YY [112In(Ar) + L;At-12in g ) (5.6)
E . Current algorithms for solving non-linear minimization problems are
N deterministic and only guarantee local minima. Therefore we have developed a version
i of the simulated annealing algorithm which guarantees convergence to the global
; 37
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minima if certain conditions are satisfied. The algorithm uses a random sampling rule
to select points from the parameter/ccefficient space, and a criteria on which to base
acceptance of that point as the new state of the fit. We use a Cauchy distribution tied
into a "temperature” on which to sample the space, and as the temperature is lowered,
the search is more localized. The Cauchy distribution (a long tailed, % variance
distribution) is used so that the localized search does not get trapped in a local minima,
and there is some probability of leaving to find better optima. The Boltzmann
distribution (from the Metropolis algorithm) is used as a criteria on which to accept
the point. This distribution is particularly useful in our case, because the cost function
is in the form of a Boltzmann distribution and thus there is a more efficient mapping to
the parameter space. A description of the algorithm, the necessary conditions, and a
FORTRAN program of the simulated annealing aigorithm are contained in Appendix
A.

There are a few subtle points to mention concerning data, variables, parameters
and spatial dimensions. The paths which are generated from a source of data are
equivalent to a set of likely paths which can be sampled from the theoretical
distribution of the variables. This is usually what is meant when discussing sampling
statistics. The data are a sample from some theoretical distribution which is at present
unknown. The parameters are the coefficients in the functional form of the Lagrangian
and the Buv metric and are to be estimated from the data. At the time we are fitting
the data, M becomes a function of the parameters with the variables being the data.
Once the Lagrangian is fit to some set of the data, it then becomes the fitted
distribution of the underlving order-parameter variables which attempts to mimic the
unknown underlving theoretical distribution. The “dimension” of the space of variables
is determined by the number of order parameters being considered. If two or three
spatial dimensions are being considered, then typically separate cells within this space
would contain independent order parameters, which would be functionally tied to the
order parameters in other cells by the functional forms used to define the multivariate
drifts and diffusions.

It should be stressed that fitting the Lagrangian does not mean separately fitting
the means and diffusions to the same accuracy. That is, we are fitting the functional
form of the Lagrangian to the data and NOT finding a set of parameters, coefficients in
the drift and diffusion terms of the data. Thus there may be a “wide” discrepancy
between parameters/coefficients using similar data, but it is the resultant fit of the

Lagrangian to the data that is most important.
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G. PATH INTEGRAL TECHNIQUE

The most important part of the analysis is now complete, i. e. developing a
functional form of the Lagrangian. With the Lagrangian in hand we are in a position
to calculate the long time conditional probability distribution P! defined as

Pl = P(X(V)IX(tg) = § ' DX exp(-LAt) , (5.7)

where t; < t and t can be any time chosen in the future. This is the path integral and
acts as a propagator of the system, i.e. once the path integral is known, given any
initial state, the probability distribution of the order parameters at any other time can
be calculated. For simple systems, Monte Carlo techniques are used for multi-
dimensional systems. However, there is only one method, recently developed, that has
proved to be accurate for a wide range of nonlinear, nonstationary problems, such as
those we expect to be present in combat systems. At the present time, using this
method, the path integral has been calculated in one dimension [Ref. 13,14,15] for
many highly nonlinear systems, and it has recently been exiended to two dimensions
[Ref. 16]. Work is ongoing at Lawrence Livermore and Sandia National Labs to
develop an algorithm for the many dimensional case. However, meaningful results can
still be obtained by examining the static Lagrangian where X ~ 0. This gives some
indication of the characteristics of the system before doing long calculations.

H. VALIDATION AND SENSITI'VITY ANALYSIS

Now we are in a position to check the sensitivity of the model to changes in the
data. The Lagrangian essentially contains all the elements of the model. This is why it
is so important to obtain a good fit. This analysis could be done in two ways:

1.  With many runs of the data, we can separate (randomly) a set of runs to do our
fit and then vcidate the fit using the remaining set of runs. It is not clear at
the present time how to determine a good fit but a method that seems
reasonable is determining deviations from the most likely path in the following
manner. First, at each time increment, calculate the sample variance of the
data. This will be our weighting factor. Next, calculate the distance between
each of the data points and the most likely state calculated from the
Lagrangian. This will be our “width”. We then form the following statistic:

L(nn-1) Y(Aw)%'s? = Li(n(n 1)} (x,X)%s?, (5.8)
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where 52l = l/(nl-l)Z(xn-xl)z, X, is the most likely value at time t, x, is the
sample mean at time t, n is the total number of data points, n_ is the number of
experiments and n, is the number of data points time t. The distributional
properties under our assumptions of this statistic remain to be seen. One
property which is evident is if the long time conditional distribution is
symmetric then x, and x, are equal and our statistic will be unity. Another is if
the data were to fall within one standard deviation s of the most likely path for
all time, then the statistic will be close to 1. In this case a good fit would be
evident if the statistic were “close” to 1.

Using a set of runs of a particular scenario, fit a Lagrangian. Now change a
parameter of the scenario, for example, starting force levels. Next use a
goodness of fit test such as described above to check the sensitivity of the
Lagrangian to the change in the scenario parameter. This could be done for
several parameters or several iterations of the same parameter.

Only after a full sensitivity analysis has been completed and the Lagrangian can

be shown to be robust, can we say the Lagrangian accurately models the scenario(s).

L

OPTIONAL USES
We now present several generic uses of the path integral method and show some

of its usefulness and versatility as a combat model.

1. Procurement Decisions

Suppose vou are a commander in charge of procurement decisions. You are

faced daily with comparing C3 systems to tanks to aircraft to field artillery pieces and

up to now have relied mainly on subjective or qualitative models. With PIACA, the

comparison between different items of equipment weapons is summarized into

comparing probability distributions and actually compare the items value in changing

the outcome of combat.

For example, suppose we are interested in comparing the relative worth of

purchasing a new C? system or purchasing more tanks. A study could be conducted as

follows:

1.

Obtain a sufficient physical model of the C* system which can be simulated or
used in a war game. A sinular requirement exists for the tanks. Although this
seems somewhat complicated, this step is usually completed for most

comparisons.
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2. Once a sufficient physical model has been obtained, conduct many runs of a
simulation/war game using first one system, then the other using various
appropriate scenarios.

3. We now fit a Lagrangian to both data sets and develop a short time conditional
distribution and a long time propagator or path integral.

4. We now have common objects, the Lagrangian and the path integral in which
to compare the two different systems. We might then compare the most likely
states of the two Lagrangians and determine if they are satisfactorv. Or we
might compare the long time distributions or develop some MOE which
combines features of the Lagrangian and the path integral.

The are several advantages to this approach. First, fewer simulations are
required since the information present in the scenario is captured by the Lagrangian
within a relatively small number of runs. Second, once the fit has been obtained it is
possible to perform additional sensitivity studies using the Lagrangian without
requiring more, expensive simulations. This leads to a quantitative and objective tool
which can be used by procurement managers.

2. "What If” Scenarios in Combat Planning

Now that we have seen how to use the method in procurement decisions, it is
not much of a jump to the use in combat planning. There is 2 common thread to the
method, the ccmparison of similar quantities, the Lagrangian and the path integral.
For illustrative purposes we present an example of the method in combat planning.

We now suppose we want to examine the effectiveness of several combat
plans. These are not as dissimilar objects as before, but we now have an additional
objective evaluation which we mayv use. A study would follow similar lines as before:

1. Perform many runs of simulations for each combat plan. This alone would aid
in understanding the significance or utility of each plan.

2. Fit a Lagrangian to each data set. Perform any required /desired sensitivity
analysis.

Calculate the long time distribution via the path integral.

4. Develop any MOC's or compare the distributions in a qualitative manner.

Another advantage of the method is the user becomes more involved and is
able to see the consequences of each plan more fully. Examining the structure of the
Lagrangian enables him to see transition points in the developing outcome of the battle
which might be critical points. With this information, he can then make more
informed decisions regarding the evolution of the battle.
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3. Doctrinal Evaluations

This use again follows the same procedure and we will suggest several
examples. The procedure followed is thie same as above.

One example could be to examine the effect of a change in armor tactics due
to a small change in the weapon system. A large change in the weapon system might
require a new study and therefore a new Lagrangian.

Another example is to look at a change in defensive tactics such as the
diiference between using a line defense and using a dispersed defense.

We could look at a change in helicopter tactics as a final example.

I have attempted to give the flavor of the possibilities of the method. It is
extremely rich in applications and much interesting work can be accomplished.

J. SUMMARY
We have provided a general methodology for developing a statistical mechanics
model of combat in this chapter. It is as follows:
¢ Derive or develop the order parameters of the system
¢  Obtain sufficient empirical data from the system you wish to model

¢ Functional forms of the order parameters are developed to model means and
variances

¢ Perform a_maximum likelihood fit of the short time probability distribution,
fitting coefhicients of the functional form

e Using the path integral technique, a probability distribution of the order
parameters is found for long times.

We have suggested several possibilities of the method for use in procurement,
combat planning, and doctrinal evaluations. The utility of the method is being able to
extract the essence of a combat system and representing it by a functional form, 1.e. the
Lagrangian. Once the Lagrangian has been found, it then becomes possible to predict
future outcomes with some degree of statistical (un)certainty.

We have also argued that although the Lagrangian is specific for a particular
scenario, it may be robust enough to small changes in the scenario. A collection of
Lagrangians is possible for example, to describe differing scenarios such as cold
weather, desert, or iungle environments, defensive versus offensive tactics, strategies,
differing force structures and differing advantage factors, i.e. either for or against the
enemy. This collection after suitable testing can then be incorporated into the decision
aid PIACA, for use by the commander and his staff.
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V1. THREE EXAMPLES OF THE METHOD

A. INTRODUCTION

In this chapter we look at three examples of the use of the path integral or
Lagrangian representation of combat. The first is a one order-parameter model with
constant variance. This will lead to a quadratic Lagrangian which will imply a
Gaussian distribution at each time step with means and variances being functions of
the order parameters. The second example is a two order-parameier model with
muitiplicative noise. The fit becomes more difficult but results can be obtained. For
both of these examples, simulated data from the associated GSL is used and it will be
shown that the coefficients used in the GSL can be obtained from the fit using the
Lagrangian representation. These two examples are provided to illustrate the
relationship between the GSL and the Lagrangiun representation, and as a test of the
computer code of the maximum likelihood fit program. [t must be emphasized that we
will be fitting a Lagrangian to the data and not mierely to find coefficients which are
exactly the same as those in the GSL. Thus we will compare the theoretical Lagrangian
(derived from the GSL) and the empirical Lagrangian which is fit from the data. In
the third example we show how to proceed with the method when given a set of
empirical data which was taken from the war game JANUS. Due to time constraints it
was not possible to perform the necessary fit to the data.

B. ONE ORDER-PARAMETER MODEL
Although as stated before, the one order-parameter model may not be a good
model for conibat, we present it here as a simple exposition of the niathematics and the
methodology.
1. Data Collection and Order Parameter Used
The data was generated from a generalized stochastic Lanchester equation of
the form

X=aX + gn. (6.1)

The n are distributed N(0,1). (Note: This is, in fact, an Ornstein-Uhlenbeck process.)
The APL program used to generate the data for this example is given in Appendix D.
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The order parameter represents, for our example, the Blue force level, which is
being attrited through some process such as an essentially constant Red force level, i.e.
a = aY. The data consists of 20 runs of the simulation for total time increments of
s=20, and At = 0.1. Therefore the total time of one simulation represents, sAt, or say
2 minutes. We are assuming there is no explicit time dependence in the Lagrangian,
and any time dependence is implicit in the variable X. Our GSL for the data is then

X = -1X + n where n ~ N(0,1) . (6.2)
For generating data we take the form
X(t+(j+ DA = X(t + jJAY+(-0.1X(t + jAt)+ At (6.3)

Sample trajectories for 20 runs are shown in Figure 6.1. It should be noted here that
all figures in this this chapter used the powerful statistical and graphics capability of
GRAFSTAT. Figure 6.2 plots the sample distribution for each time increment and
also connects the means of the distributions. It is obvious here that the expected value
path is the solution of the deterministic equation, i.e. <X -aX = n> = <X> -
a<X> = 0 = <X> = a<X> since <1j>= 0. The notation <argument>
signifies the expected value of the argument. This will be seen to be the case when the
Lagrangian is quadratic.

We now pick the short time conditional distribution representation to fit this
data:

P(X(t+A0IX())= 1/(2ng2At)!'2 exp(-LAt) (6.4)

where L = ().( - f)2/2g2 . ().(-zil)()/Zélz2 and where the a's are parameters to be

estimated. For this example,

P(X(t+ A)IX(1)) = (2rA0) 12 exp(-1/2[X(t + At)-X(1)
| (6.5)
-(a,X(1)Ay%4,%At)
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Figure 6.1 Trajectory of Order Parameter X.

and we can see this is in a Gaussian form with mean p = X+(z‘11X)At , and variance
ézzAt . We also see the Lagrangian in equation 6.5 is in quadratic form.
2. Maximuin Likelihood Fit of the Lagrangian
We will use a maximum likelihood fit to estiniate the parameters &; and i, in

the Lagrangian. Thercfore we want to maximize

o= ‘flx jrll P(X(t+(+ DADIX(t + A1) (6.6)

or equivalently to maxinize In M,

Ink = 2; z;m P(Xi(t+(j+ DAYIX(t + jAr))
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Figure 6.2 Distribution of Order Parameter X.

¥ / 2
. 21 };(1/2ln(2nAt) + 1/2in g? + L Av)

To use the simulated ann~aling algorithm described in Appendix A, we nced our cost
function (likelihood) in terms of a rinimization. Therefore, we want to minimize
-t g = / 2
Q -In K Y ¥ (1/2In (2rAy + 1/2in g+ LiAY)
= Y ¥ (1/2n 2rA) + 1/2n 4,2 + 1284X(t+(j+ DA)-
X(t + jAt) (3, X(t + jAD)AL)

There is an algebraic relationship between the GSL and the Lagrangian. The
coefficients, parameters in the Lagrangian correspond to the coeflicients in the GSL, if
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defined properly. Therefore, a good fit would be obtained if the estimated parameters
of the Lagrangian were “close” to the coefficients used to generate the GSL. However,
it must be stressed again that we are fitting a Lagrangian to the data and not merely
attempting to match the coefficients. We will compare the theoretical Lagrangian
(derived from the GSL) to the Lagrangian fit from the data.
3. Results of the Fit

In addition to the above example, two other fits to data for different GSL's
were performed to truly test the simulated annealing computer code. The results are
listed in Table 1. In defining the model we will use the terms linear or non-linear to
describe the functional form of the drift and additive or multiplicative to describe the
form of the diffusion or noise terms. As is evident in the table, the fitted coefficients
were “close” to the generated coefficients. The true test however, was how well the
generated Lagrangian and the fitted Lagrangian agreed.

TABLE 1
ONE ORDER PARAMETER RESULTS

Model GSL Generated Fitted
CoefTicients Coeflicients
I Linear Additive ~ X=aX+gn a=-0.008 4, =-0.0121649
g=0.2 i,=0.104862
11 Non-linear X=aX+bX2+gn a=-0.008 a,=-0.0385419
Additive b=-0.001 4,=-0.000818763
g=0.2 4,=0.104391
11 Linear X=aX+gXn a=-0.008 i, =-0.0121295
Multiplicative g=001 4,=0.00482471

Before comparing, the Lagrangians had to be renormalized. Due to the
underlying rioise the Lagrangians could only be fit within an arbitrary constant. This
constant was chosen so that the renormalized Lagrargians were unitless (this was
arbitrary). A first choice was to us: as a constant the Lagrangian evaluated at Ly
().(=0, X=X,) where Xr is the value of X which L is a global minimum. However,
L:\-(O,Xr) will more than likely be close to zero and this could cause numerical and
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mathematical difficulties. Therefore, we chose to evaluate Ly = L(0,X| ) where X
=X + gz(X r)~/t. gz(Xr) is the variance evaluated at X. This seemed appropriate
since we would like to incorporate into the normalization factor a measure of the
curvature of the order parameter space and yet be “close” to the global minimum.

Therefore
Lp = LXX)VL\(O0X]) - (6.7)

is our renormalized Lagrangian. These are plotted in Figures 6.3, 6.4, and 6.5. It can
be seen that the agreement in the drift terms measured by the location of the minimum,
are very good. The agreement in the variance measured by the shallowness of the well
was fairly good. This was for 20 runs of the simulation from time 0 to time 2 at
increments of 0.1. The estimated coefficients were determined by having the simulated
annealing program run for 10000 generated points and selecting the minimum value
obtained. More work is being done here in running the program for 1,000,000 points
and also performing the fit with more data, i.e. more runs and more time increments to
see the effect of these mcdificaticns on the location of the minimum.

These simple examples were meant to illustrate the principles of the method
and thus simple Lagrangians were obtained, i.e. those with only one minima.
However, more complicated Lagrangians are admissible and this method is only limited

by the ingenuity of the modeler.

C. TWO ORDER-PARAMETER EXAMPLE

The two order-parameter example is now given. The Lagrangian for this
example invoives a ratio of polynomials because of multiplicative noise. We again
show the coefficients used to generate the data can be estimated quite well using the
two order-parameter Lagrangian. This example tests our computer code, so that if the
functions used in the Lagrangian are derived in a special way from the Langevin
equations, then the short time conditional probability distribution will correspond
directly to the probability distribution of the variables generated by the Langevin
equation.

1. Data Collection and Order Parameters Used

The data are generated from a GSL of the form

X =a, Y+a,XY+ an +a, yn,
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Figure 6.3 Generated and Fitted Lagrangians for Linear Additive Model.
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Y = a, X+a,,XY+ a,,Xn; + aym, . (6.8)

where cross terms are present in the drift (mean) and the diflusion (variance). The
multiplicative noise is present in the coellicients of the w's. The APL program
LANCHESTER described in Appendix D was used to géneratc the data. Saniple
trajectories of X and Y are shown in Figures 6.6 and 6.7. Figures 6.8 and 6.9 plots the
sample distributions.

We now derive the form of the Lagrangian corresponding to the GSL in
equation 6.8 . '

The theoretical Lagrangian, L, to be fit to the data is defined in equation 6.9.

Al | § TEAAAAAL e

L. = 11!2(&\.1'1 - g p )gpv(iiv 3 8 . ) '

g"v = (g”V)~l ’
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Figure 6.4 Generated and Fitted Lagrangians for Non-Linear Additive Model.
gh = H + 128", agh oMY
gh? = gt g", . (6.9)

where we have assumed V=0 and ! = a;, Y + a;,XY. Therefore, g! is given by
equation 6.10 .

ag! ag! ag! oz’
§ g =+ gt Kl“"zglz 3‘{3+ 11282, Wlﬂ/zgz2 5?1 : (6.10)
5
1 = 1 = 4 2 - 2 =
i B = a;3.8,=23,Y,8, =a,XK,8% = ay,, (6.11)
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LINEAR MULTIPLICATIVE MODEL
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Figure 6.5 Generated and Fitted Lagrangians for Linear Multiplicative Model.

gl =a;, Y+ auXY + 1/2a;,2,, (6.12)

For g2 we have

dg? og? ag? . dg?
F
2w 24l = 4l =24 1282, —L+ 1282, —2 6.13
§ By gx Tl gt 1 Gyt Ve 5y (6.1
and 2 = anX + anXY. Therefore,

gl = ay X + 2,,XY + 1/23;3,, (6.14)

Next we calculate the g"V terms.
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Figure 6.6 Trajectory of Order Parameter X.

- glgl, + 88!, = a2 + 3 fY? (6.15)

- gl]gzl + glzglz - al3al4x +al4az4Y - (616)

e 821311 g 822312 - g! (6.17)

2
= g2,g% + gh8l, = 2 X% + a, )t (6.18)
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Figure 6.7 Trajectory of Order Parameter Y.

Next we need Zuv- The gM"V form a 2 by 2 matrix whose inverse is R

Thus
g2 gl _
guy = (detgh¥yt : (6.19)
- gdl g
where det ghV = gllgn . ngglz = (det gm,)'l . The Lagrangian is
L=1/2(X-g")g;, + 1,’2(X-g‘)§u(\"-g2). . (6.20)
+12(Y-g))g,, (X-g') + 1/2(Y-g%)2,,
= 1/2(det g"V) 1[(X-g') g2 - 2X-g X Y-g))g! 2+ (Y-g2)%g" ) (6.21)
hX]
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Figure 6.8 Distribution of Order Parameter X.

since all the terms contain the (det g’w)'l factor and since g2 = g3l .
The short time conditional probability distribution g
= P(X(t+A)|X(t+ (n-1)At)) is
P = g 2 (2nAt) T2 exp(-L At) (6.22)

where

g, - dct(gm,)n 2

[,

b

¥ L= (1228 MP (t+(n+ )AG-MP(t + nAv)-g' Av) (6.23)

LW,

¥ X guy(MY (t+{n+ )AO-M(t + nAe)-g?A0)
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Figure 6.9 Distribution of Order Parameter Y.

and specifically,

281X T - X gAY, T Y gfAn+(Y, T - Y gfAng)
where )(n+ = X, (t+(n+1)Ar), X, = X, (t+nAt), and where similar equations exist
for Y.

2. Maximum Likelihood Fit of the Lagrangian
After a functional forin of the Lagrangian has becn derived (or guessed), the

next step is to estimate the parameters in the Lagrangian. This is done using a
maximum likelihood fit, that is, we wish to maximize
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M= 0 fip

=1 ja1

where l’sii = P(X,(t+(+ DAYIX,(t + jAv)) is the short time conditional probability
distribution for experiment i, at time t+(j+ 1)At (post-point). As before, we will take
the logarithm and pull the minus sign out front, and then minimize the resulting
function. This becomes

nM = ¥ YinP

)3 ;{1/2111 (2nAt)-1/2ing; + L At} = -N

We minimize N with respect to the parameters/coeflicients of the Lagrangian form.
This will be a minimization problem of 8 parameters for our example. N will likely
contain many minima but we are only interested in the best fit, i.e. the global
minimum. Therefore we will use the simulated annealing algorithm developed for this
purpose of performing the best fit. Again we are looking for the best fit of the
Lagrangian to the theoretical Lagrangian and not attempting to extract any particular
parameters,coefficients. However, any constraints or conditions imposed on the
parameters;coefficients based on phenomenological reasons should and must be
included to obtain the best fit.
3. Results of the Fit

In addition to the above example, one other fit to data obtained from a
different GSL is given to test the code and to examine the similarities between the
Lagrangians. The results are given in Tables 2 and 3. Again we will normalize the
Lagrangians. For the two dimensional case we will use XL =X + gXx (X ;) Where
gXX are the diagonal terms of the metric and are a measure of the curvature in the

order parameter space. The renormalized Lagrangiar: becomes
Lg = LIX,X)'L\(0,X)) - (6.24)
The generated Lagrangians are plotted in Figures 6.10 and 6.12. The fitted

Lagrangians are plotted in Figures 6.11 and 6.13. Again we find good agreement in the

drift terms or the location of the minimum of the Lagrangian. These are located near
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TABLE 2
TWO ORDER PARAMETER MODELS

Model GSL

[ Linear Additive I).(=a“Y+a12nl+al3n2

Y=a, X+a,n +a,n,

IT Non-Linear Multiplicative X= a; Y+a,XY+a;;n +a,Yn,

Y=a) X+a,,XY+a);Xn, +a,n,

TABLE 3
TWO ORDER PARAMETER MGDEL RESULTS

Do L S A R L

- -
oo
T

Model Generated Fitted
Coeflicients CoefTicients
I a, =-0.008 4, =-0.0121839
a,,=03 d;,=0.0787236
al3==0.l al3=0.l30564
a,, =-0.004 d,) =-0.00655852
ay,= 0.1 a5,= 0.152455
- a,;=0.3 4,,=0.0209012
' I1 a ;=001 d;,=0.0550272
" a),=-0.004 d),=-0.0073603
E: al3=0.5 al3=0.2469l7
E a;,=0.01 d,,=0.00235102
a, =0.02 4, =0.0855577
o a,y=-0.001 4,,=-0.00449816
% a,,=0.015 4,,=0.00857855
% a,,=0.7 2,,=0.281460
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the contour labeled 0.01 in the plots. The contour level spread is a measure of the
variance and it is evident that there is more spread in the levels in both of the fitted
Lagrangians. This is somewhat to be expected when dealing with a small sample {rom
a probability distribution. More work is being done here to extend the results to more
complicated Lagrangians, using more data, and using the simulated annealing program
to find a better minimum (by including more points in the search). These early results
have been encouraging.

" LINEAR ADDITIVE MODEL:GENERATED

40.10
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Y(T+AT)
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$.90 39.95 40.00 40,05 40.1
X(T+AT)

Figure 6.10 Generated Lagrangian for the Linear Additive Model.

D. TWO ORDER-PARAMETER MODEL USING JANUS DATA
1. Selection of Order Parameters
To ensure a simple description we will assume here that our order parameters
are the numbers of personnel in each force and that we will look at the attrition,
similar to a Lanchester approach.
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LINEAR ADDITIVE MODEL:FITTED
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Figure 6.11 Fitted Lagrangian for the Linear Additive Model.

2. Data Collection

JANUS was chosen as a source of data because of its easy accessibility
(present at NPS on a number of computers) and the combat data is in an easily
reducible form for analysis. The high degree of graphics support also gives us a broad
overview of the scenario we are dealing with. A Blue defense versus a Red Oflense
scenario was used. Terrain was fictitious and generated vsing the graphics capability of
JANUS. It was flat with no foliage nor any built-up areas (cities). The delender had
the capability to perform pop-up maneuvers, i. e. moving from full defilade to partial
defilade. This was a scparate condition fron: the terrain. The attacker moved across
the terrain exposed. Biue was composed of 3 task forces of 12 MGUA3J tanks and 4

M901 TOW weapons each and was in a line defense. Red was composed of 3 task

forces of 30 T72 tanks and 9 BMP troop carriers each and was in the attack. Red




NON—LINEAR MULTIPLICATIVE MODEL:GENERATED

Y(T+AT)
20.0 20.5 21.0
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Figure 6.12 Generated Lagrangian for the Non-Linear Multiplicative Model.

objective was to penetrate Blue's defense, and Blue's objective was to repel Red’s
attack (mutually exclusive missions).

Twenty runs were collected using the batch mode of JANUS. Data collected
was driven by the attrition process, and each attrition was classilied as an event. At
each event, clock time of the simulation and attrited side was recorded. Data consisted
of a collection of clock times and status of forces at clock time.

3. Development of the Lagrangian

The first step in the development of the Lagrangian is to ¢xamine the sample

paths of the data. This might suggest an appropriate model, such as Model I or Model

Il to begin with. It is probably best to begin with a simple model and move on to
hﬁ;f.} more highly non-lincar models unles the data is known to be complicated. These

functional forms can be as complicated as you wish, combining trigonometric,
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NON-LINEAR MULTIPLICATIVE MODEL:FITTED

Y(T+AT)
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Figure 6.13 Fitted Lagrangian for the Non-Linear Muitiplicative Model.

expenential, or polynonial terms. However, as mentioned before, a Padé approximant
can approximate many functional forms and thus a ratio of polynomials would be your
best first guess.
4. Performing the Maximum Likelihood Fit

Having sclected a functional form we must now estimate the
coefficients/parameters in the form. This is done by using a maximum likelihood fit as
described in the two earlier examples and in Chapter 5. This requires the user, in order
to use the simulated annealing program, to write a subroutine for his cost function, i.e.

the function he wishes to maximize:minimize. This should be written in terms of a

mininization for the program to work. The user must also decide how many points he
wants to use in the search, starting temperatures, any constraints on the

parameters;coefficients he wants to impose, and a starting point. These are relatively

m
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easy to incorporate into the program. One rule of thumb that has been found is to
start with a small number of points in order to check your subroutine and then
increase to the amount of points you wz-it. The minimum suggested number of points
for one dimensioral problem is 10000. This usually allows the simulated annealing
algorithm sufficient time to find a good fit. Of course, the more
dimensions/coefficients you have, the more points you will need in order to get a good
fit. The minimum cost and the point associatzd with that cost is the final output.
These are your fitted coefficients for your Lagrangian.

With the Lagrangian, we can now test the fit using similarly obtained data, i.e.
data from the same scenario. If the fit does not seem satisfactory based on some pre-
selected conditious, then we must return to the development step and try a different
functional form. This iterative process continues until we are satisfied we have a good
fit.

5. Path Integral Representation

With a satisfactory Lagrangian we can now examine the long term behavior of
the system using recently developed code for the path integral (not available at the
time of this thesis). By using the path integral code we can numerically determine the
probability distributior. of our order parameters at any time t. For exampie, an item of
interest may be when a particular transition point in a battle might occur. We would
use the path integral to calculate the probability distribution at each subsequent time
step and then look for evolving trends of that distribution. For example, imagine we
had a bistable probability distribution, i.e. one with two most likely states, and wanted
to know how the system evolved from one minimum state to the other. We would
then keep stepping through the calculation of the path integral until we found a
noticeable change in the distribution.

6. Sensitivity Analvsis

By using sensitivity analysis we can test the robustness of our fit and of our
functional form. This might proceed as follows. Firsi obtain sufficient data from some
scenario vou wish to study, e.g. our JANUS data. Our particular order parameters are
the number of each vehicle on each side, so we have four order parameters. We decide
on a functional form and perform the maximum likelihood fit. After having satisfied
certain conditions, we are satisfied with our fit. We now return to our scenario and
make a change in a microscopic variable, for example the pop-up rate of the tanks in

the defense. Using the same functional form of the Lagrangian, we perform a
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maximum likelihood fit using the newly obtained data. Remembering that we are
fitting the Lagrangians and not the individual coefficients/parameters, we are not
concerned with agreement here. We plot the Lagrangians for both the original data
and the modified data and determine if there is any significant change. We might
continue this process for differing values of the pop-up rate or turn to a different
variable, e. g. the initial force level of each side, max range of the weapons,
manuevering speed, change in the terrain, weather, etc. If the Lagrangian has not
changed appreciably we can feel confident that our model is appropriate.

E. SUMMARY

In this chapter we presented three examples of the method using the one order-
parameter and two order-parameter models. In each case we have assumed no explicit
time dependence in the functional form. This was done to keep the examples simple.
If the multiplicative noise is small compared to a constant noise term, then the
Lagrangian is approximately quadratic in the post-point variable, and all distributions
are Gaussian. However if the multiplicative noise is significant, if the mean is higher
order than linear, then the long time distribution will be non-Gaussian even though the
short time distribution is Gaussian. This must be emphasized. Otherwise the model
would mimic a Gaussian distribution and be of limited use.

We have also presented the use of the simulated anneai-ling algorithm to perform
the maximum likelihood fit. A relatively new algorithm, simulated annealing seems to
be particularly useful, especially when little is known about the system.
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VII. CONCLUSIONS

A. INTRODUCTION

We have presented in this thesis an alternative to modeling combat which
incorporates its severely stochastic nature. We have found it is a promising model for
different types of combat if certain assumptions are satisfied. A relatively large combat
system is necessary to satisfy this assumption. This should be of battalion size or larger
for land battles and a carrier battle group or larger to describe the outer air battle of
naval engagements.

A methodology has been developed which will allow the combat analyst to derive
specific functional forms for use in the decision aid PIACA. The necessary
mathematical theory has been developed and provides the foundation for the
methodology. A simulated annealing algorithm to perform the maximum likelihood
fits was developed. A FORTRAN program was written using the alogrithm and is in
fippendix A. Three examples using the methodolgy and theory have been given with
mixed results. These results are discussed next. Following that discussion, an outline
for the development of the decision aid is given. Finally, the significance of the model

is discussed.

B. RESULTS

The “truly-nonlinear” path integral method has been used sucessfully to describe
such large scale svstems as financial markets, the brain, and in nuclear physics
[Ref. 8,17,18,19,20.21,22,23,24,25,26,27). This is the first attempt to actually
numerically calculate the nature of large scale combat using these methods
[Ref. 1,2,12). In the one order parameter example with constant variance, a
Lagrangian was fit to the data with excellent results. In this case the path of the
expected value of the order parameter followed the associated deterministic Lanchester
equation which has been shown to model combat quite well under certain conditions.
Other features of the one order parameter model was the incorporation of a drift and
diffusion term of the order parameters. This is an improvement over the simple
Lanchester approach.

The two order parameter example was the first look at incorporating

multi~'icative noise into the model. This is a significant improvement over the
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Lanchester approach, stochastic or deterministic. Finally, using as our order
parameters the level of the Blue and Red forces, a two order parameter model was
developed for a JANUS simulation.

Given the time constraints of the NPS program, the purpose of this thesis was to
lay the formulation for future theses to build upc.. The Lagrangian we have
formulated can be further investigated using this approach, e.g., using the simulated
annealing program to fit a Lagrangian to a specific scenario.

C. DEVELOPMENT OF THE DECISION AID

We will now outline below the development of the decision aid PIACA and
suggest some design requirements.

First, to be useful as a decision aid under severe time constraints, PIACA should
be graphically and qualitatively oriented. The Lagrangian should be presented in a
form similarly developed in Chapter 4, 1.e. a graphical portrayal of most likely states
and the nisks associated with those states. This will allow easy assimilation by the
commander and his staff. Of course, human factors should also be incorporated in this
design.

Second, PIACA should enable the user to develop his own form of the
Lagrangian by using data from simulations he has selected. This would allow for
Lagrangians to be developed which are terrain, scenario, or commander dependent.

Third, once a Lagrangian is developed, the long time probability distribution, or
path integral should be calculated easily, i.e. in real time. This is a heavy requirement
since at present the path integral is not easy to calculate on supercomputers much less
something which can be brought to the field.

To summarize, to have the full decision aid will require:

¢ The development of efficient algorithms to solve the path integral. This will
most likely be a joint improvement in software and hardware.

¢ Graphical devices to portray the evolving long time probability distribution

o User-friendly software to interface with the user to dew,'clo?~ Lagrangians of
scenarios hé has selected with the capability of pre-selecting Lagrangians from
standard scenarios.

o Géaphical depiction of alternatives. This is a must requirement for any decision
aid.

e Ability to link to other users. Fhis will then provide an easy information

exchange in the meta-language of the model, i.e. passing values of the order
parameters, scenarios, etc.
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Obviously, there is much research to be completed in all these areas. One
purpose of this thesis was to lay the groundwork for the development of the full
decision aid as well as provide a unified means of describing combat using physical
concepts.

D. SIGNIFICANCE OF THE MODEL
It has been shown that this model is extremely rich in applications. We have
kept the examples simple to illustrate the use of the method. We have assumed only
implicit time dependence and a free particle Lagrangian, i.e. V=0. The significance of
the model could be increased with the addition of these terms. For example, it would
then be possible to:
¢ incorporate boundary conditions, i.e. constraints on the forces either
geographically or from higher levels of command, by the addition of the
potential teim, V. Such a model might be useful to describe relatively isolated
combat.
¢ The possibility to examine “phase transitions”, such as during nuclear,
biological, and chemical exchanges which drastically alter the evolving battle.
Other relatively small “phase transitions” could be examined such as when a
commander has reached a critical point in his force level and how he reacts.

These “phase transitions” could be modeled by matching 2t the critical point the

two Lagrangians, i.e. one from the left and one from the right of the critical
point.
The full power of mathematical tools such as stability analysis and calculation
of first passage times are available for examining the structure of the
Lagrangian. These tools have been used by physicists and others to examine
large and complex systems and many results could be applied to combat
systems.
Obviously, there is much work to be done in this area that was beyond the scope
of this thesis. The author hopes more work is done and this thesis layed the
appropriate groundwork for others.
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APPENDIX A
THE SIMULATED ANNEALING ALGORITHM

Simulated Annealing is a stochastic optimization algorithm for finding global
extrema. First, the algorithm is described, and a stochastic model, specifically the
Markov process, is used to show that the algorithm converges to the global optimum.
Second, the algorithm is used on several unconstrained minimization problems.

1. BACKGROUND

We will begin this discussion by first asking the question, what is simulated
annealing? In order to answer this question, we first need to know what is meant by
annealing. Annealing is a process Whereby a metal or crystal substance is first melted,
then subsequently cooled to freezing temperaiure. At intermediate temperatures the
substance is allowed to come to equilibrium. The purpose of an annealing experiment
is to determine the ground or lowest energy state for that particular substance. The
sequence of temperatures at which the substance is allowed to come to equilibrium is
refered to as the annealing or “cooling” schedule. If this cooling schedule is too rapid,
then the state of the substance will most likely be trapped in a metastable state and will
not reach the ground state and it is said to have been “quenched”.

Simulated Annealing 1s then a simulation of this process using a computer. We
generate an initial configuration of the system and calculate its energy, E;. Then the
state of the system is changed, and the new energy, El, is calculated. IfAE = E, -E,
< 0, then the state of the svstem becomes this new state. If AE > 0, then the state of
the system becomes the new state with probability = c'AE/T, where T is the
temperature. Otherwise, it remains in the old state, and the process is repeated until
T=0. in this case, we are interested in a cooling schedule which minimizes the total
energy. The above procedure is refered to as the Metropolis algorithm after
Metropoiis, et. al. [Ref. 28] who developed it to perform equation of state calculations
for substances at an equilibrium temperature. The algorithm is a useful cne for
performing simulation in statistical mechanics. In large physical systems, one is
typically interested in the average properties of systems in equilibrium since these are
the ones that are directly measureable. For example, the procedure has been used to

simulate ferromagnetism of an Ising model [Ref. 29] and used to calculate <U >, the
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average energy, and M, the magnetic moment. Also, the entropy of the amorphous
magnetic state can be calculated using an algorithm similar to the Metropolis
algorithm [Ref. 30].

Kirkpatrick, et. al. [Ref. 31] reformulated the algorithm to be used in the
minimization of a general class of functions, analogous to the minimization of energy
in the statistical mechanics system. They used the algorithm to calculate the optimal
placement of integrated circuit chips on a computer circuit board, and also obtained a
solution to the N-city traveling salesmen problem. Since that time, the simulated
annealing algorithm has been used in various forms for problems in circuit design
[Ref. 31], image reconstruction [Ref. 32,33,34], target tracking, [Ref. 35] layer
assignment [Ref. 36], speech recognition [Ref. 37], and others [Ref. 38,39,40].

In section 2, we discuss the general class of problems associated with non-convex
optimization. In section 3, the general simulated annealing algorithm is discussed with
a description of the Markov chain model of simulated annealing. We show that if
there exists a generation function, and an acceptance function that satisfy certain
conditions which impose an irreducible, aperiodic Markov chain, then the algorithm
will converge to the global optimum. In section 4, we give the results of an experiment
which tested various combinations of generating and acceptance functions on the
minimization of three different cost functions where the global optimum is known.
Preliminary results of some modifications to the algorithm are also given. We conclude
our results in section 5.

2. NON-CONVEX OPTIMIZATION (NCO)

Non-convex functions are functions which have multiple extrema. In NCO, we
are typically interested in obtaining the global minimum or maximum. Algorithms
which attempt to find these »xtrema can be classified as being either deterministic,
stochastic or mixed in origin. Some deterministic algorithms such as quasi-\ewton
(BFGS) or steepest descent methods typically locate only local extrema and are only
guaranteed to find the global when the function to be optimized is convex. There are
other deterministic methods which have achieved good performance such as Levy and
Montalvo [Ref. 41] for locating multiple extrema. Stochastic methods include the class
of algorithms associated with simulated annealing, and which are purely stochastic in
nature. Mixed algorithms are typically of the multiple starting point, iterative
improvement variety. An example of this is the IMSL routine ZXMWD which uses a
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quasi-Newton method with multiple starting points and selects the lowest value. As
the number of starting points is increased, the probability the global minimum has
been found is also increased.

The question now becomes, why use simulated annealing? Obviously, if there are
algorithms which exploit the structure/properties of a class of problems, then these
should be used. For example, there exist heuristics for the traveling salesmen problem
which exploit the characteristics of the problem and probably would perform better
than using simulated annealing. Simulated annealing becomes very useful if the
problem vou are interested in lacks any special structure or for which there are no
heuristics available. Simulated annealing is easy to implement and gives good insight
into the problem, if you can identify the cost function to be used. This will become
more apparent when we describe the algorithm.

3.  GENERIC SIMULATED ANNEALING ALGORITHM
The algorithm is very simple and is stated as follows [Ref. 42].

STEP O

* Pick a starting point X;. This could be 2t random or set to some initial guess.
If you hove some idea of the space to be sampled. the algorithm will run much
quicker if it is confined to a smaller space.

* Set the initial temperature, T;. Again if the sample space is confined, then T
can be set at a lower temperature. If not, then set T to some high value. x,
and T, are dependent upon the function to be minimized and are considered
control parameters.

® Select a cooling schedule. This will be dependent vryon gy discussed in step 1
below. This is equivalent to setting T(t) = f{t) where t is the step counter. For
example, set T(t) = T,/(1+1) (inverse linear cooling).

STEP 1

* Pick a new point, x;. This new point will be picked according to some
generating function gy which could be a function of the temperature, T. Some

examples of generating functions are given in section D.

STEP 2

o Calculate AC = C, - C; where C, = f(xi). This is where the dynanics of the
cost function enter into the algorithm.

¢ Generate a uniform (0,1) random variable, U.
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® If the acceptance function (discussed below) a{AC,T) > U, then accept the
point X, as the new state of the system and let Xg = X, C0 = Cl.

8 JFC, € Crin €
obtained so far)

min = Co *min = ¥o+ (This keeps track of the lowest value
¢  Otherwise, keep Xg:
¢ Repeat step 1.

Another control parameter is the number of iterations/steps to complete. This is
dependent upon the starting temperature and the number of variables in the function
to be optimized. Generally speaking, if the sample space is confined to a small region,
the number of steps needed will be reduced.

It is clear from the above, how we can model the algorithm as a Markov process
and use those results to show global convergence. First, we consider the sample space
as our Markov state space. We can consider this to be a finite state space if we take
into account the resolution of our computer. Intuitively, it can be seen that if the
generating function is capable of generating any point in the space, and the acceptance
function has a finite probability of accepting the point, then every point could be
visited/generated an inifinite number of times. Mathematically, this is equivalent to
stating that our Markov chain is aperiodic and irreducible. For this to be true, the
generating function must satisfy four conditions:

1. gy be a bonafide probability distribution

2. gy(xq X)) = gy(X;y Xy) symmetry. This condition is needed for aperiodicity of
the Markov chain, i.e. that the generating function is symmetric and no cycles
are present.

3. gy{xq x;) > 0 for all x,x; S (sample space). This could be generated as a
path from x; to x;. This says that every state can be reached by any other
state, although not necessarily in one step.

4. lim gp(x,X,) must exist.

The three conditions that the acceptance function must satisfy are:

1. aﬂxo.xl),‘a-l-(xl,xo) be a monotone positive function.
: 2. If Gy < Cj, then ay(C(,C;) > 0 ie. there must be a positive probability of
;{?._‘_ accepting a decrease in the cost function.
»
s

lim a-l-(xo,xl) must exist.

A
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If the aforementioned conditions hold, and if it can be shown that every state can
be generated an infinite number of times, then the algorithm will converge to the global
optimum. The preceding results are stated here for completeness of the paper. The
results are proven in the literature [Ref. 42,43}.

It can be seen from the above that the simulated annealing algorithm is actually
a whole class of algorithms depending on your choice of the generating and acceptance
functions. For example, for the Metropolis algorithm and many other algorithms in
the literature, g is a uniform distribution over a neighborhood of fixed size. L.e. the
next point generated is some fixed step distance from the previous point akin to a
Random Walk process. A degenerate case would be to let gy equal some constant, i.e.
the uniform distribution over the whole space. This would be equivalent to a random
sampling algorithm, keeping the state with the least cost. In our experiments, we use
generating functions which sample the whole space with a bias towards the curreni
point. This is equivalent to a random "hop” process, where the process can “hop”
around the state space, and hops farther at higher temperatures than at lower
temperatures. For example, suppose we have some function with multiple hills and
valleys (extrema). Now suppose we have a ball with a lot of energy (high temperature)
bouncing about this surface of hills and valleys. The ball loses energy according to
some friction function, a, which is dependent on the energy of the ball. As the ball
loses its energy, it will gradually fall into a valley corresponding to a minima. How the
ball jumps around and how fast the ball loses energy will determine whether the valley
reached is the lowest valley.

4. EXPERIMENTAL RESULTS

Experiments consisted of testing various combinations of generating and
accepting functions on three cost functions. The purpose was to determine the most
effective combination in terms of a measure of performance (MOP). One MOP that
could be used and has intuitive appeal is CPU time. Another MOP is the acceptance
ratio which is the ratio of the number of accepted points divided by the total number
of generated points. These MOP’s are directly related. This can be seen if you
consider that the times tc generate a point for each generating function are essentially
equal. Since the number of accepted points is equal to the number of steps (step
counter is incremented when a new point is accepted), and this was held constant, the

only variable in the ratio is the number of points generated. Therefore, the only
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difference in the runs was dependent on the number of points generated and so the
acceptance ratio was used as a MOP. Obviously, this MOP could only be used
effectively if the algorithm was actually able to locate the global minimum.

The cost functions used are as follows:

cl = x4.16x2 + 5x

This has 2 minima at x=2.90, C=-78.33 (global) and x=2.74, C=-50.06 (local)
[Ref. &szu2].

C2 = x2. 2y2. 3cos(3nx) - .4cos(dmy) + 0.7

This has multiple minima with global at x=y=0.0, C=0.0 [Ref. 39].
C3 = x2 + 2y2. 3(cos(3mx)cos(dmy)) + 0.3

This has multiple minima with global at x=y=0.0, C=0.0 [Ref. 39].

The generating functions used are as follows:

8’1‘1 = (/m) T(T + x2) Cauchy

2/9.02

g1’ = 1/y/2n6? eX/2%" Normal (0, 6% = 1)
2 2

gT3 = 1/./2n0? X /26 Normal (0, 62 = 4)

The Cauchy was chosen because of its infinite variance (wide tails) which should
indicate a good sampling of the space and not have a tendency to get trapped in a local
minima early. The normals were chosen to see if the variance had any effect on
trapping in local minimas. [fit did, then that would indicate further research is needed
to deterrnine if the variance could be used as a control parameter, or if faster cooling
could be- used.

The acceptance functions used are as follows:

._.
0

11 + e TACTY Hear Bath
hT2 = e"AC"T' Boltzmann

The Boltzmann function is used in the Metropolis algorithma and is a
fundamental function in statistical mechanics. This form arises quite naturally in our
problem, as our cost function for the parameters is the Lagrangian of the probability
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distribution of the independent variables. One modification to the above acceptance
functions for better performance is to link T’, the control parameter, to the relative
success of the acceptance function, instead of retaining the global temperature, T. That
is, the temperature that the acceptance function uses would be a different temperature
than the one tied to the number of steps or generation of points. We will call this the
2-Temperature generic simulated annealing algorithm. This was developed for this
thesis in an attempt to obtain better results in higher dimensions of the
parameter/coefficient space. At this time it is only an ad hoc procedure, but it does
satisfy the above conditions for the acceptance function. The two temperatures allow
for a small degree of independence in sampling the space. The global temperature, T,
controls the sampling of the space by scaling the amount of the jumps in the space.
The control temperature or acceptance temperature, T', controls the amount of cost
difference we are willing to accept at each step, and is subsequently connected to the
state of the system since the state changes each time we accept a point. The
FORTRAN program is contained in Figures A.la-A.lh.

For each run, 15 = §, x; = (10,10) (2Dir), and T(t) = 1/(1 + t) (inverse linear
cooling) was used. (For l-dimensional problem, x; = 10). Table 4 gives results listed
by generating function. Table 5 gives results listed by acceptance function.

TABLE 4
RESULTS BY GENERATING FUNCTION

Gen Fen Acc Fen Cost Fen Global Loc Acc. Ratio
1 I 1 Y 4l
| 1 2 Y 27
1 1 3 Y .38
1 2 1 Y .74
1 2 2 Y .64
1 2 3 Y .66
2 1 1 N .48
2 1 2 ™ 47
2 1 3 N 48
2 2 1 N .89
2 2 2 N .85
2 2 3 N .87
3 1 1 Y .35
3 1 2 Y .28
3 1 3 Y 31
3 2 1 Y .60
3 2 2 Y 44
3 2 3 Y 49
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TABLE 5
RESULTS BY ACCEPTANCE FUNCTION

Acc Fen Gen Fen Cost Fen Global Loc Acc. Ratio
1 1 1 Y 41
1 1 2 Y 37
1 1 3 Y 38
1 2 ] N 38
1 2 2 N 47
‘ 1 b 3 N 48
| 1 3 1 Y 35
1 3 2 Y .28
1 3 3 Y 31
2 1 1 Y .74
2 1 2 Y .64
2 1 3 Y .66
2 2 1 N .89
p) 2 2 N .83
2 2. 3 N .87
2 3 1 Y .60
2 3 2 Y 44
b 3 3 Y .49

First we compare the performance of the generating functions. We notice that
oL . . s . 1
gT" did not converge to global optimum in any of the runs, so we discard it. For gy

and g—r3 1

we note that for every run, gy outperformed g—r3. Obviously, this 1s not
conclusive since it is based on a small number of runs. Many different runs with
different starting points and initial temperatures would be needed for more definitive

2 outperformed h—rl n

conclusions. As to the acceptance functicas, we can see that hp
every case. Therefore, based on these results, it would seem that the best combination
1s to use the Cauchy as the generating function, and the Boltzmann as the acceptance

function.

5. CONCLUSIONS

This experiment was intended to introduce the reader to simulated annealing and
to show how it can be used for optimization problems. Further research is needed in
the area of different generating and acceptance functions, 2pplying the algorithm to
different cost functions, and extending it to higher dimensions. Preliminary results with
a normal generating function, with variance as a function of temperature, indicate there
1s more interesting work to be done in this area.
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6. FORTRAN PROGRAM

Contained in Figures A.la-A.lh below, is the 2-Temperature version of the
Simulated Annealing Algorithm FORTRAN program code. The subroutine COSTFN
is for the 20P model. User must input the number of dimensions {(corresponding to the
number of parameters/coefficients to be fit and NOT to the number of order
parameters), number of steps or total number of accepted points he wants generated,
the starting temperature for the generating function, the starting temperature for the
acceptance function, the starting point, number of accepted points to print, total
number of generated points {controling the amount of time the program will run), the
time increment of the data, the number of runs of the data, and the number of time
increments. This informaticn must be included as the first line of the data and can be
unformatted.

PROGRAM SA
IHHHNBHHHHEHBHOHHHHEHIHEH HHHHHHHHHORHHPHHHEHHEHHEHHHNHHE
#THIS PROGRAM IS A TWO TEMPERATURE VERSION OF 3A
FIHHHHEHHHHHHHHHHHBHHHHEHRHRHHHHHEHHEHHHRHHHHEHHHEHHEHEHH
INTEGER NUIM,ACC,NACC,NTOT,IMACC,INTOT,STEPS,TI,T2
DCUBLE PRECISION TO,TOA,X0(8),X1(8),XMIN(8 .,
1TEMPG, TEMPA,C1,C0,0ELTAC,H,CMIN,
1PERACC,IPERAC,21(1000,21),22(1000,21),DELTAT
COMMON /COMI/ NDIM,ACC JNACC,NTOT,INACC,INTOT,STEPS,TI,T2
COMMON /COMR/ CO,Cl1,TEMPG,TEMPA,DELTAC,H,PERACC,IPERAC,TOA,
1X0,X1 ,XMIN,TO,CMIN
COMMON /LAG/ 21,22,DELTAT,NUMRUN,NTIME
COMMON /7A1/ NMOD
COMMON /SALl/ MAXTOT
REAO (2,%)NDIM,STEPS,TO,TOA,(XO(N),N=1,8),NM0D,MAXTOT,DELTAT,
1INUMRUN , NTIME
DO 5 I=],NUMRUN
L REAO (2,%) (Z1(I,N),N=1,NTIME+]1),(Z22(I,N),N=5]1,NTIME+1)
Cc WRITE (3,%) (Z1(I,N),N=1,NTIME+1l)
cs NRITE (3,%) (Z2(I,N),Nx1,NTIME+]1l)
KRITE (3,%) 'NDIM STEPS TO TOA STARTING POINTS NMOD MAXTOT
1 DELTAT NUMRUN NTIME'
NRITE(3,%)NDIM,STEPS,TO,TOA,(X0(N),N=1,8),NMO0,MAXTOT,0ELTAT,
INUMRUN , NTIHE
D0 23 UN= 1,NDIM
MMIN(IUN) = XO(UN)
23 X1(JN) = XO(UN)
CALL SIMANN
STOP
END

Figure A.la FORTRAN Program for 2-Temperature Simulated Annealing Algorithm.
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IHBHEHBOHEHEHHHEHHEHHHRHHNEHHHNHEHEHHRHHOEHBHHHHHBBHHEHHHBHEHEHHEE
SUBROUTINE SIMANN
INTEGER NDIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2
DOUBLE PRECISION TO,TOA,X0(81),X1(8),XMIN(8),
1TEMPG,TEMPA,C1,C0,DELTAC,H,CMIN,
1PERACC,IPERAC,21(100,21),22(100,21),0ELTAT
COMMON /COMI/ NDIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2
COMMON /COMR/ CO,C1,TEMPG,TEMPA,DELTAC,H,PERACC,IPERAC,TOA,
1X0,X1,XMIN,TO,CMIN
COMMON /SAl/ MAXTOT
CALL COSTFN(X0,C0)
CALL INIT
0O 10 TI = 1, STEPS
TEMPG = TO/(DFLOAT(TI))
20 IF (NTOT.GE.MAXTOT) GOTO 11
CALL &7
CALL COSTFN (X1,Cl1)
CALL HT
CALL PICKPT
IF (ACC.EQ.1) THEN
CALL ACCEPT
ELSE
60 TO 20
ENDIF
10 CONTINUE
11 PERACC = NACC/REAL(NTOT)
NRITE (3,100) NTOT,NACC,PERACC ,CMIN, (XMININN),NN=1,NOIM)
100 FORMAT (1X,'TOTAL GENERATED ',I8,3X,'NUMBER ACCEPTED ',I8,3X,
1'PERCENTAGE ACCEPTED ',F%.2,3X//1X,'MIN COST ',E12.6,3X,
171X, '‘MIN POINT *,4(E12.6,1X)/1X,4(E12.6,1X))
WRITE (3,») 'TEMPG',TEMPG,'TEMPA',TEMPA
RETURN
END

Figure A.1b FORTRAN Program for %-Tertt;perature Simulated Annealing Algorithm
cont).
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IHHEHHHHBAHBBHEHHHEHHHBHEHEBHBHEREHHHBHHHBREHEHEHHEHEHERHENEHHNEE

SUBROUTINE COSTFN(P,COST)

DOUBLE PRECISION P{NDIM),COST,X(1000,21),Y(1000,21)
1,L1,L2,L3,LD,LX,LY,DELTAX,DELTAY

INTEGER NDIM,ACC,NACC,NTOT, INACC,INTOT ,STEPS,TI,T2

DOUBLE PRECISION TO,TOA,X0(8),X1(8),XMIN(8),
1TEMPG,TEMPA,C1,C0,DELTAC,H,CMIN,
1PERACC, IPERAC,Z1(100,21),22(100,21),DELTAT

COMMON /COMI/ NDIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2
2 COMMON /COMR/ C0,C1,TEMPG,TEMPA,DELTAC,H,PERACC,IPERAC,TOA,
1X0,X1,XMIN,TO,CMIN

COMMON /LAG/ X,Y,DELTAT ,NUMRUN,NTIME

COST = 0.0

DO 10 I = 1,NUMRUN

DO 20 N 3 1,NTIME

DELTAX 3 X(I,N+1)~X(I,N)

DELTAY = Y(I,N+1)-Y(I,N)

H1zPU1)%Y(I,N)+P{2)X{ I ,NI*Y(I,N)+P(4)*P(8)/2.0

611=P(3)

G12=P(4 )%Y{I,N)

H23P( 5 )X( I ,N)+P{ 6 )X( I ,NIY(I,N)+P(3)%P(7)/2.0

G21=P( 7)%X(I,N)

622=P(8)

Q11=611%2 +G123%2

Q12=611%621+612%622

Q22=2G213%2+4G22%3¢2

DEN=Q11%Q22-Q1 232

IF (DEN.LE.O0.0) THEN

COST=1.0E25
GO TO 99

ENDIF

DETG=1.0/DEN

LX3DELYAX~H1XDELTAT

LY=ZDELTAY~H2%DELTAT

L1=( LX%%2 )%Q22/2.0

L23-~1,D%( LX%LY )%Ql2

L33(LY*%2)%Q11/2.0

LD2DETG®(L1+L2+L3)/DELTAT

£ IF (DEN.LE.0.0) THEN

c ENDIF

TERM1=-1.0%DLOG( DETG/DELTAT /2.0
COST=COST+TERM1 +LD

c WRITE (3,%) 'A',P(1),'B',P(2),'C',P(3),'D",P(4)

€ WRITE (3,%) 'E',P(5),'F',P(6),'G',P(7),"H",P(8)

c WRITE (3,%) 'EXPERIMENT NMUMBER',I, 'TIME STEP',N

c WRITE (3,%#) 'DEN OF DETG',DEN,'Q11',Q11,'Ql2',Q12,'Q22',Q22

c WRITE (3,%) 'LX',LX, 'H1',H1, 'G11",611,'612",612

¢ WRITE (3,%) 'LY',LY, 'H2',H2,'6G21",621, 622" ,622

c WRITE (3,%) 'L1',L1,°'L2',L2, 'L3",L3

c WRITE (3,%) 'LD',LD, 'TERM1',TERM1, 'COST" ,COST
" 20 CONTINUE
Wt 10  CONTINUE
o c WRITE (3,%#) NTOT, 'GENERATED POINT ‘,(P(I),I=1,NDIM),COST
o 99  RETURN
g END
PE-&
. )
,

Figure A.lc FORTRAN Program for 2(-Ten;perature Simulated Annealing Algorithm
cont).
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CHEHHHHHE T HEHE S HEHEHHHHHS R HHEHHHEH B EHEEBRERHEREHHBRHEHERHT

SUBROUTINE INIT

INTEGER NDIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2

DOUBLE PRECISION TO,TOA,X0(8),X1(8),XMIN(8),
1TEMPG,TEMPA,1,C0,0ELTAC H,CMIN,
1PERACC,IPERAC,21(100,21),22(100,21),0ELTAT

COMMON /COMI/ NDIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2

COMMON /COMR.’ CO,C1,TEMPG, TEMPA,DELTAC ,H,PERACC,IPERAC,TOA,
1X0,X1,XMIN,TQ,CMIN

COMMON /Al/ NMOD

INACC = 0

INTOT = 0

NACC = 0

NTOT = 0

CMIN = CO

TEMPA=TOA

T2=0

RETURN

END

Figure A.1d FORTRAN Program for 2(-Tertr;perature Simulated Annealing Algorithm
cont).

IHHEHHHHHEHEHHHENHHHEHEHHHPHENHHHHBHHEEHUHHHHRHHNHEEHBHHHHDHREHEEE
SUBROUTINE 6T
INTEGER NDIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2
DOUBLE PRECISION TO,TOA,X0(8),X1(8),XMIN(8),
1TEMPG,TEMPA,C1,C0,DELTAC,H,CMIN,
1PERACC,IPERAC,2Z21(100,21),22(100,21),DELTAT
COMMON /COMI/ NDIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2
COMMON /COMR/ C0,C1,TEMPG,TEMPA,DELTAC,H,PERACC,IPERAC,TOA,
1X0,X1 ,XMIN,TO,CMIN
DGUBLE PRECISION U,HOP
REAL WK(3)
DOUBLE PRECISION DSEED/5959/
DO 10 I = 1,NDIM
5 CALL GGCAY(DSEED,1,H,V)
HOP=TEMPGHU
X1(I) = X0(I) + HOP
IF (X1(I).67.2.0.0R.X1(I).LY.-2.0) GO TO S
IF (X1(3).LT.0.0.0R.X1(4%).LT.0.0.0R.X1(7).LT.0.0.0R.X1(8).LT.0.0)
160 TO 5
(o8 WRITE (3,100) HOP,I,X1(I),X0(I),V
C100 FORMAT(1X,'AMT OF HCP',5X,E12.6,5%,'I',2X,I2/1X, 'NEWPT* ,5%,E12.6,
c 15X, ‘OLOPT* ,5X,E12.6,1X, 'CAUCHY RANDOM NO',E12.6)
10 CONTINUE

«¥

L5

RETURN
END

]

30
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IHHHBHHHOHHHRHHHHHBRHHEHHEHHBHHRPEHERHBHHBHRHEH HEOHHEBHBRRHHENHEHRE

SUBROUTINE HT

INTEGER NDIM,ACC,NACC,NTOT,INACC,INTCT,STEPS,TI,T2

DOUBLE PRECISION TO,TOA,X0(8),X1(8),XMIN(8),
1TEMPG,TEMPA,C1,C0,DELTAC,H,CMIN,
1PERACC,IPERAC,211100,21),22(100,21),DELTAT

COMMON /COMI/ NDIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2

COMMON /COMR/ CO,C1,TEMPG-TEMPA,DELTAC,HPERACC,IPERAC,TOA,
1X0 X1, XMIN,TO0 ,CMIN

REAL®8 Y1

DELTAC = C1 - CO

Y1l = DELTAC/TEMPA

IF (Y1.6T. 20.0) THEN

H=0.0
60 TO 99
ENDIF '
IF (¥1.L71.-15.0) THEN
H=1.0
60 TO 99
ENDIF

H = DEXP (-Y1)
C99 NRITE (3,%) "DELTAC',DELTAC, 'TEMPA',TEMPA, 'TEMPG',TEMPG,
c 1'Y1°,Y1, "H* yH, "NTOT ' ,NTOT
99 RETURN
END

Figure A.If FORTRAN Program for 2-Temperature Simulated Annealing Algorithm

(cont).

IHHHHHHHHHHHHHHHHHEHEHHHHHHHEHHHOHUHHHEHHHHHHBHHHHBEHHHOBHHHHHHE HE

SUBROUTINE PICKPT

INTEGER NDIM,ACC,NACC,NTOT,INACE,INTOT,STEPS,TI,T2

DOUBLE PRECISION TO,TOA,X0(8),X1(8),XMIN(8),
1TEMPG,TEMPA,C1,C0,DELTAC,H,CMIN,
1PERACC,IPERAC,Z21(100,21),22(100,21),DELTAT

COMMON /COMI/ NDIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2

COMMON /COMR/ CO0,C1,TEMFG,TEMPA,DELTAC,H,PERACC,IPERAC,TOA»
1X0,X1,XMIN,TO,CMIN

REAL U

DOUBLE PRECISION DSEED/6969/

CALL GGUBSI(DSEED,1,V)

ACC = 0

IF (H.GT.U) ACC = 1

NTOT = NTOT + 1

INTOT = INTOT ¢+ 1

RETURN

END

Figure A.1g FORTRAN Program for %-Tergperature Simulated Annealing Algorithm
cont).
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IHHHHBHEHEHHBHHHEHHHHEHHHHEHHHHEEHHEHEEHEHEHHHHEHEHHHEHHEHEHEHEEE

SUBROUTINE ACCEPT

INTEGER NDIM,ACC,NACC,NTOT ,INACC,INTOT,STEPS,TI,T2

DOUBLE PRECISION TO,TOA,X0(8),X1(8),XMIN(8),
1TEMPG,TEMPA,C1,C0,DELTAC,H,CMIN,
1PERACC,IPERAC,21(100,21),22(100,21),DELTAT

COMMON /COMI/ NDIM,ACC,NACC,NTOT,INACC,INTOT,STEPS,TI,T2

COMMON /COMR/ CO,Cl1,TEMPG,TEMPA,DELTAC,H,PERACC,IPERAC,TOA,
1X0,X1,XMIN,T0,CMIN

COMMON /7Al/ NMOD

DO 15 J = 1,NDIM

15 X0(J) = X1(J)

co =Cl

NACC = NACC + 1

INACC = INACC + 1

IPERAC = REAL(INACC)/REAL(INTOT)

IF(IPERAC.GT.0.5) THEN

T2=2T2+1
TEMPA = TOA/(REAL(T2))
ENDIF
IF (MOD(NACC,NMOD).EQ.0) THEN
NRITE (3,%) 'ACCEPT A POINT'
HWRITE (3,101) INTOT,INACC,IPERAC,NTOT,NACC,
1TEPPG.TEHPA.(XIlNl.NII.NDIH).C1
101 FORMAT (1X,I2,1X,I2,1X,F4.2,1X,17,1X,17,3X,2(E9.3,3X)/

11X,4(€9.3,2X)/1X,4(E9.3,2X),E12.6)

ENDIF

IF (CO.LT.CMIN) THEN
CMIN = CO
DO 17 JJ=1,NDIM

17 XMIN(JJ) = X1(JJ)

ENDIF

INACC = 0

INTOT = 0

RETURN

END

Figure A.lh FORTRAN Program for 2-Temperature Simulated Annealing Algorithm

(cont).
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APPENDIX B
THE PATH INTEGRAL

1. INTUITIVE DESCRIPTION
a. Sum over Paths
We begin by using our previous definition of the path integral, and
interpreting the integral as a specific sum over paths. The path integral is defined as

PX(OIX(tg) = [ "fDXexp(- FAtL)
n=
DX = (2ng,2A0"2 11 (2mg 2A0)1/2 X
n=l

which is a long time conditional probability distribution of a variable X at some time t,
given its intial position at t; . How is this a sum over paths? We will look at the one
dimensional case but the intuitive extension to higher dimensions can be easily made.
To easily see the path integral description we first look at the random walk
problem. Suppose we have had a lot of drinks at Tun Tavern (a famous Marine Corps
establishment of the late 1700°s). Although we do not want to leave, we have an
inspection temmorrow and need to get home. Tun Tavern is located as X;, and home
is X(t). Being a true drunk, we would have a 50-50 chance of stepping out a certain
distance in a time increment At. There will be associated with our walk a probability
of never reaching home (depending on how many drinks we have had!) and thus there
is a probability distribution of getting home by time t. Suppose we did this every
night, then each night we would follow a different path hoime. This is an example of
Brownian mction. The short time conditional distribution, i.e. the probability of being
across the street at (z) at time t + At given you were at Tun Tavern (X) is
P(across the street,t + AtjTun Tavern,0) =

P(z.ty+ Atlx,ty) = (4nDAt)! 2 exp(-(x-z)2 4DAL) (B.1)

where D is the diffusion coefficient or a measure of your drunken state.

The long time distribution (being at home at time t given you started
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at Tun Tavern) can be calculated and is
P(home,t|Tun Tavern,0) = n//anD exp|(-x3/4Dt)/J/1] . (B.2)

Suppose again we are fairly drunk but now we have someone pushing us
according to some rule. Again there is a chance of not making it home, and we want
to look at our probability of making it home. We will assume our short time
conditional distnibution 1s given by

P(X(ty+ AtX(ty) = (2mAtg?)V/2 exp(-LAY) (B.3)

where L is the rile used by this person. We again have paths over which we travel
going from Tun Tavern to home There are certain probabilitfes associated with each
path and we wi'l sum over all the probabilities of the paths to determine our chance of
making it home. In the limit as our step size becomes continuous and At=> 0, we will
need to integrate over all positions and over all paths and find that our chance of
making it home 1s

P(X(t)[X(tg)=§ " "{DX exp (-fLdt) (B.4)

which is our path integral.
b. What does the Path Integral say?

We can now easily see what the path integral gives us. If a particle (or drunk)
follows a path which is determined by the Lagrangian, we sum over all possible paths
(which have been weighted by the Lagrangian) and arrive at a probability distribution
of the particle’s position at some later time.

The Lagraagian from classical mechanics is T-V where T is the kinetic enerzy
and V is the potertial. In classical (deterministic) systems there is no path integral
since there is only one path which is followed with certainty. This is the so-called

classical trajectory. In classical statistical mechanics the Lagrangian is given by

L = (X-n%2y? (B.5)




2. MATHEMATICAL DESCRIPTION
a. Quantum Mechanics
The utility of the path integral is in its ability to arrive at classical mechanics
as a special case of quantum mechanics in which Planck’s constant ff < < 1 represents

the noise of the system. In quantum mechanics the path integral is defined as

K={"f exp(iSH)DX (B.6)
S= jzb Ldt (B.7)

where S 1s the ciassicai action.

In contrast to the statistical mechanical classical sum over probability paths,
in quantum mechanics we compute the sum over the probability amplitudes of the
paths. There are no paths that are followed with certain probabilities.

For more information on path integrals in quantum mechanics see Feynman
and Hibbs [Ref. 44].

b. Statistical Mechanics

Statistical mechanics is a branch of physics which attempts to describe the
relationship between the microscopic properties and the macroscopic behavior. It is
tt-us characterized by the investigation of large scale, physical, chemical, and biological
systems and the search for underlying similarities. A subfield of statistical mechanics is
concerned with modeling noniinear systems using the Fokker-Planck equation. This
equation is the reduced master equation of nonlinear systems and seems to be
fundamental to many physical systems. Thus its solution would greatly enhance the
understanding of such systems, including combat systems.

It is in this context that we have developed the path integral specifically as an
application of statistical mechanics. For other applications of the path integral in
statistical mechanics and applications in general see Schulman [Ref. 6] and Wiegel
{Ref. 45].
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APPENDIX C
SINULATIONS/WAR GAMES DESCRIPTION

1. JANUS

JANLS is a computer simulation of combat developed by Lawrence Livermore
National Labratory. It is an event-drivea, stochastic simulation written in FORTRAN
and work is underway of an ADA version. It models individual weapons, such as
tanks, vehicles, helicopters, fixed wing aircraft and personnel as distinguishable entities.
JANUS currently rans ¢n Digital Equipment Corporation (DEC) mini-computers and
has Tektronix 4125 color graphics werkstations {Ref. 46,47]. JANLUS is run from one
or more workstations composed of a high resolution graphics terminal, 1 or 2 graphics
input tablets with mice, and a DEC VT-100 terminal to communicate with the
operating system.

JANLUS can be run either in an interactive gaming mode or in batch mode. The
graphics terminals display the terrain, location of all combat systems under control of

that workstation and any enemy units which have been acquired by those combat

farires
e

svstems. In the interactive gaming mode, a plaver first plans his operation by placing

i

his forces where he wants them to start and can give subsequent movement orders.
Once the game begins, the player interacts by giving orders to his forces by using the
mouse and the menu on the graphics terminal.

In the batch mode, a particular scenario is chosen including an initial plan and
the computer simwulates the combat with no plaver interaction. Results can then be
captured via appropriate commands given at the beginning of the run.

JANUS has a tremendous amount of flexibility in designing any partiucular
scenario. User has complete control over graphics symbols, weapon system
parameters, weapon platform parameters, terrain and weather parameters.

Currently JANUS 1s not an optimum simulation to study C? in batch mode
because of relatively unsophisticated rules for decision-making, e. g., for a line of tanks
to go around a lead tank stuck in a ditch.

Currently JANUS 3.2 i1s installed at TRAC (TRADOC Analysis Center)
Monterey at their Conflict Simulation Lab (TCSL). They have 4 workstations located

11 2 adjacent rooms to simulate the Blue and Red forces.
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2. TWSEAS

The Tactical Warfare Simulation Evaluation, and Analysis System (TWSEAS) is
used primarily by the Marine Corps as an instructional tool at the Command and Staff
College, Quantico, Virginia [Ref. 48]. The computer simulation is designed mainly as
an aid to assist in the war gaming by providing casualty, intelligence, movement and
supply reports. It also calculates positions of all forces both enemy and friendly.
Controllers act as mediator between the computer and the players by inputing tactical
commands from the players and then reporting to the players results of their
commands. This can be done over real or simulated communications nets.

The simulation is stochastic and all results are printed on high speed or PC dot
matrix printers. This limits the capability of this simulution as an analysis tool.
Current work is underway to correct this situation and provide an analytic as well as
training tool.

3. SOTACA

The State of the Art Contigency Analysis (SOTACA) is a high resolution
graphics device combined with powerful decision rule software to provide the
commander a tool to select contigency alternatives. The software is written in
FORTRAN and the hardware used is a DEC VAX. It is determunistic and uses as a
selection process a series of dccision rules which are entered by the user. The primary
raeans of unit movement are through arcs which are placed by the user. The program
then selects an optimal routing based on the decision rules and the characteristics of
the arcs. Although very useful as a plunning aid, it was not suitable as a source of
data because of its non-stochastic nature [Ref. 49].

SOTACA was developed for use by the Pcntagon and the CINC's (Commander
in Chief's, Atlantic and Pacific Forces).

4. BGTT

BGTT is the Battle Group Tactical Trainer and is primarily used as a computer

simulation of the naval warfare environments. Its configuration consists of one control
and three player stations. At NPS, the stations are subdivided physically in the C? Lab
by partitions. BGTT runs on a VAX-11,780 with RAMTEK Graphics Display
Stations and has a high speed printer for paper output of game results. BGTT 1s used
primarily as a staff trainer and as an analysis tool for students at \NPS [Ref. 50].
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S.  OTHERS
a. CARMONETTE
CARMONETTE is a high resolution computer simulation of combat using
small unit combined forces. It is an event driven stochastic simultion which provides
for intermediate and terminal results, and is used for feasibility studies of alternative
weapon systems and tactics over varying scenarios [Ref. 51].
b. FOURCE
FOURCE is a deterministic simulation of division level force-on-force combat.
It is used primarily as a measure of command and control effectiveness in combat
[Ref. 51].
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APPENDIX D
APL SIMULATION PROGRAMS

This appendix contains the APL programs LANGEVIN and LANCHESTER.
They were used to generate data from the Langevin equation and a GSL as described
below and in the text.

1.  PROGRAM LANGEVIN
The program LANGEVIN (shown in Figure D.1) generated data from the
Langevin equation

X = -1X + g | (D.1)

where n ~ N(0,1) and g=1 (constant variance). The user inputs two vectors, INIT
and P which are described in the program. The output consists of a matrix where a
row corresponds to one simulated trajectory of the Langevin equation. The columns
are the value of the variable (X in this case) at each time increment (t+ jAt) where
j=1,.. ., T.This data was then used by the simulated annealing algorithm described in
Appendix A to perform the maximum likelihood fit.

2.  PROGRAM LANCHESTER

The APL program LANCHESTER (shown in Figure D.2) was used to generated
data for the 20P example described in chapter 6. Data was generated from the
following equation:

X =a;Y+a,,XY+ a0 + a,¥n,

<o

= 2y X+2, XY+ 2,5Xn + a,,M,

The user inputs, as befcre, two vectors, INPUT and P, where the vector INPUT
contains the initial values of X and Y, time increment At, number of experiments, and
number of time increments to use. Qutput is in the form of 3 matrices, HISTX,
HISTY, and EXP. The rows of HISTX and HISTY are the trajectories of the X and Y
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V HIST<N LANGEVIN INIT

ATHIS FUNCTION WILL PRODUCE A SET CF NUMBERS
ACORRESPONDING TO A SIMULATION OF LANGE’VI N EQUATION
AWITH ONE NOISE TERM DISTRIBUTED N
AT IS THE AMOUNT OF TINE THE SINULA IdN IS RUN
ARDELTAT IS THE TIME INCREMENT DESIRED
AGCOEF IS THE COEFFICIENTS OF THE FUNCTION WEICH
RMULTIPLIES THE NOISE
AHCOEF IS THE COEFFICIENTS OF THE DETERMINISTIC FUNCTICN
ARETA IS THE GENERATED RANDOM VARIABLES

T«INIT(1)

DELTAT+«INIT[2]

GCOEF*INIT 3 l+ 5]

7]
IST %2p(s+1+ +DELTAT )p0
HISTE'TA* S-1),1)pHIST

Je
START X« ,INIT(8]

A
LOOP: H+HCOEF+ xPOLYX«X[I],XLI1*2
G+GCOEF+,x1 POLYX

ETA«1 NORRAND 0

XX X[I]+DELTATXH+GXETA
ETAV+ETAV ETA

TeI+1
}IST*DELTAT /LOOP
HIST<HIS
ISTETA+HTSTETA (2] ETAV

}J SN )/ START
HIST+«8 0 1 vHIST
HISTETA<X® 0 1 +HISTE'TA

DWWANNNNNNNNN R R D b ol b 1O 0NN E W N
NROWONOMEWNROWONOUIEWN E ORI AL A

Figure D.1 LANGEVIN Program.

order parameters, respectively. The columns correspond to the values of the variables
at the time, t+jAt, where j=1,. .., T where T=NEXP X DELTAT. The matrix EXP is
a concatenation of the HISTX and HISTY matrices and was used as input for the
stimulated annealing program of Appendix A.
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T

EFEEFEEFOWWWWWWWWWNINNNRNNNNNRN R A R S R R R OO N U E WD
FWNROWENOUIEWNROWONONEWNFROWONOMTE WN R OIS

VINIT LANCHESTERP3;INIT:P

ATHIS FUNCTION WILL PRODUCE A SET OF NUMBERS
ACORRESPONDING TO A SIMULATION OF A SET OF LANGE'VI N
AEQUATIONS WITH TWO NOISE TERMS DISTRIBUTED N(O
ANUMRUN IS THE AMOUNT OF TIME THE SIMULATI ONIS RbN
ADELTAT IS THE TIME INCREMENT DESIRE
AGCOEF1 IS THE COEFFICIENTS OF THE FUNC.’Z'I ON WHICH
AMULTIPLIES THE NOISE OF THE X VARIABLE
AHCOEF1 IS THE COEFFICIENTS OF THE DETERMINISTIC
AFUNCTION FOR X

AETA1 IS THE GENERATED RANDOM VARIABLES FOR X VARIABLE
ASIMILAR VARIABLES EXIST FOR Y WITH A NUMBER 2 SUFFIX

HISTX<«HISTY+10

NUMRUN<INIT 11

DELTAT*INIT 2

NEXP*{

EXP+( 2xNEXP) ,NUMRUN+1)p0

HCOEF1+P[1u4]
GCOEF1+P u+1u1
HCOEF2+P(8+14
GCOEF2+P[12+14]
Vi«GCOEF1>0
V2*GCOEF2>0

J*1
BEGIN: X«-ltoINITESJ

LOOP POLY+1 “[I] YCI1,XCI1xY(I]
ETA«2 NORRABD 0

H1+HCOEF1+. xpotr
H2+HCOEF2+.xPOLY
G1+V1/GCOEF1xPOLY
G2+V2/GCOEF2xPOLY

X+X, XEI +DELTATxH1+G1+.xETA
Y+Y Y LTY+DELTATxH2+C2+. xQETA

T«I41
> (ISNUMRUN )/LOOP
HISTX+HISTX ,X
HISTY*HISTY Y
EXP(J;]+X

EXP J+...]+"

JeJ+2

+(J<2xNEXP)/BEGIN
HISTX*&NE’X NUMRUN+1; pHISTX
HISTY+(NEXP ,NUMRUN+1)pHISTY

Figure D.2  LANCHESTER Program.
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