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INTRODUCTION

Increasingly complex sensor systems and communication systems are being

developed; as the flexibility of systems grows. so does the need for automated

methods of controlling them. Artificial Intelligence (AI) techniques exist now for

building some parts of a sensor control system. We envision that the control logic

can be implemented in the form of rules, but whatever knowledge representation is

found to be best, the greatest difficulty will probably be in acquiring the optimum set
of rules or control logic for a highly flexible system. For this reason, a learning

system will be needed to aid in determining optimum mode choices, threshold
settings, etc. The learning system would operate on feedback from a performance
monitoring of simulated results and, later, from a performance monitoring of the
sensor or communication system itself. Techniques exist for simulation and rule
evaluation, but we found no learning techniques easily adapted to parameter control

applications. The ability to learn new control rules or logic by self-teaching is the
key feature of the envisioned automatic parameter control system, and our objective is
to devise techniques leading to this learning capability.

The same parameter optimization techniques needed for a learning system of this
kind can be used also to find optimum parameter values when designing a sensor or

communication system. When selecting a simple example to treat in detail, one for
which optimization can also be determined by analytical methods for verification, we
found a design problem more suitable than a control problem. A learning system to
design a simple radar meeting specific performance constraints is described in this

report in generic object-based code.

One method of automating the learning process (and the approach primarily

followed in this report) is to implement procedures that are humanlike, but which
relieve the human from the very tedious trial-and-error process of repeatedly examining

performance and intelligently selecting the next trial set of parameters or of rules
controlling parameters. The intent is not to replace the methods of optimal control
theory, but to augment them with Al reasoning techniques: e.g.. to select and apply

appropriate curve-fitting methods.



Another approach taken in this project is to determine the usefulness of several
learning techniques that do not primarily model human thought processes. The
results of the latter investigations will be reported in a separate document. In that
study. we address much broader issues concerning the applicability of Al to system
optimization problems.

APPLICATIONS

The kind of sensor system probably most in need of automatic parameter
control is a radar system employing a phased-array antenna. In addition to the
ability to point beams in rapid succession in a number of different directions. it may
also have the ability to rapidly vary power, pulse duration, pulse repetition frequency
(PRF). etc.

An example of a control problem for a very flexible (and hypothetical) radar is
the following.

Environment --. Optimum modes/parameters
Track data (dynamics. Next pointing angle(s) /angular coverage

cross sections, (1 pencil? 1 fan?, n simultaneous?
IlDs. etc.) combination?)

Weather, terrain Per beam: PRF
Other sensor tracks dwell time
Intelligence waveform /resolution
ECMV frequency
Reaction times power
Etc. Etc.

Knowledge about a target, such as its identity (ID) being hostile, can influence
the parameter selection. Weather and terrain here include not only propagation
anomalies and land topography, but sea state, drift ice, and other natural phenomena.
Intelligence can include sighting reports from other ships, aircraft, or satellites, and
reports of expectations of certain activities. Electronic countermeasures (ECMV) include
jamming, chaff, and deception.
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There are many diverse kinds of intercept receivers. Some have in common
with conventional radars the feature of rotating to cover in azimuth. and most scan in
frequency over a certain b-and of frequencies or over several bands. More recent
designs permit an agility in frequency scanning analogous to that of beam pointing.
While some intercept receivers could profit from automatic parameter control, the
greatest need for control will probably be for intercept systems that incorporate
several receivers; e.g.. a warning receiver. an analysis receiver, and a direction-finding
receiver. In this application, the learning methods should be applicable both to the
problem of individual parameter control and the problem of the division of utilization.
As with radar problems, judgment of intercept performance will largely be based on
detection probability, false-alarm rate, and resolution.

Many of the same propagation anomalies affecting radar also affect the intercept
receiver. In place of the target environment, with the many physical constraints on
targets, we instead have the problem of a complex variety of signals. Since the
number of possible signal scenarios is unlimited and the likely scenarios will constantly
change, the learning process would have to continue always, rather than converge to
one that will be adequate for a long period.

Communication systems also have propagation conditions, jamming, other-user
noise, etc., to contend with, but the detection problem is very different since they are
detecting known, friendly signals. Other kinds of environmental features are the state
of EMCON (EMission CONtrol). various security requirements, message priority, and
traffic requirements. Generally, there will be fewer parameters to control, and these
typically would be frequency, power, and the modulation and coding scheme. In many
cases, analytical optimization will be possible, and a learning system would be
unnecessary.

There are two categories of problems, as mentioned earlier. One is the
optimization of a fully described system for each of the various scenarios it is likely
to face. The other is the optimal design of a system, given these scenarios. In the
latter case, optimization may be needed over all scenarios, so the process can be
much more time-consuming. Basically, the same kinds of learning techniques are
needed for both kinds of problem.
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PARTICIPATING All SUBSYSTEMS

Figure 1 is a block diagram of one concept of an Al system for controlling the
parameters of a radar. In an operational system. a radar and the actual environment
would replace the simulator. The control logic learned in the simulation stage is
refined in the operational environment. The function of the parameter-control system
is to reset the parameter and mode settings appropriately as the situation changes.

While a control system should be highly automated. some amount of operator control
will be useful and necessary.

Knowledge common to a number of sensor systems would be built into the
knowledge base initially, and a data/knowledge acquisition system would obtain from a
human a description of the particular system to be optimized and his performance
specifications, and would restructure these into the system syntax. The knowledge-
base box in figure 1 includes initial knowledge and learned knowledge.

The radar, tracker, targets. and weather effects would be simulated. The
simulation system would probably resemble ROSS. a high-level Al programming
language developed by the Rand Corporation specifically for warfare simulation [1]. In
the arrangement shown, the radar parameter values used in the radar simulation are
provided by the rule-based system. (While a rule-based system is envisioned, we may
find some other kind of programming to be more appropriate.) The function of the
rule-structuring and organizing system shown in figure 1 is to organize the mappings

of environment to parameter selection in a useful form. It might use techniques such

as those of BACON* 12. 31 to fit curves to the data. (The other study under this
project looks at ways of learning control rules directly, in which case the rule

structuring and organizing system would be an integral part of the learning system.)

The learning system described in this report provides trial parameter values
directly to the simulator, rather than via a structuring and organizing system and a
rule-based system. A structuring and organizing system would be needed later, but
the design of such a system is not an objective of this project.

*Named for Sir Francis Bacon. in honor of his theory of induction.
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INITIAL DATA/KNOWLEDGE
ACQUISmON SYSTEM

(Understands basics of
generic radars, learns specific
system or candidate system
and environment)

KNOWLEDGE BASE
lKnowledge of radar system,
environment, performance
measures. Has initial
knowledge of some relation-
ships and learned knowledge
of others.)

LEARNING SYSTEM
(Uses feedback to formulate RULE-STRUCTURING &
hypotheses about optimum ORGANIZING SYSTEM
mode and parameter settings)

ADAR SYSTEM & PRMTRENVIRONMENTCOTL

PERFORMANCE VALUES
LMONITOR

OTHER ENVIRONMENTAL DAIA

Figure 1. Overview of a system for building a
set of parameter-control rules for radar.



Similarly, development of the simulation system is not a part of this effort. and a
crude substitute would serve any needs during experiments with a learning system.
Figure 2 illustrates how early experiments can be conducted with a simulator. however
crude it is. Verification of the techniques for a very simple radar system is possible
by computing performance measures by means of well-known radar formulas.

KNOWLEDGE SPC 0PERFORMANCE
BASE MONITOR

t 4 RADAR SYSTEM
PAAEES AND

LEARNINGENVIRONMENT
SYSTEMSIMULATOR

Figure 2. Learning system interaction
in an early stage.

PERFORMANCE MEASURES

The simplest approach to assigning an overall measure of performance resulting
from a set of parameter values is to measure each of the various kinds of
performance and to use the sum or weighted sum. Examples of sources of
component measures for a two-dimensional agile-beam radar are false-track rate.
average expended energy, and track quality. There should be several track-quality
measures: e.g., one for each combination of range and speed; for long, medium, and
short range: and for fast, medium, and slow targets. The track-quality measures
could further be broken into component measures relating to detection probability andI resolution.
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We have found that a performance measure expressed in "units of rejection" is
more convenient than one in "units of goodness." Figure 3 shows how a
measurement of the false-track rate would result in a component measure. "false-
track-units." expressed in units of rejection.* For many of the measures. the units
will be decreasing rather than increasing as shown. If the number of units exceeds
the maximum allowed for that measure, the candidate parameter set is rejected. The
amount in excess can help determine the next set of parameters to try.

/

MAXIMUM ALLOWED
100 -- ,

0

0.01 0.1 1 10

false-trackrate (per hour)

Figure 3. Example of a component measure of performance.

While it is convenient to compute an overall performance measure by summing
the component measures, and then to select the parameter set yielding the minimum

value of the overall measure, it is very likely that some of the component measures

will be low at the expense of some being high. As discussed in the next section. we

will try to force the component measures all to have approximately the same "rank"

on their range of units of rejection.

*Underlines connect words when the combination is to be a single word in a
computer program. Hyphens serve their normal function, but are sometimes
disallowed in computer words.
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THE OPTIMIZATION PROBLEM

MINIMIZING AND BALANCING THE PERFORMANCE MEASURES

Denote the jth variable parameter or mode as P, and denote a particular value
of P as pj. Each set {pJ} of parameter values results in a set {M1 } of component
measures, and the overall performance measure is overall measure = f({Mz}).

When simulation is not prohibitively expensive, the optimization process should
begin with a "coarse scan." The first coarse scan would be for the average of the
environmental situations to be considered. The "surface" created [in (n+1)-
dimensional space for n parameters] by mapping overall _ measure as a function of
P1 .... P, should have one or more "valleys." (The remaining discussions are easiest
to visualize for n = 2.) Since the surface will be disjoint wherever a P changes its
value if Pi is discrete, and since some parameters have non-numerical values, this
characterization is not accurate but should convey the idea.

If several valleys occur, all roughly the same depth, all should be investigated
for use, since the random use of parameters makes it more difficult for the enemy to

predict the system's behavior or to interpret it. If the first coarse scan is for an

average situation and yields only one valley, it is probably wasteful to make a coarse
scan for other environments. Instead. that valley plus knowledge of how the
environment affects performance can be used to estimate where the valley is for the

other environments.

Defining the boundary points of a valley found in the coarse scan is useful
mainly as a step in determining whether there are other valleys. If a low value of
overall measure is found outside of the deepest valley (deepest known after only a
coarse scan), another valley is defined there. The valley, or at least one of the
valleys, should contain the minimum overall measure. (A valley's size would depend
partly on the coarseness of the scan.) Simple algorithms can be used to
approximately define this region: for example, the "three-tier" method described in

appendix A.
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When simulation is too costly to permit performance of a coarse scan, a "zero-

in" method can be used. The risk in using this method is that, if there is more

than one valley, the deepest may not be the one found. Descriptions of both the

coarse-scan method and the zero-in method are given in appendix A.

Once a coarse valley is found (either by a coarse scan or by a zero-in search
confined to the same increment sizes). curve fitting and other numerical methods are

used to search for the true minimum. After the valley minimum is found, the next
stage of optimization takes into account the values of the component Derformance

measures and works to balance them (i.e., to give them roughly the same rank on
their respective scales), while not increasing overall__ measure by a significant amount.
Knowledge of how each performance measure is affected by the variable parameters

guides the selection of the next trial set of parameters. Details of a way to do this

are given in appendix A for the example problem. If there are multiple valleys, a
valley in which (or near which) the performance measures can be balanced may be
preferable to a somewhat deeper one where they cannot be. Experiments are needed
to determine how workable the balancing concept is.

As we will see in the next section, this characterization of the optimization
process is oversimplified for many applications. For example, certain parameters of a
flexible agile-beam radar system can vary from beam to beam. It is highly impractical
to decide, after each dwell of the antenna beam, which parameter set to use next.
Instead of a single value of dwell time, for example, we might assign the next-scan
dwell times: 90 ms in beams [3,20.441, 60 ms in beams 15,9,31,571. 30 ms in all
other beams. Next. we consider some alternative methods of planning ahead.

HOW FAR AHEAD TO SCHEDULE

Consider the control problem for a two-dimensional, agile-beam radar. Should
the parameter-control system decide each parameter change just prior to the time of
the change? Or, should it plan ahead the pattern of changes over some period of
time? Some of the possibilities for decision times are

*Per beam position,

9



" Per m beam positions.

" Per sector (fraction of total azimuth range).

" Per scan (or over total azimuth covered).

" Per time unit.

Similar decisions need to be made for other radar types and for other sensors.
In addition, it may be less satisfactory to specify every parameter during the next
period than to allow the plan to change automatically as a result of data obtained.

For example. the sudden occurrence of jamming may call for a change in the plan.
The radar data obtained in a beam can affect the plan for that scan: e.g.. doubling

the dwell time or the power if a target-present decision occurs in a beam where none

is expected.

NEXT-SCAN PLANNING

Here we consider ways of planning ahead one scan for agile-beam radars. In
general. more attention should be given to those beam positions where detections are
likely to occur for a current track or where intelligence or other sensors have indicated

a likelihood of an approaching target. Hostile, high-speed, and maneuvering targets
should receive additional attention. For fast or maneuvering targets. this attention is
likely to consist of more frequent looks. A high-resolution waveform may be used
when multiple targets in a beam need to be resolved. For long-range or small

targets, an increase in power or an extra-long dwell time may be appropriate. A
high-priority search may call for high power, extra-long dwell time, or more frequent

looks.

A candidate doctrine can be formulated and experimentally refined for choosing
the next scan's parameters. This doctrine will probably be in the form of a set of

rules. The doctrine will necessarily be different for high-target-density cases than for
low-density, and will require additional flexibility to adjust to the exact density. For
example. the sum of the dwell times needed in each beam may exceed the maximum

10



scan time desired, and modifications to the first cut will be needed, such as reducing

slightly the time for each or using high power rather than extra-long dwell times.

A simple approach that can easily be implemented in the form of rules is to

specify what the values of the various parameters will be for each beam in the next

scan. based on the situation in that beam. This technique is usable if the geometry

is such that the target can change, at most, one beam position per scan. Tracker

extrapolation is needed for best results. Table I gives an example of how the

problem of specifying values of parameters {Pj} for each beam and scan is converted

into the problem of selecting values of parameters Pjk that relate to situ ation k. The

following set of situations are assumed in the example in table 1. One or more of

these situations holds for each beam on each scan.

0: DEFAULT. No track is likely to continue in that beam on that scan, and
there is no indication from intelligence or ESM that a target is likely to enter
from that direction.

1: TRACK CONTINUATION. A current track could continue in or enter that
beam. Sometimes there will be two or more beams having a likelihood of
containing the next report of that track. especially for a high-speed target.

2: HIGH SPEED. The target that could be in that beam is traveling at a
high speed.

3: WEAK. The signal strength of the target's echoes is very weak, either
because of the target's distance or its size.

4: CLOSE RANGE. The target is likely to be too close to use a high-
resolution pulse. (The duration of the pulse results in a minimum range for
observing targets.) Another less-close category may be desirable for targets that
are so close they need extra surveillance but are beyond the minimum range.

5: PRIORITY SEARCH. Intelligence or other sensors have indicated that a
target might be entering from that direction at any time.

6: TWO IN ONE BIN. There is a likelihood that at least two targets are in
the same range bin, in that beam.



Table 1. Example of per-beam parameters for an agile-beam radar.
(One "scan" is one complete coverage.)

Situation Number of looks Dwell Time Power Pulsewidth
in Beam on P1 P2 P3 P4
That Scan [integer] Ims] [kW] [/s

0 Default (low resolution)
P10 = 1 P20 P30 P40

I Track Con-
tinuation P11 P21 P31 P41

2 High
Speed P12 P22 P32 P42

3 Weak P13 P23 P33 P43

4 Close
Range P14 P24 P34 P44

5 Priority
Search P15 P25 P35 P45

6 Two in (high)
One Bin P16 P26 P36 P46

P= max Pik Low and high could
k be alternated in

some situations.

TWO-DIMENSIONAL AIR RADAR EXAMPLE

The pertinent specifications of this hypothetical radar system are

* Agile fan beam. 10-degree beamwidth,

* 162-.nmi instrumented range,

300 pulses per s,

* Pulse duration = 100 /ss (low resolution)

or 2 ps (high resolution).

12
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" Dwell time per beam = 0.1 s (30 pulses)

or 0.2 s (60 pulses),

" Looks (beams) per beam position per scan = I or 2.

A "scan* is completed when each beam position has had at least one look.
The beam positions are selected pseudorandomly. but a second look can be selected

algorithmically to space it about half a scan in time from the first look.

The per-beam-position variables (per scan) are

* Looks per scan = 1 or 2,

* Dwell time (per look) = 0.1 s or 0.2 s,
e Pulse duration = 2 #s or 100 #s.

Using the earlier definitions of beam situations, we have the following initial

knowledge of desirable constraints on the control rules. All parameters left unspecified

are to be learned.

Situation 0 (default): 1 look, 0.1-s dwell, 100-#s pulse.
Situation I (track continuation), unless situation 4 or 6 is true: 100-#s pulse.

Situation 2 (high speed): 2 looks.

Situation 3 (weak): 0.2-s dwell and probably 2 looks.
Situation 4 (close range) or situation 6 (2 in I bin): 2-ps pulse.
Situation 5 (priority search): 2 looks and/or 0.2-s dwell time.

Either the rule conditions would need to include target density considerations, or
several rule sets would be needed, each for a different range of target count.

THE LEARNING TECHNIQUES

The learning methods considered in this report are humanlike; they are intelligent
trial-and-error procedures employing numerical methods and common-sense reasoning.

To simplify the discussion, assume that a set of parameter values {pi} (or {{Pjk}})
lead to the performance measures {M} and an overall measure M. For the system

13



outlined in appendix A. M is the sum of the values of Mi. The reasoning procedures
outlined in appendix A rely on "dependencies." The kind of dependency used there is
a relationship between a variable parameter pj and a performance measure Mi.
Typically, the relationship type is "increasing" or "decreasing." Two other kinds of
dependencies also can be used: the relationship can be between a variable parameter
and an "intermediate measure" (e.g.. detection probability) or between an intermediate
measure and a performance measure. (The latter two kinds of dependencies can be
used by the system to generate dependencies between variable parameters and
performance measures, rather than have the user provide them.) Examples of
dependencies are given in the next section. The following procedures are used in the
system outlined in appendix A for a simple mechanical-scan radar.

" During the valley-finding process. a "boundary__checker" determines whether
a performance measure MI exceeds its maximum allowed value. If it does.
an "inbound-_direction" structure is created that lists the parameter-change
options. This is done both for the coarse-scan method and the zero-in

method, but is needed more in the latter case.

" During the "balancing" of the component performance measures (the attempt
to avoid having one performance measure low at the expense of another
being high), the "balancer" creates a "reduction __ direction" for the
performance measure highest on its own scale. This structure is similar to
the "inbound__direction" in that it lists parameter-change options.

" The zero-in method of finding a coarse valley uses humanlike reasoning to
compare values of M among past samples and to use the results to decide
the "direction" in which to move for the next sample.

" Humanlike procedures are also used to select and apply curve-fitting
operations in the search for the minimum value of the overall__measure M
within a coarse valley.

A kind of reasoning that should be experimented with at a later stage would
use what we call an "unknown__dependency." For example, the relationship between

14



radar scan rate and the average number of detections per minute (the "hit rate-) is

not known because the number of detection opportunities increases with scan rate.

but the detection probability per scan decreases as a result of the reduced dwell time

per beam. The system could, after a few samples. hypothesize the relationship and

use this relationship to converge faster to the optimum set of parameters.

Humanlike reasoning. to interpolate or extrapolate among scenario results to find

initial parameters for a new scenario, should also be implemented. For example. the

best combination of parameter values against a medium-speed target is likely to lie

(respectively) between the best for a fast target and the best for a slow target. The

best combination for a moderate number of targets should be somewhere between
those for high-density and low-density target situations. Similarly. the best

combination for a signal intercept system when a moderate number of signals is

present should be between those for high signal density and those for low signal

density.

AN OBJECT-ORIENTED MODEL

OBJECT-ORIENTED PROGRAMMING

An object is a package of information and descriptions of its manipulation [4.5].
Objects are in a hierarchy. and the primary use of the hierarchy is inheritance of

attributes--each object inherits the attributes and procedures of its parent object. The
action in object-oriented programming results from "message passing" among the

objects.

INTERACTION OF SUBSYSTEMS

A large overlap occurs in the initial knowledge and dynamic knowledge required

by the sensor simulation system (e.g.. radar and tracker simulation) and the learning

system. This overlap is a strong argument for implementing both in the same high-
level language. Simulation is best accomplished with object-oriented programming. as

opposed to rule-oriented programming or procedure-oriented programming. but.
fortunately, the object-oriented approach appears to be best also for a learning system
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of the kind proposed. Some high-level languages allow combinations of object-oriented
and rule-oriented programming. which means that testing of the parameter-control
rules (the product of the learning system and a rule-structuring and organizing
system) in the same expert system is feasible. While this project is concerned mainly
with the design of learning techniques. and does not address rule-structuring and
organizing, the learning techniques must be compatible with these other processes.

Figure 4(a) shows the basic structure of a system for learning radar parameter
control rules, and 4(b) shows in detail an example of the initial knowledge needed by
the subsystems. The initial knowledge shown would vary with the problem. For
example, when the objective is to design a radar system, there would be two types of
variable parameters-the design variable, which would stay fixed over all scenarios, and
the system variable, which generally could be varied from beam to beam or from
scenario to scenario.

Not shown in figure 4(b). but important to the learning process, are a number
of intermediate variables or measures. Examples of intermediate measures for an
agile-beam radar are average scan duration and average energy per scan.

The representation of the intermediate measures and performance measures are
under the hierarchy of the object initial__knowledge. The following are examples of
dependencies:

approx dependency_ 

type = against

quantity! = threshold
quantity2 = detection__probability

approx _dependency_ 2
type = against

quantityl = threshold

quantity2 = false-alarm_ probability

16
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exact dependency_ I
condition = CFAR [Constant False-Alarm Rate]
type = proportion

quantityl = false-alarm_probability
quantity2 = false-alarm _rate

Examples for an agile-beam radar:

approxdependency_3

condition = agilebeam
type = support

quantityl = default dwell time
quantity2 = average_ scan _duration

approx_dependency_4

condition = agile_beam

type = weak support

quantityl = sit_ 3 _dwelltime
quantity2 = average scan duration

Examples for designing a mechanical-scan radar:

exact_dependency__2

condition = mechanical scan
type = inverse_ proportion
quantityl = scan rate
quantity2 = pulsesperbeam

unknown_dependency_I

condition = mechanicalscan

type = mixed

quantityl = scan rate

quantity2 = hitrate
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(Hit rate is the product of detection probability and scan rate, but detection

probability decreases as scan rate increases.)

The following is an example of a formula;

formula_1

type = increment

quantity = energyunits

calls = (power pulseduration)

incrinterval = perpulse
incrduration - scenario

incrsize = (power * pulseduration)

To use this formula intelligently, some object, perhaps called "mathematician."

should have a procedure for using the knowledge that multiplying by n is equivalent

to summing over n pulses when the power and pulse duration remain constant.

Formulas would also be used by the simulator's umpire to decide whether a

signal threshold has been exceeded. The actual representation of a formula would

vary widely among different object-oriented languages, and is unlikely to be in the

simple form shown. The implementation would involve messages: e.g.. at each beam

pointing, a message would be sent: (tell energy-units increment your value by (tell

mathematician compute (ask formula_1 recall your incr size))). The representation

of the computation is more likely to be a LISP function (if procedures are written in

LISP) than a slot value as shown.

THE SIMULATION SYSTEM

A simple scheme for simulating targets for a two-dimensional radar and for

constant course and constant speed is shown in figure 5. The beam position

parameters in figure 5 are

0 = 2jr/n

xk = r cos k
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yk = r sin kG

and the beam/target intersection parameters are

x' = (cxi - yi)/(c - yk/xk)

y' = x' (yk/xk)

r =J(X,) 2 + (y,

= t v I(x'-xi) 2  + (y'yi)2

A target is created by randomly generating an entrance time (uniform between

simulation start time and simulation end time) and two beam positions (each an

integer uniform between 0 and b - 1. for b beams). one for entrance and one for

exit. The entrance and exit points are labeled (xi.yi) and (xjyj). respectively.

Each track will consist of a number of positions of the form (beam number,

range-bin number, time-in, time-out), and will have associated with it a speed and a

cpa (closest point of approach). (The track actually will be valid for various

combinations of speed and range-bin size.) Some tracks can be delayed versions of

others: i.e.. additional tracks can be generated simply by adding a time constant to

the time-in and time-out, if computation time is expensive. A number of such tracks

for a variety of speeds would initially be generated, and each could be used with any

cross section consistent with its speed. For different scenarios, different combinations

of varying numbers of tracks would be chosen.

If the radar system allows the occasional use of a high-resolution waveform, a

temporary modification to the track sometimes will be needed. Rather than store

such extensive data in track form, it would be better to compute them upon demand.

For example, whenever two targets appear to be in the same range bin, the exact

range could be computed for each. If the ranges differ by more than the range

resolution of the high-resolution pulse, the targets would be declared resolved.
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One scenario [e.g.. one set of tracks and one set of assumptions about weather
(the simulator's "umpire" uses weather assumptions in generating signal-present
decisions)] would be run over and over. as different radar parameter sets or control
rules are tried. Since clutter and receiver noise introduce randomness to the detection
process, identical experiments sometimes will have to be repeated many times, with
detection differences resulting from a random-number generator used in the umpire
module. Additional runs using random variations in the same basic scenario would be
useful in the final stages of optimization; e.g.. using variations having the same
number of tracks and the same distribution of speed and of cpa.

If the system is of the CFAR (constant false-alarm rate) type, which frequently
is the case, there is no need to have the simulator's threshold umpire decide whether
signal is present for every range bin of every beam. Instead, empty bins can be
randomly chosen as having signal decisions. This is also possible with a non-CFAR
radar, although other factors such as clutter regions have to be considered.

A RADAR DESIGN EXAMPLE

THE PROBLEM

As a simple example to work with, we have chosen a radar design problem.
The radar to be designed is a mechanical- scan, fan-beam, surface-search radar. It is
a simple, low-power radar, with, perhaps, navigation or collision avoidance its primary
purpose. Its beamwidth, instrumented range. and average power are specified. and the
PRF (pulse repetition frequency), peak power. pulse duration, scan rate, and PFA
(probability of false alarm) are to be chosen. There will be two sets of values of
these "variable" parameters. One is a high-target- density mode, for use when
traveling in a merchant lane or near a port. The other is a low-density mode for
traveling in open seas outside of all merchant lanes. The detection probability
formula models no real situation, but is about the simplest one having the correct
properties; e.g., the computed detection probability will correctly increase or decrease
with the parameters that actually affect detection probability. Details are listed below.
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Fixed parameters

beamwidth

units = degrees

value = 1.5

instrumented range

units = nautical miles

value = 25

averagepower
formula = peakpower * pulseduration * PRF

units = watts

value = 10.

Variable parameters

PRF

units = pulses per second
minimum value = 500

maximum value = 2100

peakpower

units = watts

maximum value = 1.0E4

pulse_duration

units = seconds

minimum value = 0.5E-6

maximum value = 1.OE-5
scanrate

units = revolutions per minute
value = 6
maximum value = 18

PFA
units = probability (per range-bin decision).
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We are assuming that energy is exactly proportional to peakpower. PRF. and
pulse_duration, and detection_probability is a function of energy_per_pulse (at the
receiver) and pulses__per _beam. Since average energy is a fixed parameter, the
variable parameters peakpower and PRF are not varied independently in the
optimization process. They are determined by the following rule: Use the smallest
PRF such that (1) PRF >=' 500. (2) pulses_per_beam = integer, and (3)
peakpower =< 1E4 watts. An algorithm for this follows. (NLI = next lower

integer.)

If pulseduration > 2E-6.

let i = I + NLI(125 / scanrate):

otherwise.

let i = 1 + NLI(1 / (4E3 * pulseduration * scan rate)).
Let PRF = 4 * i * scanrate.

Intermediate measures

pulses_per _beam

formula = (PRF * beamwidth) / (6 * scan rate)

= PRF/(4 * scan rate)

units = pulses per beam position per scan

range_resolution

formula = 0.5 * pulseduration * c [c = speed of light]

= 0.8094E5 * pulseduration

units = nautical miles

cellsperbeam

formula = instrumented range / range_ resolution
= 25/range_ resolution

units = resolution cells per beam

decisionrate

formula = (6 * scan_ rate/beamwidth) * cellsper_ beam

= 4 * scan _rate * cellsperbeam

units = signal or noise decisions per second
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false_ alarm -rate

formula = 3600 * decision rate * PFA

units = false alarms per hour

energy_ per_ pulse

formula = peakpower * pulse duration

= average_ power/PRF

= 10/PRF
units = watt-seconds (transmitted)

detection _probability = exp((In PFA) /

(2500/SQRT(scan rate * PRF) + 1))

units = probability (of detecting "standard target") per scan.

A standard target here is a surface target having a cross section of 10 meters

squared and a range of 10 nautical miles. The formula for detection _probability uses

a Rayleigh approximation for noncoherent integration, where (see figure 6) signal-to-

noise ratio = constant * SQRT(pulses _per _beam) * energy _per _pulse =

2500/SQRT(scan rate * PRF).

hit rate

formula - scan _ rate * detection_ probability

units = hits (detections) per minute per standard target.

Performance measures

Notes: 1. All have the units, rejection units.

2. All have max-units _allowed = 100.
3. Figures 7-9 give plots of the performance measures.

FAR units = 120 * exp(2 * ((log false-alarm rate) - 2.1))

hit rate units = 115 * exp(-0.7 * (hit rate - 3))
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Figure 6. Per-scan detection probability versus 10 log SNR (where SNR is the signal-to-noise
ratio) for a Rayleigh distribution of signal and noise. For average power = 10 watts and SNR =

2500/SQRTiscan-rate * PRF), SNR varies over the range shown as pulseduration and
scan-rate are varied.
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Figure 8. Performance measure hitrate_ units versus hitrate, the expected
number of times per minute a particular "standard target" is detected. Here, a
standard target has a range of 10 nmi and a radar cross section of 10 m2 .
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target_ resolution_ units = (50 + 3 * targetcount) * range_ resolution.

(When two targets fall in the same resolution cell. they appear as one larger target.

The problem worsens as the cell size increases and the number of targets increases.

The target _count is the actual number of ships, except ownship. within the

instrumented range.)

blind range units = 30 * range resolution.

(The radar does not receive while transmitting: hence it is blind to targets at a

distance less than the range resolution.)

overall measure = FAR units + hit rate units +

target _resolution _units + blind _range_ units.

RELATIONSHIPS AMONG PARAMETERS AND MEASURES

Figure 10 shows which measures are affected by which parameters and

measures. Note that a convenient alternative to computing an integer value of

cellsperbeam from pulseduration is to specify the integer value and compute

range_ resolution. From figure 10. it is not obvious that detection_ probability, as

defined earlier, can be computed directly from PRF and scan rate, but doing this is

a short-cut method of reducing computations. In a realistic formula for detection

probability, the energyper pulse and pulses _ per _ beam would be needed to estimate

the loss attributable to noncoherent integration. Not shown in figure 10 is

targetcount, which affects the performance measure target_ resolution -units.

The relationships listed below indicate whether a measure increases or decreases

with a parameter or other measure, and when this change is linear.

Notation:

==> implies

=L=> implies linear relationship

t increases
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Figure 10. Flow diagram of parameter effect on performance measures,
via intermediate measures. Instead of specifying pulse__duration, an
integer value of cells perbeam can be specified, and the range

resolution and pulseduration computed from this.

rn decreases

decrate decision rate

det__prob detection__probability
FAR false-alarm rate

resol resolution

Effect of probability of false alarm

PFA 1=--> FAR 1 -=> FARhunits

PFA ==> det__prob t =1=> hitrate t ==> hitrateunits .
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Effect of scan rate

scanrate t =L=> decrate t =L=> FAR t ==> FARunits t

scan rate t =L=> detprob 1 =L=> hitrate 4 ==> hitrateunits t

scanrate t =L=> hitrate t ==> hitrateunits 4.

Effect of pulse duration

pulseduration t =L=> rangeresol t ==> targetresol _units t

pulseduration t =L=> rangeresol 1 ==> blind_ range_ units t

pulseduration t =L=> rangeresol t =L=> cells__per _beam 4. =L=>

decrate 4 =L=> FAR 4 ==> FARunits 4

For pulse__duration > 2E-6:

pulseduration 4 ==> PRF t ==> detection _probability 4

==> hit rate units t

Alternative to above:

cellsperbeam t =L=> rangeresol 4 -=> target_ resol _units 4

cellsperbeam t =L=> rangeresol 4 ==> blind range_ units 4

cellsperbeam t =L=> decrate t =L=> FAR t ==> FARunits t

For cellsperbeam > 154:

cellsperbeam t ==> PRF t ==> detection_ probability I

==> hit rate units 4
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PERFORMANCE MEASURE BOUNDARIES

In the example problem chosen, two of the parameters, scan _ rate and

pulse_duration (equivalently. cells_per beam), have minimum and maximum values.

The range of PFA is less obvious except, of course, that it ranges from zero to unity.

Within the minimum and maximum parameter values, there may be values that result
in a performance measure exceeding its maximum. An example of this is shown in

figure 11. where scan rate is fixed at 12 rpm and performance measures are

computed as PFA and cells_ per_ beam are varied. Low values of PFA result in a
small detection_ probability and therefore in excessive hitrateunits, and high values
result in a too-high false-alarm__ rate. Low values (less than 35) of cells _perbeam

result in excessive target_resolution units in the case where the targetcount is 30.

In our simple example, these boundaries can be computed. If we had chosen a
realistic probability distribution for detection probability, or had considered an agile-

beam problem, this would have been impractical or impossible. Therefore. we will
assume that our learning system does not have access to an inverse formula for
finding PFA as a function of detection probability, cells _per_ beam, and scan __rate.
Having the learning system discover the boundary when hit _ rateunits exceed 100
permits experiments with techniques applicable to other boundary-finding situations.
On the other hand, finding PFA as a function of cellsperbeam and scan __rate. for
FAR units = 100, can be reasonably done with a formula in many radar optimization

cases, so a formula will be used for this boundary. This maximum value of PFA is
max PFA = 0.0070872 / (scanrate * cells_perbeam)

In the simple method described in appendix A. the user specifies the coarse-scan

parameters. The ones used there are the following.

scan rate = 6. 8, 10. 12. 14. 16. 18

cellsperbeam = 35. 100. 200. 300. 400, 500. 600

PFA = coarse factor * max PFA.

where coarse-factor = 14 01. O..O. 0.01. 0.Wr i. 0.001.
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Figure 11. Optimization problem for a 12-rpm scan rate. The value of
cells per beam varies from 31 to 618 because of constraints on
pulsi duration. For cells per beam > 154, the PRF increases with
cells er beam, causing the output signal to noise ratio to decrease,
and tus tie hit rate to decrease for fixed PF. For target count = 30,
the target resolution_ units exceed 100 if cells perbeam < 35.
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If a system is to be used for several optimization problems. it would be practical to

build in the capability of automatically computing maximum and minimum values as

well as an appropriate increment. Furthermore. the increment for each parameter

could vary, depending on previous results. The user may have to specify whether the

parameter should be incremented linearly, logarithmically (as with PFA). or by some

other method.

SAVINGS IN COMPUTATION TIME

Optimization of the parameters for the problem described would require much
less effort and computation time if. instead of using a learning system. we used a

"fine scan" over promising regions after the coarse scan, or even simply used a fine

scan over the entire region. We chose this simple example because experimenting

with learning techniques then does not require a computer program for simulating

radars and trackers. If a simulator is available, more realistic performance measures

can be used, some relating to false-track rate, track quality, and target separation.

However, this realism is not needed in the early development of the learning

techniques. when the learning techniques are developed to the point that they can

greatly cut down on the number of simulations that must be performed. Then they

can be combined with a simulator, and used for real applications.

CONCLUSIONS

When we began this project as a small effort in FY85. we expected to code and

experiment with some learning techniques applicable to systems as complex as agile-

beam radars. During that year. we became aware of the enormous complexity and

detail needed even for a simple problem, and determined that we did not have the

time or adequate computing capability for realistic experiments. We decided that a

considerable amount of knowledge could be gained just by designing a system in
generic object-based code. We completed such a design in FY86 (although sketchy in

parts). and we hope later, under other funds, to implement the example described and

to expand the implementation to more complex applications.

33



The learning techniques proposed for the example problem of a simple

mechanical-scan radar are based on humanlike reasoning processes. The problem was

modeled as one of optimizing parameters. with the conversion of results into

parameter-control rules occurring after the parameter optimization process. It was

pointed out that in the case of an agile-beam radar system. one could formulate rules

containing parameters and then appiy parameter optimization procedures to the rules'

parameters. In practice, the rules' structures would also need to be optimized. and

the problem is larger than that of parameter optimization.

In FY86. this project was expanded to include investigating other learning

techniques that might be applicable to system optimization problems or to pieces of

the problem. These techniques differ from those discussed here in that they do not

primarily imitate human behavior and in that they directly address the problem of

learning rules about optimum parameters. The results of these investigations will be

reported on separately. In other work (reference 6) of possible interest to the

reader, researchers at the Naval Surface Warfare Center are investigating the use of

genetic algorithms to refine a combat system's doctrine rules.

Our investigations have substantiated our original supposition that a learning

system would not be practical unless it was very general and could be applied to a

variety of specific problems. Recall that figure 1 shows an "initial data/knowledge

acquisition system" that understands the basics of the generic radars and learns from

the user the specifications of the particular system and the environment. The

techniques used in the simple example in appendix A are essentially applicable to very

general parameter optimization problems having a similar definition of "optimum."
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APPENDIX A:
AN EXPERIMENTAL SYSTEM IN GENERIC OBJECT-BASED CODE

Notes:

1. Prefix Smarks an object whose value can vary with each test or each
environment. (Value is one "attribute" of certain objects.)

2. Prefix &marks the value of an object. If <name> is a fixed parameter, let
&<name> be the value of <name>. If <name> is a variable parameter or an
intermediate measure, let &<name> be the value of $<name>.

3. Formulas are listed just below where first referred to. rather than in the section
on Initial Knowledge.

4. <> represents a value to be assigned by the action of some object. Angle
brackets also enclose a description of what is in that slot.

5. Two hyphens (--) precede lines of comment that appear in the code but are not
part of it.

TOP-LEVEL OBJECT

object

offspring = (initial_ knowledge fake simulator performance__ monitor learner)

INITIAL KNOWLEDGE

-See figure Al.

initial__ knowledge

parent = object

offspring = (connection specification)
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connection

parent = initial _ knowledge

offspring = (formula dependency)

formula

parent = connection

offspring = (formula 1 formula _2 ...)

-- Formulas appear where first referred to.

dependency

parent = connection

offspring = (exact_ dependency approx _dependency unknown _dependency)

-- Dependencies are treated later.

specification

parent = initial knowledge

offspring = (optimization -problem environment - spec radar spec

performance _spec text)

text

parent = specification

offspring = (goal step_ goal _step_ 2 PRF formula spread _formula)

-- Text is sometimes used here to describe initial knowledge of algorithms

-- or procedures to be called by the behavior of objects in other subsystems.

- A subroutine. LISP function, or other form would be used in a specific

-- object-based system. The text shown (in quotes in later examples) could

-- be saved under the attribute "description." and the parent would become

-- "subroutine" or other.

-- optimization_ problem--

-- See figure A2.

optimization_ problem

parent = initial- knowledge
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offspring = (system_ optimized parameter _optimized optimization_ case

goal)

system _optimized

parent = optimization__problem

type = radar

system _spec = radar spec

parameter _optimized

parent = optimization _problem

parameters - (scan rate pulseduration PFA)

varies with = optimization -case

-- See the explanation below (under "radar_spec") of why the variable

-- parameters peakpower and PRF are not involved in the optimization process.

optimization _case

parent = optimizationproblem

offspring = (optimization -case- 1 optimization case 2)

optimization _case_ 1

parent = optimization _case

environment = environment 1

radar mode = mode 1

optimization __case_ 2

parent = optimization _case

environment = environment_2

radar mode - mode 2

goal

parent = optimization _problem

varieswith = optimization _case

value = (goal _stepi goal _step2)
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goal_stepi

parent = text

value = "Find the parameter set such that overallmeasure M is

minimized, and denote it sl."

goalstep2

parent = text

value = "To balance component performance measures, find parameter set s2

such that performance__spread S is reduced at a small sacrifice in

overall __measure M. In particular, find s2 such that S(s2) is the

minimum S within the constraints:

M(s2) / M(sl) < 1.1

and S(sl) - S(s2) > 4 * (M(s2) - M(sl)) / M(sl).

-- Goal stepi and goal step2 are used in the design of the "optimizer"

-- part of the learner. The algorithm is just a simple example.

-- The performa rpeasures. overall__measure, and performance spread are

-- defined under pwormancespec.

-- environment_ spec --

-- See figure A3.

environment_ spec

parent = specification

offspring = (target_ type environment)

targettype

parent = environment_ spec

offspring = standardtarget -- Normally, there would be several types.

standard -target

parent = targettype

category = surface

cross section = 10
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cross_ section _units = meterssquared

range = 10

range units = nautical miles

environment

parent = environment_ spec

offspring = (environment_1 environment 2)

environment 1

target count = 1

sea state = 1

weather = clear

environment 2

target _count = 30

sea state = I

weather = clear

-- radarspec--

-- See figure A4.

radar spec

parent = specification

offspring = (radar overview parameter mode intermediate measure)

radar overview

parent = radarspec

name = radar_ simplistica

scan _type = mechanical scan

beamtype = fan

function = surfacesearch

processing = noncoherent _pulse_ integration
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Figure A-3. Specification of the environment, under initial knowledge.
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Figure A-4. Specification of the radar, under initial-knowledge.
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-- parameter --

parameter

parent = radar spec

offspring = (fixed__parameter variable__parameter)

fixedparameter

parent = parameter

offspring = (beamwidth instrumented_range averagepower)

beamwidth

parent fixedparameter

value = 1.5

units = degrees azimuth

instrumented_ range

parent fixedparameter

value = 25

units = nautical miles

averagepower

parent - fixed_ parameter

value = 10

units = watt-seconds

-- averagepower = peakpower * pulse duration * PRF

variable_ parameter

parent = parameter

offspring = (PRF peakpower pulseduration scanrate PFA)

-- We are assuming that energy consumption is exactly proportional to

-- peak_power, PRF, and pulse__duration; and detection performance is a

-- function of energy_ per_ pulse and pulses_ perbeam. Since averageenergy is

-- a fixed parameter, the variable parameters peakpower and PRF are not

-- varied independently in the optimization_ process; they are determined by
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-- the following rule: Use the smallest PRF such that (1) PRF >= 500:
-- (2) pulsesper _beam = integer: -- and (3) peakpower =< 1E4 watts. An
-- algorithm for this follows.

PRFformula
parent = text

value "Let NLI = next lower integer.
If pulseduration > 2E-6.

let i = I + NLI(125 / scan-rate):

otherwise,

let i = 1 + NLI(1 / (4E3 * pulseduration scan-rate))

Let PRF = 4 * i * scan rate."

PRF
parent = variable_ parameter
description = pulse_ repetition _frequency

varies with = mode

constraint = (integer & pulses_ per beam)
formula = formula I
valuetype = integer
min value = 500

max value 2100

units = pulses_ per_ second

formula_

parent = formula

quantity = PRF

calls = (pulse duration scan_ rate)
output = PRFformula

-- For a 1.5-degree beamwidth. PRF's constraint is satisfied if PRF is a
-- multiple of 4 * scan rate.

peak_power

parent = variable_ parameter
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varieswith = mode

formula = formula 2

valuetype = continuous

max-value = 1.0E4

units = watts

formula_2

parent = formula

quantity = peakpower

calls = (&averagepower &PRF & pulseduration)

output = &averagepower / (&PRF * &pulse duration)

pulseduration

parent = variable_ parameter

constraint = (integer &cells_ per beam)

varies with = mode

valuetype continuous

min value = 0.5E-6

max-value = JE-5

formula = formula 3

units = seconds

-- Since the pulseduration has a constraint that the cellsperbeam

-- must be an integer, it is easiest to fix the intermediate measure

-- cells_ per beam, compute the intermediate measure range resolution

-- (using the alternative version of formula _5), and then compute

-- pulseduration (using formula 3).

formula 3

parent = formula

quantity = pulse _duration

calls = &range_ resolution

output = 1.236E-5 * &range__resolution

scan rate

parent = variable_ parameter
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varies with = mode

valuetype = continuous -- integer preferred

min value = 6

max-value = 18

coarsevalue = (6 8 10 12 14 16 18)

-- A coarse valley will be built using only the coarse values of the

-- parameter.

units = revolutions_ per_ minute

PFA

parent = variable_ parameter

description = prob _of _false- alarm_ per_ resolution _cell _decision

varieswith = mode

category = indirect

valuetype = continuous

min value = 0

max-value = I
coarsevalue = computed

-- Coarsescanner computes &coarse scan PFA.

units = probability

-- mode --

mode

parent = radarspec

offspring = (mode_ mode 2)

-- Could be more than two if multiple usable valleys exist.

varies with = environment

mode I

parent = mode

employment = environment I

PRF = <>

peakpower =<>

pulseduration = <>
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scan rate = <>

PFA = <>

-- Final values correspond to an optimumset.

mode 2

parent = mode

employment = environment_ 2
-- Same attributes as mode I

-- intermediate_ measure

intermediate__ measure

parent = radar-spec

offspring = (pulses_ perbeam range resolution cells perbeam

decisionrate false-alarm__rate energy _per__pulse

detection_ probability hit rate)

pulsesperbeam

parent = intermediate__ measure

type = predetermined

formula = formula 4

units = pulses_ per_ beam _per _scan

-- The value of pulses_ per _beam affects detection probability.

-- but is not used directly.

formula 4

parent = formula

quantity = pulsesper beam

calls = (&PRF &scan rate)

output = &PRF / (4 * &scan rate) -- for a 1.5-degree beamwidth

range resolution

parent = intermediate measure

type = predetermined
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formula = formula 5

units = nautical miles

formula_5
parent = formula

quantity = range_ resolution

calls = &pulse _duration

output = 0.8094E5 * &pulseduration

-- Next formula allows integer value of cells_ per_ beam to be specified.

formula 5 -- alternative

parent = formula

quantity = range_ resolution

calls = &cells _per_ beam

output = 25 / &cellsperbeam -- for a 25-nmi instrumented range

cells_perbeam
parent = intermediate measure

description = resolution _cells_per_ antenna _beam

type = predetermined

value_type integer

min value = 31

max value = 618

coarse_value = (35 100 200 300 400 500 600)
formula = formula 6

units = cellsper_beam

-- Next formula not necessary if previous formula employed.

formula_6

parent = formula

quantity = cells_per_beam

calls = &range resolution

output = 25 / &range_ resolution -- for a 25-nmi instrumented range
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decision rate

parent = intermediate _measure

description = signal or noise decisions_ per_ second

type = predetermined

formula = formula 7

units = cells_ persecond

formula_7

parent = formula

quantity = decision_ rate

calls = (&scan rate &cells per beam)

output = 4 * &scan __rate * &cellsperbeam

-- for a 1.5-degree beamwidth

false-alarm _rate

parent = intermediate measure

type = probabilistic

formula = formula 8

units = false _alarms_ per _hour

formula 8
parent = formula

quantity = false-alarm rate

calls = (&decision rate &PFA)

output = 3600 * &decision rate * &PFA

energy_per _pulse

parent = intermediate measure

type = predetermined

formula = formula 9

units = watt-seconds

-- The value of energy per_ pulse affects detection_ probability, but is

-- not used directly.
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formula_9

parent = formula

quantity = energy_per_ pulse

calls = &PRF

output = 10 / &PRF

-- = &peak_power * &pulseduration

detection _ probability

parent = intermediate _ measure

type = probabilistic

formula = formula 10

units = probability_ per_ scan

formula 10

parent = formula

quantity = detection_ probability

calls = (&PFA &scan_ rate &PRF)

output = exp((In &PFA) / (2500 / SQRT(&scan rate * &PRF) + 1))

-- Approximated with Rayleigh distribution.

-- For standard _target only (10 nmi, 10 m2 ).

-- Assumes noncoherent integration: Output SNR

-- constant * energy _per_ pulse * SQRT(pulses _per_ beam)

hit rate

parent = intermediate__ measure

description = average_ number_ detections_ of_ target_ per_ minute

type = probabilistic

formula = formula 11

units = hitsper_ minute

formula_ 11

parent = formula

quantity = hit _ rate

calls = (&scan _rate &detection_ probability)

output = &scan-rate * &detection- probability
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-- performance spec--

-- See figure Al.

performance spec

parent = specification

offspring = (performance measure overall measure performance_ spread)

performance measure

parent = initial _knowledge

varies with = scenario

offspring = (FAR _units hit _ rate units target_ resolution units

blind range_ units)

FAR-units

parent = performance measure

formula = formula 12

units = rejection units

max units allowed = 100

formula 12

parent = formula

quantity = FAR units

calls = &false-alarm -rate

output = 120 * exp(2 * ((log &false-alarm rate) - 2.1))

hit rate units

parent - performance measure

formula = formula 13

units = rejectionunits

max units -allowed = 100

formula 13

parent = formula

quantity = hit rate units
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calls = &hit rate

output = 115 * exp(-0.7 * (&hit rate - 3))

target_ resolution_units

parent = performance_ measure

formula = formula 14

units = rejection_ units

maxunitsallowed = 100

formula 14

parent = formula

quantity = target_ resolution__ units

calls = (&range_ resolution &targetcount)

output = (50 + 3 * &targetcount) * &range- resolution

blind_ range_ units

parent = performance measure

formula = formula 15

units = rejection units

max units allowed = 100

formula 15

parent = formula

quantity = blind _range__ units

calls = &range resolution

output = 30 * &range_ resolution

overall measure

parent = performance_ spec

varies with = simulation test

formula = formula 16

,units = rejection units
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formula_16

parent = formula

quantity = overall measure

calls = <offspring of Sperformance- measure>
output = <sum of offspring of $performance measure>

performance_spread

parent = performance _spec

varieswith = simulation test

formula = formula 17

units - normalized_ rejection_ units

formula 17

parent = formula

quantity = performance_ spread

calls = (<offspring (Mi) of performance__ measure>
<offspring of Sperformance- measure>)

output = spreadformula

spread formula

parent = text

value = "performance__ spread = max{qi} - min{qi}. where

qi &Mi / (max units_ allowed of Mi)
q1 = &FAR units / 100
q2 = &hit units / 100
q3 &target _ resolution_ units / 100

q4 = &blind -range_ units / 100 -

-- dependencies --

approx_ dependency

parent = dependency

offspring = (approx _dependency I ...)
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unknown_ dependency

parent = dependency

offspring = (unknown_dependency_ I .. )

approx_ dependency__ I

parent = approx_ dependency

type = support

quantity1 = PFA

quantity2 = FARunits

approx_dependency_2
parent = approx_ dependency

type = against

quantityl = PFA

quantity2 = hitrate units

approx_dependency_3

parent = approx_ dependency

type = support

quantityl = scan rate

quantity2 = FAR units

unknown_ dependency_ I

parent = unknown _dependency

type = mixed

quantityl = scan rate

quantity2 = hit rate units

-- Hit opportunities increase with scan rate, but detection_ probability

decreases.

approx_dependency_4

parent = approx_ dependency

type = against

quantityl = cells_ per beam

quantity2 = target_ resolution_ units
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approx_ dependency__ 5

parent = approx_ dependency

type = against

quantityl = cellsper_ beam

quantity2 = blind_ range units

approxdependency_6

parent = approx _dependency

type = support

quantityl = cells_ per_ beam

quantity2 = FAR units

approx _dependency_ 7

parent = approx _dependency

type = against

constraint = (lessthan 154 cells perbeam) -- from PRFformula

quantityl = cellsper_ beam

quantity2 = hit rateunits

-- Dependencies involving intermediate measures could also be given and,

-- in fact, could have been used to automatically generate all those

-- given above.

FAKE SIMULATOR

-- See figure A5.

fake simulator

parent = object

offspring = (radar_ simulator Starget count)

Starget count

parent - fake simulator

units = targets

value = <1 or 30>
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radar simulator

parent = fake _simulator

offspring = ($test_ parameter $intermediate measure)

-- Stest_parameter --

Stestparameter

parent = radar simulator

offspring = (SPRF Speak_ power Spulse duration $scanrate SPFA)

test = <integer>

-- Attribute "test" has same value for all objects having this

-- attribute. The value is incremented by I after the outcome

-- of a test is used to produce a new parameter set.

SPRF

parent = Stestparameter

value =<>

$scan rate

parent = Stest_ parameter

value =<>

$pulseduration

parent = Stest_ parameter

value =<>

Speakpower

parent = Stest_ parameter

value =<>

SPFA

parent = Stest parameter

value =<>
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-- $intermediate measure--

$intermediate_ measure

parent = radar simulator

offspring = ($pulses per_ beam $range resolution $cells _perbeam

$decisionrate $false-alarm_ rate $energy per_ pulse

$detection_ probability Shit_ rate)

test = <integer>

$pulses per_ beam

parent $ intermediate measure

value <>

-- Value for information only, since not used in calculations.

$range- resolution

parent $ intermediate measure

value <>

$cellsper_beam

parent = $intermediate measure

value =<>

Sdecision rate

parent = $intermediate measure

value =<>

$false-alarm_ rate

parent = $intermediate measure

value =<>

Senergy perpulse

parent = $intermediate- measure

value =<>
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$detection__probability
parent = $intermediate measure
value =<>

$hitrate

parent = $intermediate measure

value =<>

PERFORMANCE MONITOR

-- See figure A6.

performancemonitor

parent = object

offspring = ($performance- measure Soverall_ measure)

Sperformance measure
parent = performancemonitor
offspring = ($FARunits Shit _rate _units Starget- resolution units

Sblind_ range_ units)
test = <integer>

SFAR units
parent = Sperformance measure

value = <>

$hit rate units
parent Sperformance- measure

value =<>

Starget_resolution__units

parent $ Sperformance measure

value =<>
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Figure A-5. The fakesimulator. Estimates of

detection probability and other measures can
substitute for a simulator in early experiments.

$ erorane oerllmareSperformance sra

$2erformanetr $ne idae

measue -- measure

Figure A-6. The performance__monitor. Early experiments can
use performance measures that are functions of the intermediate
measures computed or estimated by the fakesimulator.

A-24



$blind_range_ units

parent Sperformance measure

value =<>

$overall- measure

parent = performance monitor

test = <integer>

value =<>

accuracy measure = <>

$performance_ spread
parent = performance monitor

test = <integer>

value =<>

LEARNER

-- See figure Al.

learner

parent = object

offspring = (nextset historyfile valley _finder optimizer)

nextset

parent = learner

offspring = (nextset_ I next set_2 ...)

-- offspring attributes:

test = <integer>

scan rate = <>

cellsper_ beam =<>

PFA = <>

desired _accuracy =<>

behavior = <Tells fakesimulator when the set is available for
the next test.>

-- Receives parameters from valleyfinder or optimizer offspring.
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next-set

. optimizer

sierecorder •

l i n v a l l e b a la n c e r

rection set

valley finder COARSE-SCAN METHOD

(coarse rcnner coarse valle

budrline-min 1) (coarse-min slice alley

checker ie"
lie next- i coarse-next-min

i boundarceckeocaseval

valley finder ZR-I METHOD

Cinbound minslice~valley

direction-

Figure A-7. The learner.
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-- history-file--

history_file

parent = learner

offspring = (slice line point recorder)

-- See figure AS.

slice

parent = history file

offspring = (slicel slice_2 ...)

scan rate = <> -- offspring attribute

line

parent = historyfile

offspring = (linei line_2 ...)

-- offspring attributes:

slice = <>

cells_per_beam = <>

range_ resolution = <>

PRF = <>

decision rate = < >

blind range_ units = <>

target resolution_ units = <>

-- For this simple case where simulation is not actually performed.

-- each line instantiation can have the attribute target__ resolution

-- units_ and target_ resolution_ units__2. corresponding to environmentI and

-- environment 2. (Otherwise, environment should be an attribute of each

-- slice.) Similarly, there would be two instantiations each of the

-- overallmeasure and performance_ spread for each point (next object).

point

parent = history_file

offspring = (point_ point_2 ...)
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Figure A-8.historyjie atrcas cn

liee

detcti n__ b l p

Figure A-8. History file after coarse scan.

itne <>

FAR-units = <

hit__rate__units = <
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overallmeasure = <>
accuracy _measure = <>

performance _spread = <>

-- The mapping of slice, line, and point to scan rate, cells_ perbeam, and
-- PFA is arbitrary; any mapping would work.

-- The following are examples of instantiations for the first point of a
-- coarse scan. Here, the calculations have been made for both environments;
-- i.e., for target _count = 1 and 30.

slice_ I

parent = slice

scan rate = 6

line_ -- Integer same as value of attribute "test"

parent = line

slice = slice 1

cellsper_ beam = 35

range_ resolution = 0.71422857
PRF = 504

decision rate = 840

blind -range_ units = 21.428571

target _resolution units__ = 37.857143
target resolution units 30 = 100

point__

parent = point

line = line I
PFA = 3.3749E-5 -- max PFA

FAR = 102.056

detection_ probability = 0.79405

hit rate = 4.7643

FAR units = 100

hit rate units = 33.445663
overall _measure__ 1 192.731377
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overall _ measure_ 30 = 254.874234

performance__spread_ = 0.785714
performance_ spread 30 = 0.785714

recorder

parent = history file

test = <integer>

behavior = <Gets results from fake _simulator and performance monitor.
and creates slices, lines, and points.>

-- valleyfinder --

valley finder -- coarse-scan version

parent = learner

offspring = (coarse scanner boundary _checker line min line next min
coarse min coarse next min slice valley coarse valley)

behavior = <After a coarse scan. creates line mins, a coarse min.
slice valleys, and a valley. Might also create
line next mins, a coarse_ next -min. and, around it, an
extra valley. Has further duties (discussed later) if
the valley's type is edge or incomplete.>

coarsescanner

parent = valleyfinder
offspring = (Smin _PFA $coarse__ value__ PFA)
behavior <Specifies values of next__ set for simulator to use. resulting

in successive slices (one per coarse value of scanrate).
line-by-line (cellsper beam coarse values). Each line has
a point per coarse value PFA.>
<Calls on boundary checker to avoid going more than one
point beyond the max allowed value of a performance
measure. Uses inbound direction to decide whether to start
a new line or to start a new slice. Deletes any such
inbound direction when done.>
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$min PFA
parent = coarse scanner

description = PFA_giving_100_FAR -units
varieswith = line

formula = formula_18

value =<>

formula_18
parent = formula

quantity = $min PFA

calls = (&scan _ rate &cells_ per beam)

output = 0.0070872 / (&scanrate * &cells- per_beam)

$coarse- value- PFA
parent = coarsescanner

formula = formula 19

value = <>

formula 19
-- Output is (10"*(i/2)) * max PFA. for i from 0 to 6.

boundary checker
parent = valleyfinder

offspring = inbound direction
behavior = <Compares each performance__ measure with its max allowed

value. If exceeded, uses dependencies (between
parameters and performance measures) to create an
inbound direction. Reports back when done.>

inbound_ direction
parent = boundary checker
offspring = (inbound_ direction 1 inbound _direction 2 ...)
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I

-- The following is an example of an inbound direction.

inbound _direction_ 3

parent = inbound direction

point = point_41

exceeded = hit rate units

option = ((increase PFA) (mixed scanrate) (decrease cellsper__beam))

line min -- if coarse-scan

parent = valley _finder

offspring = (linemin __I linemin 2 ... )
-- offspring attributes:

environment = environment <1 or 2>

slice = slice <integer>

min _point point_ <integer i>

left_ point = point_ <i-i or i-2>

rightpoint = point _<i+1 or i 2>

outside point = point <i-I or i-l>

-- The "outside__ point" is used instead of the left point or right point when

-- the min _point is just next to or on an "edge." The edge may result from a

-- parameter constraint or from exceeding a component measure limit. The

-- min _point must be inside the permissible area. If no simulation is

-- performed just outside of an edge with a min point, the attribute

-- outside _point is created with a value = nil.

-- Next is an example of an instantiation.

line rain 3

parent = line min

line = line 3

min _point point 5

left_point point_ 3

right_ point = point_6
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linenextmin -- if coarse-scan

-- Same attributes as line min.

-- Occurs if another point is deeper than a point in the valley

-- around the linemin.

-- Used to see if a second valley exists.

-- The coarse min is generated from the line mins over all slices, for each

-- environment.

coarsemin
parent = valleyfinder

offspring = (coarse_min _ I coarsemin_2)

-- one for each environment

-- offspring attributes:

environment = environment <1 or 2>

slice - slice_ <integer>

line = line <integer>

-- slice and line attributes are optional

point = point_ <integer>

coarse next min -- if coarse-scan

-- Has same attributes as coarse min.

-- Is deepest point (chosen from line__ mins and linenext mins) outside of
-- coarsemin's valley and comparable in overall measure to that valley's

-- points. Probably none will exist.

slice-valley

parent = valley_finder

offspring = (slice_ valley 1 slice_ valley _2 ...)

-- offspring attributes:

environment = environment <1 or 2>

slice = slice_ <integer>

valley_ point = (<list of points>)

min line = line_ <integer i>
lowerline = line <i-I or i-2>
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upperline = line_<i+l or i+2>

outsideline = line <i-I or i+1>

-- The "outside _line" is used instead of the upper_ or lowerline when the

-- min _point is on an edge (see the discussion above for outside point). It

-- has value nil if no simulation or computation is made for that line.

-- The first slice_valley will have coarse_min as its min _point.

-- Figure A9 illustrates a slicevalley, after the coarse scan. The upper or

- lower line could have contributed a line next min rather than a line min as

SLICE
I 0 0'--(scanrate fixed)

I o I

0 0 upperline

Sminline ATTRIBUTES

0 0 %4* 0 *o * 0 lowerline slice valley

S min point
I I

PFA

Smin point ) ATTRIBUTES
< left point OF OBJECT

t> right point "line min"

Figure A-9. Example of a valley in one slice, after a coarse scan.
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-- shown. Attributes left_point, right_point, upperline, and lower-line

-- need be computed only as needed to construct a valley.

coarsevalley

parent = valleyfinder

offspring = (valley_1 valley_2 ...) -- only 2 for zero-in method

- offspring attributes:

environment = environment_<1 or 2>

source = <scan_ primary, scan _secondary, or zero-in>

min point - point_ <integer>

slicevalley = (<3 or more slice valleys>)

type = <complete, incomplete, or edge>

-- Additional valleyfinder behavior:

-- <Classifies valley's type as edge if the min _point is on or next to an edge

-- (an edge as described under "line min" earlier). Classifies as incomplete

- if fails to build a three-slice valley there after the coarse scan.>

-- <If the valley's type = edge, may direct the simulator to perform

-- simulations for additional outside points adjacent to the min _ point. Those

-- outside because a component measure was exceeded will already have had

-- simulations. Although the outside sets of parameters are not usable, the

-- results are useful for curve fitting. If the valley's type = incomplete,

-- the valleyfinder directs the simulator to improve the accuracy in the area

-- of the min _point.>

-- Figure AIO shows a simple way of creating a valley by using tiers of slice

-- valleys. Three tiers are shown, but up to five can occur.

valleyfinder -- zero-in version

parent = learner

offspring = (boundary _checker coarse min slice_ valley coarse _valley)

behavior = (<Specifies value of "nextset" for simulator to use. Uses

only coarse values of parameters. Unless specified

otherwise, can begin with a mid-range value of each

parameter; e.g.. scanrate = 12. cells_ perbeam = 300.
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PFA = 6E-8.>

<After each simulation, calls on boundary checker and uses

its inbound direction, if needed, to get within bounds.

Algorithmically performs 3-dimensional search for

coarse_min, using comparisons of overallmeasure values.>

<When finds coarse min, builds slice valleys and a

coarse_valley around it and behaves as does coarse-scan

version.>)

scanrate

cellsper beam

VALLEY IN TOP SLICE

COARSE MINIMUM

PFA

Figure A- 10. A simple "three-tier" method of finding a valley.
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-- When optimization is completed for environment_1. the process for

-- environment_2 would use the results to find an initial parameter set.

slicevalley - if zero-in method

parent = valley_finder

offspring = (slice_valley_ l slicevalley_2 ... )
-- offspring attributes:

environment = environment_<1 or 2>

slice = slice_<integer>

valley_point = (<list of points>)

min_point = point_ <integer>

-- optimizer --

optimizer

parent = learner

offspring = (minimizer valley balancer curve fitter)

cycle = scenario

behavior = (<Calls on minimizer to find true min (goal step_1).>

<Calls on balancer to produce optimum set (goal step 2).>)

minimizer

parent = optimizer

offspring = true__ min

behavior = <Begins with a coarse__ valley, and proceeds to accomplish

goal_ step_ , using the curve _fitter. Creates a valley from

the coarsevalley and new points, while finding the point

having the minimum overall _measure. Successively uses

points in the new valley in curve-fitting methods to find

that minimum point, and creates the true min.>

true min

parent = minimizer

offspring = (true_min I true min 2 ...) -- only 2 if zero-in

-- offspring attributes:
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environment = environment <1 or 2>

valley = valley_ <integer>

point = point_ <integer>

valley

parent = optimizer

offspring = (valley_1 valley 2 ...) -- only 2 if zero-in

-- offspring attributes:

coarse valley = coarse_ valley_ <integer>

new point = (point <k> point <k+l> ...)

balancer

parent = optimizer

offspring = (reduction _direction optimum set)

behavior = <When the true min has been created, proceeds to accomplish

goal_ step_ 2. Generally adds points to the valley in the

process. Initially and after each simulation, uses

goalstep_2 algorithm to see if satisfied. If not, creates

a "reductiondirection" for the maximum performance measure,

using the dependencies involving that measure.>

reduction _direction

parent = balancer
-- same attributes as an inbound direction

The following is an example of a reduction _direction.

reduction _direction 6

parent = reduction _direction

point = point _46

exceeded = FAR units

option = ((decrease PFA) (decrease cellsperbeam) (decrease scan rate))

optimumset
parent = balancer

offspring = (optimumset_ optimumset_2 ...) -- only 2 for zero-in
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- offspring attributes:

valley = valley_ <integer>

point = point_<integer>

curvefitter

parent = optimizer

offspring = (problem _formulator accuracy__extender adjuster leastsquares

n-dim combiner)

behavior = <When asked to estimate the minimum of a valley, uses its

offspring to do so.>

- See figure All.

problem _formulator

parent = curvefitter

offspring = (edger refiner)

behavior = (<When a coarse-valley has been defined, asks

accuracyextender to check accuracy and to improve it if

needed.>

<If the accuracy was extended, asks the valleyfinder to

redefine the valley, if necessary, since the min _point may

have changed.>

<Next, for each dimension (scan _rate, cells_ perbeam, and

PFA), unless min _point is on an edge, asks adjuster to

perform any transformations or normalizations needed before

curvefitting. Asks the leastsquares to estimate the

minimum in that dimension. If the min _point is on an edge

in that dimension, turns control over to edger.>

<When the fitted min is found in every dimension, asks the

n-dimcombiner to estimate the valley minimum.>)

-- The behavior described is for curve fitting individually in each dimension.

-- The behaviors are different if paraboloids are fitted.

A-39



adputier -eatsars

Figue A11.Thcurve fitter.
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edger

parent = problem__ formulator
behavior = <When the valley's type is edge. for the dimension(s) in which

an edge occurs. directs the curve-fitting process to find

the fitted-min on the edge.>

refiner

parent = problem__formulator

behavior = <Similar to that above for the problem__formulator, but occurs
after simulator provides more points in the area of the
previously estimated n-dim min. Unless simulations are also
made on either side of the estimated minimum in each
dimension, a paraboloid fitting is needed.>

accuracy__extender

parent = curve__fitter
behavior =<When asked by problem__formulator to improve. if needed, the

accuracy in a coarse valley, compares overall-__measure
differences of points in valleys with the accuracy__ measure
of the points. Determines if additional accuracy is needed
and, if so, asks the simulator, point by point, to extend

the accuracy of the overall __ measure at that point by some
amount. If the original accuracy is very poor, extends
accuracy for points just outside the valley. Does this
mainly because the valley might shift and because additional
points can be used in gradient measurements.>

adjuster

parent =curve__fitter

offspring = (gradient __ measurer transformer adjustment __history)
behavior = (<In dimension specified (scan _rate, cells __per_beam, or PFA).

calls on gradient __measurer to measure gradients on either
side of mm _point. Calls on transformer if gradients
indicate need. If normalized or transformed, again calls on
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gradient_measurer. In general, prepares the problem for the

leastsquares computations. As a result of final gradient

measurements, determines the degree of polynomial needed.

(Early experiments would simply use second degree.)>

<When directed by the refiner with additional point

in some valley, uses adjustmenthistory to decide on needed

transformation or normalization.>)

gradient _measurer

parent = adjuster

behavior = <Measures slopes from pairs of points around min _point, in

specified dimension.>

transformer

parent = adjuster

behavior = <A precurve-fitting transformation or normalization of

variables, if needed. Probably not needed except possibly

for PFA in this simple application.>

adjustment_ history

parent = adjuster

behavior = <Records transformations and normalizations made on a

parameter during curvefitting preparations. Uses this

later when curve fitting with additional points. (Optional,

to save repetitious operations.)>

least-squares

parent = curve fitter

offspring = fittedmin

fittedmin

parent = least squares

offspring = (fitted_ min I fitted min 2 ...)

valley = valley_<>

pointsfitted = (point_<> ...)
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curve type = <e.g., parabola>

degree = <>

parameter = <scanrate, cellsperbeam, or PFA>

parametervalue = <>

measure _estimate = <>

n-dimcombiner

parent = curvefitter

offspring = n-dim min

behavior - <Collects fitted min values in each dimension and produces

fitted valley minimum. (See appendix B.)>

n-dim min

parent = n-dimcombiner

offspring = (n-dim min_ 1...)
valley = valley_<>

fittedmin = (fitted min<j> fitted min <j+1> fittedmin <j+2>)

scanrate =<>

cells-per-beam = <>

PFA = <>

measure _estimate = <>
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APPENDIX B:

CURVE-FITTING METHODS

In practice, an existing computer program for least-squares curve fitting should

be selected and adapted to this application. For early experiments, simple parabola-

fitting techniques can be implemented. A few basic relationships concerning parabolas

and paraboloids are given in this appendix.

Exact Fit to Parabola
The parabola P(x) = Ax 2 + Bx + C fits the three points (xI. Ml)- (x2,M 2).

(x3 ,M3 ), when

A =-[M1(x2-x3) + M2(x3-xj) + M3(xI-x 2)1 / (x1-x2)(x2-x3)(x3-xl).

B =[MI(x 2 
2 -x32) + M2(x3 

2-x1
2) + M3(x,2-x2 

2)] / (xl-x2)(X2-x3)(X3-xl).

C :x 1
2(M2x3-M3x2) + x2

2(M 3xI-MIx 3 ) + x3
2(M1x2-M 2xi)J /

[X1
2 (X2-X3) + X2

2 (X3-X1) + X3 
2(Xi- X2)j.

The minimum value of P(x) occurs at x = D. where D = -B/2A. The minimum
value is P(D) = C - B 2/4A.

If the samples are equally spaced over x. with increment size size s, the
coefficients are given by

A =(M1 - 2M 2 + M 3) / 2s2.

B =-[Mi (2x 2+s)- 4M 2x2 + M 3(2x 2-s)) / 2s2 .

C =-IM1x 2(x 2 -+s) - 2M 2(x2
2 -s 2) + M 3(x2-s)x 2] / 2s2.

Alternative Parabola Form

It is sometimes more convenient to represent the parabola P(x) = Ax 2 + Bx +

C in the form

P(x) = Ax 2 - 2DAx + D2A + min.

where B = -2DA. C = D2A + min. and P(D) = min. (See figure BI.)

Paraboloid - Two Independent Variables

The paraboloid of the form
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P(xy) = AX2 + A y2 + Bx + B' y + C + C'

can also be written as

P(xy) = Ax2 + A'y2 - 2DAx- 2DA'y + D2A + D 2A' + min,

where P(D.D') = min. Through this minimum point (D.D') in the x = D plane and
y = D plane, respectively, are the parabolas

P(Dy) Ay 2 - 2D' A' y + D' 2X + min

and

P(xD') =AX 2 - 2DAx + D2A + min.

Paraboloid - k Independent Variables

For k independent variables V1 ..... Vk, a paraboloid can be written as

k 2 2
P(V1 , ...,V) = E [AiV i - 2DiAiV i + Di A + min,

where P(Dl.....Dk) = min.

For Vj = Dj, j 0 i, we have the parabola

P(V) = AV 2 - 2 D1A4Vj + D1
2A4 + min.

Paraboloid Minimum

The minimum of a paraboloid can be found or estimated without the complexity

of fitting a paraboloid to the sample points. In the case of two independent variables
(see fig B2). a parabola can be fit in both dimensions through the minimum measured

point (X*.y*). and the minimum of the paraboloid (fitting the same points) found

from the minimum of the parabolas. If the minimums of the two p Irabolas are,

respectively. m = P(D.y*) and m' = P(x*.D'). and the measured minimum value is

M* = P(x*,y*), then the minimum of the paraboloid P(xy) is

min = m + in'- M*.

This relationship is exact if the parabolas and the paraboloid exactly fit the sample

points. If additional points are used in a least-squares fit (e.g., points diagonal to

A .y when fitting the paraboloid), the relationship is an approximation.
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Figure B-1. Parabola P(x) Ax2 - 2DAx + D2 A + min.
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Figure B 2 Parabolas in the x x" plane and the y = y" plane
are fitted to the sample points, and their minimums occur at
y D' and x D, respectively The minimum of the paraboloid
fitling these points occurs at (D.D')
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For a paraboloid with k independent variables (Vl.....Vkl. the relationship is

min = (Ml + m 2 +...+ mk - M*) / (k-i)

where mi is the minimum of the ith parabola through the minimum measured point
(Vl* . V2*.....Vk*) and M* is the measured value at that point.

Precurve-Fitting Operations

A plot of a performance measure versus a parameter x (through a measured
minimum value, other parameters held constant) might produce (from simulation)

values of performance such as in figure B3. A human could quickly hand fit a curve
through the points and estimate the minimum point, while the computer must use
more difficult methods. The simplest procedure ;s to fit a parabola to the minimum
and two adjacent points. (Assume this is not a case where the minimum occurs at

an edge.) Often this will produce unsatisfactory results, and a higher degree
polynomial fitted to additional points is advisable. As' a step in selecting the
appropriate method, the system could make measurements of the gradients on both
sides of the measured minimum and use these in an algorithm to determine the

general shape of the curve.

In some cases, the decision should be to transform the variable to produce a
curve more easily fitted. Figure B4 shows how a curve of performance measure
plotted as a function of log x may be fitted with a parabola, while the same values
plotted as a function of x would be difficult to fit.
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Figure B-3. Example of a hand-fitted curve through a number of
points versus a parabola approximation through three points.
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Figure B-4. A simple transformation of variables can
sometimes produce data better fitting a parabola. In
this example, the transformation is logarithmic.
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