-A188 367 A MEASURE OF ROTATABILITY FOR RESPONSE SURFACE DESIGNS
(U) FLORIDA UNIV GRINESVILLE DEPT OF STATISTICS

A 1 KHURI MAY 87 TR-232 NoB@14-86-K-0859
UNCLASSIFIED F/G 1274




EEEE I

- p—




-« DI Fite copy ’ /

A MEASURE OF ROTATABILITY FOR RESPONSE SURFACE DESIGNS
By

A. I. Khuri

AD-A180 367

Department of Statistics

University of Florida

w: Gainesville, FL 32611 DTIC
- -LECTE
MAY 2 0 1987

o Technical Report Number 232
May 1987

PREPARED UNDER GRANT NO. N00014-86-K-0059
FROM THE OFFICE OF NAVAL RESEARCH. ANDRE I. KHURI

AR

o AND RAMON C. LITTELL, PRINCIPAL INVESTIGATORS
S

_,-'._‘.

i

N

'\

T

= DISTRIBUTION STATEMENT A
! Approver {5 public release}

, Dxauiouuon Unlimited

g7

N1

'-.,:

.'
>

e
oc
»J
C
“‘_i

- '.I
* -

v
-

«
LS
2
)
o
.
hJ
)
4
.
e
5
.
*
]
.
N
.
»
)
»
*r
.

a2
ko
o




) T S avh ale avh i b aa i a kAt gt e M hat Rk Suh Sak thal S b el A - A R A d hie Ala doa She Abes AN Ao e Al B -

A
Q’ﬁ “
&"’(
¥
- ‘ e —
SECURITY CLASSIFICATION NF THIS PAGE (When Date Entered)
ot READ INSTRUCTIONS
;‘:", REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
‘:‘ﬂ" 1. REPORT NUMBER 2. GOVY AC?SSDON NO.| 3 RECIPIENT'S CATALOG NUMBER
:"Q{ 232
fzp‘ 4 TITLE (and Subtitle) S TyPE OF REPORT & PERIOD COVERED
- s Technical Repor
A Measure of Rotatability for Response Surface eport
g . Designs
:‘ 6 PERFORMING ORG. REPORT NUMBER
o
4-\.: 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
e . N -86-K -
L) A. I. Khuri 00014-86- K -0059
(R & T 4114552---01)
W Acct. No. 4910-1623459
O 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
* 2 L AREA & WORK UNIT NUMBERS
4.: Department of Statistics
N Nuclear Sciences Center
A University of Florida; Gainesville, FL 32611
11. CONTROLLING OFFICE NAME AND ADDRESS '2. REPORT DATE
" Office of Naval Researcl'.l May 1987
.r""i Mathematical Sciences Division (Code 411) 13. NUMBER OF PAGES
.f';. Arlington, VA 22217-5000 34
-:;.,- 14. MONITORING AGENCY NAME & ADDRESS(!! ditferent trom Controlling Oflice) 15. SECURITY CLASS. rof thia report)
N o !
-
Wy . .
5 Unclassified
T
o 1Sa. DECLASSIFICATION. DOWNGRADING
Ko SCHEDULE
L7
oy
'.4 16, DISTRIBUTION STATEMENT (of this Report)
[\
i -
?2- Approved for Public Release: Distribution Unlimited
I 4 »
W
-
n‘"
'{.\: 17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)
d':':
2
3y
"
o
‘s 18 SUPPLEMENTARY NOTES
\f;'
~.£
S
\.i’
At
ﬂ. 19. KEY WORDS (Continue on reverse aide I necessary and Identily by bilock njmbar}
W Rotatable response surface designs; Percent rotatability; Repairing
'_:'-: rotatability; Design moments; Cone of rotatability.
&
b
20 ABSTRACT (Continue on reversse aide If neceseary and identify by block number)
.- This paper introduces a measure which quantifies the amount of rotatability
B~ in a given response surface design. A technique is presented for increasing
- the value of this measure for nonrotatable designs.
»‘)
|
'l
)y
.
.‘ﬁ
e
RM
oy DD %%, 1473  ceoimion oF 1 nOV 6315 0BSOLETE
" SN D10 LE D14 5601 Unclassified
ot Vv gey SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
’
S
_-ﬂ_q
| A ) AR AT ool RS KA W S LN Y S TN TN
! S‘\'( I'yl'f{ "'V‘ s - .)ff-‘ -(" ! " W hh.#\i" > . ,(\V“\'.( ,.




A Measure of Rotatability for

?ﬂ Response Surface Designs
o
3
-
i
Department of Statistics
\ University of Florida
NG Gainesville, FL 32611
i
)
o
€
\J \J
53 | ABSTRACT
o I
i;* A measure is introduced in this paper which quantifies the
‘ -
. amount of rotatability in a given response surface design. The
4
-l
,f;. measure, which is expressible as a percentage, takes the value 100
1
..f!
e if and only if the design is rotatable. One of the main
o '
L0 -
J advantages of this measure is that it can be used to “repair” a
b X
3 s
53 nonrotatable design by the addition of experimental runs which
\‘
s maximize the percent rotatability over a spherical region of
DO
: interest. Four numerical examples are given to illustrate the
-
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U applications of this measure. B
.-'. N S
o \iL
o !
{?% KEY WORDS: Nonrotatable designs; Percent rotatability; Repairing !
W
" S .
$;$ rotatability; Design moments; Design augmentation; T TTT ™
Oy L -
;ﬁ. Cone of rotatability.
O
::J.
ol
"
Lo
"y
s

‘
d

. 7

-".v

§! o

R S JUAE TS SRR RN S S e
R I S A PN S I

SEE NN 3 YRR MR PR N SIS SN g




- A T THE TR TL TR TR TR TRa A e o mE e TR R

-

o~

_v., |
-

P
~

- -
R

1. INTRODUCTION

OMEUAVLELE)

Consider fitting a linear response surface model of order d

3
': in k input variables, X]»Xg,eee,Xp, OVEr a spherical region of
" interest, R, using a design consisting of n experimental runs.
[
.: This model can be written in vector form as
[
%
0‘
' E(y) = X8, (1.1)
9
Y
'2 where y is a vector of n observations, E(y) denotes the mean or
'
$
’ expected value of y, X is an nxp matrix of rank p whose elements
;’ are known functions of the design settings of the input variables,
s
< and § is a vector of unknown regression coefficients. We assume
32 that the variance-covariance matrix of y is given by o2 In’ where
N 02 is unknown and P is the identity matrix of order nxn. We
.4
P R .
> denote by D the nxk design matrix whose u'? row consists of the
r.¢
o . . th .
| settings of the k input variables at the u experimental run
),
A, 3 (u=l,2,-oc,n)u
.:‘
3 The predicted response value at a particular point x =
&S ~ I
i (xl,xz,...,xk)' in the region R ~ill be denoted by y(x). This :
"~ value is obtained by substituting the elements of B in model (1.1) ‘
*. ~ 1
L e, ~
.'? by the corresponding elements of 8, the least squares estimator
v
g of B, namely,
':l a vy Ly
- 8= 'O X'y . (1.2)
-4
\ni The design D is said to be rotatable if the variance of
L
N y(x), which in general depends on x| ,Xy,...,%,, is a function of
b
.’:.
»
N -1-
<4
N
2
N
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N only the distance of the point % from the center of the design. .
"if Thus, when the design is rotatable, the prediction variance,
i
N -
»;ﬂ denoted by var[y(x)], is the same at all points ¥ which are equi-
2# distant from the design center. Consequently, in the space of the
kf input variables, surfaces of constant prediction variance form
o
E concentric hyperspheres (circles and spheres in two-dimensional
. and three-dimensional Euclidean spaces, respectively).
.. ]
g
N The concept of rotatability was first introduced by Box and
P
[
1\
"~ Hunter (1957) and has since become an important design criterion.
%‘ One of the desirable features of rotatability is that the quality
>
ﬁ: of prediction, as measured by the size of var[y(x)], is invariant
- ~
=
-;: to any rotation of the coordinate axes in the space of the input
A variables. Furthermore, if optimization of }(3) is desired over
. concentric hyperspheres within a certain region of interest, it
e
::: would be very desirable to have a rotatable design. Otherwise,
JJ
o poor estimates of the optimum might result (see Khuri and Myers,
i
:: 1979)
b .
" A simple characterization of rotatability is given in terms
‘.. of the elements of the X'X matrix. We shall refer to these ele-
,-\ ~ o~
AN
'j\ ments as design moments (traditionally, the elements of the
Y
Y
b matrix 5'5/n are referred to as design moments). 1In general, a
s design moment for a model such as (l.1) of order d and in k input
- §1 8§,
ot variables is denoted by (1 2 ,..k ) and is equal to
- ‘
28
~
- -2~
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§ 6, 6

n 61 62 §
(1 2 ...k )= I x x seeX

k k

ul ¥u2 K? (1.3)

u=1l

where 61,62,...,6 are nonnegative integers aand xuj is the level

th

k

of the jth input variable used in the u experimental run

M X

(j=1,2,¢0e,k; u=1,2,...,n). The sum, Gj, is called the order

j=1
of the design moment and is denoted by 6(§ = 0,1,...,2d). For

2 3
example, (1 3 5 ) is a design moment of order § = 6 and is equal
n 2 3
to L X 11%u3%us "
u=l
A necessary and sufficient condition for a design for fitting
a model such as (l.l1) (of order d and in k input variables) to be

rotatable is that the design moments of order 8(6=0,1,...,2d) be

of the form

(=]

if any Gj is odd

(1 2%,k = (1.4)

1
1 GJ.

(aj/z)!

96 i
5872

, 1f all of the 6j's are even,

e
= == =
—

where 66 is a quantity which depends on d,§, and n (see Box and
Hunter 1957, Myers 1976, ch. 7). For convenience, we say that a
design moment is odd if at least one of its 6j's is odd and a
design moment is even if all of the éj's are even. Note that a

design moment of order § = 0 is equal to n. A design whose

moments do not conform to formula (1.4) is said to be nonrotat-

able.
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Quite often, a nonrotatable design may exhibit surfaces of
constant prediction variance which are nearly spherical. 1In this
case, the design is described s being near rotatable. This
occurs, for example, when a rotatable design is deformed due to
incorrect settings of some of the input variables, or because
certain specified levels of the input variables may be difficult
to employ in practice. In another situation, a rotatable design
may undergo certain modifications to fit the needs of the experi-
ment. The modifications might involve adding new design points,
or shifting existing design points, in order to gain more informa-
tion in a certain region of interest (see Littell and Mott 1974).
In such situations it is of interest to assess the effects of
deformation or modification on the property of rotatability.

To assess the degree of rotatability, it has been customary
to inspect contour plots (in case of k=2 input variables) of
constant prediction variance to see how close they are to being
circular. Such a practice ,however, has its limitations when the
number of input variables exceeds 3 in addition to being subjec-
tive. In this paper, we provide a quantitative measure of rotat-
ability for a response surface design. This measure takes values
between 0 and 100 with the latter value being attained when the
design is rotatable. The proposed measure can be useful in the
following situations:

(i) to quantify the degree of rotatability of a nonrotatable
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design so that a determination of how “close™ the design is
to being rotatable can be made.

(ii) to compare designs on the basis of their degrees of
rotatability.

(iii) to assess the extent of departure from rotatability when an
already rotatable design is deformed or modified.

(iv) to repair a nonrotatable design.

2. A MEASURE OF ROTATABILITY

Consider again the model given in (1l.1), which if we recall
is of order d in the input variables X 3Ky e ee X e Let us suppose
that in the spherical region R over which this model is fitted the

input variables have been coded so that

n
rz . =0, j=1,2,...,k
u=1 Y
(2.1)
- 2
I 2¢, = a, i=1,2,...,k,
u=1 W

where zuj denotes the coded value of xuj’ the actual value of the

uth level of variable j, and a is some positive constant. The

coding can be accomplished by applying the transformation, zuj =

(x i xj)/sj, where X5 =

u xu,/n and 5 is given by

| ™3

u=

1/2

ye =]

sy = [ (xuj— ;ﬁ)z/a]

u=1

By adapting the notation described in (1.3) to the coded variables,
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the equalities described in (2.1) can be written as

G)=0 , = 1,2,e00,k,
(2.2)
(j2) = a , J = 1,2,000,ke

Under this coding scheme, the center of the design coincidec with
the point at the origin of the coordinates system. The coding
also helps to standardize the input variables which may have
different units of measurements. Furthermore, the spread of the
design will be the same in all directions of the coordinate axes.
In terms of the coded variables, model (1.l) can be expressed

as

E(z) = z Y » (2:3)

uj

are used instead of the xuj's, and y is the new regression coeffi-

where the matrix Z is of the same form as X except that the z s
cient vector. Throughout the remainder of this paper, the design
moments defined in (l.3) will be formulated in terms of thc coded
variables.

We shall now introduce a measure of rotatability for a given
response surface design. Such a measure should be
(i) a function of the levels of the input variables used in the

design,
(i1ii) dinvariant to the value of the scale parameter, a, in formula

(2.1)

(iii) invariant to the addition of points at the center of the

design (which coincides with the origin of the coordinates

-6-
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system by the coding scheme).

The reason for condition (ii) is that there can be an infinite
number of designs that are derivative of one another by changing
the value of a. Since such designs are not different with respect
to rotatability, their measures of rotatability should be the
same. As for condition (iii), rotatability depends only on design
moments of order § » 1 and these remain invariant to the addition
of center points,

Three major steps are involved in the development of the
proposed measure of rotatability. Details of these three steps

are given below.

Step 1: The Reduction of All Design Moments to Scale-Free

Quantities

Let us denote by X(Z'g) the vector consisting of the elements

of Z’% which are located above the diagonal as well as those along
the diagonal. This vector is, therefore, of dimension

p* = p(p+1)/2, where p is the number of parameters in model

(2.3). 1Its elements are obtained by listing the elements in the
first row followed by those in the second row, etc., of the upper
triangular half of Z'Z' It can be shown that the element at the
(i,j)th location (j » i) in this upper triangular half is the ch

element of the vector v(Z'Z), where 2 = f(i,j) is the function

~




£(i,3) = (i-D)[p-(i/2)]} + 3, j » i. (2.4)
For example, for a second-order model of the form

E(Y) = Y& ¥ 2% Y,2)% Y52 2,% ¥ 24+ ¥,,75,

p =6, z(%'g) is of order 21xl, and the (3,5)th

element of Z'Z,
which is equal to the design moment (122), is the 14" element
of vw(Z'Z).

We note that the vector v(Z'Z) is scale depend=nt since it
depends on the value of a used in formula (2.1). To remove this
dependency, we divide each design moment of order § (6= 0,1,...,2d)

§

by 1°, where 1 is given by

G2y/e]Y 2,
1

T = (2.5)

3

W M=

that is, 1% is the average of all even design moments of order
2. We note that by the coding scheme described in (2.2), = =
al/z. This operation amounts to premultiplying x(g'g) by a
diagonal matrix, denoted by A, of order p* x p*. The diagonal
elements of A are in a one-to-one correspondence with the clements
of v(Z'2): 1If an element of v(Z2'Z) is a design moment of order
8§(6=0,1,...,2d), then the corresponding diagonal element of A is
equal to 1/16. Hence, the elements of the vector

u(z'z) = A v(z'D) (2.6)

are scale-free quantities.
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Step 2: The Introduction of a Canonical Representation of the
Z'Z Matrix for a Rotatable Design

If the design for model (2.3) is rotatable, then its design
moments of order 6(8= 0,1,...,2d) must have the special form
described in (1l.4). Hence, all the elements of X(g'g) corre-—
sponding to odd design moments should be equal to zero and all
those corresponding to even design moments must have the form

BGC(GI,SZ,...,Sk), where

k
I, 6. k
c(8,,8,,.00,6) = - kJ , L 8.= 8(8=0,2,...,2d). (2.7)
§/2 5 (5./7)1  j=17
2 jgl 3

Let Z denote the Z matrix when the design is rotatable. In this

~

case the vector v(Z'Z ) can be represented as

X(Z% ) =8 w + 0. w,+ ... + 80

~r~r 0~0 2~2 (2.8)

242 24°

where g6(6=0,2,...,2d) is a vector of order p*xl whose elements
are in a one—-to-one correspondence with the elenents of E(Eégr):
All those corresponding to design moments of order different from
§ and odd design moments of order 8§ are equal to zero, whereas
those corresponding to even design moments of order § have values
given by formule (2.7). In other words, Ws depends only on the
values of the Gj's which desipgnate the even design moments of
order 6§(8=0,2,...,2d) of a rotatable desiyn. From (2.7) we note

that the elements of wo are all zero except for the tirst element
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which is equal to one. Also, from (l.4) it can be seen that 8g =
n and that 8, = a by the coding scheme of formula (2.2). Hence,
by (2.5), 62 = 12,

Since the elements of the diagonal matrix A in (2.6) that
correspond to design moments of order § are equal to 1/15, then
from (2.6) and (2.8) the following canonical representation

of u(z'z ) can be obtained:

~r~r
d 2m
' =
E(ngr) z eZm me/T
n=0

d
= n g0+ 92+ b sz Yo (2.9)

m=2

where k, = ezm/rzm, or equivalently,

Kom = eZm/eg1 , m=2,3,...,d. (2.10)

Since 62m is a design moment of order 8= 2m as can be seen from
(1.4) by taking m of the Gj's equal to 2 and the remaining Gj's
equal to zero, the sz's in (2.10) are, therefore, scale free.
The parameters KgsKgrese,Koq Can be chosen by the experimenter
depending on whatever additional properties the rotatable design
is required to have. It is to be noted that the gzm's
(n=0,1,...,d) in (2.9) are pairwise orthogonal, that is,

gém Woov = 0 for m+# m'. This follows from the fact that all the
elements of w, are zero except for those corresponding to even

design moments of order 2m. For these latter elements, the

corresponding elements of Bom'> for m#¥m', must be zero by
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definition. Consequently, the vectors Wys Wereees Wy, SPan a .
(d-1)~-dimensional Euclidean space. Furthermore, since Kop ® 0 for

m=2,3,...,d, then

(2.11)

e
I
L =8

B m=2 “2m 22m
represents a vector in a closed couvex cone K in this Euclidean
space. By definition, a closed subset S of a Euclidean space is a
closed convex cone if for any vectors, %) and X0 in S and any

nonnegative scalars, A and X,, the vector A151+ A2§2 belcngs to

S. We shall refer to the cone K as the cone of rotatability.

Step 3: The Derivation of the Rotatability Measure

Let us now suppose that we have an n-point design, D, not
necessarily rotatable, for fitting model (2.3). As before, the
input variables are coded as in (2.2). The corresponding
vector E(Z'Z) in (2.6) can then be written as

B(Z'Z) = 0wyt ot w272, (2.12)

where Wy and w, are the same as in (2.9), which holds for a rotat-

-‘.
IR e

s s
DV N )

- able design having the same number, n, of runs. The elements

5, 4

< of u*(Z'Z) are equal to the corresponding elements of u(Z'Z)

~

Y

)
B

except for those that correspond to design moments of order § = 0
and even design moments of order § = 2, which are equal to zero.

To measure the rotatability ot the design ) it is necessary

to determine how well the vector u*(Z'Z) can be approximated with
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a vector v of the form given in (2.11). This is equivalent to

~

;ﬁ finding a vector v € K, the cone of rotatability described
,j earlier, that is closest (in terms of the Euclidean norm)
to u*(Z'Z). For this purpose the parameters Kps Kgaoeos Koy in
o (2.11) are chosen so that
2
s d )
. = * ¥ -—
Q. (D)= hu*(Z2'Z) Lok, w, (2.13)
m=2
: is minimum, where I+l denotes the Euclidean norm, or length, of a
~: vector. In Appendix A it is shown that the minimum value of Qn(D)
£ is given by the formula
: d
2 min[Q (D)] = Mu*(2'z)12 - T [u*'(2'2)w, ]?/1w, 12. (2.14)
'. n -~ ~o ~ ~~ ~ ~ o~ ~2m ~2m
- m=2
It is interesting to note that with Kom being given as in (A.3) in
. d
:j Appendix A, the vector mfz Kynlom 18 the projection of the
{‘ vector g*(g'g) on the cone of rotatability K. The square of the
- Euclidean norm of this projection is given by the absolute value
7
g of the second term on the right side of (2.]4) and represents the
:: portion of ug*(g'g)uz which can be attributed to rotatability.
H |
' Hence, as a measure of rotatability for the design D I choose the
- quantity
{‘
5 9,(D) = 100{nu*(z'2)12 ~ min[Q_(D)]}/iu*(z'20?
149 d
. = 100{ £ [u*"(2'2)w, ]2/1w, 012} /0u*(2'ZN2, (2.15)
iy n
]
' which represents the percent contribution of rotatability to the
& -12-
4
A
Fd
et o e N L e e
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magnitude of Ny*(2'Z)12. In other words, # (D) represents the
percent rotatability that is inherent in the design D. This is
analogous to the use of the coefficient of determination, R?, in
regression, which measures the proportion of the total variation
in the response that is caused by, or attributed to, the fitted
model. If D is rotatable, then 5*(%'%) must belong to the cone of
rotatability K, hence min[Qn(g)] = 0 and ¢ (D) = 100. A large
value of Qn(p) is, therefore, an indication that the design D is
near rotatable.

The measure of rotatability defined in (2.15) satisfies
conditions (i), (ii), and (iii) stated earlier in this section.
This follows from the fact that the vector u*(Z'Z) is scale free
and its elements depend on design moments of order two or higher,

hence they are unaffected by the addition of center points.

3. REPAIRING ROTATABILITY

The measure developed in Section 2 can be used effectively to
increase the percent rotatability of a nonrotatable design by
augmenting it with additional runs chosen appropriately. This is
particularly useful in situations where, because of technical
limitations, some of the input variables of a rotatable design are
set at levels different from those in the original design causing
it to become nonrotatable. Also, it frequently happens that a

rotatable design is purposely modified by the introduction of new

-13-~




runs in order to concentrate information in certain areas of
interest (see Littell and Mott 1974). This modification usually
results in loss of rotatability.

The choice of points to be added to a nonrotatable design to
increase its percent rotatability can be accomplished in a
sequential manner as follows: Let Q(O) denote a given
nonrotatable design consisting of n, experimental runs. For any

(0)

point, x, in the experimental region R, the design Bx

~

of the design Q(O) augmented with x. The percent rotatability

consists

o) . . (0) . . :
of 25 is given by Qn +1(Q§ ). A new design point, X)»s 1s now
added to B(O) to obtain the design EiO) « This new point is
~1
chosen by maximizing the percent rotatability of Qio) with respect
N . oy . 7 (1)
to x over R. For simplicity the design Qx is written as D .
~1
We thus have
(1)y _ (0)
0y (@) = maxls, ,(257)).

0 xeR 0

A second design point, X%,, is subsequently added to p(l) by
repeating the same process as above, but with Q(l) replacing
Q(O). Let 2(2) be the design consisting of D(]) augmented with

X2+ By continuing this process we obtain the sequence of designs,

(D, (@ | oD (1)

~

yeses is obtained from Q(i”l) by

ye+s, where D

augmenting it with x, (i=1,2,...).

(i

The percent rotatability associated with design D is

® (g(‘)), where n; = ng + i (i=0,1,...). In Appendix B it is
i

~14-
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shown that

(i) (i+1) .
e (") <o (D Y i=0,1,... (3.1)
i i+l

e -
1s

Inequality (3.1) implies that the sequence, {Qn (2(1))}i=0’

monotonically increasing. Since this sequence is bounded by 100
as can be seen from (2.13), it must coverge to 100 (see, for
example, Rudin 1976, p. 55), that is,

lim ¢n'(g(i)) = 100.

ise0 i
In Khuri (1985) it is further shown that (3.1) is in fact a strict
inequality.

The addition of new runs to increase the percent rotatability
is tantamount to “repairing” rotatability. Hebble and Mitchell
(1972) have indirectly done so by maximizing the determirant
|§'§| through design augmentation, where X is the matrix given in
(1.1). The reason rotatability can be partially restored by their
method is based on theoretical results by Wynn (1970) and Kiefer
(1961). More specifically, the method of Hebble and Mitchell
leads in the limit to a D-optimal design as was shown by Wynn

(1970). On the other hand, Kiefer (1961) showed that D-optimal

designs over a spherical region are rotatable.

4. EXAMPLES

Four numerical examples, 4.1 - 4.4, are presented in this

_l‘)__
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section in order to illustrate the applications of the measure of
rotatability. The purpose of example 4.1 is to demonstrate the
actual implementation of formula (2.15). Example 4.2 shows how
the measure can be used to compare designs on the basis of their
degrees of rotatability. Examples 4.3 and 4.4 serve to highlight
the utility of the measure in repairing rotatabiliiy with the

latter example describing an actual experimental situation.

Example 4.1

Consider fitting a second-order model of the {orm
= 2 2
E(y) = Bo* Byxp+ ByXp¥ Brox X+ By ™t Byp¥y (4.1)

h factor having the levels

using a 32 factorial design with the jt
-1,0,1(j=1,2). The coding described in (2.2) is already satisfied
with (j2) = 6(j=1,2). 1In this case a=6, d=2, k=2, and n=9. The
elements of the vectors v(Z'Z), u(Z'Z), u*(2'Z), Yoo 8o Wy

and the diagonal elements of the diagonal matrix A (see 2.6 and
2.12) are given in Table 1. The value of min[Qn(B)] in (2.14) is
.00555 and ¢n(2) in formula (2.15) is thus equal to 93.08. We

conclude that the 32 factorial design is 93.08% rotatable.

Example 4.2: Roquemore's (1976) Hybrid Designs

These designs were introduced by Roquemore (19/6) to emulate

~-16-
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certain characteristics of central composite or regular polyhedral
designs. They are economical and are supposed to be near rotat-
able. Roquemore constructed three 3-variable designs, labeled by
him as 310, 311A, and 311B, for a second-order model. These
designs are reproduced in Table 2. He pointed out that the 311A
design was the most nearly rotatable. This was based on observing
contour plots of prediction variance and on a comparison of the
values of the ratio (j%)/(j22?), j #&, with the value 3 (this
ratio must be equal to 3 in order for a design for a second-order
model to be rotatable as can be verified from 1.4). By applying
the measure of rotatability given in (2.15) it was found out that
the percent rotatability values for the 310, 311A, and 311B
designs were, respectively, 94.89, 99.40, and 98.99. This con-
firms Roquemore's assertion concerning the 311A design. It can
also be seen that all three designs have high percent rotatability
and that the 311B design is as nearly rotatable as the 311A
design. Design 311B was also reported as the most efficient of

the three designs with respect to both the D- and G-optimality

criteria.

This example clearly shows that in conjuction with other
measures of design efficiency, the rotatability measure can bhe
utilized to select a design that possesses several characteristics

of interest to the experimenter.
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Example 4.3: Hebble and Mitchell (1972, Example 1, p. 769)

A second-order model in two input variables is fitted using
the ten-point design Q(o) described in Table 3. This design was
originally planned as a rotatable central composite design with
two center points. The region of interest, R, is circular with

center at (0,0) and radius = 2. 1In terms of the coded variables,

zy and Zg, the model is written as

2 2
IS 2N AU LT PP MR SPLILP LI STLIURR PPLPAE

The percent rotatability of Q(O) according to formula (2.15)
is 80.65. This design was subsequently augmented with three
additional repair points, one at a time, to get the sequence of

designs, E(l), 2(2), and 2(3)

(i)

. As was described in Section 3, the
design D is obtained from the design D(iﬁl) by the addition of
the point X5 that maximizes ¢n (Bii_l)) with respect to % over the
region R(i=1,2,3). The maximi;at;on of ¢ was carried out by using
SEARCH, a computer program written by Conlon (1979) and is based
on the controlled random search procedure introduced by Price
(1977). The optimal locations of the additional three points and
the corresponding percent rotatability of the ensuing designs,

Q(l), Q(Z), and 9(3), are given in Table 4. Note that the first

two points cause a sizable increase in the percent rotatability

beyond the value 80.65 for the intitial design p0)+ A total of

_18_
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less than six seconds of CPU time was needed to locate the
additional three points.

(2) (3)

, and D ’

For each of the four designs, Q(O), 2(1), D
contour plots of var[;’(g)]/c2 were drawn within a region in the
space of the coded variables which corresponds to R, where o2 is
the random error variance and z = (21’22)" These plots are shown
in Figure 1. It can be clearly seen that the addition of the
optimal three runs has caused the variance contours to have a much
more circular appearance, particularly in the the case of run

13. This demonstrates the usefulness of the proposed measure as

an effective tool to rectify nonrotatability.

Example 4.4

A company manufactures a liquid material for coating
automobile window glass which when dried provides a barrier to
ultraviolet rays and also reduces glare from the sun. The coating
liquid consists of water combined with three active solid
ingredients: a polymer (P), a coupling agent (CA), and a
lubricant (L). A film is formed by passing the liquid through an
extruder, oven drying it and then placing it on a roller.

An experiment is to be conducted consisting of several
different combinations of the amounts of P, CA, and I. with a fixcd
amount of water. The objective of the experiment is to determine

the combination of P, CA, and I that is most effective in terms of

_l()__




reducing light penetration. Light penetration is measured by
taking a bright colored cloth affixed to the coated glass and
exposing it to light for a fixed period of time. T7he color of the
cloth is then compared to that of an unexposed piece of cloth of
the same color and recording the degree of fading that has
occurred. A low percent fade value is considered to be desirable.

In making up the combinations of water, polymer (P), coupling

«
«x’ad

agent (CA), and lubricant (L) to produce the different coatings, a

>
»“a

U ".;‘ a A ‘4_ .4‘ :
g

4@
.
B aF

central composite rotatable design in P, CA, and L is set up.

Listed in Table 5 are the amounts (in grams) of P, CA, and L to be

o
s
s s

PURTRT

combined with 2500 ml of water. The following transformation was
applied so that the desing settings in the factorial portion have

the familiar *1 values:

. . P=250 _ CA-22.5
1 25 %) 2.5 °

The design settings in terms of values of Xp, X9, and x4 are

displayed in Table 6.

In this experiment, high ratios of the total amount of the
active solid ingredients to water are considered undesirable
because of problems with solubility. For the amount of water used
(2500 ml), it was determined that a total of more than 305 gm of
solid ingredients would be undesirable. From Table 5 we note that
design points No. 8 and 1C fall in that category. Their settings

had to be reduced to conform to the 305 upper bound constraint.
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The experimenter chose to reduce the levels of P for these points

from 275 and 292.05 to 262 and 275, respectively. The levels of
CA and L were not altered. The total amounts of active solid
ingredients for these two points are now 297 and 305 gm
respectively. The design settings in terms of values of X1 X9,
and Xq for the resulting design are given in Table 6. The
corresponding percent rotatability value is 81.69, a drop of
18.31% from the original central composite design. This clearly
demonstrates the impact that this change of design settings has
had on rotatability.

To recover the loss of rotatability, repair points were added
to the central composite design with points No. 8 and 10 modified
as was described earlier. The experimental region in the space of
the x;, x,, and X3 variables is a sphere of radius V3 centered at
the origin. The first optimal point selected by the computer
program SEARCH is shown in Table 6 as point No. 17. The
corresponding total of P, CA, and L is 256.77 gm, which does not
exceed the 305 limit. This point is therefore considered
admissible. The percent rotatability value for the resulting 17-
point design is 88.79. This represents a relative percent
increase in rotatability of about 8.7. The sccond point selected
by SEARCH increased the rotatability value to 95.31%. However, at
this point X = 1.617, x,, = 120, and x, = .119, which results in

2 3

a total of 321.023 gm of solid ingredients. The point is
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inadmissible and was subsequently dropped. For the next point,
the optimization was restricted to a smaller region, namely, a
sphere of radius V.98 centered at the origin. The optimal point
(No. 18 in Table 6) selected by SEARCH in this region was
admissible with a corresponding total of 304.9 gm of solid
ingredients. With the addition of the latter point, the
rotatability value increased to 90.83%. At this stage, the
sequential procedure was terminated. It was felt that additional
points inside the smaller region would only produce marginal
increases in the percent rotatability. To rapidly restore
rotatability, SEARCH should be allowed to operate near the
periphery of the experimental region (with radius equal to /3 ).
In this example, however, this can lead to inadmissible points as
was seen earlier.

5. CONCLUDING REMARKS

When a design is nonrotatable, it may be of interest to
assess the extent of its departure from rotatability. This can be
particularly useful in situations where a design is required to
possess several desirable characteristics, including rotatability.
It is important here not tc confuse priorities when considering a
choice of a response surface design. The introduction of the
rotatability measure does not mean that rotatability should be
emphasized at the expense of other design criteria. On the

contrary, the variance and bias desipgn criteria, for example, can

_ 2 2 —
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be by far more important. Only after these criteria (or perhaps
others that may be of interest to the experimenter) have been
fully pursued might one consider rotatability. In fact,
rotatability may sometimes be compromised in favor of other
desirable design features.

The measure of rotatability introduced in this paper gives
the experimenter greater freedom and flexibility in selecting from
a pool of efficient designs those that have high percent rotat-
ability. These designs can be made even more rotatable, if
necessary, by proper addition of design points as was shown in
Section 3. Certainly, this action will not reduce the efficiency

of the augmented designs.
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APPENDIX A: THE DERIVATION OF FORMULA (2.14)

The w vectors that appear in formula (2.9) are pairwise

2m

orthogonal. Formula (2.13) can therefore be written as

d d
= * 1 ' - % * AP
QD) = [ur(2'®) - I o« e Huk(Z'D)- oy eyl
m=2 n=2
d
= *1 ' 2_ *1 1
u*'(Z'2)0%= 2 1k, wxN(Z' e,
m=2
d
+ 2 2, R
E sz "£2m" (A.1)
m=2
By differentiating Q,(R) with respect to sz(m=2,.‘.,d) and
equating the derivatives to zero we get
3Q, (D) )
— - LA ! = =
e 2u*'(Z 5)£2m+ ZKZmngm“ 0, m=2,3,...,d. (A.2)
2m
By solving for Kom We obtain
Kom = *'(2'2) sz/" gzng, n=2,3,.0..,d. (A.3)

The solution (A.3) satisfies the constraint «, > 0 (m=2,3,...,d)
since 2*'(5'Z)gzm > 0 for m»=2,3,...,d. This follows because
5*'(5‘%)%2m is a positive linear combination of the even design
moments of order § = 2m (m=2,3,...,d) for the design D. It is
easy to verify that the solution (A.3) represents an absolute

minimum that has the value

d
min[Qn(B)] = Iu*(2'Z2)12 - mgz[g*'(g'é)gzm]zlngzmlz. (A.4)
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APPENDIX B: PROOF OF INEQUALITY (3.1)

Let x(ig denote the uth level of the jth input variable for

the design Q(l) (i=0,1,¢0¢; 3=1,2,...,k; u=l,2,...,ni). Let

;‘l)= Z x(l)/n (j=1,2,.4.,k). The center of this design is the
J u=1
point E(l) (_ﬁl) _él),...,—il)) . By condition (iii) in Section

2, the addition of this point to Q(l) will not alter its measure

of rotatability, that is,

° (N(j%l)) = on.(g(l)), 1=0,1,000 . (B.1)
i+l i

~

Now, since

(i+1)
® D )
“i+1("

= maxy [¢n l(g(i))], 1=0,1,.000 (B.2)
~ i+ ~

then from (B.1) and (B.2) we obtain

. .
) (D(l)) <% (D(1 1)), i=0,1,000 . (B.3)
n ~ n ~
i i+l
- 2 f) -
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Table l. The Elements of the Vectors v(Z'Z), u(Z2'Z), u*(2'%Z),

By Wos By and the Diagonal Elements of the Matrix A for

the 32 Factorial Design (Example 4.1)

<
~

AN

UN
~

A w(z'n) e

e
e

OSOOO’-‘OOOO-—-D—‘)—-OOO\D

O O O O O O O O O O O © o o ©

O © O © O O O 0O O O 0O O O 0 O O O © O O ~
O © O O O O © O o = O O O O m rm™ m~m O O O ©
w = w O O =~ O O O O O O O O O O oo o oo o o

9
0
0
0
6
6
6
0
0
0
0
6
0
0
0
4
0
0
6
4
6
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) Table 2. Roquemore's (1976) Three-Variable
':ﬁ Hybrid Designs (Example 4.2)%

NG
£s 310 311A 311B

3} X) X2 X3 X] X2 X3 X] X2 X3
- |

e

% 0 0 1.2906 | 0 0 2 | o 0 6l/2
o, 0 0 -.136 | 0 0 -2 | o 0o -¢l/2
oo -1 -1 .e386 | -21/2 212y | _i7507  2.1063 1
(] 1 1 .e386 | 27 oM/2 0y 12,1063 L7507 1

-1 1 .e386 | -21/2 LMz 7507 =-2.1063 1

s 1 1 .6386 | 21/2 Y2 1 i-2.1063 -.7507 1
N 1.1736 0 =-.9273 2 0 -1 .7507  2.1063 -1

A
"y -1.1736 0 -.9273 | -2 0 -1 2.1063 -.7507 -1
)
5 0 1.1736 -.9273 | 0 2 -1 -.7507 -2.1063 -1
4'_‘;
L 0 -1.1736 -.9273 0 -2 -1 |-2.1063 .7507 -1
-
K A
M o
LA 0 0 0 0 0 0
o

\(

ﬁs * The first digit in a design title is the number of variables,
4\\'

o the next two digits are the number of points. A letter
ﬂ;: differentiates designs of the same size.
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Table 4. Repair Points and Percent Rotatability Values

g o

for the Corresponding Augmented Designs for Example 4.3

* .
e 4 S A

(The Initial Design is Given in Table 3 and has a

o
Kd
.

Percent Rotatability Value of 80.65)

NX Run 3 Xy Augmented Design % Rotatabilitv Increase in

No. Z Rotatability

0)

Voo 11 -.1188 -1.8593 0= p(®) pyyg 89.99 9.34

’~j Run No. 11

o 12 -.8295 0091 p{Z= (1) piys 96.47 15.82

Run No. 12

:*j
3 13 -.1450  -.2764 D= () piye 97.03 16.38

Run No. 13

f#%ﬁ'
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N ‘n'
.
s
":-
-] Table 5. The Actual Levels (in grams) of P, CA, and L to be .
AN
- Combined with 2500 ml of Water for the Central
:—: Composite Rotatable Design of Example 4.4
» .l
.‘\l
.-:::: Run No. P ca L Total Amount of
T Active Solids
O
‘_
1 225.0 20.0 5.0 250.0
o 2 275.0 20.0 5.0 300.0
(-2 3 225.0 25.0 5.0 255.0
g 4 275.0 25.0 5.0 305.0
O
e 5 225.0 20.0 10.0 255.0
N 6 275.0 20.0 10.0 305.0
SR 7 225.0 25.0 10.0 260.0
’ 8 275.0 25.0 10.0 310.0% !
2 9 207.95 22.5 7.5 237.95
It 10 292.05 22.5 7.5 322.05%
J 11 250.0 18.295 7.5 275.795
W 12 250.0 26,705 7.5 284.205
&
i. %
k)
;. 13 250.0 22.5 3.295 275.795
)
i £ 14 250.0 22.5 11.705 284.205
b 15 250.0 22.5 7.5 280.0
N 16 250.0 22.5 7.5 280.0
o
Fu e,
i *The total exceeds 305 gm.
..h,:
'y
-r:: -30-
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TABLE 6.

The Rotatable Central Composite Design Under the Coding
of Eqs. (4.2), the Design Settings for the Modified
Design with the Additional Repair Points, and the

Corresponding Rotatability Values (Example 4.4)

Rotatable Central Modified Central
Run No. Composite Design Composite Design % Rotatability

X1 X2 X3 1 %2 X3

1 -1 -1 -1 -1 -1 -1

2 1 -1 -1 1 -1 -1

3 -1 1 -1 -1 1 -1

4 1 1 -1 1 1 -1

5 -1 -1 1 -1 -1 1

6 1 -1 i 1 -1 1

7 -1 1 1 -1 1 1

8 1 1 1 .48 1 1

9 -1.682 O 0 -1.682 0 0

10 1.682 0 0 1 0 0

11 0 -1.682 0 -1.682 0

12 0 1.682 0 0 1.682 O

13 0 0 -1.682 ¢ 0 -1.682

14 0 0 1.682 O 0 1.682

15 0 0 0 0 0

16 0 0 0 10 0 0 81.69

17% ~.828 -.506 -.506 88.79

18* | «966 . 151 .151 90.83

*Repair points
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