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heating when electrical power is dissipated in a resistive medium. , MHD and
thermoacoustic source mechanisms were found to produce two distinct acoustic
radiation moments: a dipole field and monopole field, respectively.

The source volume region is contained in a rigid walled wavequide where sound
from the source volume region radiates into the free medium through apertures

at either end of the wavequide. Transmitting sensitivities for both mechanisms
were derived analytically for the waveguide geometry and compared to experimental
data where good agreement was found in a frequency band of 500 to 4000 Hz. The
source directivity for the dipole moment radiation was measured and found to be
in good agreement with the classic cosine radiation pattern at low frequencies.

Expressions fur the transduction process efficiency and input electrical imped-
ance were also derived and compared to measurements.
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Note that the bold symbols imply vector fields.
it .
& ‘% a,b x location of the left and right
A
Y MHD source volume boundaries
1" ‘n
::g’:§ A transducer electrical terminal
i§03'¢ admittance
o
s:gp,& B magnetic induction vector field
- Ciry adiabatic sound speed in the free
medium
C, adiabatic sound speed in the
waveguide
Cq diffusional capacitance
Cp electric double layer capacitance
Cp specific heat at constant
pressure
D diffusion constant, 1.0 X 10 m?/s
e, e, relative permittivity and
permittivity of free space,
8.85 X 10°12 F/m
i
E electric intensity vector field
f=JXB magnetohydrodyamic fluid
volume force
F Faraday constant,
96524 coulomb/mole
G(x,%,) plane wave Green's function for
the waveguide for a Dirac
source at X,
G| (x,a), Gr(x,b) plane wave Green's functior: valid

in the waveguide to the left and
right of the MHD source volume,
respectively




J,J,

k’.m = 0/Cy,

k = w/c,

-0, Qortl

2,2

y' 7z

p;thm

der.vatives of the plane wave
Green's function with respect to
the x coordinate

Hankel function of the first kind
of ordern

Heavyside's unit step function

terminal electric current
magnitude

ﬁ

current density vector field and
the step function amplitude

wave number of the free medium

wave number of the medium in
the waveguide

notation for indicating the x
location of the left and right
aperture, respectively

the transverse y direction
dimension and z diraction
dimension of the rectangular
waveguide

path integration vector
number of moles of electrons
required per mole of reaction
product

volumetric concentration,
moles/m3

waveguide acoustic pressure
field

free space pressure field due to
the aperture at -2 or 2

total pressure P = Py + p




QCTF

QVTS

TCS

Xi

ordinary Legendre polynonyial of
order n, n-1, n+1

ambient pressure

unit electronic a
charge,1.602 X 10°1€ C

quadratic current transfer
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quadratic voltage transmitting
sensitivity ot the
thermoacoustic source

free medium radial coordinate

ideal gas constant
8.31 joules/(Kelvin mole)

effective aperture radius of the
rectangular waveguide
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aperture reflection coefficient
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spherical baffle radius

unit area normal electrode
surface vector

time

absolute tcmperature, Kelvin
scale

MHD mechanism transmitting
current sensitivity

waveguide small signal particle
velocity

volume
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\Y terminal potential

W, radiated acoustic power

W, input electrical pov :rto
transducer

X waveguide longitudinal
coordinate

Y,z waveguide transverse
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A MHD transducer electrolyte
impedance

Z, electricar diffusion impedance

Z, aperture mutual radiation
impedance

Z, polarization impedance of the
electrodes

Z aperture self-radiation
impedance

Z transducer electrical terminal
impedance

B coefficient of thermal ex:pansion,
1T

e Dirac delta function

€ small x coordinate increment

n transducer power efficiency

© = arcsin(R4/Rg) aperture half angle

Hyg phase of the aperlure particle
velocities

Y number of moles of ions required

per mole of reaction product

Xii




Po
Pim

Xiii

concentration spztial coordinate,
direction normal to electrode
surface

total fluid mass density p = p,+3p

acoustic fluid mass density
perturbation

waveguide fluid mass density
free medium fluid mass density
ionic fiuid conductivity

waveguide acoustic potential
wavefield

free medium angular coordinate
angular frequency

angular frequency, 2w




CHAPTER 1
INTRODUCTION

The subject matter of this thesis is an investigation of the
underwater acoustic transmitting characteristics of a magnetohydrodvnamic
(MHD) transducer. The transduction mechanism of the MHD transducer is
the Lorentz force generated on a conducting fluid conveying electrical
charge in the presence of a magnetic field. The transducer cznsists of a
sodium chloride-water solution (electrolyte) contained in a rigid wall
rectangular waveguide, 10 cm long and 3.8 cm x 3.2 cm cross section, with
acoustic apertures at either end. The waveguide is located between the
poles of two large permanent rnagnets (see Fig 1.1).

A time harmonic electric current density, Je'i®t, is applied to the
electrolyte through electrodes on two facing walls which are parallel to the
magnetic field, B. The current density, which is orthogonal to the magnetic
field and the waveguide axis, produces a force on the fluid, f=JXBei®, in the
longitudinal (axis) direction of the waveguide. Assuming the J and B fields to
be uniform, the time harmomic force generates a plane wave acoustic
pressure field within the waveguide which radiates into the free medium via
the apertures.

The electromechanical analogy of this transducer is the moving
coil transducer where the fluid of the MHD transducer is likened to the coil of
the armature. But, unlike the moving coil device which radiates sound by the
motion of a surfac?, the MHD transducer has no radiating surface. The

acoustic wave is a result of the direct application of the electromagnetic
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energy to the medium (more appropriately, the radiating region of the
transducer is termed the MHD source volume).
A. PAST RESEARCH IN THE AREA OF MHD TRANSDUCTION

The first attempts to use the MHD mechanism in fluids for
transmitting or receiving acoustic signals are not readily identifiable. Various
steady fluid flow rate measuring devices and electromagnetic pumps have
been in existence since at least 1945.1 Acoustic transmitting investigations,
in the context that they will be discussed in this thesis, were first carried out
by Campanella? in 1955, and later by Ajisaka and Hixson3# in 1975.

The investigations of Campanella and Ajisaka and Hixson
primarily addressed both theoretically and experimentally the generation of
plane wave signals by the MHD source radiating in a rigid walled
waveguide of semi-infinite length with rigid and pressure release boundaries
at the origin. The MHD source region extented from the boundary to a finite
distance. ~lso the infinite length waveguide was investigated by both
investigators.

Ajisaka and Hixson® also considered the finite length waveguide
radiating from both aperiures into unbounded half spaces. They treated the
apertures of the waveguide as pistons on an infinite baffle and derived a
pressure transmitting sensitivity expression which is flat over a very broad
frequency band. However the sensitivity expression which was derived was

for the apenure pressure and not the pressure at the standard 1 m distance.




X%

N

Bs

R B. PRESENT WORK

"-.' This thesis is a continuation of the work begun by Ajisaka and
\%‘ Hixson, by suggestion of Dr. Elmer Hixson, with the intent to investigate in a
more precise manner the radiating characteristics of the MHD source in an
u infinite free space. Since Ajisaka and Hixson did not experimentally
‘&' investigate the free medium transmitting characteristics of the MHD source,
:" ‘ this was to be a primary task of this investigation.

f" Chapter 2 of this study is the rigorous derivation of the
3-::; inhomogeneous pressure wave equation governing the application of the
8 .§: MHD force to a fluid medium. It was realized from considerations of the first
” law of thermodynamics that when electrical current is passed through a
?és medium of finite conductivity heat is generated. The generation of heat in the
%?: medium results in the thermal expansion of the fluid, which creates an
;;'); additional source of sound. This thermal source mechanism is accounted for
;1; in the derivation of the inhomogeneous wave equation. The two source
?g.: terms of the wave equation are recognized mathematically as being
; monopole and dipole source distributions, corresponding respectively to the
"}’ w thermal and MHD source mechanisms. The thermal source is shown to be a

quadratically nonlinear source in the frequency domain; the spectral nature

-

-

is discussed in Chapters 2 and 4.
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The solution of the wave equation for the acoustic wavefield due
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usual convolution of the free space Green's function with the source
distribution due to the presence of the waveguide boundaries and magnets.
Thus finding the appropriate Green's function for this complicated geometry
was not attempted.

In Chapter 3 solutions for the acoustic fields of both source
mechanisms are found by separating the acoustic fields into two regions:
inside the waveguide and the exterior free medium fields. A plane wave
sclution for the acoustic field is proposed for the waveguide region assuming
impedance boundary conditions at the apertures. To find the exterior
acoustic field the waveguide and magnet assembly were assumed to
comprise a rigid spherical surface with two radiating apertures. The
spherical surface allows for the exterior pressure field to be solved
analytically in terms of a Hankel function expansion of a spherical wavefield
given the velocity distribution of the apertures. Using the Hankel function
expansion of the exterior wavefield, self- and mutual impedance relations
were found for the apertures, thus allowing the solution of the interior and
therefore the exterior acoustic fields. Geometrical and wave number
limitations are placed on the domain of the solutions due to the matching of a
plane wavefield within the waveguide to the spherical field on the exterior.

In Chapter 4 derivations of the transmitting electrical impedance,
efficiency, and sensitivity expressions are provided. The electrochemistry
and the electrical impedance nature of an electrolyte in the vicinity of an
electrode surface are discussed, and an equivalent circuit representation of

the these processes is presented. Included in an appendix is a computer




program which computes the wavefields and transducer characteristics
discussed above.

Chapter 5 discusses the design of the transducer used in the
experiment and the measurement procedures, and compares the theoretical
predictions to experimental data. As will be shown, the analysis is in good
agreement with experimental measurements up to frequencies at which
differences in assumed and actual transducer geometries become important.

Chapter 6 presents a summary of the research and conclusions

which may be drawn.




CHAPTER 2
THEORY: THE MAGNETOHYDRODYNAMIC-THERMOACOUSTIC
WAVE EQUATION

In this chapter the small signal, inhomogeneous pressure wave
equation governing the acoustic wavefield within a magnetohydrodynamic
source volume is derived. The MHD acoustic field is found to have two
source mechanisms: (1) the primary machanism, the magnetohydrodynamic
force and (2) a thermal expansion machanism due to joule heating of the
medium by the electric current. The second source is known as a
thermoacoustic source.

A. OAM'S LAW FOR AN ELECTROLYTE

In the derivation of the continuity, momentum, and wave
equations to be presented in this chapter it is assumed that Ohm's law is
valid for the conduction of electrical charge in the electrolyte solution of the
MHD transducer. The generalized Ohm's law is stated below under the
additional assumption that the ohmic conductivity ¢ is a constant (not

dependent on frequency or space).

J=0(E +uXB)+ee,E, (2.1)

J, E, B, and u in Eq. (2.1) are defined as the current density vector field
(A/m?), the electric vector field (V/m), magnetic induction vector field, and the
electrolyte fluid particle velocity field. e and e, are, respectivily, the relative
and free space permitivities.

In this thesis it is justifiable to neglect the effects of the induced

current (ou x B) term and displacement current (ee E,) term in Eq. (2.1). The
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grounds on which these approximations are valid arg as follows.

(1) The displacement current term can be rewritten in the form
-joee E for a time harmonic signal e, The maximum frequency of interest
in (his investigation is apprcximately 15000 Hz, and the relative dielectric
permitivity of water is 88. Therefore the coefficient of the displacement
current, wee,, could be as great as 7.34 X 10° 1/ohm m. The measured
value of the ohmic conductivity of a 6% NaCl solution is 5.28 1/ohm m.
Therefore, on the tasis of the dielectic conductivity being very small relative
to the ohmic conductivity, the displacement term is justifiably neglected.

(2) The small signal acoustic approximation will be made in the
next section in the derivation of the acoustic wave equation. This implies that
the particle velocity u must be much less in magnitude than the adiabatic
sound speed c,. For the 6% sodium chioride soiution investigated in the
experiment the value of ¢, is 1550 m/s. The amplitude of the induction field B
considered is of the order of 1 tesla. If the maximum particle velocity is 150
m/s, then the induced current density, cuXB, will be 792 A/m2, The typical
current density used in the experiment is 15000 A/m2, so the projected
maximum induced current density is only 5% of the typical applied current
density. Therefore induced current is justifiably neglected, but as a practical
matter the particle velucities generated in the experiment were of the order
104 m/s so the approximation is very good.

With the above approximations applied to Eq. (2.1), Onm's law is

restated as

J =oE . (2.2)
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,ﬁi More will be said concerning the electrolyte conductivity in Chapter 4 in
cennection with the irput impedance of the transducer.

&:‘ B. DERIVATION OF THE CONTINUITY EQUATION

;’ Temperature rises associated with a time varying electrical
" current flowing in a resistive fluid produce a monopole acoustic source
distribution due to thermal volume expansions of the fluid. The
"‘::f::; hydrodynamic equations for what is termed in this thesis an ohmic
f‘é:: ; thermoacoustic source have not been derived explicitly in any of the popular
:}:}ﬁ: literature on acoustics. Didenkulov® treats the problem of current flowing in a
Z’N cylindrical volume in a fluid but does not state the inhomogenous wave
.:Z‘ equation and essentially treats the acoustic source volume as a radiating
}: cylindrical surface. Morse and Ingard® treat the subject of a generic heat
e source but do not address the case of ohmic heating. Westervelt and
é”‘-i Larson’ discuss vptoacoustic laser generated sound in a fluid, which is an
; »25 electromagnetic heating process at optical frequencies. The derivation to
»,. follow accounts for the ohmic thermoacoustic heat source through the

continuity equation as an added mass term.
Assuming a constant pressure process, a change in density
results from added energy when a fluid 1s heated. This change in density,

Ap, can be related to a small temperature rise AT of the medium by the

coefficient of therma! expansion §,

Ap=BpAT. (2.3)

Here p is the tota! fiuid mass density.




The derivation of the continuity equation follows from the

following statement.

Time rate of Rate of mass Rate of mass Time rate of change
changeof mass = flowintothe - flowoutof + of mass production

in the control control volume  the control within the control volume
wvolume

The incremental mass flow rate into a control volume V across its
surface S is -pu - dS, the minus sign resulting frum the unit normal vector to
the surface S pointing away from the control volume (see Fig. 2.1). Net mass
flow into and out of the controi volume is expressed as the integral of the
incremeriai mass flow rate over the entire closed surface of the control

volumr=.

Net mass flow rate into control volume = - J pu - dS.

S
The time rate of change of mass in the control volume due to heating is

defined as (see Fig. 2.1)

d d

—JApdv = B—JpATdv. (2.4)

ot dt

\ \Y
Thus the continuity equation takes the following form:
d J
— |pdv =- [ pudS + B— | pATdv. (2.5)
ot 0t
\Y S v

Equation (2.5) is valid so long as B is independent of time and temperature.

These assumptions imply small temperature changes. ( In general B is a

10
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thermodynamic variable which is dependent on temperature and pressure.)
The temperature change can now be related to the Ohmic
heating mechanism by the first law of thermodynamics. If the assumption is
made that the heat energy added to the fluid is an isentiopic process and
occurs at constant pressure then the temperature rise in the fiuid can be
related to the electromagnetic field energy input by the coefficient of specific
heat Cp (joules/(kg K)). On a per unit volume basis the relation is
T
Energy Input, = Jp Cp(T) dT. {(2.6)
T

0

For small changes in temperature, AT/T, << 1, Cp is approximately constant

so Eq. (2.6) can be written as

Energy Inputgms=p Cp(To) (T;-Ty) = p C(T,) AT. (2.7)

ol

From Jackson8 the rate of conversion of elestromagnetic energy

(power) per unit volume into thermal power is given as

Power Input,y = JE. (2.8)

Substituting for E using Chm's law, Eq. (2.2), in Eq. (2.8), then taking the
time derivative of Eq. (2.7) and equating the result with Eg. (2.8) the
relationsh:p between the time rate of chanye of density and temperature and

current density is
JJ

AT), = — 2.9
(pAT), oG, (2.9)

12
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Substituting Eqg. (2.9) into Eq. (2.5) restlts in the integral form of

the o' mic heating continuity equation,

2 B[
— {pdv =- [pudS + — | jgdv. (2.10)
on i)/

0
ctV S

The surface integral of Eq. (2.10) can be converted to a volume
integral by use of Gauss's divergence theorem. This results in the differential
form of the tharmoacoustic continuity equation,

P+ V(pu) =B—J-J. (2.11)

on

Note that J-J in all the preceding equations is a notational form for the real
component of the electrical power delivered to the medium since it is the real
pcwer which heats the medium and produces thermoacoustic radiation. J-J
is mean. to imply the following operation on J, assuming a time harmonic
dependence of e’et,
J(x.1) = Re[ J(x) 9] = (1/2) [(x) e + J(x)" el (2.12)

Then,

JXJ(x 1) = (14)[J(x) ede + J(x) " el [ J(x) e + J(x) " ei®y  (2.13)
or,

J(x,)J(x,) = (172) Re[Jd(x)"J(x} + J(x)-d(x) eT2o1). 12.14)

Equation (2.14) implies that the power dissipated in the medium
has a tir e independent component plus an oscillating component. This

ccriesponds to the average power plus the time harmonic fluctuation. For a

13
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ceal valued source volume function (J(x) real) Eq. (2.14) reduces to
J)J(xt) = (1/2) JA(x) Re[ 1 + ey | (2.15)
For the Cartesian system,

J2(x) = 2(x) + J2(x) + J,2(x) . (2.16)

The physical implication of the constant term in Eq. (2.15) is that
the power flow into the medium is always positive. Since the power input is
related to p, by the continuity equation, Eq. (2.11), the waves produced by
ohmic heating will be compressional. Intuitively this is a reasonable result
since the derivation assumed an isentropic process, which implies that the
heat added to the medium is not dissipated but raises the temperature of the
medium, and therefore causes a continuous thermal expansion of the
medium.

Inteyrating Eq. (2.9) over a pulse time period, 1, the constraint on
energy transport into the fluid such that the small temperature rise

assumption is valid is

g
AT 1
= JJddt << 1 (2.17)
T opGC,T,
0

The temperature change constrair: of Eq. (2.17) can be evaluated using
Eq. (2.15) if the change in density is assumed small. For an integer number
of current cycles the constraint relation for the current density pulse length

time, 1, becomes

14
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Jo21 << 206G Typ, - (2.18)

The units of J 2t are joules/meter® whicn is the volumetric internal energy
density change of the electrolyte by the applied current density J, applied by
a sinusoidal signal for a period 1. The right side of Eq. (2.18) is computed to
be, for a §% NaCl-water solution at 20°C, 2.5 X 10° joules/meter3 or 2.5
joules/cm3. During experimental investigation, described in Chapter 5, the
pulse time was 5 ms; therefore the constraint on the current density was J,
<< 1.62 X 108 A/m2; the experimental value was 15000 A/mZ.
C. DERIVATION OF THE MOMENTUM EQUATION

The momentum conservation lav. is basically a statement of

Nev+ton's second law:

time rate of change of net momentum influx sum of the forces
momentum insidethe >  across the control + acting on the
ontrol volume volume surfaces control volume

The integral form of the three-dimensional magnetohydrodynamic
momentum equation follows directly from the verbal statement (see Fig. 2.2).

d
a— qudv = -J(pu)U'dS - JPds + JJXBdV. (2.19)
t

\% S S \Y

Gauss's divergence theorem is once again applied to the surface integral

and the differential form of Eq. (2.19) follows, 0

pu +puU + Ve (pull + (pu-Viu + VP = JXB . (2.20)

The underlined terms of Eq. (2.20) are replaced using the continuity

equation, Eq. (2.11). The result is the magnetohydrodynamic-thermoacoustic

15
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momentum equation,

pu, + (pU'V)u + VP = (J-J) u + JXB . (2.21)

on
Morse and Ingard!' discuss the existence of electromagnetic
forces on a fiuid but do not derive an explicit expression for the Lorentz force

in connection with the momentum equation.

D. SMALL SIGNAL ACOUSTIC APPROXIMATION

The small signal acoustic approximation (Mach number << 1) is
made in the wave equation and boundary condition derivations. The small
signal acoustic perturbation variables of first order magnitude are the
perturbed pressure and density,

p=P-P,, (2.22a)
Sp=p-p,, (2.22b)

and

where P, and p, are the quiescent pressure and density respectively. The
small signal approximation constrains the perturbation variables to the

following limits,”

Ip| << pocoz , (2.23a)
and,
15p] << Py - (2.23b)
The equation of state is given as
0P
c2= (2.23¢)

o _a_p— g=constant, P=P_, p=p,

where ¢, 1s the isentropic sound speed, defined as a constant for the fluid at

17




constant entropy, €, and for small perturbations in total pressure P and total

i
e

;4:;? fluid density p about the ambient values.

‘J The linearized smali signal equation of state can be stated in
%v terms of the perturbation variables as

o p = c.25. (2.24)
KX

A Linearized small signal versions of Eqs. (2.12) and (2.20) are, respectively,
N

& B

v 8p, + PV U= — (4J) (2.25)
£ cCp

and

y%

o PoUy + Vp = JXB. (2.26)
e

Jihk Performing the usual mathematical operations on Egs. (2.24), (2.25), and

(2.26) the MHD-thermoacoustic wave equation results,

; 1 B
& V3p - — Py = — (JJ), + V-(JxB), (2.27)
Y C, cCp

:‘5 where the inhomogeneous source terms are the thermoacoustic source and
W

the MHD source, respectively, Pierce identifies the first source term as a

: ‘J’
R

monopole source distribution function and the second source term as a

}:}’ dipole source distribution function where JXB is the dipole moment

@:Z:J: vector. 12

:~ The simplest control volume to view the qualitative nature of the

.j two sources is that of a sphere, such as shown in Fig. 2.3. Thermal
q expansion of the control volume due to a uniform current density flowing

X across the volume will generate a uniform spherical wave. The MHD force
ik
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causes a translational oscillation of the control volume in the direction of the

dipole moment, creating a dipole wavefield.

E. ONE-DIMENSIONAL WAVE EQUATION

In the one-dimersional development for the Cartesian system the
vector field J x B is in the x axis direction. The bold face notation is thus
suppressed below and the cross-product implies J B sin®, where © is the

angle between the vector fields in the y-z plane.

B
P - = Py = — (), + (JXB),. (2.28)

2
C, (st

The one-dimensional wave equation is the basis for the plane
wave field assumed in the MHD transducer waveguide. Chapter 3 is
devoted to the derivation of the boundary conditions and solution of the

waveguide field.

F. DISPERSION OF THE ACOUSTIC FIELD DUE TO THE INDUCED
CURRENT DENSITY IN A HIGH CONDUCTIVITY FLUID

In the above derivation of the wave equation, induced currents
were ignored. When one considers a high conductivity fluid, such as
mercury, which has a conductivity on the order of 108 1/ohm m such an
assumption must be carefully examined. As in the NaCl-water case, the

displacement term can be neglected, and Ohm's law can be written as

J=0(E+uXB) . (2.29)

However, the induced current density term cannot be eliminated. If again we

assume that the current density, J, is 15000 A/m? and the particle velocity is

20
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150 m/s, E is then found to be 150.5 V/m for the me._ury medium. The
induced electric field, uXB, is 150 V/m for a magnetic field of 1 T. Therefore
the induced term should not in general be neglected in the derivation of the
acoustic wave equetion.

When Eq. (2.29) is substituted into the inhomogeneous terms of
the wave equation, Eq. (2.27), a frequency dependent dispersion
relationship arises which depends on the magnetic field and fluid
corductivity. The dispersion relation is derived in Appendix A.1 for plane
waves propagating in a conducting medium in a direction normal to an

applied static magnetic field. The dispersion relation is stated below.

o) jooB,2)"
k= |l=|- — : (2.30)
CO poco

Physically the effect of the magnetic field is to dampen or attenuate the wave
by converting the kinetic energy of the wave to electrical energy which is
then dissipated by the resistivity of the medium. From Eq. (2.30) it can be

seen that the dispersion effects of the magnetic field can be neglected when

o B2
— <« 1 (2.31)

wp,

Consider the 6% NaCl-water solution used in the experiment,
assuming a conductivity of 5.28 mho/m and a magnetic field of 1 T. The
dispersion is negligible for frequencies much greater than 0.0007 Hz.
Neglecting dispersion in NaCl-water solutions is thus justifiable. However,

for mercury which has a conductivity of ~10 mho/m, the frequency must be

21
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much greater than 74 Hz before dispersion may be neglected.

o
o

The significance of the dispersion relation arises in the derivation

_‘,i

P of the transducer impedance (Chapter 4), in that it indicates whether the
:'4‘:".; induced electric field, and thus the acoustic coupling contribution to the

-Q,s impedance, will be important.
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CHAPTER 3
THEORY: SOLUTION OF THE WAVE EQUATION FOR THE ACOUSTIC
FIELD WITHIN THE WAVEGUIDE

The solution of Eq. (2.28) for the pressure wavefield excited in the
waveguide by the magnetohydrodynamic and thermoacoustic sources is
found by solving the two point boundary value problem for this equation and
the related boundary conditions at the apertures.

The inhomogenecus terms are assumed to have a time
harmonic dependence of the form
( XB), = (J(x)XB), e (3.1)
and
BEI) joBS)

on cCp

gricot | (3.2)

Notice that the thermoacoustic source responds at twice the dri\
frequency, o, and is therefore twice the MHD source frequency.

Due to the linearity of the wave equation, Eq. (2.33), the solution
of the wavefield can be found by considering the two source mechanisms
independenitly. The acoustic fields due to the sources can then be added to

find the total field.

A. BOUNDARY TCONDITIONS OF THE TRANSDUCER WAVEGUIDE
The boundary conditions of the waveguide are a core problem of

this thesis. By specifying the boundary conditions, the form of the field

23
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solution is specified and thus the transduction nature of the waveguide

system is determined. Hence it is essential that the boundary conditions of

oy
02 oo ~pd DA 7

1
D) the waveguide be accurately stated.
A

n_a‘é The apertures of the waveguide are assumed to be radiating into

j’i: an acoustic free medium. Since the power transmitted by the apertures
_.‘.

radiates into the entire medium it is evident that some of the power radiated

LT

e by one aperture will illuminate the other. Thus there is coupling of acoustic

> L% y

' :" . ¥y .

Y ”:j;; power between the waveguide apertures. The specif.cation of the boundary

& Lo

f-o] conditions must therefore take the radiation coupling into account. The

"y

,\. ) aperture acoustic radiation coupling is described by the mutual acoustic
R e

[ radiation impedance.

£ The acoustic pressure in the waveguide at an aperture is
Y

%. S?, assumed to be related to the aperture particle velocities by attributing a seli-

. \f,_::,_n

:E:% and mutual radiation impedance to the aperture. In order to describe the

-. aperture as an impedance boundary the aperture is modeled acoustically

;‘ as a fluid "piston layer", to which an acoustic radiation impedance can be

."f attributed. The piston layer is assumed to transmit only the acoustic particle

P\

velocity.

o : -

e Two pressures are present on the free medium radiating surface
T

_g;?; of the piston. one pressure is due to the impedance Zg of the free medium as
1)

O W8

seen by the piston (i.e., the inertia and radiation properties of the "piston")

» []

Hass , .

o and the second is the pressure represented by the mutual radiation. See

ij-:'j Fig. 3.1 for a qualitative view of the aperture piston layer forces.

T
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Given the mode: described above the boundziy conditions can

be symbolically stated as follows.
PR =u() Z, -u(-9 2
p(-2) =-u(-2) Z, +u() Z

(3.3a)
(3.3b)

m
and

m
where the self-impedance, Z, is defined as the ratio of the free medium
piston surface pressure p, g, t0 the aperture particle velocity u(t2) in the
absence of the radiation at the seccnd aperture. The mutual radiation
impedance, Z, between apertures is defined as the ratio of the pressure
caused at one aperture due to the particle velocity at the other aperture. The
minus signs appearing with u(-L) arise from the convention of defining a
positive velocity as being outwardly directed from the surface of the sphere.
Relative to the origin in the center of the duct a positive velocity at the -  end
is negative (see Fig. 3.2).

An analytical solution for the free medium pressure field as a
function of aperture velocity is possible if the apertures are represented as
uniformly vibrating circular pistons on a rigid spherical baffle as shown in
Fig. 3.1. Note that if the apertures are not circular an equivalent area circular
piston may be defined and the circular piston analysis used provided the
wavelength is not small relative to ihe equivalent circle radius, or when the
product of the free medium wave iumber and the aperture radius is much
less than one (kR <<1).

There is an analytical sclution for free medium acoustic field

generatea by circular pistons on a rigid spherical baffle in terms of the
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spherical harmonic functior expansion. Sherman'3.'4 has derived analytical
results for the self- and mutual radiation impedances of an arbitrary number
of circular sources with arbitrary locations on a spherical baffle using the
spherical harmonic function expansion. His results are specialized here to
the case of two sources (apertures) located 180° apart.

Two items should be mentioned at this point concerning the use
of the spherical harmonic expansion as a boundary condition. (1) the
expansion is in terms of spherical waves, elk"/r, and the conditions at the
aperture are in terms of plane waves, elkX. The assumption concerning the
matching of the fields is that the radius of curvature of the surface of the
aperture (radius of the spherical baffle, Rg) is great compared to the radius of
the aperture, i.e., that the aperture piston layer surface motion is
approximately planar, and not radial. (2) The pressure at an aperture due to
the mutual radiation is calculated as an average pressure of the spherical
waves over the aperture surface area. The implication of (1) and (2) is that
the model is valid for R /R <<1 and kR_<<1.

The self-impedance, Z, and the mutual impedance, Z,, which
are in terms of the spherical harmonic function expansion of the free medium

pressure field, p, o, » are defined as

Py gim (1Y) dS

S(xL)
Z (£l) = (3.4a)

u@l) | ds

S(xQ)

28
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,*-‘ Z. (£ = (3.4b)
4"‘ u ( +Q)J ds

- e

- with similar definitions for the aperture at - Q.

KX The free medium pressure p.(r,v) is a function of u(2), u(-2),
spherical baffle radius Ry, aperture radius R_, and the free medium acoustic
: ' impedance. Due to the symmetry of the sources the pressure is spatially a
7.3% function of one angle, vy, and the range, r. The source geometry is shown in
5‘ Fig. 3.2. See Appendix B for the functional form of P gfm-

ool

s e

B. JUSTIFICATIONS OF THE BOUNDARY CONDITIONS

1 Before going on to the solution of the wavefield it is necessary to

, show that the mutual radiation pressure is a significant factor. An
* experimental investigation was carried out with a transducer having an
i,\ effective spherical baffle radius of 0.05 m and an aperture radius of
%‘ 0.9210 m. The actual apertures were square. The fluid medium in the
9 waveguide was a 6% NaCl-water solution with p =1041 kg/m® and
?;‘ ¢,=1600 m/s. The free medium was fresh water.

| A

.}'

The self- and mutual impedances were computed numerically by
the computer routine MISP, using Sherman's results, and the real and
imaginary components graphed as a function of frequency in Figs. 3.3(a), (b)
and 3.4(a), (b), respectively. The use of these impedances as boundary

conditions for the above geometric dimensions is valid for frequencies less

29
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than 10,000 Hz.

The mutual impedance components (Fig. 3.4) display a
characteristic oscillation which arises from constructive and destructive
interference as the pressure wave length varies relative to the
circumferential distance between apertures. For examgle, the first peak in
the mutual impedance should be expected at the frequency at which a
quarter wavelength is equal to half the sphere circumference; tor
¢, = 1500 m/s this occurs at approximately 2390 Hz. In Fig. 3.4 the first
peak of the imaginary component is at 2700 Hz.

To show that the inclusion of the mutual impedance is important it
is necessary to compare the magnitude of the mutual impedance
components to the self-impedance components. intuitively one would expect
the mutual impedance to be most significant at low frequencies where the
Rayleigh distances of the sources are very short and therefore radiation is
omnidirectional. This observation explains the dropoff at high frequencies of
the envelope of the mutual impedance plots.

Figure 3.5 shows the ratio of mutual to self-impedance
magnitudes. The peak of this plot occurs at approximately 7500 Hz for the
geometry described above, with a ratio of 0.05. One might conclude that the
mutual impedance is small, however the radiation of sound is dependent on
the real component of the acoustic self-impedance. Hence it is more relevant
to consider a ratio of the real impedance parts. Figure 3.6 shows this ratio,
assuming that the particle velocities of the duct are 180° out of phase and

are of equal amplitude (first mode of the waveguide with a source

32




L, K I TR

- ARSI

X, -G A
2R d b adudtod

03 46.48

35.09

1Zml/1Zs] X 10

025 2.20 415 610 8.05 10.00
FREQUENCY - Hz X 10°

FIGURE 3.5
RATIO OF MUTUAL TO SELF-IMPEDANCE MAGNITUDES
¢ =010 m, ¢ = 0.10 m, ¢, = 1550 m/s, R = 0.05 m, R, = 0.02 m

p“’@
. 14 S XS

€ 4,
.

2

T mn v G
“

& e

s

o

b ;’}

‘-‘u

L

&

e

»_Q ARLUT
o’ 33 AS-86-427
S SCS - GA
- 8-6-86

]
) it

.=
S LAV T AN A N S R IR R e R HIAARE M A NS TACS S S P W A W LN AT e et gk mra e

e ———— =t " prmaly -




0.796 - -

REAL(Z,,,)/REAL(Z)
o
[8%]
~0
o)
] i
i 1

OllJIIIIllllllIllL/l/

0.25 2.20 415 6.10 8.05 10.00
N FREQUENCY - Hz X 10°

) FIGURE 3.6

RATIO OF REAL COMPONENTS OF THE SELF-

R AND MUTUAL IMPEDANCE

% ¢=010m, ¢g=0.10 m, ¢y = 1550 m/s, R = 0.05 m, R, = 0.02 m

ARLUT

AS-86-441

34 SCS- GA
8-6-86

Ta T aMu M u N u Y e XaMwme et TuYarudar L titaat W uYu e et pmba¥e? " avaPaa
A M 2 A




distribution symmetric abcout the x origin). Note that the ratio at 256 Hz is
nearly one. Thus at low frequencies the real component of the mutual
impedance is an important effect. The real component will have the effect of
altening the amplitude of the resonance characteristics of the wavefield in the
waveguide, and to a much lesser extent the imaginary component will

modify the periodicity of the resonance response spectrum.

C. ACOUSTIC WAVEFIELD DUE TO THE MAGNETOHYDRODYNAMIC
SOURCE

The Fourier transform with respect to time of the inhomogeneous

pressure wave equation for the MHD source is given by

Py + K2 p= (J(X) X B), , (3.5)

where k = w/c, is the wave number. The inhomogeneous wave equation with
inhomogeneous boundary conditions, Egs. (3.3a) and (3.3b), are in terms of
two acoustic field variables p and u. To make the solution process more
convenient a change of variables from pressure and particle velocity to

velocity potential, ¢, is made as follows.
u= ¢x (3-63)
P=-pPohy=10p,0. (3.6b)

and

Substitution of the above transform pair into Eqs. (3.5), (3.3a),
and (3.3b) yields the two-point boundary value problem for the wavefield in
the waveguide in terms of one dependent variable, 4. The inhomogeneous

wave equation, Eq. (3.5), becomes
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-
b, + Ko = — (IXB), (3.7a)

0P,

subject to the boundary conditions,
g 0P d(R) + () Z, - 60,(-2)Z,=0 (3.7b)
GJop,0¢-2) - &,(-0)Z + 0(R)Z, =0. (3.7c)

The solution of Egs. (3.7) may be achieved by use of a Green's
function. This approach was chosen because the Green's function is easy to
determine and the solution lends itself to convenient numerical computation
for arbitrary source functions. The inhomogeneous Green's wave equation

for the above problem is

G, (x%,) + K2 G(xx) = - 8(x-x,), (3.8)

wnere G(x,x,) is the Green's function for the wavefield as a function of x due
to a Dirac delta function distributed source at x,. Shown in Fig. 3.7 is the

delta function source relative {0 the coordinate frame and other geometric

lengths.
A traveling piane wave solution in the following form is proposed.
{ A et 4+ R_jeikx) R ax<x <R, (3.9a)
Gluxo) = B (e + Ryex) L o<x,<x<l, (3.9b)

where R_, and R are the reflection coefficients at the apertures.

The proposed solution represents plane waves propagating to
the left, e **, and to the right, e*, Equation (3.9a) is the wavefield to the left
of the source discontinuity at x,, wiere the left traveling wave, e’k*, is

incident on the -0 aperture and R_,e** represents the reflected right
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traveling wave. Equation (3.9b) is the wavefield to tha nght of the source,
including a right traveling wave and a left traveling refiected wave. In general
R is a complex quantity representing the phase shift and attenuation of the
wave upon reflection from the aperture.

Equations (3.9a.b) must be compatible with the conditions at the
source where the values of the two solutions must be equal (continuous) and
the first derivatives must satisfy the slope discontinuity. The continuity

condition is stated as follows.

Glx=x,,%,) for -L <x<x,< 0 = Gx=x,%,) for -2 <x <x< 2
(3.10)
The discontinuity condition is found by integrating Eq. (3.8) with respect to x
and taking the limit as the integration bounds converg? to the source at Xy

This yields

lim { G,(x, +€ X,) -Gy(x,-€ %)} =-1. (3.11)
€0

The result of applying the source conditions stated in Eqs. (3.10)
and {3.11) to the general solution, Egs. (3.9a,b), is the Green's function for

the wavegquide field,

j (€M% + Roek%o) ek + R eh¥)

2K(1-RR.,) D <x<x,< 0, (3.12a)
G(x.x,) = 3
J(e®% + R_ el%) (e + R etk

2k(1-R,R_,) iex,<x< 0. (3.12b)

The solution of the wavefield in terms of the velocity potential can therefore
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be stated in integral form as!

2
.._LJJXB)Gxx)d (3.13)

00,

For any frequency o, Eq. (3.13) can always be evaluated
numerically because the : flection coefficents are constant multipliers and
can be factored out of the integration. A particularly simple source
distribution function to evaluate, and the one investigated experimentally, is

that of a rectangular electromagnetic field source,

JXB=J B, (H(x -a)-H(x-b)), 13.14)

where H is the Heaviside function. Note that a and b are the x coordinant
limits of the rectangular distribution defined in Fig. 3.7 and aiso in Fig. 3.2 .
With Eq.(3.14) as the source function Eq. (3.13) becomes

] Jo Bo
o(x) =

J (8(x,- @) - 8(x,- b)) Gix,x,) dx, . (3.15)
-2

WP,

To evaluate Eq. (3.15) the integration interval may be broken into
three pieces: to the left of the source, the source region, and to the right of
the source. The result is the generation of three furctions which are valid to
the left of the source volume, within the source volume, and to the right ot

the source volume.
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b
J (8(x4- @) - 6(x,- b)) G(x,x,) dx,
-8 0 <x<a<b<y, (3.16a)

(8(x4- @) - (x, - b)) G(x,x,) dx, +

(8(x,- &) - 8(x,- b)) G(x.x,) dx,
-0 <a<x<b<®, (3.16b)

(8(x.- a) - 8(x,~ b)) G(x.x,) dx,
-0 <a<b<x< . (3.16¢)

D —— x’—ﬁd\m'ﬁx

The evaluation of the integrals, Egs. (3.16a,b,c), are given below.
In the notation used below, G, denotes the Green's function given in
Eq. (3.12a), the left volume solution, and Gy denotes that given in Eq.

(8.12b), the right volume solution.

B (GL(x,a) - G_(x,b)) - <x<a<b< @ (3.17a)
o(x) = 1% (GL(x.b) - Gg(x.a))  -L<a<x<b<y (3.17b)
PP (Gg(x.a)-Gg(xb)) -2 <a<b<x<? (3.17¢)

Equations (3.17a,b,c) represent the wavefield to the left of the source
volume, within the source volume, and to the right of the source volume,

respectively.
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At this point the general solution to the MHD wave equation is
not complete since the raflection coefficients, R, and R_y, have not been
determined. However, these reflection coefficients may be found by
substitution of Egs. (3.17a,b) into the boundary conditions given by
Egs. (3.3a,c). The result of this substitution is the following quadratic
equations in terms of the reflection coefficients.

C,+C,R  +CgR 2 =0 (3.18a)
Cy+ CsRy + CgRy2 =0 (3.18b)

where the C's are complex constants (see Appendix C for the explicit forms).

The computation of the roots of Eqgs. (3.18a,b) was performed by
the subprogram unit REFL using the IMSL routine ZQADC. The magnitude of
the reflection coefficient must be, by definition, less than or equal to one so
the proper root choice was unambiguous. A plot cf the reflection coefficient is
given in Fig 3.8 for the waveguide dimensions given previously. Notice that
the reflection coefficient declines with increasing frequency. This is because
the real component of the self-impedance is increasing with frequency and
therefore allowing more acoustic power to be transmitted out of the wave-
guide into the free medium.

The solution for the wavefield in terms of the velocity potential is
now completely described by Eqgs. (3.17a,b,c) with the solutions of Egs.
(3.18a,b) for the reflection coefficients. The expressions for the pressure field

and particle velocity field are recovered by the transform equations,
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R
:;} Eqgs. (3.6a,b), and expressed below in terms of the Green's functions,
xms Egs. (38.12a,b), and the derivatives of the Green's functions.
. [ (e + Ryelo) (e* - R jei¥)
; 2(1-RgR.y) -0 <x<x,< ®, (3.193)
Gylxko) = 1 o .
- + R &%) (e - Ry e’
2(1-RyR.y) -L<x,<x<L,(3.19b)
R\
:5%? The complex pressure wavefield, p(x), for the three regions of the transducer
n : . , ,
e waveguide as a function of the axial coordinate x are as follows.
3
’;3 Jo B, (G (x,a) - G (x,b)) -0 <x<a<b<l (3.20a)
3,3:5_: pix)= { J B, (G (xb)-Gglxa)  -L<a<x<b<l (3.20b)
()
J, B, (Gg(x,a) - Gg(x,b)) -0 <a<b<cx< @ (3.20c)
%% The complex particle velocity wavefield, u(x), is as follows.
%}‘; (Gy(x,a) - Gy (x,D)) -0 <x<a<b< (3.21a)
-1J,B,
u(x) = - (Gyp(x,b) - Gygix.a)) -0 <a<x<b< (8.21b)
?"‘--{in (l)f)o
399 (Gyp(x.,a) - Gyg(*.b)) -0 <ca<b<cx< (3.21¢)
e
1\5 Several plots of the modal particle velocity and pressure field
Z; 7 amplitudes as a function of the waveguide x coordinate and frequency are
e
) shown in Figs. 3.9, 3.10, and 3.11. Figure 3.9 is for the case relevant to the
\q' f‘ evperiment conducted. Shown in Fig. 3.9(a) is the modal particle velocity for
@
,\J a waveguide sound speed of 1536 m/s. It is important to note the step
}:\ change in particle velocity at the aperture where there is a step change in
A5 %
Lx acoustic impedance. Notice that as the frequency is increased the particle
R
!
.t_}"::«
\:'Nq:
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velocity in the waveguide and the step change in velocity at the aperture
decrease. The decrease in waveguide particle velocity with increasing
frequency is due to the inertia effect of the fluid. The decreasing step change
at the aperture is due to the increasing aperture impedance with frequency
(see Figs. 3.3(a) and (b)).

In Figs. 3.10(a) and (b) the sound speed in the waveguide was

h 3’._ set at 650 m/s to demonstrate the resonance behavior of the waveguide at
?\g lower frequencies. At approximately 9000 Hz there is a resonant standing
wave. This first resonance is approximately a 3/2 wavelength mode and is
::; the first mode because at this frequency the aperture impedance has
f{z become large enough to allow a "hard" reflective waveguide termination and
g ‘ thus support of a reduced aperture particle velocity.

Figure 3.11(a) and (b) show the modal behavior generated by an

3%,
v

! 7 MHD source which is 0.06 m and centered in a 0.10 m waveguide. This plot
é" , is for a reduced sound speed of 650 m/s, but what is exemplified is the
discontinuity of the wavefields due to the presence of the MHD volume force.
;x,: The FORTRAN program MHD has the capability to calculate the acoustic
:"‘" response from any rectangular MHD source distribution anywhere in the
‘:,: region of the defined waveguide length.

: :.Qi; D. ACOUSTIC WAVEFIELD DUE TO THE THERMOACOUSTIC SOURCE

Considered first was the pressure wavefield due to the MHD
source mechanism. The pressure field contribution of the thermoacoustic
mechanism 1s now derived. The Fourier fransform with respect to time of the

inhomogeneous wave equation for the thermoacoustic source is given by
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pxx + k2p = — (322)

where k = Q/c, and Q is defined as 2 w. The solution procedure is the same
as that performed for the MHD source. The thermoacoustic inhomogeneous
wave equation, Eq. (3.22), has the same inhomogeneous boundary
conditions as the MHD wave equation solved previously. Again a
transformation to the velocity potential is made using Egs. (3.6a,b). The two-
point boundary value problem for the thermoacoustic source generated

wavefield in the waveguide in terms of one dependent variable, ¢, is thus

BJA(x)
O, + K20 = (3.23a)
20p, Cp
subject to the boundary conditions,
o FQp, (%) + 0,(V)Z - 0,(-2)Z =0 (3.23b)
GQP o(-2) - 6,(-L)Z, + ¢,(V)Z, =0. (3.23¢)

The solution of Egs. (3.23a,b,c) may be achieved oy use of the
Green's function derived in Section 3.3, and rewritten below.
j (%% + Rye%o) (e + R jek)
2k(1-RyR_y) -Lex<x,< L, (3.24a)
j (&% + R jei%o) (¥ + R, i)

{ 2k(1 - R4R_y) - <x, <x< L (3.24b)

G(x,x,)

The solution of the thermoacoustic pressure wavefield, in terms of the

velocity potential and the above Green's function, is stated in integral form as
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9
o(x) = P sz(x)o G(x,X,) dx, (3.25)

The source distribution function investigated in the experiment,
is a rectangular electromagnetic field. Therefore the current density has the

rectangular distribution

J(x) = J,, (H(x -a) - H(x - b)), (3.26)

where J_ is the current density amplitude and H is the Heaviside function.

With Eq.(3.26) as the source function Eq. (3.25) becomes

]

J
i J(H(xo-a)-H(xo- b)) G(x,x,) dx,.  (3.27)

X) =
0 =

p

The iterated integration of Eq. (3.27) for the three regions of the

waveguide are given on the next page.

b

J(H(xo- a) - H{x,- b)) G(x,x,) dx,

-2 QL <x<a<b<l, (3.28a)
X

(H(x,- @) - H(x, - b)) G(x,x,) dx, +

[o]

B Jp?
20 pon
(H(x,- @) - H(x,- b)) G(x,x,) dx,

-2 <a<x<b<l, (3.28b)

X‘—\U m;ﬁ
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J(H(xo- a) - H{x - b)) G(x,x,) dx,
a - <a<b<x< . (3.28¢c)

The results of evaluating the integrals for the velocity potential wavefield are

as follows for the step function source.

;

(_(ejka - ejkb) +R (e-jka - e-jkb))(e-]kx + R_ eik)()
'} ')

-Q<x<a<bc l, (3.29a)

(eka- R eid) (e + Reix) |

BJ2 2K2(1-RyR )
(x) = 1 . o .
20p,C, (e* - R eM0) el 4+ R i) | 1
2K2(1-RyR_,) %

-L<a<x<b<®, (3.29b)
((e-jka . e-jkb) . R.p'(e]ka _eikb))(ejkx + RQe'jkx)

2k2(1-R,R.,)
| PR ) cacbex <l (3.29¢)

Equations (3.29a,b,c) represent the velocity potential wavefield to the left,
within, and to the right of the source volume, respectively.

The reflection coefficients are found by substitution of
Egs. (3.29a,c) into the boundary conditions given by Eqgs. (3.3a,b). The
result of this substitution is the following quadratic equations in terms of the
reflection coefficients,

C1 + C2 R_Q + Ca R_Q_z = 0 ’ (3.303)
50
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where the C's are complex constants (see Appendix C for the explicit forms).
The computation of the roots of Eqs. (3.30a,b) was performed by the
subprogram unit REFL of program THERMO using the IMSL routine ZQADC.
A plot of the reilection coefficient magnitude is given in Fig. 3.8 for the
waveguide dimensions given previously. Note that Fig. 3.8 was computed
using the MHD solution; however the magnitude of the reflection coefficient
is the same for both cases; the difference occurs in the phase.

The solution for the thermoacoustic wavefield in terms of the
velocity potential is now completely described by Egs. (3.29a,b,c) with the
solutions of Eqs. {3.30a,b) for the reflection coefficients. The expressions for
the pressure field and particle velocity field were recovered by the transform

equations, Egs. (3.6a,b), applied to Egs. (3.29a,b,c) and these are stated

below.
( (_(ejka . ejkb) + Rﬁ(e-jka . e-jkb))(e-ikx + R_Qeik")
2k(1 - RyR_y)
o Q<x<a<b<, (3.31a)
(e-jka . R-Qeika)(ejkx + RQe'ik")
+
o) < jBCy g2 J 2k(1 - RyR.y)
20p,C, | (e**-R o) (et + R jelk) 1
2k(1 - R,R.,) Tk
B f<a<x<b<l, (3.31b)
((e-jka . e-]kb) . R’Q(ejka _eikb))(eikx + RQe'ikx)
-Q<a<b<x< .  (3.31c)
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}A
3¢
5 . u(x) is the complex particle velocity field in the transducer waveguide.
1y
“)- ((eika . e]kb) - RQ(e-jka R e-jkb))(e-jkx . R_erKX)
&
R, 2k(1-R,R.p)
A v l<x<a<b<l (332a)
':’ (e-jka -R. erka)(ejkx . RQe-ij)
i iBJ2 2k(1- RyR_y)
20 ufx) = . o .
\ 20p,C, _ (el - R Qe'lkb)(e'lk" - R_Qe!k")
b 2k(1 - RyR_,)
:3 o -0 <a<x<b<®, (3.32b)
: ((e-jka . e-jkb) - R_Q(ejka _eikb))(eikx . RQe-jKX)
&8 2k(1- RyR_y)
o [ -L<a<b<x< . (3.32¢)
B
'3 Unfortunately time did not permit the author 1o write the computer

Ll e

Tl

code necessary to generate the three-dimensional plots of the pressure and

v

particle velocity modes, as was done for the MHD mechanism.

- e
Or
-y

- L aX WX
“J. '-—cﬁa ‘

D12

¥y~
R 3
a2l atalalal

L W 1
kg ","

L

o
P Y T

e}

=

X
4
2

'
)

52




CHAPTER 4
THEORY: ELECTROACOUSTIC RELATIONS

This chapter is concerned with the determination of the
transduction characteristics: input electrical impedance, real and reactive
input electrical power, power efficiency, current and voltage transmitting
sensitivity for the MHD acoustic source mechanism, and thermoacoustic
source mechanism.

A. POLARIZATION IMPEDANCE OF THE MHD WAVEGUIDE ELECTRODES

In general when considering the impedance of an electrolyte
fluid contained in a cell with metal electrodes two independent processes
must be analyzed: the frequency dependent nature of the electrolyte and the
electrical characteristics of the electrolyte interaction with the electrode
surface.

The conductivity of an electrolyte not in the vicinity of an electrode

s

g Ay L4
3 ¥
r Y Xr-

a2

surface is "classically" analyzed using the theories of Debye and Huckel®

ML
25

and Debye and Falkenhagen.'® The conductivity for a 1,1 valent electrolyte,
such as NaCl in water, is dependent on the applied electric field strength,
concentration of NaCl, and frequency. However, for NaCl in water at 1 M
concentration with electric fields less than 1 X 10% V/cm and frequencies less
than 18 MHz, the conductivity is constant ( o = 5.28 1/(ochm m)).

At an electrode-eleciroly:2 interface a potential difference is
present. The potential arises from the electrons on the metal surface and the
ions in the electrolyte attracting each other according to Coulomb's law. This

charge distribution at an interface is known as the electrical double layer in
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£ the electrochemical literature.'” The important concept is that the mobile ions
N have a tremendous capacity for charge storage and thus a very significant
"’, capacitive impedancz when a time harmonic signal is applied to the
it electrode.

X For the case of planar electrodes, of interest in this investigation,

fd the Gouy-Chapman'® mode! of the double layer capacitance is given as,9

Fa
-

. e,F2zN 2 (o-a) o )
b~ 4xRT '

.;11‘..'9 "’..‘.".o.- AR 2y
A
© et te

i,
et 4

where

oy
- 1)

double layer capacitance, F,

4
O
o
il

s
'y

;C\-f, e, = dieiectric permitivity, 8.85x10°12 F/m

.“,'5 F = Faraday constant, 96524 C/mole,

o N = concentration of ¢lectrolye, moles/m?,

;;,E_x R = ideal gas constant, 8.31 joules/°K mole,

‘C\ T = absolute temperature, 293 °K (20° C)

}17":: z = charge valence of the ionized molecule, 1, and

X
4

¥ X

(b-a) Qy = electrode area.

-
l,' A,
LA

B

K

¥

For a 1 M NaCl electrolyte solution the Chapman model predicts the

X
S

F g

g % o

capacitance, on a per unit area basis, to be 52 mF/m2. Measurements made

el
o TS

A -

by Vetter?® indicate a range of values of 100-400 mF/m2. This will be
discussed more in Chapter 5 in rec,ard to the value measured for the MHD

transducer.

In addition to 1he double layer capacitance of the electrode
interface there 1s an additional impedance effect observed due to an ion

concentration gradient near the electrode. This is due to electrochemical
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reaction processes. The transfer of charge at the interface causes
electrochemical reactions which result in the depletion of the orig: al
electrolyte ions and the production of other ions and molecules. Since the
ion concentration gradient represents a charge gradient one can expect an
electric potential to result. The Nernst equation?! describes this potential, Vg

RT (N(o,t)]
Vd = In (4.2)
nF N

[¢]

in terms of N(o,t), the ion concentration at the electrode surface (€=0) as a
function of time, and N, the equilibrium ion concentration "far" from the
electrode. n is the number of moles of electrons required to form one mole o:
reaction product.

In order to apply Eq. (4.2) the electrochemical reactions at the
electrodes must be determined. The kinetically acceptable electrode

reactions for NaCl and water are

2CI" » Cly(gas) + 2¢” , (4.3)

which is the anode or oxidation reaction. This reaction represents the
conversion of the chloride ion to chlorine gas with the donation of electrons
to the electrcde. The other electrode reaction is the cathode or reduction

reaction,

2H,0 + 2e” » H,(gas) + 20H". (4.4)

Note that dissociation of water in the cathode reaction is preferred over the
reduction of sodium ion to solid sodium (Na* + e” » Na(solid)). The overall

cnemical reaction can be statec' as
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2Nat + 2CI" + 2H,0 - 2Na* + 20H" + H,(gas) + Cl,(gas). (4.5)

It can be seen from the reaction equation, Ec. (4.5), that the
chloride ion will experience a concentration gradient. Note that water does
not contribute to the ion concentration gradient of the electrolyte since water
is not ionized and is the solvent and is thus in great supply in the vicinity of
the electrodes. Since the hydroxide ion is produced one might ask whether it
is a more preferable oxidation reaction molecuie than the chloride atom.
Kinetically it is not.

One last item needs to be addressed with regard to the formation

of hydrogen and chlorine gas. The reaction,

H,(gas) + Cl,(gas) = 2HCl.{gas), Ag, = -45 kcal/mole (4.6)

is a spontaneous, very exothermic reaction as evidenced by the large
reduction in the Gibbs free energy, Ag,. However, as a praciical matter the
gases do not always combine but can nucleate on the electrodes. The result
of the gas formation and the effect on operation of the transducer is
discussed later in this chapter and in Chapter 5.

The concentration distribution, N(E,t), for the evaluvation of the
Nernst equation, Eq. (4.2), is based on the concentration of the chloride ion
as a function of the rate at which it is oxidized. Since the boundary of the
electrolyte is a plane electrode surface, which is the boundary »f the
waveguide of the same cross-section, the concentration will only vary in the
y direction of the waveguide coordinate system. Therefore the distribution

should only be a function of one spatial dimension, &. The diffusion equation
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is stated as

(Fick's second law) N(E.t), =D N(Ei,t)‘;’g , (4.73)
subject to the following boundary conditions.
Jv _
(Fick's first law) N(ot) = elet (4.7b)
nFD
and
lim NE) =N, (4.7¢)
..)oo
and the initial condition,
N(.0)=N,. (4.7d)

In the above equations, D is the diffusion constant, J is the current density
amplitude defined previously, and v is the number of moles of ions needed
to produce cne mole of product (v = 2 for the chloride ion reaction). The

solution of Eq. (4.7a) is given as??

Jv

g VoD & gej(wt - Vwi2D & n/d) (4.8)
nFVD o

NEL) =N, +

Equation (4.8) represents an exponentially damped, dispersive,
outgoing diffusion wave. However, one might not accept the boundary
condition, Eq. (4.7¢), and thus the solution, Eq. (4.8), as being a valid
solution to the boundary value problem, which actually involves not an
infinite positive domain, but a finite domain problem with another electrode
at &:Qy. From the coefficient e YoR2D & of Eqg. (4.8) it is seen that the
concentration distribution is spatially exponentially damped and that for
~w/2D £ = 4 the diffusion wave is 98% decayed. At 500 Hz and D = 1.0X10
m?.s, the diffusion wave is damped 98% in 0.003 mm, which is a very small

distance compared to 3.81 cm, the electrode separation used in the
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oy
34
-:.ag experiment. Hence Eq. (4.8) is a good approxirmation for this investigation.
J Tv.:‘q
j_:}:: The Nernst equation, Eq. (4.2), can now be evaluated using
s
‘ Eq. (4.8). Note that in order to linearize In( ) in terms of the current density
"
R so that a linear relation between current and voltage is obtained, it must be
st
R assumed that the change in concentration represented by the second term of
W)
; Eq. (4.8) is small compared to N,. This condition is met if
A
o N,FniDe
i Jed —0m48M— . (4.9)
SN v
L
e At 500 Hz the right side of Eq. (4.9) equals 1.71 X 105 A/m2 . The
Ny
S experiments were performed at a current density of 1.5 X 104 A/m2, which is
5
\',: a factor of 10 less than the constraint and represents approximately a 5%
.‘J“h
{ linearization error of In( ). Substituting Eq. (4.8) into =q. (4.2) and linearizing,
} the Nernst equation becomes
)“ \
b\ JRTv?2 ot
A4\ Vi= —————— elol-ma8), (4.10)
L) T RN Do
N
&
re 4\‘ From Eq. (4.10) the diffusion impedance for the waveguide electrode can be
SaNN
L defined as
=)
3] 7. _ATVO-D (4.11)
(-2 d 2 g2 '
b !ly(b-a)nFN°2Dm

where the current is defined as J .Qy (b - a).
The electrical circuit interpretation of Eq. (4.11) is that of a

resistor and capacitor in series, with the resistive and capacitive impedance

having the equal magnitudes and creating a current lag of -45°. Notice that
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the resistive component, R, is proportional to 1/Nw. The capacitive nature of
Eq. (4.11) can be separated from the resistive by assuming the impedance
form 1/j wCy, which yields the expression for C,, the diffusion capacitance,

that is also a function of 1/Vw,

Qy(b-a)VETSnZF2N°
Cy= = . (4.12)
6V

Finally the complete electrolyte-electrode circuit topology23 can
be assembled, given the expressions, Egs. (4.1) and (4.11), for the values of
the elements, as shown in Fig. 4.1. The diffusion impedance in parallel with
the double layer capacitance is termed the polarization impedance, Z, of
the electrode. Note that in Fig. 4.1 the impedance of the electrolyte is
represented by the complex impedance element Z. This is done so that the
impedance due to the acoustic coupling can be included in a complete
circuit model of the input electrical impedance. The analysis of Z is
discussed in the next section of this chapter.

B. ELECTRICAL IMPEDANCE OF THE MHD TRANSDUCTION PROCESS

The electrical impedance of the transducer due to the interaction
of the electrolyte with the acoustic field is defined as the voltage across
divided by input current through the impedance element Z of Fig 4.1. The
input current | is found by integrating the current density over a surface near

the electrodes (four diffusion layers away, 4/Nw/2D).

I=JJ-dS (4.13)
S

59




SRR
I
)

xt‘a": 1

o —L
o —
]

S La
ry = o |
Sl

4
S

P
N

o
N

o

an @
(W IS

': XA

FIGURE 4.1
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The voltage is defined as the path integral of the electric field between the

electrodes, but not near the surface,

Vo= JE- dl. (4.14)

path between
electrodes

Using the above integral definitions the electrolyte impedance is defined as

JM"

path between
electrodes

Z=2 — (4.15)

JJ-dS

S

follows.

Evaluation of the numerator of Eq. (4.15) follows from assuming
that the surface integration near the electrodes is at a constant electric field
value.

Substituting Eq. (2.28) into Eq. (4.15), to take account of the

induced electric field, and substituting Eq. (3.21c¢) for u, the impedance is
Qy

fo

0
Z=

(4.16)

)
a)%; J J (1 + j GB GXL(x'b) - GXR(X-a))) dx
0a
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o Performing the integration,

e

25% Z= (G b2 (02 + 85" 2, (G, (b,b) - G, (a,b) - Gx(b,a) + Gg(a,a)) )4
3.” 'Qy mpon L\ L\ R\Y R\

e

hﬁ (4.17)
':‘ Shown in Figs. 4.2(a) and (b) are the real and imaginary
. components of the electrolyte impedance for the waveguide filled with a 6%
45, NaCl-water solution. The transducer boundary conditions of the waveguide
,; are those of the transducer used in the experiment discussed in Chapter 5.
Q For the 6% NaCl solution at 500 Hz the impedance is 1.581 - j 0.2X10°6,
*& The important result is that the real component for 6% NaCl is relatively
Eﬂ}: constant over the frequency band from 500 to 13000 Hz and the imaginary
i | component is negligible.

z'ﬂ: From the preceding discussions it can be concluded that the
:'); electrolyte impedance can be assumed to be real and ccnstant for
1 NaCl-water, except at "low" frequencies and/or high magnetic fields (B>>1T)
".'.; tor a high conductivity fluid such as mercury. It is justifiable therefore to state
?: Ohm's law as Eq. (2.2) for the electrolyte impedance.
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C. MHD TRANSDUCTIOM PROCESS PCWER EFFICIENCY
The transduction power efficiency is defined as the real

component of the radiated acoustic power divided by the real component of
the input electrical power plus the real component of the radiated power.

The complex input power expression is

W,= 127, (4.18)
where Z, is the transducer terminal impedance defined as

Z,=22,+2Z. (4.19)

To calculate the total radiated acoustic power the real component
of the acoustic self-impedance Re(Z) and the acoustic particle velocity

evaluated at the aperi.ie are integrated over the surface of the aperture.

W, = J|u(sz)|2 Re(Z) ds + [Ju(-)|2 Re(z,) ds (4.20)
apérture aperture
af a-0

To calculate the power efficiency, the ratio of Eq. (4.20) to the

real component of Eq. (4.18) is taken,

w
= —r . (4.21)
Re(W,)

Shown in Fig. 4.3(a) and (b) are plots for mercury and the 6% NaCl solution
used in the experiment, respectively. At low frequencies the efficiency is
higher because the particle velocity is higher since there is low acoustic

aperture impedance at low frequencies. As the frequency increases, up to

64

~ L)
", AT




,u% -60.21 — T T T T T T T T T T T T
i

-66.42

i
|

-72.62

i
1

1
i

-78.83

-86.04 |- -]

6 | S U U VAN U D O S O N (O U O DO O
2699 2982 3.265 3.548 3.831 414
LOG,, (1)

& (a)

Y MERCURY ¢ = 010 m, (g = 0.10 m
‘ co = 1450 m/s, R = 0.09 m

T
POWER EFFICIENCY - dB re 1

S
ol -91.2
’l

.‘ Y '\08.54 T
-118.22 -

12791 -

~137.59 -

o

e
i

I3

-147.28

T
]

=
POWER EFFICIENCY - dB re 1

a1

-

97 N S S T O Y N Y TR O TS Y O T O | 1
2699 2982 3265  3.548 3831 44
LOG4 (1)

(b)
6% NaCL-H,0 SOLUTION

€ =010 m, ¢g =010 m, cg = 1550 m/s, R = 0.09 m

-156.

FIGURE 4.3
MHD TRANSDUCTION PROCESS POWER EFFICIENCY

ARL UT
65 AS-86-420

SCS - GA

8-6-86




Z

% x"_' ;

Ty
A

B W R i g %3
- -' ]‘fl .‘{XJ l“
B LR e W

-
»
Pl

“ A o &
E RPN

the first resonance, the paricle velocity decreases faster than the real
component of the radiation impedance increases, and thus there is a

decreasing trend in the efficiency.

D. MHD TRANSMITTING CURRENT SENSITIVITY
The transmitting current sensitivity (TCS) is defined as the ratio of

output acoustic pressure at 1 m at an angle y to 1 A electrical input current.
The TCS is also defined for the special case of the transducer waveguide
axis (x axis response, y= 0° and range of 1 m). The expression for the
farfield pressure, Eq. (B.4), is analytically and computationally simpler than
the full spherical harmonic function expansion used to express the mutual
acoustic impedances. The farfield equation has the Hankel function
components replaced by the large argument, kr>>1, asymptotic expression
e, Although the farfield approximation, in general, is not always valid at a
distance of 1 m, this treatment is standard for determining transmitting
sensitivities. The advantage of this definition is that the pressure field may be
extrapolated to the farfield region by assuming ordinary spherical spreading
(which is generally the region of interest). The TCS expressions for the MHD
source mechanism in the farfield are given as
TCS= py(r=1meter, y)/I
where, from Egs.(B.4) and (3.21), the TCS can be stated as
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The x axis transmitting sensitivity is given below as a special case of

Eq. (4.22a).
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in generai the transmitting sensitivity is the most important
frequency dependent relation for a transducer. The expressions stated

above have many geometric parameters which affect the transmitting
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sensitivity in very pronounced ways. It is not the intent of this thesis tc probe
into a detailed parametric investigation of the sensitivity functions but to point
out a few important points. In Figs. 4.4(a), (b), 4.5(a), (b), and 4.6(a), (b)
plotted in three dimensions is the current sensitivity on the waveguide axis
(TCS,) versus frequency versus a geometric parameter or fluid property for a

specified set of constant parameters.

. - PR = - e,
g e 0 NPT A £ s v s A s e oy
o . o E . S e re oy . P il
3 3 - > 2 dp

« A

The variation of the sensitivity with waveguide sound speed

,,,a';:“—"-r L
X

proved to be of practical utility when analyzing the experimental data. When

e PP

<
M
s

current is passed through the NaCl solution in the transducer it is inevitable

that some hydrogen and chlorine gas bubbles will be generated. The effect

C
L

- @
s
1
. <

of the gases is to lower the acoustic phase speed due to the large increase
in the small signal compressiblity of the medium.

The transmitting current sensitivity surface shown in Fig. 4.4(a) is
for the case of a 0.03 m source centered in a 0.10 m long waveguide with a
0.09 m baffle radius (an aperture radius of 0.0196 m is used in all plots).
Compared to Fig. 4.4(b), which is for a source of 0.10 m with the same baffle,
the shorter source seems to excite a sharper resonance due to the source
velume being spatially a better fit to the excited "3/2 wave length pressure
mode". (See Figs. 3.8, 3.9, and 3.10 for diagrams of the particle velocity and
pressure modes.)

At higher sound speeds a null forins in the sensitivity surface. The
null corresponds to the destructive interference of the accustic radiation in
the farfield and is primarily dependent on the radius of the haffle. Notice that

the null occurs at the same frequency, approximately 6400 Hz. in both
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TRANSMITTING CURRENT SENSITIVITY LEVEL
AS A FUNCTION OF SOURCE LENGTH AND FREQUENCY

71




figures, which indicates it is not a feature which is dependent on the sound
cpeed n the wavegquide. The hal¥ circumference of the baffle, which is the
separaton distance of the apertures, corresponds to 3/4 of a wavelength at
6400 Hz with a free meaum sound speed of 1500 m/s. Since the apertures
radiate 180° out of phase for MHD sources centered symmetrically about the
waveguide length, signal cancellation occurs at this wavelength.

The transmitting sensitivity as a function oi baffle radius is shown
in Figs. 4.5(a) and (b), where the periodicity of the nulls is seen to be a
function of baffle radius for the reason given above.

Another important feature of the plots of Figs. 4.5(a) and (b) is that
as the baffle radius decreases the everall sensitivity increases. The reason
for this behavior is that the smaller baffle nrovides a smaller acoustic
impedance, and thus a larger particle velocity at the aperture results. As the
size of the baffle increases, the acoustic impedance increases and the
particle velocity is diminished. Note that the increase in radiating efficiency
resuiting from increasing the baffle surface area does not increase the
radiated pressure amplitude (sensitivity). When the baffle surface area is
increased the aperture impedance increases and has the effect of
decreasing the particle velocity faster than the improvement in the baffle
reflecting property.

The higher peak amplitude in Fig. 4.4(a) relative to Fig. 4.4(b) is
due to the achievement of the "3/2 wavelength" resonance at a lower

frequency due to the slower sound speed in the waveguide.
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Shown in Figs. 4.6(a) and (b} is the transmitting sensitivity as a
function of the source length, (b - a) or 2. Again it is lower sound speeds
that cause the greater amplitudes at low frequencies. The effect of source
length is not as strong for the higher sound speed plot in Fig. 4.5(b) since a
resonance condition has not been reached. T'he primary effect in this case is
the fixed radius of the baffle causing the resulting destructive interference

null structure of the plot at the same frequency.

E. ELECTRICAL IMPEDANCE OF THE THERMOACOUSTIC
TRANSDUCTION PROCESS

The electrolyte impedance characteristics and transmitting
pressure sensitivity of the ohmic source are not linear relations, that is, the
electrical current is not linearly related to the voltage and the transmitted
pressure is not linearly related to the input voltage (or current). The
nonlinearity of the ohmic mechanism is evident from the fact that an electrical
input sign2l of a single frequency w produces an acoustic output of
frequency 2 w, as demonstrated in Chapter 3. The nonlinear behavior of the
ohmic mechanism is evident in the source term of the inhomogeneous wave
equation, -B (J-J),/ o Cp , where the dot product of the current density field
with itself is a squaring or quadratic nonlinearity. One obvious consequence
of this ncnlinear behavior is that for multiple frequency inputs superposition
of the single frequency Fourier transform solution does not hold. Therefore
what was derived in Chapter 3 is valid for the single frequency input w and
not for linear combinations of this singie frequency solution. It is important to

note that the wave equation is linear, that is, the spertral content of the wave
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fields produced by the nonlinear source do not undergo frequency domain
corruption due to propagation. An acoustic signal at frequency w generated
by the MHD source mechanism wili be propagated with frequency w.
Similarly a single frequency electrical input signal of frequency w, through
the ohmic mechanism, will generate a wavefield of 2w, but the medium will
transmit the signal uncorrupted at frequency 2w. However, the boundary
conditions are frequency dependent and therefore the wavefields are
frequency "dependent”, and thus the spectral content of the waves emitted
by the source must be known in order to determine the wavefield.

Fortunately the source nonlinearity can be Fourier transformed by
using convolution and thus the spectral output of the thermoacoustic source
can be determined. If the current density has the functional form,

Ji{x,t) = J(x) f(t) , (4.23)

then the nonhomogeneous ohmic source term takes the form,

— () Y 1Y) (4.24)
oCp

where the dot product operation of the spatial component of J was noted in
Chapter 2. The Fourier transform can now be performed on f(t) f(t) by

convolution in the frequency domain as foliows.
Q) = i) 1} = JF(m')F(m-w') do, (4.25)
where Q is ihe spectrum of the convolution, F s defined as

Fw) = {1} (4 262
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and f is the exponential Fourier transform operator defined as

f{}= ﬁ }eitat, (4.26b)

7)< ApenTas
e &

v

= A

- v as M AT
Zop R s
R b i 2

As a note, it should be kept in mind that when the multiplication of time

harmonic functions is performed, f(t) f(4), the e i®! "notation" must be replaced

)
!L. by the real-time functions such as cos(wt). The reason is simply that
_-a multiplication is a nonlinear operation and when it is performed on the
)
-‘,;r complex time functions cor mcnly used for notational ease incorrect or
incomplete harmonic components are produced by the convolution
@)
operation. As an example of the convolution operation consider the following
s time dependence for J, assuming o, > o,
T'\..?i}
S
3 f(t) = A cos(w,1) + A, cos(w,t) . (4.27)
‘\‘k The Fourier transform of Eq. (4.27) is
i
’-'_ y Flo) = A(3(w+m,) +8(0-,)) + A, (3(0+,) + d(w-0,)) . (4.28)
;‘&Q The convolution results in the following source spectrum, Q,

2

u“!e
K. Q(w) = A2(3(w+20,) + 8(@-2w,)) + A2 (8(w+2w,) + B(w-20),))

+2A, A, (B(@+0,+0,) + S{w-0,-0,) + §(w+w,-0,) + O(0-w,+0,)) ,

2)

(4.29)

which indicates that the following wavefield harmonics are produced. 2w;,
Wy+ 0y, 20y, ANd ;- 0.

Notice that the cutput of the simple two-frequency input is the

generation of four different harmonics. For this two-frequency input the single




frequancy solutions of Chapter 3 can now be written in terms of the above
frequency components and the resuitant pressure fields can be summed
{since the acoustic cquation is linear) to obtain the total acoustic field.

Due to the noniinearity of the source mechanism, the linear
impedance is not defined. What can be defined instead is the quadratic
current transfer function (QCT*). The QCTF is defined as the ratio of the
output current to the square of tae input voltage for the input of two frequency

components as foliows. 2?4

I{wy Hax,)
QCTFe — A% (4.30)
V(@) V(o)
The expression for the ohmic source is as follows.
,U oB ulw,+wg, X) dx dz
QCTF= O AP . (4.31)
{
| By | Egfopey
(5 B g2 QZ {R_ Q(eizkb +ei2ka- Qeik(mb) )+ RQ(e'iakb- g-i2ka + 29-ik(a+b))) ,
 4Cp h2 R{-RR )
° v (4.32)

where k = (m,+wg)/c,. As an example of the eva'uation of Eq. (4.32), the
QCTF for difference frequency, w,-a,, would be found by substituting W= 0,
and g = -, for the case of a single frequency input », w, = ©, and g = O.
The QCTF should be regarded as a term of second order for NaCl
solutions, due to the combination of low thermal expar sion, conductivity, and
magnetic field. The QCTF for a 6% NaCl solution is shown in Fig. 4.7(a) and
(b) for a single frequency input signal. The amplitudes of the plots are

insignificant at any reaiistic voltage levels.
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For liquids with a very high conductivity (such as mercury) the
QCTF will not be of second order. Plots for mercury in the same waveguide
configuration as the NaCl show much higher QCTF magnitudes (see
Fig. 4.8(a) and (b)).

Since the QCTF is the current relationship the total complex

current, iy, (MHD and thermoacoustic effects) is

i i AV+QCTFV2 (4.33)

where A is the admittance due to the MHD mechanism and is equal to 1/Z.
The equivalent circurit of the combined MHD and thermoacoustic impedance
including the polarization impedance is shown in Fig. 4.9.
F. THERMOACOUSTIC TRANSDUCTION PROCESS POWER EFFICIENCY
The thermoacoustic t-ansduction power efficiency is defined as
the radiated acoustic power due to the thermoacoustic mechanism divided
by the real input electrical power to the MHD transducer. The complex input
power is defined in Eq. (4.18), but if the QCTF is significant the effect needs
to be accounted for in the electrical power expression. The total complex

electrical power, Wy, is then given by

WGTH=V ’T. (4.34)

The radiated acoustic power is defined using Eq. (4.20) with the
particle velocily expressions of Eqgs. (3.32a,¢) being substituted, and the
same expressions for the real component of the self-impedance being valid.
With Eqg. (4.20) and Eq. (4.34) the thermoacoustic process efficiency can be

defined as
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Wa

. (4.35)
Re(Wymy)

My =

Plots of the thermoacoustic transduction process efficiency are
given in Fig. 4.10(a) and (b) for a 6% NaCl-water solution and mercury,
respectively. Comparing the MHD efficencies given in Figs. 4.3(a) and (b) to
the thermoacoustic efficiencies in Fig. 4.10(a) and (b) the MHD process is
much more efficient for both fluids.

A rough relationship between the fiuid properties of the medium
and the thermoacoustic process efficiency is obtained from the leading
coefficients of the ratio of acoustic power expression Eq. (4.20) to th2
expression for the real dc ohmic power dissipation (the primary mechanism
of power dissipation in the experimental transducer),

[ Jo ]2 Co
Ny | — : (4.36)
wC,) opl

The same type of expression can be written for the MHD process and is

stated as

B)? oc,
o= |- | — (4.37)
® po

/

Some interesting insights are gained by these two equations.
First, the thermoacoustic efficiency is a function of the current density
squared, or power, and thus makes comparison of efficiencies a matter of
first stating the current density. Second a low conductivity, mass density,

specific heat, and high coefficient of thermal expansion are desirable for an
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efficient thermoacoustic source. For the MHD source the opposite is true with
regard to ‘he conductivity; a high value is desired, so that little ohmic losses
are generated. As the plots in Fig. 4.3(a) and (b) show, rmercury is a more
efficient fluid for the MHD process than the NaCl solution by a factor of
60 dB, due to mercury's 1.0 X 105 1/(ohm m) conductivity versus the 5.26
1/(ohm m) conductivity of the NaCl solution. The opposite is of course true for
the thermoacoustic case where the NaCl solution is approximately 70 dB
more efficient. However, mercury does have a value of C,of 140 J/kg/C
versus 4100 J/kg/C for the NaCl solution, buit the mass density of mercury is
13600 kg/m3 versus 1041 for the NaCl water solution.
G. TRANSMITTING SENSITIVITY OF THE THERMCACOUSTIC PROCESS
The transmitting sensitivity of a transducer is a transfer function,
like the admittance or impedance, and is generaily defined in the frequency
domain for a single input frequency assuming that the same output
frequency is produced. The transmitting sensitivities of the thermoacoustic
mechanism cannot be defined using the single frequency definition since the
thermal source mechanism is nonlinear and produces spectral pressure
signal components different from the input electrical signal. A quadratic
transfer function will be defined for two input frequencies as the quadratic

voltage transmitting sensitivity (QVTS),

p;(ma+Wg, r = 1 meter, y = main beam axis)
Qurs= A 8 , (4.38)
Va(wa) VB((DB)

where V,(w,) and Vg(wg) are the Fourier transformed expressions for the
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voltage amplitudes at 0, and wg. Substituting Eq. (B.4) for py, Eq. (3.32b) for
the particle velocity distribution, and Eq. (4.1) for the potential V into
Eq. (4.38), the analytical expression for the QTVS results,

B "mecfm

Ppo kfm Q‘y

QVTS =

2K(T-A,R,)
i ' (cos®) - P (cos®)) P_(-cosy) e (*+1)?
d ., 1
n=0 ax hn(x) ek R

(677 - 0y R, (07 - oK0) (o2 - R, gkt
2k(1 - RQR_Q)

+

(cos®)) P_ {cosy) T ("1

e
dx xeky R (4.39)
where ki = (W, + 0g)/C;, and k = (0, + wg)/C,; for a single frequency input ,
K = 200/Cy, @and k = 2w/C,,.

Time did not permit a parameter investigation such as that
performed for the the MHD sensitivity. K wever, two plots of the single
frequency input thermoacoustic transmitting sensitivities (QVTS) for fixed
parameters are given in Fig. 4.11(a) and (b) for the 6% NaCl solution and

mercury. Notice that the mercury transducer shows a higher sensitivity than

the NaCl solution. However, the sensitivity is in terms of the input voltage.
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3" With mercury's very high conductivity a very small voitage is always going to
result, at the terminals, and thus a low source level. Thi: is because
i{;' generating large voltages on a practical thermoacoustic merc.iry transducer
3‘: is tantamount to huge electrical currents due to the 5w real input
Wy impedance.

AN More discussion of the QVTS is included in C: apter 5 with the

3%‘,, experimental results.
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CHAPTER S
TRANSMITTING EXPERIMENT

To verify the theoretical predictions presented in Chapters 2, 3,
and 4, an MHD transmitter was constructed and sensitivity and beam pattern
measurements were taken. The transducer used in the experiments is
depicted in the photograph of Fig. 5.1.

The planned operating regime of the the MHD transmitter with
respect to the frequency bandwidth and output levei was primarily dictated
by the characteristics of the power amplifier that was available and the
spatial extent of the magnetic field that could be generated. Fortunately a
high power, relatively broadband power amplifier was available at ARL:UT.
The magnetic field was generated using samarium-cobalt permanent
magnets. Permanent magnets were employed primarily because of the
convenience of not needing a power supply, but due to the expense of the
magnets a limited volume of low permeable space could be energized
uniformly. An important consideration was that the permznent magnet be
relatively compact and of simple design since the size of the transducer has
an important effect on the acoustic radiating characteristics.

A. OPTIMIZATION OF THE MHD TRANSMITTING CURRENT SENSITIVITY

The prime objzctive in designing the MHD transducer was to
maximize the transmitting sensitivity across a broad frequency bandwidth.
Tantamount to this objective is determining the waveguide dimensions, the

permanent magnet spatial distribution, and the electrode surface distribution.
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From the transmitting current sensitivity expression, Eq. (4.22b), it is obvious
that a large magnetic induction is desirable, but maximizing the magnetic
induction dues not optimize the design goal using perranent magnets.
Since the radiating aperture area is an important parameter, it would seem
that a large aperture together with a high magnetic field would contribute to
maximizing the sensitivity. However, the size of the aperture is directly
related to the pole face separation of the magne:'s, and therefore increasing
the aperture area increases the reluctance of the magnetic circuit. There is a
definite optimization of the magnetic induction by the aperture size which will
maximize the transmitting sensitivity for a given quantity and spatial
arrangement of permanent magnets.

The functional dependence of the sensitivity on the aperture
radius and baffle radius is not explicit in Eq. (4.14b); the uepandence arises
in the computation of the reflection coefficients. The relationship between
sensitivity and aperture size is displayed in Fig. 5.2 for a sphericai baffle
rauius of 0.05 m and frequency of 1000 Hz. The sensitivity function for the
purpose of the optimization, is well fit by a linear relation in the region from 0
to 29 mm (the general trend is for the sensitivity to increase over the entire
frequency band as seen in Fig. 5.3). At 1000 Hz and for a baffle of radius

0.05 m the relation is

TCS < 727.3R, , (5.1)

where R, has the units of meters.
It is also necessary to relate the magnetic induction to the

aperiure radius by the appropriate magnetic circuit model. The analysis of
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TCSL - dB re 1 Pa/A

FIGURE 5.3
TRANSMITTING CURRENT SENSITIVITY LEVEL (TSCL)
AS A FUNCTION OF APERTURE RADIUS AND FREQUENCY, FOR
Co=1550 m/s, R=005m, B=1T
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the magnetic circuit follows from Cousins and Nash?® (they constructed a
cloud chamber using permanent magnets). The important technical aspect of
their work is the development of an empirical refation tor wic magnetic flux
leakage (fringing losses) associated with square or rectangular magnetic
pole faces with various geometric restrictions. Due to the manufactured
shape of the permanent magnets a limited number of practical geometric
configurations were possible. Since the research budget allowed the
purchase of 40 magnets of dimensions 2" x 2" x 0.5" an arrangement of four
stacks of five magnetics above and below the field gap was intuitively
obvious. This was not, however, an ad hoc choice; the circuit model
predicited that larger but fewer stacks would result in large fringing losses.
Therefore, given the four-stack arrangement, the relationship between the

meagnetic induction and aperture radius was found to be

B =-15350 R, + 8250, (5.2)

whare the units of B are tesla. The com.uter generated curve is shown in
Fig. 5.4.

Stated previously, the sersitivity is directly proprortional to B, so
Eqg. (5.1) and Eq. (5.2) can be combined to yield an empirical relation for the

TCS as a function of R,

TCS «« (-15.35 R, +0.8250) 1.106 R_. (5.3)

To maximize the relationship in Eqg. (5.3) the expressiun is differentiated with
respect to R, and the resuit set equal to zero. The value for R, is found to be

0.027 m, which is a field gap, £, 0f0.0479 m. Due to an error in the
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‘%‘: calculations made at the time the MHD transducer was designed a value of
|

oo

X 0.0381 was used for the field gap. The constructicn details of the waveguide

20

are shown in Fig. 5.5.

;f )
)-.'::{:Ea) =

Ve U D I A P
‘{E. vy
ol L P 2

The estimate of the magnetic induction for the 0.0479 m fieid gap

%

is 4500 G and maximum measured value for the 0.0381 m gap, displayed in

[

)

:3 the distribution shown in Fig. 5.6, is 4327 G. It was concluded that either the
N

NG . . _ " -

‘ﬁ;« assumptions concerning the geometrica restiictions on the validity of the
4 by X

A fringing theory are in slight viola.icn, or small gaps in the transducer magnet
o stack raised the circuit reluctance higher than expected. However, the

£,
M

magnetic induction is very uniform as shown in Fig 5.6 for the distribution

2

L

measured at the midpoint plane of the waveguide.
B. ACOUSTIC SPEED MEASUREMENT OF THE WAVEGUIDE
The phase or plane wave acoustic speed for the 6% NaCl-water

solution in the MHD waveguide was measured to confirm the boundary
condition assumption that the waveguide walls were acoustically rigid. Two
methods were used to measure the wave speed, (1) a pulse and (2) a
resonance technique.

The pulse technique used a transmit frequency of 150 kHz and a
time duration of three cycles or 10 pus. This method yieided a wave speed of
1650 m/s.

The rcsonance methou employed a continous wave white noise

K

-
3
b
v
a?
[

sigral transmitted into the wavegquide with the apertures terminated by "rigid"

?
“
T
s.
)

brass blocks. The boundary conditions were thus taken to be rigid walled
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cavity (see Fig. 5.7). By measuring the amplitude spectrum of the cavity
response to the white noise signal the frequencies of the standing wave
modes were deteimined and used to calculate the wave speed. From the
1,0,0 pressure mode of the cavity the wave speed was calculated to be
1600 m/s. For most of the theoretical calculations 1600 m/s was used
because the sound speed was determined by the resonance method at
7500 Hz, which is within the frequency band of the experiment. The
theoretical sound speed for the 6% NaCl-water solution at 20° C was
calculated to be 1536 m/s by using of the equation given by Coppens? for

the speed of sound in seawater as a function of salinity and temzerature.

C. MEASUREMENT OF THE ELECTRICAL IMPEDANCE OF THE
TRANSDUCER

The input impedance of the MHD transducer was measured
using the system of Fig. 5.8 with the transducer in the water. The input signal
to the transducer was white noise at an rms amplitude of 20 V and the
current was sensed using a Pearson current transformer. The transfer
function mode of the signal analyzer was used to determine the impedance
using the voltage as the response signal to the input current signal. The
transfer function is calculated as the crosscorrelation between the input and
output complex signal spectra divided by the autocorrelation of the complex
input signal spectrum. A plot of the magnitude and phase of the impedance
measurement is shown in Fig. 5.9.

The measured impedance indicates, by the lagging phase, a
significant capacitive impedance at frequencies less than 4000 Hz. This

capacitive effect is due to the polarization impedance of the electrcdes,
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which was investigated theoretically in Section A of Chapter 4. Plotted in
Fig. 5.10 are the real and imaginary components of the theoretical
impedance represented by the network shown in Fig 4.1 with data points
taken from Figs. 5.9. Notice the ordinate axis is the reciprocal of the square
root of the angular frequency so that the linear dependence of the diffusional
impedance on 1Yo can be exhibited (see Egs. (4.11) and (4.12)). One can
clearly see the linear trend in the data at low frequencies. It is also noted
that the best fit of the theoretical curves occurred for a double layer
capacitance value of 762 ps which is 200 mF/m2, and an electrolye
conductivity of 5.56 1/ohm m, which is a dc resistance of 1.5 ohms, was
included in the calculation of Z (Eq. (4.17)). The imaginary component of the
MHD impedance was found to have a negligible effect on the input
impedance model and can therefore be discarded in most preliminary
calculations using a low conductivity fluid.

It is concluded that the polarization impedance model fits the data
well; however, the model would become extremely difficult to apply if
electrolytes other than 1,1 vaient salts are used. This might be the case with
seawater. Vetter gives a very complete discussion on the impedance
properties of other common electrolyte chemistries? and some of the

difficulties of complex chemistries.

D. gRé[\rlngTTlNG CIRCUIT AND ACOUSTIC SIGNAL MEASUREMENT
YSTEM

The efficiency of both the MHD and thermoacoustic mechanism is
extremely low in the case of low conductivity fluids as evidenced by

Fig. 4.3b. As stated previously the efficisncy is better at low frequency
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since the particle velocity is larger. However an efficieny of -108 dB implies
that an input of 5 kW of electrical power will produce only 20 mW of radiated
accustic power. The problem of performing the experiment is whether the
signal-to-noise ratio (S/N) is sufficient to produce meaningful dara.

The power amplifier used to power the trancducer was a CML
Corp. model B5K which can deliver 5000 V-A loaded with power factors
between 1 and 0.1 over the band from 100 to 10000 Hz, +0.5 dB. Since the
maximum lag in the phase of the impedance is -25° (Fig. §.11), which
corresponds to a power factor of 0.91, the compensation of the transducer
was not deemed necessary. The block diagram of the transducer circuit is
shown in Fig. 5.11.

An impedance matching transformer was therefore designed to
match the dc resistance of 1.5 ohms of the transducer to the amplifier. The
transformer turns ratio is 1.43, with 38.6 turns on the primary and 30.6 turns
on the secondary. The matching transformer has a 2 mil silicon steel
laminate core capable of broadband power transfer with a maximum
hystersis loss of 10 W at 400 Hz. The total loss of the transmission lin2s and
transformer was measured at 300 W. For all the transmitting experiments the
transducer current was typically 60 A peak with a terminal voltage of 75 V
peak.

The experiment was performed at the large outdoor wooden tank
facility, as depicted in Fig. 5.11. A broadband noise survey was performed to

access an S/N for the experiment. Both the rms level and the coherency
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between two hydrophones 1 m apart were measured and averaged over a
period of 500 ms. Over the band from 500 to 3500 Hz the rms noise SPL was
approximately 97 dB (re 1 us) and then proceeded to drop off at
20 dB/decade. The coherency was measured to be less than 0.4 over much
of the band from 500 to 10000 Hz, which suggests that coherent ping to ping
averaging of the received acoustic signal should be a successful method for
eliminating the narrowband noise after filtering.

The calculated SPL, on axis, at 15 ft range for 5000 W of input
power at 500 hz is 89 dB which gives an S/N of -8 dB, this represents the
worst S/N figure. At 5000 Hz the SPL is 123 dB and the S/N is 12 dB. Signel
averaging thus became a mandatory process. Typically ten signal averages
were required to reduce the noise by 20 dB. And typically a center frequency
to filter band ratio of 10 was maintained with the bandpass filter to eliminate
broadband signal noise.

The acoustic signal measurement system consists of a broad-
band hydrophone (NRL USRD H56 reference standard hydrophone), signal
amplifier, bandpass filter, and a Nicolet 4094 digital oscilloscope (the Nicolet
has a signal averaging mode). The signal amplifier provided 40 dB of gain
necessary for lifting the signa: above the elect.ical noise produced by the
transmission cable's 150 ft run from the tank to the building.

The MHD transducer was mounted on a rotator columin, depicted
in Fig. 5.12, and lowered to a depth of 15 ft. The MHD trarisducer and

hydrophoinie were separated by a distance of 18 ft, which placed the
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hydrophone well into the farfield over the entire frequency band, and
allowed a maximum gated transmit signal of 5 ms; the gate time was limited
by the surface reflection path length of the transmitted acoustic signal. The
5ms gate time set a lower limit on the frequency band of the transmitted

signal to 500 Hz, which is 2.5 cycles.

E. MEASUREMENT OF THE MHD TRANSMITTING SENSITIVITY AND
DIRECTIVITY

The TCS on the waveguide axis was measured for the
frequency band from 500 Hz to 13000 Hz. A typical time domain pressure
signal received while making the sensitivity measurement, along with the
current waveform, are shown in Fig. 5.13. The acoustic signal shown is the
result of ten ping-to-ping averages and bandpass filtering.

The transmitting current sensitivity is defined in this thesis as 20
log,, of the peak pressure divided by the peak current. Figure 5.14 shows
the comparison of measured current sensitivity and the theoretical prediction
from Eq. (4.22b). Good agreement was found between theory and
experiment for the 500 Hz to 4000 Hz band with most measured values
within 2 dB of the thecry. Erratic behavior of the measured data for
frequencies greater than 4000 Hz can probably be attributed to two causes.
First, two restrictions were placed on the theory on Chapter 3, R, /R <<1 and
kR,<<1. The first constaint is set by the geometry to be effectively 0.392,
which therefore might raise some doubt about the transducer design.
However, the good fit of the data at less than 4000 Hz seems to relax the

importance of this constaint. At 4000 Hz, kR, = 0.33 (which again is not much
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.: less than 1), may indicate that the aperture radius to wavelength restriction is
E more severe than the constraint of planar motion of the particle velocity at the
' .' aperture.

f: The second cause is the non-spherical construction of the
:'\;’ transducer (see Fig 5.1). Since the measured data do not diverge smcothly
from the theon one would expect that diffraction caused by the irregular
' geometry of the magnetic ~".cuit structure is at fault. At 4000 Hz the wave
-’.a:‘:' length is 37.5 cm and the diameter of the ring structure is 29.2 cm, so
:%? diffraction should be expected. Given the geometrical restrictions of the
) theory and good fit of data well beyond those restrictions one can conclude
‘3;7 that the theoretical approach is appropriate.

Shown in Figs. 5.15(a), (b), (c), and (d) are the measured and

predicied directivity patterns for 1050, 4000, 6000, and 10000 Hz (the
theoretical directivity patterns were cornputed by the FORTRAN program

T
S ST

-

By 2 o2y el

MHD). The th- oretical directivities are shown for two different baffle radii to

e

emphasize the importance of the baffle size in determining the directivity

o
s

pattern. In Fig. 5.16 the equivalent baffle radius is compared to the actual
transducer geometry.

The directivity patterns were measured at 11° intervals for a
complete 360° rotation of the MHD transducer. At 1000 Hz there is excellent
data agreement with theory. At 4000 Hz there is some significant divergence,
and at 600C and 10000 Hz the data and theory do not correlate, except near
the 90° and 270° null. The directivily pattern at 4C00 Hz, and higher

frequencies, indicates that diffraction by other parts of the transducer is
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N significant and is thus the cause of the divergence of the on-axis sensitivity
)
Y data above 4000 Hz.
L)

- F. MEASUREMENT OF THE THERMOACOQUSTIC TRANSMITTING
oY SENSITIVITY

Measurement of the QVTS was made on the waveguide axis for
0 the single input frequency, in the band between 500 and 4000 Hz, which
R corresponds to the transmitted acoustic frequency doubled band of 1000 to
"j 8000 Hz. In order to measure the thermoacoustic signal it was necessary to
?” remove the waveguide from the magnetic ring structure, thus eliminating the
MHD signal. Accurate measurement of the thermoacoustic signal in the
1{:’ presence of the MHD signal proved to be difficult because of MHD signal
13; interference. Even though the bandpass filter rejected 40 dB of the MHD
! signal amplitude, spectral leakage was a problem.

;§§:‘ A typical thermoacoustic time waveform is shown in Fig. 5.17.
;g,f% Notice the frequency doubled pressure signal relative to the input current
ke signal. Noise was much more of a problem in measuring the thermoacoustic

signal since the pressure signal is typically 10 dB below the levels measured
for the MHD process.

The measured QVTS data and the theory are plotted in Fig. 5.18
as a function of the input signal frequency. The QVTS in this plot is defined
as the peak pressure divided by the square of the peak terminal voltage. In
this case the quadratic current transmitting sensitivity is related to the QVTS

by substacting 7 dB from the latter.
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The number of data points shown in Fig. 5.18 are limited due to
difficulties with the transducer fluid chemistry. The thermoacoustic data were
gathered several months after the experiment was set up, and during this
time the electrode surfaces had begun to correue. The electrodes are copper
with nickel and gold electropiated on the surface. At the time of the
thermoacoustic experiment the copper had apparently reacted with the
nickel and blistered the gold plate off the surface, exposing the now oxidized
copper surface. As a result large quantities of undissclved gases were
generated dus to a copper oxide-chlorine reaction. After virtually each ping
the transducer had to be raised from the tank and checked for visible gas
bubbles, and the sodium chloride and water soiution changed. Thus few
reliable data points were generated. However, the few points that were
obtained generally fit within 2 dB.

As a note to the problem of hydrogen and chlorine gas evolution
within the transducer, the gases seemed to stay dissolved until the saturation
concentration was reached for Cl,, which is 0.0004 moles/liter. In order to
produce this concentration in the waveguide a total charge transfer of 93°C
is required. At 80 A-peak current the average current is 38.2 A; thus 1.54 s of
current is required to produce the saturation concentration of chlorine gas.
This is equivalent to 309 5 ms pings, which is enough data to generate the
data in Fig. 5.14. However, the transducer must be periodically shaken to
dissolve small nucleated gas bubbles which can sometimes form on the
surface of the electrode. The curious inconsistency in the production of

hydrogen and chiorine is that it does not seem to react to form hydrochloric
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[ acid according to Eq. (4.6) and thus neutralize the buildup of sodium
el hydroxide that results according to the overall electrode reaction, Eq. (4.5).
;;{ The dissolved chlorine gas seems to reach saturation when bubbles are

Y noticed in the waveguide after approximately 250 pings.
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CHAPTER 6
CONCLUSICNE

This thesis has examined the behavior of an underwaier acoustic
transmitter based on the magnetohydrodynamic principle. The transducer
consists of a waveguide filled with salt water and exposed to crthogonal
magnetic and electric fields. The magnetic field was genrerated by
permanent magnets, and the electric field was time harmonic in order to
produce oscillatory force on the salt water causing an acoustic signal. This
electric field results in electric current flow which causes heating and
thermoacoustic radiation of sound as well as producing sound through the
MHD mechanism. Both sound generating mechanisms were examined.

The linear inhomogeneous pressure wave equation which
characterizes the MHD and thermoacoustic sound mechanisms was derived.
The inhomogenseous equation was solved assuming a plane wave pressure
field within the waveguide. The plane wave field was matched at the
waveguide apertures to a spherical wave pressure field i the free medium
through impedance conditions at the waveguide apertures  om the wave
field solutions the MHD and thermoacoustic mechanisn ransmitting
sensitivities were derived to predict the farfield radiation .rom an
"hypothetical" spherically baftled MHD transducer.

There were three phases of the experimental investigation:
measurement of the electrical input impedance, measurement of the on-axis

transmitiing sensitivities, and measurement of the acoustic radiation
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‘é directivity. Due to the weight limitations the transducer which was built did

o not resemble a sphere with a channel through the center, as was assumed
"‘3\‘23 in the theoretical development, but the measurements made correlated very
»; well with the theoretical predictions.

1‘;‘ A model of the electrode polarization impedance was used,

K which produced accurate theoretical predictions. The polarization
_}: impedance took into account the chemical diffusional impedance and
‘E 3 included a relatively simple model for the double layer impedance. It can be

g

A,
&

concluded from the impedance measurements that a model of the

transducer which places the polarization impsdance in series with the

(.

K §
"2t
.« %

h .

electrolyte impedance is appropriate for NaCl-water electrolytes and noble
metal planar electrodes.

Measurements of the MHD transmitting sensitivity were, in
general, in good qualitative and quantitative agreement with the theory. The
data comparison shows that up to 4000 Hz the agreement is within 2.5 dB.
Above this frequency the predicted and measured MHD directivities diverge
significantly, due to the difference between the assumed and actual
transducer geometries.

The measured MHD directivity pattern at 1000 Hz showed
excellent agreement with the computed directivily. At 4000 Hz the directivity,
while corrupted due to the non-spherical nature of the transducer does
agree fairly well with predictions assuming a spherical baffle of 5 cm radius.
In general, at low frequencies, the transducer makes an excellent dipole

radiation transducer.
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The measurements of the thermoacoustic radiation were very
difficult to make, but given the limited amount of data one can s2e a
reasonably good theoretical agreement. Since time was not available to
measure reliable directivity patterns for the thermoacoustic source
mechanism, absolute validity of the sensitivity data is lacking. The directivity
of the thermoacoustic source is predicted by the computer code to be
omnidirectional within 0.05 dB for 1000 Hz. Measurements on axis and 90°
off axis were made and the values were within 2 dB; however, this is not
proof that there was actually a monopole directivity.

Considering the geometrical and wave number constraints of the
theory, all of the measurements are in good agreement and use of the theory
for even a "moderately" exceeded operating frequency range seems
justifiable.

The experiments reported here were limited to a frequency band
500 to 13000 Hz. At the low end of this regime, the size of the testing tank
was the limiting factor. Frequencies lower that 500 Hz would have been
interesting to examine since the lower frequencies necessarily imply larger
particle velocity amplitudes. Studies at higher velocity amplitudes might
have given some indication of the range of validity of both the arerture
acoustic impeda- model and electrical impedance model. However,
facilities for a larger free field environment and a means to increase the
source level were not available.

With regard to the input power available for the experiment,

sufficient current was not availabie to test the limit of the approximation
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imposed on the use of the linearized Nernst equation fur derivation of the
diffusional impedance. Thus, nonlinear behavior of the polarization
impedance at large current densities would te an interesting phenomenon
to study more closely since any source using the MHD mechanism to
produce "practical" pressure levels (using an electrolyte) would bg operating
in this nonlinear impedance regime.

Since the constraint on the small temperature rise assumption of
the thermoacoustic assumption allows (effectively) for a very large current
density, testing the effects of exceeding this limit might require the use of a

pulsed power generator or capacitor bank.
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APPENDIX A1
DERIVATION OF THE MAGNETIC DISPERSION RELATION

The derivation of the magnetic dispersion relation to follow is
included to supplement the discussion of Chapter 2. The small signal
momentum, continuity, and state equations of Chapter 2 are restated below
with the exclusion of the thermoacoustic term present in the continuity
equation, Eq. (2.24), because the term simply generates terms of second
order compared with the dispersion term of the MHD scurce.

The equations derived in Chapter 2 are:
the small signal momentum equation,

pou, +Vp = JXB, (2.25)

small signal continuity equation,
Pyt PV U =0, A1)

and small signal state equation,
p=c2d. (2.23)

The expression for the current density J from Chapter 2 is (neglecting the

displacement current),
J = o (E + uxB). .1)
Inserting the expression for J into Eq. (2.31),
PU +Vp = o (E+uxB) XB (A.1.2)

a momentum equation in terms of the new source field E and the damping

term ocuxBXB is found. The divergence of Eq. (A.1.2) is now taken,

V2p + p V'u, = oV+(E + uxB}XB, (A.1.3)
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:‘:l, and the continuity equation, Eq. (A.1.1), is differentiated with respect to time
iy

¥ “ with the state equation substituted for p,
1)
P

i Vi = —— . (A1.4)

poco

0

f“;, ; Substituting Eq. (A.1.4) into Eq. (A.1.3) results in the inhomogeneous wave

LS

v equation,

‘,

-';fs V2p -1/c2p, = oV (E +uxB)XB. (A.1.5)
)

Al

?g}’ Since the goal here is the derivation of the plane wave dispersion

@

;% relation, the inhomogeneous term, oV- E, can be dropped and the
b . : . , .

e homogeneous wave equation can be written in one-dimensional form,

P - 1/c,2 py-0B2u, = 0 . (A.1.6)
From the continuity equation, Eq. (A.1.1) and Eq. (2.29), u, is related to p as
Uy, = P/ PyCo> (A1.7)
Substituting Eq. (A.1.7) into Eq. (A.1.6) yields the final form of the
homogeneous wave equation,

P - 1/6,2 py+ 0B2/p,c2 py=0. (A.1.8)

The dispersion relation is found by substitution of the assumed

harmonic progressive form of the plane wave solution into Eq. (A.1.8),
p(xt) = p, e Mkx-al | (A.1.9)

which produces

(-k2 + (1/c ) w2 - j(0B_2/p c.2) w) p, e kot = 0 (A.1.10
(o] [o] o0 [o]
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Hence, the magnetic field dispersion relationship is

® ) joocB,? 12
k= ||= | —= . (A1.11)
CO pOCO

125

>
Py S I A e n'-.il,_‘A,'\lfA..H:,\.h:,k‘.hrl,,‘,ll,‘n'-\‘L:.I'Aq,"il‘lh‘ Rl R R Tt T Tl RO L T 0y N N, Vot "R, VT, " Y 0 S . S
e IR I B e e e R B i s piesssiveyi syt vttt — s - ——— —

= Pa A e e P e S g ey iyl



-
-+
=%

e\

T

e
Har

3

X

X

X,

A S ki L 52
=

e

~p’

L

‘7 -
4
2

XY
4

T

o ottt
X -3
e} ¥

ferA o

R
C

p P
;

APPENDIX A.2
THERMOVISCOUS PROCESSES WITHIN THE WAVEGUIDE

This appendix will threat the justification for neglecting the
thermoviscous processes in the theoretical analysis of Chapters 2, 3, and 4.
Primarily the effects of viscosity are being neglected so as to simplify the
analysis and allow an uncubcured treatment of the magnetohydrodynamic
and thermoacoustic acoustic source mechanism. The assumptions made in
the modeling procecs of the MHD transducer are justifiable in the framework
of the theory applied to the experimental transducer study and are not in
general always applicable.

Losses in a thermoviscous medium occur due to two primary
mechanisms, heat conduction and viscous molecular interaction. The losses
from these two mechanisms will he considered in terms of the aéoustic
resonance quality factor, Q, of the nth resonance mode. The quality factor
will be used to compute the half power bandwidth of the nth harmonic and
compared to estimates from the theory cf Chapter 3, which take into account
only radiation losses.

For plane wave propagation in seawater the attenuation due to
thermoviscous absorption at 10000 Hz is aq, of 8.1 X 1079 Nep/m.27 From

Kinsler and Frey?8 the expression for the Q is

Q =L (A.2.1)

n2a

The first resonance mode is approximately the full wavelength

pressure mode; for a waveguide 0.10 m long the frequency is
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approximately 15000 Hz. Taking the wave speed to be 1500 m/s, Q4 is

s A
-

ot 260000. The half power bandwidth is therefore 0.06 Hz, a very "sharp"
T resonance.

The attenuation coefficient due to the boundary layer losses for
' ﬁ an isothermal waveguide wall is given as??

ol 1 Wi 2 p-1)

w2l () e
% with the constraint on Eq. (A.1.1) that

i i

k8visc| << kR, << 5
10000 Hz 500 Hz

(A.2.3)

visc |500 Hz

4

PR

g “.:‘,g e
A,

where 8. = 2p/wp, is the viscous boundary layer thickness. For seawater

e o

X >
s
..

¢ . . .

_ . the following fluid property values are used for computing ou,.3°
0

b i =0.001 N s/m? coefficient of viscosity

:'f_'% v=1.01 ratio of specific heats

_ p,= 1026 kg/m? mass density

:t:,l ¢c,= 1500 m/s adiabatic sound speed
o

'ﬂ“v
R

For an aperture radius R, of 0.02 m the theory is valid for the entire
frequency spectrum from 500 to 10000 Hz, with bounds of 0.000234 <<
0.0419 << 955.0. The o is 0.0035 Nep/m which yields a Q, of 5984 and a
half power bandwidth of 2.5 Hz.

Figure A.2.1 shows a graph of the maximum acoustic pressure
predicted by the theory presented in Chapter 3, which takes account of
radiation losses only. It is seen from this graph that the half power bandwidth

of 9400 Hz is very large compared to either of the numbers calculated
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oy above. Also plotted in the graph is the maximum pressure for a sound speed
9 of 650 m/s; again a large bandwidth is noted. The conclusion to be drawn is
ks that thermoviscous mechanisms play ar insignificant role i the dynamics of
%’-‘j the acoustic processes occurring within the waveguide of the specified

3% geometry and frequencies of interest noted here.
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APPENDIX B
PRESSURE FIELD SPHERICAL HARMOMIC FUNCTION EXPANSION,
RADIATION IMPEDANCES, AND FARFIELD PRESSURE

The calculation of the mutual radiation impedance requires that
the acoustic field be specified. Therefore the first task is to specify the source
and boundary conditions. In this case the sources are two circular pistons
on the surface of a rigid spherical baffle radiating into an acoustic free space.
The pistons are pesitioned 180° apart on the sphere which gives the
radiation an axis of symmetry through the piston centers. Thus there is only
one angle y, on which the field will be dependent (see Fig. B.1). The results
that are presented follow directly from Sherman's®! results with the above
conditions.

The pressure at any point in free space outside the sphere can be
expressed as the sum of the pressure fields generated by the individual

pistons,
Pin(TW) = P gl oW) + P gim(HW) - (B.1)

The spherical harmonic function expansion is stated below for the

pressure field resulting from one piston on the sphere.

Pyt (HW) = 4P Crpu(t )

i (P, (cos®) - P, (cos®)) P_ (cos y) h (k)

d 1
n=0 ax X a (B.2)
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APERTURE GEOMETRY
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In Eq. (B.2), P, and P, are the ordinary Legendre polynomials of order nx1
and n, cos®, and cosy are the arguments of the Legendre polynomials
where @ is the half angle of the source radius, and y is the coordinate angle
referenced to the source symmetry axis. h'_(kr) is the Hankel function of the
first kind of order n and is a function of kr, where r is the radiai distance to a
point in free space and R is the sphere radius.

The calculation of the mutual radiation impedance follows directly
from Eq. (B.2). The pressure is evaluated on the surface of the sphere, r= R,
substituted into Egs. (3.4a,b) and integrated over the angular sector of the
source aperture from y = 0 to y = ©. For the case of the waveguide geometry

used in the experiment the mutual impedance is as follows

Z, yim (W) =Py G 8™ et

i 1 (P, (cos®)-F , (COS@))2 h1n (kR)

2n+1 d .1
N=0 ax M) g (B.3)

where | is the relaiive temporal phase between the sources.

Equation (B.3) is valid for both apertures provided they are of
equal radius or as stated above, angular sector ®. The expression is
independent of the magnitude of the particle velocity since the aperture
velocity distribution was assumed to be purely planar motion.

Calculation of the farfield pressure is accomplished using the
farfield approximation to Eq. (B.1), which is to say the approximations are

made in Eq. (B.2). Note that Eq. (B.2) is an exact solution to the pressure
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field for the stated boundary conditions. However, when in the farfield, the
large argument form of the Hankel functions save much computational
overhead. Without proof the farfield anaiog of Eq. (B.2) is stated below. See,

again, Sherman for a more complete discussion.

. jkr
JPtm Cim®©

ry) =
Py (ry) ok

d . i

S -f 1)72
-u(-2) 2 (P4 (cos©) - B, (cos®)) P, (-cosy) gin(n+1)
Nn=0 _a_; hn (X)

x=kR

2 (P . (cos®)-P. . (cos®)) P_(cosy) e 1?2
+U(Q)Z (P..; (cos®) - P, . (cos®)) P, (cosy)

d. 1
n=0 I (x)_ TkR (B.4)
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APPENDIX C
REFLECTION COEFFICIENT EQUATIONS

Due to the complexity of the coefficients a hierarchy of dummy
variabies are defined below to construct more simplistic forms.
A= gk (C.1a)
B = gk (C.1b)
C = gka. gib (C.1¢)

D= efa. gib (C.1d)

The dummy variables for the MHD refiection coefficient equations are as
follows.

A=BD(1-ZJ/p,c,) - BCZ /p.C, (
=AD(1 + Z/p,c,) -BD Z /p.C, (
=BC(1 - Z/p,c,) + AC Z, /pC, (
AC(1 +ZJp.c,) + ADZ /p.C, (C.2d)

(
(
(
(

D
E

BC(1 - Z/peS,) - BD Z/p
E=8BD(1-Z/p,c,) +AD Z /p cC,
G=AC(1+Z/pc,)-BCZ. /p.c,
H=AD(1 +Z/pc,) + AC Z_/p,C,
The coefficients for the MHD reflection coefficient equations, Egs. (3.18a,b),
are as follows in term of the above underlined dummy variables.
C,=AE-BE (C.3a)
C,=AH-BG+CE-DE (C.3b)
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'iﬁ C,=CH-DG (C.3c)

o C,=CE-AG (C.3d)

R Cs= DE+ CE-BG-AH (0-3e)

;ﬂ Ce = DE-BH (C.31)

%;w The dummy variables for the thermoacoustic reflection coefficient equations

) are as follows.

E‘ &= BD(1 - ZJp,)) + BC Z_Ip S, C.4a)

:r: B =AD(1 + Z/p.C,) - BD Z, /p,C, C.4b)

, C =BC(1 +Z/p.c,) - AC Z,/poC, C.4c)
4 D =-AC(1 + Z/p,C.) + AD Z,/p,C, C.4d

LA
o %-ﬂﬂ
il

B
B

y_

(-1 +2ZJ/p,C,) - AD Z_/p.C,

ERLC i

=AC(1 + Zp,c,) -BC Z _/p.C,
=-AD(1 + Z/p,c,) + AC Z /p.C,

R

(

(

(

(
C(1 - ZJp,C,) + BD Z_/p,C, (C.4e
D (

(

(

E
E
G
H

”
Rl

The coefficients for the thermoacoustic reflection coefficient equations,

2]

o e o
RS

Egs. (3.30a,b), are as follows in term of the above underlined dummy

g (b g
"’ 4

S#?f

variables.

C, = AE-BE (C.5a)
N BG+CFE-DE (C.5b)
@; C; =CH-DG (C.5¢)
58] C,=CE-AG (C.5d)
‘ Cs= DE+CE-BG-AH (C.5e)
Co = DE-BH (C.51)
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APPENDIX D
COMPUTER PROGRAMS

The numerical computation of the theoretical relations presented
in the text of this thesis were computed by the FORTRAN programs MHL and
THERMO. MHD is the analysis code for the magnetohydrodynamic source
mechanism and is capable of computing the following relations as a function

of frequency.

1) Aperture Reflection Coefficient

2) Complex Aperture PressLre and Particle Velocity
3) Complex Aperture Real and Seif-Impedance

4) Complex Electrical Terminal Impedance

5) MHD Transduction Process Power Efficiency

6) Transmitting Current and Voltage Sensitivity

7) Farfield Pressure Directivity (single frequency)

The input parameters for "MHD" are

1) Frequency Band and Frequency Step Size
2) Waveguide Dimensions
3) Electrode Dimensions and Position within the Waveguide
4) Spherical Baffle Radius
5) Fluid Properties Inside and Outside the Waveguide
6) Conductivity of the Fluid Inside the Waveguide
7) Magnetic Induction and Current Density Amplitude in
the Waveguide

THERMO is the analysis code for the thermoacoustic source
mechanism. The following relations, as a function of frequency, are

computed by THERMO.
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& Y 1) Aperture Reflection Coefficient

&@;}: 2) Complex Aperture Pressure and Particle Velocity

Ay 3) Complex Aperture Real and Self-Impedance

A 4) Quadratic Current Transfer Function (QCTF)

& 5) Thermoacoustic Transduction Process Power Efficiency

A.\,; A 6) Quadratic Voltage Transmitting Sensitivity (QVTS)

B 7) Fartield Pressure Directivity (single frequency)

b ¥ THERMO has the same input parameter list that is given above
f‘l"na

?- for MHD except the following properties for the fluid within the waveguide
:'%) are needed: specfic heat capacity at constant pressure and coefficient of
:f"‘- thermal expansion.
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PROCRAM  MHD{ INPUT, OUTPUT, DATA, TAPEQ=INPUT, TAPE4=DATA
1, PLOT. TAPES=PLOT)

00T IR E Rl R IRt NRRRR PR RRRRRIISTLRNRANEITRINRIINRRGRISE

PROGRAM MHD PERFORMS A FREQUENCY DOMAIN ANALYSIS COF THE ELECTROACOUSTIC
TRANSMITTING CHARACTERISTICS OF A PLANE WAVE MODE MHD TRANSDUCER

HHD CENERATES CRAPHIC OUTPUT FOR THE FOLLOWING TRANSDUCER
CHARACTERISTICS

1) MAGNITUDE OF THE REFLECTION COEFF (MRNL) VERSUS FREQUENCY (FREQ)
2) HAGNITUDE OF APERATURE PRESSURE (RPNL) VERSUS FREG

3) DB LEVEL OF THE APERTURE PRESSURE (RPNL) VERSUS LOCIO(FREQ)

4 - ~ OF APERTURE PART VEL (RVNL) VERSUS LOCIO(FREQ)

3) IMACINARY (IADM) VERSUS REAL (RADM) INPUT ELECTRICAL ADMITTANCE

&) - (ZELD) - - (ZELR) - - IMPEDANCE

7) DB LEVEL OF RADIATED ACCUSTIC POWER (PR) VER3US LOCIO(FREQ)

8) REAL COHPONENT OF lNPUr ELECTRXC&L POWER (PER) VERSUS FREG

9) REACTIVE * (PERECT) - "

10) DB LEVEL OF TRANSDUCTION POWER EFFICIENCY (EFFIC) VERSUS LOCIO(FREQ)
11) DB LEVEL OF TRANSMITTING VOLTACE SENSITIVITY (TVSL) VERSUS LOCFREO

i2) OB - - - CURRENT ” (YCsL) -
13) APERTURE ACOUST!C SELF INPEDANCE REAL COMP (2FMR) VERSUS FF: 0
14) - " INAGINARY ~ (IFMI) -
13 - - MUTUAL " REAL “ (IMR) " "
16) = - ~ - IMAGINARY = (IMD) - -

17) RATIO OF THE MAONITUDES OF IM 7/ IFM VERSUS FREQ
18) PRESSURE LEVEL DIRECTIVITY
19) ANGLE OF PRIMARY BEAM VERSUS FREQ

DATA INPUT 1S THROUGA THE E.. . DATA STATEMENT AT THE END OF THE
MAIN PROZRANM

L2 T Yy T R R R Y L T R Y R R R YRR R L L)

DOV O0ONAOAOOONOTOAN0NNNOOOO0ONOOG0

COMHON /11P/ A/B.L.LY, L1, SRAD: ROD. COD, ROM. COM. P 1, BM

1, CD, CON, FO, FF. FD

DIMENSION FREQ(1000), FLOG(1000), PR{1000), PSPL(1000)

1, RPNL(1000), RVNL (1000}, RADH(1000), IADM(1000), MRNL ¢ 1000)
R TCHL(1000), TVSL (1000}, ANGHAX{1000), RA(1000)
3, IMR(1000), ZM1(1000), ZIFMR(1000), ZFMI(1000), RATIO(1000)
4, ZELR{1000). ZELI (1000}, RVL (1000)

3, PER(1000), PERECT(1000), EFFIC(1000)

COMPLEX RNL(1000).RL(1000), PNL(1000), PL(1000)

1, VNL(1000), VL (1000}
2, GLNLA, GLNLB, CRLA, CRL.D, CLBB. CLAB, CRAA, CRBA
3, GXLNLA, CXLNLB, CXRLA, CXRLB, PE
4, ADN1(1000), ZEL(1000)

REAL IADM, K, 1, LY, L2, MANL

INTEQER I.N

N = (FF=FQ)/FD ¢ 1

PRIMARY CALCULATION LOOP

DO 1 =i, N

CALCULATE THE WAVE NUHMBER AND FREQUENCY
K = (2 ePleF0 + FLOAT(I~-1)#2 eP]e#FD)/COD
FREQ(]) = KeCOD/(2 #PI1)

FLOG(I) = ALOCGIO(FREG(I))
¢ REFL EVALUTES THE APERTURE REFLECTION COEFFICIENT
CALL REFL(K,RNL(I),RLCT) MRNL(D). ZMRCT), ZHILCD)
IFMACL), IFALLL) )
C OREEN EVALUATES THE PLANE WAVE QREENS FUNCTION
CALL CREEN(K. A, 8, L, RNLUT), RL(1), GLNLA, OLNLB. GRLA, CRLB
1, CXLNLA: GXLNLB, GXRLA, OXRLB, OLDB, CLAD, GRAA, GRBA)

c Q0 Y0 30

C IM AND I8 ARE THE MAGNITUDES OF THE APERTURE SELF AND MUTUAL IMPEDANCES
It = (IMR(I)wal +IMI(I)ee2 )ue 3
IS = (IFMR(I)®82 *IFHI(])ee2 jes O
RATIO(]) = ABS(IN/IS)

PRES EVALUAYES THE APERTURE PRESSURE IN THE WAVE QUIDE
CALL PRES(CLNLA, GLNLB, ORLA, ORLE, PNL(1).PL(1))
RPNL(1}) = CABBIPNL(I))

PSPL(I) = 20 #ALOOIOCAPNL(1)/ 000001)
C VEL EVALUATES THE APERTURE PARTICLE VELOCITY
50  CALL VEL(K, OXLNLA, OXLNLD. OXRLA, QXRLD, VNL(1), VL(1), UL VR, F1.FR)
< @0 10 100
RVNL(I) = CABB(VL(L))
C ADM EVALUTES THE INPUT ELECTRICAL ADMITTANCE
CALL ADH(K, GLDB, GLAB, GRBA, GRAA, ADH1(1))
RADH(1) = REAL(CMPLX(L .0 )/ADMI(I))
1ADHCI) = AIMAQ(CMPLX(L ,0 )/ADMICD))
C IEL I8 THE COMPLEX ELECTRICAL IMPEDANCE
ZEL(") = CHPLX(} O O)/ADMIC(D)
IELR(I)= REAL(ZEL(I))
ZELICI)m AIMAG(ZEL(D))
C RADPR EVALUATES THE RADIATED ACOUSTIC POWER
CALL RADPRILY.LZ, IFMR(1).VL(I), PRR]
PR(]) = 20 «ALOQ10(PRR}
C PE 1S THE AVERAQE COMPLEX INPUT ELECTRICAL POWER

(2] (e XoN¢)

[e]
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§K PE = CHPLX(CDeCDe(B-A)oLYeLZ/(2 *CON).O O) +
N 1 CHPLX(O .CDeCDeBMaDMeLY L2/ (KeRODCODOR ))e

LX) 2 (GLBB-CLAB-GRBA+CRAA}

:( PER(I) = REAL(PE)

s PERECT(1) = AIMAG(PE)

EFFIC IS THE TRAMSDUCTION PROCESS EFFICIENCY
EFFIC(I) = 20 ®ALOCIO(PRR/PER(I)}
€0 70 3

SEN EVALUATES THE PRESSURE RADIATION PATTERN, YRANSHITTING CURRENT AND
VOLTAGE SENSITIVITIES AND THE ANCLE OF THE MAIN LOBE

IFf A DIRECTIVITY PLOY IS DESIRED SET FLAC = 1 O (DD SCALE}
AND / OR SET FLACY = 1 O (LINEAR SCALE?
SET FLAC AND FLAG2 = O O OTHERWISE
SET THE FLAGS IN THE [F STATEMENTS DELOW, ONLY
100 FLAC = 0 0

FLACG2 = 0 O

IF(1 EG 1) FLAC=] O

1IF(1 EG 1) FLAC2=s O
C IF THE SENSITIVITY ON THE X AXIS 1S DESIRED SET FLAG = 0 O
C IF THE MAXIMUM SENSITIVITY IS DESIRED SET FLAG3 = 1 O
C FLAG3 MUST EQUAL I O WHEN DIRECTIVITY PLOTS ARE REQUESTED
[+

OO0OOOOOOHOO O

FLAG) = 1 ©

CALL SEN(FREG(I), UL, U2, P1. P2, GXLNLA, GXLNLD. CXRLA, CXRLB
1. CLBB, CLAD, CRDA. CRAA, TCSL (1), TVSL (1), ANCMAX(1).FLAGC.: FLAGR, FLACD)
< WRITE(4, ) FREQ(I),FLOG(I), TCSL(D)
1 CONTINVE

C
C D2PLT PRODUCES A NEUTRAL PLOT FILE FOR PLOTTING ON THE TEKTRONICS
c

CALL DIOPLT(N, FREQ MRNL. 1)
CALL DRPLTIN, FREQ, RPNL, 2/
CALL DRPLT(N,FLOG, PSPL, J)
CALL D2PLT(N, FREQ, RVNL, 4)
CALL D2PLT(N.FREQ. 1ADN, 3)
CALL D2PLT(N. FREG., RADM, &)
CALL D2PLT(N, FLOG, PR, 7)
CALL DRPLT{N, FREQ. PER, 8)
CALL DQPLT(N, FREQ, PERECT, 9)

FO  INITIAL CALCULATION FREQUENCY (HERTZ)
FF FINAL . - "
FD  FREQUENCY STEP SIZE (HERTID)

B CALL D2PLT(N. FLOG. EFFIC, 10)
: CALL DZPLT(N, FLOG. TVSL, 11)
el CALL D2PLT(N, FLOG, TCSL, 12)
' CALL D2PLT(N, FREQ, ANGNAX, 13)
Al CALL D2PLT(N. FREQ, ZMR, 14)
iy, CALL D2PLT(N, FREQ, ZMI, 13)
b\ CALL DIPLT(N, FREQ, ZFMR, 16)
; CALL D2PLT(N. FREQ, IFMI. 17)
9 CALL D2PLT(N, FREQ. RATIO. 18)
; star
B2 c END
U (2 Y Y Y Y Yy Y Y Y Y Yy Y Yy R Y Yy Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
" ¢
3 BLOCK DATA
AN c
VRS C VARIADLE INPUYS TO PROGRAM HHD
; ¢
oA C A LEFT DOUNDARY OF SOURCE VOLUMF (METERS)
AN co RIGHT - v " -
i C L TOTAL WAVEGUIDE LEMGTH (AETERS)
S C LY  TRANSVERSE WAVEGUIDE LENGTH Y-DIR (METERS)
il ¢z - . = 1-DIR -
b C SRAD RADIUS OF GPHERICAL BAFFLE (METERS)
- € ROD FLUID DENSITY IN WAVE GUIDE (KG/METEReed)
& € COD - SOUND SPEED = = (HETERS/SEC)
WA C ROM FLUID DENSITY IN FREE MEDIUM (XG/METERee3)
S8 € COM = <UND SPEED ~ = (HETERS/9EC)
K 5 (-8 1,1 MAQGNEYIC INDUCTION FIELD AMPLITUDE (WEBERS/METER®#eR)
’; ¢ ¢p CURRENT DENSITY AMPLITUDE (AMPERES/METER##2)
f kl g CON  ELECTRICAL CONDUCTIVITY OF FLUID IN WAVEGUIDE (1/0HHMS METER)
c
¢
¢

COMMON /71P/A,8.L. LY. L2, SRAD, ROD. COD, RON. COM, P I, BN
1.CD. CON. FO. FF, FD

REAL t LY.LZ

DATA A.B.L.LY.LI SRAD, ROO. COD. NOM, COM, P1. BM, CD. CON, FO, FF, FD/
1-0 03,0 035, 10.0 0318.0 0381. 03,1041 , 1330 .998 , 1481
R.3 14155, 0 40, 14436 .3 28,230 . 10000 .30 /

PHYSICAL PROPERTIES
6% NACL~HZ20 SOLUTICON RCD = 1041 COD = 3336 1600 (MEASURED)

MERCURY RUD = 13600 COD = 1430

QOCOHOOON
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END

[
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4
SUBROUTINE REFL (K, RSNL, RSL. RSNLM. IMR. 211, ISR, IS1)
<

€ SUBMOUTINE REFL CALCULATES THE COEFFICENTS AND ROQTS OF THE
C REFLECTION COEFFICIENT COMPLEX QUADRATIC EQUATION
o
COMMON 7I1P/A. B, L.LY, LI, SRAD. ROD, COD, RO, COM. P1. BM, CD. CON, FO, FF, FD
COMPLEX KA, KD. KLY 25, 21, A1, B1. C1. D3. A2, B2, €2. D2. EQ, FQ. G2u H2
1.C11,C22, €33, C34, €Y, CH6, RSNL. RSL, ALL. RLNL
REAL L LY.LZ/K, PC
PC = RODeCOD
KA = CMPLX(O O.KeA)
KB = CMPLX(O O.KeB)
KLY = CMPLX(O O, KelL/D)
¢ CALCWLATE THE APERTURE IMPEDANCES
CALL MISP{KeCOD. ZHR, I, ISR, ISD)
IS = CHPLX(ISR, IS])/CHPLX(PC.O O)
M = CHMPLX{IMR, IRI)/CHPLX(PC.O O}
C CALCULATE THE QUADRATIC EQUATION COEFFICIENTS
C1 = CEXP(KA) - CEXP(XD)
Dy = CEXP(=KA) = CEXP(=KB)
Al = CEXP (=KL}

B1 = CEXP(ALD)

AQ = DieDi1e(CMPLX(] .0 0)=7S)-BleClelN
B2 = Al1e¢D1e(CMPLX(] .0 0)+2S)-BleDlelM
C = BleCle(CHMPLX(L .0 0)-1S)vAleCiolN
D2 = AteCle(CHPLX(] ,O 0)+IS)¢AleDIeZN
EQ = DleCle(CHPLX(L ,0 0)=25)=BisDielN
FQ = BieDI+(CHPLX(]1 ,0 0)=2S)+AleDlelN
C2 = AleCie({CMPLX(1 , 0 0)+I5)=BleCleln
H2 = AleD1e(CMPLX(] ,O O)+IS)sAleCleln
c11 AQeFQ ~ BQeEQ

.
CQQ = ATOHDT =~ BQeCQ o CQeFQ - DISEQ
€33 = CQeHD - DeCQ
C44 = CDeE2 = AQsCQ
€93 = DRCED « CQeFQ = BACT - AQJOHD
Cob = DeFQ = BIeHR
C CALCULATE THE COMPLEX RODTS USING THE IMSL ROUTINE ZQADC
€ THE ROOT WITH YHE MAGNITUDE LESS THAN ONE 1S PHYSICALLY
€ MEANINGFUL THE OTHER IS DISCARDED

CALL ZQADC(C3J, C22.C11, RENL, RLNL. IER)

CALL ZQADC(Cb6, €39, C44,RSL, RLL. IER)

RSNLM » CABS(RSNL)

RETURN

END

L Y Y Y Y Y Yy Y Y Y Y Y Y YT Y TR P YT Y Y Y Y I
SUBROUTINE MISP(W,RM, CXM, R, CX)

HISP EVALUATES THE SELF AND MUTUAL ACOUSTIC IMPEDANCES IF THE WAVEQUIDE
APERTURES THE RESULTS ARE INPUT TO REFL TO EVALUATE THE REFLECTION
COEFFICIENTS

MISP USES THE EQUATIONS DEVELOPED BY € H SHERMAN TO EVALUATE THE HMUTUAL
AND SELF IMPEDANCES OF TWO CIRCULAR SOURCES 180 DECREES APART ON THE
SURFACE OF A SPHERICAL BAFFLE

OO0 OO

DIMENSION P(1000). WK (2000}, V1 (1000), Y1:1000)
1P1€1000)
COMMON/Z1IP/A. D, L, LY. L2, SRAD. ROD. COD, ROM, CIM P11, BM. CD, CON, FO, FF, FD
REAtL V1, Y5, L.LY. LY
INTEGER I.M:N
N IS THE NUMBER OF TERMS IN THE SUM REQUIRE"> FOR CONVERCENCE AT
LARCE VALUES OF KeRD
N = 30
D I8 THE EFFECTIVE RADIUS OF THE CROSS SECYION OF A RECTANGULAR
WAVEQUIDE
RD = SQRT(LYeLZ/PI)
¥ = ATAN(RD/SRAD)
¢ = ROMeCOMeSRAD®SRAD/ (RD#RD)
INITIALIZATION OF LEGENGRE POLYNOMIALL
P(1) = 1 0
P(I) » 1 0
P(D) = COS(T)
Pi(1) = 1 O
PI(Q) = =1 0
M = Ne2
CALCULATION OF LECENDRE POLYNOMIALS BY RECURSION
BO 1 Ked'
Rl = FLOAT(K)
R = Rl -1 0
P(Kel) & P(RISP(R)I®(D eRIe) )/ Alel *=P(K-1)sRI/(RIe¢! )
PLIK) = PL(DIOPI({K=1)212 #RDe1 I/(RD 1 )~Pl(K=D)ePD/(RI+} )
1 CONTINVE
THC DESSEL FUNCTION EVALUATIONS ARE PERFORMED DY
MMDGUR AND MMBSYN ( IMSL ROUTINES)
X = WeSRAD/COM

[+ X 12)
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CALL MMISJUR(X. 3.NeJ.Jl. WK, lER)
CALL MMDSYN(X, 9,Ne3.Yl1. l€ER)
IRM1 = 0 0
icny = 00
IRS) = © O
€51 » 0 0
N2 = N-)

C TKE SERIES ARE SUMMED IN THE | LOOP

C 7O CALCULATE THE SELF AND MUTUAL IMPEDANCES
D0 3 I=1.N2
S1 = FLOAT(ID)
D & (((S1=1 3/X)eJiC(I)=Ul(]ol))oe] «
1€CESI=1 )/X)eYItII=YI(I+1))ee]
Di = ((SI~-1 )/X)e(JI(D)eJt(l)eYIti}ovYI(])) -
1(IUICIeN(TeldeYI(l)OYI(]e01))
D2 = =JIt1)eYi(lel)eJl(Terdevi(])
RS = D2/D
CPL = -D1/D
C2M » (1 /(Q o(SI=1 )+l 1Ie((P([)=P{le]))oa])eP} (]}
CAS = (1 /(2 #(SI=1 1¢] DI(PUI)=P(leQ) )2
IRN1 = GIMeRS+IRML
ICH1 = GaneCPL*ICH]
IRS! = GUS#RS+IRSL
ICSY = GaSeCPL+ICSE

2 CONTINVE

€ RESULY
RM = GeIRM]
CxmM = GolMI
R = GeIRSL
Cx = Ge2CS)

RETURN
END
[
(o P asreneeits 1000 reeterIscieeressosaissaseretareesionoeessssustel
<
SUBROUTINE GREEN(X, A, B, L. RNL. RL, GL.NLA, GLNLLB. GRLA, CRLD
1. CXLNLA. GXUNLE, GXRLA, GXRLD GLBB. CLAB, CRAA, GRDA)
<

C CREEN EVALUAYES THE PLANE WAVE CREEN’S FUNCTION FOR THE WAVE FIELD IN
€ THE WAVEGQUIDE AT VARIOUS LOCATIONS
c
\ COMPLEX CC. KA. KD, AL RNL, RL. GLNLA, CLNLO. CRLA. GRLB, SLBB, GLAD
1, CRAA, GRDA, LA, LB, RA. RB
2, CXLNLA, GXLNLD. GXRLA. CXRLD
REAL W, L
YA = CHPLX(O . KeA)
KB = CHMPLX(O .KeB)
KLY = CHPLX(O .KeL/2 )
CC = CMPLX(O , 1 )/{CHPLX(2 #K, 0 )e(CMPLX(1 . O )~RNLORL))
LA = CCH(CEXP(¥A) + RLeCEXP(-KA))
RA = (Co(CEXP{~KA)+RNLECEXP(KA))
LB « CCe(CEXP(KB)+RLCEXP(~KB))
RB = CC# (CEXP(-KB)*RNLeCEXP(KB))
¢ THE GREEN’S FUNCTIONS
QLADB= LB#(CEXP(=~KA)+*RNLSCEXP(KA))}
CRAA® RA®{CEXP(KA)+RL#CEXP(~KA))
GLBB= LB#(CEXP{~KD)*RNL+CEXP(KB))
CRBA= RA@{CEXP(RDB)*RLSCEXP(-KB))
QUNLA = LA®(CEXP(KL)+RNLSCEXP (=KL) )
CUNLD = LBe(CEXP(KLR)*RNL*CEXP(-KLD))
CRLA = RAS(CEXP(KL2)*RLOCEXP(=KL2))
QRLB = RB®(CEXP(ALI)+*RLOCEXP{=KL2))
€ DERIVATIVES OF THE GREEN’S FUNCTIONS (WRT X)

CXLNLA = CHPLX(O O, =K)eLA®(CEXP(KLY) = RNLSCEXP(-KL2)}
CXLNLD = CHPLX(O O, -K)eLBe(CEXP(KL2) = RNL*CEXP(=KL2))
CKRLA = CMPLX(O O.K)®RAS(CEXP(KL2) = RLOCEXP(=KL2))
CXRLB = CHPLX(O O, K)ICRBR(CEXP(KLD) =~ RLOCEXP(-XLD))
RETURN
END
<
[ R Yy R Y Yy Y Y Y YY)
c

SUBROUTINE PRES(GLNLA, GLNLB. GRLA, CRLB. PNL. PL)

C PRES EVALUATES THE APERTURE PRESURE
C PNL 1S THE COMPLEX PRESSURE AT THE LEFT APERTURE
cPL - ¢ - - * " RIGMT "
<
COMMON /11P/ A.D.L.LY.LZ. SRAD. ROD, COD. ROM COM. P, BM. CD
1. CON.FO. FF.FD
COMPLEX PNL, PL. GLNLA. GLNLB. GRLA, CRLD
PNL = CMPLX(BMe{D O )#(CLNLA - GLNLB)
PL = CMPLX(BM®CD, O )*(CALA - GRLB)

RETURN

END
[
R L Y Y Y Yy Yy Y Yy Y Ty Y Y Y Y Y Y YY)
<

SUBROUTINE VEL (K GXLNLA, GXLNLB. CXRLA, CXRLB. VAL, VL. U3, V2, P1.PQ)
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C VEL EVALUATES THE PARTICLE VELOCITY AT THE APERTURE

C VNL IS THE COMPLEX PARTICLE VELOCITY AT THE LEFT APERTURE
cw - - - - - .- - . -
[

COMMON 771P/ A, B.L. LY, LZ, SRAD, ROD., COD» ROM, COM. P 1. 8. CD. CON. FO. FF, FD

COMPLEX VL., VNL, OXLNLA, CXLNLB. CXRLA, CXRLB

REAL K

VNL = CHPLX{O O, -BMeCD/(XeRODeCOD))#(CXLNLA ~ CXLNLB)

VI = CHPLX{O O, ~BHeCD/(KeRUD*COD))* (CXRLA - GXRLB)

Ul = CABS(WVL)

U = CABS(VNL)

Ull = REAL(VL)

UQY @ -REAL(VNL)
THE CONDITIONALS BELOW EVALUATE THE RELATIVE PHASES OF THE APERTURE
PARTICLE VELOCITIES REFERENCED TO THE SURFACE OF THE SPHERICAL BAFFLE

IF(U11 CE O O AND U22 LT O 0) THEN

Pl = 3 1414392624

P =00

ELSEIF(ULL CE O O AND U22 GE O O) THEN

Pl =00

PR =00

ELSEIF(UIL LT O O AND U2 LT O O) THEN

Pl = 3 141392654

PR = 3 141392654

ELSE

Pl & D 141592694

PR=00

ENDIF

RETURN

END
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SUBROUTINC ADM(K.GCLBD. CLAD, GRDA. CRAA, ADM])
4
¢ ADM EVALUATES THE ELECTRICAL INPUT ACMITTANCE OF THE TRANSDUCER

i

3 C ADMI IS THE COMPLEX INPUT ADMITTANCE (OMMS)

& <

h COMMON /21P/ A, B.L.LYV,LZ,SRAD, ROD, COD, ROM, COM, P 1, BM. CD, CON. FO. FF, FD
':Q“ COMPLEX ADMI. GLBB. CLAB. CREA, CRAA

\ REAL L.LY,LI.X
t&\ ADM1 = CHPLX(LZeCONS(8-A)/LY.0 )

1 CHPLX(O 0. =BMeDMeLZeCONSCON/ (K#CODRDZOLY) ) @ (CLBB=CLAB=GCRRA+GRAA)
g : RETURN
sv x END
¢

(LD Ly T Yy Y Ny Y Y Yy Yy Y Yy Y YT Y Y YYYYYYYY YT YT Y Y'Y

- .—~
X

SUBROUTINE RADPR(LY.L 2, ZR. VL. PR)

e
~s.
N §

C RADPR EVALUATES THE RADIATED ACCUSTIC POWER AT THE APERTURES
c

COHPLEX VL

REAL LY.LZ.PR \
PR = (CABS(VL)®eQ )elReLYeLZ

RETURN

END

™ Bl
. {)
O

ar

)
hgl

]
4
»

A LA Y R T Y R P Y Y Y Y Y YTV PY YA YTRYY LYY Y Y
SUBROUTINE SEN(FREQ. UL, U2, MU, MU, CXLNLA, OXUNLB, CXRLA, CXRLB

SEN EVALUATES 1)THE FARFIELD PRESSURE DIRECTIVITY, CIVEN THE AMPLITUDES
OF THE APERTURE PARTICLE VELOCIT(ES AND PHESES

2)THE YRANSMITTING SENSITIVITIES AT ONE METER PER UNIT AMP AND VOLT

THE FARFIELD PRESSURE 1S CALCULATED USING C K SHERMANS RESULTS

3
J
3
)
i\

OO0 000

1. GLBB, CLAB, GRBA, CRAA, TCSL, TVSL. ANGMAX. FLAC. FLAGR. FLAGC3)
COMMON /21P/ A, D.L,LY.LZ. SRAD, ROD: COD. ROM, COM, PI. BM. CD, CON
1. FO, FF.FD

DIMENSION LO(109).L1¢100, 100),L2(100, 100, J1 (100}
1. ¥10(100). WK(410), PG(1035)
2. PSLL103). ANC(10Y)
2:PNC103)

COMPLEX GXLNLA, GXLNLD, OXRLA. GXRLEB. CLBB. GLAB, GRBA, CRAA
1. P11(103), DH, C11, €22, €3, SUMT SUND, SUML L, SUN22. P1, P2, Al A2
INTEGER N, ND, 1. v

REAL LO/ L1, LT, MUL MU, KA KR L LY. LT, UL

N IS THE NUMDER OF TERMS REGUIRED FOR CONVERCENCE OF THE SERIES EXPRESSION
FOR THE FARFIELD PRESSURE ND 15 THE NUMBER OF POINTS CALVLATED ON THE
DIRECTIVITY CIRCLE R IS THE RADIAL DISTANCE(METERS) IN THE FARFIELD AT WHICH
PRESSURE CALCULATION 1S MADE

DATA N,ND,R/55,73.1 7

NPTS = ND

RD = SGRY(LYSLZ/PI)

T = ATAN(RD/SRAD)

KR = 2 ePleFREQ/COMOR

KA = 2 oP]eFREQ/CCMOSRAD

Al = CMPLXI{O . (ROMeCOMOUL/R)*SART (SRADESRAD/ (2 sP1#KA)))

conoo
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AD » CMPLX(O (RDMeCOMOUD/R)I*SART(SRADSSRAD/ (T ePlenAd))
C INITIALIZE THME LECEWDRE POLYNCHIALS
LO(1) » 0 O
LO(2) = 1 ©
LO13) = COSC(T)
€ CALCULATE THE YOLYNDNIALS BY RECURSION
00 3 I=4.Ne2
R} = FLOAT(L-D?
LOCI) =(2 sRiel 1/CRIel JoLOCIIeLOCI=1)-RI/(RIsl DeLO(I~T)
1 CONTINVE
C DA IS TWE ANGLE STEP S1ZE
DA » 2 ePI/FLUAT(ND-1)
¢ CALCULATE THE ANGLE DEPENDENT LEGENDRE POLYNCH1ALS
00 & JUs=1.NDel
ANGLE = FLOAT(.'~1)eDA
LiCs. P = 1 0
L1€2. ) @ COSCANGLE)
L2(3,V) = 1 0
L2(2: ) = COS(PI-ANGLE)
00 J K=, N
RX ® FLOAT(K=i)
L1CK. JIo (D eRKe1 )/ (RKel 1oL1(2. VI oL1(K=1, J)-RA/ (Rhel IoL1(K=2, )
LK, I N(D eRKe1 I/ (RKe] 1oLI(D. VI eLT(K~1, ) -RK/(RKe1 I OLD(K=2. J)
3 CONTINVE
IF(FLACD EQ O O) CO 1O 20
e CONYINVE
C MMBSJUR AND MMBSYN CALCULATE THE BESSEL FUNCTIONS OF THE FIRST AND SECOND
C KINDS RESPECTIVILY
20  CALL MMDSUR(KA. 3. Nel.Jl, WA, IER)
CALL MHBSYN(KA, 3. N+1.Y1, JIER)
€11 = CEXP(CMPLX(O O, ~MUL))
€22 = CEXP(CHPLX(O O, =MUR))
€ CALCULATE THE N DEPENDENT TERMS
DO 4 =3, Nel
€D » (FLOAT(I)=3 /KA1 (1-D)=ultl~1)
C4 = (FLOATC(I)=D I1/KAsYI(1-D)-YI(I=1}
€3 © CEXP(CMPLX(O 0. ~-P1/2 #FLOAT(I-2)))
DH =« CMPLX(CD, C4)
P11(1-2> = CHMPLYC(LOCI=-2)-LO(1).0 0.2CO/DH
4 COUNTINUE
C SUM THE N TERMS
DO O Jeti,ND
SUMIL = CMPLX(O 0.0 O)
SUMIR = CHPLX(O 0,0 O)
0O & I=t.N
SUMI = P1I(I)eCMPLX(LI(L, ). 0 0) ¢ SuMI]
SUM2 = P1ICI)eCHPLXILI(I, J). 0 O) ¢ SUMD2
SUMIL = SUMI
SUM22 = SUMR
-] CONTINVE
€ CALCULATE THE ANGLE
ANG(J) = (FLOAT(J) =1 O)#DA#180 /P1
Pl = AleClioesuml
P = AQeCIJe5UNMD
C SUM THE PRESSURE FIELDS OF THE SOURCES COMERENTLY AND FIND
C YHE MAGNITUDE
PS(J) = CABS(P1 + PQ)
PSL(J) = 20 *ALOGIO(PS(J)/1 OE=-06)
IF(PSL(J} LE 90 0) PSL(Y) % 90 O
WRITE(4, »)PSL(N)
IF(FLAG] EG 0 0) CO TO 30
3 CONTINVE
F(FLAG EO 1 0) CALL DIPLT(NPTS, ANGC. PSL. 19)
c IF(FLACY EQ@ 1 0) CALL DRPLT(NPTS, ANG, PS, 20)
¢ LOCATION OF THE MAIN DEAM AXIS
0 YHAXL » PS(1)
IF(FLAG3 €0 0 ©O) GO TO 10
ANCHAX « 1 ©
00 7 1=2,NPTS
YMAX = AMAXI(PS(I). YMAX1)
IF(YHMAX CT YMAX1) THEN
ANGHAX « ANG(1)
ELSE
ENDIF
YHAXD = YMAX
7 CONTINUE
€ USE THE FOLLOSING CONDITIONAL ONLY FOR THE SYMHETRIC SOURCE
IF CANGMAX GY 90 0 ANGMAX = 180 = ANGMAX
C CALCULATE THE SENSITIVITIES
10 TCS= YMAKI/(CD*(B=AleLYe] 414)

LS TVS = YMAX1/(CDeL2/CON®1 414)
RN TCSL = 20 *AL(C.0(TCS)

S TVSL = 20 +ALOCIO(TVS)

'%g RE TURN

L END

SN ¢
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C D2PLY 15 THE THO DIMENSICNAL PLOTTING ROUTINE USING ARLLISB
<

DIMENSION XX(31000}, YY(1000)
INTECER FLAGC.NPTS
XMIN] = XXt1)
XMAX] = XX€1)
YMING » YY(1)
YMAXL = YYU1)
DO 100 I=2.NPIS
XMIN = AMINICXXC3). XMIND)
XMINE = XMIN
IMAX & AMAX1{XX(E), XMAX1)
XMAX] ® XMAX
YHIN » AMINICYY (D), YNIND)
YMINI = YMIN
YMAX & AMAXI(YY(I), YHAX1)
YHAX] = YPAX
100 CONTINVE
IF(YMAX EQ YHIN) YMIN = 0 O
DX » (XMAX = XMIN)/FLOAT(NPIS)
XQRGe1 O
YORC=1 O
XDEL® . XMAX=XMIN) /20 O
YDEL= (YMAX=YIIN)/10 O
AYLEN=] O
AXLEN=Y O
XTITLSAXLEN/2 O
YTITLRAYLEND &
DX={XMAX=XHIN) /AXLEN
DY=(YMAX=~YMIN) /AYLEN
CALL PLILFN(L*PLOT™)
CALL PLTDIM(11 .0 5,1.4 )
CALL PLTORG(¥ORG. YORG)
€O Y0 ¢1,2,3.4,%,6.7,8.9,10, 11,12, 13. 14,15, 16.17.18
1 19,20) FLAC
1 CALL PLTAXIS(O .0 .AYLEN. 90 . YMIN, YMAX. YDEL
1. 13MMAC REFL COEF, 13. 2, - 1.- 1)
¢0 70 200
CALL PLTAXIS(O .0 .AYLEN, 90 . YMIN, YMAX. YDEL
1. JOHAPERATURE PRESSURE(PA), 22.2.~- .= 1)
¢0 TO 200
3 CALL PLTAXIS(O .0 , AYLEN, 90 . YMIN, YMAX, YDEL
1. 2SHAPER PRES(DD RE 1X10-6PA), 23,20 = 1= 1)
¢0 TO 130
4 CALL PLTAXIS(O ,0 , AYLEN, 90 . YHIN, YHAX, YDEL
1. 14HAPER PART VEL,14,2,- 1. = 1)
60 T0 200
9 CALL PLYAXIS(O .0 , AYLEN, 90 . YMIN, YMAX, YDEL
1, QOHIMAG ELECT ADM(MHOS), 20,2, - 1,- 1)
€0 10 200
] CALL PLTAXIS(O , O . AXLEN, 90 . YNIN, YMAX, YDEL
1, Q0HREAL ELECT ADHM(OHMS5),20, 2.~ 1, =~ 1)
¢0 T0 200
7 CALL PLTAXIS(O , 0 ,AYLEN, SO . YNIN, YMAX, YDEL
1, 23HACOUS PWRI(DS RE 1 WATT). 23,2, - §,~ 1)
¢0 TO 13C
8 CALL PLTAXIS(O , O , AYLEN, 90 .+ YMIN, YMAX. YDEL
1, QIHREAL INPUT POWER(WATTS). 23,2, ~ 1, = 1)
¢0 10 200
9 CALL PLTAXIS(O .0 , AYLEN, 90 . YMIN. YMAX, YDEL
s STHREACTIVE INPUT POWER(WATTS),27,2,~ 1.~ 1}
€0 10 200
10 CALL PLTAXIS(O .0 , AYLEN, 90 , YMIN, YMAX, YDEL
1, IIMPOWER EFFICIENCY(DD RE 11,23, 2, - 1. - 1)
GO Y0 130
11 CALL PLTAXIS(O .0 ,AYLEN.90 . YM*™, YMAX, YDEL
1. Q4HP/V GEN(DB RE 1 PA,VOLT). 24 &~ 1.~ 1)
¢0 10 13¢
12 CAClL . TAXIS(O , O , AYLEN, 90 , YNIN, YMAX. YDEL
1, 2347, 1 SEN\OB RE 1 PA/AMP). 2D: Q.= 1.~ 1)
€0 10 130
13 CALL PLYAXIS(O .0 .AYLEN.90 , YMIN, YMAX, YDEL
1 1BHANG MAX RLSP (DEG), 10.2.~ 1, = ¥}
€0 10 200
14 CALL PLTAXIS(O .0 . AYLEN, 9¢ . YMIk, YHAX, YDEL
1, 20HREAL MUT IMP (RAYLS) 20.4.- 1, = 1)
¢0 Y0 200
13 CALL PLYAXIS(O .0 ., AYLEN. 90 . YMIN, YMAX. YDEL
1, QOHIMAG MUY IMP (RAYLS), D0 4.= 1, = })
¢0 10 200
1s CALL PLTAXIS(D , O .AYLEN. 90 . YRIN, YMAX YDEL
1 19HREAL FM IMP (RAYLS).19.4.- 1.~ })
G0 0 200
17 CALL PLTAXIS(O O ,AYLEN. 90 YMIN, YMAX YDEL
1 19HIMAG FM IMP (RAYLS). 19.4 - .= 1)
€0 10 200
19 CALL PLTAXIS(O . O AYLEN, 90 YMIN, YMAX, YDEL
1. QIHRATIO MAG(ZMI/MAGIZS). Q 4.~ §. = 1)
G0 Y0 200
19 CALL PLTAXIS(O O ., AYLEN, 90 . YMIN, YMAX, YDEL

2]
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1, 14HPRES LEVEL(DB), 14,48, ~ 1, - 1)
GO T0 250
20  CALL PLTAXIS(O .0 ,AYLEN, 90 , YMIN, YMAX, YDEL
1. I9HPRES AMPLITUDE (PA), 19,4,- 1,~ 1)
60 7O 250
150 CALL PLTAXIS(O ,0 , AXLEN, O , XMIN, XMAX, XDEL. 11HLOG10(FREQ),
1-11,8,- 1, - 1)
€150 CALL PLTAXIS(O , O ,AXLEN, O , XMIN, XMAX, XDEL, 4HRA/R,
¢ 1-4.4,- 1,~ 1)
6o TO 300
200 CALL PLTAXIS{O ,0 , AXLEN, O , XMIN, XMAX, XDEL, 14HFREQUENCY (HZ),
1-18,8,- 1,- 1)
GO TO 300
250 CALL PLTAXIS(O ,0 ,AXLEN,O , XMIN, XMAX, XDEL
1. LIHANGEL (DEG).-11,4) - 1,~ 1)
GO TO 300
300 CALL PLTAXIS(O ,AYLEN, AXLEN, O . XMIN, XMAX, XDEL, LABX, 0,0, = 1, ~ 1)
CALL PLTAXIS(AXLEN, O .AYLEN, 90 , YMIN, YMAX, YDEL, LABY, 0,0, 1, 1)
CALL PLTDATA(XX. YY,NPTS, O, O, XMIN, DX, YMIN, DY, C 08)
CALL PLTLINE(XTITL, YTITL, - 1)
CALL PLTEND(11 0,8 )
RETURN
END —

PROGRAM THERMO( INPUT, OUTPUT, DATA, TAPE2=INPUT, TAPE4=DATA
1, PLOT, TAPES=PLOT)

RN s R R NI R BN P IR R R PR R EIRA BT S L RE BRI RERRRRRR R RRFRE R RARLRR RN

PROGRAM THERMO PERFORMS A FREQUENCY DOMAIN ANALYSIS OF THE
THERMOACOUSTIC TRANSMITTING CHARACTERISTICS OF A PLANE WAVE MODE MHD
TRANSDUCER THERMO COMPUTES THE ACOUSTIC FIELD AS A FUNCTION OF THE

THE TRANSMITTED ACOUSTIC FREGQUENCY, WHICH IS TWICE THE ELECTRICAL DRIVE
FREQUENCY THE POWER EFFICIENCY AND TRANSMITTING SENSITIVITIES ARE
COMPUTED AS A FUNCTION OF THE ELECTRICAL DRIVE FREQUENCY

S THERMO GENERATES GRAPHIC OUTPUT FOR THE FOLLOWING TRANSDUCER
WA CHARACTERISTICS
W
W:ét 1) MAGNITUDE OF THE REFLECTION COEFF (MRNL) VERSUS ACOUSTIC FREQUENCY (AFREQ)
B 2) MAGNITUDE OF APERTURE PRESSURE (RPNL) VERSUS AFREQ
Koyt 3) DB LEVEL OF RPNL VERSUS LOG10(AFREQ) .
$§ 4) " v OF APERTURE PART VEL (RVNL) VERSUS LOG(AFREQ)
= 5) " " OF RADIATED ACOUSTIC POWER (PR) VERSUS LOG(AFREG)
&) " " OF TRANSDUCTION POWER EFFICIENCY (EFFIC) VERSUS

LOGIOCELECTRICAL SIGNAL FREQUENCY) (FLOG)
7) QUADRATIC CURRENT TRANSFER FUNCTION(QCTF) VERSUS LOGFREQ
8) DB LEVEL OF QUADRATIC VOLTAGE TRANSMITTING SENSITIVITY(QVTS) VERSUS LOGFREQ
9) PRESSURE LEVEL DIRECTIVITY
L1O)ANGLE OF PRIMARY BEAM VERSUS AFREG

DATA INPUT 1S THROUGH THE BLOCK DATA STATEMENT AT THE END OF THE
MAIN PROGRAM

ERREPRRER R P IRA R PR B E N R R R BRI U BRI RTIRREREGBRFRBRRRRRRERRERRERRNR NN

2 N s RN e N NN NoNaNeNoNoNe Ro e Ne Nl o NN s NeNe NeNeNeRe Ne el

COMMON /Z1IP/ A, B.L.LY,LZ, SRAD, ROD, COD, ROM, COM. P1, BETA, CP, CD
1 CON. BM.FO, FF, FD

JIMENSION AFREQG(1000), EFREG(10007, FLOG(1000), PR(1000)

1, PSPL (10003, RPNL (1000), RVUNL (1000), MRNL(1000), FLOGA(1000)
2, TCSL(1000), TVSL (1000), ANGMAX (1000), EFFIC(1000)
3. QTSL(1000). GCTFR(1000). QCTF] (1000)

COMPLEX RNL (1000), RL(1000), PNL¢1000), PL(1000)

1. VNL(1000), VL.(1000), GCTF (1000)
2> GLNLA, GLNLB. GRLA, GRLB
3, GXLNLA, GXLNLB, GXRLA, GXRLB

REAL K. L.LY,LZ, MRNL

INTEGER 1. N

N = (FF-F0)/FD + 1}
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PRIMARY CALCULATION LOOP

DO 1 1=1.N
CALCULATE THE WAVE HUMDER AND FREQUENCY
W ox (T ePleFD « FLOAT(I-1)e2 epPleFD)/COD
AFREQ(1) = KeCOD/(2 oPI)
EFREQ(I) = AFREQ:I1)/2
FLOGALT) » ALOCIOCAFREQ(I})
FLOS(I) = ALOCI0(AFREQ(I)/2 )
REFL EVALUTES YTHE APERTURE REFLECTION COEFFICIENT
CALL REFL(K,RNLC(ID).RLCI), MRNL (1), ZFHR)
CREEN EVALUATES SEVERAL COMPLEX COEFFICIENTS
CALL GREENMN(®, A, D.L,RNL(I), RLCT), CLNLA, GLNLD, CRLA, GRLD
1. CXLNLA. GXLNLB. GXRLA, GXRLD)
PRES EVALUATES THE APERTURE PRESSURE IN THL WAVE CUIDE
CALL PRES(CLNLA, GLNLB, CRLA. CRLD, PNL(I).PL(T))
RPNL(1) = CABSEPNL(I))
PSPL(I) » 20 eALOCIO(RPNL(IY/ 000001)
C VEL EVALUATES THE' APERTURE PARTICLE VELOCITY t
. CALL VEL (K. CXLNLA. GXLNLD, CXRLA, CXRLB, VNL(1). VLCI). UL, US, PL.PD) i
RVNL(1) = 10 +ALOCIOWUD)
WRITE(4 e)yuy Py Y2, P2
Q7F IS THE GUADRATTIC CURRENT TRANSFER FUNCTION ROUTINE
CALL OTF (K. ANL. T, RLETII.QCTFCI))
GCTFR(1) & REALWQCTIF(L))
QCIFICIY « AIMAGI(GCTIFID))
RADPR EVALUATES THE RADIATED ACOUSTIC POWER
CALL RADPR(LY L2 IFMR,VL(1),PRR)
PRUI) = 20 eALOGIO(PRR)
PE 1S THE AVERAGE REAL INPUT ECLECTRICAL POWER
PE & CDoCDe(B-AISLYOLZ/ 12 #CON)

L] [z Nalel

(2]

(2]

(e

O 0

(2]

[e]

€ EFFIC IS THE TRANSDUCTION PROCESS POWER EFFICIENCY
EFFICC(I) = 20 *ALOGIO(PRR/PE) t
IFCEFFICCIY LE -J00 JEFFIC(1) = =300
c 13
€ QVTS EVALUATES THE PRESSURE RADIATION FATTERN. GUADRATIC TRANSHITTING
C VOLTACE SENSITIVITY AND THE ANGLE OF THE MAIN LOBE
<
C IF A DIRECYIVITY PLOY IS DESIRED SET FLAC = | O (DB SCALE) f
C IN IF STATEMENTS DELOW
C AND 7/ QR SET FLAGY = 1 O {(LINEAR SCALE) l
€ SET FLAG AND FLAGY » O O OTHERWISE
4
c [{o I (+ I}
FLAC = 0 0O
FLAC2 = 0 O )
IF(1 €EQ 1) FLACSO O {
IFCI EQ 1) FLAGRwQ O |
c
C IF THE X AX1S SENSITIVITY 1S DESIRED SET FLAGD = 0 O 1
C IF THE SENSITIVITY ON THE MAIN BEAM AX1S 1S DESIRED SET FLAGI = 1 O
C FLAGI MUST DE 1 O WHEN CALCULATING DIRECTIVITY PATTERANS
¢
FLAC3 = 0 O
4

CALL QVIS(AFREQ(I). ABS(U1), ABS(U), P1, P2
1. QVSLC1) . ANCHMAXC 1. FLAG, FLAGR. FLAGD)
TF(GTSLCI) LE -10% )QTSL(1)=-109
WRITEC(A, ») EFREQ(1).QTSL(1)

1 CONTINVE

et e gt

DRPLY PRODUCES A NEUTRAL PLOT FILE FOR PLOTTING ON THE YEKTRONICS

OO0

¢0 10 2
CALL DRPLT(N, AFRZQ, MRNL, 1)
CALL D2PLT(N. AFREQ, RPNL, )
CALL DIPLTAN, FLOGA, PSPL, 3)
CALL D2PLT (N, FLOGA. RVNL. 4)
CALL DIPLT(N, FLOGA, PR. 3)
CALL DQPLT(N, FLOG. EFFIC. &)

@ CALL DIPLT(N.FLOG QTSL. 7)
€0 TO D
CALL DIPLT (N, EFREQ. GCTFR, 8)
CALL DXPLT(N, EFREQG, QCYFL, 1)
CALL D2PLT(N, AF REG. ANGMAX, 9)

o ew e A e e ———

3 ST0P
END
¢
C..Q'.QQ'.'IOQv..l..'...lc"......'lIG!Q..l.l...'.....'l(.......l
¢
DLOCK DATA
€ VARIABLE INPUTS TOD PROGRAM THEIMO
[
[ LEFT BOUNDARY OF SQURCE VOLUME (MEVERS) '
€D RIGHT - E X
ct TOTAL WALEGUIDE LENGTH (METERS)
C LY  TRANSVERSE WAVEGUIDE LENGTH Y-DIR (METERS)
[ ¥ 1-DIR "
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SRAD RADIUS OF SPMERICAL DAFFLE {METERS})

ROD FLUID DENSITY IN WAVE GUIDE (WC/METERee3)

cod * SOUND SPEED - " (METERS/SEC)

ROM  FLUID DENSITY IN FREE MEDIUM (KC/METERea])

con ~ SOUND SPEED ~ - (METERS/SEC)

<o CURRENT DENSITY AMPLITUDE {AMPERES/NMEYER® D)

THERMAL COEFFICIENT OF EXPANSION OF FLULID (Mee3/MeeI/RELVIN)
P SPECIFIC MEAT CAPACITY OF FLVID (JOWLLS/KC/KELVIN)

CON  ELECTRICAL CONDUCTIVITY OF FLUID IN WAVEGQUIDE (1/0MNS METER)
FO INITIAL CALCULATION FREQUENCY (HERTQ)

IF FINAL - “ -

FD FREQUENCY STEP SI1IE (HERTD)

O0OOOANAOONOHOO
(=]
m
-
»

COMMON 7 ZIP/A.B.L.LY.LL, SRAD, ROD, COD., ROM. CON. P1. BETA, CP. CD
1.COM. BM. FO.FF.FD

REAL L Lv.tL2

DATA A.B t LY.LZ2.SRAD,ROD.COD. ROM, COM. P ], BETA. CP, CD. CON
1.0M.FO.FF.FD/=0 05,0 03. 10. 0318, 0381.0 032.104% , 1600 . 998
2.1481 3 14159,0 00021,3968 , 14425 .3 28, 40

3. 300 , 13000 230 /

PHYSICAL PROPERTIES OF NACL &% SOLUTION AT 20 C

CON S o8 {1/0%M/M) MEASURED
ROD 1041 (KG/Heed)

<op 1300 {M/SEC)

cP i1 (JQULES/KG/RELVINY
BETA O 1€-04 (Meed/MeeI/KELVIN)

PHYSCIAL PROPERTIES OF MERCURY AT 20 C
CON 1020000 <(1/0HM M)
ROD 13600 (KG/MasD)
COD 1450 (M/SEC)
P 140 CJ/KC/R)
BEYA 1 BJE-04 (1/K)
END

A A Ry R Y Y Yy Y YT Y Y Y Y Yy

SUDROUTINE REFL (K. RSNL. RSL. RSNLN, ZSR)

(2] s X X2e] DO ONOHAOOHOOONO

C SUBRDUTINE KEFL CALCULATES THE COEFFICENTS AND EVALUATES THE
¢ QUADRATIC EGUATIOQN FOR THE REFLECTION COEFFICIENTS
c

COMMON /Z1P/A B, L. LY, L2, SRAD. ROD, COD. ROH. COM, P1. BETA. CP, CD

1.CON, DM, FO. FF.FD

COMPLEX WA, KD KLR, IS, IM. A1, B1.C1, D1, A2, B2, C2, D2. EQ, F2, G, H2

1 C11.C22.C33, (44,53, Co6, RENL, RSL, RLL. RLNL

REAL L.LY,LZ K.PC

PC = RODeCCD

KA = CHPLX(O O, KeA)

KD = CHPLX(O O, KeD)

KLY = CHPLX(O O.KeL/])
C CALCULATE THE APERTURE 1MPEDANCES

CALL MISP(KeCOD. ZMR. INL. 2SR, ISI)

1S = CHPLX(ISR.ISI)/CHPLX(PC.O O)

I = CHPUX(IMR, IMIV/CAPLX(PC.O O)
C CALCWATE THE QUADRATIC EQUATION COEFFICIENTS

Cl = CEXP(KA) = CEXP(KB)

D1 CEXP(=KA) = CEXP(=KB)

Al CEXP (=KL

81 CEXP (KAL)

AQ B1eD1#(CHPLX(L O 0)=~2S)+BleClelN
AleD1e(CMPLX(L .0 ©)+25)=BleDlelN
D1eC1o(CHPLX(=1 .0 Q)eIS)=~AleClelN
=ALlsCLle(CHALX(1 ,0 O)*2S)eAleDIZN

(2]
2]
s AL a s aNnEE

£Q B1eC1e(CHPLX(L , 0 Q)=2S)*DieDlelN

F2 BleD1e(CHPLX(=1 O 0)+lS)=AleDieZN
e Al+C1O(CHPLXC(T . 0 Q) +YS)~BleCleln

M2 =A1sD)I#(CHPLX(1 .0 0)+ZS)sAleClelN
€11 = AQeFQ - DQeEQ

CI2 » AQeHD ~ BLeQD o CJeFD -~ DED

€33 = C2eM2 - DReCD

€44 = CQeED ~ AQeGQ

CO3 = DQeED ¢ CR4F2 ~ BReCD = AQeHD

Co6 = DQeFQ - DJonD

C CALCULATE THE COMPLEX ROOTS USING THE FOLLOWING IMSL ROUTINES
C THE ROOY WITH THE MAGNITUDE LESS THAN ONE 1§ PHYSICALLY
C MEANINGFUL THE OTHER 1S DISCARDED

CALL 2GADC(C3I. €2 C11. RSNL. RLNL, 1ER)

CALL 20ADC(CH6,CH3. CA4, ASL, RLL, 1ER)

RSNLH = CABS(RSNL)

RETURN

END
[
C.'Q..IQ.....C A A AR A AR L L Yy Y Y Y Y Y Y Y 1)
c

SUDROUTINE MISP(W RM.CXM.R CX)
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358 C MISP EVALUATES THE SELF AND MUTUAL ACOUSTIC IMPEDANCES 17 THE
l‘ Ay C WAVEGUIDE APERATURES IHE RESULTS ARE INPUT TO REFL TO EVALUATE THE
W € REFLECTION COEFFICIENTS
L C MISP USES THE EQUATIONS DEVELOPED BY C H SHERMAN TO EVALUATE THE MUTUAL
‘.&, C AND SELF IMPEDANCES OF TWO CIRCULAR SOURCES 180 DECREES APART ON THE
Ve A C SURFACE OF A SPHERICAL BAFFLE
) <
\ ) DIMENSION P(1000).WK(2000). J1(1000). Y1(1000),

1P1(1000)

COMMON/I1P/A.B. L LY, L2.5RAD. ROD, COD, ROH, COM, P1. BETA, CP. CD

1. CON. BN, FO. FF, KD

REAL J1.Y1.L.LY L2

INYECER [.M. N
N 1S TME NUMBER OF TERMS IN THE SUM REQUIRED FOR CONVERGENCE AT
LARCE VALUES OF HeRD

N = 50
RD 1S THE EFFECTIVE RADIUS OF THE CROSS SECTION OF A RECTANCULAR
WAVEGUIDE

RD =« SQRT(LY&L Z/PL)

T = ATAN(RD/SRAD)

C = ROMeCOMYSRAD*SRAD/ (RDeRD/
INITIALIZATION OF LEGENGRE POLYNOMIALS

(1) = 1 O

P(2) w1 0

P(I) = COSLT

Pl¢1) = § ©

PI(2) = -1 O

M w Ne2
CALCULATION OF LECENDRE POLYNOMIALS BY RECURSION

DO 1 Ked.

Rl = FLOAT(K)

R2 =« R] - "

P(Ket) » PeDIePcnIe(d *R1el I/(RIel I=PLK=1)oRI/(RI¢]

PI(R) = PL(Q)ePIin=1)4(2 «RI+ )/(RD+]1 1-PI{K-DISRD/(RD+}
1t CONTINUVE
THE BESSEL FUNCTION EVALUATIONS ARE PERFORMED BY
MHOSJR AND MMBSYN tIMSL ROUTINES)

X = WeSRAD/COM

CALL MMBSUR(YX. 5.Ne3.Jt, WK, JIER)

CALL HMMBSYNC(X, 3.Ne+J, Y1, 1ER)

IRNY = 0 O

€My = 0 O

IRSt = 0 O

51 = 0 0

q i NQ = Net

.‘ THE SERIES ARE SUMAED IN THE | LOOP
’ v

By
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TO CALCULATE THE SELF AND MUTUAL IMPEDANCES

. Y 00 3 t=1.N2
S1 = FLOAT(D)
D = (((SI=1 )/X08J1C(1)=~J1(Ie1))0u2 &
‘:‘ 1CO(STI=1 2/X)eY1CD)=Y1{le]1))0ed
‘é‘ D1 = ((S1=1 ¥/X)e(1(1)8UI{)+YI(I)eYL(])) =
b LMD st Te)evI(I)OYI(Io1))
D2 & =01 (1)#YI(To1)eJdItIe) Vi)
RS = D2/D
CPL = -DI/D
GAM = (1 /(D «(SI=1 I+l NIeC(PUII=P(TI+DM))IneD)ePI(])
CIB = (1 /(2 #(Sl-1 )&l NIS(P(1)=P(leD))ea2
IRM] « G2MeRS+ZRMI
ICHM]1 = GIMeCPL +ICM)
IR81 = GISeRSeZRS1
181 = GISeCPL+ICS!
3 CONTINVE
C RESULTY
RM = GeZIRmMt
CXM w CaZICMI
R = GelR&E
Cx = GeZCSI1
RETURN
END
4
c......l'.lilivto'....'D.0.'.'...0O'..I..Q.0.0..........'."0.....
<
SUBROUTINE GREEN(K A.D.L RNL RL.GULNLA, CLNLB, GRLA, GRLD
1. CXLNLA. GXLNLD, CXRLA, CXRLD)
COMPLEX CC. KA, KD KL2.RNL RL GLNLA, GLNLB.GRLA GRLD
1 LA LB RA KD
& CXLNLA. GXLNLD GXRLA, GXRLD
REAL K L
RA & CHMPLXAO . KHeA,
WB = CHMPLX(O neb)
KLY & (MPLX(O Kot /2 )
CC = CHPLXCL O Qi/(CMPLXIT oK O He(CMPLX(T O )-RNLARL )
LA o CCo(CEXPIKAY ~RLOCEXP{=KA))
RA & CCO(CEXP(-RA)-RNLOCEXPIKA) )
LB » CCOUCEXP (KD <RLSCEXP (~K0))
AB = (COo(CEXP(-KDI~RNLACEXP (KB}
CUNLA = CMPLXIO U ~1 O)eLA®(CEXPIKLD) *RNLOCEXP(-KLD))
CULNLD » CHPLX(D O -1 O)eLBe(CEYPIRLD) sRNL#CEXP(-KLD))
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CRLA & CHPLX(D 0.1 O)eRAS(CEXP(KLD) ¢«RLPCEXP{~KLD)?
CRLD @ CHPLX{Q O 1 Q)eRBe(CEXPIKLD)*RLOCEXP(-KLD))
CXLNLA & CHMPLX(Q 0.1 O)eLA®(CEXP(ALD) = RNLeCEXP(-KLD))
CXLNLDE = CHMPLX(O O.1 0)eLBe(CEXP(KLY) - RNLeCEXP(-KLD)}
CXRLA = CHPLX(O 0.1 0)*RAS(CEXPIKLY) = RLeCEXP(-KLD))
CXRLD = CHPLX(O O.1 0)@RB#(CEXP(KLD) = RLSCFXP(-KLD))

RETURN

END
<
Cevansrncnsncey PEOVRL PSSP ICROUGLELRNRNNINIITOORNIRES
<

SUBROUTINE PRESC(GUNLA, GLNLE. GRLA, GRLB. PNL. L)

<
¢ PRES EVALUATES THE APERTURE FRESURE
C PNL 1S THE COMPLEX PRESSURE AT THE LEFT APERTYRE

¢ PL .- - ~ = RICHT -

4
COMMON /21P/ A, B.L LY.LZ.SRAD.ROD. COD, ROH. COM. P1. RETA, CP, CD
1, CON, BM. FO. FF. FD
COMPLEX PNL. PL. GLNLA, GLNLD. GRLA. GR.B
PNL = CMPLX(-DETA*CDeCDeCOD/ (T *CONeCP), O )#(GLNLA - GLNLD)
PL = CMPLX(-BETA#CDeCDeCOD/ (D ¢CON®CP). O )e(GRLA - GRLB)
REYURN
END

<

0P e tessaeet ta1ed0R st IelNTIrsescscetarsniencasssatastasses .

<
SUBROUTINE VEL (K. GXLNLA. CXLNLB, CXRLA, GXRLD. VNL. VL U1.U2, P1, PD)
<
C VEL EVALUATES THE PARTICLE VELOCITY AT YHE APCRTURE
C VNL IS THE COMPLEX PARTICLE VELOCITY AT THKE LEFY APERTURE
cwe o : " : t ot ORIGHT -
<
COMMON /21P’ A.B.L.LY.L2,.SRAD ROD.COD.ROM. COM. P1. BETA, CP. CD, CON
1 BM, FO.FF.FD
CCHPLEX VL VNL.CXLNLA, GXLNLS, GXRLA, GXRLD
REAL K
VNL = CMPLX(-DETAeCDeCD/ (] ¢CONWCPOROD). O O)¢(CXLNLA = GCXLNLD)
VL = CHPLX(-DETA®CDeCD/ (2 #CON®CPROD), O O)#(CXRLA =~ GXRLB)
Ut = CADS(VL)
U2 = CABS(VNL)
Uit = REALIVL)
V22 = REAL(-VNL)
C THE CONDITIONALS BELOW EVALUATE THE RELATIVE PHASES OF THE APERTURE
C PARTICLE VELOCITIES REFERENCED Y0 THE SURFACE OF THE SPHERICAL BAFFLE
IF(ULL GE O O AND U2 LT O Q) THEN
PL =00
PQ = 3 1414590633
ELSEIF (VL1 CE O O AND U2 CGE O O) THEN
Pt =00
PR a 00
ELSEIF (VL1 LT O O AND U2 LT O 0) THEN
Pl = 3 141392654
P2 = 3 141392624
ELSE
Pl = 3 131592624
P2 =00
ENDIF
RETYURN
END

sssespessueRaves

S4BIRERVIIIIVEIRRIITRECIRIIRONSI RS

SUBROUTINE QTYF (K. ANL. RL. GCTF
COMMON /ZIF A, B L.LY LZ.SRAD, ROD, COD. ROM, COM. P, BETA. CP. CD
1. CON, BM. FO. FF FD
REAL K LY L2
COMPLEX X1, X2, X3 X4, X3, X6.RNL RL. GCTF
X1 = CMPLX(-BETADMECONCCONSL2/(3 sCPeRODCLYSLISKeK), O O}/
LECHPLX (1 0.0 O)~RNL*RL)
X2 = CHMPLX<O 0,3 oKeB)
X3 = CHPLX(Q Q 2 eKeA)
X4 @ CHMPLX<O O,Re(A*B))
X3 & RNLA(CEXPUXDISCEXP(XD) ~CHPLX(Z O JelEXPIXA)
X6 = RUS(CEXP(-XQV~CEXPC-XQ) oCMPLX(D O )CEXP(-X41)
ACTF = X1acXS¢Xp)
RETURN
END
[+
[ A Y Ry PP PR Y YT YRR T YT TTY P Y T PR PP PP
<
SUDROUTINE RADPR(LY L2 IR VL PR}

[
C RADPR EVALUAYES THE RADIATED ACQUSTIC PGWER AT THE APERTURES
4

COMPLEX Wi

REAL tY L2, PK

PR = (CABS(VLIeeD )elReLYO
RETURN

END
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SUBROUTINE QVTS(FREQ, UL, UD. MUL, HUQ. TVSL, ANGHAX. FLAG. FLAG2, FLACD)
<
C QVTS EVALUATES 1)TME FARFIELD PRESSURE DIRECTIVITY, GIVEN THE AMPLITUDES
C OF THE AFERTURE PARTICLE VELOCI”IES AND PHESES
C 2ITHE TRANSMITTING SENSITIVITIES AT ONE METER PER UNIT AMP AND YOLT
€ YHE FARFIELD PRESSURE 1S CALCULATED USING € H SHERHANS RESULTS
<

COMMON /21P/ A B.L.LY.LZ, SRAD. ROD. COD, ROH, COM, P1. BETA, CP, CD

1.CON, BM. FO. FF.FD

DIMENSION LO(109).11(100, 100),L2(100. 100}, J1(100)

1, ¥1¢100). WA(410), PS(103)

2, PSLC103). ANC(103)

3. PRU1OD)

COMPLEX P11(103).C11,C22, DH, €3, SUMI, SUN2. SUML1. SUNI2. P1, P2. AL, A2

INTECER N.ND, . J

REAL LO L1.L2, MUL. MUJ. KA, KR, L. LY, L2, JI
-
¢ N IS THE NUMBER OF TERMS REQUIRED FOR CONVERGENCE OF THE SERIES EXPRESSION
C FOR THE FARFIELD PRESSURE ND 1S THE NUMBER OF POINTS CALULATED ON THE
C DIRECTIVITY CIRCLE R 1S THE RADIAL DISTANCE (METERS) IN THE FARFIELD AT WHICH
C PRESSURE CALCULAYION IS MADE
<

DATA N.ND.R/355%.73.t /

NPTS = ND

RD = SQRT(LYeLI/PI)

¥ = ATAN(RD/SRAD)

KR = 2 *PLeFREG/COMeR

KA u 2 ¢PleFREQ/COMeSRAD

Al = CHPLX(O 0. (ROMeCOMeY1/R)*SARTISRADRSRAD/ (D *PleKA)))

A2 = CMPLX ‘O 0. (ROMSCOMOUD/R) *SGRT(SRADSSRAD/ (T SPleKA}))

N ¢ INITIALIZE THE LEGENDRE POLYNOMIALS

i Lo(1) = 00

T 0O LO(2) « 1 0

}\ LO(3) = COS(T)
; € CALCUWLATE TWE POLYNOMIALS BY RECURSION

;-‘: DO 1 Ie=d.Ne2

) RI = FLOAT(I-10)

12N LO(I) a(2 eRI+1 1/(RIel )eLOCIIALOCI=1)-RI/CRI+1 DalOCI=D)
! 1 CONTINUE

o

DA IS THE ANGLE STEP SIIE
DA = 2 «FI/CLOAT(ND=1)
CALCULATE THE ANSLE DEPENDENT LECENDRE POLYNOMIALS
DO 2 Jal %D+l
ANGLE & FLDAT(J=-1)2DA
ANGLE = P[/Q
Litl, ) = ' O
L1{2, J) = _OS(ANGLE)}
L2(1,J) « 1 O
L2(2, Uy » COS(PI-ANCLE)
DO 3 Kel K
RA = FLOA® (4=0)
LIGK, It ¢RA*D D/(RA+1 DaL1(R, JIsL1(K=1, L) =RK/(RKel )aL1(K=2, V)
QR DI= 2 SRAST I/ (RKGL DL, S #L2(K~1, J/~RK/ (RR¢1 ) eL2(K-D, J)
3 CONTINUE
IF(FLAGI Q¢ 0 0) €O TO 20
b CONRT INVE
C MMBSUR AND MMBSYN CALCULATE THE DESSEL FUNCTIONS OF THE FIRST AND SECOND
€ KINDS RESPECTIVILY
20 CALL MMBSJR{MA, 3, Nel.Jt, WA, JER)
CALL MMBSYN{KA. 93,N+1,Y}, IER)
C1t = CEXP(LMPLE(Q O -MUI))
€22 = CEXP(CHMPLX(O O, -MUD))
€ CALCULATE THE N DEPENDENT TERMS
" DO 4 183 Ned
e C3 = (FLOAT(I)= J/KAeJI(1=D)=J1(1=1)
CA = (FLOAT(1)=3 )/RAeYI(I-D)-YI(]~=1)
DH = CMPLX(CJ. CH)
CY = CEXP(CHPLX(O Q. ~PI/T oFLOAT(1=23))
P1ICI=2) & CMPLXC(LOLT-2)=LO(1)). 0 O)¥CI/DH
4 CONTINUE
¢ SUMMATION LOQPS
00 > usi.ND
SUMI1 = CHPLX(O O O Q)
SUMRT = CHPLX(D O O Oy
D0 6 I=1 N
BuMl = PLICDeCMPLXILI(L. U). 0 O) + SUMLL
UMD = P1ICD «CHPLXLD(L W) O O ¢ 3UNI2
SuMlt = SUML
SUMDD = SuM”
s CONTINVE
C CALCULATC THE FARFIELD ANGLE
ANG(J) * (FLOAT(U) -1 O)eDAC1BO /P]
Pl = AlsSUMIS(1]
FQ s AQeSUMICID
- SUM THE PRESSURE FIELDS OF THE SOURCES COHERENTLY TD FIND
C THE MACNITUDE
P3(Jr o CABS(PL ¢ PO
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I

<

PSL(J) 3 20 ¢ALOGIQ(PS(VX/) 0E=06)

WRITE(4 ¢) ANGiJ) PSLIY)

IFA\FLAGD EG O ™ GO TO 20

CONYINVE

IFFLAG EQ 1 00 CALL DIPLTUINPTS. ANGC, PSL. 10)
IFCFLAGY EQ 1 O CALL DIPLTINPTS+1. ANC.PS, 11}

€ LOCATE OF THE MAIN BEAP AXIS

30

YMAX) = PS()?Y

1F(FLAG3 €Q ¢ O ¢0 YO 10

ANCMAX = O O

D0 7 1= NPIS

YMAX = AMAX1(PSCIY, YMAX])

IF(YMAX CT YMAX1) ANGMAX s ANG(I)
YMAX] = YMNAX

CONTINUE

7
€ CALCULATE THME SENSITIVITIES

<

Coveesortenccorrecrenan

<

oo

10

TVS = YMAX)/(CD*CDeLYeLY/ (CONeCON))
TVSL = 20 sALOGIO(TVS)

RETURN

END

Dy Y Y Y Y I Y

SUBROUTINE DIPLT(NPTS, XX YY,FLAGH)

D2PLT IS THE YW DIMENSIONAL PLOTYTING ROUTINE USING ARLLID

100

4

-]

1o

1

DIMENSION xX(1000), YY(1000)

INTEGER FLAGS, NPTS

XMING ® Xx(1)

XMAXL »* XX(1)

YHING & Yvqy)

YMAX] = YY())

D0 100 =2, NP18

XMIN & AMINICXXCDV, XMIND)

XMINI ® XMIN

XHAX ® AMAX1(XX(1).XHAX1)

XMAXD ® XMAX

YHIN ® AMINLCYY (D), YMIND)

YHMING = YHIN

YMAX ® AMAX1CYY(1), YHAX1)

YMAXL = YMAX

CONTINUE

IF(YMAX EQ YHMIN) YHIN » 0 O

DX = (XMAX =~ XMIN)/FLOAT(NPTS)

XORGe1 O

YORC»1 O

XDEL® ¢ XMAX=XHMIN)/20 O

YDEL = ( YMAX=YHIN)/10 O

AYLEN®] O

AXLEN=S Q

XYITL=AXLEN/2 O

YTITL=AYLEN+O &

DX=(XMAX=XMIN) /AXLEN

DY®{YMAX-YHIN) /AYLEN

CALL PLTLFN(L"PLOT™)

CALL PLTDIMCIL .6 3:1.4 )

CALL PLTQRG(XORG. YORC)

GO YO ¢1 2.23.4.9.6.7.8,9.10,11. 1) FLAGCH
CALL PLTAXIS(O .0 . AYLEN, 90 . YMIN, YMAX, YDEL
1. 134MAG REFL COEF.13.2,- 1.~ 1)

¢0 TO 200

CALL PLTAXIS(O .0 , AYLEN, 90 ., YMIN. YMAX. YOEL
1. JAMAPERATURE PRESSURE(PA). 22. 2.~ 1. = 1)

€0 10 200

CALL PLTAXIS(O . O ,AYLEN, 90 . YMIN. YMAX, YDEL
1. QOHAFER PRES(DDB RE 1X10-6PAY 25.2.- 1.=- 1)
S0 YO 17y

CALL PLTAXIS(O O AYLEN, 90 YMIN. YMAX. YDEL
1 QOMAPER PARY VEL(DB RE I M/S) 26 2 ~ 1.~ 1)
GO 1Y 179

CALL PLTAXISIO O AYLEN 90 YMIN, YMAX YDEL
1 204ACOUS PWR(DB RE 1 WATT) 23 2. - 1. - 1)

¢Q 10 173
CALL PLYAXIS(O ¢ AYLEN 90  YMIN YMAX YDEL
1 OMMPQOWER EFFICIENCYSOD RE 1) 25 2 - 1 ~ 1)
S0 O 10

CALL PLTAXIS10 QO AYLEN 90 YMIN YMAX YDEL
1 CBMAVTS (DB RE IPA/(VOLTeVDLY)) 28,2 - 1. = 1)
GO 10 173

CALL PLTAXI®(O O AYLEN. 90 YMIN. YM/ X YDEL
! JAHQCTFR (AMPS vCLTeVOLT ) Q4 2 - 1 1
G0 10 1%C

CALL PLYAXIS(O O AYLEN 90 vMIN. YMAX YDEL
1 1BMANG MAX RESF (DEG) 18 & 1 -0

G0 t0 Zco

CALL PLYAXTIS(O O AYLEN 90  vMIN YMAX vDEL
I 14MPRES LEVEL (DB 14 4 - § -~ 1)

20 1) 2%

CALL PLTAXIS(O O AYLEN 90 vMIN YMAX YDEL

151




1. 19HPRES AMPLITUDE (PA),19,4,- 1.- 1)
G0 70 250
12 CALL PLTAXIS(O ,0 ,AYLEN, 90 , YMIN, YMAX, YDEL
1, 24HQCTF1 (AMPS/(VOLT#VOLT)), 24, 4,~ 1,- 1)
150 CALL PLTAXIS(O .Q ,AXLEN, O , XMIN, XMAX, XDEL, 10HINPUT FREG,

1-10, 4, - 1,- 1)

A 60 70 300

o 175 CALL PLTAXIS(O .0 ,AXLEN, O , XMIN, XMAX, XDEL, 14HLOG INPUT FREG.
_-; 1-14,4,- 1,- 1)

LY G0 7O 300

S 200 CALL PLYAXIS(O .0 ,AXLEN,O ., XMIN, XMAX. XDEL, 17HACOUSTIC FREQ(HZ),
“ 1=17,4,=- 1,= 1)

b 7 GO TO 2300

{\ 250 CALL PLTAXIS(O .0 .AXLEN, O , XMIN, XMAX, XDEL

R, 1, 11HANGEL (DEG), -il1,4,~ 1, - 1)

GO 70 300

5 300 CALL PLTAXIS(O , AYLEN, AXLEN., O , XMIN, XMAX, XDEL, LABX, 0,0, - 1, - 1)
‘ CALL PLTAXIS(AXLEN,O , AYLEN. 90 , YMiN, YMAX, YDEL, LADY, 0,0, 1, §)
)i CALL PLTDATA(XX., YY,NPTS, 0, 0. XMIN, DX, YMIN, DY, 0 08)

Q CALL PLTULINE(XTITL, YTITL, - 1)

; CALL PLTEND(11 0.8 %)

K{ RETURN

. END
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