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ABSTRACT

We consider the decentralized detection problem, in which a number N of identical sensors transmit

a finite-valued function of their observations to a fusion center which then decides which one of M

alternative hypotheses is true. W consider the cae where the number of sensors tends to infinity.

We then show that it is asymptotically optimal to divide the sensors into M(M - 1)/2 groups, with

all sensors in each group using the same decision rule in deciding what to transmit. We- also show

how the optimal number of sensors in each group may be determined by solving a mathematical

programming problem. For the special case of two hypotheses and binary messages the solution

simplifies considerably: it is optimal (asymptotically, as N -* oo) to have each sensor perform an

identical likelihood ratio test and the optimal threshold is very easy to determine numerically.
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I. INTRODUCTION AND PROBLEM DEFINITION.

The (static) decentralized detection problem is defined as follows. There are M hypotheses

HI , " ', HM, with known prior probabilities P(H,) > 0 and N sensors. Let Y be a set endowed with

a a-field I of measurable sets. Let yi, i = 1, ... , N, the observation of the i-th sensor, be a random

variable taking values in Y. We assume that the y,'s are conditionally independent and identically

distributed, given either hypothesis, with a known conditional distribution P(y(H), j = 1, ... , M.

Let D be a positive integer, Each sensor i evaluates a D-valued message ui E {1, ...,D}, as a

function of its own observation; that is ui = -I,(y,), where the function "y Y '-* (1, ... , D} is the

decision rule of sensor i and is assumed to be a measurable function. The messages uI, ... ,UN

are all transmitted to a fusion center which declares one of the hypotheses to be true, based on a

decision rule 7 (1,..., D} N  -, (1, ...,M}. That is, the final decision uo of the fusion center is given

by uO = y7o(u, ... )uN). The objective is to choose the decision rules 'O,'1, N of the sensors

and the fusion center so as to minimize the probability of error in the decision of the fusion center.

(An alternative formulation of the problem, of the Neyman-Pearson type will be also considered

in the last section.)

The above defined problem and its variants have been the subject of a fair amount of recent

research [TS, E, TA, LS], especially for the case of binary hypotheses (M = 2) and binary messages

(D = 2). For the latter case, it is known that any optimal set of decision rules has the following

structure. Each one of the sensors evaluates its message u, using a likelihood ratio test with an

appropriate threshold. Then, the fusion center makes its decision by performing a final likelihood

ratio test. (Here, the messages received by the center play the role of its observations.) Without

the conditional independence assumption we introduced, this result fails to hold and the problem is

*. intractable (NP-hard), even for the case of two sensors ITA]. Assuming conditional independence, LI

the optimal value of the threshold of each sensor may be obtained by finding all solutions of a set of

* coupled algebraic equations (which are the person-to-person optimality conditions for this problem) /M6

-; and by selecting the solution which results to least cost. Unfortunately (and contrary to intuition),

even if the observations of each sensor are identically distributed (given either hypothesis) it is
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not true that all sensors should use the same threshold (see the Appendix for an example). This

renders the computation of the optimal thresholds intractable, when the number of sensors is large.

To justify this last claim, consider what is involved in just evaluating the cost associated to a fixed

Set -10, -1 ..... 7N, of decision rules if each sensor uses a different threshold. In order to evaluate

the expected cost, we have to perform a summation over all possible values of (U 1 , ... , UN), which

* means that there are 2 N terms to be summed. (This is in contrast to the cms of equal thresholds

in which the Uj's are identically distributed and therefore the binomial formula may be used to

obtain a sum with only N + I summands.) Of course, to determine an optimal set of decision rules

* this effort may have to be repeated a number of times. This suggests that the computational effort

* grows exponentially with the number N of sensors.

The above discussion motivates the main results of this paper which show that, for the case

M = 2, D = 2, it is asymptotically optimal to have each sensor use the same threshold and

provides a simple method for computing the optimal threshold. For the general case of M > 2

hypotheses, it is no longer true, not even in the limit as N - cc, that each sensor should use

the same decision rule. Nevertheless, we show that, as N - cc, at most M(M - 1)/2 different

decision rules need to be used by the sensors. The determination of an asymptotically optimal set

of decision rules is still a hard computational problem, except for the case where the observation

set Y is finite and of small cardinality.

Notation: Throughout, Pi will stand for the (conditional) measure P(.jI H,) on (Y, 7), under

hypothesis Hi. Furthermore, E4.J will stand for expectation with respect to the measure P,.

11. THE BAYESIAN PROBLEM.

We start by noticing that, having fixed the decision rules '~ .,~ of the sensors, the optimal

- decision for the fusion center is determined by using the maximum a posteriori probability (MAP)

rule. (The messages to the fusion center are to be thought as measurements available to it.) Thus,

-yo is straightforward to determine in terms of -y,.. YN. For this reason, we shall be concerned only

*with the optimization with respect to (-Yi 1 , IN) . Any such set of decision rules will be denoted,
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for convenience, by yN .

We introduce some more notation. Let F be a set of decision rules among which the decision

rules of each sensor are to be selected. In general, we should take F to be the set of all (measurable)

functions from Y into the set {1, ... , D}. However, we may, for some reason, wish to restrict to a

smaller class of decision rules, possibly having some simplifying structure. We return to this issue

in Section III. Let rN be the Cartesian product of r with itself, N times. For any -yN E rN, let

JN( 7 N) be the probability of an erroneous final decision by the fusion center (always assuming

that the fusion center uses the MAP rule). We are concerned with the minimization of JN(_yN),

over all -yN E FN, when N is very large.

It is easy to show that, as the number of sensors grows to infinity, the probability of error goes

to zero, for any reasonable set of decision rules, in fact exponentially fast. Consequently, we need

a more refined way of comparing different sets of decision rules, as N --. oo. To this effect, for

any given value of N and any set -yN of decision rules for the N-sensor problem, we consider the

exponent of the error probability defined by

rN(b') = log JN(-N)
N

Let RN = infNerN tN(-yN) be the optimal exponent. Let F0N be the set of all 1 N E rN with

the property that the set (71, ..-,-IN) has at most M(M - 1)/2 different elements. Let QN =

inf~ Erow rN(-yN) be the optimal exponent, when we restrict to sets of decision rules in N . The

following result shows that, asymptotically, optimality is not lost, if we restrict to 'oN .

Theorem I: Subject to Assumption I below, limN...m(QN - RN) = 0.

The rest of this section is devoted to the proof of Theorem 1. We first need to introduce some

auxiliary tools.

Let us fix some -Y E F. The mapping from the true hypothesis H. to the decision of a sensor

employing the decision rule -y may be thought of as a noisy channel which is completely described

by the probabilities

'pj'(d) = P(-(y) = d).
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The ability of such a channel to discriminate between hypotheses H, and H, (i # j) may be

quantified by a function 4j ('-y, s), s E [0, 11, defined by the following formula [SGBI:9]
A,(*,s) = log (p('(d))'-1)(d))"

We use here the convention 00 = 0; thus, the summation in (1) is to be performed only over those

d's for which p,(d)p,'(d) A 0. Assuming that ;41(y, s) is not infinite, it is easy to see that ij(-y, s),

is infinitely differentiable, as a function of s, and its derivatives are continuous on [0, 1], provided

that we define the derivative at an endpoint as the limit when we approach the endpoint from the

interior.

Notice that, for any fixed -y, the function j4,(-y, ) is equal to E[eex], where X is the log-

likelihood ratio of the distributions p7(.) and p.(.), where the expectation is with respect to the

distribution p,'(.). Aj is well-known, minimizing the characteristic function of a random variable

X yields tight bounds on the probability of large deviations of X from its mean. Since in this case

X is the log-likelihood ratio, this method leads to tight bounds on the probability of error. One

particular such result that we will use is taken from [SGBj:

"' * Lemia 1: Let there be two hypotheses H' and H". Let ZI, ... ,ZN be measurements taking values
.1d

in a finite set { 1, ..., D), which are conditionally independent given the true hypothesis and suppose

that the conditional distribution of z., when H is true, is described by p' (d) = P(z, = d I H) Let

(i',s) = log 1- (

and A(s) = I-'U. , (). AMume that 0(j,a), A,(j, s), p;"(i,s) exist and are finite, where a prime

stands for differentiation with respect to s. Let s' minimize p(s), over s E [0, 11. Then,

a) There exists a decision rule for deciding between H' and H", on the basis of the measurements

Z ,...,Z N, for which

P(decide H' I H" is true) + P(decide H" I H' is true) < 2 exp{j(s')}.

b) For any rule for deciding between H' and H", on the basis of the measurements z, ... ,ZN, we

have
1

P(decide H'I H" is true) + P(decide H" H' is true) > -exp{A(a') - [2p"(s*)] /1},

5
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where a prime indicates differentiation with respect to s.

Proof: Part (a) of the Lemma is the Corollary in p.84 of [SGBJ. For part (b), it is shown in [SGB]

(equation (3.42), p.87) that

P(decide H'I H" is true) + P(decide H" I H' is true) >

1 1

exp{p(a) - [2'(s) - s2A"()J'"2 } + I exp{M(,) + (I - As'(s) - (1 - )f2M"(a)1"), V8 E (0, 1).

If s" E (0, 1), we have p'(a') = 0 and the desired result follows immediately. If g* = 0, we may

take the limit in the above inequality, as s . 0. Since IA" is continuous, and therefore bounded, we

have lim. 1 0 sj,"(s) = 0, which yields

P(decide H'I H" is true) + P(decide H" I H' is true) 2! exp{ps(O)} 2! exp{(0) - [2M"(0')11 1 2 .

The last inequality follows because ; is convex and therefore j"(s) 2! 0, Va. The argument for the

case s' = 1 is identical. *

The bounds of parts (a) and (b) of the Lemma could be far apart if ;" is left uncontrolled. For

this reason we introduce the following assumption:

Assumption 1: a) JA(-I, ) < oo, V-y E r, vi o j, ve E [0, i.

b) There exists a constant A such that Ipu' (-f,s)I < A, Vs E [0, 1], V-y E r, Vi i j.

The content of this Assumption is explored in Section VI; it is shown there that it corresponds

to some minor restrictions on the distribution of the observations, which are satisfied in typical

situations of practical interest.

As a preview of the remainder of the proof, we use Lemma 1, for each pair of distinct hypotheses

to argue that the decision rules -11, .IN of the sensors should be chosen so as to minimize

N

max min 8)((ia). i#y) , 10,1I k= 1

We reformulate this as a linear programming problem and use linear programming theory to show

that a small number of different 'Tb's suffices.
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Let F be the set of all finite subsets of r. For any F E 7, let

A(F) = min max min z ij(-y, a),2, (ji): ,#) .OEO,1I

where the minimization with respect to z, is subject to the constraints

X* __ 0, Vy E F, (2a)

: - . (2b)
IEF

Let

A*= inf A(F).
I FEY

Let us fix N and some collection -9' E FN of decision rules. Let a = mini P(Hi). We then have,

using part (b) of Lemma 1,

JN(- N ) = Z P(decide Hi I Hj)P(Hj)
2({,j: 4$j}

'--- - 2,f(k ai) 12

where a! minimizes 14f ks) over s E 0, 1]. Let F be the set of different decision rules

(elements of r) which are present in the collection 9v of decision rules. For each -y E F, let z., be

the proportion of the sensors using decision rule -f; that is zf is equal to the number of k's such

that -Ik = -y, divided by N. By construction, the coefficients zy satisfy the constraints (2a-2b).

Using Assumption lb to bound a*.(-y, ,,), the definition of and the definition of A(F), we have

JN( N)> exp max mi N z-11%(Y,) - (2NA)/2) >2 ( ,): i#') E[O. EF

e JAVFe)-(2NA)1/2 > CI eNA-(2NA)1 /'

This shows that RN A* - (2A/N) / + * log(a/2). Taking the limit an N --+ oo, we obtain

lim inf Rv > A*. (3)
N-600

7
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Lemma 2: A* = infjPEr A(F), where To is the collection of all subsets of r of cardinality no larger

than M(M - 1)/2.

Proof: Given some F E 7, let s!., z, be such that the constraints (2a), (2b) are satisfied and

A(F) max ;u (Isi.

(Such s?., zx; exist because the quantity max((j,): I)F z s ) is continuous in s1 ,

z. and is defined over a compact set; therefore, the minimum arising in the definition of A(F)

is attained.) In particular, if the a! .'s are fixed, then the X;'s are determined by minimizing

max((,j): i# ) E F z.,;(-y, s,9), subject to the constraints (2a)-(2b). This minimization is equiv-

alent to the following linear programming problem:

min A

subject to

A > F, X-1J I% j,

z.___0, V-y E F,

,yEF

Let T be the cardinality of the set F. The above defined linear program has T + 1 variables and

T + 1 + M(M- 1)/2 constraints. From linear programming theory [PS], we know that there exists an

optimal solution at which the number of constraints for which equality holds, is no smaller than the

number of variables. Therefore, with this optimal solution at most M(M - 1)/2 of the constraints

hold with a strict inequality, which implies that at most M(M - 1)/2 of the xz's are nonzero.

Therefore, for any F E I there exists some F' E Yo such that A(F') _< A(F) This completes the

proof of Lemma 2. 9

Let us fix some N and some e > 0. Let F be a subset of r of cardinality no larger than

M(M - 1)/2 (that is, F E To0), such that A(F) :5 A* + e, which exists, because of Lemma 2. Let

z;, and a! be such that

max A ( a.) = A(F) < A + e.(04,): i.#), $

8



We now define a collection I/N of decision rules to be used by the N sensors: for each - E F, we

let exactly [Nzx;] of them use the decision rule -y; if there are any remaining sensors, which is the

case if Nz; is not an integer for some -y, we let these sensors use an arbitrary decision rule out of

the set F. Let No be the number of these remaining sensors.

We now estimate the probability of error under this particular -IN. The probability of error is

bounded above by the probability of error for the case where the fusion center chooses to ignore

the messages transmitted by the last No sensors and this is what we will assume. We now have

JN(_y N) < 1 P(decide H, I Hi is true)P(H,) <
((,j'): j}

M2 max [P(decide H, I H, is true) + P(decide H, I Hi is true)]. (4)
f{(sd): i~j}

The expression inside the brackets in the right hand side of (4) refers to the probabilities of error

for a context in which Hi and Hi are the only hypotheses. Since the fusion center uses the MAP

rule, it is using a decision rule which would be optimal even if it had to discriminate only between

the two hypotheses H, and Hi (always assuming that the last No messages are ignored). Thus, for

each pair of hypotheses, the upper bound on the probability of error furnished by Lemma 1(a) is

applicable. This yields

JN(,IN) 2M 2  max exp LNzJpj'',s. . (5)(4j): 4*j) -E-

We now use the inequality Nx; - [N .*j < I to obtain

x: ~ ~ ~ S Z% NZ,4(. ,) + N z;pAi,(-yj,) + K,

-EF "VEF "YEF -YEF

where K is a constant independent of N. We substitute the above inequality in the right hand side

of (5), then take logarithms and divide by N to obtain

Q lN < lgJN ('yN) < 2logM logK K'
- - Nc): N' -ma

where K' is another constant independent of N. We take the limit as N -- oo and use the fact

that e was arbitrary to conclude that limsupN..= QN 5 A'. We combine this inequality with (3)

and the obvious inequality RN :_ QN to complete the proof of the theorem. .
U9
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III. SPECIAL CASES AND COMPUTATIONAL CONSIDERATIONS.

Let us start by stressirng that the proof of Theorem 1 is constructive and suggests a procedure

for determining an asymptotically optimal set of decision rules. Namely, we have to solve the

optimization problem defining A'. The value of A* is the optimal exponent and the associated

optimal values of the z.'s are the proportions of the sensors who should use each decision rule y.

Theorem 1 is most useful in the case of binary hypotheses (M = 2) and binary messages (D = 2).

For that case it is known [TS] that, without any loss of optimality, we may assume that each sensor

decides what to transmit by performing a likelihood ratio test, with an appropriate threshold. We

thus let r be the set of all such decision rules. Furthermore, in this case we have M(M - 1)/2 = 1

and Theorem 1 implies that it is asymptotically optimal to let every sensor use the same threshold.

In order to compute A' we only need to optimize over all subsets of r of cardinality 1. Therefore,

the optimal threshold may be computed by solving the optimization problem

min m mm I2ns). (6)
rEF oEO,1l 1

Notice that each - E r can be described by a single real number, the value of the threshold being

employed. We are therefore dealing with a nonlinear optimization problem in two dimensions. In

typical problems, the probabilities p'(d) are given by simple analytical expressions, as a function

of the threshold corresponding to -. Therefore, simple analytical expressions are also available for

P12(7,s) as well. It is known that P12(7, S) is a convex function of ., for every -y [SGB], which

makes the optimization with respect to s easier. Unfortunately, we are not aware of any simple but

nontrivial examples in which the solution of the above optimization problem and the corresponding

value of the optimal thresho*.1 may be obtained analytically.

In the case of binary hypotheses (M = 2) and messages of arbitrary cardinality D > 2, it is

known that likelihood ratio tests are again optimal except that each decision rule consists of D - I

thresholds which determine which one of the D messages is to be sent. The same discussion as

for the case of D = 2 applies here and (asymptotically) each sensor should use the same set of

thresholds. The only difference is that - is parametrized by a (D - l)-dimensional real vector (as

10



opposed to a scalar). Thus, the problem (6), which needs to be solved in order to determine the

optimal thresholds, is a D-dimensional optimization problem. This may become quite hard unless

D is small, the reason being that, in general, u(-y, a) is not a convex function of the parameters

specifying -y.

For the case where M > 2, Theorem 1 is less useful for computing an asymptotically optimal set

of decision rules. The reason is that we have to perform an optimization problem over all subsets

of r of cardinality M(M - 1)/2. In principle, it seems possible to reformulate the optimization

problem defining A* in a way that avoids having to consider each such subset of r (which would

be impossible anyway if r' is infinite). Namely, we might perform the minimization

min max min J 143(-1,a) dz(-I),
zEP {(0,j): i$j} aEIO,lI r

where z(.) is a positive measure on r with z(r) = 1 and where P is the set of all such measures.

Leaving aside the technical difficulties in showing that this is an equivalent problem, it still does

not seem particularly promising from a computational point of view. It appears that the only cases

in which a numerical solution is possible are those cases in which the set Y is finite and has small

cardinality, because in that case r is also finite and has small cardinality. Notice that if F, C F2,

then A(F2) 5 A(FI). Therefore, if r is finite, we have A* = A(r). This suggests that in order

to compute A* it is preferable to ignore Theorem 1. instead of computing A(F) for each F of

cardinality M(M - 1)/2, and then taking the minimum, we may just compute A(r).

An Example: Let M = 3, D = 2 and let Y = {1,2,3}. Let each hypothesis be equally likely

and let the statistics of the observation y be as follows: conditioned on Hi being true, y takes the

value i with probability 1 - 2e and takes each one of the remaining two values with probability c

(0 < e < 1/4). There are three possible decision rules. The i-th possible decision rule is: -y,(y) = 1 if

and only if y = i. Notice that -yi does not provide any information useful in discriminating between

H2 and H3 . Thus, 1s(-yl,s) = 0, Va; similarly, jA12(13,a) = 1is(72,) = 0, Va. Furthermore,

by symmetry, /A12(111, A) pis(y,8) = I2s((17, ), etc. Let a be the value of the minimum of

p12 (71,s), over a E [0, 1]. Let zi be the proportion of sensors using -y,. The optimal values of

11
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z 1 , X2 , X3 are determined by solving the problem

a max {X+x 2 ,x 1 + X, 2 +xs},

over the unit simplex. It is easy to see that the optimal solution is z1 = = 3 -, exactly as

expected from the symmetry of the problem, and the corresponding value of the optimal exponent

A* is 2a/3.

IV. ALTERNATIVE INTERPRETATIONS.

*. Theorem 1 may be restated in a different language refering to a different context. For simplicity,

" we only consider the case M = 2. Suppose that we want to transmit a binary message and that we

have a collection of noisy, memoryless and independent channels in our disposal. We are allowed

to transmit a total of N times using any of the available channels each time. A receiver observes

the N outputs of the channels, uses its knowledge of which channels were being used, and makes a

decision on what was transmitted. The problem consists of finding which channels should be used

and how many times each, in order to maximize the probability of correct decoding. For small

N, it may be better to use a different channel each time, even if the original message is binary.

However, our result states that, for binary messages, as N -* oo, there is a single best channel

which should be used for all transmissions. To see the analogy, think of the hypothesis Hi or H2 as

the value of the binary message which we want to transmit and think of u, as the output of the s-th

transmission. A different channel corresponds to a different decision rule and the characteristics of

the channel correspond to the quantities p,(d).

A different analogy may be made in the context of optimal design of measurements for failure

detection. Suppose that we have a system which may be in one of two states: up or down. We

have a collection of devices which may be used for failure detection. They are, however, unreliable

and may make errors of both types. Furthermore, the probabilities of either type of error can be

different for different devices. Suppose that, in order to increase reliability we want to use N such

devices. Then, our result states that, as N - oo, there exists a single best device and that we

should use N replicas of it, rather than using many devices with different characteristics.

12
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V. THE CONTENT OF ASSUMPTION 1.

In this section we explore Assumption 1. Our objective here is to obtain conditions on the

distributions Pi under which Assumption 1 can be shown to hold. Proposition 1 below deals with

Assumption 1(a).

Proposition 1: Assumption 1(a) fails to hold if and only if there are two hypotheses H., H,, such

that the corresponding measures P and Pi are mutually singular.t

Proof: Suppose that Assumption 1(a) fails. Then, there exist some i, j and some -T E r for which

p7(d)pj7(d) = 0, Vd E {1,...,D}. Thus, for any d E {1,...,D}, the set {y E Y : '(y) = d} has

non-zero measure under P only if it has zero measure under Pi. Since the sets {y E Y : -y(y) = d}

cover the entire set Y, it follows that P and Pi are mutually singular. *

As a consequence of Proposition 1, we can see that if there are only two hypotheses and As-

sumption 1(a) fails to hold we are dealing with the uninteresting situation where each sensor is able

to determine the true hypothesis on its own, with zero probability of error. For the case of more

than two hypotheses, however, there are nontrivial detection problems in which Assumption la

fails to hold. We conjecture that a somewhat modified version of Theorem 1, covering such a case,

is possible. We now explore Assumption 1(b) and show that it holds for two interesting situations.

Proposition 2: Suppose that the observation set Y is finite and that Assumption 1(a) holds.

Then Assumption 1(b) also holds.

Proof: The derivatives of A,,(-f, a), with respect to s are easily calculated to be [SGB, equations

*' . (3.24)-(3.25)]:
D (p, (d)) (, (d))- p.'(d)

= (los ) ,j - [(4i-( 2)"log , (7)

alld= sumtin ar 2J.~ (cD1 (c(p!( c) yd)
JA (l, D (pi7 (d))'I- I(pj7(d))*. log M )2 - [,:,(" .(8)

io .,Y 8) ,-.H -" • "(d),(),_ .-_(P",(C)) -'(P7(C))8 p
where all summations are made over those c's and d's for which p7 (c)p! (c), (respectively, p' 7(d)py (d))I

is nonzero.

t Two positive measures PI, P2 , defined on a common (measurable) space Y are called mutually

singular if there exists a measurable subset U of Y such that P , (U) = P2 (Y - U) = 0.

13
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Let a be the minimum of p.(c), where the minimum is taken over all choices of -t, c, i, such that

p (c) > 0. Since Y is finite, the set of all possible decision rules -y is also finite and therefore a

is the minimum of finitely many positive quantities and is itself positive. By Assumption 1(a) the

denominator in equation (7) must have a nonzero summand and this summand will be bounded

below by al-40" = a. The numerator is bounded by D. Concerning the logarithmic term, it is

bounded, in absolute value, by I log al, for any d in the range of the summation. We conclude that

" (-, s) is bounded in absolute value by a constant independent of i, j, -1, s. A similar argument

applies to j,"(-y, s) and concludes the proof.

- PropoItion 3: Suppose that, for any i, i, the measure P is absolutely continuous with respect

to P3 and let L,, denote the Radon-Nikodym derivative dP/dP,. Assume that
E4o 2 4] 0, Y,j. (9)

~E,[Iog2 L,,] < oo,

Then Assumption 1 holds.

Proof: The fact that Awumption 1(a) holds is immediate from our assumption of absolute conti-

•• nuity and Proposition 1.

For any decision rule -y : Y - {1,...,D), let P" be the smallest u-field contained in 7 with

respect to which the function -y is measurable. Let P,' denote the restriction of the measure P. on

" the u-field 7". It follows from the absolute continuity assumption that P.' is absolutely continuous

with respect to P'. We define L' to be equal to the Radon-Nikodym derivative dP,-''dP' As is
33

well known

L.'f = EL . 17"], a.. (P,). (10)

Consider the function * (0,o0) - (0, oo) defined by *(t) = t log2 t. An easy calculation shows

that it is convex. Therefore, using (10) and Jean's inequality,

E01log' L',j = E,JL log' L' = E,[@(L')j = E,)(EliL. , J"i)-

E[ E[#(Lo, ;Y l T = Ey Lo, log | L,, = E.log3 L.,.

Using (9), we conclude that there exits a constant B < o such that E, jlog' L', < BV

. using the inequality ElI', !5 1 E' z1- , we obtain the same conclumon for E, log L",

14
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Notice now that L7.(y) = p,(d)/p!(d), for every y such that -y(y) = d, almost surely. Using this

observation, equation (7) may be rewritten as

E(L7,).logLj]
= (-1,;8))= ' (11)

similarly, equation (8) becomes

Ei[(L,)* log' L7,]=S L ,
E4[(L) Y -[,,(7, a)1'. (12)

Using the obvious inequality (L7) :_ (1 + L7j), Vs E [0, 1], we obtain the bound

I ERog L7.11 + I E L7- log L'] E ( log L7. ]I + I Ej[log LV,11

We have already proved that the numerator is bounded. We now establish a lower bound on

E,[(V )I]. Since E,[Lj,] = 1, it follows that there exists a 7-measurable set Yo C Y and some

e > 0, 6 > 0, such that P(Y) 2t e and L,,(y) _> 6, V# r Y0 . Since z" > min{1,z}, we obtain

Es[L! ] 2 emin{1,6}, Vs E [0, 1]. We now use the fact that the function O(z) = z" is concave, for

any fixed s E [0, 11, and Jensen's inequality to obtain

E,(L," = Es[(E,[L,. I T])1] ? E4E[L;, IP] = Ej[LJ I min{1,6}.

%.* This concludes the proof that p'j(-, s) is bounded. The proof of the boundedness of u"(y, a) is

identical and is omitted. e

VI. THE NEYMAN-PEARSON PROBLEM.

In this section we consider the Neyman-Pearson version of the problem studied in the preceding

sections. We are given an observation set Y, endowed with a e-field Jr. There are two hypotheses

(M = 2) and for each hypothesis we are given a measure P, on (Y, Jr), i = 1, 2. Let D be a fixed

positive integer and let r" be the set of all measurable functions - : Y D- { ),...,D), As before, the

,-th sensor makss an independent observation y, whos statistics are described by P,, assuming

that hypothes H) is true. Again, the ,-th sensor transmits a message -y(V) to a fusion center,

where i e r, and finally the fusion center makes a final decision using a decision rule 7O. We allow

-N1
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-yo to be randomized. That is, the final decision of the fusion center may depend on the messages it

has received as well as an internally generated random variable. Let r0 be the set of all candidate

decision rules yo for the fusion center.

For any given (10, -,., '7 N) E ro x rN, consider the probabilities of error defined by

JI(o, 1,...,YN) = PI(7o(-Y(Y,),.'-(YN)) = 2), (13)

JN(1o,0,,...,yN) = P2 ( 0 ((Y1)," .Y(YN)) = 1). (14)

Let us fix a constant P belonging to (0, 1). We would like to minimize J I('o, -.. ,N), over all

70, ...,', v satisfying

A(o,,",N) <_ '-11. (15)

The optimal value of JkI falls exponentially with N and we define

vN (70,...-,.YN) 1 10 loN3 C-to''"I).-

Let

RN = inf rN(yo," ,'N), (16)

where the infimum is taken over all (70," ,..N) E ro x rN satisfying (15). We will use the following

assumption:

Assumption 2: a) P is absolutely continuous with respect to PI;

b)

E2 [log2 ( ) < A oo, (17)

where dP2 /dP is the Radon-Nikodym derivative of the two measures.

We define 7'r and P,' as in Section V: 11 is the o-field on Y generated by -y and P' is the

measure P restricted to 7'. The argument in the proof of Proposition 3, in Section V, applies

here and shows that E,[log'(dPI/dP')] :_ A, Y- e r. The latter inequality also implies that there

exists some B < oo such that

) E., log dpJB B, Y r'7E. (17)

16



The quantity K(-y) defined by equation (18) may be recognized as the Kuilback-Liebler [KL] infor-

mation distance between the distributions of the random variable 1(y) under the two alternative

hypotheses. It is guaranteed to be nonnegative. Furthermore, Stein's Lemma [B] states that K('I)

is the asymptotic error exponent if all sensors are using the same decision rule -y and if the fusion

center chooses -y0, according to the Neyman-Pearson Lemma. In light of this fact, the following

result should be expected.

Theorem 2: If Assumption 2 holds, then

(i) limN-.. RN = - supEr K('y).

(ii) The value of RN stays the same if in the definition (16) we impose the additional constraint

'1 = "'" -- N.

Proof: (Outline) Fix some e > 0 and let -y' e F be such that K(VI') >_ supEr K(7Y) - e

Let the fusion center choose -yo optimally, subject to (15). From Stein's Lemma, we obtain

limN.. rN(-0,-*....-. ) = -K(V1*). Inparticular, limsupN_.. RN <_ -K(-I') _5 -supyEr K('l)+l

e. Since e was arbitrary, we conclude that limOupN_.. RN 5 - supler K(-t) and we have shown

this bound to be valid under the additional constraint y, = N"N .

In order to complete the proof, it is sufficient to show that for any "To, ..., iN satisfying (15) we

have
I Nv

rN('o," ,.N) > - K( .)+ f(N) > -sup/K('y) + f (N), (19)

where f is a function with the property limN-.o f(N) = 0 and which does not depend on

70 ,",. N. While this result does not follow from the usual formulation of Stein's Lemma (which

uses the Assumption 'hs = " -=N), it may be proved by a small variation of the proof of that

Lemma, and for this reason the proof is omitted. Suffice to say that we may take the proof of

Stein's Lemma given in [B]. Wherever in that a proof convergence in probability of a log-likelihood

ratio to its mean is asserted, we replace such a statement with an inequality which bounds the

probability of a deviation of a log-likelihood ratio from its mean. Such an inequality is obtained

from Chebychev's inequality. Because of (17) the variance of the log-likelihoods of interest admits

the same bound, irrespective of the choice of the -,1's. For this reason, the function f in (19) may

17
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be taken independent of the -y's. The proof is then completed by taking the infimum of both sides

of (19), over all -10, ... ,-N and then letting N tend to infinity. *

We continue with a few observations. For simplicity we restrict our discussion to the case of

binary messages (D = 2).

It is easy to prove that there is no los of optimality if we constrain the -y,'s to correspond to

likelihood ratio tests [HVJ. If we are only interested in asymptotics, the same conclusion may be

obtained from Theorem 2: it is not hard to show that if a decision rule does not have the form of

a likelihood ratio test, then another decision rule can be found for which K(y) is even larger. This

leads to the conclusion that asymptotically optimality is not lost by assuming that each -, consists

of a comparison of the likelihood ratio computed by that sensor with a threshold.

As is well-known, randomization is generally required in optimal hypothesis testing, under the

Neyman-Pearson formulation. For this reason, we allowed the decision rule of the fusion center to

employ an internally generated random variable. We may ask whether anything can be gained by

allowing the sensors as well to use randomized decision rules. The answer is generally positive. For

example, if N = 1, then the best strategy is to let the single sensor perform an optimal Neyman-

Pearson test (for which randomization is needed) and have the fusion center adopt the decision of

the sensor. Interestingly enough, however, randomization does not help asymptotically as N -- oo,

which we now prove. For any two measures P, Q on (Y, Jr), let K(Q, P) = E[log(dQ/dP)], where

the expectation is with respect to Q. With this notation, K(-y) = K(P', P'), VY7 E r. It is known,

and easy to show, that K(Q, P) is a convex function of (Q, P). Suppose now that a sensor uses

a decision rule which involves randomization. The pair (P,1 , P,) of the probability distributions

of the message transmitted by a sensor using a randomized decision rule I lies in the convex hull

of such pairs of probability distributions corresponding to non-randomized decision rules. Using

the convexity pf K, it follows that randomization cannot help in increasing the supremum of K(-y)

and, therefore, does not help asymptotically.

From a computational point of view, the problem of this section is a little easier from the problem

of Section II, the reason being that we do not have the additional free parameter s of Section II.
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In particular, with decision rules parametrized by a scalar threshold, maximization of K('Y) is

equivalent to a one-dimensional optimization problem. As there may be multiple local optima,

some form of exhaustive search may be required.

As an illustration, we study the performance of a naive selection of the decision rule -Y of each

sensor. We let each sensor perform a maximum likelihood test and transmit its decision to the

fusion center. This is certainly a bad idea if N = I because in that the case the sensor should

perform a Neyman-Pearson test which is, generally, different from a maximum likelihood test. Still,

one may wonder whether such a naive prescription has any performance guarantees, as N - co.

The answer is negative, as the following example shows. Lot P and P2 be as in Figure 1. A decision

rule -y corresponding to a maximum likelihood test is to let -1(y) = I if and only if y > 1/2. For

this choice of -y, if we assume that e is small enough and use a Taylor series expansion we obtain

=(y log + lo5 At + _

where A is some poeitive constant. Let us now consider the decision rule -y given by -1(y) = I if

and only if y > 1. We then have K(-y) = log(1/(l - e/2)) _ e/2 + BE2 , for some constant B. We

conclude from this example that the naive decision rule suggested above can be far from optimal

(in terms of error exponent) by an arbitrary multiplicatiw factor.
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APPENDIX

We consider here the problem introduced in Section II, with two hypotheses (M = 2), binary

messages (D = 2), two sensors (N = 2), and with Vi, y. identically distributed and conditionally

independent given either hypothesis. We present an example which shows that it is possible that

different sensors may have to use different decision rules even if their observations are identically

distributed. An example of this type was presented in [TeSsj. However, that example used a special

cost function which introduced a large penalty if both sensors send the same message and the wrong

decision is made by the fusion center. Naturally, this creates an incentive for the sensors to try

to transmit different messages, and therefore use different decision rules. Thus, the asymmetry of

the optimal decision rules of the two sensors can be ascribed to this particular aspect of the cost

function and does not prove that asymmetrical decision rules may be optimal for our cost function

(probability of error).

%Our example is the following. We let H, and H3 be equally likely. The observations V1, y are

20



conditionally independent, given either hypothesis, take values in (1,2,3) and have the following

common distribution:

P(y = IIHI) = 4/5, P(y = 21H 1) = 1/5 P(y = 31H,) = 0,

P(y = II H2) = 1/3, P(y = 212) = 1/3 P(y = 3lH 2 ) = 1/3.

An optimal set of decision rules may be found by exhaustive enumeration. Since each sensor has

to perform a likelihood ratio test, there are only two candidate decision rules for each sensor:

(A) uj = I iff y = 1,

(B) uj = 1 iff y, E (1,2).

Thus, we need to consider three possibilities: (i) both sensors use (A); (ii) both sensors use (B);

sensor I uses (A) and sensor 2 uses (B). Naturally, we assume that the fusion center is using the

maximum a posteriori probability rule.

Explicit evaluation of the expected cost for each possibility shows that the optimal set of decision

rules consists of one sensor using decision rule A, one sensor using decision rule B and the fusion

center deciding H, if and only if ul = u2 = 1, for an expected cost of 19/90.
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