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Executive Summary 

The five manuscripts reproduced in this progress report 

cover the research of the Principal Investigator, Dr. Dan 

Shechtman, and his collaborators under the DARPA/ONR 

sponsored research program on icosahedral quazicrystals 

formed by rapid solidification of alloys.  First, 

~Tnicroscopic evidence for quasi-periodicity in an alloy with 

long-range icosahedral order is presented.  Local 5-fold 

rotational axes are observed to be uniformly distributed 

down to the atomic scale,  Twinning and modulated structures 

are ruled out based on the experimental data. 

In a hiqh rjesolution electron microscopy study on 

s the relevant rapidly solidified "AlgMri alloy ribbon 

characteristics of quasi-periodicity were demonstrated,  The 

particular topological properties of such a periodic network 

are best observed by direct imaging of the quasi-lattice in 

the electron microscope. 

The indexing of icosahedral quasiperiodic crystals is 

described by Cahn, Shechtman and Gratias including the step 

necessary to prove, by diffraction, that an object is 

quasiperiodic.  Various coordinate systems are discussed and 

an explanation is given for choosing one aligned with a set 

of three orthogonal two-fold axes.  Using this coordinate 

systeu the main crystallographic projections are presented 

and several analyzed single-crystal electron diffraction 

patterns are demonstrated. 
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In another manuscript Shechtman provides^experimental 

evidence for quasiperiodic crystals^.  The experiments 

include various diffraction techniques for studying the 

long-range order as well as the methods to determine the 

local atomic order. The diffraction pattern has well defined 

sharp peaks and fivefold rotational symmetry and the 

crystals, in different orientations, have more of these five 

fold diffraction patterns.  The lattice imaging technique 

was used extensively to study lattice defects.  The 

technique can be used to detect the fine structure of 

dislocation cores and microtwin boundaries.  No boundaries 

/ ,.-11- were seen/in the samples under investigation while the 

quasipeTriodic sequence of planes is clearly visible. 

"Neutron diffraction was used by Mozer, Cahn, Gratias 

and Shechtman to investigate the icosahedral phase of 

aluminum-manganese alloys^  All the peaks appear at the 

angles in agreement with the icosahedral indexing with a 

six-dimensional cubic lattice parameter of approximately 

0.65 mm. that decreased with increasing Mn content. 

The research results furnish additional strong 

documentation for the existence of the icosahedral 

quasicrystals.  A variety of characterization techniques are 

described and the experimental data is analyzed and 

explained.  The work advances our knowledge and 

understanding of quasicrystals and their relationship to 

chemical composition and solidification conditions. 
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MICRÜSCÜPIC    E'.'IDEMCE   FOR   QUASI-PEP I 00 I C I Ti    IN   A   SOL 10 

NITH   LONG-RAf-IGE   ICOSAHEORAL   ORDER. 

Abstract: 

High resolution electron microscopy images of an 

icosahedrai solid reueai many of the important geometrical 

characteristics of quasi-periodi city. In addition, the 

local 5-foid rotational axes are seen to be uniformly 

distributed down to the atomic scale; we find no evidence of 

an underlying 3-dimensional lattice, thereby ruling out the 

hypotheses   of   mi cr c> twi nn i ng   and modulated  structures. 

I 

I 
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Ue   recentlv   reported   (.1,2)    the   existence   of   a     metallic 

solid     with     long-range     or i en tat ionai      order   which  produce; 

sharp   diffraction   like   a     crystal,      but     whose     point     group 

(icosahedral     m35)      is      inconsistent     with     any      translation 

symmetry      in     3-dimen si onal      space.        Discrete        diffraction 

results     not     only     from     strict   periodicity   but   from   a  more 

general        and        less        restrictive       property        called        the 

"quasi-per lodici ty "      (or      " alrnost-per i odi ci t y " ) .      Structures 

which   are   quasi-periodic     may     exhibit      any     kind     of     point 

symmetry   including   five-fold   symmetry(4,5,6, 7).In   this   note, 

we     present     experimental      evidence     that      the     alloy     AlGMn 

rapidly     solidified     is     indeed   a   quasi-per i odi c   icosahedral 

solid   and   thereby   rule   out   several   alternate   proposals     such 

as  micro twinn i ng   (3)   and   incommensurate  modulated  structures 

O) .      Our   conclusions   are   based   on   the   sole   hypothesis     that 

high     resolution   images   in   electron   microscopy   show   the   same 

topological   properties   as   the     projected     potential      of      the 

st ructu re. 

The observations were made on a rapidly solidified 

ribbon of the composition Al-14.3 a/o Mn. Electron 

microscopy was performed on a JEOL 20ÜCX microscope equiped 

with a ultra-high resolution polar piece and a goniometer 

stage. Shown on Figure 1 is a single high resolution image 

oriented along a five-fold axis,the corresponding 

diffraction pattern and the optical Fourier transform of the 

image.  The indexing of the diffraction pattern requires the 

^M^Ä<£r^S^^ 
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i n t r oduct i or, of six indices, two per independent unit 

vectors,the fisrt one associated with integer length, the 

second one with the irrational length corresponding to the 

golde mean Z ( f =1 .613034...), an algebraic irrational 

number equal to 2cos7t/5 and therefore directly induced by 

the fiue-foid symmetry (10). A discrete Fourier spectrum 

with a finite number of integer indices but greater than the 

dimensionality defines a structure to be quasi-per lodi cC 3) . 

An important property of the quasi-periodicity results in 

the        unusual progressing        of the      intensities     of      the 

reflections. More r''d more intense reflections occur at 

distances n+mC in which m/n are the successive converqent 

approxirnants     of   L      . The        geometrical        properties        of 

quasiper i odic patterns have extensively studied these last 

years (for a general survey of aperiodic tilings see 

reference 11); rigourous algebraic derivations are now 

proposed (12,13,14) which generalize the original Pen rose 

tilings (4). All patterns of five-fold symmetry exhibit 

essential characteristics like Fibonacci sequences and 

invanance through hornothetic multiplication by the golden 

mean . 

| 

The high resolution image has indeed ail the essential 

properties of a two-dimensional generalized Penrose tilinq: 

short Fibonacci sequences of two fundamental lengths related 

by the golden mean are identified both in the spacing of 

rows and in the spacing of bright spots  within  rows;  also 

^»Mß^^^ 
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the same sequences and patterns occur at seveväl different 

scales of -nqth. This is par 11 cuiar j iy clear for pentagons 

of briqh. spots which interpenetrate at larger and larger 

scales. Although there is no strict periodicity, any finite 

feature on the micrograph is found repeated and oriented the 

same way at some finite (but not constant!) distance. This 

property ■ constitutes the essence of quasi-periodic patterns 

which are the" mott periodic" among the aperiodic patterns. 

Ne therefore conclude that we arc seeing in Figure 1 a 

projection along a five-fold axis of a quasi-periodic 

3-dimensional structure with icosahedral symmetry. This 

conclusion      is     consistent     with     the     recent illuminating 

mathematical derivation of Katz and Duneau (14) who 

demonstrated that the cuts along all high symmetry 

orientations (two-, three- and five-fold axes) of an 

icosahedral        quasi-lattice        are indeed 2-dimensional 

quasi-lattices. A complete report of the imaging of all 

high symmetry zones in high resolution microscopy will be 

published   elsewhere   (15). 

The   structural   hornogenei ty     of      the      icosahedral      phase 

down to the      atomic     scale     definitely      contradicts      the 

hypothesis of mi crotwinning in the sense in which this 

concept is commonly used. If microtwinning is redefined to 

include twinning of a size below the resolution of this 

microscope, the concept will have acquired a new meaning, 

which would   raise   more   questions   than   it     would     solve. It 

fc«^l>v^>Mj>>M^i>>l) Är;^:^;x&^^ 
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i-,i o u i d = 11 i 1 h a'' e to explain the long range o r i e n t a 11 o n a 1 

order, the typ real Fibonacci sequence?, the spatial 

self-simi1arity, as well as the unusual diffraction 

intensities which are perfectly well reproduced in 

kinernatical calculations based on quasi-per i odi ci ty 

(13,14,15) . 

Neak beam electron microscopy does reveal a mottling in 

the 5nm range. This has been interpreted as evidence for 

the presence of rni croer yst als and hence of twinning (8); 

from our high resolution study ue attribute this contrast 

mottling to the local variations of strains; this is 

confirmed by a continuous tilting experiment in the 

microscope: the bright area in dark field images move 

srnoo thly with no discontinuity. 

A more subtle problem is the distinction between this 

structure and incommensurately modulated structures. We 

found no evidence of an underlying lattice in direct space 

which is consistent, in the reciprocal space, with the fact 

that the diffraction pattern can  not  be  partitioned  into 

V- 

;-:■ 

mathematical      aspects      are     concerned,      any quasi-periodic 

function, including one with icosahedral symmetry, may be 

regarded as the diagonal cut of a purely periodic function 

of N variables where N is the dimension of the algebraic 

base   (here   N=3^2).      Accordingly,      Janner      and      Janssen      (16) 

y.^:\^.:< .i^*:^ 
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n 
ha^e     shown      that Z-moauie?      in     N   dirnens i on =    IN-5,I   are   the 

natural   extension of    the   notion   of   crystal.      At      that      point 

it      seerns      useful to   propose   a   scheme   for   classification   of 

crystals. 

A general diagonal cut will produce an i ncomrrierisurat e 

phase with irrational indices. The i ncornrfiensur at i on Maries 

with     the     angle     of      the     cut. In      real        crystals, the 

i ncomrnensur at i on   varies  with   temperature   and   composition   and 

always   results-   in   a   lowering   of    symmetry. 

I 

',-.■ 

Special cuts give rise to higher symmetries: this is 

the case for orientations of the N-dimensional space which 

correspond to isolated strata: as a result the 

i ncomrnensur at i on is locked to a fixed cut angle and cannot 

vary with temperature and composition. This is the case for 

the icosahedral phase which, in fact, corresponds to a 

special cut of a 6-dimensionai simple cubic (10,14). These 

special properties set the icosahedral phase into a 

particular class of modulated structures, the one that 

corresponds to isolated strata whose little groups do not 

belong to the 32 crystallographic point groups: the 

icosahedral phase is a "special point" long ränge ordered 

phase with noncrystallograph!c little group. This analysis 

suggests that the icosahedral phase could be a STABLE phase 

under certain conditions of composition temperature and 

pressure exactly like usual crystalline phases. 

:HM>M)iMtöKM>C^^^ 
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Figure   1: (a)      Electron      diffraction      of      the     5-fold 

(iro)   zone   axis. 

(b) Cor r espondi ng   high   resolution   image. 

(c)Optical   Fourier   transform   of      (b)      showing 

the   restoration   of   the   five-fold   s-ymmetry. 
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High Resolution Electron Microscopy 

of Aluminum-based Icosahedral Quasi-Crystals 

R. Portier(l), D. Shechtraan(2), D. Gratias(l), J. Bigot(l) 
and J.W. Cahn(3). 

(1) C.E.C.M./C.N.R.S. 15,rue G. Urbain 94400-Vitry/France. 
(2) Dept of Mat. Eng., Israel Institut of Technology, 

Technion,32000 HAIFA, Israel. 
Dept. of Materials Science and Engineering, Johns Hopkins 

University, Baltimore, Maryland U.S.A. 
(3)  Center of Mat. Sei., N.E.S., Gaithersburg, MD-20899, 

U.S.A. 

Introduction. 

Some rapidly solidified binary and ternary alloys 
exhibit a long range ordered structure with no translational 
periodicity (Shechtman et al 1984, 1985,Zhang et al to 
appear) but with a discrete Fourier spectrum characteristic 
of Almost-periodicity (Besicovith 1932). These have been 
recently called "quasi-crystals" ( Levine et al 1985) and 
can be described by the Cut and Projection Method (C.P.M.) 
(Duneau et al 1985, Elser to appear, Kalugin et al 1985) 
which is a generalized discrete version of the earlier 
hyperspace description used for continuous density functions 
of incommensurate structures (Janssen et al 1984). The 
particular topological properties of such aperiodic networks 
are best observed by direct imaging of the quasi-lattice in 
the electron microscope. It is shown here that the relevant 
characteristics of quasi-periodicity are present in the 
images which can be interpreted independently from the 
actual organization of the atomic species within the 
quasi-periodic framework. 

Experimental. 

The observations reported here were made on rapidly 
solidified ribbons of the A16Mn alloy. Electron microscopy 
was performed on a JEOL 200CX provided with the Cs=lmm pole 
piece and the ^ 10° goniometer stage. The HR images along 
a five-fold axis are shown on Fig.l for different defocus 
values and objective apertures .Although the images show no 
rigourous five-fold symmetry (only the Patterson of the 
structure does show an exact icosahedral symmetry) numerous 
homogeneously distributed pentagons and decagons are 
observed at atomic scale. White dots in Fig.l-a fit 
lemarkably well with the simple projection of the 
quciii-lattice generated by C.P.M. ; this is confirmed by 
Fig.2 which corresponds to the very important two-fold 
orientation. 

J. Spectroscopie et Microscopie Electronique, 10_,  No. 2, 107-16 (1985) 
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Figure 1: (a) 5-fold orientation at -90 Nm defocus 
with 0.08 Nm objective aperture. (b) -170Nm defocus, same 
aperture. 

Figure 1: (c) 5-fold orientation at 
with 0,03 Nm  objective aperture. 

Figure 2: 2-fold orientation at -50 
0.05 Nm  aperture. 

-150 Nm defocus 

Nm defocus with 

v^m-^N^M-.-CvV.-} m' 
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Here too,the projected quasi-lattice nodes and 
intensity modulations of the images correspond: neither 
dynamical effects nor phase-changes due to aberrations can 
modify the intrinsic topology of the images. The unit 
length of the edge of the elementary rhombohedra ( Mackay 
1982, Kramer et al 1984) constituting the basic tiles for 
aperiodic space filling is .46 nm; this parameter gives a 
unit length of .65 nn for the 6-dimensionnal primitive 
hypercubic generating lattice. These values strongly 
suggest that the actual structure contains certainly more 
than one atom per unit cell; not only some of the Al-Mn 
distances in the usual crystalline phases are known to be 
abnormally short (Cooper et al 1966) but the intrinsic 
volumes of the rhombohedra are far too large to be 
consistent with the experimental density (Kelton et al 1985) 
if occupied by a single atom (an average of 4 atoms is 
expected). From the strict mathematical point of view, the 
C.P.M. is not able to make any distinction between any two 
homothetic quasi-lattices which are in the ratio r3 (where 
C- is the golden mean). This property is directly observed 

in both diffractions and images of the two-fold orientation 
/see Portier et al 1985 for a detailed discussion/ whereas 
an apparent t scaling is observed on the five-fold 
orientation. 

H Convergent Beam Patterns of  the  different  principal 
orientations all show an uniform contrast within the discs. 
This  effect  might  be explained by  the  fact  that  the 

^        reciprocal   quasi-lattice  being a dense  Z-modulus  (see 
R below), each intensity within the discs results from an 

infinite  number  of  contributions of diffracted beams.  An 
sRj additional plausible explanation is  the  fact  that  actual 

quasi-crystals have a short correlation length (Bancel et al 
1985) due to an imperfect quasi-periodicity in the material 
which would weaken the effect of the excitation parameters 
in the dynamical diffraction. 

Discussion. 

The very challenging problem which has to be solved is 
the description of the atomic structure. Electron 
microscopy is considered as being a suitable tool for 
collecting information:? about the positions of the atoms and 
some models (Hiraga et al 1985, Guyot et al 1985, Knowles et 
al 1985) have already been proposed based mostly on only the 
five-fold orientation. There e, however, serious 
difficulties in interpreting mages: the dynamical 
calculations depend crucially e number of allowed 
diffracted beams (Cornier et al issue) which, contrary 
to the case of crystals, form a dense set. The so-called 
"small divisor" problem (Belissard 1982) in the almost 
periodic diffraction Hamiltonian makes the perturbation 
expansion diverge, leading to approximate solutions which 
are critically dependent on the chosen cut-off (Cornier et 
al  this  issue)  .   For an optimal cut-off, the simulated 

&SJMKM&^M>&^^^ 
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dynamical images of a simple quasi-lattice with an average 
atom at each quasi-lattice node fit remarkably well the 
experimental ones (Cornier et al this issue). Hence, HR 
images of relatively close packed structures are essentially 
governed by the  topology of  the  lattice and are quite 

motif. Indeed, a specific result 
the Fourier components of the 
by the Fourier transform of a 

does not depend on the atomic 
so predominant that chemically 

different icosahedral phases -like those in Shechtman et al 
1985 , Zhang et al 1985- do show very similar intensity 
distributions although they are constituted of different 
atoms. These reasons show that HR microscopy will be of 
limited use for the structure determination of metallic 
quasi-crystals. 

insensitive to the atomic 
of the C.P.M.   is  that 
potential  are  multiplied 
generic cut function which 
species.   This  term  is 
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Since the definition of quasiperiodicity is intimately connected to the indexing of a Fourier 
transform, for the case of an icosahedral soUd, the step necessary to prove, using diffraction, that 
an object is quasiperiodic, is described. Various coordinate systems are discussed and reasons are 
given for choosing one aligned with a set of three orthogonal two-fold axes. Based on this 
coordinate system, the main crystallographic projections are presented and several analyzed 
single-crystal electron diffraction patterns are demonstrated. The extinction rules for three of 
the five icosahedral Bravais quasilattices are compared, and some simple relationships with the 
six-dimensional cut and projection crystallography are derived. This analysis leads to a simple 
application for indexing powder diffraction patterns. 

I. INTRODUCTION 

The recent discovery of Shechtmanite,12 a metallic 
phase with long-range icosahedral orientational sym- 
metry and experimentally discrete diffraction patterns, 
has revealed a new class of ordered structures. The ico- 
sahedral symmetry is inconsistent with strict crystallo- 
graphic periodicity, yet discrete diffraction implies qua- 
siperiodicity. Schechtmanite is thus cited as an example 
of a quasiperiodic crystal or quasicrystal, for short. 
Since the two icosahedral groups are not part of the 32 
crystallographic point groups, the possibility exists that 
any of the infinity of noncrystallographic point groups 
will be observed. Indeed, claims that specimens exhibit- 
ing two other point groups, decagonal U/m (Ref. 3) 
and duodecagonal 12 (Ref. 4), have since been report- 
ed. 

These quasicrystalline phases present challenging 
problems in crystallography. In this paper the mundane 
housekeeping problems of coordinate systems, index- 
ing, and extinction rules that are the essential langaage 
of reporting experimental observations will be dis- 
cussed. Indexing is not just a housekeeping procedure: it 
is an essential part of proving that a structure is periodic, 
quasiperiodic, or almost periodic. We will concentrate 
on the icosahedral phases and the three-dimensional 
aspects of descriptions that are most easily derived in 
higher dimensions. 

" Present address: Center for Materials Research, The Johns Hopkins 
University, Baltimore, MD 21218; also a guest worker at the Na- 
tional Bureau of Standards, Gaithersburg, MD 20899. 

II. QUASIPERIODICITY 

The Fourier transform of a periodic function is a set 
of delta functions that are periodically spaced and, in 
general, vary in magnitude. Diffraction gives informa- 
tion in the form of a Fourier transform of the correla- 
tions of an object. If the object is a periodic crystal, the 
diffraction pattern is a discrete set of spots of varying 
intensity that are positioned on a reciprocal lattice. 
Three reciprocal lattice vectors form a basis to locate 
any spot in a three-dimensional reciprocal space. 

A mathematical function is quasiperiodic by defini- 
tion if its Fourier transform is a set of delta functions 
that are not uniformly spaced as they would be for a 
periodic function, but whose spacing can be described 
by a finite set of lengths.5 Ifan infinite number of lengths 
are required the function is celled almost periodic. 
Therefore specimens that give countable diffraction 
spots that cannot be indexed with three reciprocal lat- 
tice vectors are quasipenodic if they can be indexed with 
,i finite set. 

It has been shown that any /^-dimensional quasiper- 
iodic function requiring a basis of iV vectors can be con- 
sidered to be derived from a periodic iV-dimensional 
function cut by a Z)-dimensional plane.5 If every spot in 
the diffraction pattern can be indexed using a combina- 
tion of ./V reciprocal lattice vectors, then the object that 
gave this diffraction pattern can be represented by a cut 
of a ^-dimensional periodic object. 

The icosahedral point group is not consistent with 
translational periodicity. The icosahedral diffraction 
pattern cannot consist of periodically spaced spots. If 
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the diffraction pattern consists of discrete spots that can 
be indexed by a finite number of basis vectors it is quasi- 
periodic. 

Several papers have already discussed ways of de- 
riving quasipenodic structures from cuts of periodic 
higher dimensional structures6"10 including icosahedral 
structures. The converse problem of taking a particular 
diffraction pattern and indexing it has been attempted'' 
in a way that has been criticized.1213 The prohktn 
centers on the fact that with a combination of inc sra- 
mensurate lengths any spot can be located approximate- 
ly with any desired degree of accuracy. We will show 
that with our indexing, the observed high-intensity 
spots form a simple sequence in which none are missing 
and none left out. 

III. COORDINATE SYSTEMS 

Taking basis vectors along important symmetry di- 
rections simphfies the crystallographic formulation. 
For any group with a unique rotation axis, the z axis is 
taken parallel to that axis. This is the proper choice for 
tne crystallographic groups such as hexagonal and the 
noncrystallographic groups such as decagonal. The ico- 
sahedral groups have 6 fivefold axes, 10 threefold axes, 
and 15 twofold axes. Taking one of the fivefold axes as 
the z axis (Fig. 1) leaves the other five in a ring 63.43° 
from this axis. Although these all would make acute 
angles with the z axis, there are obtuse angles between 
some of them. There is no choice of sign for the six axes 
that would give equal angles between all of them. A co- 

0/1  1/0 1/1 

1/1 0/1  1/0 

i/i o/T T/o, 

0/1  1/0 1/1 

o/o o/o or* 

o/i i/o 1/1 

1/1 o/i i/o 

0/0 0/0 0/2 0/1 i/o 

0/1  1/0  1/1 

14 

FIG. !. The stsreographic projection of the pnncipaJ symmetry directions and mirror planes of the icosahedral group m35 as seen along the 
fivefold direction. The number indicates the indexing system that will be described later in the text. 
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ordinate system based on these axes is not only skewed 
but encounters the difficulty of keeping track of obtuse 
and acute angles. There are right angles between a five- 
fold axis and five of the twofold axes, that could serve as 
a coordinate system when comparing the icosahedral 
phase with the decagonal phase. 

If we examine the icosahedral group with a three- 
fold axis along z (Fig. 2), we have three choices of coor- 
dinate systems that are related to familiar crystallogra- 
phic ones. The 6 fivefold axes now fall into two groups, 
either of which could be used as a rhombohedral basis. 
In one set the fivefold axes make acute angles with each 
other. In the other set the angles are obtuse. A hexagon- 
al coordinate system could be based on the threefold 
axis and the three twofold axes at right angles to it. Of 
special interest are the three twofold axes at 71° from z 
that form an orthogonal set. 

The simplest system is a cubic coordinate system in 
which the axes of the coordinate system are aligned with 
a set of three orthogonal twofold axes of the icosahedral 
group (Fig. 3). The 15 twofold axes fall in five such i?ts 
all equivalent to each other through the operation of a 
fivefold axis. This is the coordinate system used in the 
International Tables of Crystallography, and it is the 
coordinate system we will use, even tc .escribe the other 
coordinate systems. It has all advantages of orthogonal 
axes. 

The three coordinate systems discussed here are all 
based on subgroups of the icosahedral group, as shown 
in Fig. 4. Using a coordinate system based on a lower 
symmetry than icosahedral, requires special attention 
for the icosahedral symmetries not used in that coordi- 
nate system: equivalent reflections will not necessarily 
have similar indices. 

0/1   1/0   1/1 

I 

' 

.V 

/I   0/1   1/0 

zone of 0/0 0/0 0/2 
2-fold 

/0   1/1   0/1 

zone of 0/0  1/0 0/1 
5-fold 

zone of 0/0 1/2 0/1 
3-fold 0/1   1/0   1/1 

FIG. 2. The stereographic projection of the icosahedral group m35 as sem along a threefold direction. Note the possibility of a rhombohedral 
coordinate system using either set of fivefold axes, a hexagonal coordinate system using the twofold axes along the equator or the three twofold 
a»»» at 71* The thickened great circles show the three zone aies of the diffraction pattern indexed in Figs. 5-7, namely the twofold labeled 
[0/0 1/0 0/1), the fivefold labeled [0/0 1/0 0/1 ] and the threefold axis labeled [0/0 1/2 0/1]. 
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0/1 010  0/0 

■ 

1/0 0/1 0/0 

0/0 0/2 0/0 

1/2 0/1 0/0 

1/0 0/1 0/0 

1/0 0/1 0/0 

1/2 0/1 0/0 

FIG. 3. The standai d stereographic projection for the icosahedral group aligns the axes of an orthogonal coordinate system with one of the five sets 
of mutually perpendicular twofold axes. Note that four of the threefold axes are along the < 111) directions. 

Order of Oecaqonal/ Icosdhedral Cub.c Rhombo 
Group Pentagon«! hedMl 

120 

60 
48 
40 

24 
20 

12 
10 

m35 

i 

\ 
i 

235 

FIG. 4. The maximal subgroups of the ico- 
sahedral group mi5 and the decagonal 
group 10/mmm. 
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IV. THE CUBIC COORDINATE SYSTEM 

Having selected a coordinate system aligned along 
three perpendicular twofold axes, we need to describe 
vectors and planes in both the direct and reciprocal 
spaces. An immediate advantage of the choice of a cubic 
coordinate system is that the indices of a plane and the 
direction normal to it are the same. We define unit 
lengths a and a* in both spaces and dimensionless 
lengths and position in terms of these. Consider a posi- 
tion (UVW) or a plane (HKL). The set of all positions 
or planes equivalent through the operations of the icosa- 
hedral groups (235) and m35 is as follows: 

1. The threefold axes give cyclic permutation, but 
note that while (UVW), (WUV), and (VWU) are equi- 
valent, ( VUW), etc., is different. 

2. The twofold axes give pairs of sign changes, the 
mirrors give individual sign changes. Thus for 235, 
(UVW)_AUVW), (UVW), md{UVW) are equivalent 
but {UVW), etc., is not. For mlS all sign changes are 
equivalent positions. 

3. The fivefold axes introduce a change of the mag- 
nitude of U, V, and ff and introduce the golden section 

r = 2cos36'=(l + N/5)/2= 1.618 034. Because the 
International Tables have a misprint in the rotation ma- 
trices, we repeat them here in Table I, using their nota- 
tion G = T/2,g=W2T = G- 1/2. Performing the ma- 
trix multiplication we obtain 

{HKDY 

= \((H-K)+T(K-L), 

{L-H)+T{H + K), 

-iK + L)+T(L + H)]. (1) 

In this multiplication we maki frequent use of the iden- 
tities 

^=l+r, (2) 

l/r = r-l, (3) 

^2+r+(i)2=l. (4) 

TABLE I. Matrices for fivefold rotation about [ 1 r 0]. 

r= Y 

It may at first seem surprising that equivalent posi- 
tions turn out to have designations with different nu- 
merical values of the components, but this is unavoid- 
able with a Cartesian coordinate system and groups 
with such a high symmetry. The most symmetric crys- 
tallographic group mint has order 48. It has 48 unit 
triangles. Taking all the permutations and sign changes 
of (UVW) generates 48 equivalent general positions, 
one in each unit triangle. It is impossible to generate the 
60 or 120 equivalent positions needed (resp. for 235 or 
m35} with just three symbols. Thus, the choice of a cu- 
bic coordinate system results in the possibility that as 
many as five different sets of indices may be necessary to 
represent equivalent positions or planes. 

Now consider a plane or reciprocal space position 
with an index of the form 

{h + h'T,k + k'T,l + l'T), 

that is, where 

H = h + h'r,   K = k + k'T,   L = 1 + 1'T, 

in which the h, h',k,k ', /, and /' are all integers. We 
introduce the six-index notation {h/h', k/k', ///') 
or (h/h' k/k' l/l') to designate such a reflection. 

Operation of the fivefold rotation will change the 
numerical value of the six integers. 

{h + h'T,k + k'T,l + l'T)Y 

= i((A+ *')-(* + /') 
+ rli-l + h') + (k-l')], 

(-h + k') + (J + h') 

+ r[{h + k,) + {k + l')], 

(-k + D + a + h') 
+ T[{h-k') + a + h')]). (5) 

In order for this to be a close set, we impose the 
parity conditions that the three sums h + k',k + l', and 
/ + h 'are even: after fivefold rotation the six integer in- 
dices remain integers and the parity rules are conserved. 

r-' = 
g 
G i 8 

g     -G) 

KJ-y-3 = 

r4= r- 

G = (v'S + ! )/4 = r/2 = cos 36' = 0.809017 

« = (,/5 - 1 )/4 = l/2r = G - j = cos 72° = 0.309017 
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Finding that all spots in the diffraction pattern are of 
this form implies quasipehodicity. 

We next turn to the indexing of the principal direc- 
tions (Figs. 1-3). The six fivefold axes are all of the form 
(IrO), or in the six-index notation (1/00/1 0/0). 

The ten threefold axes have two different designa- 
tions: four are along (111) or (1/0 1/0 1/0) and six 
along (r2 1 0) or (1/1 1/00/0). Note that both vectors 
have been chosen to have a length ^3. 

Three of the twofold axes are along the cube axes. 
The remaining 12 have the form (G,g,\)oT (0/1 T/l 1/ 
0). 

V. RECIPROCAL QUASILATTICES 

Consider a quasilattice in three-dimensional reci- 
procal space in which every spot occurs as a sum of 
integer multiples of a finite number (greater than three) 
of vectors. We will compare two lattices formed only of 
equivalent vectors. In particular, let us first take the six 
vectors along the fivefold axes,14 

Q=i«(«L. (6) 

where the «, are integers and the q, are (IrO) which in 
the six-index notation is 

q^ (1/0 0/1 0/0), 

q2 = (0/1 0/0 1/0), 

q3 = (0/0 1/0 0/1). (7) 

q4 = (1/0 0/1 0/0), 

q} = (0/1 0/0 1/0), 

q6=(0/0T/0 0/l). 
[There are 384 ways for choosing the <?, 's. All give equi- 
valent results. The choice of the set (7) corresponds to 
th, two rhombohedral bases: q„ q2, qj define the acute 
rhombohedron and q4, q5, q6 the obtuse one (see Fig. 
2).] The set of six numbers ini) can be considered an 
indexing of Ö, and has been used in a number of papers. 
This same set can also be considered to be a six-dimen- 
sional lattice vector. To express Q in terms of the three- 
dimensional cubic coordinates we substitute set (7) in 
Eq. (6) and perform the summation, 

Q = ((n, - n4)/(n2 + n,), («3 - «6)/(«i -I- n4), 

(n2-n5)/{n} + n6)). 

TABLE II. Extinction rulesr >r reciprocal quasilattices. 

(8) 

We can thus convert from the six-dimensional vec- 
tor (n ij, «3, n4, «„ n6) to the six-index three-dimen- 
sional vector {h/h',k/k',l/l'). 

h — n^ — /i4, h   = /I2 + Wj, 

k = ni-n(„ *' = «, + «„, (9a) 

l = n2-ni, /' = «3 + n6> 

and vice versa 

2nl= h + k',    2n4 = — h + k', 

2n2 = l + h', 2nf= -l + k', (9b) 

2«3 = jk-)-/', 2n6= - k + l'. 

The form of Eq. (9b) demonitrates that Q in the six- 
index notation obeys the parity rules. Fhese restrictions 
on the indices are extinction rules and are given in Table 
II under the heading of the P quasilattice (to be defined 
later). 

These parity niles lead to four kinds of positions: 
1. six even indices, 
2. four even indices (odd/even, even/odd, even/ 

even), 
3. two even indices (even/odd, odd/even, odd/ 

odd), 
4. six odd indices. 

If the coordinates of a spot (HKL) that is consistent 
with the parity rules are multiplied by r, the results are 

{THTKTL) =(h'/{h + h')* /{k + k'), 

/'/(/ + /')). (10) 

Only if the original {HKL) = {h/h' k/k' ///') 
contains two or six even indices, will ( TH TK TL ) sa- 
tisfy the parity rules. On the other hand, scaling by r3 

(T'H^K^L) =((Ä-f2A')/(2A + 3A'), 
()t4-2A:')/(2* + 3*'), 

(/ + 2/')/(2/ + 3/')) (11) 

preserves the parity rules for all (HKL) that satisfy 
them. These scaling rules are tabulated for the primitive 
(P) reciprocal quasilattice in Table III. 

In addition, the square of Q is of the form 

g2 = A'+A/r, (12) 

where using Eqs. (2) and (3), 

P(a*) 
F(2a*) 

direct lattice is/(a) direct lattice is ffa) 

HKL 
h + k' = 2n 
k + r = 2n 
/ + A' = 2n 

all integers 

same as f * plus 
h + k + l = 2n 
(h' + k' + r = 2n) 

2;', = 2n 

all even plus 
h + l + h' + k' = 4n 
h + k + I' + k' = 4n 
(l + k + h' + l,=4n) 

all even or all odd 
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TABLE III. Parity and scaling properties for the P and F reciprocal 
quasilattices. 

Parity of Q1=N + TM 

indexes Scaling P F N M 

lixeven T Present Present 4/1 4m 
four even r' Present Absent 4n + 2 4m + 1 
two even T Present Present 4n 4m 
six odd r3 Present Absent 4n + 2 4m + 1 

N=22n* = h2 + h'2 + k2 + k'2 + l' + r2,    (13) 
im 1 

M = h'2 + k'2 +1* + 2{hh' + kk' + W).        (14) 

Equation (13) indicates that N, the integer part of Ö2, is 
twice the square of the length of the six-dimensional n 
vector and therefore must be even. Because of the parity 
rules, if iV is divisible by 4, M also is divisible by 4, and if 
iV is not divisible by 4, M is of the form 4m + 1. In 
addition, as we will show later, 3/conforms to the limits 

-N/T<M<NT (15) 

and that the most intense reflections occur for the lar- 
gest value of M, which we shall denote by M0. For iV 
divisible by 4 

M0 = *HNT)/4J, (16) 

where L x J is the largest integer in x. 
When N is not divisible by 4, 

M = 4m + \<NT. 

The largest value of the integer m is 

m0= L(iVr- 1)/4J 

and 

3/0=l+4L(7Vr-l)/4J. (17) 

We next define a two-parameter indexing Q{N,r) 

Q2{N,r)=N + M0T-*rT, 

r = 0,l,...< L (AVr + A/0)/4J, (18) 

in which the ßo(^) will turn out to define the sequence 
of intense reflections. 

Ql(m=Q2(N,0) =N + M0(N)T. (19) 
The same procedure has been used by us to find the 

quasilattice formed from the IS vectors along the two- 
fold axes. The same result is obtained in a simr '»r man- 
ner by putting the face-centering restriction» f on the 
six-dimension*i lattice formed by the n^, and then using 
Eq. (9a). The result for that and for the body-centered / 
lattice are also given in Table II. 

In Table III we make a simple comparison between 
the Pand /"which share the sime parity rules. It can be 
seen that the F lattice scales uy r, and has only N = 4n, 
the P lattice comprises, in addition, N=4n + 2 spots 
that scale by r3. Figure 5 is a diffraction intensity calcu- 
lation using the sphere approximation in the cut and 
projection method.8,9 

VI. INDEXING THE SINGLE QUASICRYSTAL 
PATTERNS 

Figures 6-8 show the indexing of the electron dif- 
fraction patterns of Refs. 1 and 2. The stereographic 
projection (Fig. 2) presents the three zone axes of these 
diffraction patterns, namely, the [0/0 0/0 0/2] two- 
fold, the [0/0 1/0 0/1 ] fivefold, and the [0/0 1/2 0/1 ] 
threefold axes. Note that all of the reflections in the five- 
fold and threefold zone axis conform to either the /or/ 
reciprocal quasiJattices of Sec. V. These could not be 
used to distinguish between the two reciprocal quasilat- 
tices. 

It is easy to show that the reflections for which 
A ' + &' + /' is odd v:\i\ appear in neither the five- or 
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FIG. 5. Diffraction patterns calculated 
by the cut and projection method for all 
three reciprocal cubic quasilattices with 
the same lattice parameter a* for the 
two- and fivefold zone axes. 
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•     • 

1/2 3/S 2/3 

•    • 

3/4 3/5 2/3 

1/1 2/3 1/2 

• 

3/5 2/3 1/2 
1/3 2/3 1/2 

•on 1/2 in     ,2/3 

r2/1 1/2 1/1 
- i/2 in o/T     3/4 ^n 0/j 

I/O 1/1 0/1 

1/1 0/1 1/0 ,,3 0/1 7/0 3/5 0/1 1/0 
#      •    • -     W ^ 3/3 0/11/0     w 

2/4 0/0 0/0        4/6 0/0 ,,/0 0/0 0/0 0/0 

0/2 0/0 0/0 

2/2 0/0 0/0 
4/4 0/0 0/0 

FIG. 6. Indexed diffraction pattern of a 108'sector of the [0/0 1/00/1 ] zone axis. Sizes of the circles represent calculated intensities based on the 
inverse of the distance of a spot in the six-dimensional primitive reciprocal lattice from the cut plane. 

0/1 1/2 3/5 
2/3 1/2 3/5 

4/5 1/2 3/5 

1/2 1/1 2/3 

0/0 0/2 2/4 

1/0 1/1 2/3 
1/2 1/1 2/3        3/4 1/1 2/3  3/6 7,7 2/3 

1/1 0/1 1/2 1/1 0/1 1/2 

•   t 

o/T T/o i/i      o/i T/o i/i 

3/5 0/1 1/2 

2/3 1/0 1/1 2/5 1/0 1/1 

0/0 0/0 0/0 
0/2 0/0 O'O. 

•   { 
2/2 0/0 0/0 

FIG. 7. Indexed diffraction pattern of a 120° sector of the [0/0 1/2 0/1 j zone axis. 
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0/2 4/6  0/0 

2/2 4/6  0/C 

0/0 2/4 0/0 

1/0 2/3 0/0 

0/2  2/4 0/0 

1/2 2/3 oTo 

2/2 2/4 0/0 2/4 2/4 0/0 4/6 2/4 0/0 

•     • 

2 2/3 o/O ^^ 

•    •  • 

3/4 2/3 0/0 

0/0 2/2 0/0          2/4 2/2 0/0 
0/2 2/2 0/0 A        M 

2/2 2/2 0/0 

3/6 2/3 0/0 

4/6 2/2 0/0 
1/0 2/1 0/0 3/4 i'1 0/0 

•  _  .          • 2/2 0/2 0/0      • • 
ao o/2 o/o A „._ • „,„ • • W 0/2 0/2 0/0  w     2/4 072 0/0 

1/0 0/1 0/0  
1/2iil 0/0 3/4 On  0/0 3/6 0/1 0 

0/0 Q/O 0/0 

«w iu/u       3/4 on  c 

•     •   • o 0^0 o/o     ^^ ^ 
^lk 2/2 0^0 0/0    ^fek 

V  0/2 0/0 0/0  ^P 
       2/4 O/o n/n 

4/4 0/0 0/0 
4/6 0/0 0/0 

2/4 0/0 0/0, 

FIG. 8. Indexed diffraction pattern of the [0/00/00/2] zone axis. Note the square array made of all even and two-even fpots that scale with r. If 
only these spots were present, this pattern would have fourfold symmetry and scale by r. 

threefold zone axes. For example, in order for a reflec- 
tion to be in the [0/0 1/0 0/1 ] zone axis K + TL = 0. 
This implies that k + I' + T(k' + I + I') =0, which 
can only occur if(* + /') = (*' + / + /')= 0. Adding 
the even number h' — I gives h' + k' + l' — 2n. The 
same result is obtained with the [ 111 ] zone axis. Fitting 
the two zone axes alone can not distinguish between P 
and F. Indeed the model of Levine and Steinhardt seems 
to fit only the three- or fivefold.14 In the [0/0 0/0 0/2] 
zone axes / = /' = 0, but A + k (and h.' + k') can be 
odd. This gives the spots with two odd indices, that can 
be seen in Fig. 7. Spots with six odd indices derive from 
these after some fivefold rotations. The twofold zone 
axes thus show some spots with r3 scaling. 

The twofold zone axis for the F quasilattice show 
only spots with r scaling and may show an accidental 
fourfold symmetry. Permutation of the x and y indices 
preserves the parity rules and does not change Qe (see 
Sec. VII). If the intensity is only a function of Qc the 
pattern will show the fourfold axis. 

Observing an icosahedral diffraction pattern in 
which all the spots can be indexed with this six index 
notation proves that we have a diflFraction pattern of a 
quasiperiodic structure. In particular the experimental 
pattern is not the For /. Furthermore, because it can be 

indexed with six integers, the object can be represented 
as a slice and projection of a six-dimensional periodic 
structure. 

Several other methods of indexing with six numbers 
have been successful.""13 They have differed from each 
other in ways that become significant after we examine 
the cvt and projection method. 

VII. THE CUT AND PROJECTION FROM SIX 
DIMENSIONS 

In three dimensions the six vectors along the five- 
fold axes are not orthogonal. We can choose the six- 
dimensional cubic space in which each of these vectors is 
a basis vector along a hypercube axis that is perpendicu- 
lar to all the others. The set of the six numbers /r, then 
represents a position vector in the six-dimensional cubic 
reciprocal lattice, and the equations (8) give the corre- 
spondence between positions in the three- and six-di- 
mensional spaces. The cut and projection is accom- 
phshed by rotating the six-dimensional space so that 
what will become three axes in the three-dimensional 
space are in the cut plane. The six-dimensional rotation 
matrix corresponding to the chosen set (7) is 
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mmmm*m 

R = 
V2(2 + r) 

" 1 T 0 -1 r cf 
T 0 1 r 0 -1 

0 1 r t) -1 T 
X 

— r 1 0 r 1 0 

1 0 — r 1 0 T 

_ 0 — r 1 0 1 r 
(20) 

The three-by-six matrix constituting the top half of 
the rotation matrix consists of the six fivefold directions 
in three dimensions as column vectors [compare with 
Eq. (7) ], or the coordinates of the three-dimensional 
cube axes in the six-dimensional space as row vectors. 
The bottom three by six matrix consists of the comple- 
mentary orthogonal space lost by the cut. It consists of 
projection directions from six dimensions into the real 
space. In the six-dimensional reciprocal space the dis- 
tance of a spot from the cut plane is related to its intensi- 
ty in the three-dimensional reciprocal space. 

There are five Bravais lattices consistent with icosa- 
hedral symmetry in six dimensions.10 Three of these are 
the P, I, F hypercubic. Consider first the primitive lat- 
tice. Its reciprocal lattice is also primitive. Because the 
projection of each six-dimensional lattice vector is a 
(1/00/1 0/0) vector along the fivefold axes, the reci- 
procal quasilattice observed experimentally to be one 
composed of such vectors will be denoted P. The other 
lattices in our example correspond to the six-dimension- 
al face-centered F and body-centered / reciprocal lat- 
tices F corresponding resp. to / and F direct lattices. 

In the P six-dimensional lattice the location of a 
spot in the dimensionless units that we have used in 
three dimensions is, using Eq. (20): 

/2(1 +r2)(n],n2,ni.n4,ni,n6). (21) 

spherical shell 

FIG. 9. Two-dimensional representation of the cut and projection 
procedure for the rjagmtude of Q and the distance from the cut plane 

a 

As a result, using Eqs. (2) and (13), 

Ql =2i2 + T)(n] +n2
2 + n] + n* + n] +nj) 

= (2 + r)7V. (22) 

The length of ö6 is related to the iVpart of the length of ß 
(Fig. 9). Since projection shortens Q 

Q2<Ql (23) 
Using Eqs. (12) and (22) 

Ar + A/r<(2-|-T)Ar. 

Therefore 

M<[(1 + T)/T]N=TN. (24) 

Since ö2 > 0, we also have 

-N/T<M (25) 

proving the inequality (15). If we define & to be the 
distance of a spot in the six-dimensional reciprocal space 
from the cut plane (Fig. 8), we have 

= T(NT-M). (26) 

Thus the largest M for a given N will have the smallest 
Qc 

Up to now we have been using a dimensionk-ss Q. 
We introduce a three-dimensional quasilattice constant 
d0 such that the three-dimensional diffraction vector k 
and the interplanar spacing are given by 

k = QA/o. (27) 

d{h/h\k/k',l/r) ^do/jN+rM. (28) 

The length of the six-dimensional reciprocal lattice con- 
stant af is related to d0 by 

a*d0 = v'2(2 + r). (29) 

In Table IV we give the values of ßo(^0 and ^c 
corresponding Qc that according to theory should be 
inversely correlated with intensity. This sequence of Ö 's 
has an obvious beginning (N~2) and using 
d0 — 1.7466 nm we produce for 0.155 nm radiation two 
further columns, the diffraction vector k and the diffrac- 
tion angle 2(9. Comparing these with our own and pub- 
lished powder diffraction data" indicates a one-to-one 
correspondence with this list. The only omissions are 
due to overlap with fee aluminum and low intensities in 
the published data.'' The justification for our choice of 
d0 is to match Table IV with experimental data. The 
choice of d0 in Ref. 11 was different and this leads to 
complications to be discussed. 

In Table V we list the ö0(iV) series in three different 
notations each using six indices. The («,) and 
(h /h' k/k' l/l') are representative of that particular 
Q0iN). The six-dimension (n,) vector is that which 
projects into the longest possible three-dimensional vec- 
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TABLE IV. Scattering variable» for the P lattice. 

t 

I 

Dimensionless Dimensional 
(</„= 1.74657) 

JV Mo Qi a rf-'Cmn-' )         20 

2 1 3.62 1,90 1,089 9.68 
4 4 10.47 2.00 1.853 16.51 
6 9 20.56 1.07 2.596 23.21 
8 12 27.42 1.24 2.998 26.87 

in 13 31.03 2.27 3.189 28.62 
12 16 37.89 2.35 3.524 31.70 
14 21 47.98 1.64 3966 35.80 
16 24 54,83 1.75 4.239 38.36 
18 29 64.92 0.45 4.613 41.90 
20 32 71.78 0.76 4.850 44,16 
22 33 75.40 2.05 4.971 45,32 
24 36 82.25 2.14 5.192 47.46 
26 41 92.34 1.32 5.502 50.48 
28 44 99,19 1.45 5.702 52.45 
30 45 102.81 2.39 5.805 53.47 

32 48 109.67 2.47 5.996 55.38 
34 53 119.76 1 80 6.265 58.10 
36 56 126.61 1.91 6.442 59.90 

38 61 136.70 0.89 6.694 62.50 

40 64 143.55 1.08 6.860 64.23 

42 65 147.17 2.19 6.946 65.13 
44 68 154.03 2.27 7.105 66.83 
46 73 164.12 1.52 7.334 69.28 
48 76 170.97 1.64 7.486 70.93 

50 77 174.59 2.51 7.565 71.79 

52 84 187.91 0.47 7.848 74.92 
54 85 191.53 1.96 7.923 75.77 

56 88 198.39 2.05 8.064 77.36 
58 93 208.48 ..17 8.267 79.68 
6« 96 215.33 1.32 8.401 81.25 

62 97 218.95 2.32 8.472 82.07 
64 100 225.80 2.40 8.603 83.63 

66 105 235.89 1.70 8.793 85.92 
68 108 242.75 1.81 8.920 87.47 

A) 113 252.84 0.65 9.104 89.74 

72 116 259.69 0,90 9.226 91.29 
74 117 263.31 2.10 9,290 92.11 
76 120 270.16 2.19 9.410 93.66 
78 125 280.25 1.40 9.584 95.94 
80 128 287.11 1.53 9 701 97.50 
82 129 290.73 2,44 9,762 98.32 
84 132 297.58 2.52 9.876 99.89 
86 137 307.67 1.87 10,042 102.21 
88 140 314.52 1.97 10.154 103,79 
90 145 324,61 1.00 10315 106.15 
92 148 33147 1.18 10.424 107.77 
94 149 335.09 2.24 10.480 108,63 
96 152 341.94 2.32 10.587 110.27 
98 157 352.03 1.59 10,742 112.71 

100 160 358.89 1.71 10.846 114.40 
102 165 368,98 0,25 10.997 116.93 
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TABLE V. Various indexing methods for the first 12 strong reflections. 

!■ 

N Mg («,) [h/h'k/k'l/l) multiplicity Ref. 11 

2 1 (icooai) (1/00/10/0) 12 (21TTTT) 
4 4 (100100; (0/00/2 0/0) (0 (220011) 
6 9 (111000,! (1/1 1/1 1/1) 20 (110001) 

(321112) 
8 12 (101101) (0/0 2/2 0/0) 30 (111010) 

10 13 (111011) (1/2 2/10/0) 60 (221020) 
12 16 (210010) (2/2 0/2 0/0) 60 (311111) 

(111111) 0/2 2/2 0/0) 12 
14 21 (201101) (1/0 2/3 0/0) 60 (2lT001) 

(331021) 
16 24 (211011) (2/2 2/2 0/0) 60 (21U01) 
18 29 (211111) (1/2 2/3 0/0) 12 (100000) 

[(32T002)?] 
20 n (201201) (0/0 2/4 0/0) 50 (110000) 
22 33 (211201) (0/1 2/4 1/0) 120 
24 36 (222000) (2/2 2/2 2/2) 20 (220002) 

(211211) (0/2 2/4 0/0) 60 [(561033)?] 

tor, and the two are related by Eq. (9). For powder 
pattern intensities the multiplicity of each spot is given. 
The sequences of our indexing of course satisfies Eq. 
(13) relating N to the sum of squares of indices. As was 
noted earlier, the list'' of powder diffraction angles cor- 
relates perfectly with this sequence, with only one omis- 
sion in this range. 

The last column gives the indexing of Ref. 11. The 
fundamental (100000) vector was chosen in Ref. 11 to 
have the length of ß0( 18). As a result, all smaller reflec- 
tions become higher index and the simple monotonic 
relation between N and Ö of Eq. (13) is lost. Because of 
this there is no obvious start to the sequence, and it is 
difficult to know if any intense spots are missing. Fur- 
thermore, because of the incommensurability one can 
approach any angle with arbitrary precision by using 
high indices. The two assignments" labelled with ques- 
tion marks are probably such approximations. The 
question of which vector one chooses as a fundamental 
length in this case is uniquely resolved by the sequence 
of the intense reflections. Choosing a longer vector leads 
to the problems cited above. It will be difficult to choose 
a shorter vector, because intensities are likely to be very 
low. 

We have so far concentrated on the Q0 series. Table 
V lists representative spots for all the spots that occur 
iox N= 12 spherical shell in six dimensions (Fig. 9). 
Two types of indices sum to JV = 12. In six dimensions 
there are 26 spots of type (111111) and 236!/(2!3!) of 
type (211000). Six different lengths result from project- 
ing in three dimensions ranging from Ql = 37.89 to Ö 3 
= 5.53. The longer Q's are from six-dimensional vec- 

tors nearly parallel to the cut plane; the shorter ones are 
from those nearly perpendicular. By themselves the 
(n,) give no clue about projected length until the projec- 

tion has been defined in Eq. (20), but in the cubic in- 
dexes the lengths obviously become shorter as the 2's 
shift from primed to unprimed positions and sign differ- 
ences appear in the indexes. 

The (111111) are high symmetry axes in six dimen- 
sions. They project into three dimensions as either 
three- or fivefold axes with four different lengths. The 
(211000) project onto mirror planes or (110) planes 
with six different lengths. In powders the ß0 (12) reflec- 
tion will be a superposition of 72 individual diffraction 
spots. These multiplicities are most readily apparent by 
forming ratios of the cubic indices and comparing these 
with the indexes of the three symmetry axes and. the 
mirror planes. 

We hope to have demonstrated that the cubic coor- 
dinate system has many advantages over either the skew 
coordinate system or the six-dimensional one. In addi- 
tion, there is an obvious simplification when a particular 
lattice constant is chosen. 

VIII. DISCUSSION 

Several indexing methods have been introduced 
and need to be compared. We have introduced a method 
of indexing based on a three-dimensional cubic coordi- 
nate system using icosahedral symmetry. Six indexes are 
necessary and sufficient, indicating that the icosahedral 
solid is quasiperiodic and can be represented as an irra- 
tional cut of a six-dimensional periodic solid. Much of 
the geometry is developed without recourse to six di- 
mensions. 

The six-index notation is merely a shorthand for 
indexing irrational numbers of the form h + h'r. Ordi- 
nary vector addition generates the three-dimensional 
diffraction pattern from a single vector replicated by the 

I 
TN 
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operations of the icosahedral group. There is a single 
basic length: the v/5 rotations introduce the algebraic 
number r and, therefore, incommensurability. Unlike 
other incommensurate structures, in which the incom- 
mensurate ratio varies with temperature and composi- 
tion, the ratio r is part of fivefold rotation and remains 
the same for large changes in composition15 and lattice 
parameter and a wide variety of alloy systems. The cubic 
coordinate system has many advantages that derive 
from an orthogonal coordinate system. It incorporates 
the cubic subgroup part of the icosahedral symmetry, 
but it leaves the problem of multiple notation for equiva- 
lent positions. 

The multiple notation is really not a problem. We 
have found two convenient methods. For a particular 
index, multiplication by the rotation matrices quickly 
gives all the other notations for equivalent reflections. 
When dealing with a large number of indexed positions, 
they are quickly sorted by calculating Q2 and sorting by 
^andA/Corr). Justas (330) and (411) coincide in bcc 
powder patterns, this sorting will put nonequivalent 
spots in the same {N,r) box. However, since all the spots 
in the same {N,r) box originate from the spots in the six- 
dimensional reciprocal space that are the same distance 
from the cut plane, they are likely to have similar inten- 
sities. The other three-dimensional coordinate systems 
have skewed axes aligned along equivalent symmetry 
axes. They have all the problems of skewed axes includ- 
ing the problem that permutation of indices not only 
cause length changes but can cause the vector to rotate 
to a nonequivalent direction. In the cubic indexing, be- 
cause the indices are primed and unprimed, cyclic per- 
mutations of (HKL) can only lead to equivalent vec- 
tors. Odd permutations do not change the length. 

In six dimensions there is an orthogonal system, but 
the rotation matrix that defines the cut plane requires 
arbitrary choices of the signs of the fivefold basis vectors 
in three dimensions. Thus the various six-dimensional 
vectors of type (110000) represented two different 
lengths in three-dimensions differing by a factor of r, 
depending on the relative orientation with respect to the 

TABLE VI. A complete listing of the .V = 12 reflections. 

cut plane, or equivalently whether the angles between 
the varioiu (100000) type (010000) vectors in three 
dimension are acute or obtuse. 

There is a geometric way of understanding the dis- 
crepancy between the various indexing methods. It 
might seem that any reflection along the fivefold axis 
could serve to define the unit length, but it must satisfy 
several criteria. The first is that all other spots must then 
be indexable with six integers that obey the parity rules. 
The spots that survive this criterion differ from each 
other in length by powers of r3. In six dimensions all of 
these vectors he on the same (xyyyyy) fivefold plane. 
The shortest distance in this plane is (100000) and this 
is the one which must be found. Only one of the fivefold 
reflections corresponds to this minimum distance and 
generates an orthogonal basis in six dimensions. The one 
chosen in Ref. 11 happens to be the (211 111), which 
leads to a skewed six-dimensional basis. This destroys 
the hypercubic geometry that is so important to the sim- 
plicity of the indexing we have proposed. As a result the 
indexing fails to fit the criterion of a simple hierarchy. 
There are inifinitely many reflections along the fivefold 
axis, both longer and shorter than the one which meets 
this criterion. For the P quasilattice, it is the longest 
fivefold reflection that is shorter than any intense reflec- 
tion in any direction. All shorter reflections are then 
projections of longer six-dimensional vectors with long 
Qc and weak intensities. 

These criteria not only point to a natural and unique 
indexing but solves the important problem of what con- 
stitutes the unit reciprocal lattice vector. Comparison of 
Table V indicates that while a different choice of this 
unit still gives a completely consistent set of indexing, 
there is a simplicity and completeness to the choice 
based on the strong reflections. The Q0 series fits the 
observed intense refleciions without omission and, qual- 
itatively, is inversely correlated with Qc, the distance 
from the cut plane. The next in the sequence (Table VI) 
Q2(N,\)=Ql(N) - 4r all have Qc >2^T which, of 
course, is longer than Qc for any of the Q0 spots, and are 
readily distinguished from the main sequence by their 

w (",) h/h' k/k1 l/V Multiplicity 

ßo(12) 

0(12.1) 

2(12,2) 
(2(12,3) 
0(12,4) 

2(12.5) 

16 (210010) (2/2 0/2 0/0) 60 
U 

(111111) (0/2 2/2 0/0) \1 
- - 

12 (llllll) (0/2 0/2 0/2) 20 
*■ 

(201001) (2/0 2/2 0/0) 60 ' 
8 (201001) (2/0 0/2 0/2) 120 t 

4 (210010) (2/0 0/2 2/0) 120 - 
0 (llllll) (2/0 2/0 2/0) 20 1 

(010210) (2/2 0/2 0/0) 60 i 
4 (llllll) (2/2 2/0 0/0) 12 

(201001) (2/0 2/2 0/0) 60 - 
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weak intensity. Our indexing method therefore uniquely 
identifies the quasilattice parameter d0 in a way that is 
quite equivalent to that chosen by Elser12 based on an 
examination of the Fourier transform of the cut func- 
tion along a systematic row. Because our method is 
purely geometric and does not refer to any specific cut 
function, it is in a sense more general. 

In this paper we have taken for granted that the 
symmetry is truly icosahedral. The choice of the cubic 
axes for a coordinate system does not imply that we 
believe that this is a cubic crystal, as has been suggested 
by others.1617 We will address this issue in a separate 
paper i« 
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QUSSIPF-RIODIC CRYSTALS - EXPERIMENTAL EVIDENCE 

D. SHECHTMAN*(*' 

Materials Science and Engineering. Tiio Johns Hopkins 
University, Baltimore, MD 21218. U.S.A. 

Abstract- A review of the experimental evidence which reject« 
the determination of the Icoeahedral phase aa periodic is 
preaented. The experiment« diacuaaed include various diffrac- 
tion technique« for the atudy of the long range order a« well 
the method« to determine the local atomic arrangement. 

I - INTRODUCTION 

The discovery of the Ico«ahedral phaae (1), (2) ha« generated a great 
deal of reaearch activity. It ia the faacination of being a part of 
an emerging new field, which motivated inve.tigator« from ««veral 
diacipline. to contribute about 150 article« in the fir«t year. How- 
ever, a certain amount of mainly pa««ive «ceptici«m «till exi«t« 
within the rank« of cryatallographers. 

Since the firat X-ray diffraction Experiment by von Laue in 1912. all 
cryatala studied by vanoua techniquea could be defined a« P«"*«1";: 
Many «tructure« were analyaed to have rather complicated motif« and 
large unit cell«, which contain in «everal ca«e« well over a thouaand 
atom«, (Frank-Kaaper phaae« are a typical example). 

All theae, however, could be ahown to have periodic tran.lational 
aymmetry. Therefore, a cryatal which generate« «harp diffraction 
pLk. wa« axiomed over the year« to be periodic. Thi« axiom which ha- 
become a corneratone in cryetallography ia not «upported by the 
mathematic« of the nature of diffraction. On the contrary it waa 
demonstrated and proved time and again that the Fourier transform of 
almost periodic and quasiperiodic function« alao generate «harp 

peaka. 

The queation whether quaeiperiodic cry«tal. exiat. narrows down to the 
question whether quasiperiodic arrangement of atoms can form and 
whether it can be «table. 

The mathematical a« well a« other theoretical and experimental tool«, 
to deal with quaaiperiodic cry«tal«. were available for quite some 
time before the announcement of the discovery of the Icosahedral 
phase, and these were put to use almost i«ediately following the 
announcement. 
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The experiment« that revealed the exceptional nature of the 
Icoaahedral phase were repeated and thia not only confirmed the first 
resulta, but also expanded them and a^dad evidence for quasiperlodi- 
city in the Icoaahedral phaae and other phase« (3) (4). The phase, 
first found in several aluminum alloys (5) was later discovered in 
other compositions (6). 

The purpose of this article is to discuss experimental evidence which 
rejects the possibility of explaining the structure of the Icoaahedral 
phase on principles of classical crystallography, thus creating the 
foundation for the understanding of the structure of quasipenodic 
crystals. 

EXPERIMENTAL 

There is no doubt that electron_micro8copx, with its versatility and 
wealth of experimental procedure«, played a key role in the early 
stages of the study of the Icoaahedral phase and other quasipenodic 
structures. 

The property that drew attention to the fivefold orientation in April 
1982 was the very dark image of the Icosahedral grains which were 
oriented with the fivefold axis parallel to the electron beam. The 
Icosahedral phase diffracts electrons in an unusual way. 

Next came the diffraction pattern (Fig.l). with well defined sharp 
peaks and fivefold rotational synunetry. The pattern has more unique 
features, the distances from the centrally transmitted beam to the 
diffracted beams are related by various powers of the golden mean and 
the intensity of the diffracted beams does not decay as a function of 
the distance from the center. But, perhaps, the most intricate 
observation was that the crystal, in different orientation«, has more 
such fivefold diffraction patterns. The analysis of the symmetries of 
the crystal lead to the composition of patterns shown in Fig.2 and to 
the realization that the crystals possess Icosahedral symmetry. The 
explanation of the previously unobserved set of symmetrxes could be 
either by using the knowledge of traditional periodic crystallography 
or by proposing something else and new. 

Fig.l.  Selected area diffraction Pattern taken from a single 
Icosahedral Crystal (1>. 
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Fig. 2.  The sequence of »elected area diffraction patteran obtained 
from one Icoaahedral crystal at various tilt angles (1). 

Periodic crystallography may suggest 
patterns is formed by a contributio 
particles of a periodic phase, such a 
this idea several experiments wer 
microscope. The first is a set of da 
different diffracted beams in a two- 
field image the whole Icosahedral gra 
the resolution of a few nanometers 
experiment was repeated since on var 
some of which (such as several rapidl 
with much less strain contrast with t 

that each spot in the unique 
n of several differently oriented 
s multiple twinning. To examine 
e carried out in the electron 
rk field images obtained from 
beam condition (1). In each dark 
in was illuminated, and down to 
, no twins can be observed. This 
ioua other Icosahedral phases, 
y solidified Al-Mn-Si alloys) are 
he same results (7). 

Convergent beam diffraction patterns were taken at the various 
important orientations. This technique involves a conical electron 
beam that illuminates a spot on the specimen, the diameter of which is 
between l.Snm to 20 nm. The diffraction patterns obtained this way 
are identical to the ones oL'.erved by the selected area method, and 
are similar to one another across the Icosahedral crystal. Such 
selected area diffraction patterns were taken at various thicknesses 
of the specimen, and down to a few nanometers in thickness, indicating 
that if, indeed, the diffraction pattern is a composite of several 
patterns obtained from several periodic crystal«, then these crystals 
must be very small. 

Perhaps, the most convincing set of experiment« in the stuuy of the 
structure of the Icosahedral pha«e i« ba«ed upon lattice imaging. The 
lattice imaging technique has been used extenaively in the la«t decade 
to study lattice defect«. It ha« been demon«trated that the technique 
can detect the fine «tructure of di«location core« and that of many 
kinds   of   boundaries,  including  microtwin  boundarie«  (8).   The 

■ Oi f-i w+mtämmmmmmmmm^ VvV. 



m«^^^^wvpvvp^p«Pv*PW«r3^v«vtM«v*M*P«f«pv«p 

C3-* JOURNAL DE PHYSIQUE 

technique waa applied to the Icosahedral phase in several alloys (91 
revealing the atomic structure at different orientations. Even though 
it is difficult to confirm a structural model based on these 
observations, several facts are clear. The most important observation 
is that no boundaries can be seen in the structure. The quasipenodic 
sequence of planes is clearly seen, and the orientations of planes in 
the 2-, 3- and 5-fold orientation is conspicuous. An optical 
diffraction taken from the TEN plate to form a Fourier transform of 
the image recreates the electron diffraction pattern. This result is 
obtained even with a rather small aperture, i.e. with the diameter of 
the area which contributes to the optical diffraction in the order of 
several nanometers. The various rotational symmetries, includinci the 
fivefold, are thus a fundamental property of the atomic order and do 
not result from any composition of small periodic crystals, such as 
tnicrotwins. 

<j.' X-ra^ äi-i^^Sti0!! has traditionally been a most powerful  and  precise 
•** tool  in the study of crystals.  The technique was put to use in the 

study of the quasiperiodic crystals,  starting with the Icosahedral 
^y phase  (IMS)(10).  The fit of the X-ray diffraction peaks to those of 
J\, the electron diffraction was  confirmed,  and  the  indexing of  the 
d6 patterns followed soon (5)(11).  Even though there is no dispute as to 

the meaning of each peak among th^ various suggestions for indexing 
languages,  the  indexing techniques vary from one to the other.  The 

f . most fundamental of all is the one suggested by Cahn et al  (11).   It 
is based upon a set of three orthogonal 2-fold axes and presents an 
easy and workable indexing system. Another important result of the 
analysis of the X-ray diffraction patterns is the introduction of the 
step necessary to prove, using diffraction, that a solid is quasi- 
periodic. 

Among  the other results obtained by X-ray diffraction is the accurate 
measurement of planar spacing, which is tiot obtainable accuiately  by 

*,'■ electron diffraction,  and  the introduction of indexed stereographic 
projections for the Icosahedral phase (11). In general, the peaks 
observed in all the X-ray studies are rather wide representing a 
correlation length of 10-30nm. Numerous speculations as to the cause 
of this width have been presented including local strain, faults and 
uneven distribution of atomic constituents to name a few. This 
question is unsettled at present and an agreed upon explanation is 
still sought. 

fA Neutron diffraction on powdered Icosahedral phase was  also  performed 
on three alloy compositions (12). Peak positions were found at 
identical positions to those previously found by X-ray diffraction and 
previously as  produced by  cuts and projections of a 60 cube with a 

^T lattice parameter of about 0.65nm (see later  in  these  proceedings). 
The intensities of the neutron diffraction pattern provide information 
on the chemical order of the Icosahedral phase by comparison to those 
of the X-ray diffraction pattern. This is based upon the difference 
between the structure factors characteristic of the two techniques, 
which is vividly demonstrated for the Al-Mn system. 

The local atomic structure of the Icosahedral phase was studied by 
NGR, XAFS and NMR. 

Shortly following the discovery of the Icosahedral phase Nuclear 
Gamma-Ray Resonance 1NGRJ, experiments were performed on Al- (Mn.Fe) 
alloys (13). The NGR spectrum of an iron atom in the Icosahedral 
phase is a probe of the local environment of that atom and the 
technique is most sensitive to the first one or two near-neighbor 
shells.   A detailed analysis  of  the  spectra obtained  from the 
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Iconahedra 1 structure showa that they can be fitted to a pair of 
symmetric doublets, indicating two non-symmetric positions for the 
iron atom. It is assumed that the iron and manganese atoms occupy the 
small site types and are distributed arbitrarily within the quasi- 
periodic crystal. The results do not suggest a model, but reject any 
model in which the manganese atom occupies a symmetric position. 

In  another study (14) the local atomic environment in the Icosahedral 
phase was studied by Extended_X-ray_AbsorEtion Fine_Structure (EXAFSj^ 
measurements. The results which provide information that lead to a 
structural model, demonstrate the power of this tool for the study of 
the order of the Icosahedral phase. The model, detailed in these 
proceedings, supports the randomly connected Icosahedra model 
previously suggested (1) and suggests a structural unit which consists 
of a cage of Mn atoms positioned on the vertices of an Icoaahedran. 
The model also suggests that the quasiperiodic crystals grow along the 
threefold axis, which is consistent with previously reported optical 
microscopy observations (10). 

fS? Nuciear Magnetic Resonance (NMR) is a technique which probes the local 
environment of the nuclei.  In their study (15)  both  55Mn  and  27A1 

•• nuclei  were  examined at room temperature.  One of the conclusions of 
this study supports the conclusion of the Mossbauer spectroscopy (NGR) 

n» study (13a). 
nj 
^> A direct observation of the atonic structure of the Iccsfhedral phase 

was performed by_Field_Ion_Micro8CopY IFIMl (16). Th« - alts confirm 
the long-range Icosahedral orientational order without tri.na- lational 
symnetry. The basic rotational symmetries were observed in real 
space, and the results confirm the long-range Icosahedral 
orientational order without translational symmetry. 

In addition, a large number of apparent discontinuities were found. 
Special attention was paid to the possibility of the presence of 
twins, but no evidence was found for multiple twinning, and no twin 
boundaries were observed. It should be noted that the FIH studies 
were performed on a rapidly solidified ribbon of Al-12 at % Mn, which 
is by nature heavily strained. A more suitable specinen for this 
study would be a rapidly solidified ribbon of the Al-Mn-Si ternary 
system which is composed of elongated strain free Icosahedral 
crystals. 

Based on the FIM, several laboratories have now developed an atom 
probe which is potentially an important tool for probing the chemical 
order of the Icosahedral phase, and for evaluating the models for its 
atomic structure. 

COHCLDSION 

Many of the techniques for the study of the structure of solids were 
applied to the Icosahedral phase. The long range order was determined 
by X-ray. neutron and electron diffraction, and a very good fit was 
obtained for a three dimensional quasiperiodic arrangement of atoms. 
The local order was probed by field ion microscopy, nuclear gasna-ray 
resonance, nuclear magnetic resonance and extended X-ray absorption 
fine structure. At this stage the available information on the local 
order should provide a model for the atomic arrangement both of the 
Icosahedral phase in particular, and for quasi- periodic crystals in 
general. Indeed, such models are proposed in these proceedings, and 
hopefully an agreed upon model will emersje in the near future. 
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COMMENTS AFTER THE D. SHECHTMAN TALK 

M./. JAJJXC.- I would like to make two comments. First, I would like ro 
emphasize that SHECHTMAN'a model of randomly packed icosahedra 
shearing edges, faces, or vertices, does. In fact, exhibit an unusual 
kind of order - namely, the long-range Icosahedral orientatlomU 
order. Second, X think that a selfconsistent definition of a clasp of 
(long-range positionally) ordered structures could be a physical one : 
these are (infinite) structures which give rise to diffraction 
patterns consisting of perfectly sharp bragg peaks. It would be, then, 
an experimental task to recognize this ideal in real structures. 
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Abstract - Powder neutron diffraction studies were performed on three 
icosahedral alloys of the aluminum manganese system containing 27, 30, 
and 3^ weight percent manganese. All peaks were found at the angles 
consistent with the icosahedral indexing with a six-dimensional cubic 
lattice parameter of approximately 0.65 nm that decreased with increasing 
Mn content. The relative intensities differ significantly from those 
found for X-rays. The intensities are not consistent with a quasilattice 
consisting of the 3-dimensional Penrose tiling with a .U6 nm edge length 
along the 5-fold axis. It is ccisistent with a 1.0 nm edge along the 3- 
fold axis quasilattice node separation. 

I  -  INTRODUCTION 

Since the discovery of the icosahedral phase in rapidly solidified melt spun 
ribbons of Al-Mn alloys /1,2/, a number of experimental techniques have been 
used to determine the structure of these aperiodic systems. In the original 
work, electron diffraction studies were made on small regions of the ribbon 
where the icosahedral phase was singly oriented. Further studies showed the 
presence of other phases coexisting with the icosahedral phase./3.^ Depending 
on" the concentration of manganese, the cooling rate, heat treatment, etc., one 
can find the icosahedral phase, the a-alurainum phase, or the decagonal phase /5/ 
in many combinations. We report here on some powder neutron diffraction studies 
of the aluminum manganese icosahedral phase since no large singly oriented 
single phase specimens are available. We studied this phase using powdered 
specimens oi several compositions of the alloys. Other powder diffraction 
patterns were obtained for powders containing the icosahedral phase and the 
decagonal phase and for powders annealed to produce the equilibrium orthorhombic 
AlgMn. 

II  - SAMPLE PREPARATION 

Melt  spun ribbons were obtained (1)  from each of these Al^Mr^ alloys vhere x 

corresponded to 27  (2),  30,  and 3H  (3)  weight percent of the pure starting 

"(T)    We thank Dr.   A.  Rabinkin of the Allied-Signal Corporation for providing us 
these samples. 

(2) This corresponds to Al.Mn 

(3) This corresponds to Al,Mn 
Les  Editions  de   Physique   (1986)    (Accepted   for  publication) 

m 



Wj^^^vavwnp 

El 

materials   .     The  ribbons were  then gently  powdered  so  as not  to   introduce 
excessive strain and sieved to provide the neutron dirfraction samples- 

Ill  - EXPERIMENTAL PROCEDURE 

Neutron diffraction measurements were performed on the high resolution BT-1 
powder diffractometer /6/ at the N3S 20-MWatt research reactor. The 
diffractometer consists of 5 separate counters, separated by 20°, that can move 
simultaneously about an axis at the sample position. The 5 counters cover an 
angular range from 0° to 120° and for our experiments covered from 5° to 120° 
scattering angle where each counter moved 35°. The wave length used for our 
experiments was 1.5^5A provided by a copper monochromstor. An oriented graphite 
filter was used in the beam to remove higher order wave lengths contamination. 
The resolution of the diffractometer varies over the scattering angle from 0.31° 
at 5° scattering angle to a minimum of 0.22° from ^0° to 70° and rises to 0,58° 
at the largest scattering angle. 

The powder to be studied is placed in a thin walled vanadium container which can 
be fixed at the sample position. Vanadium was used since it does not contribute 
any structure to the diffraction patterns. Diffraction data was taken for each 
powder in angular steps of 0.05° and for a given monitor count of the incoming 
beam. 

IV - RESULTS 

& 

Figure 1 shows a comparison of the diffraction data versus scattering angle for 
the three alloys with manganese concentration increasing from the top to the 
bottom graph. The lowest concentration manganese alloy when melt spun under the 
conditions for our experiment produces the icosahedral phase plus the f.c.c. a- 
aluminum. The o-aluminum phase lines in our pattern are narrower than the peaks 
of the icosahedral peaks but do not completely reflect the instrumental 
resolution. Their width could arise from particle size broadening or possible 
broadening caused by non-uniform concentration of Mn in the a-aluminum phase. 
The icosahedral lines although quite sharp compared to ether samples we have 
examined are broadened significantly more than our resolution function. One 
also notes an oscillatory background ur.der the peaks of the icosahedral phase. 
This oscillatory background is reminiscent of the behavior of binary alloy 
systems showing short range order or possibly the presence of an amorphous phase 
in our system. No amorphous phase was detected by TZM. An examination of the 
background behavior at the smaller angles seems to indicate a pattern similar to 
short range order since the curve is tending upward away from zero. An 
experiment is being designed to probe these smaller angles to attempt to further 
clarify this point. 

One sees in the neutron diffraction a slight shift in peak positions versus the 
manganese concentration. This has been observed by both electron and x-ray 
diffraction.A/ With increasing manganese content there is a change in the 
amount of other phases present; a aluminum is reduced and the decagonal phase 
appears.     (Neither the Al^Mn nor Al Mn phases were observed.)    These changes are 

observed in the region from 22° to Il50 in two tht>ta but can be seen to occur 
over most of the pattern. We are attempting to prepare a sample in the pure 
decagonal phase and to measure its neutron, electron and x-ray diffraction 
patterns in order to analyze completely the diffraction curves with mixed 
aperiodic phases. 
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Fig.   1   -  The  uncorrected  neutron  scattering   intensity   of   the   3   alloys, 
Mn(27w/o),   AIMn   (30  w/o),   and AIMn   (3^  w/o),   from top to bottom respectively 
versus the scattering angle,  26.    The vertical lines are the predicted positions 
of  the  Q     series  of   icosahedral  lines  for all even values of N between 2 and 

o 
106. 
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Figure 2 shows a comparison of a powder neutron diffraction pattern of the 
icosahedral phase with the X-ray diffraction pattern /?/ for a similar alloy. 
The most interesting feature is the difference in the Intensities for the same 
icosahedral peaks. Furthermore, many peaks are observed in the neutron 
diffraction pattern that seem to be absent in the X-ray pattern, whereas, some 
strong X-ray peaks are very weak in the neutron pattern- This striking 
difference in Intensity comes from chemical order and the difference in phase of 
the neutron scattering amplitudes of the manganese atoms which have a negative 
neutron scattering length relative to that of aluminum. 
In the preliminary analysis of the neutron diffraction data for the 27% alloy, 
we obtained the integrated intensity under all icosahedral peaks positions 
calculated from the index method we discuss later. To obtain the integrated 
intensity we did not attempt at this point to fit peak profiles witn assumed 
mathematical forms but subtracted a smooth background from each peak and 
numerically integrated the resultant intensity. For some positions the 
intensity differed little from background. These were listed as zero intensity 
and utilized because they too contain information. In the case of the few 
overlapping peaks, where the separation could be clearly made, we adjusted each 
peak's intensity to give it a smooth symmetrical curve whose summed intensity- 
agreed with that observed. Peaks that overlapped with those of other phases 
were not measured. In order to compare the experimental intensities with our 
model,   we  corrected  the  above   integrated  intensities by multiplying  it  by 

sin2e cos9, the applicable Lorentz factor for neutron scattering, where 9 is 
one-half the scattering angle. Finally for a comparison with our model we 
divided each integrated intensity with its multiplicity as determined by the 
model and normalized these intensities so that the largest one would be unity. 
For those cases where several nonequivalent peaks had identical 6, the intensity 
was divided by the sum of the multiplicities. 
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Fig. 2 - A comparison of the uncorrected neutron scattering intensities, top, to 
the scattering intensities for x-rays /?/ versus Q - HusinB/X where 6 is one- 
half the scattering angle and X is the wave length of the radiation used. The 
two curves in the  neutron  data  near  Q-2.3  reflect  the  overlapping range  of 
the detectors 
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V - DISCUSSION 

Two aspects of the neutron diffraction results will be discussed; peak positions 
and how this relates to the icosahedral symmetry, and intensity and how this 
confirms the emerging model of a structure of parallel large icosahedral motifs 
stacked aperiodically along their 3-fold axes. 

VI - COORDINATE SYSTEMS 

The geometries of both the direct and reciprocal spaces in three dimensions are 
conveniently described in terms of a Cartesian coordinate system aligned with 
one set of three mutually orthogonal 2-fold axes which occur in icosahedral 
symmetry./8/ Each of the three componänts of a quasilattice OP reciprocal 
quasilattice vector will be described in terms of two integers e.g., h and h', 
the magnitude of the component is h + h't where 

T - 2Cos(n/5)  -  (1   +^5)/2 -  1.618031». 

A reflection Q is indexed with six integers (h + h't, k + k'x, 1 + I'x) which 
will be written (h/h' k/k' 1/1'). Similarly a translation vector X will be 
written (u/u*   u/u'  w/w').    These six integers can also be related to components 

(x,x,,...x,)  of a six-dimensional lattice vector in Z    or components (n^n^-.n^) 
•1-2 

♦6 
of a reciprocal lattice vector in Z  by the equations 

t 

V n4 h1 
■ V n5 

V n6 k1 - V nM 

n2-n5 l' = V n6 

(1) 

with similar equations relating u,u'...w'   to the x^ 

Equation   (1)   can be  considered  to  define  a  projection of Z    onto  a  three 

dimensional plane.     It will be convenient to'let the  (100000)  vectors   in Z    and 

Z*6 have a unit length. Then the corresponding vectors in R along the 5-fold 
axis (1/0 0/1 0/0) will have a projected length l/fT. We therefore normalize 
all   three-dimensional  vectors by a  factor  of t2(2  ♦   T).     In our  previous 

paper /8/ the vector (1/0 0/0 0/0) in R3 was chosen to have unit length. As a 
result of the redefinition of a unit length formulas for lengths in this paper 
differ from that of the previous paper by a factor of    2(2+T). 

§ 

1/12(2 + T)  ((U + U'TU + (k + k'Oj + (1 ♦ I'-Ok) 

Note  that  X  (1/0  0/1   0/0)-Z(1/0 0/1   0/0)   -  1/2.     These vectors which were 

reciprocal to each other in Z6 have been foreshortened by projection and are no 
longer reciprocal to each other. To convert these to dimensional quantities x 
and q we will use the six-dimensional cubic lattice  parameter  A  an reciprocal 

« 
lattice parameter A -1/A and let 

x 

q 

AX 
« 

A Q (2) 

->:bMM^;^^^^ 
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For powder diffraction we need only the magnitudes  of  these vectors.     Because 

T - 1   *  T these become 

Q2-  (N  + MT)/2(2 + T)      X2-  (S + TT)/2(2 ♦  T) (3) 

and where 

N - 2Zn 2 S  -  2ZX. 

2       2 2       2 
h + h'   + k + k'  + 1 + 1' 

2       ,2       2,     ,2^    2^     ,2 u + u*   +v•'•v,   +w + w' l^'i 

M - h,2+ k'2+  1,2+ 2(hh'   + kk'  + 11')    T - u'2+ v,2+ w1   + 2(uuf+ vv»  + ww')   (5) 

Kence N and S are always even. Furthermore if N(or S) is divisible by 'J, so is 
M(or T). If N(or S) is of the form Mm + 2, M(or T) is of the form iJin ♦ 1 . In 
addition we have 

-N/T  < M < KT - S/T  < T < ST. (6) 

Equation  4   states  that  all  vectors with the same value of N (or S)  lie on the 
*fi 6 * 6 

same sphere in Z      (or Z  ).    The distance Qc that  a  reflection   in Z        is  from 

the icosahedral cut plane defined by equations  (1)   is given by 

„2 ■t(NT - M)/2(2 +  T) (7) 

Thus the largest possible value of M for a given N will have the smallest Qc and 

usually the greatest intensity. This largest value of M is called Mo. The 

corresponding  value  of  Q   is  called  Q    and   is  a  one  parameter  sequence of 

reflections. 

2(2 * T) Q' 

J + ^TJNT/nJ 

N-Mn+2 
(8) 

where |_xj is the largest integer in X and the corresponding values of Qc are 

N - Hn 

2(2+T) Q oc 
1? \H\) 

*6 
To determine multiplicities of the reflections all nodes in Z  for ni < 7 were 

grouped by their length Q and counted. 

Table 1 lists for each N, the largest value of M, the indexes in Z   and R ■, 
the multiplicities and the values of Qo and Qc. This same table can be used to 

find these vectors in Z6 for each S that are closest to being parallel to th« 
3 

plane R   . 
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N M         Coordl nacti   In  R6 Coo rdl -i4Cei   in R3 Mult. 0  P«r>l. 0  P«rp. 
0   * o •*     o    o 0     0     0 0   •» 0 0 o     o 0 AA 1 AA 0.30000 AA 0.00000   A. 
2   - i **     o    e 10     0 0   •* 0        0 AA 12 AA 0.70711 AA 0.70711   AA 
*   * 4   **         0      0 10     0 1   ** 0       t) AA 30 AA 1.20300 AA 0.74350   AA 
6   * 9  **       0     1 I    *A AA 20 AA 1.68572 AA 0.39794   AA 
8   * 12  **       0     1 1     0   -I I    *A AA 30 AA 1.94650 AA 0.45951   AA 

10   * 13   **        11 1     0  -I 1     ** AA 60 AA 2.07095 AA 0.84329   AA 
12   * 16   •*       1     ] 1     I   -1 1     AA AA 12 AA 22.28825 AAt 6.87403   AA 
12   * 16   **       0     1 1    A* AA 60 AA 2. 28825 AA 0.87403   AA 
14   * 21  **       0     1 2     0-1 X    A* AA 60 AA 2.57*97 AA 0.60787   AA 
16   » 24  **        11 2     0-1 1    A* AA 60 AA 2.75276 AA 0.64984   AA 
18   * 29  **        11 J     1   -1 1    AA AA 12 AA 2.99535 AA 0.16693  A* 
20   * 32  **       0     ] 2     0-1 2    ** AA 30 AA 3.14950 AA 0.28399   AA 
22   * 33  **       11 2     0-1 2    ** AA 120 AA 3.23790 AA 0.76200  AA 
24   * 36  **        11 2     1-1 2   ** AA 60 AA 3.37U3 AA 0.79589   *A 
24   * 36  **       0     2 2   *A AA 20 AA 3.37143 AA 0.79589   »A 
26   * 41   •*       0     2 2     0-1 3  *• AA 60 AA 3.57225 AA 0.48889   AA 
28   * 44   •*        12 2     0-1 2    AA AA 60 AA 3.702*6 A A 0.54018  AA 
28   * 44  **        11 3     1-1 1   ** AA 12 AA 3.70246 AA 0.54018   AA 
30   * 45  •*       0     1 3     0-1 2    AA AA 60 AA 3.76938 AA 0.88983   AA 
30  * 45  **        12 2     1-1 2    AA AA 60 AA 3.7693B AA 0.88983   AA 
30  * 45   **        12 2  -1   -I 2    AA AA 20 AA 3.76938 AA 0.88983   AA 
32   * 48  "        11 3     0-1 2    AA AA 120 AA 3.89300 AA 0.91901   AA 
32   * 48   »•        0     ; 2     0-2 2    AA AA 30 AA 3.89300 AA 0.91901   AA 
34   - 53   **        1     ] 3     1   -I 2    AA AA 60 AA 1.06315 AA 0.67094   AA 
36   • 56 **      o    ; 3     0-1 2    AA AA 120 AA 4.18295 AA 0.70918   AA 
38   * 61 »*     i   ; 3     0-1 2    AA AA 60 AA 4.34643 AA 0.32942  AA 
40   * 64 *•     i   ; 3     1-1 2    AA AA 60 AA 4.45*07 AA 0.40162  AA 
42   * 65   »*        0     - 3    0-2 2    AA AA 60 AA 4.50984 AA 0.81320   AA 
44    * 68 **     i   ; 3     0-2 2     AA AA 120 AA 4.61367 AA O.B4S04   AA 
46   * 73 *•     i   ; 3     1-2 2    AA AA 60 AA 4.76239 A A 0.56538   AA 
46   * 73 **      o    ; 3     0-1 3    AA AA 60 AA 4 . 75239 AA 0.56538   AA 
48   * 76 **     i   ; 3     0-1 3    AA AA 120 AA 4.86082 • A 0.51028   'A 
50   • 77 **     i   ; 3     1-1 3    AA AA 120 AA 4.91198 AA 0.93405  AA 
50   * 77 »*      i    ; 3   -1   -1 3    AA AA 60 AA 4.91198 AA 0.93405   AA 
52   • 84 •*      o   ; 3     0-2 3    AA AA 30 AA 5.09600 A* 0.17552   AA 
54   * 85 **     i   ; 4     I  -1 2    AA AA 60 AA 5.14482 AA 0.72856  AA 
54   • 85 **     i   : 3     0-2 3    AA AA 120 AA 5.14482 AA 0.72856   AA 
56   * 88 **     i   ; 3     1-2 3    AA AA 60 A* 5.23607 AA 0.76393   A* 
56   * 88 **      o    : 3     0-1 3    AA AA 60 AA 5.23607 AA 0.76393   AA 
58   * 93 **     i   : 3     0-1 3    AA AA 60 AA 5.35757 AA 0.43493   AA 
60   4 96 **     i   : 3  -1   -1 3    AA AA 20 AA 5.4 5509 AA 0.49189   A* 
60   « 96  *«        1     ' ♦     1   -2- 2    AA AA 60 AA 5.45509 A* 0.49189   A» 
62   - 97   **        1      ' :     4     0   -1 3     AA AA 120 AA 5.50073 AA 0.86137  AA 
62   * 97   **        0     . 3     0-2 3    AA AA 60 AA 5.50073 AA 0.86137  A* 
64   » 100   **        1 13     0-2 3    AA AA 120 AA 5. 58517 AA 0.89148  A« 
64   * 100  **       i    • ;    ♦    1 -1 3    AA AA 120 AA 5.58617 AA 0.89148  AA 
66   * 105  **       2     • 14      1-2 2    AA AA 60 AA 5.70961 AA 0.6*270   AA 
66   * 105  **       0 14     0-2 3    AA AA 60 AA 5.70961 AA 0.6,270   A* 
68   * 108   **        1 !     4     0  -2 3    AA AA 120 AA 5.79197 AA 0.67312   AA 
70   * 113   •*       1 !     4     1   -2 3    AA AA 60 AA 5.91112 AA 0.24223   AA 
72   * 116  *•        1 14     0-1 3     AA A A 60 AA 5.99070 AA 0.33385   AA 
72   * 116   **        2 14     2-2 2    AA AA 12 AA 5.99070 AA 0.33385   A» 
74   * 117   **        1 14     1-1 3    AA AA 60 AA 6.03229 AA 0.78196   *A 
74   * 117   **        1 1      4-1-1 3    AA AA 60 AA C03229 AA 0.78196   AA 
76   * 120   •*        2 14     1-2 3    AA AA 120 AA €.11030 AA 0.81501   AA 
76   * 120 •*•        0 110-2 3     AA AA 120 AA C.11030 AA 0.81501   AA 
78   * 125  **        1 i     4     0   -2 3    AA AA 120 AA 6.22336 AA 0.519*4   AA 
80   * 126   »•        1 14     1-2 3     AA AA 120 AA 6.29900 AA 0.56798   «A 
80   * 128  **       0 14     0-2 4    AA AA \ 30 AA 6-299C0 AA 0.567ee   AA 
82   - 129   **        2 14     2-2 3    AA AA ' n AA 6.3 3856 A* 3.90ÖS7   A. 
82   * 129   **        1 14     0-2 4     AA AA 120 A A 6.33856 AA 0.90697   AA 
84   * 132  **        2 15     1-2 2    AA AA 60 AA 6.41285 A A 0.93562  AA 
84   * 132   **        2 14     0-2 3     AA AA 60 AA 6.41285 AA 0.93562   AA 
84   « 132  •*        1 14     1-2 4     AA AA 60 AA 6.41285 AA 0.93562   AA 
84   * 132  **        0 14     0-1 4    AA AA 60 AA 6.41285 AA 0.93562   AA 
86   * 137  **       2 9     4     1-2 3    AA AA 60 AA 6.52066 AA 0.69351   *A 
86   » 137  **        1 3     4     0-1 4    AA AA 120 AA 6.52066 AA 0.69351   AA 
88   • 140   **         1 1      4-1-1 4    AA AA 60 AA 6.59289 AA 0.73056   A A 
88   » 140   **         1 1     S    1  -2 3    AA AA 60 AA 6.59289 AA 0.73058  AA 
90  * 145  **       2 I     S     2  -2 2    AA AA 12 AA 6.59781 AA 0.37326  AA 
90   * 145  **       0 14     0-2 4    AA AA 60 AA 6.69781 AA 0.37326  AA 
92  * 148  **       1 14     0-2 4    AA AA 120 AA 6.76815 AA 0.43830   A» 
94   * 149  **       2 15    1-2 3    AA AA 120 AA 6.80499 AA 0.83193   ** 
94   * 149  •*        1 14     1-2 4    AA AA 120 AA 6.80499 AA 0.83193   AA 
94   * 149  **       1 1     4-1-2 4    AA AA 60 AA 6.8049* AA 0.83193   AA 
96   * 152  **        1 15     0-2 3    AA AA 120 AA 6.87424 AA 0.86307   AA 
98   * 157  **        1 15     1-2 3    AA AA 120 AA 6.97492 AA 0.59200   AA 

100   * 160  **       2 15     2-2 3    AA AA 60 AA 7.04250 AA 0.63502  AA 
100   * 160  **        1 .40-1 4    AA AA 60 AA 2.04250 AA 0.63502   ** 
100   * 160  **       0 1     i    0  -3 4    AA AA 30 AA 7.04250 AA 0.63502  ** 
102   » 165  •*        1     < 4-1-1 4    AA AA 20 AA 7.14081 AA 0.09394   A* 
104   * 168  **       2 1     5     1   *2 3    AA AA 60 AA 7.20683 AA 0.24822   A* 
106   * 169  **       1     ' 4     0-2 4    *A AA 120 AA 7.24144 AA 0.74941   A* 
108   * 172  **       1     ' 4-1-2 4    AA A* 60 AA 7.30654 AA 0.78384   »A 
108   * 172  *«        1 15     1-3 3    AA AA 60 AA 7.30654 AA 0.78384   AA 
108   * 172  **       0 15     0-2 4    AA AA 120 AA 7.30654 AA 0.7838«   AA 
110   * 177   **        2 15     2-2 3    AA AA 60 AA 7.40135 AA 0.46961   AA 
110   * 177  **        1 15     0-2 4    AA AA 120 AA 7.40135 AA 0.46901   AA 
112   * 180  **       1     . 15     1-2 4    AA 2       5 AA 120 AA 7.46507 AA 0.52226  AA 
114   * 181   **        2     . 15    1-3 3    AA 3       6 AA 120 AA 7.49»»4* AA «.»17407   A A 

Table 1 

The main  distances  and/or reflections of the icosahedral quasilattices indexed 

accurding to N and M,   in Z    and in R    and in perpendicular space. 
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vii - P;AK POSITIONS 

In figure 1 , we compare the experimental diffraction curves with a series of 
vertical lines at the value of Q    from N - 2 to N - 106 with none omitted using 

A - 0.65 nm. Every strong peak attributed to the icosahedral phase coincides 
with such a position. A few weak peaks were found to line up with the next 
lower  value  of M,   M    " M    " "■    Except for these weak peaks,  all peaks fall at 

angles determined by a single lattice parameter A-O.^nm and one other number N 
wl.ich takes on the value of all positive even integers.    In a sense Q (N)  is the 

o 
icosahedral equivalent of the crystallographic rules which determine for powder 
patterns  of crystalline materials where the  lines  are  to be  found.     As for 
crystalline materials  it has a beginning at N - 2,  and extends monotonically  to 
higher angles.    Strictly any list of all peaks must involve two parameters N and 
M,  and because of the Irrational number t,  Q can    come  infinitesinally  close  to 
any  angle.     Only  the  main  Q     sequence has high intensity.    This is similar to 

what occurs with incommensurately modulated phases. However, the strong peaks 
from an incommensurately u-odulated phase conform to a periodic lattice. 

VIII  -  INTENSITY 

i 

t 

K 

We find that the intensity of neutron diffraction differs significantly from 
that obtained with X-rays. This indicates a degree of chemical ordering. 
The intensities are not consistent witha concept of a simple superlattice. 
since there is no systematic intensity difference correlated with aby parity 
rules on N. In any ordering scheme the N»1Ju+2 peaks would be superlattice peaks 
since they all would disappear in any structure that belonged to an icosahedral 
super group. As in ordinary cryustallography, the positions of the reflections 
depend entirely on the six dimensional lattice and its parameter, only the 
intensity is affected by other factors. Because the icosahedral phase exists 
ever a range of compositions, as verified by the shift in lattice parameter, 
there must be substitutions of manganese and aluminum for each other and a 
certain degree of chemical disorder. In the simplest models, identical single 
scatterers concentrated on a quasilattice,/9,10/ neutron and xray diffraction 
would give similar  intensities,   which would be  a  known  function  only of  Q   . 

This kind of model is clearly ruled out. More complicated models, involving a 
quasilattice decorated with identical motifs give rise to a factorable structure 
factor in which one of the factors gives information about possible 
cuasilattices.    This will be discussed next. 

:il  -  INFERENCE ABOUT THE  CUT FUNCTION 

A quasiperiodic arrangement of points in R    with icosahedral symmetry  is easily 

obtained by projecting all lattice nodes in Z within a symmetric by a 
neighborhood of the icosahedral plane and projecting them onto the icosahedral 
plane. The shape of the neighborhood must conform to icosahadral symmetry. The 
size and shape of the neighborhood is called the cut function. It determines 
the density and arrangement of quasilattice nodes. It is worth noting that no 
points in the quasilattice will be separated by X if X    can not be fit   into  the 

cut   function.     The  shape  and  size of the  cut  function can be adjusted  to 
eliminate specific distances in the quasilattice. If each quasilattice node is 
decorated with the same atomic motif then the structure factor of such a 
structure is the product of two factors, an intrinsic quasilattice structure 
factor and one derived from the arrangement of atoms in the motif. The former 
depends entirely on the cut function. The separation into two factors is an 
approximation. In the ideal structure there is no quasilattice lattice of 
points which have strictly identical environments. We assume an approximate 
repetition of local environment, and use the obrerved intensity to make 
inferences about the spacing  of  quasilattice  nodes  form  the  size  of  the   cut 
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function! If we assume that the cut function is a sphere we can obtain the 
quasilattice structure factor F which is only a function of the diirensionlesa 
cut radius R 

F - 3(ain*/(r 
2. 

COS(J)/<t>   > 

where 

(10) 

2T7Q R 
c 

c: i 

I 

F has zeros at $ - 'l.^g,  7.72. 

1,0 

0,9 

0,8 
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> 0,5 
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Ui 
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24 N. 10 in m 
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0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 2.8 3,0.3,2 3.4 3,6 

/T(NT-M) 

t 

Flg- 3 1 The SqUare root of the relative intensity corrected for multiplicity 
and'the Lorentz factor versus 2(2+T) QC. Both the Qo and Q1 series are shown. 

The value of N is shown for each reflection. Where no peak was observed the 
intensity was set to zero. The solid and dashed curves are quasilattice 
structure factors for spherical cuts for R=0.70i» and 1.1»? respectively. The 
latter is the sphere with the same volume as the cut figure which gives the 
three-dimensional Penrose tiling. 
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■» Fig.   3  plots   intensity  vs.   T(NT-M)  which  is  Qc  2(2+T).     The  quasilattioe 
structure   factor  F   is  plotted  for two values of the dimensionless radius of a 

j^j spherical cut function R-1.1^ and R-0.704.    The former has  a  node  in Fig.   3  at 
1.65, the other at 2.73. The larger R is a sphere of the size of the trl 
icoutahedron that gives the quasilattice of the 3-dira Penrose tiling.     For  this 

m size   the  principal  node spacing is O.bSnm along the 5-fold axis,   corresponding 
to S-2, T-l, although it also admits a few of the short diagonals of the oblate 
tile, S-6 T--3. Because of the many intense reflections near the node of this 
structure factor we conclude that this is not the size of the cut function, that 
these distances are not quasilattice vectors, and that this the observed 
quasilattice is not represented by the 3-diraensional Penrose filing. The 
smaller  value  of R  does  indeed give a node at 2.73 where there are no Intense 

f reflections.    This size cut function rules out S-2  and  S-U   and  all  S-6  except 
T-9, which becomes the shortest distance allowed and is 1 .096nn along the 3-fold 
axis.    This  is  indeed the caliper diameter of a Mackay   icosahedron  /ll/  along 

a. its  three-fold  axis  and figures  in the model proposed by Henley and Elser/12/, 
Guyot and Audier,/13/ Ma, Stern, and Bouldin /IM/. In such a model parallel 
Mackay icosahedra are placed on nodes separated by 1.096rci along their common 
three-fold axis forming distorted octahedra where they join. No nodes are 
closer  than  this  distance.    In another paper we describe the construction of a 

K cut-figure which will give a quasilattice with these properties. 
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