
ft-AI 342 A t ATROIO RLOOR ZTHM AID ITS APPLIC ATION TO THE
/

81EFFICIENT
SOLUTION OF 710.. (U) CINEGIE-MELLON

UNIV
PITTSBURGH PR NANAGENENT SCIENCES RESEAR.

WIO.ASSIFIED C REZOYEC ET LFED 7N 465K19 F12/2NML

EEEEEhh I

III~1 : ASI-10N , ui w -5
1.511111 4

MICROCOPY RESOLUTION TEST CHART

NAWiOML ti1JRFAU 'If v 1ANE,ARD', 1Q4 A

q.

iK FILE C

0 A MATROID ALGORITHM AND ITS APPLICATION TO

THE EFFICIENT SOLUTION OF TWO OPTIMIZATION
PROBLEMS ON GRAPHS

by

Carl Brezovec*
Gerard Cornuejols*

and
Fred Glover**

February, 1987

Carnegie-Mellon University
PITTSBURGH, PENNSYLVANIA 15213

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION
WILLIAM LARIMER MELLON, FOUNDER

DTIC
&%-LECTE

MAY 14 198

D

1 DSTIEU1ON ST.ATr-ENT Ai~ ------Approved for public relpAosolDistri.bution Unlimited 3 8 5 6L3

W.P. No. 29-86-87

Management Science Research Report MSRR 534

A MATROID ALGORITHM AND ITS APPLICATION TO
THE EFFICIENT SOLUTION OF TWO OPTIMIZATION

PROBLEMS ON GRAPHS

by

Carl Brezovec*
Gerard Cornuej ols*

and
Fred Glover**

February, 1987

JHC
* Carnegie Mellon University ';L.LCTE

Pittsburgh, PA
MAY 1 4198711'

** University of Colorado,
Boulder, CO

This report was prepared in part as part of the activities of the Management
Sciences Research Group, Carnegie Mellon University, under Contract No.
N00014-85-K-0198 NR 047-048 with the Office of Naval Research and in part by
NSF Grant ECS 8601660. Reproduction in whole or in part is permitted for
any purpose of the U. S. Government.

Management Sciences Research Group
Graduate School of Industrial Administration

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Approvod for pui'!i.- ''

2

t% , .4-~,,,

0. Abstract. > i

-r the problem of finding a minin m weight base B of a
matroid when, in addition, each element of the ritatroid is colored with one of
m colors and there are upper and lower bound restrictions on the number of
elements of B with color i, 1fr i - 1, 2, ..., m. "This problem is a special case
of matroid intersection. We present an algorithm that exploits the special
structure. When applied to the weightedipartite matching problem, our
algorithm has complexity O(IEI IVi + IVi log JVJ). When applied to the problem
of finding a minimum weight spanning tree with degree restrictions on the
nodes of a stable set, it has complexity O(IVl). In both cases, V denotes the
node set of the underlying graph, and E deno es its edge set. We also discussi-
a new relaxation for the traveling salesman prblem.

1. Introduction.

Let E be a finite set, M a matroid of rank r defined on E, and w: E, R a
weight function. The weight of a subset F C E is defined by
w(F) - J{w(e) : e e F). Let E1 , E2 , ..., Em be a partition of E into nonempty

subsets. To each Ei assign two integers Ii and ui (1 ui). We address the

problem of finding a base B of M which will
minimize w(B)

subject to
Ii1< B r Ell <u i for i -1,2, ... , m.tr '"

This problem is denoted by (P). soy
It is known that the set

B*-{X _;E.: li I X r)Eil ui, i -1,2,...m, JXJ-r)

is the family of bases of a matroid M', which has rank r. Such a matroid is Tor- i
called a generalized partition matroid. Thus, (P) is the problem of finding a ,A&i I
minimum weight common basis of M and M', if one exists. a D

This problem has been solved in polynomial time by Edmonds ([El] and -d [J

[E2]). The algorithm presented here takes advantage of the special structure --........
of the matroid M' and works on an auxiliary digraph with m nodes, instead of ,
the n - lEt nodes required by the general matroid intersection algorithms.

.,' ty Cox.'. ,

K,.

3

This leads to a complexity of O(r(nc + m log m)), where c is the complexity of
circuit finding. By circuit finding we mean the following: Given independent
set I and e e E - , list the elements of the unique circuit in I + e, or show
that I + e is independent. This complexity is to be compared with the
0(nr(r + c + log n)) required by the general algorithm (see Brezovec,
Cornu6jols, and Glover ([BCG])).

To make this paper self-contained, we state without proofs some of
the results of [BCG]. This is done in Section 2. The algorithm for solving (P)
is presented in Section 3.

Finally, in Sections 4 and 5, we provide two examples of how our
algorithm may be applied to classical combinatiorial optimization problems.
For the weighted bipartite matching problem on a graph G - (V, E), we get an
algorithm of complexity O(IVI IEl + IV12 log IVi), which is the best known for
weighted bipartite matching (see Fredman and Tarjan [FT]). Note that the
general matroid intersection algorithm only gives a bound of O(IEI IVt2).

In section 5, we consider the case where M is the graphic matroid
associated with a graph G - (V, E). Assign each edge of G a weight, and let
V* - {'1, '2, ",m-1) denote a stable set of G (a set of pairwise nonadjacent

nodes). Let color class i consist of the edges incident with node ui for

i - 1, 2, ..., m-1, with color class m containing all remaining edges. A
minimum weight spanning tree of G must be found with the property that, for
i - 1, 2, ..., m, the number of edges with color i belongs to the interval [ii, ui].

This is of complexity O(1V13). Note that, here as well, the general matroid
intersection algorithm only gives a bound of O(IEI IV12). If Ii - ui - 2 for

i - 1, 2, ..., m-1, the complexity can be further reduced to O(m JV12), and such
degree restricted spanning trees can be used to strengthen the 1-tree
relaxation of Held and Karp for the Traveling Salesman Problem. We also
show how this relaxation can be further strengthened and generalized to the
case where V* is not a stable set. In this case the color classes are defined
in terms of net stars instead of stars.

4

1***D ~ ~ . 1v . .

4

2. Preliminary results

Let M be a matroid defined on the element set E, and let B be a base of
M. Consider 1L c B and 13' L E - B such that IP1 - IP'I. We say that (1p, 13') is a

B-swap if B - 13+ 13' is a base of M. We call m(3, 1') a matching if it

represents a one-to-one mapping of 13 onto P!'; m(13, 13') is called a

B-matching if every (e, e) in m(13, 13') is a B-swap.

Remark 1. [BCG, Lemma 2]. Let B and B' be two bases of M, and let 13-B -B'

and 13'- B' - B. Then there is at least one B-matching of (13,1').

Remark 2. [BCG, Lemma 3]. Let B be a base of M, and consider 13 . B and

13' L E - B where IPl - IP'I. If m(13, 1') is a B-matching but (13, P') is not a

B-swap, then there also exists a B-matching m'(3, 13') different from m(13, 13').

Consider two matroids M1 and M2 defined on the same finite element

set E, and let I C E be a k-intersection, that is, let I be independent in M, and

M 2 such that I11 - k. Let w: E -+ R be a weight function. The problem of

finding a minimum weight k-intersection is denoted (Pk). To solve (Pk),

define a bipartite auxiliary digraph G(I) - (V, V', A) as follows. Construct a
node in V for each e e I and a node in V' for each e'e E -I. For each e r I, we

construct an arc (e, e') with weight w(e, e') - w(e') - w(e) provided I - e + e'
is independent in M1 . Similarly, for each e' e E - I, we construct an arc (e', e)

with weight w(e', e) - 0 provided I - e + e' is independent in M2 .

Let C be a dicycle in G(I). We define the weight of this dicycle to be

the sum of the weights of the arcs in the dicycle. Thus, w(C) - w(l') - w(F),
where Z and 1: represent the nodes of C in V and V', respectively.

Theorem 1. [BCG, Theorem 3]. Assume I is a k-intersection.
(i) I is optimal for (Pk) if and only if there are no negative weight

dicycles in G(I).
(ii) Let C be a negative weight dicycle in G(I) with no negative dicycle

5

on a subset of its nodes, and let T. and ' be the nodes of C in V and V',
respectively. Then r - I - T. + r' is a k-intersection such that w(r) < w(I).

This theorem leads to an algorithm for solving (Pk), given an initial

k-intersection I: use G(I) to find an improved solution; continue until a G(I)
is found which has no negative dicycles.

We modify this technique to develop a dual algorithm. Consider a set A
of k artificial elements, where E n A - 0. Let F - E + A and define two
matroids M1 (F) and M2 (F) on the element set F as follows. For i - 1,2, I C E

and J S; A, the set I + J is independent in Mi(F) if and only if I is independent
in Mi. The problem (Pk) relative to these new matroids is denoted (Pk F). In

order to define (Pkj F) completely we need to assign weights to the artificial

elements. By giving them large negative weights, we can guarantee that I - A
is optimal for (Pkj F).

Define the digraph Sp(I) from G(I) by splitting one of the nodes arising
from an artificial element, say ax e A, into a source node s and a destination
node d. Let the arcs out of s in Sp(I) be those out of ax in G(I) and the arcs
into d in Sp(I) be those into ax in G(I). The following result provides the basis
for an algorithm to solve (Pk)-

Theorem 2. [BCG, Theorem 5]. Let I be optimal for (Pk H), where E C H C F,

and let Sp(I) be obtained from G(I) by splitting an artificial element a into s
and d.

(i) Problem (Pkj H - a) has no solution if and only if there is no s-d

dipath in Sp(I).
(ii) Let P be a shortest s-d dipath such that every s-d dipath defined

on a subset of its nodes has a strictly larger weight, and let Z and r be the
nodes of P in V and V', respectively. (s and d both give rise to a in x.) Then
I'. I - Z + r is optimal for (Pk H -a).

We use this to solve (Pk) as follows. Start with H - F and the set I - A.

i ' ' " 'b o " % " , " ° ' * " '. . . * , , ' " " " " " ' ' , " " . " " . ' " " - . " " o ' . - % ' " " ' . * - * " " ' b
'

* * - - ' * ' " * ' . ' * "

6

Construct G(I) and then Sp(I) by splitting one node arising from an artificial
element ax. Find a shortest dipath from the resulting source s to destination
d, with the added condition that every s-d dipath on a proper subset of its
nodes has a strictly larger weight. Then the set I' defined in Theorem 2(ii) is
optimal for (Pk H - c). Repeat this process with r in place of I and H - ax in

place of H, until all artificial elements have been split. When this occurs,
we have an optimal solution for (Pk).

We close this section with a result that will be useful in the proof of
Theorem 6.

Theorem 3. [BCG, Corollary]. Let e E V and e' E V'.

(a) If P is an e-e'dipath in Sp(I) and I - Z + Z is a dependent set in M1,

then there is an e-e' dipath Po in Sp(I) such that the intermediate nodes of Po

constitute a proper subset of those of P, and w(Po) < w(P).

(b) If P is an e'-e dipath in Sp(I) and I - Z + 1' is a dependent set in M2 ,

then there is an e'-e dipath Po in Sp(I) such that the intermediate nodes of Po

constitute a proper subset of those of P, and w(Po) < w(P).

7

3. The Algorithm

In this section we show how to solve (P). The question of finding a
first basis B is not addressed until later in the section.

For convenience, we index each element of E to identify the subset or
state of the partition E1 , E2 , ..., Em to which it belongs. Thus, e i and f are

elements of Ei anc Ej, respectively. Also, the symbol' is used to denote

whether or not an element is in B, so that ei e B but e' e E - B.

We define the state graph of B, denoted S(B) - (N, A), as the
following directed graph. The node set is given by N - {v, v2 , ... , vm}, where

node vi corresponds to state i, i - 1, 2, ..., m. For each ei in B we construct an

arc a(e i, ej') with weight w(a(e i, ej')) - w(ej') - w(ei) directed from node vi

to node v provided (ei , ej') is a B-swap. We call these the forward arcs of

S(B). Note that, in general, S(B) is a multigraph and can have loops. For each
ej' in E - B, construct a(ej', el) from vj to vI, with weight 0, provided

B - eI + ej' does not violate the cardinality conditions of El and Ej. We call
these the backward arcs of S(B). Note that the existence of a backward arc

from vi to vI indicates that we can exchange aU element el in B n El for aU

element e' in (E - B) n Ej without violating the cardinality conditions on

B n EI and B n E E. All such backward arcs a(ej', el) appear in parallel in S(B).
We could have constructed S(B) using G(B), the bipartite auxiliary

digraph discussed in the previous section, as follows. Let M- M and let M2

be the matroid whose bases are elements of the set
B* - IX _c E: Ii < IX n Eill< ui , i - 1,2, m, IXl r).

Note that (Pr) defined by M1 and is equivalent to problem (P). Construct

G(B). Consider, for i - 1,2 ..., m, the set of nodes corresponding to Ei and

identify this set as the node vi. Thus, each arc (ei, ej') or (fi', fj) becomes an

arc joining vi to vj, and this new graph is clearly S(B).

Let C be a dicycle of S(B). In this paper, dicycles can have repeated
nodes, but no repeated arcs. Note that this does not exclude the possibility
of repeated elements of E. We say that 3 _c B and O' . E - B give rise to C if

F',

M *A PN ~ 1. WWI Muni

8

13-{e e B : a(e e j') is a forward arc of C1, and
I-{ej' e E - B : a(ei, ej') is a forward arc of C.

We define the weight of this dicycle, w(C), to be the sum of the weights of
the arcs in the dicycle. Then w(C) - w(3') - w(3), where 13 L B and j3' ,: E - B
are the sets of elements which give rise to the dicycle. Dipaths of S(B) have
similar definitions, with the following exception. If the last arc of a dipath
P is a backward arc, define

13-{ei e B : a(e i, ej') is a forward arc of P

or a(ek', el) is the last arc of P).

Note that, if 13 C B and 1' L: E - B give rise to an element disjoint
dicycle C in S(B), then they also give rise to a dicycle of the form

{a(e i, ej'), a(ej', ek), ... , a(el , eq'), a(eq', el)} . M.

There are four ways in which C could fail to have this form: C could contain,
as subsequences,

(i) consecutive forward arcs {a(e i, ef'), a(fj, ek) },

(ii) consecutive backward arcs {a(ei', ej), a(fj', ek)},

(ii) a forward-backward pair with different elements from
E - B, {a(e i, ef'), a(fj', ek)}, or

(iv) a backward-forward pair with different elements from B,
{a(ej', fk), a(ek, el')).

In case (i) the loop a(ej', fj) must be a backward arc in S(B) since swapping

these two elements in B will not change 1B n Ejl. So replace the consecutive

forward arcs in C with {a(e i, ef), a(ef, fj), a(fj, ek')). (Recall that we only

require dicycles to be arc-disjoint; so loops are permitted.)
The result of the consecutive backward arcs in case (ii) is that the

cardinality of Ei increases by one in B - {ej, ek} + {ei', fj'), with the

cardinality of Ek decreasing by one. Ej realizes no change in cardinality in
from this string. Thus, a(ei', ek) must be a backward arc in S(B), and we can
replace the consecutive backward arcs in case (ii) with the single backward
arc a(ei', ek).

In case (iii), the backward arc a(ffi ek) can be replaced with the

"-.".-": :: ." . I:: : . ; :. :;: ; -,: :-- , - -'"- - -:, , :; " :; , ::.',. . .: ;: ",- " "

9

parallel arc a(ef', ek). Similarly, a(ej', fk) can be replaced with a(ej', ek) in

case (iv).
Since these steps (which result in a dicycle that has the form (*)) only

affect the backward arcs in the dicycle, 0 and J3' are unchanged.
The following result is immediate.

Lemma 1. There is a one-to-one correspondence between element-disjoint
dicycles in S(B) having the form (*) and node-disjoint dicycles in G(B).

Theorem 4. Assume B is feasible for (P).
(i) B is optimal for (P) if and only if there are no negative dicycles in

S(B).
(ii) Let C be a negative dicycle in S(B) with no negative dicycle on a

subset of the elements j3 + 3' which give rise to C. Then B' = B - I3 + 3' is a
base such that w(B') < w(B).

Proof. This result follows directly from Lemma 1, Theorem 1, and the
following observation. If a negative dicycle in S(B) has a repeated element,
that dicycle induces two new dicycles, one of which must be negative. Thus,
if there is a negative dicycle, there is a negative dicycle without repeated
elements. HI

Theorem 4 shows the equivalence of solving (P) and finding negative
weight dicycles in S(B) with the property that no negative dicycle exists on a
subset of the elements which give rise to it. This gives the basis for a
primal algorithm: start with a feasible B and use S(B) to find an improved
solution. Continue in this manner until we find an S(B) with no negative
dicycles.

We briefly discuss the complexity issues of this algorithm: Firstly,
one must be able to find a negative dicycle in S(B) with the required
property. Also, the number of iterations needed to reach the optimal solution
can be relatively large; even though each iteration yields a better solution,
the improvement may be slight. For these reasons the complexity is high,
and we do not pursue our investigation of this primal algorithm. (We do note,
however, that this approach may have merits in the context of sensitivity
analysis: Given an optimal solution for a certain set of weights,

.9' "k ,? ': ,> '-, -;-? ,. .. , " " - " " ' " " "" " ". ..

II
10

reoptimizing on a perturbed set of weights using this method may be more
efficient in practice than starting from scratch, as other algorithms for
matroid intersection would require.)

Instead we use these results to develop a dual algorithm. First, using
a modification of the greedy algorithm, we can find an initial solution Bo .
Start with B0 - 0 and, at each iteration, add an element e e E - Bo to B0 if

(i) Bo + e is independent in M,

(ii) e has the smallest weight of all such f e E - Bo, and
(iii) I(13 o + e) n Eill< ui for i -, 1, 2, ..., m.

Stop when either no such e can be found, IBo - r, or, for the e chosen,

r -1B0 + el < _{max(l i - I(Bo + e) r Ell, 0): i = 1,2, ..., m}.

Violating this last condition would result in a Bo which could not satisfy

both 1B01 - r and all lower bound conditions. At the termination of this

procedure we clearly have the least weight independent set with I Bol
elements.

If care has been taken to delete loops of the matroid M from E, Bo will

have at least one element. If IBo l - r, (P) is solved. Otherwise, consider a set

A of r - 1B01 artificial elements, where E r) A - 0. We assign to each

artificial element a state as follows. Extend E1 by unioning

max(0, 11 - 1B0 n E11) artificial elements. Then extend E2, E3, ..., Em

similarly. Any remaining artificial elements can then be unioned to any of
the states, as long as the resulting states satisfy I(Bo + A) r) El < ui. Note

that, if this cannot be done, (P) is infeasible.
Let F - E + A and define a matroid M(F) on the set F as follows: for

I C E and J C A, I + J is independent in M(F) if and only if I is independent in M.
The problem (P) relative to M(F) will be denoted (PI F); we now wish to find
the least weight independent subset B of F such that Ii < B' El : ui, for

i - 1, 2, ..., m, and IBI - r. Note that, if we define the matroids M1 and M2 as

at the beginning of this section and M1 (F) and M2 (F) in the obvious way, then

(PI F) is equivalent to (Prl F) defined by M1 (F) and M2 (F).

11

To define (PI F) completely we need to assign weights to the artificial
elements. If we give each artificial a large positive weight, we can
guarantee that, if (P) is feasible, then an optimal solution to (PI F) contains
no artificial elements and is, hence, optimal for (P) as well. Thus, we can
use Bo + A as a starting solution, and solve (PI F) using the primal algorithm

whose basis is given earlier in this section.
However, we have a different algorithm in mind. We will give large

negative weights to all artificial elements. Thus, the initial solution
B = Bo + A will be optimal for (PI F).

Define the digraph S*(B) from S(B) by creating two nodes, a source
node s and a destination node d, from an artificial element, say a e A. We

also allow s and d to denote the resulting elements. Assume a was assigned
to Ei. Replace arcs of the form a(a, ej') in S(B) with arcs a(s, ej') in S*(B),

and replace arcs of the form a(el', a) in S(B) with a(el', d) in S*(B).

Note that we could have constructed S*(B) by forming Sp(B) from G(B),
and then shrinking groups of nodes (excluding s and d) corresponding to each
of the states into the nodes v1, v2 , ... ,vm. Thus the following theorem is a

direct result of Theorem 2.

Theorem 5. Let B be optimal for (PI H), where E C H -C F, and let S*(B) be

obtained from S(B) by creating s and d from artificial element a.
(i) Problem (PI H - a) has no solution if and only if there is no s-d

dipath in S*(B).
(ii) Let P be a shortest s-d dipath such that every s-d dipath defined

on a subset of the elements which give rise to P has a strictly larger weight,
and let 13 and 3' be the elements of B and H - B, respectively, that give rise to

the nodes of P. (s and d both give rise to in P.) Then ' - B -13+ ' is
optimal for (PI H - a).

Theorem 5 provides the basis for our algorithm. Start with H - F and
B - Bo + A, which is optimal for (PI F). Construct S(B) and then S*(B) by

creating s and d from artificial element a. Find a shortest s-d dipath P such
that every dipath on a subset of the elements which give rise to P has a
strictly larger weight. Then the set B' defined in Theorem 5(ii) is optimal

N .

12

for (PI H - a). Repeat this process with B' in place of B and H - a in place of
H, until the resulting B' contains no artificial elements. At this step, B' is
optimal for (P).

Note that the arc weights of S(B o + A) are all nonnegative. To see this,

first consider arcs of the form a(a, ej'), where a is artificial. Since w(a)

has been chosen small enough, w(a(a, ej')) - w(ej') - w(a) > 0. Now consider

an arc a(e i, ej'), where ei e Bo . Since this arc is in S(B o + A), we have
Bo - ei + ej' independent in M. But then w(ei) :; w(ej') by requirements (i) and

(ii) of our modified greedy approach in the construction of Bo; so
w(a(e i, ej')) > C. Finally, when e is not in Bo + A, w(a(e, f)) - 0.

All arc weights nonnegative in S(B o + A) implies the same for

S*(B o + A); so no shortest s-d dipath will repeat nodes (or, hence, elements).
Thus, for all pairs of nodes, we only need to consider the shortest of the arcs
joining vi to vj when searching for the shortest s-d dipath, and we can apply

Dijkstra's algorithm to find a shortest s-d dipath P. Furthermore, the
requirement that every dipath on a subset of the elements which give rise to
P has a strictly larger weight can be obtained by adding a small positive C to
all the arc weights of S*(B o + A).

We now show that nonnegative weights on the arcs of S(B) can be
preserved throughout the algorithm. Define a variable D(vi) associated with

every node of the digraph S*(B) and a reduced weight
w'(a(e i, ej')) = w(a(ei , ej')) + D(vi) - D(vj)

associated with each forward arc of S(B). Similarly, for each backward arc
define

w'(a(ek', el)) - D(vk) - D(vi).
Note that, in terms of the reduced weights, the length of an s-d dipath P is
w'(P) - w(P) + D(s) - D(d) since, for any intermediate node vi, the variable

D(vi) cancels out on the two arcs of P that contain vi. Since D(s) - D(d) is a

constant that does not depend on P, it is equivalent to solve the shortest
dipath problem in S*(B) with the reduced weights w' instead of the original
weights w. We provide a choice for the variables D(vi) that guarantees

R 0%%a
'A11-6

13

nonnegative reduced weights from one iteration to another in the next
theorem.

Theorem 6. Let B be optimal for (PI H) where E C H C F, and assume that an
s-d dipath exists in S*(B). Set D(vi) to be the length of a shortest s-v i

dipath in S*(B), for i - 1, 2, ..., m. Let B' be as defined in Theorem 5(ii). Then,
the reduced weights w'(a(ei, ej')) - w(a(e, ej')) + D(vi) - D(vj) and
w'(a(ek', el)) - D(vk) - D(vl) are nonnegative for every forward arc a(e i, ej')
and every backward arc a(ek', el) of the digraph S(B') for problem (PI H - a).

It was noted above that every dicycle in S(B) can be assumed to have
the form (*). Using the same argument, we can assume every s-d dipath in
S*(B) to have the form

P - {a(s, ei'), a(ei', ej), a(ej, ek'), ..., a(el', d)}. (**)
Note that, since the only arcs affected by changing an s-d dipath to one of
the form (**) are backward arcs, putting an s-d dipath into this form does not
change the weight of the dipath.

If an s-d dipath is of the form (**), the elements which give rise to
P are all elements represented in an arc of P since these are exactly the
elements which are represented in the forward arcs of P. For the proof
of Theorem 6 we assume that the shortest s-d dipath has been put in the
form (**). We also need the following remark, which is a direct result of
Theorem 3.

Remark 3. Let P be a shortest s-d dipath in S*(B) such that every s-d
dipath of the form (**) on a subset of the elements which give rise to P has
strictly larger weight, and let Po be some subpath of P from s to another

node. Let 00 and Po ' be the sets of elements which give rise to Po.
(a) If the last arc on Po is a forward arc, then B - 13 + Do' is

independent in M.
(b) If the last arc on Po is a backward arc, then B - 0o + 00' satisfies

the cardinality conditions on each Ei .

14

Proof of Theorem 6. First we show that the choice for D(vi) gives

nonnegative reduced weights on the arcs of S(B). Consider a(ei, ej') in S(B),

and suppose w(a(e i, ej')) + D(vi) - D(vj) < 0. This gives

D(v i) + w(a(e i, ej')) < D(vj),

which implies that the shortest s-vi dipath together with the arc a(e i, ej')

gives a shorter distance from s to vj than D(vj), a contradiction. Similarly,

for each backward arc a(fi', fj) in S(B), w(a(fi', fj)) + D(vi) - D(vj) > 0. Thus,

our choice of D(vi) gives nonnegative reduced weights on the arcs of S(B).

Let P be the shortest s-d dipath that gives rise to B' in Theorem 5(ii),
and let Pi be the subpath of P from s to some node vi. Let 131 (i) and 1'(i) be

the sets of elements of B and E - B, respectively, represented by the forward
arcs of Pi, and let 12() and 32 '(i) be the corresponding sets of elements

represented by the backward arcs of Pi. By Remark 4, B1 (i) - B - 131 (i) +

31 '(i) is independent in M, and B2(i) - B - 132(i) + 2'(i) satisfies the
cardinality conditions on each Ei. For ease of notation we allow vi to
represent s and d, as well as the nodes representing states E1 , E2, ..., Em.

We construct a digraph Ni as follows. The node set of Ni is that of
S(B). If B1 (i) - ej + ek' is independent in M, then a(ej, ek') is a forward arc of

Ni; if B2(i) - ej + ek' satisfies the cardinality conditions of each Ei, then

a(ek', ej) is a backward arc of Ni. Note that, in the latter case, we call

(ek', ej) a B2 (i)-swap with respect to the partition matroid.

We will show that this choice of D(vi) gives nonnegative reduced

weights on the arcs of Ni by induction on the nodes of P, starting from vi = s.

Note that when we reach vi - d, we will have Ni - S(B') for (P1 H - a), and the

theorem will be proved.
When vi - s, Ni - S(B), and the result has been proved above. Let vi be a

node of P for which the result holds, and let vj be the node following vi in P.

There are two cases to consider, as the arc joining vi to vj can be a forward

arc or a backward arc.

15

Suppose the arc joining vi to vj in P is a forward arc a(e i, ej'). In this

case the backward arcs of Nj are the same as those of Ni; hence, they have
nonnegative reduced weights by induction. Thus, we only need to show
D(Vq) - D(vp) < w(eq') - w(ep) for every B1 ()-swap (ep, eq'). Note that if

(ep, eq') is also a Bl (i)-swap we are done. So only consider B1 ()-swaps

which are not B1 (!)-swaps.

If (ep, eq') - (ef, ei), then

D(vj) - D(vi) + w(ej') - w(ei) ()
since a(ei, ej) is on the shortest s-d dipath P, and the desired inequality is
immediate.

For the remaining cases, consider B* - B1 (i) - e i + ej' - ep + eq', which

is independent in M. Suppose ep - ei, and eq' * e i. Then B* - B1 (i) - ei + eq'

and (ei , eq') is a Bi-swap. Therefore, w(eq') - w(ei) + D(vi) - D(vq) > 0 by
induction. Combining this inequality with (t) and ep - ej', we get

w(eq') - w(ep) + D(vp) - D(vq) > 0, and the result follows. A similar argument

applies when ep * ej' and eq' ei.

Finally, suppose ep * ej' and eq' * ei. Since (ep, eq) is not a

B1 (i)-swap, yet B* is a base, it follows from Remarks 1 and 2 that both

(ep, ej') and (ei, eq') are B1 (i)-swaps. Thus, w(ej') - w(ep) + D(vp) - D(vj) 0,

and w(eq') - w(ei) + D(ei) - D(eq) > 0. Summing these inequalities and

applying (t), we get w(eq') - w(ep) + D(vp) - D(vq) > 0.
Now suppose the arc joining vi to vj in P is a backward arc a(fi', fj).

Then B1 (j) - B1 (i), and the forward arcs of Nj are the same as those of Ni.
Hence, they have nonnegative reduced weights by induction. Thus, we only
need to show D(vp) - D(vq) 0 for every B2 (J)-swap (ep', eq). Note that if

(ep', eq) is also a B2 (i)-swap we are done by induction. So only consider

B2 0)-swaps which are not B2 (i)-swaps.
If (ep', eq) - (f1j, fi'), then

D(vj) - D(vi) ("1)

16

since a(fj', fi) is on the shortest s-d dipath P, and the desired inequality is
immediate.

For the remaining cases consider B** - B2 (i) - fj + fi'- eq + ep', which
satisfies the cardinality conditions for each Ei since (ep', eq) is a

B2)-swap. Suppose ep'- fj and eq * fi'- Then B** - B2 (i) - eq + fi', and

(fi', eq) is a B2 (i)-swap. Hence, D(vi) - D(vq) 2t 0 by induction. This and

equation (ft) show that D(vp) - D(Vq). The proof is similar when ep' * fj and

eq = fi
Finally, suppose ep' * fj and eq * fi'. Since (ep, eq) is not a

B2 (i)-swap, yet B** is independent in the partition matroid, it follows from
Remarks 1 and 2 that both (ep', fj) and (fi', eq) are B2 (i)-swaps. Thus,

induction yields D(vp) - D(vj) _> 0 and D(vi) - D(vq) 2! 0. Summing these
inequalities and applying (f), we get D(vp) - D(vq) !0. //

We now summarize the complexity of the algorithm. O(r) iterations
will be needed, one iteration for the removal of each artificial element in
the initial solution. In each iteration we need to construct S(B), find a
shortest s-d dipath, and update the variables D(vi). Recall that IEI - n, and c
represents the time required to find the circuit of I + e' in M (or show that
none exists), where I C E is independent.

To construct S(B) for the problem (PI H), E C H C F, we solve the
following circuit recognition problem for each e' e H - B: Check whether
B + e' is dependent in M(H), and, if it is, find the unique circuit of B + e'. This
task requires time c for each e' e H - B. So the complexity of constructing
S(B) is 0(nc). In some instances it is possible to speed up the construction
of S(B), as not all parallel arcs need to be constructed, but only the shortest.
An example of this will be given in Section 5.

Using the fast implementation of Fredman and Tarjan (see [FT]), the
complexity of finding a shortest s-d dipath by Dijkstra's algorithm is at
most O(p + m log m), where p is the cardinality of the set of arcs from S*(B)
used. Recall that we do not need loops and only consider the shortest in each
group of parallel arcs to find a shortest s-d dipath.

,9 *- ' ;; ', .: ..

17

Note that the variables D(vi) needed in Theorem 6 are actually

computed in the course of finding a shortest s-d dipath. Thus, no extra

computations are needed. Also, nc will be larger than p. Therefore, the
overall complexity of the algorithm is O(r(nc + m log m)).

4. Weighted bipartite matching.

Consider a graph G - (V, E) and a weight function w: E -> R. The
matching problem consists of finding a minimum weight subset F C E such

that each node of V is incident with exactly one member of F. In this section
we assume that G is a bipartite graph where the partition V1 u V2 - V is

such that IVlI - IV21. The weighted bipartite matching problem, also called

the assignment problem, is a special instance of problem (P) where the
partition of E is induced by the nodes of V2. Specifically, e e Ei if and only

if it is incident with node vi e V2 . For each i, Ii - ui,- 1. The matroid M is

also a partition matroid, namely the one induced by the node set V1.

For this problem r - IVI/2, n - IEl, and m - IVI/2. To obtain the
complexity of our algorithm for this problem, we have to determine the
complexity of constructing S(B). Note that the circuits of M have length 2;
so the number of forward arcs of S(B) is at most IEI. Similarly, there are at
most IEI backward arcs.

Thus, the construction of S(B) requires time O(IEI). Since the Fredman
Tarjan algorithm finds the minimum length dipath in time O(IEI + IVI log IVI),
the overall complexity is O(IVI IEI + IVi elog IVi).

Note that our algorithm is closely related to the usual augmenting path
algorithm. Although this algorithm and the associated bound are not new, it
is interesting that they are obtained using the state graph approach. Recall
that the general matroid intersection algorithm only gives the bound
O(IVl2 tEl).

i • • " • e• G lr o • . ' C. * * * %" - .• •~. .w t • J + . l '- + . . .=•o•.+ .
+

orl w' I r P

o- ,, . ;' ' . ,/,_, +p',,!, + +,+,i .? . ,+,,- . - .- , ? *,'-+ ,,C,,_ , , • ,, + .. -. +- .

18

5. Minimum spanning trees.

Let G - (V, E) be an undirected graph, and let each edge of G be assigned
a weight. Let V* - { , Vu2, .', "Um-1) be a stable set of G; that is, no edge of E

has both endpoints in V*. For i - 1, 2, ..., m-i, let Ei denote the edges which

are incident with node i in G, and let Em be the remaining edges. For each i

assign two integers Ii and ui, where Ii < ui . The minimum spanning tree

problem with restrictions on the number of edges in each Ei is an instance of

(P): M is the graphic matroid defined on the edge set E, and the partition
matroid is given by the restriction that the number of edges from state i
belongs to the interval [Ii, ui].

An interesting feature of this instance is that, by using the special
structure of the tree, we do not need to construct the entire state graph S(B).
However, our method requires that we work with spanning trees. So, instead
of simply extending the graphic matroid M to M(F) as described in Section 3,
create an artificial edge in G for each artificial element so that the
resulting first solution, Bo + A, is a spanning tree in the extended graph

G* - (V, E + A).
Define the star of a node to be the set of edges incident with that

node. Suppose the nodes are ordered from 1 to IVI. For node 1 define its net
• star to be its star. Then, for i - 2, 3, ..., IVI, define the net star of node i to

be its star, excluding edges which appear in the stars of nodes 1, 2, ..., i-1.

Let V* be nodes 1 to m-1, and let the remaining nodes be nodes m
to IVI. Then the net star for each node oi in V* is Ei , and Em consists of the

net stars for V - V*. Begin by sorting the edges in each net star in ascending
order by weight. At worst, this work is O(IEI log IVi). Note that we need to
sort the edge weights only once since the reduced weights only add a
constant to all the edges in the same net star. At each iteration of our
algorithm, in the construction of each new state graph, proceed as follows:

1. Set up (or update) the current basis tree with a root and predecessor
indexing.

L e..... . . * S; , *.. ,%...-. .- .. . i ' ..

19

2. For i - 1, 2, ..., IVI, start with all nodes unlabeled, and perform the
following labeling procedure, examining nonbasic edges in node i's net star in
ascending weight order.

(a) Label all nodes in the predecessor path from node i to the root
with an x, and label i with a y.

(b) Let j be the other endpoint of the nonbasic edge (i, j) currently
under examination. Trace the predecessor path for j until reaching a
labeled node k, where, possibly, k - j. The edges between k and j in the
tree have never been examined for the current node i. Check each as an edge
to swap with (i, j), either to create a forward arc in the state graph, or to
replace an existing parallel one of larger weight. As this check occurs, label
the nodes between nodes k and j in the tree, excluding k, with a y.

(c) If node k has a y label, repeat (b) with the next edge in node i's
net star. Otherwise, k has an x label and, hence, lies on the predecessor
path from node i to the root. In this case, trace from node k to node i,
and consider swapping each edge encountered with (i, j), stopping when
encountering a node with a y label. When this occurs, label each node
encountered with a y.

Note that all nodes of every cycle formed with an added edge will be
labeled with a y, although possibly not all of the cycle will be examined on
the current step, since some edges may have been examined before. Also, at
every step, the edges examined will be exactly the edges of the current cycle
that have never been examined before. Finally, because we examine the
nonbasic edges of each net star in order by increasing weight, we find the
minimum weight arc in S(B) from vi to vj for each pair (vi, vj) of states.

We now consider the complexity of our algorithm. During the pass
through the net star for node i, which has at most IVI - i edges, the work of
examining the edges to be dropped will be on the order of the number of
nodes in the tree, not previously labeled, which are now labeled. So, O(IVI)
work is required for each nonempty net star, which yields O(IV12) work total.

Note that the complexity due to the Fredman-Tarjan shortest dipath
algorithm, at most O(m2), is dominated by the O(IV12) required to construct
each state graph. The grafhic matroid has rank at most IVi - 1. Hence, the
overall complexity is O(IVl").

q,, -. ; :' ::- : .. ." :- i:: : " : . ' .- ,.

20

In the special case where Ii - ui - 2 for i - 1,2, ..., m-1, and Im - 0 and
Um - IVI - 2m + 1, the greedy phase of finding a starting solution B0 can

substantially reduce the number of iterations needed. For i - 1, 2, ..., m-I,
add a constant ci to the weights of the edges incident with node ui in V*.
We assign large enough values to the constants so that the greedy phase will
first choose IVI - 2m + 1 edges in Em to construct the spanning tree. Let w
be the weight of the last edge added. For i - 1, 2, ..., m-i, we adjust the
constant ci so that the minimum weight edge incident with 'i has weight w

and, therefore, can be chosen next in the greedy phase.
This extended greedy solution B0 contains IVI - m edges, so only m-1

artificial elements are needed. They can be chosen so that B0 + A is a tree
having degree 2 at each of the nodes of V*. Furthermore, if the weights of
the artificial elements are chosen small enough, B0 + A is an optimum
solution of (PI E + A) and, therefore, a valid start for our dual algorithm.
Hence, only m - 1 iterations of the algorithm are needed. This yields an
algorithm of complexity O(m JVt2).

In this case (P) is the problem of finding the minimum weight spanning
tree in G such that every node in V* is adjacent to exactly two edges of the
tree. Note that such a spanning tree is a relaxation of a hamiltonian path,
namely, a simple path which contains each node.

Consider the following variant of spanning trees. A 1-tree is a graph
with nodes (1, 2, ..., IVI} consisting of a spanning tree on (2, 3, ..., IVI) together
with two edges incident with node 1. The traveling salesman problem on
G - (V, E) seeks a minimum weight tour, a cycle which passes through each
node exactly once. Observing that a tour is precisely a 1-tree in which each
node has degree 2, Held and Karp explored approaches to the traveling
salesman problem which involve 1-tree relaxations (see [HK1] and [HK2]).

Our technique permits a generalization of Held and Karp's method to
yield a constrained 1-tree as follows. Suppose the nodes are indexed so that
(1, 2, ..., m-I) is a stable set of G, and let V* - {2, 3, ..., m-1). Then, instead
of using a general spanning tree on {2, 3, ..., IVII, find a minimum weight
spanning tree such that every node in V* has degree 2. Add the two edges
incident with node 1 of minimum weight. Clearly, this constrained 1-tree is
still a relaxation of a minimum weight tour. It is tighter than the 1-tree

.9

'.9
•

d ' r " == " , " , " ' .% ' " .. e . 't " , ' ""u" ' -q., * . _' .' _' .. ' ' r .t ' m " %

21

relaxation, which is obtained when V* - 0.
A still tighter relaxation can be obtained using the net star

construction. For each node i, let ri be the number of edges deleted from its

star to create its net star. Then we can stipulate that the spanning tree on
(2, 3, ..., IVI) must contain at least max{O, 2 - ri) and at most 2 edges from
the net star of each node i > 2, which introduces additional constraints to the
requirement that every node in V* has degree 2. This is a valid relaxation of
the traveling salesman problem even if (1, 2, ..., m-i) is not a stable set.
Note that the complexity of the algorithm in this case is still O(m IV12).

Finally, consider problem (P) where M is a graphic matroid and E1 , E2,

Em is a general partition of the edge set. Net stars can still be used
within each El; therefore, the least weight arc from state i to each of the

other states can be found in O(IV12). This yields a complexity of O(mIVi2) for
the construction of the state graph and O(mVI3) for the overall algorithm.
This improves on the complexity of the general matroid intersection
algorithm when IEI > O(mVI). We leave open the question of improving this
complexity bound.

References.

[BCG] C. Brezovec, G. Comu6jols, and F. Glover, "Two algorithms for weighted
matroid intersection," Mathematical Programming 36 (1986).

[El] J. Edmonds, "Submodular functions, matroids and certain polyhedra," in:
R. Guy, ed., Combinatorial Structures and their Applications,
Proceedings of the Calgary International Conference, (Gordon and
Breach, New York, 1970) 69-87.

[E2] J. Edmonds, "Matroid intersection," Annals of Discrete Mathematics 4
(1979) 39-49.

[FT] M.L. Fredman and R.E. Tarjan, "Fibonacci heaps and their uses in
improved network optimization algorithms," Proceedings of the 25th
Annual IEEE Symposium on the Foundations of Computer Science
(1984) 338-346.

V~~~~I fV v lotS.W .W - 5 ~ w *

%,%%*!*,%

%
% 0- N

