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1. INTRODUCTION

Fatigue crack growth behavior under variable-amplitude loading is

increasingly being used in the selection of materials for aircraft structures

and their design, particularly for fatigue-critical structures. This is
supplanting the selection of materials based on constant-amplitude fatigue

crack growth resistance because the life of an aircraft structure cannot be

predicted reliably using constant-amplitude fatigue crack growth data and

existing life prediction techniques. Research in the last decade ( 1 - 1 2 ) has
shown that load sequences have a considerable effect on fatigue crack propa-

gation (FCP) behavior. In particular, the application of overloads or a few
cycles at high tensile loads may cause retardation, that is, a temporary

decrease in fatigue crack growth rate during subsequent lower amplitude

cycles. Most of the work in the last decade was focused on understanding

the effects of single overloads on fatigue crack growth rates. (1-10) Recently

more emphasis is being placed upon the evaluation of fatigue crack growth

under complex spectrum loading ( 1 1- 1 4 ) simulating the loading experienced by

aircraft structures.

The nature of a spectrum can vary widely depending on a particular
component and type of aircraft. Depending on the specific details of load

spectrums, FCP resistance for a given mateial also can vary widely. The

reasons for differences in FCP resistance for the same material in different
spectrums are generally unknown, since the load spectrums are complex and

the interactions between alloy microstructure and variable-amplitude load

histories are not well understood.

Research in the last decade ( 1 - 4 ,15 - 19) on high-strength aluminum alloys
has identified several metallurgical factors which influence FCP resistance for
constant-amplitude loading: alloy purity (Fe, SI content), temper, alloy con-

tent (e.g., Cu content), and dispersoid type (e.g., Al 12 Mg 2 Cr in 7075 vs.
Al 3 Zr in 7050). However, the influence of these microstructural features

1
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on crack growth is not the same at intermediate and high growth rates,

>10-8 m/cycle (4xl0-7 in./cycle) as it is at near-threshold rates,<10- 8m/cycle.
For example, overaging from a T6 temper to a T7 temper reduces FCP rates

by a factor of two at intermediate stress intensities (AK) but can increase

crack growth rates by a factor of ten at low AK. These studies demonstrate

that different microstructural features control constant-amplitude FCP be-

havior at different AK values. Details of these microstructural'FCP behavior

relationships will be addressed in Subsection 3.6 of this report.

The same level of understanding regarding microstructural effects on

FCP under variable-amplitude loading does not exist. Whereas constant-

amplitude loading characterizes the steady state FCP response of an alloy,

FCP under variable-amplitude loading includes transient material responses not

present in constant-amplitude FCP. Therefore, the understanding of micro-

structural effects on constant-amplitude FCP behavior is not sufficient to
rationalize spectrum fatigue performance. In particular, the ability of an

alloy to retard crack growth following a tensile overload is an important

transient characteristic for assessing FCP life. However, since the present

knowledge regarding the effect of microstructure on the retardation behavior

of aluminum alloys is limited to studies involving simple overload spectrums,
the results under complex spectrum loading at present cannot be understood.

Several mechanisms have been proposed to explain the observed retar-

dation behavior following simple overloads. These include residual com-

pressive stresses at the crack tip, (20,21) crack closure, ( 2 2- 2 4 ) changes in
the crack-tip plastic zone size, ( 1,20,25) crack blunting, ( 1,26) or combinations

of these. A number of empirical models, based on either the crack clo-

sure (22,23) or plastic zone size (20,21) concepts, have been proposed that

quantitatively take retardation into account in predicting FCP behavior.

* , . These models achieve satisfactory results only under certain specified con-

ditions. However, when the test conditions are changed or broadened to in-

clude additional variables such as those existing in real spectrums, the models

usually fail to predict observed crack growth lives.

The major weakness of all of these models is that they do not take into

account either the metallurgical or the environmental factors that influence
FCP. For instance, the Willenborg model predicts that materials with the

A . . . .,



same yield strength will exhibit similar retardation behavior. (20) Chanani (1 )

found that this was not the case for 2024-T8 and 7075-T73 heat treated to the

same yield strength. He concluded that metallurgical variables such as pre-

cipitate morphology, dislocation interactions, and cyclic hardening exponent,
have to be taken into account to explain the differences between the crack

growth rates. Sanders, et al., (2) had identified microstructural features

such as precipitate morphology, intermetallic constituent particles, and

dispersoid size as influencing FCP. Improved analytical life prediction

capabilities would result if microstructure/load history Interactions for

spectrum FCP are understood and incorporated in such models.

The objectives of the multiphase NAVAIR program (N00019-80-C-

0427,(27) N00019-81-C-0550, ( 2 8 ) and N00019-82-C-0425) are to perform a

detailed metallurgical investigation of fatigue behavior and to simplify complex
load histories. These spectrums will be representative of certain classes of

applications and will provide information for development of fatigue-resistant

alloys. As a major part of this effort, attention will be given to identifying
metallurgical factors in high-strength aluminum alloys which control FCP

behavior under spectrum loading. This knowledge of load history/micro-

structure interactions is essential to the development of criteria by which

complex load histories can be standardized and simplified for materials

evaluation.

The development of standardized and/or simplified load spectrums offers

several advantages in characterizing the fatigue performance of engineering

materials and designing fatigue resistant alloys. It is presently not cost-

effective to develop alloys for high resistance to FCP under spectrum loading,
since a wide variety of load histories must be considered. If a small number

of standardized spectrums existed, more meaningful tests which consider
spectrum loading could be included in alloy development /selection programs.

Standardized load spectrums also would provide a common data base for com-

parisons of fatigue performance among various materials. The two spectrums

in the program were simplified by eliminating half of the cycles and by elim-
inating the compression cycles. Selected existing life prediction tools were

evaluated, and the potential of incorporating metallurgical factors in these
models were examined.
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This report describes the work completed in Phase III of this program

and includes pertinent results from Phases 1(27) and 11(28) for completeness.

Twelve commercial 2XXX and 7XXX aluminum alloys (Figure 1) were chosen

for analysis so that the influence of both purity and temper on FCP could be

evaluated. In Phases I and II, 10 of the alloys were evaluated; and in Phase

III, two additional alloys were evaluated. The results on the 12

commercial 2XXX and 7XXX aluminum alloys are presented in Volume I of this

report. The 12 alloys have been characterized with respect to chemical com-

position, microstructure, tensile properties, and fracture toughness. FCP

tests were conducted on specimens of each of the 12 alloys for both constant-

amplitude loading (including the low AK region) and two F-18 load spectrums.

One F-18 load spectrum is a tension-dominated spectrum representing the

lower wing root load history, and the other is a tension-compression spectrum

representing the horizontal tail hinge moment load history. In the spectrum

testing, one primary stress level was used for FCGR testing, while two other

stress levels were used to obtain data at the low and high ends of the crack

growth range. Fractographic examination of the spectrum fatigue specimens

was used to document pertinent fracture features for each alloy. Six AI-Li

alloys with systematically controlled microstructures were also evaluated in

this program and the results are described in Volume II of this report.

The results of the tests performed using modified spectrums are also

described in this report. Two different types of modifications were performed

independently on the baseline spectrums. One modification had two goals: (1)

to eliminate low-amplitude cycles to reduce testing time without changing the

ranking (relative life) of the alloys, and (2) to determine the importance of

low-amplitude cycles on the overall spectrum life. The second modification

was made to determine the importance of compression cycles. Eight alloys

(marked with + in Figure 1) were chosen for spectrum fatigue testing using

the modified spectrums. These eight alloys were chosen from the 2XXX and

7XXX aluminum alloys so that the Influences of purity, temper, and different

alloy approaches were represented.

This report is written as an addendum to the Phase II Report. ( 28 ) In

this phase two alloys were added to the original ten. The two alloys added

were 2124-T351 and 7150-T6E189. The ten alloys previously evaluated were

4



INVESTIGATION OF FATIGUE CRACK GROWTH OF
ALUMINUM ALLOYS UNDER SPECTRUM LOADING

MATERIALS

PREVIOUS PROGRAMS* CURRENT PROGRAM**

2020-T651 + 2124-T351
2024-T351 + 7150-T6E189
2024-151 +
2124-T851 SPECIAL HEATS WITH SELECTED
2324-T39 MICROSTRUCTURES
7060-T7451 +
7075-T651 +
7075-T7351 +
7475-1651 +
7475-T7351 +

SPECIFIC COMPARISONS

" ALLOY PURITY (FRACTURE TOUGHNESS)
7075 vs 7475 and 2024 vs 2124

" PRECIPITATE STRUCTURE (TEMPER)
2024-T351 vs T851, 2124-T351 vs T851, 7075-T651 vs T735, and 7475-T651 vs T7351

* GRAIN SIZE
RST (FINE) vs I/M (COARSE)"* and SYSTEMATICALLY CONTROLLED
MICROSTRUCTURES***

* EXISTING ALLOYS vs NEW ALLOYS and APPROACHES
7XXX vs CW67 RST**** and 7150, and 2XXX vs 2324 and Al-Li (SYSTEMATICALLY

CONTROLLED MICROSTRUCTURES)**"

GENERAL COMPARISONS

* MICROSTRUCTURE

* TENSILE

* FRACTURE TOUGHNESS

" CONSTANT-AMPLITUDE FATIGUE-CRACK GROWTH

LOAD HISTORY

* TWO F-18 SPECTRA (TENSION-DOMINATED and TENSION-COMPRESSION)

* THREE STRESS LEVELS

" MODIFICATIONS OF THE F-18 SPECTRUMS

* CRITICAL EXPERIMENTS'"

SPECTRUM TEST SPECIMEN

e CENTER CRACKED PANEL -6mm THICK X 100mm WIDE

o L-T ORIENTATION

SPECTRUM LIFE PREDICTIONS"

*PREVIOUS PROGRAMS, CONTRACT NOS. N00019-80-C-0427 and N00019-81-C-0550

"CURRENT PROGRAM, CONTRACT NO. N00019-82-C-0425
CURRENT PROGRAM, SEPARATE REPORT

"FUTURE PLANNED EFFORT
+MATERIALS TESTED WITH MODIFIED SPECTRUMS

FIGURE 1. PROGRAM OUTLINE
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2020-T651, 2024-T351, 2024-T851, 2124-T851, 2324-T39, 7050-T7451, 7075-

T651, 7075-T7351, 7475-T651, and 7475-T7351.

In this report the new data are given in detail and most figures and

tables from the Phase II report ( 2 8 ) are updated to include the new informa-

tion. A limited number of copies of that report are available on request. A

summary of that work is also published in "Advances in Fracture Research -

Proceedings of the Sixth International Conference on Fracture. " (30,31)
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2. EXPERIMENTAL PROCEDURE

All procedures and spectrums were identical to those used in Phase II

and described in Reference 28. Note that the designation of 7050-T73651 has

been changed to 7050-T7451 to reflect the change made by the Aluminum

Association.
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3. RESULTS AND DISCUSSION

The results for 2124-T351 and 7150-T6E189 are presented with sum-

maries for all 12 alloys. Discussion is primarily limited to differences in

results from those found in Phase II.

3.1 CHEMISTRY

The chemical composition of all 12 alloys are listed in Table 1 along with

the commercial limits for each. All 12 alloys are within the appropriate com-

position limits.

3.2 MICROSTRUCTURAL EVALUATION

Alloys 2124-T351 and 7150-T6E189 are variants of commercial alloys

examined in Phases I and II of this contract; as such, there are few micro-

structural distinctions between these two alloys and those studied previously.

Alloy 2124-T351 is a high-purity, naturally aged variant of 2024. The as-

polished microstructure (Figure 2a) indicates the distribution of constituent

phases, which include insoluble A11 2 (Fe,Mn) 3 Si and Al 7 Cu2 Fe particles, and

partially soluble Mg2Si and Al 2 CuMg phases. The volume fraction of these

constituents is substantially lower than in 2024, owing to the lower Fe plus Si

content in 2124. As is the case in other 2X24 alloys, the grain morphology is

a coarse, recrystallized structure (Figure 2b).

Alloy 7150 is a minor compositional variant of 7050 developed jointly by

Alcoa and Boeing for maximum strength. The T6E189 temper is an Alcoa-

designed practice which provides improved exfoliation resistance over the ori-

ginal T651 temper without sacrificing either strength or SCC resistance. Like

2124, 7150 has low Fe plus Si content and relatively small volume fractions of

constituents (Figure 3a). As for other 7XXX alloys, these constituents in-

clude Al 7 Cu 2Fe, Mg2 Si, and Al2 CuMg. The grain structure of 7X50 alloys

generally exhibits a low degree of recrystallization, as in Figure 3b; this

9
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structure is maintained by Al 3 Zr dispersoids, which are finely distributed

throughout the microstructure and are too small to be seen optically.

The fine microstructural features (optically unresolvable) of 2124-T351

and 7150-T6E189 are analogous, respectively, to those of 2124-T351 and 7050-
T7451; these were discussed in the previous reports. ( 2 7 ' 28)

3.3 TENSILE AND FRACTURE TOUGHNESS RESULTS

The tensile and fracture toughness results for 2124-T351 and 7150-

T6E189 are given in Tables 2 and 3. Alloy 7150-T6E189 is the strongest alloy

evaluated in the program with both the highest ultimate and yield strengths.

The 12 alloys are compared in Figure 4. Note that the toughness value for

2124-T351 Is not valid per ASTM E399 nor meaningful per ASTM B646.

3.4 FATIGUE CRACK GROWTH RESULTS UNDER CONSTANT-AMPLITUDE

LOADING

Fatigue crack growth data were generated for all alloys from near-

threshold (AKth) through intermediate AK values, with measured near-

threshold FCG rates approaching 10- 10 m/cycle (4 x 10- 9 in./cycle). The
FCGR data for the two alloys evaluated In this phase are presented in Fig-

ures A-1 and A-2 in Appendix A. In Figure 5, the da/dN versus AK curves

for all 12 alloys are shown. In addition, the FCGR data are shown in Fig-

ure 6 and Table 4 as the stress intensity required to drive a fatigue crack at

a specified rate. In Figure 6 the results are grouped into 2000 and 7000

series and, within the groups, are in descending order of their spectrum

fatigue lives (Subsection 3.5).

3.5 SPECTRUM TEST RESULTS

The spectrum life results for each test are presented In Table 5.

Overall, the results were reproducible, with the maximum difference between

the lives of duplicate tests being 22 percent. Crack length versus simulated

flight hour data (a versus H) are shown graphically in Appendix B, while

results for spectrum crack growth rate versus maximum peak stress intensity

(da/dH versus Khmax) are shown in Appendix C. For comparison, spectrum

crack growth rate curves (da/dH versus Khmax) for all 12 materials are

13



TABLE 2. TENSILE RESULTS - LONGITUDINAL

MATERIAL SPECIMEN ULTIMATE YIELD ELONGATION REDUCTION
PLATE THICKNESS LOCATIONab STRENGTH STRENGTH IN 4D OF AREA

mm (in.) MPa (ksi) MPa (ksi) %b

2124-T351 T/4 471(68) 370(54) 23 26
25.4(1.0) T/2 462(67) 359(52) 22 26

T/2 462(67) 358(52) 23 30
3T/4 469(68) 369(54) 23 25

AVERAGE 466(68) 364(53) 22 27
AVG T/4,3T/4 470(68) 369(54) 23 26

7150-T6E189 T/4 631(91) 585(85) 12 22
25.4 (1.0) T/2 628(91) 581(84) 11 18

T/2 628(91) 581(84) 11 18
3T/4 635(92) 585(85) 12 18

AVERAGE 631(91) 584(85) 12 20
AVG T/4, 3T/4 633(92) 585(85) 12 20

a SPECIMENS TAKEN FROM THE T/2 LOCATION ARE FROM THE CENTER OF THE PLATE THICKNESS
AND THOSE FROM THE T/4 AND 3T/4 ARE FROM MIDWAY BETWEEN THE CENTER AND THE TOP
SURFACE OR BOTTOM SURFACE, RESPECTIVELY

b THE NOMINAL DIAMETER OF THE REDUCED-SECTION OF T/2 SPECIMENS WAS 12.7MM AND T/4
AND 3T/4 SPECIMENS WAS 6.4MM

TABLE 3. FRACTURE TOUGHNESS RESULTS, L-T ORIENTATION

ALLOY PLATE SPECIMEN Ka VALID KIC AVERAGE VALID KIC
AND THICKNESS THICKNESS MPa \'w PER OR MEANINGFUL KO

TEMPER mm (in.) mm (ksi \ in.) ASTM E399 MPa - m (ksi - in.)

2124-T351 25.4(1.0) 25.4 50(46) NOa

45(41) NOa

7150-T6E189 25.411.0) 25.4 30(27) YES 31(28)
S1132(29) YES

a TEST INVALID PER ASTM E399 DUE TO INSUFFICIENT THICKNESS AND FATIGUE CRACK LENGTH,
AND PMAXfPQ >1.10

14
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shown in Figure 7. For easier comparison of resistance to spectrum crack

growth among all 12 materials for both spectrums, the maximum peak stress

intensities to obtain a given crack-growth rate are shown in Figure 8 and

Table 6 in presentations similar to those for the constant-amplitude data in

Figure 6 and Table 4.

The alloys are ranked by their spectrum fatigue lives for each spectrum

(average of the two duplicate tests) in Table 7 and in Figure 9.

The relationship between spectrum fatigue lives and yield strength and

fracture toughness is shown in Figures 10 and 11, respectively.

All alloys were evaluated at two other maximum peak stresses, 103 MPa

(15 ksi) and 169 MPa (24.5 ksi). As described in the Phase II report, ( 2 8 )

two test procedures were used. Results are presented in Table 8 and Fig-

ure 12 for the five alloys evaluated in Phases II and III from a crack length

of 6 mm to failure.

The spectrum fatigue results for 7475-T651 were unusual in comparison

to the other alloys. The notable differences were that (1) the life for the

7475-T651 with lower toughness was longer than for 7475-T351, and (2) that

the spectrum FCG rates were faster than all other alloys at the lowest maxi-

mum peak stress intensities (Figure 7) and were slower at the higher maxi-

mum peak stress intensities. To evaluate a second lot of material was beyond

the scope of the program. Therefore, at their own expense, Northrop and

Alcoa evaluated a second lot of 7475-T651 to determine whether this behavior

was repeatable. The results and discussion of this evaluation are presented

in Appendix E. The behavior of the second lot confirmed the results for the

first lot evaluated in Phase I.

3.6 FRACTOGRAPHIC EXAMINATION OF SPECTRUM FATIGUE SPECIMENS

As noted in Subsection 3.2, the microstructures of 2124-T351 and 7150-

T6E189 are similar to those of 2024-T351 and 7050-T7451, respectively. The

spectrum fatigue data also show a great deal of similarity between 2024 and

2124, and between 7050 and 7150. It would be expected, therefore, that the

fatigue fracture surfaces for these pairs of alloys should be similar as well;

this is, in fact, what is observed. As has been done in Phases I and II, the

specimens were examined primarily at crack lengths of 6 and 19 mm (0.25 and
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TABLE 7. RANKING OF MATERIALS UNDER SPECTRUM LOADING - BASELINE SPECTRUMS

AVERAGES OF TWO TESTS ROUNDED TO NEAREST HUNDRED HOURS

a. 0 hmax =1O3MPaFROMa=6TO13mm

TD SPECTRUM TC SPECTRUM

MAEILSIMULATED MAEILSIMULATED
MAERALFLIGHT HOURS MAEILFLIGHT HOURS

2020-T651 78,400a 2020-T651 54,900a
2124-T351 33,1 08 2124-T351 25,5008
2324-T39 291oa2324-T39 24,600
2024-T351 27,200 2024-T351 24,300a
7050-T7451 18,800 2024-T851 18,100
2024-T851 18,800 7050-T7451 17,800
7475-T7351 18,600 7475-T7351 17,000
7075-T7351 17,300 7075-T7351 16,600
2124-T851 17,300 7475-T651 16,100
7475-T651 15,400, 2124-T851 15,700
7075-T651 14,800a 7075-T651 13,900a
7150-T6E189 13,300a 7150-T6E189 13,300a

b. a hmax =145 MPa FROM a=6mm TO FAILURE

TD SPECTRUM TC SPECTRUM

MAEILSIMULATED MAEILSIMULATED
MAERALFLIGHT HOURS MAEILFLIGHT HOURS

2124-T351 25,600 2124-T351 19,200
2024-T351 22,100 2024-T351 15,400
7475-T651 19,000 7475-T651 14,900
2020-T651 18,500 2324-T39 14,400
2324-T39 17,800 7475-T7351 13,400
7475-T7351 15,000 7050-T7451 13,200
7050-T7451 14.900 2020-T651 13,100
7150-T6E189 13,000 7150-T6E189 11,300
7075-T7351 12,900 7075-T7351 10,700
2124-T851 11,200 2124-T851 9,100
7075-7651 10,800 7075-T651 8,900
2024-T851 8,500 2024-T851 7,100

c. 0 hmax =169 MPa FROM a =18 mm TO FAILURE

TD SPECTRUM TC SPECTRUM

MATERIAL SIMULATED MATERIAL SIMULATED
__________ FLIGHT HOURS _________ FLIGHT HOURS

2124-7351 4,3008 7475-T651 2,600
7475-T651 3,400 7475-T7351 2,200
7475-T7351 2,800 2124-T351 2,2008
2324-T39 2,400a 7050-T7451 1,700
2024-T351 2,400 2124-T851 1,200
7050-T7451 2,400 2324-T39 1,200a
7075-T7351 1,400 2024-T351 1,100
7150-T6E189 1,1008 7075-T7351 800
2124-T851 800 7150-T6E189 6008

7075-T651 7008 7075-T651 0a
2024-T851 200 ab2024-T851 0a
2020-T651 0a 2020-T651 0a

a ONE TEST RESULT

b SPECIMEN FRACTURED BEFORE REACHING INITIAL CRACK LENGTH
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TABLE 8. SPECTRUM FATIGUE LIVES AT 103 MPa AND 169 MP&
FOR a'FROM 6MM (0.24 IN.) TO FAILURE

SIMULATED FLIGHT HOURS, H
MAXIMUM PEAK STRESS 103 MPs (15 ksi) 169 MPa (24.5 ksi)

Ohmax ______

SPECTRUM TD Tc TD TC
MATERIAL
2020-T651 83,910 80,963 6,217 3,636
2124-T351 64,275 50.607 17,530 11,662
2324-T39 53,738 42,939 11,862 8,261
7075-T651 27,341 25,268 6,333 4,612
7150-T6E189 21,281 27,760 7,349 7,520
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0.75 in.). The shorter position represents the very lowest Khmax value in
the spectrum test, while the other position is the longest crack length

(highest Khmax) consistently attained for all alloys, regardless of toughness.

For 2124-T351, the fatigue fracture mechanism for both the TD and TC
spectrums at all crack lengths consists predominantly of ductile "striation"

formation, though it is not clear that these striations correspond to individual

load excursions in the spectrums (Figures 13 through 16). Very little evi-

dence of void coalescence at constituent particles is seen for the TD spec-

trum, even at 19 mm, as shown in Figures 13 and 14. Limited void growth is

evident for the TC spectrum at the longer crack length, Figure 16, but the

fracture mechanism remains predominantly ductile striation formation. There

is some evidence of abrasion on the TC fractures (Figure 15 especially), as

suggested by the smooth areas where the striations have been rubbed away.

Such abrasion was observed in Phase I on TC fractures, and is consistent

with the extensive compressive loading in this spectrum.

Striation formation is not as evident for 7150 (Figures 17 through 20).
In this high strength, lower ductility alloy it is more difficult to achieve the

high degree of crack tip plasticity and blunting which is necessary to form

well-defined striations. Rather, the general fracture topography is banded in

the direction of crack growth, reflecting the "pancaked" grain structure of

this alloy (Figures 17 and 19, especially). Fracture of constituent particles

occurs at higher Khmax levels (Figure 18), along with some striated growth

which is better seen in the TC spectrum, Figure 20. The presence of stria-

tions at high Khmax levels shows that extensive crack-tip plasticity can be
developed, but only at the higher strains which occur at these stress inten-

sity levels. As was the case with 2124, some fracture surface abrasion is

evident on the TC specimen of 7150, Figure 19, along with some debris
believed to be the result of fretting between the mating fracture surfaces.

Figure 18 shows an abrupt transition from stable fatigue crack growth
(characterized by indistinct striation formation) to unstable tearing (denoted
by void coalescence); this does not correspond, however, to the onset of

rapid fracture at the end of the fatigue test. Rather, this tear is one of a

series of "pop-in" fractures which occur as the crack approaches a critical

flaw size. Figure 21 shows a series of bands for both 2124 and 7150 at crack

lengths approaching final fracture; the darker bands are stable growth,

26
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a. 250x 8-22-

CRACK GROWTH DIRECTION

b. 85-02224-2
1 500x

FIGURE 13. FRACTURE SURFACE OF 2124-T351 TESTED USING TD
SPECTRUM AT a-6.4 mm (0.25 IN.)
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a.250x 85-02218-1

CRACK GROWTH DIRECTION

10 pm

b. 85402218-2
1500x

FIGURE 14. FRACTURE SURFACE OF 2124-T351 TESTED USING TD
SPECTRUM AT a=19.1 mm (0.75 IN.)

28



1130JAM

a. 250x 85-02220-1

CRACK GROWTH DIRECTION

b. 1500x 85-02220.2

FIGURE 15. FRACTURE SURFACE OF 2124-T351 TESTED USING TIC
SPECTRUM AT a = 6.4 mm (0.25 IN.)
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85-02217-1a. 250x

CRACK GROWTH DIRECTION

85-02217-2
b. 1500x

FIGURE 16. FRACTURE SURFACE OF 2124-T351 TESTED USING TC
SPECTRUM AT a - 19.1 mm (0.75 IN.)
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" t 100p m

a. 250x 8502222-1

CRACK GROWTH DIRECTION

b. 1500x v5402222-2

FIGURE 17. FRACTURE SURFACE OF 7150-T6E189 TESTED USING TD
SPECTRUM AT a = 6.4 mm (0.25 IN.)
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FATIE TER ING

85-02225-1
a. 250x

CRACK GROWTH DIRECTION

85-02225-2
b. 1500x

FIGURE 18. FRACTURE SURFACE OF 7150-T6E189 TESTED USING TO SPECTRUM AT
a - 19.1 mm (0.75 in.) AREA IN b FROM STABLE FATIGUE REGION INa
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FRETTING

a. 250x 85-02234-1

b. 1 50x 85-02234-2

FIGURE 19. FRACTURE SURFACE OF 7150-T6E189 TESTED USING TC
SPECTRUM AT a - 6.4 mm (0.25 IN.)
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a.250x 85"2221.-1

CRACK GROWTH DIRECTION

I. 500x 85-02221-2

FIGURE 20. FRACTURE SURFACE OF 7150-T6E 189 TESTED USING TC
SPECTRUM AT a = 19.1 mm (0.75 IN.)
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FAIUEFRACTU RE

a. 2124-T351 + 15x 9.22-

NEAR FINAL FRACTURE

b. 7150-T6E189 15x 8.22-

FIGURE 21. BANDED FRACTURE SURFACES FOR 2124 AND 7150
PRIOR TO FINAL FRACTURE, INDICATING LOCAL TEARING

DURING HIGH-SPECTRUM LOAD EXCURSIONS, BOTH TESTED
USING TD SPECTRUM
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while the lighter regions indicate local tearing Instability. Presumably, these

local tears correspond with the highest load excursions in the spectrum.

3.7 MODIFIED SPECTRUMS

One of the goals of this overall program was to. develop a simplified

spectrum that would reduce the testing required to evaluate materials for

their resistance to spectrum fatigue crack growth. Several evaluations in this

program were performed wholly or in part to satisfy that goal - the racetrack

spectrums, which eliminated the smaller amplitude cycles, and the TCZ spec-

trum, which determined the importance of compression cycles. Eight alloys

were evaluated using these three modified spectrums. Seven of the alloys

were evaluated in Phase HI and the eighth, 2020-T651, was evaluated in this

phase. The results are presented in Tables 9 and 10 and Figure 22.

Another effort was analytic. This analysis was a modified Willenborg pre-

diction method which used the yield strength and constant -amplitude FCG

behavior to predict the spectrum life of the specimens used in this program

and correlate those results to the actual lives. This has never before been

possible for such a variety of aluminum alloys evaluated under the same

conditions. Although high correlation was not expected, trends may have

existed that would have suggested those aspects of the spectrum that were

more significant to the life, those changes that were needed in the models or

indicated indirectly, and those metallurgical features that were significant to

spectrum fatigue crack growth. The techniques used and the results are

presented in Appendix D. Overall, the correlation was good; however, the

life predictions for one alloy, 75-T651, were grossly underestimated. This

alloy later had the longest life of all the 7000 series alloys evaluated but it

was predicted to have the shortest life. This indicated that using this model

to determine the significant metallurgical variables was not likely to succeed

at this time.
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TABLE 9. SPECTRUM FATIGUE RESULTS - MODIFIED SPECTRUMS
MAXIMUM PEAK STRESS, uhmax -145 Mhs (21 ki)
CRACK GROWTH FROM 6mm (0.24 in.) TO FAILURE

SIMULATED FLIGHT HOURS, H

SPECTRUM TOR TCR TCZ

MATERIAL
2020-T651 26,315 11,867 22,552

31,168
2024-T351 24,899 15,738 34,205

31,090
2024-T851 9,410 7,403 10,258

12,175
7050-T7451 16,787 13,501 19,096

19,346
7075-T651 12,600 9,526 13,039

14,975
7075-T7351 14,179 11,446 17,502

17,595

7475-T651 21,259 19,387 22,630
23,364

7475-T735-1 13,785 13,011 19,140
20,268
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TABLE 10. RANKING OF MATERIALS UNDER SPECTRUM
LOADING - MODIFIED SPECTRUMS

' Ohmax -145MPs FROM a - 6mm TO FAILURE

TDR SPECTRUM

MAEILSIMULATED FLIGHT RANKING UNDkR
MAERALHOURSa TD SPECTRUM')

2020-T651 26,300 3

2024-T351 24,900 1

7475-T651 21,.300 2

7050-T7451 16,800 5

7075-T7351 14,200 6

7475-T7351 13,800 4

7075-T651 12,600 7

2024-T851 9,400 8

b. TCR SPECTRUM

MAERA SIMULATED FLIGHT RANKING UNDER
MATRIA IHOURSa TC SPECTRUMb

7475-T651 19,400 2

2024-T351 15,700 1

7050-T7451 13,500 4

7475-T7351 13,000 3

2020-T651 11,900 5

7075-T7351 11,400 6

7075-T651 9,500 7

2024-T851 7,400 8

c. TCZ SPECTRUM

SIMULATED FLIGHT RANKING UIN D
MATEIALHOURSC TC SPECTRUM 0

2024-T351 32,600 1

2020-T651 26,500 5

7475-T651 23,000 2

7475-T7351 19,700 3

7050-T7451 19,200 4

7075-T7351 17,500 6

7075-T651 14,000 7

2024-T851 11,200 8

aONE TEST RESULT ROUNDED TO NEAREST HUNDRED HOURS

b CONSIDERING THESE EIGHT ALLOYS

c AVERAGE OF TWO TEST RESULTS ROUNDED TO NEAREST HUNDRED HOURS
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4. SUMMARY AND CONCLUSIONS

An investigation to determine the important metallurgical factors that

influence spectrum fatigue crack propagation (FCP) in selected high-strength

aluminum alloys is being performed. This program was also designed to sim-

plify complex load histories into generic simple spectrums and provide infor-

mation for development and selection of fatigue resistant alloys. Most of the

results on which this summary was based are discussed in the Phase II final

report. ( 2 8) The results summarized herein represent a baseline character-

ization of a number of high-strength aluminum alloys, from which the selec-

tion, fabrication, and critical evaluation of alloys with systematically

controlled microstructures followed - the results of which are described in a

companion report. (29)

Twelve commercial 2XXX and 7XXX aluminum alloys were chosen for

analysis so that the influence of both purity and temper on FCP could be

evaluated. The alloys evaluated were 2020-T651, 2024-T351, 2024-T851,

2124-T351, 2124-T851, 2324-T39, 7050-T7451, 7075-T651, 7075-T7351, 7150-

T6E189, 7475-T651, and 7475-T7351. All 12 alloys (seven in Phase I, three in

Phase II, and two in Phase I1) have been characterized with respect to

chemical composition, microstructure, tensile properties, and fracture tough-

ness. FCP tests were conducted on specimens of each alloy for both

constant-amplitude loading (including the low AK region) and two F-18 load

spectrums. The spectrum FCP testing was performed at a maximum peak

stress of 145 MPa (21 ksi) as well as limited testing at 103 and 169 MPa (15

and 24.5 ksi) to obtain additional data at the low and high end of the crack

growth range. Eight of the alloys were evaluated using three simplified spec-

trums. Pertinent fracture surface features were documented on the spectrum

fatigue specimens.

The constant-load-amplitude FCP tests were performed on each material

to provide a baseline characterization of steady-state FCP response. These

data are necessary as inputs to life-prediction models. Fractographic analy-

ses of these specimens are used to help explain the spectrum fatigue results.
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The following observations can be made about the constant-load-amplitude FCP

behavior of these alloys:

1. Rankings of constant-load-amplitude FCP resistance among the 12

materials are AK dependent

2. At near-threshold AK levels K4 MPa /):

a. Fatigue crack growth resistance varies more than that at higher

AK levels

b. 2124-T351 has greater crack growth resistance than the other

11 alloy-temper combinations

c. FCP resistance of 7475-T651 exceeds that of the other five

7XXX alloys: 7075-T651, 7075-T7351, 7050-T7451, 7150-T6E189

and 7475-T7351

d. These data confirm that:

(1) Increased aging reduces near-threshold FCP resistance

(2) Purity (Fe, Si content) has little or no effect on near-

threshold crack growth rates

3. At intermediate AK levels (4 to 15 MPa/iM):

a. The 2XXX alloys, 2020-T651, 2124-T351, and 2324-T39, have

lower FCG rates than the other alloys

b. The peak aged 7XXX alloys, 7075-T651, 7150-T6E189, and
7475-T651, have faster FCG rates than the other alloys.

Spectrum FCP tests were conducted on each of the 12 alloys, using two
complex F-18 load histories. The performance of each alloy in these spectrum

tests and the relative rankings of the alloys represent valuable engineering

Information resulting in the selection of metallurgical variables that were

systematically evaluated for their effects on fatigue crack growth as reported

in Volume II of this report. Secondly, these results are baseline information

for spectrum analyses and spectrum modifications. Several observations can
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I : ' 'i42



be made based on the results for testing at the maximum peak stress of 145

MPa (21 ksi):

1. The ranking of the 12 alloys is the same for the two spectrums,

except for 2020-T651 for which the ranking under the tension-

compression (TC) spectrum is considerably lower than the tension-

dominated (TD) spectrum.

2. For each material the TD spectrum consistently results in longer

lives.

3. The differences in life between the two spectrums for the same alloy

were relatively small - not more than 35 percent.

4. There were larger differences in lives among the 2XXX alloys than

the 7XXX alloys; for example, a 100-percent difference for the TD

spectrum between the two extremes for the 2XXX alloys - 2024-T851

and 2124-T351 - compared to a 55-percent difference between the

extremes for the 7XXX alloys, 7475-T651, and 7075-T651.

5. A comparison of the spectrum lives and fatigue crack growth rates

indicates that the overall spectrum life does not appear to be con-

trolled by any particular regime of spectrum crack growth (or

stress intensity).

In general, the spectrum performance rankings could not be correlated

with yield strength or constant-amplitude FCP resistance at any AK level.

However, spectrum performance could be correlated with fracture toughness;

FCP life for both spectrums generally increased with increasing fracture

toughness. Perhaps more significantly, the alloys that deform by planar slip

generally had longer spectrum fatigue lives than those that deform more

homogeneously.

Eight of the 12 alloys were spectrum fatigue tested using modifications

of the baseline spectrums. Two different types of modifications were

performed independently on the baseline spectrums. One modification had two

goals:

1. Eliminate low-amplitude cycles to reduce testing time without chang-

ing the ranking (relative life) of the alloys
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2. Determine the Importance of low-amplitude cycles on the overall

spectrum life.

The racetrack method was used to eliminate 43 percent of the low-amplitude

cycles. Although the goal of preserving the same ranking as the baseline

spectrums was not met, the differences In spectrum fatigue lives between the

modified and baseline spectrums are small enough so that the selection of one

alloy over another would not be significantly affected.

The second modification was made to determine the importance of com-

pressive load cycles. To accomplish this, all compression load points were

eliminated from the TC spectrum. There were significant increases in spec-

trum lives compared to the baseline spectrum; but surprisingly, the rankings

of the eight alloys for this modified spectrum were the same as those for the

two baseline spectrums except for 2020-T651 which performed relatively better

under the TCZ spectrum.

A limited evaluation of a spectrum life prediction model indicated the

inability of the model to predict the relative behavior these materials compared

to their actual performance.
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APPENDIX A

CONSTANT AMPLITUDE FATIGUE CRACK-GROWTH RATE,
da/dN VERSUS AK
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APPENDIX B

CRACK LENGTH VERSUS SIMULATED FLIGHT HOURS FOR BASELINE
SPECTRUMS, a VERSUS H

1. The scale for the ordinate (a) is the same for each graph; the scale

for the abscissa (H) varies, and to make comparisons easier, the

abscissa was adjusted so that a crack length of 6 mm corresponded

to zero simulated flight hours.

2. Two specimens each were tested at 145 MPa, and one each at 103

and 169 MPa.

3. Data are in numerical order by alloy designation with TD spectrum

first, then TC spectrum.

4. The tension-dominated (TD) spectrum representing the lower wing

root load history of the F-18 is coded C2 at Northrop and the

tension-compression (TC) spectrum representing the horizontal

hinge tail moment load history Is coded E3.

5. Crack length was measured at the end of one or more passes (300

simulated flight hours per pass) of the spectrum, which at the

beginning of the 103 and 145 N]Pa tests resulted in the crack

growth increment being less than 0.25 mm which is required by

ASTM E647. (Note that ASTM E647 is a method for constant

amplitude fatigue crack-growth.) However, in calculating crack

growth rates, the 0.25 mm increment requirement was observed. At

the higher crack-growth rates, the one-per-pass crack measurement

resulted in larger crack-growth increments than required by

ASTM E647.

6. Graphs were plotted using a Northrop Support Services Laboratory

computer program designated $DDNPT1 from data on files designated

.DDN, created from crack length measurement versus pass raw

data.
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APPENDIX C

SPECTRUM CRACK GROWTH RATE VERSUS MAXIMUM PEAK STRESS
INTENSITY da/dH VERSUS Khmax

1. The scales for both axes are identical on each graph.

2. Crack growth rates are calculated by the two-point secant method

per ASTM E647 based on the data in Appendix B, and applying the

ASTM E647 requirement that the minimum crack growth interval, a,

be greater than or equal to 0.25 mm. This is performed using

Northrop Support Services Laboratory computer program designated

$FITPTO from data on files designated .DDN, created from crack

length measurement versus pass raw data. The data are plotted

with a program designated $SPCPT1.

3. Almost all tests had a crack growth rate which initially decreased

for a few data points after precracking; therefore, all data up to

the first local minimum crack growth rate were not plotted.

59



H/U! 'HP/VP

0o T

-v w

10

CDL

x

,e w
0 0

IE

-0 D

x -C

eC ILL

x

06

~~~~~~~~~~~~~~~ I'll ..... J....I....... I. I.J.I..I....J........ 11
w a ifCliiiiOi



o0 0

a 2

L~L;
a a

Uj

z

E~ LUC

.,c

U. u.

H/W 'HP/IP '3.LVU HIMOUD)IDVU3 wIOU.L~S

61



H/*U! HP/BP

LD CD

0

E 0 U

C C

o GUU

LO

ieE

x 410
Ux

E/'PeP3V HiwE-AVOmlU

£6

NMOAII I'l ', IIJ'!I-



H/*ui 'Hp/ep

0 0 o

0 0o

X 0

o JnO

EU

U.

0

xx

__11 1 EU C..) 1 1

0/'(/P3V EIOD-OU wyh13

63.



APPENDIX D

PREDICTION

Spectrum fatigue crack growth analyses were conducted on 10 alloys

under two F-18 aircraft spectrums for a truncation of these two spectrums.

These spectrums were a tension-dominated wing spectrum (TD), a tension-

compression tail spectrum (TC), and the racetrack modification of these two
spectrums (TDR and TCR).

The NORCRAK program was used to predict the spectrum crack growth

lives. This program sums incremental crack growth on a cycle-by-cycle
basis. It uses the Paris, Forman, or Walker equations, or tabulated da/dN
versus AK data to provide a crack growth rate basis. Retardation due to

load interaction can also be accommodated using any of the Wheeler,
Willenborg, or Northrop models. A number of commonly used stress intensity

solutions are built into the program for use in the crack growth equations,
and In addition it is possible to input K versus beta factors in tabular form

for problems in which a K solution is not available. Tabulated data with a

modified Wllenborg retardation scheme was used for the present analyses.
The K solution for the specimen was determined by combining (beta) factors

for a center through crack and a crack emanating from a hole. The sensi-

tivity to R ratio was based on data for 2024-T351 and 7075-T7351 and those

sensitivities used for the 2000 and 7000 series alloys respectively.

The predictions for 7075-T7351 were normalized so that total life

matched the test data for the two baseline (untruncated) spectrums. This
was accomplished through the use of a "Shut-Off Load Ratio." This

parameter was assumed to be only spectrum dependent and was utilized for all

other predictions.

Total life predictions were made and the predicted spectrum lives were

divided by the actual specimen lives and both are presented in Table D-1. A
reasonable correlation was obtained for moat materials. The most glaring
exception was 7475-T651 which exhibited actual life far longer than predicted.
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Life predictions were plotted in the form of crack length versus flight

hours for 2024-T351, 7475-T651, and 7075-T7351 for the TD and TC spec-

trums. The general characteristic of all these predictions was that crack

growth rate was underpredicted at short crack lengths and overpredicted at

longer crack lengths. This can be seen in the Khmsx versus crack growth

rate shown in Figure D-1. Note that the predicted and actual Uves for

7075-T7351 were adjusted to be identical.

This rate error effect could be due to either geometrical parameter

errors at short crack lengths or to stress intensity effects of some other

nature. Other apparent errors are the effect of yield strength on retardation

(no substantial effect was observed) and the neglect of compressive loads on

retardation leading to different normalization for the TC versus TD

spectrums.
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TABLE D-1. SPECTRUM LIFE PREDICTIONS

AVERAGE ROUNDED TO NEAREST HUNDRED HOURS.
MAXIMUM PEAK STRESS. ohmax - 145 MPa. "a" FROM 6mm TO FAILURE.

a. TENSION-DOMINATED SPECTRUMS

TD SPECTRUM TDR SPECTRUM

SIMULATED FLIGHT HOURS PREDICTED SIMULATED FLIGHT HOURS PREDICTED

MATERIAL ACTUAL PREDICTED ACTUAL ACTUAL PREDICTED ACTUAL

2020-T651 18,500 18,900 1-02 26,300 18.900 0.72

2024-T351 22,100 22.500 1.02 24,900 21,600 087

2024-T851 8500 8.100 095 9400 8 100 0.86

2124-T851 11 200 10200 091 - - -

2324-T39 17 800 13,500 076 -

7050-77451 14900 10,800 072 16800 11 100 066

7075-T651 10800 6300 058 12.600 6 900 055

7075-1"7351 12900 1 00 1 00 14 200 13.200 087

7475. 651 19000 4 800 025 21 300 4 800 023

7475-r7351 ' 15000 11 100 074 13.800 1 100 080

b TENSION-COMPRESSION SPECTRUMS

TC SPECTRUM TCR SPECTRUM

SIMULATED FLIGHT HOURS 'PREDICTED SIMULATED FLIGHT HOURS I PREDICTED

MATERIAL ACTUAL PREDICTED ACTUAL ACTUAL PREDICTED ACTUAL

2020-T651 13 100 15900 1 21

2024-'35' ;5400 16500 07 15 700 16 500 1 05

2024 '851 7 ',0 6 600 )93 7400 I 30o 0 85

2'24'RS I 1)90 4 700 096

2324 '39 '4 400 ''400 79

'(W "41 '3200 3600 07] ' 500 - '-)'"

"075 8(1) 60( 067 4500 I Jo0 0 63

"7(5 "'I' '0700 '000 '01 '' 400 1000O 095

'4) "rS' '4 ',jM 4 r00 ) 30 ' 440() 4 :)() 23

'4 ' ' ' 1 1369 '} ")(I J On 72
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APPENDIX E

EVALUATION OF SECOND HEAT OF 7475-T651

Alloy 7475-T651 had the best spectrum fatigue lives of all the 7000

series alloys which was not expected from the fracture toughness and

constant-amplitude-fatigue behavior. To confirm this unexpected behavior

Northrop and Alcoa at their own expense evaluated a second lot of 7475-T651.

In summary, this second lot did not have as good a spectrum fatigue

behavior as the first lot, but still was the best of the six 7000 series alloys

evaluated. The results are discussed In detail below.

The second lot was identified as 511348. The original first lot was

identified as 511463.

E.1 TENSILE

The tensile properties at the T/2 location in the longitudinal direction

were 598 MPs (86.7 ksi) ultimate strength, 550 MPa (79.8 ksi) yield strength,

and 12 percent elongation and in the long transverse direction were 584 MP8

(84.7 ksi) ultimate stength, 530 MPa (76.9 ksi) yield strength, and 14 percent

elongation. In the longitudinal direction the strengths are about 11 RIPa

(2 ksi) higher than the first lot and the elongation is the same.

E.2 TOUGHNESS

Toughness was measured using a slow bend Charpy test at the T/2

location. The toughness in the L-T direction was 49.2 MPa m

(44.8 ksi/1.) and in the T-L orientation was 41.4 MPa / (37.7 ksi v ti.).

These values cannot be directly compared to those obtained for the first lot

using ASTM E399 procedures.
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E.3 FATIGUE CRACK GROWTH RESULTS UNDER CONSTANT-AMPLITUDE
LOADING

Data are shown in Figure E-1. At K less than about 7 MPa /m the

FCG rates for the second lot are faster.

E.4 SPECTRUM TEST RESULTS

A single test was performed for each of the five spectrums, TD, TDR,

TC, TCR, and TCZ.

Graphs of crack length versus number of flight hours are shown in

Figure" E-2 and the graphs of spectrum FCG rates versus maximum peak

stress Intensity are shown in Figure E-3. A comparison of the spectrum

fatigue crack growth lives is given in Table D-1. The lives for the first lot

are longer than the second lot, except for the TCZ spectrum.

E.5 SUMMARY

The superiority of 7475-T651 over the other six materials was

preserved, as a comparison of Table E-1 with Tables 7 and 9 will show.

TABLE E-1. SPECTRUM FATIGUE LIVES FOR THE TWO LOTS OF 7475-T651

Ohmax - 145 MPa FROM a - 6mm TO FAILURE

SPECTRUM LOT 1 (511463) LOT 2 (511348) DIFFERENCE*

TD 18,303 15,315 22
19,792

TDR 21,259 18,404 14

TC 14,744 14,188 5
15,141

TCR 19,387 15,991 19

TCZ 22,830 27,389 -17
23,364

* DIFFERENCE - LIFE (LOT 1) - LIFE (LOT 2) x 100%
(LIFE (LOT 1) + LIFE (LOT 2))/2
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