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C1 IAPTER 1

INTRODUCTION

The subject matter of this thesis is an investigation of the

underwater acoustic transmitting characteristics of a magnetohydrodynamic

(MHD) transducer. The transduction mechanism of the MHD transducer is

the Lorentz force generated on a conducting fluid conveying electrical

charge in the presence of a magnetic field. The transducer cznsists of a

sodium chloride-water solution (electrolyte) contained in a rig~d wall

rectangular waveguide, 10 cm long and 3.8 cm x 3.2 cm cross section, with

acoustic apertures at either end. The waveguide is located between the

poles of two large permanent magnets (see Fig 1.1).

A time harmonic electric current density, Je-i(t, is applied to the

electrolyte through electrodes on two facing walls which are parallel to the

magnetic field, B. The current density, which is orthogonal to the magnetic

field and the waveguide axis, produces a force on the fluid, f=JXBe+Jt, in the

longitudinal (axis) direction of the waveguide. Assuming the J and B fields to

be uniform, the time harmomic force generates a plane wave acoustic

pressure field within the waveguide which radiates into the free medium via

the apertures.

The electromechanical analogy of this transducer is the moving

coil transducer where the fluid of the MHD transducer i,,; likened to the coil of

the armature. But, unlike the moving coil device which radiates sound by the

motion of a surfac,, the MHD transducer has no radiating surface. The

acoustic wave is a result of the direct application of the electromagnetic



PERMANENT
NMAGNET

A P RADIATED SOUND

SOUSRGA

FIGUR 11

II

DIPOLE RADIATION PATTERN MHD TRANSDUCER

ARL:UT
AS.86-518
SCS.- GA
9-10o-86



energy to the medium (more appropriately, the radiating region of the

transducer is termed the MHD source volume).

A. PAST RESEARCH IN THE AREA OF MHD TRANSDUCTION

The first attempts to use the MHD mechanism in fluids for

transmitting or receiving acoustic signals are not readily identifiable. Various

steady fluid flow rate measuring devices and electromagnetic pumps have

been in existence since at least 1945.1 Acoustic transmitting investigations,

in the context that they will be discussed in this thesis, were first carried out

by Campanella 2 in 1955, and later by Ajisaka and Hixson 3,4 in 1975.

The investigations of Campanella and Ajisaka and Hixson

primarily addressed both theoretically and experimentally the generation of

plane wave signals by the MHD source radiating in a rigid walled

waveguide of semi-infinite length with rigid and pressure release boundaries1 at the origin. The MHD source region extented from the boundary to a finite
distance. ,%Iso the infinite length waveguide was investigated by both

investigators.

Ajisaka and Hixson 3 also considered the finite length waveguide

radiating from both apertures into unbounded half spaces. They treated the

apertures of the waveguide as pistons on an infinite baffle and derived a

pressure transmitting sensitivity expression which is flat over a very broad

frequency band. However the sensitivity expression which was derived was

for the aperture pressure and not the pressure at the standard 1 m distance.

3



B. PRESENT WORK

This thesis is a continuation of the work begun by Ajisaka and

Hixson, by suggestion of Dr. Elmer Hixson, with the intent to investigate in a

more precise manner the radiating characteristics of the MHD source in an

infinite free space. Since Ajisaka and Hixson did not experimentally

investigate the free medium transmitting characteristics of the MHD source,

this was to be a primary task of this investigation.

Chapter 2 of this study is the rigorous derivation of the

inhomogeneous pressure wave equation governing the application of the

MHD force to a fluid medium. It was realized from considerations of the first

law of thermodynamics that when electrical current is passed through a

medium of finite conductivity heat is generated. The generation of heat in the

medium results in the thermal expansion of the fluid, which creates an

additional source of sound. This thermal source mechanism is accounted for

in the derivation of the inhomogeneous wave equation. The two source

terms of the wave equation are recognized mathematically as being

monopole and dipole source distributions, corresponding respectively to the

thermal and MHD source mechanisms. The thermal source is shown to be a

quadratically nonlinear source in the frequency domain; the spectral nature

is discussed in Chapters 2 and 4.

The solution of the wave equation for the acoustic wavefield due

to the MHD and thermal sources in the waveguide cannot be found by the

4



usual convolution of the free space Green's function with the source

distribution due to the presence of the waveguide boundaries and magnets.

Thus finding the appropriate Green's function for this complicated geometry

was not attempted.

In Chapter 3 solutions for the acoustic fields of both source

mechanisms are found by separating the acoustic fields into two regions:

inside the waveguide and the exterior free medium fields. A plane wave

clution for the acoustic field is proposed for the waveguide region assuming

impedance boundary conditions at the apertures. To find the exterior

acoustic field the waveguide and magnet assembly were assumed to

comprise a rigid spherical surface with two radiating apertures. The

spherical surface allows for the exterior pressure field to be solved

analytically in terms of a Hankel function expansion of a spherical wavefield

given the velocity distribution of the apertures. Using the Hankel function

expansion of the exterior wavefield, self- and mutual impedance relations

were found for the apertures, thus allowing the solution of the interior and

therefore the exterior acoustic fields. Geometrical and wave number

limitations are placed on the domain of the solutions due to the matching of a

plane wavefield within the waveguide to the spherical field on the exterior.

In Chapter 4 derivations of the transmitting electrical impedance,

efficiency, and sensitivity expressions are provided. The electrochemistry

and the electrical impedance nature of an electrolyte in the vicinity of an

electrode surface are discussed, and an equivalent circuit representation of

the these processes is presented. Included in an appendix is a computer

5



program which computes the wavefields and transducer characteristics

discussed above.

Chapter 5 discusses the design of the transducer used in the

experiment and the measurement procedures, and compares the theoretical

predictions to bxperimental data. As will be shown, the analysis is in good

agreement with experimental measurements up to frequencies at which

differences in assumed and actual transducer geometries become important.

Chapter 6 presents a summary of the research and conclusions

which may be drawn.

6
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CHAPTER 2

THEORY: THE MAGNETOHYDRODYNAMIC-THERMOACOUSTIC

WAVE EQUATION

In this chapter the small signal, inhomogeneous pressure wave

equation governing thE acoustic wavefield within a magnetohydrodynamic

source volume is derived. The MHD acoustic field is found to have two

source mechanisms: (1) the primary machanism, the magnetohydrodynamic

force and (2) a thermal expansion mechanism due to joule heating of the

medium by the electric current. The second source is known as a

thermoacoustic source.

A. OHM'S LAW FOR AN ELECTROLYTE

In the derivation of the continuity, momentum, and wave

equations to be presented in this chapter it is assumed that Ohm's law is

valid for the conduction of electrical charge in the electrolyte solution of the

MHD transducer. The generalized Ohm's law is stated below under the

additional assumption that the ohmic conductivity a is a constant (not

dependent on frequency or space).

J = a(E + u X B) + eeoEt (2.1)

J, E, B, and u in Eq. (2.1) are defined as the current density vector field

(A/m2), the electric vector field (V/m), magnetic induction vector field, and the

electrolyte fluid particle velocity field. e and eo are, respectivily, the relative

and free space permitivities.

* In this thesis it is justifiable to neglect the effects of the induced

current (Yu x B) term and displacement current (eeoE) term in Eq. (2.1). The

7



grounds on which these approximations are valid are as follows.

(1) The displacement current term can be rewritten in the form

-jcoeeoE for a time harmonic signal eijt. The maximum frequency of interest

in (his investigation is approximately 15000 Hz, and the relative dielectric

permitivity of water is 88. Therefore the coefficient of the displacement

current, coeeo, could be as great as 7.34 X 10-5 1/ohm m. The measured

value of the ohmic conductivity of a 6% NaCI solution is 5.28 1/ohm m.

Therefore, on the I'asis of the dielectic conductivity being very small relative

to the ohmic conductivity, the displacement term is justifiably neglected.

(2) The small signal acoustic approximation will be made in the

next section in the derivation of the acoustic wave equation. This implies that

the particle velocity u must be much less in magnitude than the adiabatic

sound speed co. For the 6% sodium chloride solution investigated in the

experiment the value of co is 1550 m/s. The amplitude of the induction field B

considered is of the order of 1 tesla. If the maximum particle velocity is 150

m/s, then the induced current density, ouXB, will be 792 A/m2. The typical

current density used in the experiment is 15000 A/m2 , so the projected

maximum induced current density is only 5% of the typical applied current

density. Therefore induced current is justifiably neglected, but as a practical

matter th.z particle velocities generated in the experiment were of the order

10 4 m/s so the approximation is very good.

With the above approximations applied to Eq. (2.1), Ohm's law is

restated as

J = E . (2.2)

8



S More will be said concerning the electrolyte conductivity in Chapter 4 in

connection with the input impedance of the transducer.

B. DERIVATION OF THE CONTINUITY EQUATION

Temperature rises associated with a time varying electrical

current flowing in a resistive fluid produce a monopole acoustic source

distribution due to thermal volume expansions of the fluid. The

hydrodynamic equations for what is termed in this thesis an ohmic

thermoacoustic source have not been derived explicitly in any of the popular

literature on acoustics. Didenkulov5 treats the problem of current flowing in a

cylindrical volume in a fluid but does not state the inhomogenous wave
Sequation and essentially treats the acoustic source volume as a radiating

cylindrical surface. Morse and Ingard 6 treat the subject of a generic heat

source but do not address the case of ohmic heating. Westervelt and

Larson 7 discuss optoacoustic laser generated sound in a fluid, which is an

electromagnetic heating process at optical frequencies. The derivation to

follow accounts for the ohmic thermoacoustic heat source through the

continuity equation as an added mass term.

Assuming a constant pressure process, a change in density

results from added energy when a fluid ib heated. This change in density,

Ap, can be related to a small temperature rise AT of the medium by the

coefficient of thermal expansion f,

Ap"= 3p AT. (2.3)

Here p is the total fluid mass density.

9



The derivation of the continuity equation follows from the

following statement.

Time rate of Rate of mass Rate of mass Time rate of change
change of mass = flow into the - flow out of + of mass production
in the control control volume the control within the control volume
volume

The incremental mass flow rate into a control volume V across its

surface S is -pu - dS, the minus sign resulting frm the unit normal vector to
the surface S pointing away from the control volume (see Fig. 2.1). Net mass

flow into and out of the controi volume is expressed as the integral of the

"A incremer,'tal mass flow rate over the entire closed surface of the control

vo lurr mý".

Net mass flow rate into control volume = - F • dS.

S
The time rate of change of mass in the control volume due to heating is

defined as (see Fig. 2.1)

- Apdv = pATdv. (2.4)

V V

Thus the continuity equation takes the following form:

p dv f pu'dS + pt pATdv. (2.5)

V S V

Equation (2.5) is valid so long as 13 is independent of time and temperature.

These assumptions imply small temperature changes. (In general P is a

10
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k4

thermodynamic variable which is dependent on temperature and pressure.)

The temperature chanop can now be related to the Ohmic

heating mechanism by the first law of thermodynamics. If the assumption is

made that the heat energy added to the fluid is an isentiopic process and

occurs at constant pressure then the temperature rise in the fluid can be

related to the electromagnetic field energy input by the coefficient of specific

heat Cp (joules/(kg K)). On a per unit volume basis the relation is

Energy Inputemf = p Cp(T) dT. (2.6)

TO

For small changes in temperature, ATrT0 << 1, Cp is approximately constant

so Eq. (2.6) can be written as

Energy Inputemf = p Cp(To) (Tf - TO) = p Cp(To) AT. (2.7)

I
From Jackson8 the rate of conversion of elec.tromagnetic energy

(power) per unit volume into thermal power is given as

Power Inputemf = J'E. (2.8)

Substituting for E using Ohm's law, Eq. (2.2), in Eq. (2.8), then taking the

time derivative of Eq. (2.7) and equating the result with Eq. (2.8) the

relationship between the time rate of chanye of density and temperature and

current density is

J.J
(pAT)t = - (2.9)

a Cp

12
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Substituting Eq. (2.9) into Eq. (2.5) results in the integral form of

the o' nic heating continuity equation,

J p dv pu'dS + -, JJ.J dv. (2.10)
•tV S VC

The surface integral of Eq. (2.10) can be converted to a volume

integral by use of Gauss's divergence theorem. This results in the differential

form of the tharmoacoustic continuity equation,

*0' Pt + V. (P u) -C J'J". (2.11)

Note that J'J in all the preceding equations is a notational form for the real

component of the electrical power delivered to the medium since it is the real

pcwer which heats the medium and produces thermoacoustic radiation. J.J

is meant to imply the following operation on J, assuming a time harmonic

dependence of e-iOt.

J(x,t) = Re[ J(x) e-i"] = (1/2) (J(x) e-Jit + J(x)* elt] (2.12)

Then,

J(x,t).J(x,t) = (1/4)[J(x) eill- + J(x) * eid].[ J(x) e-li0t + J(x) * eOlt) (2.13)

or,

J(x,t)'J(x,t) = (1/2) Re[J(x)*.J(x) + J(x)'J(x) e-i2 t]. !2.14)

Equation (2.14) implies that the power dissipated in the medium

has a tir e independent component plus an oscillating component. This

ccr;esponds to the average power plus the time harmonic fluctuation. For a

13



:eal valued source volume function (J(x) real) Eq. (2.14) reduces to

J(x,t).J(x,t) = (1/2) j 2(x) Re[ 1 + ej2wt] . (2.15)

For the Cartesian system,

j 2(x) = Jx2(X) + jy2(X) + Jz2(X) (2.16)

The physical implication of the constant term in Eq. (2.15) is that

the power flow into the medium is always positive. Since the power input is

related to Pt by the continuity equation, Eq. (2.11), the waves produced by

ohmic heating will be compressional. Intuitively this is a reasonable result

since the derivation assumed an isentropic process, which implies that the

heat added to the medium is not dissipated but raises the temperature of the

medium, and therefore causes a continuous thermal expansion of the

medium.

Inteyrating Eq. (2.9) over a pulse time period, 'c, the constraint on

energy transport into the fluid such that the small temperature rise

assumption is valid is

1C

AT 1
f J 'T J dt << 1 (2.17)To a p Cp TO0
0

The temperature change constrair,t of Eq. (2.17) can be evaluated using

Eq. (2.15) if the change in density is assumed small. For an intJger number

of current cycles the constraint relation for th'ý current density pulse length

time, t, becomes

14



Jo2 T << 2 oCp TO p. . (2.18)

The units of J0
2 ,c are joules/meter3 whicn is the volumetric internal energy

density change of the electrolyte by the applied current density Jo applied by

a sinusoidal signal for a period t. The right side of Eq. (2.18) is computed to

be, for a S°/, NaCI-water solution at 200C, 2.5 X 106 joules/meter 3 or 2.5

joules/cm 3 . During experimental investigation, described in Chapter 5, the

pulse time was 5 ms; therefore the constraint on the current density was J.

<< 1.62 X 106 A/m 2 ; the experimental value was 15000 A/m 2 .

C. DERIVATION OF THE MOMENTUM EQUATION

The momentum conservation lal'. is basically a statement of

Newton's second law:

time rate of change of net momentum influx sum of the forces
momentum inside the =, across the control + acting on the
)ntrol volume volume surfaces control volume

The integral form of the three-dimensional magnetohydrodynamic

momentum equation follows directly from the verbal statement (see Fig. 2.2).

t- p u dv (pu) u' dS - P ds + JXB dv. (2.19)

V S S V

Gauss's divergence theorem is once again applied to the surface integral

and the differential form of Eq. (2.19) follows, 10

ptu + put + V. (pu)u + (pu.V)u + VP = JXB . (2.20)

The underlined terms of Eq. (2.20) are replaced using the continuity

equation, Eq. (2.11). The result is the magnetohydrodynamic-thermoacoustic

15
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momentum equation,

put + (pu-V)u + VP - (J'J) u + JXB. (2.21)
a p

Morse and Ingard" discuss the existence of electromagnetic

forces on a fluid but do not derive an explicit expression for the Lorentz force

in connection with the momentum equation.

D. SMALL SIGNAL ACOUSTIC APPROXIMATION

The small signal acoustic approximation (Mach number << 1) is

made in the wave equation and boundary condition derivations. The small

signal acoustic perturbation variables of first order magnitude are the

perturbed pressure and density,

and p = P- PO, (2.22a)

8p = p - P0 , (2.22b)

where P0 and p0 are the quiescent pressure and density respectively. The

small signal approximation constrains the perturbation variables to the

following limits, 7

IPN << poco2 , (2.23a)
and, 0

18PI << P0 . (2.23b)

The equation of state is given as

CO2 •p z= constant, P= P0, p = Po(23cI,~P (2.23c)

where co is the isentropic sound speed, defined as a constant for the fluid at

17



constant entropy, c, and for small perturbations in total pressure P and total

:4/ fluid density p about the ambient values.

The linearized small signal equation of state can be stated in

terms of the perturbation variables as

p = C.28p. (2.24)

Linearized small signal versions of Eqs. (2.12) and (2.20) are, respectively,

8 pt + poV" u - (J'J) (2.25)

and

Pout + Vp = JXB. (2.26)

Performing the usual mathematical operations on Eqs. (2.24), (2.25), and

(2.26) the MHD-thermoacoustic wave equation results,

1 -13
V2p - - P (J-J)t + V" (JXB), (2.27)

C02 O" Cp

where the inhomogeneous source terms are the thermoacoustic source and

the MHD source, respectively, Pierce identifies the first source term as a

monopole source distribution function and the second source term as a

dipole source distribution function where JXB is the dipole moment

vector.12

The simplest control volume to view the qualitative nature of the

two sources is that of a sphere, such as shown in Fig. 2.3. Thermal

expansion of the control volume due to a uniform current density flowing

across the volume will generate a uniform spherical wave. The MHD force

18
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causes a translational oscillation of the control volume in the direction of the

dipole moment, creating a dipole wavefield.

E. ONE-DIMENSIONAL WAVE EQUATION

In the one-dimensional development for the Cartesian system the

vector field J x B is in the x axis direction. The bold face notation is thus

suppressed below and the cross-product implies J B sine, where G is the

angle between the vector fields in the y-z plane.

1-1
Pxx - p -P (J*J)t + (J X B)x. (2.28)C2 C~p

The one-dimensional wave equation is the basis for the plane

wave field assumed in the MHD transducer waveguide. Chapter 3 is

devoted to the derivation of the boundary conditions and solution of the

waveguide field.

F. DISPERSION OF THE ACOUSTIC FIELD DUE TO THE INDUCED
CURRENT DENSITY IN A HIGH CONDUCTIVITY FLUID

In the above derivation of the wave equation, induced currents

were ignored. When one considers a high conductivity fluid, such as

mercury, which has a conductivity on the order of 106 '/ohm m such an

assumption must be carefully examined. As in the NaCI-water case, the

displacement term can be neglected, and Ohm's law can be written as

J=a(E+uXB) . (2.29)

However, the induced current density term cannot be eliminated. If again we

assume that the current density, J, is 15000 A/m2 and the particle velocity is

2 20



150 m/s, E is then found to be 150.5 V/m for the me.-ury medium. The

induced electric field, uXB, is 150 V/rn for a magnetic field of 1 T. Therefore

the induced term should not in general be neglected in the derivation of the

acoustic wave equation.

When Eq. (2.29) is substituted into the inhomogeneous terms of

the wave equation, Eq. (2.27), a frequency dependent dispersion

relationship arises which depends on the magnetic field and fluid

corductivity. The dispersion relation is derived in Appendix A.1 for plane

waves propagating in a conducting medium in a direction normal to an

applied static magnetic field. The dispersion relation is stated below.

rr"0 2  joaB 02) 1/2

k 10 po C02  (

Physically the effect of the magnetic field is to dampen or attenuate the wave

by converting the kinetic energy of the wave to electrical energy which is

then dissipated by the resistivity of the medium. From Eq. (2.30) it can be

seen that the dispersion effects of the magnetic field can be neglected when

aB2

- << 1 (2.31)
o)PO

Consider the 6% NaCI-water solution used in the experiment,

assuming a conductivity of 5.28 mho/m and a magnetic field of 1 T. The

dispersion is negligible for frequencies much greater than 0.0007 Hz.

Neglecting dispersion in NaCI-water solutions is thus justifiable. However,

for mercury which has a conductivity of -106 mho/m, the frequency must be

21



much greater than 74 Hz before dispersion may be neglected.

The significance of the dispersion relation arises in the derivation

of the transducer impedance (Chapter 4), in that it indicates whether the

induced electric field, and thus the acoustic coupling contribution to the

impedance, will be important.

2

'1

*22



CHAPTER 3

THEORY: SOLUTION OF THE WAVE EQUATION FOR THE ACOUSTIC

FIELD WITHIN THE WAVEGUIDE

The solution of Eq. (2.28) for the pressure wavefield excited in the

waveguide by the magnetohydrodynamic and thermoacoustic sources is

found by solving the two point boundary value problem for this equation and

the related boundary conditions at the apertures.

The inhomogeneous terms are assumed to have a time

harmonic dependence of the form

(J X B)x = (J(x) X B)x e-iwt (3.1)

and

-P3 (JJ)t j Co p3 j2(x) -~~
(- J e- 2ct . (3.2)

op p%

Notice that the thermoacoustic source responds at twice the drik

frequency, o, and is therefore twice the MHD source frequency.

Due to the linearity of the wave equation, Eq. (2.33), the solution

of the wavefield can be found by considering the two source mechanisms

independently. The acoustic fields due to the sources can then be added to

find the total field.

A. BOUNDARY CONDITIONS OF THE TRANSDUCER WAVEGUIDE
The boundary conditions of the waveguide are a core problem of

this thesis. By specifying the boundary conditions, the form of the field

23



solution is specified and thus the transduction nature of the waveguide
system is determined. Hence it is essential that the boundary conditions of

the waveguide be accurately stated.

The apertures of the waveguide are assumed to be radiating into

an acoustic free medium. Since the power transmitted by the apertures

radiates into the entire medium it is evident that some of the power radiated

by one aperture will illuminate the other. Thus there is coupling of acoustic

power between the waveguide apertures. The specif:cation of the boundary

- conditions must therefore take the radiation coupling into account. The

"aperture acoustic radiation coupling is described by the mutual acoustic

radiation impedance.

The acoustic pressure in the waveguide at an aperture is

assumed to be related to the aperture particle velocities by attributing a self-

and mutual radiation impedance to the aperture. In order to describe the

aperture as an impedance boundary the aperture is modeled acoustically

as a fluid "piston layer", to which an acoustic radiation impedance can be

attributed. The piston layer is assumed to transmit only the acoustic particle

velocity.

of Two pressures are present on the free medium radiating surface

of the piston. one pressure is due to the impedance Zs of the free medium as

seen by the piston (i.e., the inertia and radiation properties of the "piston")

and the second is the pressure represented by the mutual radiation. See

Fig. 3.1 for a qualitative view of the aperture piston layer forces.

24
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Given the mode; described above the boundaiy conditions can

be symbolically stated as follows.

and p(.) =u(9.) ZS - u(- ) Z (3.3a)

p(-.Q9) =-u(- .k) Zs + u(.k.) Zm, (3.3b)

where the self-impedance, Zs, is defined as the ratio of the free medium

piston surface pressure P±Qfm to the aperture particle velocity u(±_) in the

absence of the radiation at the second aperture. The mutual radiation

impedance, Zm, between apertures is defined as the ratio of the pressure

caused at orie aperture due to the particle velocity at the other aperture. The

minus signs appearing with u(-9Q) arise from the convention of defining a

positive velocity as being outwardly directed from the surface of the sphere.

Relative to the origin in the center of the duct a positive velocity at the - k. end

is negative (see Fig. 3.2).

An analytical solution for the free medium pressure field as a

function of aperture velocity is possible if the apertures are represented as

uniformly vibrating circular pistons on a rigid spherical baffle as shown in

Fig. 3.1. Note that if the apertures are not circular an equivalent area circular

piston may be defined and the circular piston analysis used provided the

wavelength is not small relative to the equivalent circle radius, or when the

product of the free medium wave iurnber and the aperture radius is much

less than one (kRa<<l).

There is an analytical solution for free medium acoustic field

generated by circular pistons on a rigid spherical baffle in terms of the

",i *1-'6
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spherical harmonic function expansion. Sherman' 3,14 has derived analytical

results for the self- and mutual radiation impedances of an arbitrary number

of circular sources with arbitrary locations on a spherical baffle using the

spherical harmonic function expansion. His results are specialized here to

the case of two sources (apertures) located 1800 apart.

Two items should be mentioned at this point concerning the use

of the spherical harmonic expansion as a boundary condition. (1) the

expansion is in terms of spherical waves, ejkr/r, and the conditions at the

aperture are in terms of plane waves, ejkx. The assumption concerning the

matching of the fields is that the radius of curvature of the surface of the

aperture (radius of the spherical baffle, Rs) is great compared to the radius of

the aperture, i.e., that the aperture piston layer surface motion is

approximately planar, and not radial. (2) The pressure at an aperture due to

the mutual radiation is calculated as an average pressure of the spherical

waves over the aperture surface area. The implication of (1) and (2) is that

the model is valid for Ra/Rs<<l and kRa<<l.

The self-impedance, Z., and the mutual impedance, Zm' which

are in terms of the spherical harmonic function expansion of the free medium

pressure field, P±Qfm , are defined as

f P±•tm (r,W) dS

S(+.)
Zs = k (3.4a)

u (±k)J dS

28



Jf P+kfjm (r,itf) dS
SS( 9.0.)

Zm (+9..) = (3.4b)

u +k) J dS

S(±.q)
with similar definitions for the aperture at-...

The free medium pressure p.fm(rw) is a function of u(9..), u(-Q),

spherical baffle radius Rs, aperture radius Ra' and the free medium acoustic

impedance. Due to the symmetry of the sources the pressure is spatially a

function of one angle, V, and the range, r. The source geometry is shown in

Fig. 3.2. See Appendix B for the functional form of Pjfm"

B. JUSTIFICATIONS OF THE BOUNDARY CONDITIONS

Before going on to the solution of the wavefield it is necessary to

show that the mutual radiation pressure is a significant factor. An

experimental investigation was carried out with a transducer having an

effective spherical baffle radius of 0.05 m and an aperture radius of

0.0210 m. The actual apertures were square. The fluid medium in the

waveguide was a 6% NaCI-water solution with p0 = 1041 kg/m 3 and

c0=1600 m/s. The free medium was fresh water.

The self- and mutual impedances were computed numerically by

the computer routine MISP, using Sherman's results, and the real and

imaginary components graphed as a function of frequency in Figs. 3.3(a), (b)
and 3.4(a), (b), respectively. The use of these impedances as boundary

conditions for the above geometric dimensions is valid for frequencies less

29
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than 10,000 Hz.

The mutual impedance components (Fig. 3.4) display a

characteristic oscillation which arises from constructive and destructive

interference as the pressure wave length varies relative to the

circumferential distance between apertures. For example, the first peak in

the mutual impedance should be expected at the frequency at which a

quarter wavelength is equal to half the sphere circumference; for

co = 1500 m/s this occurs at approximately 2390 Hz. In Fig. 3.4 the first

peak of the imaginary component is at 2700 Hz.

To show that the inclusion of the mutual impedance is important it

is necessary to compare the magnitude of the mutual impedance

components to the self-impedance components. Intuitively one would expect

the mutual impedance to be most significant at low frequencies where the

Rayleigh distances of the sources are very short and therefore radiation is

omnidirectional. This observation explains the dropoff at high frequencies of

the envelope of the mutual impedance plots.

Figure 3.5 shows the ratio of mutual to self-impedance

magnitudes. The peak of this plot occurs at approximately 7500 Hz for the

geometry described above, with a ratio of 0.05. One might conclude that the

mutual impedance is small, however the radiation of sound is dependent on

the real component of the acoustic self-impedance. Hence it is more relevant

to consider a ratio of the real impedance parts. Figure 3.6 shows this ratio,

assuming that the particle velocities of the duct are 1800 out of phase and

are of equal amplitude (first mode of the waveguide with a source
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distribution symmetric about the x origin). Note that the ratio at 250 Hz is

nearly one. Thus at low frequencies the real component of the mutual

impedance is an important effect. The real component will have the effect of

altering the amplitude of the resonance characteristics of the wavefield in the

waveguide, and to a much lesser extent the imaginary component will

modify the periodicity of the resonance response spectrum.

C. ACOUSTIC WAVEFIELD DUE TO THE MAGNETOHYDRODYNAMIC
SOURCE

The Fourier transform with respect to time of the inhomogeneous

•- pressure wave equation for the MHD source is given by

Pxx + k2 p = (J(X) X B)x , (3.5)

where k = w/co is the wave number. The inhomogeneous wave equation with

inhomogeneous boundary conditions, Eqs. (3.3a) and (3.3b), are in terms of

two acoustic field variables p and u. To make the solution process more

convenient a change of variables from pressure and particle velocity to

velocity potential, 0, is made as follows.

au = Ox (3.6a)S~and

p = -p04,= ip•OPo • (3.6b)

Substitution of the above transform pair into Eqs. (3.5), (3.3a),

and (3.3b) yields the two-point boundary value problem for the wavefield in

the waveguide in terms of one dependent variable, •. The inhomogeneous

wave equation, Eq. (3.5), becomes
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-jS • Oxx + k2 0 = - (J X B)x, (3.7a)
) PO

subject to the boundary conditions,

-j o)po (9.) + x(..) Zs - Ox(- 9)Zm=0 (3.7b)

-j (0 Po)0 (- .) - Ox(- -) Z, + Ox(..) Zm =0. (3.7c)

The solution of Eqs. (3.7) may be achieved by use of a Green's

function. This approach was chosen because the Green's function is easy to

determine and the solution lends itself to convenient numerical computation

for arbitrary source functions. The inhomogeneous Green's wave equation

for the above problem is

Gxx(x,xo) + k2 G(x,xo) = - 8(x - x) , (3.8)

wiere G(x,xo) ;s the Green's function for the wavefield as a function of x due

to a Dirac delta function distributed source at xo. Shown in Fig. 3.7 is the

delta function source relative to the coordinate frame and other geometric

lengths.

A traveling plane wave solution in the following form is proposed.

I A (e-ikx + R. eikx) k <x <x < 9., (3.9a)G(x,xo)= ekt B (elkX + R e'lkx) -9 <xo <x <.., (3.9b)

where R. , and R ý are the reflection coefficients at the apertures.

The proposed solution represents plane waves propagating to

the left, e Jkx, and to the right, eikx. Equation (3.9a) is the wavefield to the left

of the source discontinuity at xo, w iere the left traveling wave, e-ik", is

incident on the -Z aperture and R.ieikx represents the reflected right
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traveling wave. Equation (3.9b) is the wavefield to th3 right of the source,

• including a right traveling wave and a left traveling reflected wave. In general

R is a complex quantity representing the phase shift and attenuation of the

wave upon reflection from the aperture.

Equations (3.9a.b) must be compatible with the conditions at the

source where the values of the two solutions must be equal (continuous) and

the first derivatives must satisfy the slope discontinuity. The continuity

condition is stated as follows.

•16 G(X=XoXo) for - < x<x <x< = G(x=xo,xo) for -9k<x <x< x < .
G~x~0 ,x 0  0 0(3.10)

The discontinuity condition is found by integrating Eq. (3.8) with respect to x

"and taking the limit as the integration bounds converge to the source at xo.

This yields

lim { Gx(xo + e, xo) - Gx(xo- , xo)} =-1 . (3.11)
S0

The result of applying the source conditions stated in Eqs. (3.10)

and (3.11) to the general solution, Eqs. (3.9a,b), is the Green's function for

the waveguide field,

j (eJkxo + R e-kXo) (e-kx + R eýkx)

;"2k(11-R IR.) - < x<X0o< Q, (3.1 2a)
•;',•:"G(X,Xo) ="

G-.-7-•xl I (etkxo + R eikxo) (eJkx + R ejkx)
r4'? 2k(1 - R, R.,) < xo < x < L (3.1 2b)

The solution of the wavefield in terms of the velocity potential can therefore
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be stated in integral form as1

N(x) - f (J X B)x G(x,xo) dxo (3.13)

A-

For any frequency co, Eq. (3.13) can always be evaluated

numerically because the , fIection coefficents are constant multipliers and

can be factored out o& the integration. A particularly simple source

distribution function to evaluate, and the one investigated experimentally, is

that of a rectangular electromagnetic field source,

JXB B. (H(x - a)- H(x- b)), (3.14)

where H is the Heaviside function. Note that a and b are the x coordinant

limits of the rectangular distribution defined in Fig. 3.7 and also in Fig. 3.2.

With Eq.(3.14) as the source function Eq. (3.13) becomes

-J JO Bo k

ON - (8(xo- a)- 8(xo- b)) G(x,xo) dxo. (3.15)P fc

To evaluate Eq. (3.15) the integration interval may be broken into

three pieces: to the left of the source, the source region, and to the right of

the source. The result is the generation of three furctions which are valid to

the left of the source volume, within the source volume, and to the right of

% the source volume.
1..

4.
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kb

I(8(x 0 - a) - 5(x.- b)) G(x,x.) dx.

-9k 9<X<a<b<9., (3.16a)

xr

J(8(x0 -a) - 5(xo - b)) G(x,x.) dx. +

-j J BO a

I(8(x0-a) - 8(x0- b)) G(x,x0) dxO
f

41x -9- <a<x<b<9., (3.16 b)

9-

j(5(x0o a) - 8(x0- b)) G(x,x0) dxO

a -9- <a<b<x< 91 (3.16c)

The evaluation of the integrals, Eqs. (3.1 6a,b,c), are given below.

In the notation used below, GL denotes the Green's function given in

* Eq. (3.12a), the left volume solution, and GR denotes that given in Eq.

(3.12b), the right volume solution.

-JB0  (GL xa) -GL b)) -k. <x<a<b< 9- (3.17a)
(GL(X,b) -GR(x,a)) -k. <a<.x<b< 9. (3.1 7b)

(GR(X,a) -GR(X,b)) -9.<a~b<x< 9. (3.1 7c)

V. Equations (3.17a,b,c) represent the wavefield to the left of the source

volume, within the source volume, and to the right of the source volume,

respectiveliy.
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At this point the general solution to the MHD wave equation is

not complete since the reflection coefficients, R• and R., have not been

determined. However, these reflection coefficients may be found by

substitution of Eqs. (3.17a,b) into the boundary conditions given by

Eqs. (3.3a,c). The result of this substitution is the following quadratic

equations in terms of the reflection coefficients.

" 1 + C2 R.k + C 3R. 2 = 0 (3.18a)

.04+ C 5 Rk + C6 R, 2 =0 (3.18b)

where the C's are complex constants (see Appendix C for the explicit forms).

"The computation of the roots of Eqs. (3.18a,b) was performed by

the subprogram unit REFL using the IMSL routine ZQADC. The magnitude of

the reflection coefficient must be, by definition, less than or equal to one so

the proper root choice was unambiguous. A plot of the reflection coefficient is

given in Fig 3.8 for the waveguide dimensions given previously. Notice that

the reflection coefficient declines with increasing frequency. This is because

21. the real component of the self-impedance is increasing with frequency and

therefore allowing more acoustic power to be transmitted out of the wave-

guide into the free medium.

The solution for the wavefield in terms of the velocity potential is

now completely described by Eqs. (3.17a,b,c) with the solutions of Eqs.

(3.1 8a,b) for the reflection coefficients. The expressions for the pressure field
'Ui.i and particle velocity field are recovered oy the transform equations,
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Eqs. (3.6a,b), and expressed below in terms of the Green's functions,

Eqs. (3.12a,b), and the derivatives of the Green's functions.

(ejkxo + R.e'jkxo) (e-jkx - R.,ejkx)
2(1 - RkR.) -<. < xx < k, (3.19a)

G.(e-jkxo + R.i.eJkxo) (eix - RQe-Jkx)

2(1 - RkR.k) -. <x 0 <x< x., (3.19b)

The complex pressure wavefield, p(x), for the three regions M~f the transducer

waveguide as a function of the axial coordinate x are as follows.

JO BO (GL(X,a) -GL(X,b)) -k. <x<a<b< 9. (3.20a)

"p(x) JO Bo (GL(Xb) - GR(Xa)) -9- <a<x<b< k. (3.20b)

Jo Bo (GR(x,a) - Ga(x,b)) - <a<b<x<9 (3.20c)

The complex particle velocity wavefield, u(x), is as follows.

"J JoBo (GxL(x,a) - GxL(X,b)) -9. <x<a<b< 9. (3 .2 1t)

u(x)- - (GXL(x,b) - GxR(x,a)) -9- <a<x<b< k (3.21b)

-(GXR-(xa)- GRb)) -9. <a<b<x< 9. (3.21c)

Several plots of the modal particle velocity and pressure field

ampltudes as a function of the waveguide x coordinate and frequency are

shown in Figs. 3.9, 3.10, and 3.11. Figure 3.9 is for the case relevant to the

e,xperiment conducted. Shown in Fig. 3.9(a) is the modal particle velocity for

a waveguide sound speed of 1536 m/s. It is important to note the step
change in particle velocity at the aperture where there is a step change in

acoustic impedance. Notice that as the frequency is increased the particle
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velocity in the waveguide and the step change in velocity at the aperture

decrease. The decrease in waveguide particle velocity with increasing

frequency is due to the inertia effect of the fluid. The decreasing step change

at the aperture is due to the increasing aperture impedance with frequency
(see Figs. 3.3(a) and (b)).

In Figs. 3.10(a) and (b) the sound speed in the waveguide was

set at 650 m/s to demonstrate the resonance behavior of the waveguide at

lower frequencies. At approximately 9000 Hz there is a resonant standing

* wave. This first resonance is approximately a 3/2 wavelength mode and is

the first mode because at this frequency the aperture impedance has

become large enough to allow a "hard" reflective waveguide termination and

thus support of a reduced aperture particle velocity.

Figure 3.11 (a) and (b) show the modal behavior generated by an

MHD source which is 0.05 m and centered in a 0.10 m waveguide. This plot

is for a reduced sound speed of 650 m/s, but what is exemplified is the

discontinuity of the wavefields due to the presence of the MHD volume force.

The FORTRAN program MHD has the capability to calculate the acoustic

response from any rectangular MHD source distribution anywhere in the

region of the defined waveguide length.

D. ACOUSTIC WAVEFIELD DUE TO THE THERMOACOUSTIC SOURCE

Considered first was the pressure wavefield due to the MHD

-ft source mechanism. The pressure field contribution of the thermoacoustic

t.i' mechanism is now derived. The Fourier transform with respect to time of the

inhomogeneous wave equation for the thermoacoustic source is given by
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j f13 J2(x)

Pxx + k2 p - (3.22)
20"Cp

where k = 2/co, and fl is defined as 2 co. The solution procedure is the same

as that performed for the MHD source. The thermoacoustic inhomogeneous

wave equation, Eq. (3.22), has the same inhomogeneous boundary

conditions as the MHD wave equation solved previously. Again a

transformation to the velocity potential is made using Eqs. (3.6a,b). The two-

point boundary value problem for the thermoacoustic source generated

wavefield in the wavegi:ide in terms of one dependent variable, 0, is thus

•j 2(x)

x+ k2 4( 2 (3.23a)

subject to the boundary conditions,

"and - Po 4 (.-) + 4x(k) Zs - Ox(- k) Zi = 0 (3.23b)

"-JPQ'o 0(" k) - 4x("-9) Zs + Ox(9) Zm = 0. (3.23c)

The solution of Eqs. (3.23a,b,c) may be achieved by use of the
Green's function derived in Section 3.3, and rewritten below.

j (ejkxo + R .e-jkxo) (e-jkx + R..eikx)

2k(1 - R9.R.) -9.< x<x 0 < 91, (3.24a)
j (e-ikxo + R. eikxo) (eJkx + R.e-ikx)

2k(1 - R.R..) -9. < xo < xI.. (3.24b)

The solution of the thermoacoustic pressure wavefield, in terms of the

velocity potential and the above Green's function, is stated in integral form as
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C~x) j2x= G(x,x.) dO(3.25)

, "The source distribution function investigated in the experiment,

is a rectangular electromagnetic field. Therefore the current density has the

rectangular distribution

J(x) = Jo (H(x - a)- H(x - b)), (3.26)

where Jo is the current density amplitude and H is the He iviside function.

With Eq.(3.26) as the source function Eq. (3.25) becomes

p>x) = 2 'Jo {(H(xo- a) - H(xo- b)) G(x,xo) dxo. (3.27)

The iterated integration of Eq. (3.27) for the three regions of the

waveguide are given on the next page.

f (H(xo- a) - H(xo- b)) G(x,xo) dxo

•L• -• .k < x< a < b <., (3.28a)

S~x

j (H(xo- a) - H(xo- b)) G(x,xo) dxo +

O• J2 a

2 a poCp

J(H(xo- a) - H(xo- b)) G(x,xo) dxO

x -k. <a<x<b<9<, (3.28b)
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{(H(xo- a) - H(xo- b)) G(x,xo) dxo

a -. <a<b<x< .. (3.28c)

The results of evaluating the integrals for the velocity potential wavefield are

as follows for the step function source.

(-(eika - eikb) + R.(eika - e-jkb))(e-jkx + R..eikx)

2 k2 (1 - Rk.R.) (-.Q<x<a<b< k., (3.29a)

(e-Jka - R..eika)(eikx + R eJkx) +

pJo0 2 2 k2 (1 - R1.R.0

2 apo COp (ejkb - R .ejkb)(eijkx + R..eikx) 1

2 k2 (1 - R.R.9) k2
-.Q<a<x<b< 9, (3.29b)

((e-ika - e-jkb) - R..(ejka-eikb))(eikx + R .eijkx)

2 k 2(1 - R k.R.9.) -k < ~ k 3 2 c

Equations (3.29a,b,c) represent the velocity potential wavefield to the left,

within, and to the right of the source volume, respectively.

The reflection coefficients are found by substitution of

Eqs. (3.29a,c) into the boundary conditions given by Eqs. (3.3a,b). The

result of this substitution is the following quadratic equations in terms of the

reflection coefficients,

Q+ C2 R + Q3 R. 2 = , (3.30a)

C4 + C5 RQ + CeRQ2 =0 (3.30b)

50



4

where the C's are complex constants (see Appendix C for the explicit forms).

The computation of the roots of Eqs. (3.30a,b) was performed by the

subprogram unit REFL of program THERMO using the IMSL routine ZQADC.

A plot of the reflection coefficient magnitude is given in Fig. 3.8 for the

waveguide dimensions given previously. Note that Fig. 3.8 was computed

using the MHD solution; however the magnitude of the reflection coefficient

is the same for both cases; the difference occurs in the phase.

The solution for the thermoacoustic wavefield in terms of the

* velocity potential is now completely described by Eqs. (3.29a,b,c) with the

solutions of Eqs. (3.30a,b) for the reflection coefficients. The expressions for

the pressure field and particle velocity field were recovered by the transform

equations, Eqs. (3.6a,b), applied to Eqs. (3.29a,b,c) and these are stated

below.

S(.(eika. eikb) + RQ.(eijka- eijkb))(e-Jkx + R.•eikx)

•,•-'•, •,2k(1 - R113.0•.
<', <x <a< b <9, (3.31 a)

(e-ika - R. ejka)(ejkx + R e-jkx)
+

Sco J0
2  2k(1 - RiR.)

p ),2 a p0 C (ekb - R.e'jkb)(e.jkx + R.eikx) 1

2k(1 - R R.a) kk .< a <x<b< 9., (3.31 b)

((e-Jka - e-jkb) - R •(ejka -ejkb))(ejkx + R e-jkx)

•f,[.,; 2k(1 -R•R.•)-k0.<a <b < x< 9-. (3.31 c)
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u(x) is the complex particle velocity field in the transducer waveguide.

((elka - eJkb) - R.(e-Jka - eijkb))(eiJkx - R.,ejkx)

2k(1 - RkRk) -9<x<a<b 9< k, (3.32a)

(e-jka - R .eika)(eikx- R ,e-jkx)

U( j pJ 2 2k(1 - R.R.•)
2 (YPo C (eikb - R ,.eijkb) (ejkx - R_ ejkx)

2k(1 - -93 <a -x<b< 9, (3.32b)

((e-ka.- elkb) - R. 9.(ejka -eikb))(eik - Re-kx)

2k(1 - R R.•k)
-k4<a <b < x< k. (3.32c)

Unfortunately time did not permit the author to write the computer

code necessary to generate the three-dimensional plots of the pressure and

particle velocity modes, as was done for the MHD mechanism.
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CHAPTER 4

THEORY: ELECTROACOUSTIC RELATIONS

This chapter is concerned with the determination of the

transduction characteristics: input electrical impedance, real and reactive

input electrical power, power efficiency, current arid voltage transmitting

sensitivity for the MHD acoustic source mechanism, and thermoacoustic

source mechanism.

A. POLARIZATION IMPEDANCE OF THE MHD WAVEGUIDE ELECTRODES

In general when considering the impedance of an electrolyte

fluid contained in a cell with metal electrodes two independent processes

must be analyzed: the frequency dependent nature of the electrolyte and the

electrical characteristics of the electrolyte interaction with the electrode

M surface.

The conductivity of an electrolyte not in the vicinity of an electrode

+ surface is "classically" analyzed using the theories of Debye and HuckelI5

and Debye and Falkenhagen. 16 The conductivity for a 1,1 valent electrolyte,

such as NaCI in water, is dependent on the applied electric field strength,

concentration of NaCI, and frequency. However, for NaCI in water at 1 M

concentration with electric fields less than 1 X 105 V/cm and frequencies less

than 18 MHz, the conductivity is constant ( a= 5.28 1/(ohm m)).

At an electrode-eleciroly;a interface a potential difference is

present. The potential arises from the electrons on the metal surface and the

ions in the electrolyte attracting each other according to Coulomb's law. This

"charge distribution at an interface is known as the electrical double layer in



the electrochemical literature.17 The important concept is that the mobile ions

have a tremendous capacity for charge storage and thus a very significant

capacitive impedanca when a time harmonic signal is applied to the

¾• electrode,.

For the case of planar electrodes, of interest in this investigation,

the Gouy-Chapman1 8 model of the double layer capacitance is given as,19

0 D= eo F2 z N 1'2 (b-a) 
(4.1CD =nR (4.1)

•2! 4•RT

where

CD a double layer capacitance, F,

eo = dieiectric permitivity, 8.85x10"12 F/m

F a Faraday constant, 96524 C/mole,

N a concentration of electrolye, moles/m3 ,

R ideal gas constant, 8.31 joules/°K mole,

T absolute temperature, 293 OK (200 C)

z a charge valence of the ionized molecule, 1, and

*(b- a) ky = electrode area.

For a 1 M NaCI electrolyte solution the Chapman model predicts the

capacitance, on a per unit area basis, to be 52 mF/m2 . Measurements made
by Vetter 20 indicate a range of values of 100-400 mF/m 2. This will be

,' discussed more in Chapter 5 in re, .rd to the value measured for the MHD

transducer.

SIn addition to the double layer capacitance of the electrode

interface there is an additional impedance effect observed due to an ion

concentration gradient near the electrode. This is due to electrochemical
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reaction processes. The transfer of charge at the interface causes

electrochemical reactions which result in the depletion of the orig' 'al

electrolyte ions and the production of other ions and molecules. Since the

ion concentration gradient represents a charge gradient one can expect an

electric potential to result. The Nernst equation 21 describes this potential, 'Vd,

RT (N(o,t))
Vd - In (4.2)

n F No

in terms of N(o,t), the ion concentration at the electrode surface (ý=O) as a

function of time, and NO, the equilibrium ion concentration "far" from the

electrode. n is the number of moles of electrons required to form one mole of

reaction product.

In order to apply Eq. (4.2) the electrochemical reactions at the

_ electrodes must be determined. The kinetically acceptable electrode

reactions for NaCI and water are

2C1" -- C12(gas) + 2e- (4.3)

which is the anode or oxidation reaction. This reaction represents the

conversion of the chloride ion to chlorine gas with the donation of electrons

to the electrcde. The other electrode reaction is the cathode or reduction

reaction,

2H 20 + 2e- - H2 (gas) + 20H-. (4.4)

Note that dissociation of water in the cathode reaction is preferred over the

reduction of sodium ion to solid sodium (Na+ + e -* Na(solid)). The ovArall

chemical reaction can be state(, as
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2Na+ + 2C1 + 2H20 - 2Na+ + 20H- + H2 (gas) + C12 (gas). (4.5)

It can be seen from the reaction equation, Eq. (4.5), that the

chloride ion will experience a concentration gradient. Note that water does

not contribute to the ion concentration gradient of the electrolyte since water

is not ionized and is the solvent and is thus in great supply in the vicinity of

the electrodes. Since the hydroxide ion is produced one might ask whether it

is a more preferable oxidation reaction molecule than the chloride atom.

Kinetically It is not.

One last item needs to be addressed with regard to the formation

of hydrogen and chlorine gas. The reaction,

H2 (gas) + C12 (gas) -ý 2HC-Il.gas), Ago = -45 kcal/mole (4.6)

is a spontaneous, very exothermic reaction as evidenced by the large

reduction in the Gibbs free energy, Ago. However, as a practical matter the

gases do not always combine but can nucleate on the electrodes. The result

of the gas formation and the effect on operation of the transducer is

discussej later in this chapter and in Chapter 5.

The concentration distribution, N(,,t), for the evalation of the

Nernst equation, Eq. (4.2), is based on the concentration of the chloride ion

as a function of the rate at which it is oxidized. Since the boundary of the

electrolyte is a plane electrode surface, which is the boundary of the

waveguide of the same cross-section, the concentration wll only vary in the

y direction of the waveguide coordinate system. Therefore the distribution

should only be a function of one spatial dimension, •. The diffusion equation
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is stated as

(Fick's second law) N(J,t)t D N(@,t0 ,1 (4.7a)

subject to the following boundary conditions.

Jv
(Fick's first law) N(o,t) - e-ij (4.7b)

n nFD
and

lim N(,t) = No, (4.7c)

and the initial condition,
N(,o) = No. (4.7d)

In the above equations, D is the diffusion constant, J is the current density

amplitude defined previously, and v is the number of moles of ions needed

to produce cne mole of product (v = 2 for the chloride ion reaction). The

solution of Eq. (4.7a) is given as 22

J v
N(J,t) = No + e 4/2D• e-i(wt" 4 -oI D- n/4). (4.8)

n nFD -

*• Equation (4.8) represents an exponentially damped, dispersive,

outgoing diffusion wave. However, one might not accept the boundary

condition, Eq. (4.7c), and thus the solution, Eq. (4.8), as being a valid

solution to the boundary value problem, which actually involves not an

infinite positive domain, but a finite domain problem with another electrode

at ý= k. From the coefficient e" , '4-V2 4 of Eq. (4.8) it is seen that the

concentration distribution is spatially exponentially damped and that for

r =k[ 4 the diffusion wave is 98% decayed. At 500 Hz and D = 1 .OXI 0-9

rm•,s, the diffusion wave is damped 98% in 0.003 mm, which is a very small

_- distance compared to 3.81 cm, the electrode separation used in the
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experiment. Hence Eq. (4.8) is a good approximation for this investigation.

The Nernst equation, Eq. (4.2), can now be evaluated using

Eq. (4.8). Note that in order to linearize In( ) in terms of the current density

so that a linear relation between current and voltage is obtained, it must be

assumed that the change in concentration represented by the second term of

" Eq. (4.8) is small compared to No. This condition is met if

.•<• No F n DN J- F v (4.9)

* At 500 Hz the right side of Eq. (4.9) equals 1.71 X 105 A/m2 . The

experiments were performed at a current density of 1.5 X 104 A/m2, which is

a factor of 10 less than the constraint and represents approximately a 5%

linearization error of In(). Substituting Eq. (4.8) into Eq. (4.2) and linearizing,

the Nernst equation becomes

V J RTv 2

Vd n2=F 2N e -t /4), (4.10)

From Eq. (4.10) the diffusion impedance for the waveguide electrode can be

defined as

•'t ~RTv2(1.)
Zd = ,-v2( - (4.11)

•,-'." •(- a) n2 F2 No0 2 D c

where the current is defined as J 9-y (b- a).

The electrical circuit interpretation of Eq. (4.11) is that of a

"resistor and capacitor in series, with the resistive and capacitive impedance

Shaving the equal magnitudes and creating a current lag of -450. Notice that
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the resistive component, Rd, is proportional to lI<_. The capacitive nature of

Eq. (4.11) can be separated from the resistive by assuming the impedance

form 1/j wCd, which yields the expression for Cd, the diffusion capacitance,

that is also a function of 1/4o,

.Qky (b- a) 4D n2 F2 N,
Cd = ~(4.12)d R~~ T v2 Vco

Finally the complete electrolyte-electrode circuit topology 23 can

be assembled, given the expressions, Eqs. (4.1) and (4.11), for the values of

the elements, as shown in Fig. 4.1. The diffusion impedance in parallel with

the double layer capacitance is termed the polarization impedance, Zp, of

the electrode. Note that in Fig. 4.1 the impedance of the electrolyte is

represented by the complex impedance element Z. This is done so that the

impedance due to the acoustic coupling can be included in a complete

-. circuit model of the input electrical impedance. The analysis of Z is

* discussed in the next section of this chapter.

B. ELECTRICAL IMPEDANCE OF THE MHD TRANSDUCTION PROCESS

The electrical impedance of the transducer due to the interaction

of the electrolyte with the acoustic field is defined as the voltage across

divided by input current through the impedance element Z of Fig 4.1. The

input current I is found by integrating the current density over a surface near

the electrodes (four diffusion layers away, 4/4o,/-2-D).

I f= dS (4.13)

S

59



Cd Cd

CD CD

zp zp

FIGURE 4.1
EQUIVALENT CIRCUIT OF THE MHD INPUT IMPEDANCE

ARL:UT
AS-86-471

60 SCS- GA
69-3-86



The voltage is defined as the path integral of the electric field between the

electrodes, but not near the surface,

V {E. di. (4.14)

path between
electrodes

Using the above integral definitions the electrolyte impedance is defined as

follows.
I.

f E dl.
path between

electrodes

SZ (4.15)

f J -dSJ'd

S

Evaluation of the numerator of Eq. (4.15) follows from assuming

that the surface integration near the electrodes is at a constant electric field

value.

Substituting Eq. (2.28) into Eq. (4.15), to take account of the

induced electric field, and substituting Eq. (3.21c) for u, the impedance is

f dy
0

-. 9,b (4.16)

,(1+ j oB 2 (GXL(X,b) - GXR(X,a))) dx

o a
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Performing the integration,

• /] • (b-a) j a2 B0
2 •z/-

Z = j0 + o 132 (GL(bb) - GL(ab) - GR(ba) + Ga(aa))

(4.17)

Shown in Figs. 4.2(a) and (b) are the real and imaginary

components of the electrolyte impedance for the waveguide filled with a 6%

NaCI-water solution. The transducer boundary conditions of the waveguide

are those of the transducer used in the experiment discussed in Chapter 5.

For the 6% NaCI solution at 500 Hz the impedance is 1.581 - j 0.2X10"6.

The important result is that the real component for 6% NaCI is relatively

constant over the frequency band from 500 to 13000 Hz and the imaginary

component is negligible.

From the preceding discussions it can be concluded that the

electrolyte impedance can be assumed to be real and ccnstant for

NaCI-water, except at "low" frequencies and/or high magnetic fields (B>>T)

,or a high conductivity fluid such as mercury. It is justifiable therefore to state

Ohm's law as Eq. (2.2) for the electrolyte impedance.

62

..-



i-

1.580768310~ 1 - 1 1-l-1--ii

E
o 1.580768309

z

w
0. 1.580768308

1.580768307
0.5 3.0 5.5 8.0 10.5 13.0

FREQUENCY - Hz X 103

(a)
REAL ADMITTANCE

-2.35 I-ri-i-

S='o -43.50o

x
SE 84.64
0

w
L -125.78
z

w(LI* ~. 0..
'_ -166.92

-208.07 I I I I I I I I I I I i I i I I I
0.5 3.0 5.5 8.0 10.5 13.0

FREQUENCY - Hz X 103

(b)
IMAGINARY ADMITTANCE

FIGURE 4.2
MHD MECHANISM IMPEDANCE FOR

6% NaCI-H 2 0 SOLUTION
Q= 0.10 m, 2 = 0.10 m, Co = 1550 m/s, R 0.09 m ARL:UT

"AS-86-429
SCS- GA
8-6-86

63



C. MHD TRANSDUCTION PROCESS POWER EFFICIENCY

The transduction power efficiency is defined as the real

component of the radiated acoustic power divided by the real component of

* the input electrical power plus the real component of the radiated power.

. The complex input power expression is

We= 12 Z , (4.18)

where Z, is the transducer terminal impedance defined as

= 2 Zp + Z. (4.19)

To calculate the total radiated acoustic power the real component

of the acoustic self-impedance Re(Zs) and the acoustic particle velocity

evaluated at the aper',,ie are integrated over the surface of the aperture.

WA= JIu(k.)12 Re(Zs) ds + [Iu(-.)12 Re(Zs) ds (4.20)
aperture aperture

To calculate the power efficiency, the ratio of Eq. (4.20) to the

real component of Eq. (4.18) is taken,

WA= - (4.21)

Re(W.)

Shown in Fig. 4.3(a) and (b) are plots for mercury and the 6% NaCI solution

used in the experiment, respectively. At low frequencies the efficiency is

higher because the particle velocity is higher since there is low acoustic

aperture impedance at low frequencies. As the frequency increases, up to
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the first resonance, the particle velocity decreases faster than the real

component of the radiation impedance increases, and thus there is a

decreasing trend in the efficiency.

D. MHD TRANSMITTING CURRENT SENSITIVITY

The transmitting current sensitivity (TCS) is defined as the ratio of

output acoustic pressure at 1 m at an angle V to 1 A electrical input current.

The TCS is also defined for the special case of the transducer waveguide

axis (x axis response, xV= 00, and range of 1 m). The expression for the

farfield pressure, Eq. (B.4), is analytically and computationally simpler than

the full spherical harmonic function expansion used to express the mutual

acoustic impedances. The farfield equation has the Hankel function

components replaced by the large argument, kr>>l, asymptotic expression

elkr. Although the farfield approximation, in general, is not always valid at a

distance of 1 m, this treatment is standard for determining transmitting

sensitivities. The advantage of this definition is that the pressure field may be

extrapolated to the farfield region by assuming ordinary spherical spreading

(which is generally the region of interest). The TCS expressions for the MHD

source mechanism in the farfield are given as

TCS pff (r = 1 meter, V)/l

where, from Eqs.(B.4) and (3.21), the TCS can be stated as
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""VA BO PIm Cfm
- TCS = 2wpo kk.z(b-a)

F0 (P (cosE)) - Pn+, (cosE)) Pn (_cosTv) eiic(n+l)/2
.j-(GXL (-Y,a). GxL(-_t,b))Z dn-1S~d 1I

n=o dx hn MxI x-kR

+((.,b)) 
> (Pn1  (cos e) - Pn( 1(COS )) Pn (cos n) e ijl(n+l)/2.

n=o d x-kR

(4.22a)

The x axis transmitting sensitivity is given below as a special case of

Eq. (4.22a).

TCS° p= P(r = 1 meter, = 00 )/I

-c"_ BO Pfm Cfm

O 2 2(o POpk9.-z (b-a)

00

•j• (G XL (.0,a) -GXL(..,b)) 1 -1 (cos®) Pn+I (cosd ))(1)n e' -i(n+l)/2

n=o -- h 1(x),,• .•Tx 
n x,,kR

""•'•"" 
'• (Pn- (COS®)"- Pn+ , (cos E®)) e -i•n~ l/

•.:•z,+ (G xR (.k,a) - GXR (k.,b))n-

•' 
(4.22b)

In general the transmitting sensitivity is the most important

-.., -frequency dependent relation for a transducer. The expressions stated

above have many geometric parameters which affect the transmitting
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sensitivity in very pronounced ways. It is not the intent of this thesis tcD prbe
into a detailed parametric investigation of the sensitivity functions but to point

out a few important points. In Figs. 4.4(a), (b), 4.5(a), (b), and 4.6(a), (b)

plotted in three dimensions is the current sensitivity on thu wav'eguide axis

(TCSo) versus frequency versus a geometric parameter or fluid property for a

specified set of constant parameters.

The variation of the sensitivity with waveguide sound speed

proved to be of practical utility when analyzing the experimental data. When

current is passed through the NaCI solution in the transducer it is inevitable

that some hydrogen and chlorine gas bubbles will be generated. The effect

of the gases is to lower the acoustic phase speed due to the large increase

in the small signal compressiblity of the medium.

The transmitting current sensitivity surface shown in Fig. 4.4(a) is

for the case of a 0.03 m source centered in a 0.10 m long waveguide with a

0.09 m baffle radius (an aperture radius of 0.0196 m is used in all plots).

Compared to Fig. 4.4(b), which is for a source of 0.10 m with the same baffle,

the shorter source seems to excite a sharper resonance due to the source

"volume being spatially a better fit to the excited "3/2 wave length oressure

mode". (See Figs. 3.8, 3.9, and 3.10 for diagrams of the particle velocity and

pressure modes.)

At higher sound speeds a null forms in the sensitivity surface. The

null corresponds to the destructive interference of the acoustic radiation in

the farfield and is primarily dependent on the radius of the baffle. Notice that

the null occurs at the same frequency, approximately 6400 Hz. in both
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figures, which indicates it is not a feature which is dependent on the sound

speed in the waveguide. The hall circumference of the baffle, which is the

separation distance of the apertures, corresponds to 3/4 of a wavelength at

6400 Hz with a free mcr,.,um sound speed of 1500 mis. Since the apertures

radiate 1800 out of phase for MHD sources centered symmetrically about the

waveguide length, signal cancellation occurs at this wavelength.

The transmitting sensitvity as a function ol baffle radius is shown

in Figs. 4.5(a) and (b), where the periodicity of the nulls is seen to be a

function of baffle radius for the reason given above.
Another important feature of the plots of Figs. 4.5(a) and (b) is that

as the baffle radius decreases the overall sensitivity increases. The reason

for this behavior is that the smaller baffle provides a smaller acoustic

impedance, and thus a larger particle velocity at the aperture results. As the

size of the baffle increases, the acoustic impedance increases and the

particle velocity is diminished. Note that the increase in radiating efficiency

resulting from increasing the baffle surface area does not increase the

radiated pressure amplitude (sensitivity). When the baffle surface area is

increased the aperture impedance increases and has the effect of

decreasing the particle velocity faster than the improvement in the baffle

reflecting property.

The higher peak amplitude in Fig. 4.4(a) relative to Fig. 4.4(b) is

due to the achievement of the "3/2 wavelength" resonance at a lower

frequency due to the slower sound speed in the waveguide.
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Shown in Figs. 4.6(a) and (b) is the transmitting sensitivity as a

function of the source length, (b - a) or k Again it is lower sound speeds

that cause the greater amplitudes at low frequencies. The effect of source

length is not as strong for the higher sound speed plot in Fig. 4.5(b) since a

resonance condition has not been reached. ]'he primary effect in this case is

the fixed radius of t.ýe baffle causing the resulting destructive interference

null structure of the plot at the same frequency.

E. ELECTRICAL IMPEDANCE OF THE THERMOACOUSTIC
TRANSDUCTION PROCESS

The electrolyte impedance characteristics and transmitting

pressure sensitivity of the ohmic source are not linear relations, that is, the

electrical current is not linearly related to the voltage and the transmitted

pressure is not linearly related to the input voltage (or current). T[,e

nonlinearity of the ohmic mechanism is evident from the fact that an electrical

input sign.,l of a single frequency co produces an acoustic output of

frequency 2 co, as demonstrated in Chapter 3. The nonlinear behavior of the

ohmic mechanism is evident in the source term of the inhomogeneous wave

equation, -3 (J-J)t / a Cp , where the dot product of the current density field

with itself is a squaring or quadratic nonlinearity. One obvious consequence

of this nonlinear behavior is that for multiple frequency inputs superposition

of the single frequency Fourier transform solution does not hold. Therefore

what was derived in Chapter 3 is valid for the single frequency input co and

not for linear combinations of this single frequency solution. it is important to

note that the wave equation is linear, that is, the spertral content of the wave
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fields produced by the nonlinear source do not undergo frequency domain

corruption due to propagation. An acoustic signal at frequency co generated

by the MHD source mechanism will be propagated with frequency Co.

Similarly a single frequency electrical input signal of frequency Co, through

the ohmic mechanism, will generate a wavefield of 2w, but the medium will

transmit the signal uncorrupted at frequency 2w. However, the boundary

conditions are frequency dependent and therefore the wavefields are

V"., frequency "dependent", and thus the spectral content of the waves emitted

by the source must be known in order to determine the wavefield.

Fortunately the source nonlinearity can be Fourier transformed by

using convolution and thus the spectral output of the thermoacoustic source

can be determined. If the current density has the functional form,

J(x,t) = J(x) f(t) , (4.23)

then the nonhomogeneous ohmic source term takes the form,

- (J(x)'J(x)) f(t) f(t), (4.24)
GCP

where the dot product operation of the spatial component of J was noted in

Chapter 2. The Fourier transform can now be performed on f(t) f(t) by

convolution in the frequency domain as foliows.

''1*,-- 100

Q(wo) = f{f(t)f(t)} = F(co')F((o - C)') do)', (4.25)
-00

where Q is the spectrum of the convolution, F is defined as

• iF(co) -fff(t)},(42a

4( 24
4, . • 7 4



and ý is the exponential Fourier transform operator defined as

f{} j{} ei(dt. (4.26b)
-CO

As a note, it should be kept in mind that when the multiplication of time

harmonic functions is performed, f(t) f(t), the e i'0 "notation" must be replaced

by the real-time functions such as cos((ot). The reason is simply that

multiplication is a nonlinear operation and when it is performed on the

complex time functions cor mcnly used for notational ease incorrect or

incomplete harmonic components are produced by the convolution

operation. As an example of the convolution operation consider the following

* time dependence for J, assuming wi > (02,

f(t) = Al cos(cO1t) + A2 cos(co2t). (4.27)

The Fourier transform of Eq. (4.27) is

F(co) = A1(5(,o+(01) + 8(co-(0 1)) + A2 (8((0+0) 2) + 5(0)-(02)) (4.28)

The convolution results in the following source spectrum, Q,

Q((0) = A1
2(6(c0+2(01) + 6(-2(01)) + A22 (8(0)+2c0 2) - 5((o-2(02))

+ 2A1 A2 (8(0)+(0 1+(02) + (cO"(O 1-(W2) + (+ 1- 2) + ((01+(02))

(4.29)

which indicates that the following wavefield harmonics are produced. 2(01,
(01+ )2' 2(02, and o1" (02.

Notice that the Ljtput of the simple two-frequency input is the

generation of four different harmonics. For this two-frequency input the single
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frequency solutions of Chapter 3 can now be written in terms of the above

frequency components and the resuitant pressure fields can be summed

(since the acoust;c cquation is linear) to obtain the total acoustic field.

Due to the nonlinearity of the source mechanism, the linear

impedance is not defined. What can be defined instead is the quadratic

current transfer funct;on (QCTF). The QCTF is defined as the ratio of the

output current to the square of tMe input voltage for the input of two frequency

components as follows. 24

QCTF - (4.30)

VA(CA) VB(o%)
'The expression for the ohmic source is as follows.

ff (Bou(ce4+oj, x) dx dz
QCTF = (4.31)

J EA(o,)dy J Ea(cy
-f3 B c.2 kz (R. (eJ2kb +ei2ka - 2eik(a+b) )+ R (ej2kb - e-j2ka + 2eLik(a+b)))

C / k2 (01- R~ (4.32)

where k = (o)A+cB)/cO. As an example of the evaluation of Eq. (4.32), the

QCTF for difference frequency, ol-C2, would be found by substituting 0wA= (
and ()B = -(o2 for the case of a single frequency input wo, o. = CD, and oi) = Co.

The QCTF should be regarded as a term of second order for NaCI

A solutions, due to the comb;nation of low thermal exparsion, conductivity, and

magnetic field. The QCTF for a 6% NaCI solution is shown in Fig. 4.7(a) and

(b) for a single frequency input signal. The amplitudes of the plots are

insignificant at any realistic voltage levels.
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For liquids with a very high conductivity (such as mercury) the

4tq QCTF will not be of second order. Plots for mercury in the same waveguide

configuration as the NaCI show much higher QCTF magnitudes (see

Fig. 4.8(a) and (b)).

Since the QCTF is the current relationship the total complex

current, iT, (MHD and thermoacoustic effects) is

AV+QCTFV 2 , (4.33)

where A is the admittance due to the MHD mechanism and is equal to 1/Z.

*The equivalent circurit of the combined MHD and thermoacoustic impedance

including the polarization impedance is shown in Fig. 4.9.

F. THERMOACOUSTIC TRANSDUCTION PROCESS POWER EFFICIENCY

The thermoacoustic tansduction power efficiency is defined as

the radiated acoustic power due to the thermoacoustic mechanism divided

by the real input electrical power to the MHD transducer. The complex input

power is defined in Eq. (4.18), but if the QCTF is significant the effect needs

to be accounted for in the electrical power expression. The total complex

electrical power, WTH, is then given by

WeTH = V iT. (4.34)

The radiated acoustic power is defined using Eq. (4.20) with the

particle velocity expressions of Eqs. (3.32a,c) being substituted, and the

Ssame expressions for the real component of the self-impedance being valid.

With Eq. (4.20) and Eq. (4.34) the thermoacouctic process efficiency can be

"defined as
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WA
TITH (4.35)

Re(We-H)

Plots of the thermoacoustic transduction process efficiency are

given in Fig. 4.10(a) and (b) for a 6% NaCI-water solution and mercury,

respectively. Comparing the MHD efficencies given in Figs. 4.3(a) and (b) to

the thermoacoustic efficiencies in Fig. 4.10(a) and (b) the MHD process is

much more efficient for both fluids.

A rough relationship between the fluid properties of the medium

and the thermoacoustic process efficiency is obtained from the leading

coefficients of the ratio of acoustic power expression Eq. (4.20) to tha

expression for the real dc ohmic power dissipation (the primary mechanism

of power dissipation in the experimental transducer),

T J M 3  (4.36)
ql'H• •-' ap "p.Q.s

The same type of expression can be written for the MHD process and is

stated as

/B )2 (y Co

11MHD (4.37)(o P ks

Some interesting insights are gained by these two equations.

First, the thermoacoustic efficiency is a function of the current density

squared, or power, and thus makes comparison of efficiencies a matter of

first stating the current density. Second a low conductivity, mass density,

specific heat, and high coefficient of thermal expansion are desirable for an
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efficient thermoacoustic source. For the MHD source the opposite is true with

regard to ihe conductivity; a high value is desired, so that little ohmic losses

are generated. As the plots in Fig. 4.3(a) and (b) show, rilercury is a more

efficient fluid for the MHD process than the NaCI solution by a factor of

60 dB, due to mercury's 1.0 X 106 1/(ohm m) conductivity versus the 5.26

1/(ohm m) conductivity of the NaCI solution. The opposite is of course true for

the thermoacoustic case where the NaCI solution is approximately 70 dB

more efficient. However, mercury does have a value of Cp of 140 J/kg/C

versus 4100 J/kg/C for the NaCI solution, but the mass density of mercury is

13600 kg/m 3 versus 1041 for the NaCI water solution.

G. TRANSMITTING SENSITIVITY OF THE THERMOACOUSTIC PROCESS

The transmitting sensitivity of a transducer is a transfer function,

like the admittance or impedance, and is generaiiy defined in the frequency

domain for a single input frequency assuming that the same output

frequency is produced. The transmitting sensitivities of the thermoacoustic

mechanism cannot be defined using the single frequency definition since the

thermal source mechanism is nonlinear and produces spectral pressure

signal components different from the input electrical signal. A quadratic

transfer function will be defined for two input frequencies as the quadratic

voltage transmitting sensitivity (QVTS),

Ptf(( )A+OBI, r = 1 meter, xV = main beam axis)
QVTS - (4.38)

S~VA( OA) VB(

where VA(cOA) and VB(coB) are the Fourier transformed expressions for the
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voltage amplitudes at (OA and co.. Substituting Eq. (B.4) for pff, Eq. (3.32b) for

the particle velocity distribution, and Eq. (4.1) for the potential V into

Eq. (4.38), the analytical expression for the QTVS results,

QVTS = B 0PfmCfm

4CPPo kfm-y

r- ((ejka - ejkb)- R . (ejka - eijkb )) (e jk" - R_ ejk.)

2k(1 - R Rd)

. (Pn-1 (COSe) - Pn+1 (Cose)) P n (-cosy) n)

d h1 I
n=o n() xkfmR

((ejka - e'ikb)- R., (eika ejkb)) (eik° - R . k)

+ 2k(1 -R RRd

S(Pn-1 (cos ) - P +I (coso )) Pn (cosO) e i(n+lY2

Id hI(~
n=o dx hn Mx x'kfMR (4.39)

where kfm = (coA + (oB)/Cfm and k = ((OA + cO))/Co; for a single frequency input Co,

km = 2,o/cfm and k = 2cdco.

T!me did not permit a parameter investigation such as that

performed for the the MHD sensitivity. K wever, two plots of the single

frequency input thermoacoustic transmitting sensitivities (QVTS) for fixed

parameters are given in Fig. 4.11(a) and (b) for the 6% NaCl solution and

mercury. Notice that the mercury transducer shows a higher sensitivity than

the NaCI solution. However, the sensitivity is in terms of the input voltage.
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With mercury's very high conductivity a very small voltage is always going to

result, at the terminals, and thus a low source level. Thi!- is because

generating large voltages on a practical thermoacoustic mercir transducer

is tantamount to huge electrical currents due to the :ly real input

impedance.

More discussion of the QVTS is included in C; apter 5 with the

experimental results.
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CHAPTER 5

TRANSMITTING EXPERIMENT

To verify the theoretical predictions presented in Chapters 2, 3,

and 4, an MHD transmitter was constructed and sensitivity and beam pattern

measurements were taken. The transducer used in the experiments is

depicted in the photograph of Fig. 5.1.

The planned operating regime of the the MHD transmitter with

respect to the frequency bandwidth and output level was primarily dictated

by the characteristics of the power amplifier that was available and the

spatial extent of the magnetic field that could be generated. Fortunately a

high power, relatively broadband power amplifier was available at ARL:UT.

The magnetic field was generated using samarium-cobalt permanent

magnets. Permanent magnets were employed primarily because of the

convenience of not needing a power supply, but due to the expense of the

magnets a limited volume of low permeable space could be energized
uniformly. An important consideration was that the perm,-nent magnet be

relatively compact and of simple design since the size of the transducer has

an important effect on the acoustic radiating characteristics.

A. OPTIMIZATION OF THE MHD TRANSMITTING CURRENT SENSITIVITY

The prime objective in designing the MHD transducer was to

maximize the transmitting sensitivity across a broad frequency bandwidth.

Tantamount to this objective is determining the waveguide dimensions, the

permanent magnet spatial distribution, and the electrode surface distribution.
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From the transmitting current sensitivity expression, Eq. (4.22b), it is obvious

that a large magnetic induction is desirable, but maximizing the magnetic

induction dues not optimize the design goal using permanent magnets.

Since the radiating aperture area is an important parameter, it would seem

that a large aperture together with a high magnetic field would contribute to

maximizing the sensitivity. However, the size of the aperture is directly

related to the pole face separation of the magne',s, and tlherefore increasing

N' Ithe aperture area increases the reluctance of the magnetic circuit. There is a

definite optimization of the magnetic induction by the aperture size which will

maximize the transmitting sensitivity for a given quantity and spatial

arrangement of permanent magnets.

The functional dependence of the sensitivity on the aperture

radius and baffle radius is not explicit in Eq. (4.14b); the Uep9ndence arises

"in the computation of the reflection coefficients. The relationship between

sensitivity and aperture size is displayed in Fig. 5.2 for a spherical baffle

radius of 0.05 m and frequency of 1000 Hz. The sensitivity function, for the

purpose of the optimization, is well fit by a linear relation in the region from 0

to 29 mm (the general trend is for the sensitivity to increase over the entire

frequency band as seen in Fig. 5.3). At 1000 Hz and for a baffle of radius

0.05 m the relation is

TCS o727.3 Ra, (5.1)

where Ra has the units of meters.

It is also necessary to relate the magnetic induction to the

U aperture radius by the appropriate magnetic circuit model. The analysis of
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the magnetic circuit follows from Cousins and Nash25 (they constructed a

cloud chamber using permanent magnets). The important technical aspect of

their work is the development of an empirical relation totr i,,c magnetic flux

leakage (fringing losses) associated with square or rectangular magneti.,

pole faces with various geometric restrictions. Due to the manufactured

shape of the permanent magnets a limited number of practical geometric

configurations were possible. Since the research budget allowed the

purchase of 40 magnets of dimensions 2" x 2" x 0.5" an arrangement of four

"stacks of five magnetics above and below the field gap was intuitively

obvious. This was not, however, an ad hoc choice; the circuit model

predicited that larger but fewer stacks would result in large fringing losses.

Therefore, given the four-stack arrangement, the relationship between the

magnetic induction and aperture radius was found to be

B = -15350 Ra + 8250, (5.2)

wh.re the units of B are tesla. The com-uter generated curve is shown in

Fig. 5.4.

Stated previously, the sensitivity is directly proprortional to B, so

Eq. (5.1) and Eq. (5.2) can be combined to yield an empirical relation for the

TCS as a function of Ra,

TCS - (-15.35 Ra + 0.8250) 1.106 Ra (5.3)

To maximize the relationship in Eq. (5.3) the expressiun is differentiated with

respect to Ra and the resuO set equal to zero. The value for Ra is found to be

P0.027 P, which is a field gap, 0z, of 0.0479 m. Due to an error in the
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calculations made at the time the MHD transducer was designed a value of

0.0381 was used for the field gap. The construction details of the waveguide

are shown in Fig. 5.5.

N' The estimate of the magnetic induction for the 0.0479 m field gap

is 4500 G and maximum measured value for the 0.0381 m gap, displayed in

the distribution shown in Fig. 5.6, is 4327 G. It was concluded that either the

assumptions concerning the geometrica, restictions on the validity of the

fringing theory are in slight viola.ion, or small gaps in the transducer magnet

stack raised the circuit reluctance higher than expected. However, the

magnetic induction is very uniform as shown in Fig 5.6 for the distribution

measured at the midpoint plane of the waveguido.

B. ACOUSTIC SPEED MEASUREMENT OF THE WAVEGUIDE

The phase or plane wave acoustic speed for the 6% NaCI-water

solutiot in the MHD waveguide was measured to confirm the boundary

condition assumption that the waveguide walls were acoustically rigid. Two

methods were used to measure the wave speed, (1) a pulse and (2) a

resonance technique.

The pulse technique used a transmit frequency of 150 kHz and a

time duration of three cycles or 10 pis. This method yieided a wave speed of

1550 m/s.

The rc.ýonance method employed a cont:.ious wave white noise

signal transmitted into the waveguide with the apertures terminated by "rigid"

brass blocks. The boundary conditions were thus taken to be rigid walled
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cavity (see Fig. 5.7). By measuring the amplitude spectrum of the cavity

response to the white noise signal the frequencies of the standing wave

modes were deteinined and used to calculate the wave speed. From the

1,0,0 pressure mode of the cavity the wave speed was calculated to be

1600 m/s. For most of the theoretical calculations 1600 m/s was used

because the sound speed was determined by the resonance method at

7500 Hz, which is within the frequency band of the experiment. The

theoretical sound speed for the 6% NaCI-water solution at 200 C was

calculated to be 1536 m/s by using of the equation given by Coppens 26 for

the speed of sound in seawater as a function of salinity and temperature.

C. MEASUREMENT OF THE ELECTRICAL IMPEDANCE OF THE
TRANSDUCER

The input impedance of the MHD transducer was measured

using the system of Fig. 5.8 with the transducer in the water. The input signal

to the transducer was white noise at an rms amplitude of 20 V and the

current was sensed using a Pearson current transformer. The transfer

function mode of the signal analyzer was used to determine the impedance

using the voltage as the response signal to the input current signal. The

transfer function is calculated as the crosscorrelation between the input and

output complex signal spectra divided by the autocorrelation of the complex

input signal spectrum. A plot of the magnitude and phase of the impedance

measurement is shown in Fig. 5.9.

The measured impedance indicates, by the lagging phase, a

significant capacitive impedance at frequencies less than 4000 Hz. This

capacitive effect is due to the polarization impedance of the electrodes,
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which was investigated theoretically in Section A of Chapter 4. Plotted in

Fig. 5.10 are the real and imaginary components of the theoretical

impedance represented by the network shown in Fig 4.1 with data points

taken from Figs. 5.9. Notice the ordinate axis is the reciprocal of the square

root of the angular frequency so that the linear dependence of the diffusional

impedance on 1//co can be exhibited (see Eqs. (4.11) and (4.12)). One can

clearly see the linear trend in the data at low frequencies. It is also noted

that the best fit of the theoretical curves occurred for a double layer

capacitance value of 762 pgs which is 200 mF/m 2, and an electrolye

conductivity of 5.56 1/ohm m, which is a dc resistance of 1.5 ohms, was

included in the calculation of Z (Eq. (4.17)). The imaginary component of the

MHD impedance was found to have a negligible effect on the input

impedance model and can therefore be discarded in most preliminary

calculations using a low conductivity fluid.

It is concluded that the polarization impedance model fits the data

well; however, the model would become extremely difficult to apply if

electrolytes other than 1,1 valent salts are used. This might be the case with

seawater. Vetter gives a very complete discussion on the impedance

properties of other common electrolyte chemistries 2 and some of the

difficulties of complex chemistries.

D. TRANSMITTING CIRCUIT AND ACOUSTIC SIGNAL MEASUREMENT
SYSTEM

The efficiency of both the MHD and thermoacoustic mechanism is

extremely low in the case of low conductivity fluids as evidenced by

Fig. 4.3b. As stated previously the efficiency is better at low frequency
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since the particle velocity is larger. However an efficien, of -108 dB implies

that an input of 5 kW of electrical power will produce only 20 mW of radiated

accustic power. The problem of performing the experiment is whether the

signal-to-noise ratio (S/N) is sufficient to produce meaningful data.

* The power amplifier used to power the trancducer was a CML

Corp. model B5K which can deliver 5000 V-A loaded with power factors

M between 1 and 0.1 over the band from 100 to 10000 Hz, ±0.5 dB. Since the

maximum lag in the phase of the impedance is -250 (Fig. 5.11), which

corresponds to a power factor of 0.91, the compensation of the transducer

was not deemed necessary. The block diagram of the transducer circuit is

shown in Fig. 5.11.

An impedance matching transformer was therefore designed to

match the dc resistance of 1.5 ohms of the transducer to the amplifier. The

transformer turns ratio is 1.43, with 38.6 turns on the primary and 30.6 turns

on the secondary. The matching transformer has a 2 mil silicon steel

laminate core capable of broadband power transfer with a maximum

hystersis loss of 10 W at 400 Hz. The total loss of the transmission lin3s and

transformer was measured at 300 W. For all the transmitting experiments the

transducer current was typically 60 A peak with a terminal voltage of 75 V

peak.

V The experiment was performed at the large outdoor wooden tank
facility, as depicted in Fig. 5.11. A broadband noise survey was performed to

access an S/N for the experiment. Both the rms level and the coherency
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between two hydrophones 1 m apart were measured and averaged over a

period of 500 ms. Over the band from 500 to 3500 Hz the rms noise SPL was

approximately 97 dB (re 1 gis) and then proceeded to drop off at

20 dB/decade. The coherency was measured to be less than 0.4 over much

of the band from 500 to 10000 Hz, which suggests that coherent ping to ping

averaging of the received acoustic signal should be a successful method for

eliminating the narrowband noise after filtering.

* The calculated SPL, on axis, at 15 ft range for 5000 W of input

power at 500 Hz is 89 dB which gives an S/N of -8 dB, this represents the

worst S/N figure. At 5000 Hz the SPL is 123 dB and the S/N is 12 dB. Signal

averaging thus became a mandatory process. Typically ten signal averages

were required to reduce the noise by 20 dB. And typically a center frequency

to filter band ratio of 10 was maintained with the bandpass filter to eliminate

broadband signal noise.

The acoustic signal measurement system consists of a broad-

band hydrophone (NRL USRD H56 reference standard hydrophone), signal

amplifier, bandpass filter, and a Nicolet 4094 digital oscilloscope (the Nicolet

has a signal averaging mode). The signal amplifier provided 40 dB of gain

necessary for lifting the signa: above the electical noise produced by the

transmission cable's 150 ft run from the tank to the building.

VIA NThe MHD transducer was mounted on a rotator column, depicted

in Fig. 5.12, and lowered to a depth of 15 ft. The MHD transducer and

hydrophone were separated by a distance of 18 ft, which placed the
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hydrophone well into the farfield over the entire trequency band, and

allowed a maximum gated transmit signal of 5 ms; the gate time was limited

by the surface reflection path length of the transmitted acoustic signal. The

5 ms gate time set a lower limit on the frequency band of the transmitted

signal to 500 Hz, which is 2.5 cycles.

E. MEASUREMENT OF THE MHD TRANSMITTING SENSITIVITY AND
DIRECTIVITY

The TCS on the waveguide axis was measured for the

frequency band from 500 Hz to 13000 Hz. A typical time domain pressure

signal received while making the sensitivity measurement, along with the

current waveform, are shown in Fig. 5.13. The acoustic signal shown is the

result of ten ping-to-ping averages and bandpass filtering.

The transmitting current sensitivity is defined in this thesis as 20

loglo of the peak pressure divided by the peak current. Figure 5.14 shows

the comparison of measured current sensitivity and the theoretical prediction
from Eq. (4.22b). Good agreement was found between theory and

• , experiment for the 500 Hz to 4000 Hz band with most measured values

within 2 dB of the theory. Erratic behavior of the measured data for

frequencies greater than 4000 Hz can probably be attributed to two causes.

First, two restrictions were placed on the theory on Chapter 3, Ra/Rs<<l and

kRa<<l. The first constaint is set by the geometry to be effectively 0.392,

which therefore might raise some doubt about the transducer design.

However, the good fit of the data at less than 4000 Hz seems to relax the

importance of this constaint. At 4000 Hz, kRa= 0.33 (which again is not much
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less than 1), may indicate that the aperture radius to wavelength restriction is

more severe than the constraint of planar motion of the particle velocity at the

aperture.

The second cause is the non-spherical construction of the

transducer (see Fig 5.1). Since the measured data do not diverge smoothly

from the theorx one would expect that diffraction caused by the irregular

geometry of the magnetic ý-',,uit structure is at fault. At 4000 Hz, the wave

length is 37.5 cm and the diameter of the ring structure is 29.2 cm, so

"diffraction should be expected. Given the geometrical restrictions of the

theory and good fit of data well beyond those restrictions one can conclude

that the theoretical approach is appropriate.

Shown in Figs. 5.15(a), (b), (c), and (d) are the measured and

predicied directivity patterns for 1001, 4000, 6000, and 10000 Hz (the

theoretical directivity patterns were computed by the FORTRAN program

MHD). The th, oretical directivities are shown for two different baffle radii to

emphasize the importance of the baffle size in determining the directivity

pattern. In Fig. 5.16 the equivalent baffle radius is compared to the actual

transducer geometry.

The directivity patterns were measured at 100 intervals for a

complete 3600 rotation of the MHD transducer. At 1000 Hz there is excellent

,-. data agreement with theory. At 4000 Hz there is some significant divergence,

and at 6000 and 10000 Hz the data and theory do not correlate, except near

the 900 and 2700 null. The directivity pattern at 4C00 Hz, and higher

frequencies, indicates that diffraction by other parts of the transducer is
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significant and is thus the cause of the divergence of the on-axis sensitivity

data above 4000 Hz.

F. MEASUREMENT OF THE THERMOACOUSTIC TRANSMITTING
SENSITIVITY

Measurement of the QVTS was made on the waveguide axis for

the single input frequency, in the band between 500 and 4000 Hz, which

corresponds to the transmitted acoustic frequency doubled band of 1000 to

8000 Hz. In order to measure the thermoacoustic signal it was necessary to

remove the waveguide from the magnetic ring structure, thus eliminating the

MHD signal. Accurate measurement of the thermoacoustic signal in the

presence of the MHD signal proved to be difficult because of MHD signal

interference. Even though the bandpass filter rejected 40 dB of the MHD

signal amplitude, spectral leakage was a problem.

A typical thermoacoustic time waveform is shown in Fig. 5.17.

Notice the frequency doubled pressure signal relative to the input current

signal. Noise was much more of a problem in measuring the thermoacoustic

signal since the pressure signal is typically 10 dB below the levels measured

for the MHD process.

The measured QVTS data and the theory are plotted in Fig. 5.18

as a function of the input signal frequency. The QVTS in this plot is defined

as the peak pressure divided by the square of the peak terminal voltage. In

this case the quadratic current transmitting sensitivity is related to the QVTS

by substacting 7 dB from the latter.
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The number of data points shown in Fig. 5.18 are limited due to

difficulties with the transducer fluid chemistry. The thermoacoustic data were

gathered several months after the experiment was set up, and during this

time the electrode surfaces had begun to corr•,,e. The electrodes are copper

with nickel and gold electroplated on the surface. At the time of the

thermoacoustic experiment the copper had apparently reacted with the

nickel and blistered the gold plate off the surface, exposing the now oxidized

copper surface. As a result large quantities of undissolved gases were

generated due to a copper oxide-chlorine reaction. After virtually each ping

the transducer had to be raised from the tank and checked for visible gas

oubbles, and the sodium chloride and water solution changed. Thus few

reliable data points were generated. However, the few points that were

obtained generally fit within 2 dB.

As a note to the problem of hydrogen and chlorine gas evolution

within the transducer, the gases seemed to stay dissolved until the saturation

concentration was reached for C12, which is 0.0004 moles/liter. In order to

produce this concentration in the waveguide a total charge transfer of 930C

is required. At 60 A-peak current the average current is 38.2 A; thus 1.54 s of

current is required to produce the saturation concentration of chlorine gas.

This is equivalent to 309 5 ms pings, which is enough data to generate the

data in Fig. 5.14. However, the transducer must be periodically shaken to

dissolve small nucleated gas bubbles which can sometimes form on the

surface of the electrode. The curious inconsistency in the production of

hydrogen and chlorine is that it does not seem to react to form hydrochloric
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acid according to Eq. (4.6) and thus neutralize the buildup of sodium

hydroxide that results according to the overall electrode reaction, Eq. (4.5).

The dissolved chlorine gas seems to reach saturation when bubbles are

noticed in the waveguide after approximately 250 pings.
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CHAPTER 6

CONCLUSIONS

This thesis has examined the behavior of an underwater acoustic
transmitter based on the magnetohydrodynamic principle. The transducer

consists of a waveguide filled with salt water and exposed to orthogonal

magnetic and electric fields. The magnetic field was generated by

permanent magnets, and the electric field was time harmonic in order to

produce oscillatory force on the salt water causing an acoustic signal. This

electric field results in electric current flow which causes heating and

thermoacoustic radiation of sound as well as producing sound through the

MHD mechanism. Both sound generating mechanisms were examined.

The linear inhomogeneous pressure wave equation which

characterizes the MHD and thermoacoustic sound mechanisms was derived.

The inhomogeneous equation was solved assuming a plane wave pressure

field within the waveguide. The plane wave field was matched at the

waveguide apertures to a spherical wave pressure field in the free medium

through impedance conditions at the waveguide apertures om the wave

field solutions the MHD and thermoacoustic mechanisn wansmitting

sensitivities were derived to predict the farfield radiation ,rom an

"hypothetical" spherically bafrled MHD transducer.

There were three phases of the experimental investigation:

measurement of the electrical input impedance, measurement of the on-axis

transmitting sensitivities, and measurement of the acoustic radiation
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directivity. Due to the weight limitations the transducer which was built did

inot resemble a sphere with a '1hannel through the center, as was assumed

in the theoretical development, but the measurements made correlated very

well with the theoretical predictions.

' A model of the electrode polarization impedance was used,

which produced accurate theoretical predictions. The polarization

impedance took into account the chemical diffusional impedance and

included a relatively simple model for the double layer impedance. It can be

concluded from the impedance measurements that a model of the

transducer which places the polarization impedance in series with the

electrolyte impedance is appropriate for NaCI-water electrolytes and noble

metal planar electrodes.

Measurements of the MHD transmitting sensitivity were, in

general, in good qualitative and quantitative agreement with the theory. The

data comparison shows that up to 4000 Hz the agreement is within 2.5 dB.

Above this frequency the predicted and measured MHD directivities diverge

significantly, due to the difference between the assumed and actual

transducer geometries.

The measured MHD directivity pattern at 1000 Hz showed

excellent agreement with the computed directivity. At 4000 Hz the directivity,

while corrupted due to the non-spherical nature of the transducer does

agree fairly well with predictions assuming a spherical baffle of 5 cm radius.

In general, at low frequencies, the transducer makes an excellent dipole

radiation transducer.
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The measurements of the thermoacoustic radiation were very

difficult to make, but given the limited amount of data one can see a

reasonably good theoretical agreement. Since time was not available to

measure reliable directivity patterns for the thermoacoustic source

mechanism, absolute validity of the sensitivity data is lacking. The directivity

of the thermoacoustic source is predicted by the computer code to be

omnidirectional within 0.05 dB for 1000 Hz. Measurements on axis and 900

"off axis were made and the values were within 2 dB; however, this is not

proof that there was actually a monopole directivity.

Considering the geometrical and wave number constraints of the

theory, all of the measurements are in good agreement and use of the theory

for even a "moderately" exceeded operating frequency range seems

justifiable.

The experiments reported here were limited to a frequency band

500 to 13000 Hz. At the low end of this regime, the size of the testing tank

was the limiting factor. Frequencies lower that 500 Hz would have been

interesting to examine since the lower frequencies necessarily imply larger

particle velocity amplitudes. Studies at higher velocity amplitudes might

V:• have given some indication of the range of validity of both the arnerture

acoustic impeda- model and electrical impedance model. However,

facilities for a larger free field environment and a means to increase the

source level were not available.

With regard to the input power available for the experiment,

sufficient current was not availabie to test the limit of the approximation
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imposed on the use of the linearized Nernst equation for derivation of the

diffusional impedance. Thus, nonlinear behavior of the polarization

impedance at large current densities would h'e an interesting phenomenon

to study more closely since any source using the MHD mechanism to

produce "practical" pressure levels (using an electrolyte) would be operating

in this nonlinear impedance regime.

Since the constraint on the small temperature rise assumption of

the thermoacoustic assumption allows (effectively) for a very large current

density, testing the effects of exceeding this limit might require the use of a

pulsed power genercz.tor or capacitor bank.
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APPENDIX A.1

DERIVATION OF THE MAGNETIC DISPERSION RELATION

The derivation of the magnetic dispersion relation to follow is

included to supplement the discussion of Chapter 2. The small signal

momentum, continuity, and state equations of Chapter 2 are restated below

with the exclusion of the thermoacoustic term present in the continuity

equation, Eq. (2.24), because the term simply generates terms of second

order compared with the dispersion term of the MHD source.

The equations derived in Chapter 2 are:

the small signal momentum equation,

Pout + Vp = JXB, (2.25)

small signal continuity equation,

Pt + Pov u= 0, (A.1.1)

and small signal state equation,

p = C.2 6p. (2.23)

The expression for the current density J from Chapter 2 is (neglecting the

displacement current),

J = T (E + uxB). (2.1)

Inserting the expression for J into Eq. (2.31),

pout + Vp = c (E + uxB) X B (A.1.2)

a momentum equation in terms of the new source field E and the damping

term ouxBXB is found. The divergence of Eq. (A.1.2) is now taken,

V2p + poV.ut = oV.(E + uxP'XB, (A.1.3)

123

W
? ,: .



and the continuity equation, Eq. (A.1.1), is differentiated with respect to time

with the state equation substituted for p,

"-Ptt
Vut = - (A.1.4)

Substituting Eq. (A.1.4) into Eq. (A.1.3) results in the inhomogeneous wave

equation,

V2p - 1/C02 ptt = uV. (E + uxB)XB. (A.1.5)

Since the goal here is the derivation of the plane wave dispersion

relation, the inhomogeneous term, cV. E, can be dropped and the

homogeneous wave equation can be written in one-dimensional form,

Pxx - 1/c02 pit - Y B0 2 Ux = 0 . (A.1.6)

From the continuity equation, Eq. (A.1.1) and Eq. (2.29), ux is related to p as

ux = -pt / Po Co2. (A. 1.7)

Substituting Eq. (A.1.7) into Eq. (A.1.6) yields the final form of the

homogeneous wave equation,

Pxx- 1/C0
2 p + aB0

2 /poC0
2 Pt = 0. (A.1.8)

The dispersion relation is found by substitution of the assumed

harmonic progressive form of the plane wave solution into Eq. (A.1.8),

p(X,t) = Po e j(IX-0t), (A. 1. 9)

which produces

(-k2 + (1/C02 ) 02 j(aBo2/poCo2) c0) poe i(kx-Ot) 0 . (A.1.10)
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Hence, the magnetic field dispersion relationship is

k = ca -B 
(A.0.2)

2o1o2

125



APPENDIX A.2

THERMOVISCOUS PROCESSES WITHIN THE WAVEGUIDE

This appendix will threat the justification for neglecting the

thermoviscous processes in the theoretical analysis of Chapters 2, 3, and 4.

Primarily the effects of viscosity are being neglected so as to simplify the

analysis and allow an unobcured treatment of the magnetohydrodynamic

and thermoacoustic acoustic source mechanism. The assumptions made in

the modeling process of the MHD transducer are justifiable in the framework
of the theory applied to the experimental transducer study and are not in

general always applicable.

Losses in a thermoviscous medium occur due to two primary

mechanisms, heat conduction and viscous molecular interaction. The losses

from these two mechanisms will be considered in terms of the acoustic

resonance quality factor, Qn, of the nth resonance mode. The quality factor

I will be used to compute the half power bandwidth of the nth harmonic and

compared to estimates from the theory of Chapter 3, which take into account

only radiation losses.

For plane wave propagation in seawater the attenuation due to

thermoviscous absorption at 10000 Hz is cTV of 8.1 X 10-5 Nep/m. 27 From

Kinsler and Frey 28 the expression for the Q is

Q Q n (A.2.1)
2 a

The first resonance mode is approximately the full wavelength

pressure mode; for a waveguide 0.10 m long the frequency is
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approximately 15000 Hz. Taking the wave speed to be 1500 m/s, Q1 is

260000. The half power bandwidth is therefore 0.06 Hz, a very "sharp"

resonance.

The attenuation coefficient due to the boundary layer losses for

an isothermal waveguide wall is given as 29

-- L+(A.2.2)

with the constraint on Eq. (A.1.1) that

1ks < k<<
k 8 110000 Hz < kRa 500 Hz k 8vise 500 Hz (A.2-3)

where 8 = 21lcPop is the viscous boundary layer thickness. For seawater

the following fluid property values are used for computing aTV.30

!• = 0.001 N s/m2  coefficient of viscosity

y = 1.01 ratio of specific heats
PO= 1026 kg/m 3  mass density
co= 1500 m/s adiabatic sound speed

For an aperture radius Ra of 0.02 m the theory is valid for the entire

frequency spectrum from 500 to 10000 Hz, with bounds of 0.000234 <<

0.0419 << 955.0. The aBL is 0.0035 Nep/m which yields a 0 1 of 5984 and a

half power bandwidth of 2.5 Hz.

Figure A.2.1 shows a graph of the maximum acoustic pressure

predicted by the theory presented in Chapter 3, which takes account of
radiation losses only. It is seen from this graph that the half power bandwidth

of 9400 Hz is very large compared to either of the numbers calculated
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above. Also plotted in the graph is the maximum pressure for a sound speed

of 650 m/s; again a large bandwidth is noted. The conclusion to be drawn is

that thermoviscous mechanisms play an insignificant role i4 the dynamics of

the acoustic processes occurring within the waveguide of the specified

geometry and frequencies of interest noted here.
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APPENDIX B

PRESSURE FIELD SPHERICAL HARMOMIC FUNCTION EXPANSION,

RADIATION IMPEDANCES, AND FARFIELD PRESSURE

The calculation of the mutual radiation impedance requires that

the acoustic field be specified. Therefore the first task is to specify the source

and boundary conditions. In this case the sources are two circular pistons

on the surface of a rigid spherical baffle radiating into an acoustic free space.

The pistons are positioned 180O apart on the sphere which gives the

radiation an axis of symmetry through the piston centers. Thus there is only

one angle V, on which the field will be dependent (see Fig. B.1). The results

that are presented follow directly from Sherman's 31 results with the above

conditions.

The pressure at any point in free space outside the sphere can be

expressed as the sum of the pressure fields generated by the individual

pistons,

pfm(r,4f) = p fm(r,xV) + p_ kfm(r,Nf). (B.1)

The spherical harmonic function expansion is stated below for the

pressure field resulting from one piston on the sphere.

p, fm (r, V) _j pfmcfmu(±t k)

S(P . (cosE ) - Pn÷1  (cose ))Pn (cos n)h'n(kr)

1 3n N x0kR (B.2)
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In Eq. (B.2), Pnil and Pn are the ordinary Legendre polynomials of order n±1

and n, cosE, and cosyf are the arguments of the Legendre polynomials

where E is the half angle of the source radius, and q is the coordinate angle

referenced to the source symmetry axis. hln(kr) is the Hankel function of the

first kind of order n and is a function of kr, where r is the radial distance to a

point in free space and R is the sphere radius.

The calculation of the mutual radiation impedance follows directly

from Eq. (B.2). The pressure is evaluated on the surface of the sphere, r= R,

substituted into Eqs. (3.4a,b) and integrated over the angular sector of the

source aperture from q = 0 to V = e. For the case of the waveguide geometry

used in the experiment the mutual impedance is as follows

Z_ Ulm (riV) = +jpfmcfm&e'"_

00 ~21
1 (Pn- 1 (COS ) - Pn+l (cosE)) h , (kR)

S2n+1 d h I MIxk
., 2n=o d-hn(x)j x=ka (B.3)

where Ii is the relative temporal phase between the sources.

Equation (B13-) is va!id for both apertures provided they are of

equal radius or as stated above, angular sector E. The expression is

independent of the magnitude of the particle velocity since the aperture

velocity distribution was assumed to be purely planar motion.

Calculation of the farfield pressure is accomplished using the

farfield approximation to Eq. (B.1), which is to say the approximations are

made in Eq. (B.2). Note that Eq. (B.2) is an exact solution to the pressure

13
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field for the stated boundary conditions. However, when in the farfield, the

large argument form of the Hankel functions save much computational

overhead. Without proof the farfield analog of Eq. (B.2) is stated below. See,

again, Sherman for a more complete discussion.

pff (r,4) = JPfm cfmejkr

2kr

-u(-C.) (Pn-1 (cosa) - Pn+I (cose)) Pn (-cosI) e-ju(n+l)/2

n=o d h1MI xk
d"1 dx hn (x x-kR

+ u . ( P n -1  ( c o s E ) - P n4 l ( c o s-) ) P n ( c o s ' ) e f t (n+ l )/2

f.n=o dx hn ) x-kR (B.4)
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APPENDIX C

REFLECTION COEFFICIENT EQUATIONS

Due to the complexity of the coefficients a hierarchy of dummy

variabies are defined below to construct more simplistic forms.

A = e-jk9. (C. 1 a)

B = ejk9. (C.1 b)

C = eika- eikb (C.lc)

D= e-jka - ejkb (C.ld)

". The dummy variables for the MHD reflection coefficient equations are as

follows.

A = BD(1 - Zs/PoCo) - BC Zm/poco (C.2a)

= AD(1 + Zs/poco) - BD Zm/poco (C.2b)

= BC(1 - Zs/Poco) + AC Zm/poco (C.2c)

= AC(1 + ZspoCo) + AD Zm/poco (C.2d)

E = BC(1 - Zs/PoCo) - BD Zm/poco (C.2e)

F = BD(1 - Zs/poco) + AD Zm/poco (C.2f)

= AC(1 + Zs/poco) - BC Zm/poco (C.2g)

H = AD(1 + Zs/poco) + AC Zm/poco (C.2h)

The coefficients for the MHD reflection coefficient equations, Eqs. (3.18a,b),

are as follows in term of the above underlined dummy variables.

C1 = A F- BLE (C.3a)

C2 =AH- B.Q+-CE-12-E (C.3b)
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03 = - H-D-Q(0.3c)

04 = QE-Aa(0.3d)

C5 +Q F Q - -H(11.3e)

06 = E-131- (C.3f)

The dummy var:Iables for the thermoac-oustic reflection coefficient equations

are as follows.

-A = BD(1 - ZS/p~cO) + BC Zm/pOcO (C.4a)

= AD(1 + Z./p~cO) - BD ZmlpOcO (C.4b)

-Q= BO(-1 + Z Ip~cO) - AC Zm/poOO (C.4c)

D= -AC(1 + Z./p~c.) + AD Zm/poOO (C.4d)

= BC(l - Zs/p~cO) + BD Zm/pOcO (C.4e)

E- = B D(-1 + Z./p~cO) - A D Zm/pOcO (C.4f)

=Q AO(l + ZS/p~cO) - BC Zm/pOcO (C.4g)

H =AD(1 + ZS/p~cO) + AC ZmIpOcO (C.4h)

* The coefficients for the thermoacoustic reflection coefficient equations,

Eqs. (3.30a,b), are as follows in term of the above underlined dummy

variables.

C, AE -QE (C.5a)

2= C AH- a+QFD-E(C.5b)

03= (C.5c)

04 Q (C.5d)K 5= D-+.QE-fi-AHj (0.5e)
06 D- F- 5 1 (C.5f)
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APPENDIX D

COMPUTER PROGRAMS

The numerical computation of the theoretical relations presented

in the text of this thesis wcre computed by the FORTRAN programs MHD and

"THERMO. MHD is the analysis code for the magnetohydrodynamic source

mec-hanism and is capable of computing the following relations as a function

of frequency.

1) Aperture Reflection Coefficient
2) Complex Aperture PressL re and Particle Velocity
3) Complex Aperture Real and Self-Impedance
4) Complex Electrical Terminal Impedance
5) MHD Transduction Process Power Efficiency
6) Transmitting Current and Voltage Sensitivity
7) Farfield Pressure Directivity (single frequency)

The input parameters for "MHD" are

1) Frequency Band and Frequency Step Size
2) Waveguide Dimensions
3) Electrode Dimensions and Position within the Waveguide
4) Spherical Baffle Radius
5) Fluid Properties Inside and Outside the Waveguide
6) Conductivity of the Fluid Inside the Waveguide
7) Magnetic Induction and Current Density Amplitude in

the Waveguide

THERMO is the analysis code for the thermoacoustic source

mechanism. The following relations, as a function of frequency, are

computed by THERMO.

136



I

1) Aperture Reflection Coefficient
2) Complex Aperture Pressure and Particle Velocity
3) Complex Aperture Real and Self-Impedance
4) Quadratic Current Transfer Function (QCTF)
5) Thermoacoustic Transduction Process Power Efficiency
6) Quadratic Voltage Transmitting Sensitivity (QVTS)
7) Farfield Pressure Directivity (single frequency)

THERMO has the same input parameter list that is given above

for MHD except the following properties for the fluid within the waveguide

are needed: specfic heat capacity at constant pressure and coefficient of

thermal expansion.

N.
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3 ~ ~PROGRAM MHO( INPUT. OUTPUT, DATA. TAPE2-INPUT. TAPE4..DATA
I, PLOT. TAPE5-PLOT I

C
................................................................................................ 4

C
C PAOCRAM (*40 PERFORMS A FPEOUENCY DOMAIN ANALYSIS OF THE ELECTROACOUSTIC
C TRANSMITTING CHARACTERISTICS OF A PLANE WAVE MODE MHO TRANSDUCER
C 1*40 GENERATES GRAPHIC OUTPUT FOR THE FOLLOWING TRANSDUCER
C CHARACTERISTICS
C
C 1) MAGNITUDE OF THE REFLECTION COEFF (MRNL) VERSUS FREQUENCY (FREO)
C 2) MAGNITUDE OF APERATURE PRESSURE (RPNL) VERSUS FREO
C 3) DO LEVEL OF THE APERTURE PRESSURE (RPNL) VERSUS LOGIO(FREQ)
C 4) - - OF APERTURE PART VEL (RVUL) VERSUS LOGIGIFREO)
C 5) IMAGINARY (IADMI VERSUS REAL (RADM) INPUT ELECTRICAL ADMITTANCE
C 6) - hELl) - (ZELR) . IMP'EDANCE
C 7) DO LEVEL OF RADIATED ACCUSTIC POWER (PR) VERSUS LOGIO(FREOI
C 8) REAL COMPONENT OF INPUT ELECTRICAL POWER (PER) VERSUS FREO
C 9) REACTIVE - -(PERECT) .

C 10) DO LEVEL Or TRANSDUCTION POWER EFFICIENCY (EFFIC) VERSUS LOIQI(FREO)
C 11) DB LEVEL OF TRANSMITTING VOLTAGE SENSITIVITY (TVSL) VERSUS LOGFREO
C 12) 05 - 0 CURRENT (TCSL)
C 13) APERTURE ACOUSTIC SELF IMPEDANCE REAL COMP (ZFMR) VERSUS Ff.-.O
C 14) : I MAGINARY - ZFMI) -

C 15) - MUTUAL - RIFAL - (ZMR ,
C 16) - - IMAGINARY -(ZMI)

C 17) RATIO OF THE MAGNITUDES OF ZM / Z FM VERSUS FREO
C 18) PRESSURE LEVEL DIRECTIVITY
C 19) ANGLE OF PRIMARY BEAM VERSUS FREG
C
C DATA INPUT IS THROUG.4 THE S-- I DATA STATEMENT AT THE END OF THE
C MAIN PROGRAM
C
C.....................................................
C

COMMION /ZIP/ A, B.L. LY, Li.SRAD. ROD. COD, RON CON. P1. 8)
I. CD. CON. FOF. P.FD
DIMENSION FREQ)IOOO).FLOO(1000).PRIIOO0).PSPL(1000)
I:RPNLCIOOD0) RNL)IOO0).RADMIIOOO).IADM)I000),MRNL(1000)
2.TCbL(I000) TVSLIIOOO).ANGMAX(1000),RA)IO000)

3,ZMR(2000) ZMI(IO00).ZFMR(I000).ZFMI(IO00).RATIO(I000)
4. ZELR(IO0O). ZELI)I000).RVL(IOOO)
5. PER( 1000). PERECT( 1000). EFFICh 1000)
COMPLEX RNL))000).RL(1000).PN'L(1OO0),PL(1000)
I. VNL( 1000),VL) 1000)
2, GLNLA. GLN.B. GRLA. GRLB. GLDBB.LAB, GRAA, GRBA
3, GXLNLA. GXLHLB. OXRLA. GXRLB, PE

4 ~4, ADMI (1000). ZEL( 1000)
REAL IADM.X,.LLY,LZ,MRN.
INTEGERF I.N

C N -(FF-FO)/FD + I

C PRIMARY CALCULATION LOOP
C

DO I I-I.N
C CALCULATE THE WAVE NUMBER AND FREQUENCY

P. - (2 *PI*FO - FLOAT(I-1).2 *PI.FD)ICOD
FREOCI) - K4COD/(2 -PI)
FLOGII) - ALOGIO(FREO(t))

C REFL EVALUTES THE APERTURE REFLECTION COEFFicxrNT
CALL REFL)P.,RNL(I).RL(I).MRNL(.().ZMR(II. ZMI(I)

CI. ZFMRCI), ZFMI1I))GRIEE EVALUATES THE PLANE WAVE GREENS FUNCTION
CALL GREEN(K.A. B.L.RNL(I).RL(I).GLNLA.GLNLB.GRLA.GRLB
I. GXLNLA, GXLNLB. OXRLA. GXRLB. GLBB. GLAB, GRAA, GRBA)

C GO TO 50
C ZN AND IS ARE THE MAGNITUDES OF THE APERTURE SELF AND MUTUAL IMPEDANCES

IMl (ZMR(I)'.2 *ZMI(I)..2 ).- 5
ZS - )FMR(I).2 *ZFMIII)..2 )-o 5
RATIOMI - ABS(ZM/ZS)

C PRES EVALUATES THE APERTURE PRESSURE IN THE WAVE GUIDE
CALL PRES(GLNLA.GLNLB.GRLAGRLB.P)4.(I).PL(I)I
RPNL(I) - CABStPNL(II)
PSPL(I) - 20 *ALOGIO(RPNL(I)/ 000001)

C VEL EVALUATES THE APERTURE PARTICLE VELOCITY
50 CALL VdL)., GXLNLAGXLNLB.GXRLA.GXRLBVNL(I),VL(I).UI.U2,FI.F2)

C G0OTOI100
RVNLII) - CABB(VL)I))

C ADM EVALUTES THE INPUT ELECTRICAL ADMITTANCE
CALL ADMIK. GLBB, GLAB, GRBA, GRAA. ADMI (I))
RADRII) - REAL(CMPLX(I .0 )/ADMI(I))
IADM(I) - AIMAQ)CMPLXII .0 )/ADhII(I))

C ZEL IS THE COMPLEX ELECTRICAL IMPEDANCE
ZEL(') - CMPLX)I 0 0)/ADMIhI)
ZELR)I)- REAL(ZELCI))
ZELI(I)- AIMAGIZELII))

C RADPR EVALUATES THE RADIATED ACOUSTIC POWER
CALL RADPR)LY.I.ZZFMR(I(,VL)I).PRRI
PRMI 20 *ALOGIO(PRR)

C PE IS THE AVERAGE COMPLEX INPUT ELECTRICAL POWER
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PE - CMPLX(CD*CD.(D-A).LY.LZ/(2 *CON).O 0)
I CMPLX(0 * CD.CD*OMBIM.LY.LZ/(K.ROD.COO*2
2 (CLBB-CLAO-GRBA.GRAA;
PERCII - REAL(PE)
PERECTII) - AIMACIPE)

C EFFIC IS THE TRAMSDUCTION PROCESS EFFICIENCY
EFFICCI) - 20 *A4OCIO(PRR/PER(II)

C CO TO I
C
C SEN EV'ALUATES THE PRESSURE RADIATION PATTERN, TRANSMITTING CURRENT AND
C VOLTAGE SENSITIVITIES AND THE ANGL'T OF THE MAIN LOVE

A C
C IF A DIRECTIVITY PLOT IS DESIRED SET FLAG - 1 0 4DB SCALE)
C AND / OR SET FLAG2 I 0 (LINEAR SCALE)
C SET FLA(; AND FLAG2 - 0 0 OTHERWISE
C SET THE FLAGS IN THE IF STATEMENTS BELOW. ONLY
100 FLAG *0 0

FLAG2 *0 0
IF(I EQ 1) FLAG-I 0
IF(I EQ 1) FLAG2. 0

C IF THE SENSITIVITY ON THE X AXIS IS DESIRED SET FLA03 - 0 0
C IF THE MAXIMUM SENSITIVITY IS DESIRED SET FLAG3 - I 0
C FLAG3 MUST EQUAL I 0 WHEN DIRECTIVITY PLOTS ARE REQUESTED
C

FLAG3 - I 0
C

CALL SEN(FREQ(II.UI.U2.PlP2.GXLNLA.GILNLB.GXRLA.CXRLB
I.GLBB.GLAB.GRBA.GRAA. TCSL(I). TVSL(I).ANGNAX(I I.FLAG.FLAG2.FLAG3)

C WRITE(4,.) FREQ(I).FLOG(I),TCSL(I)
I CONTINUE

C
C D2PLT PRODUCES A NEUTRAL PLOT FILE FOR PLOTTING ON THE TEKTRONICS
C

CALL D.PLTCN.FREQ MRNL. I)
CALL D2PLTiN.FREQ,RPNL.2i
CALL D2PLT IN.FLOG. PSPL. 3)
CALL D2PLT4N, FREQ. RVNL. 41
CALL D2PLT(N. FREQ. IADM, 3)
CALL D2PLT(N. FREO. RADI. 8)
CALL D2PLT(N, FLOG. PR. 7)
CALL D2PLT(N. FREQ, PER, 6)
CALL D2PLT(N. FREQ. PERECT, 9)
CALL D2PLT(N. FLOG. EFFIC. 10)
CALL D2PLT(N, FLOG. TVSL, II)
CALL D2PLT(N,FLOO,TCSL. 12)
CALL D2PLT(N.FREO,ANCMAS. 13)
CALL D2PLTIN:FREQ.ZRO 4
CALL D2PLT(N FRED. ZMI. 13)
CALL D2PLT(N, FREQ, ZFMR. 18
CALL D2PLT(N.PREQ. ZFMI. IT)
CALL D2PLT(N, FREQ. RATIO. 16)

* STOP
END

C
.........................................................C...........

CI, BLOCK DATA
C
C VAR'-BLE INPUTS TO PROGRAM MHD
C

.e~ IC A LEFT BOUNDARY OF SOURCE VOLUMF (METERS)
NC a RIGHT-

C L TOTAL WAVEGUIDE LENGTH (METERS)
C LY TRANSVERSE WAVEGUIDE LENGTH Y-DIR (METERS)
C LZ - Z- I R
C BRAD RADIUS OF SPHERICAL BAFFLE (METERS)
C ROD FLUID DENSITY IN WAVE GUIDE (KG/METER..3)
C COD - SOUND SPEED " - (METERS/SEC)
C ROM FLUID DENSITY IN FREE MEDIUM (KG/METER..3)
C CON - .3UVND SPEED - (METERS/SEC)

C OM MAGNETIC INDUCTION FIELD AMPLITUDE (WEBERS/METE,'lC2)
C CD CURRENT DENSITY AMPLITUDE (AMPERES/METER.C2)
C CON ELELTRICAL CONDUCTIVITY OF FLUID IN WAVEGUIDE (I/OHMS METER)

4.C FO INITIAL CALCULATION FREQUENCY (HERTZ)
C FF FINAL
C FD FREQUENCY STEP SIZE (HERTZ)
C9 ~COMMJON /ZIP/A.O.L LY.LZ,SRAD,ROD.COD,ROM.COM.PIBM

I. CD.CON.P0, FF. FD
REAL L LY.Ll
DATA A. B. 1.LYLZ SRAD. ROD. COD. Rom, CON, Fl. OH, CD. CON. PO. FF. FD/

1-0 03.0 05. 10.0 0310.0 0301. 05. 1041 .1550 .990 .1481

lkC 2.3 1415qO 40.,14436 .5 20,250 .10000 .50I

C PHYSICAL PROPERTIES
C
C 6% NACL-H20 SOLUTION ROD - 1041 COD - 1536 1800 (MEASURED)
1.
C MERCURY ROD - 13600 COD - 1450
C
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END
C
C ....... I ...........................

C
SUBROUTINE REFL(K.RSNL.RSL.RSNLI.1.inn. 21. ZSR. 1511

C
C SUBROUTINE REFL CALCULATES THE COEFFICENTS AND ROOTS OF THE
C REFLECTION COEFFICIENT COMPLEX OUADRATIC EOUATION
C

COMMON 'ZIP/A. S.L. LY.LZ. SRAD. ROD. CO. RDn. COM. P1. M, CD. CON.FO. FP.FD
COMPLEX KA.KB. KL2..S. ZM.AI.01I.CI. DI.A2.02. C2 02. EO.F2. 2. 12

I. CII. C22. C3. C44. C5. C66. RSNL. RSL. ,lLL. RLNL
REAL L LY.LZ.K.PC
PC - ROD-COD
KA - CMPLXCO O.K'A)
KB - CMPLXCO O.K*B)
KL2 - CMPLX(O O.K*L/2)

C CALCULATE THE APERTURE IMPEDANCES
CALL MISPtK.COO. ZtIR.ZMI. ZSR. 1513
iS - CMPLX(ZSR.ZSI)/CMPLT'PC.O 0)
ZM - CMPLX4ZMR.ZMI3/CMPLX(PC.O 0)

C CALCULATE THE OUADRATIC ECUATION COEFFICIENTS
Cl - CEXPIRA? CEXP(K133
DI - CEXP(-I(A) CEXP(-KC)
Al - CEXP(-KL:'3
01 DI CEXP(Kt2)
A2 - 0I.DI.(CMI'LX4I .0 O)-iSl-BI.CI-ZM
032 - AI.DI.(CMPLX(I .0 OI.153-BI.DI.ZTI
C2 - 01.Cl.(CMPLX(I .0 0-ZSI.AI*CI*ZM
02- At CI.(CMPLX(I .0O3ZS)-AI.:DI.ZM
E2 0 BICI.CMPLT( .0 0 -ZS -BI.DIZM
F2 0- IDI.(CMPLX(I .0 01-2S).AI.OI.ZM
02- AI.CI.(CMPLX(I .0 03.ZSI-BI.CI-iM
H42 *AI.DI.(CMPLT(I .0 Ol.ZSI.AI*CI.ZM
CIL A2*F2 - 02-E2
C2.' A,2*H2 - 1202-C2 C2.F2 - 02-E2
C33 *C2.H2 - 02.02
C44 *C2.E2 - A2.C2
C55 02:OE2 *C2.F2 B- 12.2 - A2.H2
C66 *D2 F2 -2 H214

C CALCULATE THE COMPLEX ROOTS UMING THE IMSL ROUTINE ZQADC
C THE ROOT WITH THE MAGNITUDE LESS THAN ONE IS PHYSICALLY
C MEANINGFUL THE OTHER IS DISCARDED

CALL ZQADC(C:I3. C22.CII.RSNL.RLNL. IER)
CALL ZOADO (066. 055. C44. RSL. RLL. IER I
RSNLM - CABS(RSNL)
RETURN
END

C

CMISP EVALUATES THE SELF AND MUTUAL ACOUSTIC IMPEDANCES IF THE WAVEGUIDE

CAPERTURES THE RESULTS ARE INPUT TO REFL TO EVALUATE THE REFLECTION
CCOEFFICIENTS

C IPUSES THE EQUATIONS DEVELOPED BY C H SHERMAN TO EVALUATE THE MUTUAL
CADSELF IMPEDANCES OF TWO CIRCULAR SOURCES W13 DECREES APART ON THE

CSURFACE OF A SPHERICAL BAFPLE
C

DIMENSION P3IOOO),WK(2000(.JI(10O00.YI:10003.
IPI (10001
COMT¶ONfZ IF/A. B.L. LY Li. SRAD. ROD. COD. ROM, 0DM P I. BM. CD. CON,P0. PP. FO
REAL JI,YI.L.LY.Li
INTEGER I.MN

C N IS THE NUMBER OF TERMS IN THE SVM REGUIRE.. r0n CONVERGENCE AT
C LARGE VALUES OF IK*RD

N - 50
C RD IS THE EFFECTIVE RADIUS OF THE CROSS SECIION OF A RECTANGULAR
C WAVEGUIDE

RD - SORT(LY.Li/PI)
I - ATAN(RD/SRAD3
0 - ROM.COM.SRAD.SRAD/(RD.RD)

C INITIALIZATION OF LF.GENGRE POLY'i0MIALS

* P3)I COS(T)
P1(I) 1 0
P3(23 * 1 0

M " N*2C CALCULATION OF LEGENDRE POLYNOMIALS BY RECURS!ON
0O I I&.3,M
RI - FLOATIK)
n2 - RI 1 0
P3K13.1 PI3).P(Ii((2 .RI.I 'flI.I '-?IK-~I.RI/(RI.I
Pl(133 PI(2).P1313-13.,2 -R2.1 )/(R2 I )-~Pl(K-23.P2/(RP.II

I CONTINUE
C THC BESSEL FUNCTION EVALUATIONS ARE PERFORP9:D BY
C MMBT,.13 AND MMBSYN 3IMSL ROUTINEII)

X W*SRAD/COM
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CALL MMBSJRCX. 5.N.3.JI.WX. IER)
-. P ~CALL MXIDSYN(X. 5.N:3-y.YICIR

ZRMI - 0 0

ZCRI - 0 0

CTESERIES ARE SUMMIED IN THE I LOOP
C OCAL.CULATE THE SELF AND MUTUAL IMPEDANCES

51 FLOATI

I (S- (X -YI I (- II . )

DI - J(ISI.Y(.IJ(II.I

AS D 2/D
CPL - -0/0

025 -. /Q :1(2 .451 1. ).(P(I)-P(I.2)l..

RTI 0 2M:CRS*ZRMI
ZCMI GZt1*P L ZCMI
IRSI OzGS.RS.ZRSI
ZCSI C 2S.CPL-ZCSI

i CONTINUE
C RESULT

C M * GqRMI
CX G GzCM I
R G G. zRS I
CX C ,.ZCS I
RETURN
END

C................................................
C

* ~~~SUBROUTINE GREENIA. A. B. L.RNL. RL. GLNLA. GLNLB. ORLA. GRLD
I. GXLNLA. GXLNLII, XRLA. GXRLD GLOB. GLAD, GRAA. CRIIAI

C
C CREEN EVALUAIES THE PLANE WAVE CREEN'S FUNCTION FOR THE WAVE FIELD IN
C THE WAVECUIDE AT VARIOUS LOCATIONS
C

COMPLEX CC. NA. '.0.L2. RNL RL. GLNLA, CLNtI. GRLA. GRLB. GLID. GLAD
I. GRAA. GRDA. LA. LB. A. RB
2. GXLN.A. GXLNLII GXRLA. GIRLD

RFAL (.L
VIA - CMPLX(O K-A)
('.0 CMPLX(O K-'.B)

KL C MPLX(O KN-L/2
CC *CMPLX(O .1 ) /(CFPLX(2 .K.0 (.(CMPLX(I .0 )-RNL*RI.I2
LA *CC. (CE XP( 'Al - RL.CEXP(-KA))
RA - ICC(CEXPI-KA!I.RNL *CEXPINKA:)
LO - CC.(CEXP(K").RL- C EXP'- 'BI)
RB - CC.(CEXPl-KB(.RNL.CEXP(KD)l

C THE GREEN'S FUNCTIONS

LA:- LB:,(CEXP(-;KA.).RNL;CEXPX(K'A)
GRAA RA (CEXP('A)*RL-CEXP I- A) )
GLOB-. LD.(CEX(_ DI.RNL CEXPI(B0))
ERBA- RA*(lCEXP(KNBI*RL-C EXP(P-('BI I
GLNLA . LA 4CEXP(KL2) RNL:CEXP((-K'L21
QLNLB - LB: CEXP ( L2 :R NL CEXP(-K'L2 ))

CRLA - RA.(CEXP(AL2I.RL:CEXPIRL2))
ORLX * B(CX(L2I.RL CEXP -KL2I

C DERIVATIVES OF THE GREEN'S FUNCTI ONS (WRT X)
GILNLA - CMPLX 40 O.-K)*LA.(CEXP(KL2) - RNL:CEXP4-KL2I(
OXLNLB - CFIPL X(0 O.-K).ILBS.(CEXP (KL2I - RNL CEXP ,-KL2I
OXRLA - CMPLXi0 O.K).IRA.(CEXP(K'L2) - RL.CE;XP(-KL2 ))
QXRLB - CMPLX(O O.K).RD.CCEXP(K'L2) - RL.CEXPC-K'L211
RETURN
END

C
.............................................................................
C

SUBROUTINE PRESIGLNLA. GLNLD. ORL.A, RLB. PNL. PL)

C PRES EVALUATES THE APERTURE PRESURE
C PNL IS THE COMPLEX PRESSURE AT THE LEFT APERTURE
C PL ' -RICHTI

C
COMMON /ZIP/ A.DOL. LY.LZSRAO. ROD, COD. ROM COMPIBM.CD
1. CON. FO. FF. FD
COMPLEX PNL. PL. GLNLA. GLNLB. GRLA, GRLD
PNL : CMPLXIBM.CD 0 )(C(LNX.A -GLNLBI
PL *CMPLXIBM.COO )(C(RLA -GRLB)

RE TURN
END

C
....................................... I........................................
C

SUBROUTINE VEL(K GXLNLA. GXLNLB.GXRLA,GXRLI. VNL.VL.UI.U2.PI.P2)
C
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C VEL EVALUATES THE PARTICLE VELOCITY AT THE APERTURE
C VNL IS TiE COMPLEX PARTICLE VELOCITY AT THE LEFT APERTURE
CVL -" " " -
C CC'PTION /Z IP/ A, B. L. LY. LZ. SRAD. ROD, COD, ROn. COM. P. .3M. CD, CON. FO. FF. FD
C COPLEX VL.GVNL.OLN.ACXLM.O. GXRLA, GXRLB

: REAL K
VNI. CMPLX(O O.-BM-CD/(K-RtOD-COD))-(CXLNLA - XLNLB)

VI. C-.PLXO 0,-BMCD/(K.RUD.COD)).(GXRLA gXRLS)
U) - CABS(VL)
U- CADS(VNL)
Ull - REAL(V.L)

C THE CONDITIONALS DELOW EVALUATE IHE RELATIVE PHASES OF THE APERTURE
C PARTICLE VELOCITIES REFERENCED TO THE SURFACE OF THIE SPHERICAL BAFFLE

IF(UIR CE 0 0 AND U22 LT 0 0) THEN
PI - 3 1414092654

ELSEIFRUII CE 0 0 AND U22 GE 0 0) THEN
PI - O00

P2-O0
C ELSEIFgUl LT 0 0 AND U22 LT 0 0) THENPI - 3; 141592654

PZ - 3 141592654
ELSE

API 3 141L92AA4
P2 -0 0
ENDIF
RETURN
END

C
C .................................................................e
C

SUBROUT INE ADM( K.. (LED. LA0, (RBA, GRAA, ADll|)
C

C ADM EVALUATES THE ELECTRICAL INPUT ADMITTANCE OF THE TRANSDUCER
C ADMI IS THIF COMPLEX INPUT ADMITTANCE (OHMS)
C

COMM•ON / ZIP/ A L.LY.LZ,SRADRODCODRDM.COn.PI. BP.MCD.CON. FO. FF.FD
COMPLEX ADMI LBB, CLAD. GRDA, CRAA
REAL LLY. LZ. K
ADII - CMPLX(LZeCON.(B-AI/LY.0 )
I CM;PLX(O O° - *BM.LZ.CON.CON/(K.COD.ROD.LY) )*(GLBB-GLAB-GRBA.GRAA)

RETURN
END

C

C ...........................................f........*.....C

SUROUT INE RADPR( LY, L.Z ZR. Vt. PR)
C
C RADPR EVALUATES THE RADIATED ACOUSTIC POWER AT THE APERTURES
C

COM•PLE X Vt.
RAM LY, LZ.PR

PR C (CABS(VL)*.2 )*ZR.LY.LZ
RETURN

END

C
Ceeloooe ... ele i. ...... * e ..... l.e..i..i. 0e ......... ................le
C

SUBROUT INE SEN(FREO. UI, U2. MUI,H U2. GXLNLA. GXLNLB. CXRLA, GXRLB
C
C SEN EVALUATES I)THE FARFIELD PRESSURE DIRECTIVITY, GIVEN THE AMPLITUDES
C OF THE APERTURE PARTICLE VELOCITIES AND PHESES
C 2)THE TRANSMITTING SENSITIVITIES AT ONE METER PER UNIT AMP AND VCLT
C THE FARFIELD PRESSURE IS CALCULATED USING C H SHERMANS RESULTS
C

I, GLBS. CLAB. CRBA. CRAA. TCSL, TVSL. ANGMAX. FLAG. FLAC2, FLA03)
COMMON /ZIP/ A, D.LLY.LZ, SRAD, ROD.COD. ROM, COi.PI. BMCD, CON

I *PO, PP. FD
DIMENSION L(10.0).LI (0I00, IO), L2(I00, I00), JI (100)
I. YI IO0), WKI410),PSI 0(5)2

.PSL( 10). AN(G105)
3,PN(I105)
COMPLEX GXLNLA. GXLNLD. GXRLA. GXRLB. GLBB. GLAD. GRBA, GRAA

I. P II( 103 ),DH, C II, C22, C3., UVMI SUt12. UMlI I,SDVM22. PI. P2, AI, A2
INTEGER NND,I,J

REAL LO, .1.L2.MUI,MUV. KA, KRL LY, LZ. JI
C
C N IS THE NUMDER OF TERMS REQUIRED FOR CONVERGENCE OF THE SERIES EXPRESSION
C FOR THE FARFIELD PRESIURE ND IS THE NUMBER OF POINTS CALVLATED ON THE
C DIRECTIVITY CIRCLE R IS THE RADIAL DISTANCE(METERS) IN THE FARFIELD AT WHICH
C PRESSURE CALCULATION IS MADE

DATA N, ND. R/55° 7. I I

NPTS - ND
RD - SGRT(LY.LZ/PI)
T - ATAN(RD/SRAD)
KR - 2 *PIPFRP'O/%OM.R
KA - 2 *PI.FREO/CCM.SRAD
Al - CMPLX(O . (ROMCOM.UI/R)ISORTISRAD.SRAD/(2 *PI.KA)))
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A7 a CMPLXf0 IROM.COM.U2/R).SORT(SRADOSRAD/(.2 *PIOl.AII)
C INITIlALIZf THE LECENDRE POLYNOMIALS

LOCI) -0 0
I .~LOC.') - 1 0
& )'~L013) - COSCT)

C CALCULATE THE -~OLVNOMIALS BY RECURSION
DO I 1-4.N-."
At - FLOAT(I-:Il
LOCI) -(2 *RI.I )/IRII ).LO(3).L0(11)-R:/IRtI 1.10(1-2)

I CONTINUE
C CA IS TH4E ANGLE STEP SIZE

DA 2 PI/FLUJAT(ND-1)
* ~C CALCULATE THlE ANGLE DEPENDENT LEGENDRE POLYNOMIALS

DO . J.I.NDAII
ANGLE = LOAIJ-I)IDA
LIII.,)' 1 0
LII2.J) COS(ANGLE)
L2(I..J) 1 0
L2(.".,' ) COSIPI-ANGLE)
DO 3l K.IN

3 CONT INUE
IF(FLAG3 EQ 0 0) GO TO 20

2 CONTINUE
C MMDSJR AND MMOSYN CALCULATE THE BESSEL FUNCTIONS OF THE FIRST AND SECOND

C K'INDS RESPECTIVILY
20 CALL MrMDS.JRI.A. 5.N-I.JI,WK.IER)

CALL MTISSYN(KA, 5,N.I.YI, IER)
CIL - CEXPICrPLX(0 0.-hUll
C.22 - CEXPICMPLXI0 0. -MV2))

C CALCULATE THE N DEPENDENT TERMS
DO 4 1-3,N.2
C3 - (FLOATit)-3 I/KA.JI(II2).jI)I-1)
C4 - IP-LOATII)-3 )/KAA.Y1112)-YI)1-1)

0-CEXPCCMPLX(0 0. -P1/2 *FLOATII-21)))
DH4 - CMPLXICC,C4)
P1111-2) - CIlPLX(LOII-2)-L0111.O O.*C5/DH

4 CONTINUE
C SUM THE N TERMS

DO 0 .J.I.ND
SUMII - CTIPLX(O 0.0 0)
SUM22 - CMPLXlO 0,0 0)
DO 6 I-I.N
SUMI -PIlII).CMPLX(LI(I.J,IOO0) aSUMII
SUM.' - P1111).CMPL~tL2(IJI. 0)l SVDM22
SUMII -SUMI
SUM22 - SU112

6 CONTINUE
C CALCULATE THE ANGLE

ANGIJI - (FLOAT(J) -1 0)*DA-180 /PI

P2 - A2.C22.SUM2
C SUM THE PRESSURE FIELDS OF THE SOURCES COHERENTLY AND FIND
C THE MAGNITUDE

PSl(11 CABS(PI - P2)
PSLIJ) -20 *ALOQIO(PS4J?/I OE-06)
IF(PSL)J) LE 90 0) PSL(J) - 90 0
WRITE(4, *IPSL(J)
IF(FLAC3 EQ 0 0) 00 TO 30

5 CONTINUE
F(FLAG EQ 1 0) CALL D2PLT(NPTSANG.PSL. 191

C IF(FLAGI' EQ 1 0) CALL D2PLT(NPTS. ANG. PS. 20)
C LOCATION OF THE MAIN BEAlM AXIS
:30 YMAXI - PSWI

IFIFLAG3 EQ 0 0) GO TO 10
ANOMAX - 1 0
DO 7 1-2. NPTS
YMAX - AMAXI(PSIII.YlIAXIP
IF(YMAX GT YMAXI) THEN
ANGMAX - ANG41)
ELSE
END IF
YMAXI - YMAX

7 CONTINUE
C USE THE FOLLOWING CONDITIONAL ONLY FOR THE SYMMETRIC SOURCE

IF(ANGMAX CT 90 *fl ANCMAX - 100 -ANGMAX
C CALCULATE T14E SENSI1TIVITIES
t0 TCS- YMAAI/(CD*ID-AI.LY.1 414)

TVS *YMAXI/ICD.LI/CON.I 4141
TCSL -20 *ALOC.O(TCS)
TVSL * 20 *ALOCIO(TVSI
RETURN
END

C

C
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C 2FL IS It<E TWO DIMENSION4AL PLOTTING ROUJTINE USING ARLLIB
C

DIMENSION XX(IOOO).YYfI 00)
INTECER FLAG. NPTS
IMI.,

YMINI -Y(1)
YMAXI - YY(I)
DO0 100 1.2. NPIS
XmIMN - AM INIIXX4I).XMINI)
GIIINI - XMIN
XMAX - AMAXI(XXII).XMAXI)
IMATI *XMAX

Y)I AMINI Y~)YMIN I

10 MAX AMAX1IYY().)YMAX11

XORG.I 0
YORC.I 0
X OEL. , MAX-X)IIN)/20 0
YOEL.)YMAX-VMIN)/I0 0
AYLEN:3 0
AXLEN 5 0

DX.) XMAX-XMIN)/AXLEN
DY..)YMAX-YMIN) /AYLEN
CALL PLTLFN(L;PL0T;)
CALL PLTDI'MI .0 1.24
CALL PLTORCI .RORCý. VR
CO TO (1, 2.3. 4. 5.6.7. (. 9. 10. 11. 12. 13. 14, 15. 16. 17.10
1 19,20) FLAG

I CALL PLTAXIS(O .0 .AYLENJ.90 .YMIN.YMAX.YDEL
I .I3NMAC REFL COEF. 13.2.- 1.- 1)
CO To .100

2 CALL PLTAXIS)O .0 .AYLEN.90 .'VMIN.YMAX.YDEL
1.22HAPE RATURE PRESSURE(PA).2Z.2.- 1.- 1)
CO TO 200O

3 CALL PL7AXISCO .0 .AYLEN,90 .YMIN.YMAX,YDEL
I.25)4APER PRESCOII RE IXIO-6PA).23.2. - 1.- 1)
CO TO ISO

4 CALL PLIAXIS(O .0 .AYLEN.90 .YMIN,'YMAXYDEL
1 1.I34HAPER PART VEL.14.2.- 1.- 1)

GO TO 200
5 CALL PLTAXIS(O .0 ,AYLEN,90 .YMIN,YMAX.YDEL

I1.20H1IMAG ELECT ADM(MHOS),20.2. - 1.- 1)

i Co TO T00
6 CALL PLTAXIS(O .0 .AXLEN.90 .YMIN.YMAX.YDEL

I.2OHREAL ELECT AOM(OHMS).20,2. - 1,- 1)
CO TO 200

7 CALL PLTAXIS(0 .0 .AYLEN,'0 .YMIN.YMAX.YDEL
1,23HACO)JS PWR(D9 RE I WATT). 23.2.- 1.- 1)
co To 1SC.

a CALL PLTAXIS(0 .0 ,AYLEN,90 ,YMIN,YMAX.YDEL
IT2HREAL INPUT POWER(WATTS). 23,2. - 1.- 1)
CO TO 200

9 CALL PLTAXIS(O .0 .AYLEN,90 .YMIN.YMAX,YDEL
l.27H.EACTIVE INPUT POWER)WATTS). 27, 2.- 1.- 1)
CO TO 200

A 10 CALL PLIAXIS(O .0 .AYLEN.90 .YMIN.YMAX.YDEL
l.23MPOwER EFFICIENCY(DO RE 1).25,2.- 1.- 1)
GO TO 150

It CALL PLTAXIS(O .0 .AYLEN.90 .YP*'?.YMAX.YDEL
I.2414P/V SEN(OB RE I PA.YOLT).24 ý,- 1.-. 1)
Go 10 I15'

12 CA.. tJAXIS(O .0 .AYLEN.90 .YM:N.YMAX.YDEL
1,2:3H-] SENsOX RE I PA/AMP).23.2,- 1- 1)
Go 10 ISO

13 CALL PLTAXIS(0 .0 .AYLEN.90 .YMIN.Y)IAX.YDEL
I IOMANG MAX REIIP EG.0..-I.- I)
co TO 200

14 CALL PLTAXIS(O .0 .AYLEN,9(' .YMIN.YMAX.YDEL
I.20HREAL MIST IMIP (RAYLS) 20,4.- 1.- 1)
CO TO 200

IS CALL PLTAXISIO .0 .AYLEN,90 ,YMINYMIAX.YDCL
I.2OHIMAG RUT IMP (RAYLS),.20 4.- 1.- 1)
CO TO 200

15 CALL PLIAXISIO .0 .AYLEN.90 NflIN.YMAX YOEL
I I9HREAL. FM IMP IRAYLS). 19, 4.- 1. - I)
GO TO 2100

17 CALL PLTAXISCO 0 .AYLEN,90 YMIN.YMAX YDEL
I 19HIMAG FM IMP (RAYLS). 19.4 - 1.- I)

Go O .1000I10 CALL PLYAXIS(O '0 AYLEN.90 YMIN.YMAX.YDEL
co TO 2100

19 CALL PLTAXIS(O 0 AYLEN,90 .YMIN,YMAX.YDEL
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1, 14HPRES LEVEL(DB),14,4,- 1.- 1)

GO TO 250
20 CALL PLTAXIS(O .0 ,AYLEN.90 ,YMIN,YMAX,YDEL

1.I9HPRES AMPLITUDE (PA). 19,4,- 1,- 1)
GO TO 250

150 CALL PLTAXIS(O ,0 .AXLEN.0 XMINXMAXXDELIIHLOGIO(FREQ),
1-11,4,- 1.- 1)

C150 CALL PLTAXIS(O ,0 .AXLEN.O ,XMINXMAXXDEL,4HRA/R.
C 1-4.4.- 1.- 1)

GO TO 300
200 CALL PLTAXIS(O .0 .AXLENO ,XMIN,XMAXXDEL,14HFREQUENCY (HZ).

1-14.4,- 1,- 1)
GO TO 300

250 CALL PLTAXIS(O .0 ,AXLEN,0 ,XMINXMAX.XDEL
1,IIHANGEL (DEG).-11,4,- 1,- 1)

GO TO 300
300 CALL PLTAXIS(O ,AYLEN.AXLEN,0 XMINXMAX.XDEL,LABX,0,0,- 1,- 1)

CALL PLTAXIS(AXLEN, O AYL.EN, 90 *YMIN, YMAX, YDEL, LADY, 0,0, 1, 1)
CALL PLTDATACXX.YYNPTS.,OO,XMIN,DXYMINDYO 08)
CALL PLTLINE(XTITLYTITL,- 1)
CALL PLTEND(II 0.8 5), RETURN

..-- • • END .

PROGRAM THERMO( INPUT, OUTPUT, DATA. TAPE2-INPUT. TAPE4=DATA
I. PLOT. TAPESPLOT)

C

C
C PROGRAM THERMO PERFORMS A FREQUENCY DOMAIN ANALYSIS OF THE

r-, C THERMOACOUSTIC TRANSMITTING CHARACTERISTICS OF A PLANE WAVE MODE MHD
C TRANSDUCER THERMO COMPUTES THE ACOUSTIC FIELD AS A FUNCTION OF THE
C THE TRANSMITTED ACOUSTIC FREQUENCY, WHICH IS TWICE THE ELECTRICAL DRIVE
C FREQUENCY THE POWER EFFICIENCY AND TRANSMITTING SENSITIVITIES ARE
C COMPUTED AS A FUNCTION OF THE ELECTRICAL DRIVE FREQUENCY
C
C THERMO GENERATES GRAPHIC OUIPUT FOR THE FOLLOWING TRANSDUCER
C CHARACTERISTICS
C
t. I) MAGNITUDE OF THE REFLECTION COEFF (MRNL) VERSUS ACOUSTIC FREQUENCY (AFREG)
C 2) MAGNITUDE OF APERTURE PRESSURE (RPNL) VERSUS AFREQ
C 3) DB LEVEL OF RPNL VERSUS LOGIO(AFREG)
C 4) OF APERTURE PART VEL (RVNL) VERSUS LOG(AFREQ)
C 5) OF RADIATED ACOUSTIC POWER (PR) VERSUS LOG(AFREQ)
C 6) OF TRANSDUCTION POWER EFFICIENCY (EFFIC) VERSUS
C LOGIO(ELECTRICAL SIGNAL FREQUENCY) (FLOG)
C 7) QUADRATIC CURRENT TRANSFER rUNCTiON(QCTF) VERSUS LOGFREQ
C 8) DB LEVEL OF QUADRATIC VOLTAGE TRANSMITTING SENSITIVITY(OVTS) VERSUS LOGFREG
C 9) PRESSURE LEVEL DIRECTIVITY
C IO)ANGLE OF PRIMARY BEAM VERSUS AFREQ
C
C DATA INPUT IS THROUGH THE BLOCK DATA STATEMENT AT THE END OF THE
C MAIN PROGRAM

C

COMMON /ZIP/ A, , L. LY, LZ. SRAD, ROD, COD. ROM, COM.PIBETA, CP, CD

I CONBMFO,FFFD
)IMENSION AFREO(I000),EFREO(I000),FLOG(000),PR(1000)

1, PSPL(1000), RPNL(1000), RVNL(1000), MRNL( 1000), FLOGA(1000)

•. %i 2,TCSL(1000),TVSL(1000),ANGMAX(1000),EFFIC(1000)

3, QTSL(1000),QCTFR(1000).QCTFI(1000)
COMPLEX RNL(1000),RL(I000),PNLCIOOO),PL(1000)

,1 VNL( I000), VL( 1000). OCTF( 1000)
2, GLNLA, GLNLB. GRLA, GRLB

3. GXLNLA, GXLNLB. GXRLA. GXRLB
REAL RK,L,LYLZ,MRNL

INTEGER 1.N
N (FF-cO)iFC3 + I
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C
C PRIMARY CALCULATION LOOP

* C
DO I I.I.N

C CALCUOLATE THE WAVE NUMBER AND FREOUENCY
A .2 (.PI.FO . FLOATII-II*2 *PI.FDI/COO

3 AFREOCI) K- COD,'I2 *PI)
EFREGIII AFRED)I)/2'
FLOGAII( - ALOCIO(AFREOIIII
FLOG(I 11 ALOGIO(AFRE04II/2

C REFL EVALUIES THE APE RTURE REFLECTION COEFFICIENT
CALL REFLIX.RNL(II IRL( I),MRNL(II. ZFtTR)

* C CREEN EVALUATES SEVERAL COMPLEX COEFFICIENTS
CALL GREENIA.A. D.L.RNL(II.RLIII.GLNLAGLNLIX.CRLA.GRLO
I. CXLNLA. GXLNLB. GXRLA. GXRLD I

C PRES EVALUATES THE APERTURE PRESSURE IN THE WAVE GUIDE
CALL PRES(CLNLA.GLNLB.GRLA.GRLII.PNL(II.PLI III
RPNL(II - CAIISIPNL(IIX
PSPL(II - 20 *ALGOIO(RPfNL(II/ 000001)

C VEL EVALUATES THE APERTURE PARTICLE VELOCITY
CALL VELiK.CXLNLA.GXLNLD.CXRLA.CXRLI3.VNLCII.VL(III.I.U2.PI.P2)
RVNLIII - 20 *ALOGIOIU2I

'IC WRITE(4 -)US P1 U2.'P2
C OTF IS THE OVADRATIC CURRENT TRANSFER FUNCTION ROU7INE

CALL OTr(A.RNL. I .RL(II .OCTF(IX I
OCTFRIIX - REAiOCTFII))
OCTFI(II - AITIAG4OCTF1III

C RADPR EVALUAIES TH4E RADIATED ACOUSTIC POWER

CALL RADPR(LY LZ FMRVLIt).PRR)
C FE IS THE AVERAGE RE'AL INPUT ELECTRICAL POWER

PE - CD.CD.DB-A.-LY.LZ/,2 -CON)
C EFFIC IS THE TRANSD1 JCTION PROCESS POWER EFFICIENCY

EFFICI)) - 20 *ALOGIOIPRR/PEI
IF(EFFIC(II LE -300 IEFFICTIX - -:X00

C
C 0VTS EVALUATES THE PRESSURE RADIATION PATTERN. W.AORATIC TRANSMITTING
C VOLTAGE SENSITIVITY AND THE ANGLE OF THE MAIN LODE
C
C IF A DIREC7IVITY PLOT IS DESIRED SET FLAG 1 0 IOB SCALE)
C IN IF STATEMENTS IIELOW
C AND / OR SET FLAG.' 1 0 (LINEAR SCALE)
C SET FLAG AND FLAG:!* 0 0 OTHERWISE

CC GO TO I
FLAG - 0 0
FLAG2 0
IFII E; I) FLAG*0 0
IF(I EO 1) FLAG2*0 0

C IF THE X AXIS SENSITIVITY IS DESIRED SET FLAG3 *0 0
C I F THE SENSI T IVITY ON THE MIAIN DEAN ATIS IS DESIRED SET FLAC3 1 0
C FLAG3 MUST BE 1 0 WHEN CALCULATING DIRECTIVITY PATTERN'S
C

FLAG3 -0 0

CALL OVTSXAFREOIII,ABSIU),.ABSIU2).PI.P2

I. OTSLI), ANGMAX II,.FLAG. FLAG2. FLAQ3)

WRITEIA..) EFREOII),GTSLIII
I CONTINUE

C
C D2PLT PRODUCES A NEUTRAL PLOT FILE FOR PLOTTING ON THE 1EKTRONICS
C

GO TO 2
CALL DZPLTIN.AFRCGMRNL, II

CALL D2PLTIN.AFREO.RPNL..)CALL D2PLT4N, FLOGA. PSPL. 3)
CALL T)2PLT (N. FLOGA. RVNL. 4)
CA-L DZPLTIN, FLOGA. PR. SI
CALL D2PLTIN.FLOQ.EFrIC.83

2 CALL D2PLT(N-FLOG OTSL.71
GO TO 3
CALL D2PLT(N-,EFRE0. OCTFR. 8)
CALL DZPLTIN,EFRE0,OCTFI. 121
CALL O2PL TIN. AT REQ. ANGT¶AX, 9)

3 STOP
END

C..................................................................
C

BLOCK DATA
1' C

C VARIABLE INPUTS TO PROGRAM THEqMO
C
C A LEFT BOQNDARY OF SOURCE VOLUME tMETERS)
C a RICHT
C L TOTAL WA%ECUIDE LENGTH (METERS,
C Ly TRANSVERSE1 WAVEGUIDE LENGTH V-DIR (METERS)
C Uz Z-IXIR
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C SRAD RADIUS OF SPHERICAL DArFLE (METERS)
C ROD FLUID DENSITY IN4 WAVE GUIDE (RC/METER**3)
C cooD SOUND SPEED , . METERS/SEC)
C ROM FLUID DENSITY IN FREE MEDIUMI (KC/METER..3)
C CON - !SOUND SPEED " (METERS/SEC)
C CO CURRENT DENSITY AMPLITUDE (AMPERES/METER..DI
C BETA THERMAL COEFFICIENT OF EXPANSION OF FLUID (N..3/M..:3/ELYIN)
C CP SPECIFIC HEAT CAPACITY OF FLUID (JOVLCS/KC/KELVIN)
C CON ELECTRICAL CONDUCTIVITY OF FLUID IN I.AVECUIDE (I/OHMS METER)
C FO INITIAL CALCULATION FREQUENCY (HERTZ)
C IF FINAL - -
C PD FREQUENCY STEP SIZE (H4ERTZ)

COMMION 'ZIP/A. B.L.LY.LZ. SRAD. ROD.COD. RON. COM.PI. ZETA.CP.CD
I. CON. 3M. P0.FF. FD~ 'I REAL L LY.LZ
DATA A.0B L LV. LZ. SRAD, ROD. COD. RON.CON. P . BETA. CP. CD. CON

I.Bm,FO.FF.FD/-0 05.0 05. 10. 0:318, 0301.0 032. 1041 .1600 .996
2-1401 3 14159.0 00021.39606.1442 .5 28. 40
3.500 11000 230/

C
C PHYSICAL PROPERTIES OF NACL 6%. SOLUTION AT 2O C
C
C CON 5 4P (/OHM/M) MEASURED
C ROD 1041 IKO/M.*3)
C COD 1300 4M/SEC)
C CP 1968 (.JOULES/KG/$ELVIN)
C BETA Z- IE-04 (M**3/M**3/KELVIN)I C
C PHYSCIAL PROPERTIES OF MERCURY *U 20 C
C
C CON 1020000 'I/OHM N)
C ROD 13600 (AG/N.43)
C COD 1450 IM/SEC)
C CP 140 (J/KC/KI
C BETA I 8:JE-04 (I/K)
C

V. END
C~~ .rC..................................................................
C

SUBSROUTINE REFL(K.RSNL.RSL.RSNLM. ZSR(

C SUBROUTINE kEFL CALCULATES THE COEFFICENTS AND EVALUATES THE
C OUADOATIC EOVAT7t4N FOR THE REFLECTION COEFFICIENTS
C

COMMON /ZIP/A. B.L.LY.LZ. SRAD.ROD,COD.ROMCOMPI.BETA.CP.CD
I. CON.3MF. P. P. D
COMPLEX KA. RB.KL%.ZS. ZN.A~l. 1.CI DI. A2D. 3. C2D2. ED. 2, CD. H
ICII.*C22. C33. (44. C~ .RNL. RsL RLL. RLNL

REAL L LY.,LZ K.PC
P C . ROD.CCD
((A . CMPLX)0 0.K-A)
((B - CMPLX(0 0,1(431
KL2 - CMPLX(0 0.)(.L/2)

C CALCULATE THE APERTURE IMPEDANCES
CALL MISP(F,4COD. ZNR. ZIl. ZSR.ZSI)
IS - CMPLX(ZSR.ZSI)/CMPLX(PC.0 0)
ZN CMPLX)ZMR.ZMI)/CNPLX(PC.0 0)

C CALCULATE THE OUADRATIC EOUATION COEFFICIENTS
CI - CEXPIXA) -CEXPIIIB)
DI - CEXPI-KA) CEXPI-MO)
Al - CEXP(-((L;)
01 -CEXPO(L2)
AZ . BI.DI.(CMPLT(I 0 0)-ZS'. BI.CI.ZM
02D- AI-DI-(CMPLX(I .0OO).ZS)-BI.DI.ZM
C2D- BI.CI.(CMPLX(-I -0 0).ZS)-AI.CI.ZM
D2 - -Al.CI4(CMPLX(I .00(.ZS).AI.DI.ZM
E2 - BI.Cl.(CMPLX(1 .O0 0-ZS.8DI.DI.ZM
F2 - 0I.DI.(CMPLX(-I 0 0).ZSI-Al.DI.ZM
G2 -AI*CI*(CMPLX(i .00).ZS)-BI.CI.ZM
H2 - -AI.DI.(CMPLX(I -00)*ZS)*AI.CI.ZM
CII *AD.2-F2-.E!DE

C2. AD.H2 - ll;.GD - C2.F2 - D2.E21
C133 CD.HDM - D2 C2
C44 *C2.E2 - AD.GD
C05 - D2.ED - C,.PD - 02-C2 - ADH.H
C66 - D2.FD - BD.H2

C CALCULATE THE COMPLEX ROOTS USING THE FOLLOWING IMSL ROUTINES
C THE ROOT WITH THE MAGNITUDE LESS THAN ONE IS PHYSICALLY
C MEANINGFUL THE OTHER IS DISCARDED

CALL ZOADC C3,CD C22.RSNL.RLNL. IER)
CALL ZOADC C&66C33 C44.MSL,RLL. IE R
RSNLM - CABSIRSNL,
RE TURN
END

C

C
SUBROUTINE MISP(W RM.CXM.R CX)
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IC

CM;SP EVALUATES THE SELF AND MUTUAL ACOUSTIC IMPEDAN4CES Ir THETE

C ?IISP USES THE EOUAT IONS DEVELOPED BY C H SHERMAN TO EVALUATE THE MUTUAL
C AND SELF IMPEDANCES OF TWO CIRCULAR SOURCES 180 DECREES APART ON THE
C SURFACE OF A SPHERICAL BAFFLE
C

DIMENSION PIIOOOIIJK(I2000I..lI(IO00).YI(IO00).
IPI 1000

COMIION/Z IF/A.S. L LV. LZ. SRAD. ROD. COD. RON. CON. l. BETA. CF.CD
1. CONB. I.FO. PP.13D

REAL JI.YI.L.LY LZ
INTEGER I.M.N

C N IS THE NVMBER OF TERMS IN THE SUM REQUIRED FOR CONVERGENCE AT
C LARGE VALUES OF 9.RD

N - 5
C RD IS THE EFFECTIVE RADIUS OF THE CROSS SECTION OF A RECTANGULAR
C IJAVEGUIDE

RD - SORT(LY-LZ/PI3
T - ATANIRDfSRAD(
C - ROT¶.COM.SRAD-SRAD,'(RD.RD,

C INITIALIZATION OF LECENGRE FOLYNOMIALS
P3I) 1 0
P41.) 1 0
P(3) * COSU)

C CALCULATION OF LEGENDRE POI.NOMIALS BY RECURSION
SO I K.3,M
RI - FLOATIAI
R2 RI - 0

P(K.I) *P.3l.PoK)32 *RI.I )/(RI.I )-P(A-I)*RI/(RI-II
PI(KI) *PI'2).PI).ý-I)-2 .R2. ),(R2-1 I-PI(K-.")*R./(RZ2*II

I CONTINUE
C THE DESSEL FUNCTION EVALUATIONS ARE PERFORMED BY

* ~C MMBS.JR AND MiISSYN (IMSI. ROUTINES)
X - WSRAD/COM
CALL MMBSSJR(X. 5.N.3.JI.UA. IEP)
CALL MMBSYN)I. 5.N.3.Yl.IER)
ZRMI - 0 0

*ZCM% -0 0
ZRSI -0 0
ZCSI - 0 0
N2 - N.1

C THE SERIES ARE SUMMED IN THE I LOOP
C TO CALCULATE THE SELF AND MUTUAL IMPEDANCES

DO 3 1.1,N2
SI - FLOATMI

RD + 2/

DIN 111.31I3, 1.(()-).2)-).II

CZM (1 /(2.15-I- )-I ))-((P4)IP(I*2))-.2)-lI

ZRMI - 02M.RS.ZRMI
1CMI - G2M*CPL*ZCMI
ZRSI - G25*RS.ZRSI
ZCSI - 02$*CPL.ZCSI

3 CONTINU E
C RESULT

RM - G.ZRMI
CIM - G.ZCMI
R - G.ZRI.I

P.CI - G.ZCSI
RFTURN
END

C
C ........... ...............................

1.-.SUBROUTINE GREENIA A.iL RNt. RL.GLNLAGCLNLS.GRLA.GRLD
IGILNLA. GILNLD. GIRLA, GIRLS)

COMPLEX CCKA.3ID KL2ORNI RL G1.NLA,GLNLBGRLA GRLO
I LA LB RA kD
Z GILNLA. GXLNt.D GIRLA, GIRLS

REAL K L
PA - CMPLXIO KA*A,

j~~K -D CMPLIIO K.D'
KLZ - (MPL14O K*&/2
CC - CIPLX(I 0 O''CMPLX12 *K 0 l.(CMFLXi 0 )-RNL.RL))
LA . CC*(CCXPvA'*RL.CEXP(-KAII
RA - CCI(CEXP(-KAA-RNL.C:EXP4.AA3
LB - CC*(CEXP(K03-RL.CEXP(-KAS,

GI.NLA CMPLX(;0 -1: 0):LA:3(EXP(KL2):RNL:CEXP(-KL2)3
RLND -L.CEIP3XO0-1 0-RLC (CxYPB K2-NLCX(-
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CRLA *CMPLX(0 0,1 O).:RA:.(CEXPIKL2:,RL:CEXPC(-KL2,))
ORLD CI¶PLX (0 0 0 O)RD.CCEXPI&L2 .L CEXP -KL2X)
CXLNI.A *CMPLX(0 0.11 0).:LA.,(CEXP,(KI2I - RNL.CEXPC-KI.2))
CXLNO1 -CMrLX)O 0.0 03.LD CEXP KL.2I - RUL *CEXP(-KL2)
CXRLA CMPLXO 0.0,1 0 ).RA.ICEXP IKL2) - ~ R.CXP((- L.I
GXRLII C.PLX 0 0. 0).RD.(CEXP KL2) RL I 'P -KL.I
RETURN
END

2 C
C

SUBDROUJT INE PRES(CLNI.A. CLNLI.D.CRLA. CRLO,.PNI.. L)
C
C PRES EVALUATES THE APERTURE FRESURE
C PNI. IS THE COMPLEX PRESSURE AT THE LEFT APERTURE
C PL - -- RICHT -

C
COMMON / ZIP/ A. DL LV. LZ. SRAD. ROD. COD. RO.CMi. CI.P DETA CPC. C

1I CON. BMl. M0 PP. FO
COM"~LEXMPNL.,CL GLNI.A, CLNI.1 CRLA. R.I
PNL : CPLX,-BITA:CD.CO.COOE(- .ON.CCP),0 ).QLL CLNLB)
PL. C CPLXD-0TA CD CD.COD/ CON CP 0 l.CRLA - RLB)
RETURN
END

RIC~~~~~~~~~~~~ C.............................................................................................

W, UBROUTINE VEL(K.GXLNLA. OXINLO. CXRLA, GIRLS. VNL.V VIUI.U2.PI.P2)
C ý,EL EVALUATES THE PARTICLE VELOCITY AT THE APCRTURE
CVNL IS THE COMPLEX PARTICLE VELOCITý AT THE LEFT APERTURE

C VI. - RIGHT -
C

COMMION 'ZIP, A.D5.L,LY.LZ.SRAD ROD. COD. RON.CON. P1. OTA. CP. CD. CON
I SM. P0F. P. D
COMPLEX VI. VNL..CXLNLA, CXLNLB, GIRLA. GIRLD
REAL K
VNL *CMPLX(-BCTA:CD:CD/,(2 *CON.CP.RODL.O O)*(OXLNLA - GLNLB)
VI. CMPL ( -BETA CD CD, 2 *CON.CP.ROD).O O)*(CXRLA QXRLD)
V3 CABSIVLI
V.2 C CA SSVNL)
Ull1 - REALIVI.)
1)2Z - REAL(-VNL)

C THE CONDITIONALS BELOW EVALUATE THE RELATIVE PHASES OP THE APERTtRE
C PARTICLE VELOCITIES REFERENCED TO THE SURFACE OF THE SPHERICAL BAFPLE

IFIUII GE 0 0 AND U.22 LT 0 0) THEN
PI - 0 0
P2 - 3 141459;634
ELSEIPIUII CE 0 0 AND V22 CE 0 0) TH4EN

PI - 0 0

ELSEIF VII Ly 0 0 AND U2Z LY 0 0) THEN
PI - 3 141092654
P25; 3 141592654
ELS
CI 1 141592654
P2 -00

END IF
A RETURN

END
C
...........................................................................................

SUSROUTINE 0TF(K. RNI..RI., CTP
COMMON /ZIP A,D1 L. LV LZ.SRAD, ROD COD. RON. COM.PI, SPTA, CPCD

I.CON,DM O.FrP0 F~D
REAL K LV LZ

%COMPLEX XI.12.13 X4. IS.XTb.RNL RL.OCTF
-It.) TI - CMPLX(-BETA.SM.CON.CON.I.Z/(4 *CP.ROD-LYLVIf*KK).K1 0)/

IICMPLX(I 0.0 O1-RNL-RL)
12 - CMPLXO 0.2 KB

Aý' X3 - CMPLX'O0 02 *K*A)
X4 - CMPLXIO0,K-(A.l))
X5 RNI..ICEXPX2).CEXPIX3)-CMPLX(Z 0 ):CEXPI'X4)'
X6,; Rt.-(CEIP(-X.'l-CEXP(-X3)-CMPLX(.'0)CX(y)
OCTXF - X5. 116)
RETURN
END

C

v ' SUBROUTINE RADPRI.V LZ ZR VL PR)
C

oq C RADPR EVALUATES rHE RADIATED ACOUSTIC POJWER AT TH4E APERTURES
C

COTIPLLI YL
REAL tV I.Z,CR
PR - (CADSSVL)...2 DZR.LV.LI
RETURN
END
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C
.. .. . .. . ............................................

4 C
3 ~~SUBROUTINE UVTS(FREO, VI. U2.MUI.MU2. TVSL. ANGMAX. FLAG. PLAG2. FLAG3I,

C
C GVTS EVALUATES I)THE FAIRFIELD PRESSURE DIRECTIVITY, CIVEN THE AMPLITUDES
C OF THE APERTURE PART ICLE YELOCI'IES AND PHESES
C 2)THE TRANSI'ITTING SENSITIVITIES AT ONE METER PER UNIT AMP AND VOLT
C THE FAIRFIELD PRESSURE IS CALCULATED USING C H SHERMANS RESULTS

COMMON /ZIP, A. B.L.LY.LZ. SRAD.ROD.COD. ROM.,COM.PI. BETA. CP. CO

1. CON. M.P0. PP. P0
DIMENSION LO(IOSI.LI(IOO.IOOI.L21100. IOOI.JI(IOOI
I. YI(IOO. NR(4I01 PS(IO103
...PSL(IO5).ANGIIO5)
3. PNI 1051
COMPLEX P111103). CII.C22. OH.C3 SUMI. SUM2. SUMII.SUM.22.PI.P2.Al. A2
INTEGER N. ND.1. J
REAL LO Ll. L2.MUI. MU2.".A,KRR.L.LY.LZ. JI

C N IS THE NUMBER 0OF TERMS REQUIRED FOR CONVERGENCE OF THlE SERIES EXPRESSION
C FOR THE FAIRFIELD PRESSURE ND IS THE NUMBJER OF POINTS CALULATED ON THE
C DIRECTIVITY CIRCLE R IS THE RADIAL DISTANCE (METERS) IN THE FAIRFIELD AT WHICH

C PRESSURE CALCULATION IE MADE

DATA N. NO. R/5ý. 73. I51NPTS 
-ON NO

RD *SRT(LY.LZ/I
T *ATAN(RD/SRAD)
K4R *2 *PI.FRE-0/COM-R
I(A *2 *PI.FRkG/COM.SRAO
Al *CMPLX40 0. (ROM.COM.VI/RI.SORT(SRAD-SRAD/32' *PI.RA331
A2 *CMPLX'O 0. (ROM.COM.U2/k).SORT(SRAD-SRAO/12 *PI.RA3I I

C INI TIALIZE THE LEGENDRE POLYNOMIALS
\3~ILOCI) - 0 0

-A ~LO(2) I 0
L043) - COSIT?

C CALC UL ATE THE POLYNOMIALS lIY RECURSION
DO I 1.4.N-2

4 ~RI - FLOATII-13 3-

LOCI) -(2 *R1.1 I/(RI.I I.L0(331LO(I-13-R1/1R11 )-LO(I-2)
'II CONTINUE

C DA IS THE ANGLE STEP SIZE
DA - 2 *H`/)CI(AT(ND-I)

C CALCULATE THE A.QILE DEPENDENT LEGENDRE POLYNOMIALS
DO 2 J3.1 -49.1
ANGLE - PLOA74TJ-I)*DA

C ANGLE -*IZ
LI(I.4l) 1 0 (
L112,J) * OS(ANGLE)
L2(11J) 1. 0
L232,J) COS(PI-ANCLE)
DO03 K-3Z N-
RAI - FLOA' 4 -L)

3 CONTINUE

C MIIBS.JR AND MMOSVN CALCULATE THE BESSEL FUNCTIONS OF THE FIRST AND SECOND
C KINDS RESPECTIVILY
20 CALL MMDS.JR(YA, 53N.IJI.WKIER)

CALL M)IBBYN(KA. 5.N-IYI.IER)
CII * EB3MPL9(O 0 -mvi),

C2- CEXP CMPLXO 0.0 -MU.))
C CALCULATE THE N DEPENDENT TERMS

DO'4 I.3.N+2
C3 -(FLOATII3-3 3/4.lIL'JIIl
C4 - (FLOATIII-3 ),RA.YIII-.)-YI(I-1)
DH : CMPLXCC3,C41
C5 CEXP( MPLX(O 0. -P1/2 *FLOAT(I-231)

P1111-!' - CMPLX(4LO(d-2)-LO3I)II.OO3.C5/DH-
4 CONTINUE

C SUMMATION LOOPS
DO 5 J.1.ND
SUMII *CMPLX(O 0 0 0)
SUMC22 CMPLX(O 0 0 0)
DO06 1-1 N
SUMI -P11311.CMPL~lII)31JýOO0) + SUKII
SUM.' - PIIIl).CMPLX(L2(I J1) 0 U) * S3)31227

SUM.,., SUM"

6 CONTIN(."E
C CALCVLATC THlE FAIRFIELD ANGLE

ANO(J) IP(LOAT))) -1 0.-DA.l80 /PI

P2 A. SUM2.C-
;SUM THE PRESSURE FIELDS OF THE SOURCES COHERENTLY TO FIND

C THE MAGICITkDE
P5*) CADSSPI P.I)
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PSL(J) - Z0 *ALOC10OPS(J)/I OE-QO)
C WRITE44 -) ANGIJ) PSL()~i

IFýFLAG3 E0 0 0' GO TO 30
5 CONY I'NUE

IO.FLAG E0 1 0) CALL O2.PLT4NPTS.ANC.PSL. 10)
C IF)FLAGZ EO 1 0' CALL O2"PLT4NPTS-I.ANG. PS. II)

C LOCATE OF THE MlAIN BEAhM AXIS
310 YMAXI - PS11)

IF4FLA03 E0 0 0' GO TO 10
ANCMAX - 0 0
D0 7 1-.' NPIS
YMAX - ATIAXI(PS)I).Y1IAXI)
IF(YMAX CT VMAXl) ANCMAX - ANG41I

YMAXI - NAX
7 CONTINUE

C CALCULATE THE SENSITIVITIES
IC TVS -YMAXII'CO.CO.LYTLY/(CON.CONI)

TVSL *20 *ALCOGO(TVS)
RETURN
END

C
.. . .. . .. .........................................

SUBROUTINE 1PGPLT(NPTS, XX VT, FLAGO)
C
C K'PLT IS THE IWO DIMENSION4AL PLOTTING ROUTINE USING ARLLID
C

DIMENSION XX(IOOO).VYIIOGO)
INTEGER rLAGO, NPTS
XMINI - XXl) I
XAXI - XX() I
YMINI - YYXI)
YMAXI . YY()I

FL 00 100 1.2, Npls
XMIN - ATTINI )XX V. MINI I
XIIINI - XMIN

XTIAX -AMAXI)XX)I). TIAXI)
N XTIAXI . XIS/IA

VISIN *AMINI(YS(I).YTIINI)
YM I Nt I . IN
THAI AMAXI(YT(I).TMAXI)
VPIAXI - YMAI

l00 CONTINUE
IFIYMAX ES TMIN) TYMIN . 0 0
OX - (IXAX - XMIN)/FLOAT'(NPAS)
XORG-I 0
YORG..I 0

XDEL:*(XMAX-XMINI,/20 0
YOEL-(TMAX-YMIIIN /10 0
AYLEN.3 0
AXLEN.5 0
XTITL.AXLEN/2 0
XTITL..AYLEN,2

CALL PLTDIM(II .5 3,1.4
CALL PLTORC(XORG. TORC)
CO TO (1I 2.3,4.5.6.7.0.9.10,11,.12) FLAGS

I CALL PLIAXISCO .0 *AYLEN.90 YMSIN.YMhAXYDEL
I. I3MMAG REFL COEF. 132.,- 1.- 1)
GO TO 2200

2 CALL PLTAXISIO .0 .AYLEN,90 ,YMIN.YMAX.YOEL
I.22HAPERATURE PRESSUREIPA). 22.2- 1.- 1)
G0 TO .200

3 CALL PLIAXISIG .0 .AYLEN,90 .YMIN.YMAX.YDEL

I 25HAPER PART E). l RE IXI 'SP) 25.2- 1- 1 )
GO TO 175

4 CALL PLTAXIS)O 0 AYLEN,90 YMINTHMAX.YC'CL

5 CALL PLIAXTISO 0 ATLEN 90 THIN S/TAX TOIL
I 3YHACCVR EPFICDENTO RE I'T 2D 2- 1- 1 )
GO TO 175

6 CALL P0.AX ISO C' ATLEN 90 THIN SýlAT TIEL
I Z!RHPOWT EFICECYS RE 1PVLTVL)I 28 2 - I, -1)
GO TO 1-0

S CALL P..YAXISU 0 ATLENo 90 HýIN YMAX YOE).
I '04N0VTSD[ AMt IPA(VOTv-VOL. ) 28' - I. - I )
GO to 175

*j CALL. PLTAXIb,0 0 AYLEN,90 NHINTHAX TOE).
NI 4RHOPCYF MAX MP5 DEG) L I *VL1

90 CALL PLTAAIS(O 0 AYLEN 90 HIlN T)'AX YDIL

I I4HPRE5 LEtf'kR'D 14 4 - I - 1
^O TO 250

it CALL PLTAXISIO 0 ATLEN QO M/IN THAI TOE).
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1.19HPRES AMPLITUDE (PA), 19.4.- 1.- 1)
GO TO 250

12 CALL PLTAXIS(O .0 ,AYLEN,90 ,YMIN,YYMAXYDEL
1,24HOCTFI (AMPS/(VOLT*VOLT)),24,4,- 1.- 1)

150 CALL PLTAXIS(O 0 ,AXLEN.O ,XMIN. XMAX,XDELIOHINPUT FREQ,
1-10,4,- 1,- 1)

GO TO 300
175 CALL PLTAXIS(O .0 ,AXLEN.0 ,XMIN.XMAX.XDEL.14HLOG INPUT FREO,

1-14,4,- 1.- 1)

GO TO 300
200 CALL PLTAXIS(O .0 ,AXLEN,O ,XMIN,XMAX.XDEL,17HACOUSTIC FREO(HZ),

1-17,4,- 1,- 1)

00 TO 300
250 CALL PLTAXIS(O .0 .AXLEN,O ,XMINXXMAXXDEL

l, 11HANG-EL (DEC),.- 1,4,- 1,- 1)

GO TO 300
300 CALL PLTAXIS(O ,AYLENAXLENO ,XMIN,.XMAX.XDELLAUX,0.0,- 1.- I)

CALL PLTAXIS(AXLEN,O AYLEN. 90 ,YMII,' YMAX, YDEL, LABY, 0,0, 1, 1)
CALL PLTDATA(XX.YY,NPTS,O,O. XMINDXYMIN.DY.0 08)
CALL PLTLINE(XTITLYTITL,- I)

CALL PLTEND(11 0,8 5)
RETURN
END

1
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