D-A188 285

g
-
8

HEEEEER

MACHINE SELF- TEﬂCHINﬂ HETHODS FOR PﬂRﬂﬂE ER

OPTIHIZﬂTION(U) NAVAL OCEAN SVSTEHS CENTER SAN DIEGO CA

A DILLARD DEC 86 NOSC/TR-1039

A e~
i
L jas -
IM.___ i
§ = 2

R

ROCOPY_RESOLUTION TEST CHART. y

R e A e T

Y, B :‘ 4 -» - R

.- R4 . - -

v

. .
) ;“\‘0‘ x"“"“n‘ WY, v"t‘ \ ' VIR
N ‘. I.‘\I.“ ¢ ‘;: ,:: ::t:"l' R R K s "(N '!f' Nii\')l.'f &’Q'.'f\fﬁﬁ x
¥ >LEY Padd (0, \,
) A AN ; ézgi.ﬁgh‘" 02BN NI N NN

.g ‘.0 l. : ‘ % .]
oy " s ' \
‘ ’." ‘ ’. LY .il . lﬂ'f

-'= l AL
" & "*4‘1‘!" KRR N

601 AL OSON

Technical Document 1039
December 1986

Machine Self-Teaching Methods
for Parameter Optimization

Robin A. Dillard

DTIC

ELECTE
S MAY Z°0 1967

~

P o R I

Aas
A
“

3
A

UNCLASSIFIED /ﬂ /77 /57' /?Z_f/

.REPORT DOCUMENTATION PAGE

[~Ta. REFORT SECUNNY CLASSIRCATION
UNCLASSIFIED

=35 SECUNITY CLABSIFICATION AUTHORITY 3, CESTRBUTION/AVARABILITY OF

Approved for public release; distribution is unlimited.

e ——————————————————————
2b. DECLASSIFICATION/DOWNGARADING SCHEDULE

p——————————

e Ty
4. PERFORMING ORGANIZATION REPORT NUMBENS) 8. MONITORING ORGANZATION REPORT NUMBENS)

NOSC TD 1039

1 6. NAME OF PEAFORMING ORGANIZATION ®. OFFICE SYMBOL 7a. NAMIE OF MONITONING ONGANIZATION
peinedubbon
Naval Ocean Systems Center Code 444
8c. ADORESS (Cay, Stave end 2 Codel 7o ADDRESS /Cy. State and ZW Code/

San Diego, CA 92152-5000

Sa. NAME OF FUNDING /SPONSORING ONGANZATION ® OFFICE SYMBOL ® PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
(# applicable)
N5 ADORESS KCoy, Stara ond W Code 0. SOUNCE OF FUNDING NUMBERS
PROGRAM ELEMENT NO PROJECT NO TASK NO AGENCY
ACCESSION NO
Locally Funded
77 TITLE (mokude Securty C.
Machine Self-Teaching Methods for Parameter Optimization
73 PERBONAL AUTHONS)
Robin A. Dillard
130. TYPE OF REPOAT 130 TIME COVERED 14 DATE OF REPORT (Yoar, Morwh. Doy) 16 PAGE COUNT
Final FROM Oct 1984 roAug 1986 December 1986 89
18 SUPPLEMENTARY NOTATION
17 COSAN CODES 6. SUBJECT TERMS /Continue on reverse # necessary and wently by Seck number]
FIELD GROUP SUB-GROUP ‘Pulearning systems , Artificial intrlligence‘
System optimization ,
Radar,
Contral doctzing.

9. ABSTRACT (Continus en reverse 4 necessary and sdenty by Mock number) 7

The problem of determining near-optimum parameter-control logic is addressed for cases where a sensor or
communication system is highly flexible and the logic cannot be determined analytically. A system that supports human-
like learning of optimum parameters is outlined. The major subsystems are (1) & simulation system (described for a radar
example), (2) a performance monitoring system, (3) the learning system, and (4) the initial knowledge used by all
subsystems. The™“initial knowledge™is expressed modularly as specifications (e.g., radar constraints. performance measures,
and target characteristics), relationships (among parameters, intermediate measures, and component performance measures),
and formulas. The intent of the learning system is to relieve the human from the very tedious trial-and-error process of
examining performance, selecting and applying curve-fitting methods, and selecting the next trial set of parameters. A

learning system to design a simple radar meeting specific performance constraints is described in detail, for experimental
purposes, in generic object-based code.

(CRL

S0 lgiﬂ‘c _
70 DISTMBUTION/ AVARABIUTY OF ABSTRACT 21 ABSTRACT SECUMTY CLASEFICATION
(O uwciassero vmumeo SAME AS APT [oncusens UNCLASSIFIED
222 NAME OF RESPORBIBLE WORIGUAL 22b TELEPHONE (nciude Aree Cose/ T2c OPFCE SYMBOL
Robin A. Dillard (619) 225-7778 Cod‘ 444
DD FORM 1473, 84 JAN A e et ¢ ces e sTe0 UNCLASSIFIED
Y - N - - W W N WL e N % SNy Y
l.:f"t .. l!‘...t‘.i\‘q AN N ‘n ‘- O\ W ,‘ .- R LA L . o W0, ' ' AN N N i Ny \.. t L) “‘.. L' Y Wi 1Y

<
[T AN

CONTENTS

INTRODUCTIONooieriiienitninniasesnnnissascsenessssssssssssssssssssssssssosssness 1
APPLICATIONSrriiirnnicnnniinisesenneenneassasisssssssnsassssssssssssnsessasssnns 2
PARTICIPATING Al SUBSYSTEMSoiviiriiiiisnnieccnnssnnesersensasses 4
- PERFORMANCE MEASUREScccnnmiminiinnnirnniensnnienanscsssnissssssanes 6
THE OPTIMIZATION PROBLEMcccnemrrinrrinccnesnnenesenisasnsnnessanns 8

MINIMIZING AND BALANCING THE PERFORMANCE
MEASURES ...ttt 8
HOW FAR AHEAD TO SCHEDULE ...t 9
NEXT-SCAN PLANNINGccevvmerierrcrrennneenneensnsesese s 10
TWO-DIMENSIONAL AIR RADAR EXAMPLEcceevencmmnnanee 12
THE LEARNING TECHNIQUEScooeeeierciiniieneesncnnssseneasnnene 13
AN OBJECT-ORIENTED MODELcoccmiiriireneinincesteeeeessaessaee 15
OBJECT-ORIENTED PROGRAMMINGitrrnrreiinnrresinneniane 15
INTERACTION OF SUBSYSTEMSciiiiinniiininneensnenssanines 15
THE SIMULATION SYSTEM ...ttt caennens 19
A RADAR DESIGN EXAMPLE ... sresee e 22
THE PROBLEMorrremrriineeinninnienanecsennissnsesssssssssssnsansses 22
RELATIONSHIPS AMONG PARAMETERS AND MEASURES 28
PERFORMANCE MEASURE BOUNDARIEScccoeviueerinnverinnnane 31
SAVINGS IN COMPUTATION TIMEviiviiiiriinicnsienacans 33
CONCLUSIONS ...ttt s nessas e sanesssnesessassssae 33
REFERENCES ...ttt san e ssane e 35

APPENDIX A: AN EXPERIMENTAL SYSTEM IN GENERIC
OBJECT-BASED CODEccceririeriirnetrnnressnneninec e caae e A-1

Accasion For
—

————— —

\
NTIS CRA& N
8

OTiC TAB
Unannou :ced [
Justiticatio,,
- — e
llqgu‘llry By

Ptcr
€
4

-

Ci-tibution]

Pt e e —

. .. e
Avaitabiiity Cades
.-‘_‘— —— - aa e o L e T
Dist Avaii anetor n
Is Lpecial

INTRODUCTION

Increasingly complex sensor systems and communication systems are being
developed; as the flexibility of systems grows. so does the need for automated
methods of controlling them. Artificial Intelligence (Al) techniques exist now for
building some parts of a sensor control system. We envision that the control logic
can be implemented in the form of rules, but whatever knowledge representation is
found to be best, the greatest difficulty will probably be in acquiring the optimum set
of rules or control logic for a highly flexible system. For this reason, a learning
system will be needed to aid in determining optimum mode choices, threshold
settings, etc. The learning system would operate on feedback from a performance
monitoring of simulated results and. later, from a performance monitoring of the
sensor or communication system itself. Techniques exist for simulation and rule
evaluation, but we found no learning techniques easily adapted to parameter control
applications. The ability to learn new control rules or logic by self-teaching is the
key feature of the envisioned automatic parameter control system, and our objective is
to devise techniques leading to this learning capability.

The same parameter optimization techniques needed for a learning system of this
kind can be used also to find optimum parameter values when designing a sensor or
communication system. When selecting a simple example to treat in detail. one for
which optimization can also be determined by analytical methods for verification. we
found a design problem more suitable than a control problem. A learning system to
design a simple radar meeting specific performance constraints is described in this
report in generic object-based code.

One method of automating the learning process (and the approach primarily
followed in this report) is to implement procedures that are humanlike, but which
relieve the human from the very tedious trial-and-error process of repeatedly examining
performance and intelligently selecting the next trial set of parameters or of rules
controlling parameters. The intent is not to replace the methods of optimal control
theory. but to augment them with Al reasoning techniques: e.g.. to select and apply
appropriate curve-fitting methods.

Another approach taken in this project is to determine the usefulness of several
learning techniques that do not primarily model human thought processes. The
results of the latter investigations will be reported in a separate document. In that
study, we address much broader issues concerning the applicability of Al to system
optimization problems.

APPLICATIONS

The kind of sensor system probably most in need of automatic parameter
control is a radar system employing a phased-array antenna. In addition to the
ability to point beams in rapid succession in a number of different directions, it may
also have the ability to rapidly vary power, pulse duration, pulse repetition frequency
(PRF), etc.

An example of a control problem for a very flexible (and hypothetical) radar is
the following.

Environment --> Optimum modes/parameters

Track data (dynamics, Next pointing angle(s)/angular coverage
cross sections, (1 pencil? 1 fan?, n simultaneous?
IDs, etc.) combination?)

Weather, terrain Per beam: PRF

Other sensor tracks ’ dwell time

Intelligence waveform/resolution

ECM frequency

Reaction times power

Etc. Etc.

Knowledge about a target, such as its identity (ID) being hostile, can influence
the parameter selection. Weather and terrain here include not only propagation
anomalies and land topography, but sea state, drift ice, and other natural phenomena.
Intelligence can include sighting reports from other ships, aircraft, or satellites, and
reports of expectations of certain activities. Electronic countermeasures (ECM) include
jamming, chaff, and deception.

I g

There are many diverse kinds of intercept receivers. Some have in common
with conventional radars the feature of rotating to cover in azimuth, and most scan in
frequency over a certain band of frequencies or over several bands. More recent
designs permit an agility in frequency scanning analogous to that of beam pointing.
While some intercept receivers could profit from automatic parameter control, the
greatest need for control will probably be for intercept systems that incorporate
several receivers; e.g., a warning receiver, an analysis receiver, and a direction-finding
receiver. In this application, the learning methods should be applicable both to the
problem of individual parameter control and the problem of the division of utilization.
As with radar problems, judgment of intercept performance will largely be based on
detection probability, false-alarm rate, and resolution.

Many of the same propagation anomalies affecting radar also affect the intercept
receiver. In place of the target environment, with the many physical constraints on
targets, we instead have the problem of a complex variety of signals. Since the
number of possible signal scenarios is unlimited and the likely scenarios will constantly
change, the learning process would have to continue always, rather than converge to
one that will be adequate for a long period.

Communication systems also have propagation conditions, jamming, other-user
noise, etc., to contend with, but the detection problem is very different since they are
detecting known, friendly signals. Other kinds of environmental features are the state
of EMCON (EMission CONtrol), various security requirements, message priority, and
traffic requirements. Generally, there will be fewer parameters to control, and these
typically would be frequency, power, and the modulation and coding scheme. In many

cases, analytical optimization will be possible, and a learning system would be
unnecessary.

There are two categories of problems, as mentioned earlier. One is the

optimization of a fully described system for each of the various scenarios it is likely

. to face. The other is the optimal design of a system, given these scenarios. In the
latter case, optimization may be needed over all scenarios, so the process can be

much more time-consuming. Basically, the same kinds of learning techniques are
needed for both kinds of problem.

‘" n ~p - I - - - - - . PP Y P .,.‘,'."..‘. “p - -_-{-.- -*-'-" - v'.v n‘.v \(»_‘ »
R L AR TN O AT A s It 1)‘\,. |. G e 0 A O T . W < ALY,

PARTICIPATING Al SUBSYSTEMS

Figure 1 is a block diagram of one concept of an Al system for controlling the
parameters of a radar. In an operational system, a radar and the actual environment
would replace the simulator. The control logic learned in the simulation stage is
refined in the operational environment. The function of the parameter-control system
is to reset the parameter and mode settings appropriately as the situation changes.
While a control system should be highly automated, some amount of operator control
will be useful and necessary.

Knowledge common to a number of sensor systems would be built into the
knowledge base initially. and a data/knowledge acquisition system would obtain from a
human a description of the particular system to be optimized and his performance
specifications, and would restructure these into the system syntax. The knowledge-
base box in figure 1 includes initial knowledge and learned knowledge.

The radar, tracker, targets, and weather effects would be simulated. The
simulation system would probably resemble ROSS, a high-level Al programming
language developed by the Rand Corporation specifically for warfare simulation [1]. In
the arrangement shown, the radar parameter values used in the radar simulation are
provided by the rule-based system. (While a rule-based system is envisioned, we may
find some other kind of programming to be more appropriate.) The function of the
rule-structuring and organizing system shown in figure 1 is to organize the mappings
of environment to parameter selection in a useful form. It might use techniques such
as those of BACON* [2, 3] to fit curves to the data. (The other study under this
project looks at ways of learning control rules directly, in which case the rule
structuring and organizing system would be an integral part of the learning system.)

The learning system described in this report provides trial parameter values
directly to the simulator, rather than via a structuring and organizing system and a
rule-based system. A structuring and organizing system would be needed later, but
the design of such a system is not an objective of this project.

* Named for Sir Francis Bacon. in honor of his theory of induction.

INITIAL DATA/KNOWLEDGE
ACQUISITION SYSTEM

(Understands basics of
generic radars; learns specific
- system or candidate system
and environment)

KNOWLEDGE BASE

{Knowledge of radar system,
environment, performance
measures. Has initial
knowledge of some relation-
ships and learned knowledge
of others.)

u fl

LEARNING SYSTEM

(Uses feedback to formulate RULE-STRUCTURING &

hypotheses about optimum ‘ ORGANIZING SYSTEM
mode and parameter settings.)

ADAR SYSTEM & PARAMETER-
ENVIRONMENT ¢— CONTROL
SYSTEM

SIMULATOR TRACK
ENVIRONMENT I

< PARAMETER ‘
VALUES

PARAMETER-
CONTROL
RULES

PERFORMANCE
MONITOR

Figure 1. Overview of a system for building a

\
i OTHER ENVIRONMENTAL DATA ‘
- set of parameter-control rules for radar.

|

Tt -~ .. TSI Y LY ¥
-0"#.':"- l"’t‘-'s’. LASLGAN " I' ’-' Wy, (R4

3 - [4 Cy N Yo ’ Y 1 ‘y
‘,ﬂ“‘s.‘.-",k'\ 0‘\!«‘!“"21"‘;'\,.’1' “"l‘.". \ ..'A) ‘\ '.(0.\ AL X & X

I

Similarly, development of the simulation system is not a part of this effort, and a
crude substitute would serve any needs during experiments with a learning system.
Figure 2 illustrates how early experiments can be conducted with a simulator. however
crude it is. Verification of the techniques for a very simple radar system is possible
by computing performance measures by means of well-known radar formulas.

SPECS
KNOWLEDGE P PERFORMANCE
BASE — MONITOR
PERFORMANCE
I RADAR SYSTEM
PARAMETERS AND
LEARNING — P ENVIRONMENT
SYSTEM SIMULATOR

Figure 2. Learning system interaction
in an early stage.

PERFORMANCE MEASURES

The simplest approach to assigning an overall measure of performance resulting
from a set of parameter values is to measure each of the various kinds of
performance and to use the sum or weighted sum. Examples of sources of
component measures for a two-dimensional agile-beam radar are false-track rate.
average expended energy, and track quality. There should be several track-quality
measures: e.g., one for each combination of range and speed; for long, medium, and -
short range:; and for fast, medium, and slow targets. The track-quality measures
could further be broken into component measures relating to detection probability and
resolution.

-;'is'iiiit{{{*:-li{'(‘.-\'."&;{n'.ﬁlt{-:-.-:;t{ﬂ({(ﬁ:\k'ﬁl

We have found that a performance measure expressed in “units of rejection” is
more convenient than one in “units of goodness.” Figure 3 shows how a
measurement of the false-track rate would result in a component measure, “false-
track__units,” expressed in units of rejection.* For many of the measures. the units
will be decreasing rather than increasing as shown. If the number of units exceeds
the maximum allowed for that measure, the candidate parameter set is rejected. The
amount in excess can help determine the next set of parameters to try.

MAXIMUM ALLOWED

8

false-track__units

i

0.1 1

taise-track__rate (per hour)

Figure 3. Example of a component measure of performance.

While it is convenient to compute an overall performance measure by summing
the component measures, and then to select the parameter set yielding the minimum
value of the overall measure, it is very likely that some of the component measures
will be low at the expense of some being high. As discussed in the next section, we
will try to force the component measures all to have approximately the same “rank”
on their range of units of rejection.

*Underlines connect words when the combination is to be a single word in a
computer program. Hyphens serve their normal function. but are sometimes
disallowed in computer words.

\
&

P - e -
‘u"‘-'l‘:" ."’ ‘ R -‘l.‘.i t-,. et i oS

N R A A O O N R TRy S LAY S . Wt m e ta W Vel VY \""."‘*"\"\'_'\! \" (‘;' ’“ Y*I"\i’ J‘~d‘~ W
DY A" VAT ™ Y P [1K i [X o X o8 , P, I B I LS U D% As B B B »

THE OPTIMIZATION PROBLEM
MINIMIZING AND BALANCING THE PERFORMANCE MEASURES

Denote the jth variable parameter or mode as P;, and denote a particular value
of Pj as p;. Each set {p;} of parameter vaiues results in a set {M;} of component

measures, and the overall performance measure is overall _measure = f({M}).

When simulation is not prohibitively expensive, the optimization process should
begin with a “coarse scan.” The first coarse scan would be for the average of the
environmental situations to be considered. The “surface” created [in (n+1)-
dimensional space for n parameters] by mapping overall measure as a function of
Pi.....P, should have one or more “valleys.” (The remaining discussions are easiest
to visualize for n = 2.) Since the surface will be disjoint wherever a P; changes its
value if P; is discrete, and since some parameters have non-numerical values, this

characterization is not accurate but should convey the idea.

If several valleys occur, all roughly the same depth, all should be investigated
for use, since the random use of parameters makes it more difficult for the cnemy to
predict the system’s behavior or to interpret it. If the first coarse scan is for an
average situation and yields only one valley, it is probably wasteful to make a coarse
scan for other environments. Instead, that valley plus knowledge of how the
environment affects performance can be used to estimate where the valley is for the

other environments.

Defining the boundary points of a valley found in the coarse scan is useful
mainly as a step in determining whether there are other valleys. If a low value of
overall _measure is found outside of the deepest valley (deepest known after only a
coarse scan), another valley is defined there. The valley, or at least one of the
valleys, should contain the minimum overall measure. (A valley’'s size would depend
partly on the coarseness of the scan.) Simple algorithms can be used to
approximately define this region; for example, the “three-tier” method described in
appendix A.

ARSI T CO SR LRI

. cwe TR NS

" T g

-

(Sl Rl ™l

PR R gt

)
[}
I

“»

T F WY X YW I e ire LTS Mmmummmnnu—m““‘,—-n_nj—
0

When simulation is too costly to permit performance of a coarse scan, a “zero-
in” method can be used. The risk in using this method is that, if there is more
than one valley, the deepe'st may not be the one found. Descriptions of both the
coarse-scan method and the zero-in method are given in appendix A.

Once a coarse valley is found (either by a coarse scan or by a zero-in search
confined to the same increment sizes), curve fitting and other numerical methods are
used to search for the true minimum. After the valley minimum is found, the next
stage of optimization takes into account the values of the component performance
measures and works to balance them (i.e., to give them roughly the same rank on
their respective scales), while not increasing overall measure by a significant amount.
Knowledge of how each performance measure is affected by the variable parameters
guides the selection of the next trial set of parameters. Details of a way to do this
are given in appendix A for the example problem. If there are multiple valleys, a
valley in which (or near which) the performance measures can be balanced may be
preferable to a somewhat deeper one where they cannot be. Experiments are needed

to determine how workable the balancing concept is.

As we will see in the next section, this characterization of the optimization
process is oversimplified for many applications. For example, certain parameters of a
flexible agile-beam radar system can vary from beam to beam. It is highly impractical
to decide, after each dwell of the antenna beam, which parameter set to use next.
Instead of a single value of dwell time, for example, we might assign the next-scan
dwell times: 90 ms in beams [3,20,44], 60 ms in beams [5.9,31,57], 30 ms in all

other beams. Next, we consider some alternative methods of planning ahead.

HOW FAR AHEAD TO SCHEDULE

Consider the control problem for a two-dimensional, agile-beam radar. Should
the parameter-control system decide each parameter change just prior to the time of
the change? Or, should it plan ahead the pattern of changes over some period of
time? Some of the possibilities for decision times are

e Per beam position,

; R > PO N> BN 5N LW S L e N v YRy »
.._\d_-vys-\\ \‘.\)) hY s\\\\

" -
AY /% N LA AU AT LN Up U DI o W M T T M MO WAL MO i WO Y Y

TR ESCRCR (R
L, L) * . - .

Per m beam positions,

Per sector (fraction of total azimuth range).

Per scan (or over total azimuth covered), .

Per time unit. .

Similar decisions need to be made for other radar types and for other sensors.
In addition, it may be less satisfactory to specify every parameter during the next
period than to allow the plan to change automatically as a result of data obtained.
For example, the sudden occurrence of jamming may call for a change in the plan.
The radar data obtained in a beam can affect the plan for that scan: e.g.. doubling
the dwell time or the power if a target-present decision occurs in a beam where none
is expected.

NEXT-SCAN PLANNING

Here we consider ways of planning ahead one scan for agile-beam radars. In
general, more attention should be given to those beam positions where detections are
likely to occur for a current track or where intelligence or other sensors have indicated
a likelihood of an approaching target. Hostile, high-speed. and maneuvering targets
should receive additional attention. For fast or maneuvering targets, this attention is
likely to consist of more frequent looks. A high-resolution waveform may be used
when multiple targets in a beam need to be resolved. For long-range or small
targets, an increase in power or an extra-long dwell time may be appropriate. A
high-priority search may call for high power, extra-long dwell time, or more frequent
looks. -

A candidate doctrine can be formulated and experimentally refined for choosing .
the next scan’s parameters. This doctrine will probably be in the form of a set of
rules. The doctrine will necessarily be different for high-target-density cases than for
low-density, and will require additional flexibility to adjust to the exact density. For
example, the sum of the dwell times needed in each beam may exceed the maximum

10

scan time desired, and modifications to the first cut will be needed, such as reducing

slightly the time for each or using high power rather than extra-long dwell times.

A simple approach that can easily be implemented in the form of rules is to
specify what the values of the various parameters will be for each beam in the next
scan, based on the situation in that beam. This technique is usable if the geometry
is such that the target can change, at most, one beam position per scan. Tracker
extrapolation is needed for best results. Table 1 gives an example of how the
problem of specifying values of parameters {P;} for each beam and scan is converted
into the problem of selecting values of parameters Py that relate to situation k. The
following set of situations are assumed in the example in table 1. One or more of
these situations holds for each beam on each scan.

0: DEFAULT. No track is likely to continue in that beam on that scan, and
there is no indication from intelligence or ESM that a target is likely to enter
from that direction.

1: TRACK CONTINUATION. A current track could continue in or enter that
beam. Sometimes there will be two or more beams having a likelihood of
containing the next report of that track, especially for a high-speed target.

2: HIGH SPEED. The target that could be in that beam is traveling at a
high speed.

3: WEAK. The signal strength of the target's echoes is very weak, either
because of the target’s distance or its size.

4: CLOSE RANGE. The target is likely to be too close to use a high-
resolution pulse. (The duration of the pulse results in a minimum range for
observing targets.) Another less-close category may be desirable for targets that
are so close they need extra surveillance but are beyond the minimum range.

5: PRIORITY SEARCH. Intelligence or other sensors have indicated that a
target might be entering from that direction at any time.

6: TWO IN ONE BIN. There is a likelihood that at least two targets are in
the same range bin, in that beam.

1

Table 1.
(One “scan” is one complete coverage.)

Example of per-beam parameters for an agile-beam radar.

Situation Number of looks Dwell Time Power Pulsewidth
in Beam on P1 P2 P3 P4
That Scan [integer] [ms] [kW] [us]
b 0 Default (low resolution)
P10 = 1 P20 P30
1 Track Con-
tinuation P11 P21 P31 P41
2 High
Speed P12 P22 P32 P42
3 Weak P13 P23 P33 P43
4 Close
; Range P14 P24 P34 P44
: 5 Priority
{ Search P15 P25 P35 P45
6 Two in (high)
. One Bin P16 P26 P36 P46
~—— — - — T ————
P; = max Py Low and high could

TWO-DIMENSIONAL AIR RADAR EXAMPLE

The pertinent specifications of this hypothetical radar system

e Agile fan beam, 10-degree beamwidth,

e 162-,nmi instrumented range,

o 300 pulses per s,

e Pulse duration = 100 s (low resolution)

A P, . - .
?‘c‘ o8 V0 Nal l"l'. DA RN A‘.‘c‘ '-".\0. OO TR

or 2 ps (high resolution),

i -, \ _ . "\ = * A
BONCAIN .J'.!\) "' DA ~.‘.o D N P Y

be alternated in
some situations.

are

2 SN0 33NN WAL

D B 0 N 0 W P AU X N0 D

o Dwell time per beam = 0.1 s (30 pulses)
or 0.2 s (60 pulses),
o Looks (beams) per beam position per scan = 1 or 2.

A “scan” is completed when each beam position has had at least one look.
The beam positions are selected pseudorandomly, but a second look can be selected
algorithmically to space it about half a scan in time from the first look.

The per-beam-position variables (per scan) are

e Looks per scan = 1 or 2,
o Dwell time (per look) = 0.1 s or 0.2 s,
o Pulse duration = 2 s or 100 ps.

Using the earlier definitions of beam situations, we have the following initial
knowledge of desirable constraints on the control rules. All parameters left unspecified
are to be learned.

Situation O (default): 1 look, 0.1-s dwell, 100-ps pulse.

Situation 1 (track continuation), unless situation 4 or 6 is true: 100-ys pulse.
Situation 2 (high speed): 2 looks.

Situation 3 (weak): 0.2-s dwell and probably 2 looks.

Situation 4 (close range) or situation 6 (2 in 1 bin): 2-4s pulse.

Situation 5 (priority search): 2 looks and/or 0.2-s dwell time.

Either the rule conditions would need to include target density considerations, or
several rule sets would be needed, each for a different range of target courit.

THE LEARNING TECHNIQUES

The learning methods considered in this report are humanlike; they are intelligent
trial-and-error procedures employing numerical methods and common-sense reasoning.
To simplify the discussion, assume that a set of parameter values {p;} (or {{pi}})
lead to the performance measures {M;} and an overall measure M. For the system

13

. . N L »
y N ~ "'\\ A

- . , ' - >
RSN 4":.“ K0 |" p" O q" W Q.‘ LN 4.‘- A \“ atlr -,“‘_.‘.‘ C'“ (.‘ 1 i) (" Q".ﬂ!‘u'.\d.,.n‘, AN o a a wn” AR ROLN 2 S o 00

T ———

outlined in appendix A, M is the sum of the values of M;. The reasoning procedures
outlined in appendix A rely on “dependencies.” The kind of dependency used there is
a relationship between a variable parameter p; and a performance measure M;.
Typically. the relationship type is “increasing” or “decreasing.” Two other kinds of
dependencies also can be used: the relationship can be between a variable parameter
and an “intermediate measure” ‘(e.g.. detection probability) or between an intermediate
measure and a performance measure. (The latter two kinds of dependencies can be
used by the system to generate dependencies between variable parameters and
performance measures, rather than have the user provide them.) Examples of
dependencies are given in the next section. The following procedures are used in the
system outlined in appendix A for a simple mechanical-scan radar.

e During the valley-finding process. a "boundary _checker” determines whether
a performance measure M; exceeds its maximum allowed value. If it does.
an “inbound__direction” structure is created that lists the parameter-change
options. This is done both for the coarse-scan method and the zero-in
method. but is needed more in the latter case.

o During the "balancing” of the component performance measures (the attempt
to avoid having one performance measure low at the expense of another
being high). the “balancer” creates a “reduction _direction” for the
performance measure highest on its own scale. This structure is similar to
the “inbound _direction” in that it lists parameter-change options.

e The zero-in method of finding a coarse valley uses humanlike reasoning to
compare values of M among past samples and to use the results to decide
the “direction” in which to move for the next sample.

o Humanlike procedures are also used to select and apply curve-fitting
operations in the search for the minimum value of the overall measure M

within a coarse valley.

A kind of reasoning that should be experimented with at a later stage would
use what we call an “unknown _dependency.” For example, the relationship between

14

N A L i T T A ATt R P T AT AT 100 G R |

radar scan rate and the average number of detections per minute (the “hit rate™) is
not known because the number of detection opportunities increases with scan rate,
but the detection probability per scan decreases as a result of the reduced dwell time
per beam. The system could. after a few samples, hypothesize the relationship and
use this relationship to converge faster to the optimum set of parameters.

Humanlike reasoning. to interpolate or extrapolate among scenario results to find
initial parameters for a new scenario. should also be implemented. For example, the
best combination of parameter values against a medium-speed target is likely to lie
(respectively) between the best for a fast target and the best for a slow target. The
best combination for a moderate number of targets should be somewhere between
those for high-density and low-density target situations. Similarly, the best
combination for a signal intercept system when a moderate number of signals is

present should be between those for high signal density and those for low signal
density.

AN OBIJECT-ORIENTED MODEL

OBJECT-ORIENTED PROGRAMMING

An object is a package of information and descriptions of its manipulation [4.5].
Objects are in a hierarchy, and the primary use of the hierarchy is inheritance of
attributes--each object inherits the attributes and procedures of its parent object. The

action in object-oriented programming results from “message passing™ among the
objects.

INTERACTION OF SUBSYSTEMS

A large overlap occurs in the initial knowledge and dynamic knowledge required
by the sensor simulation system (e.g.. radar and tracker simulation) and the learning
system. This overlap is a strong argument for implementing both in the same high-
level language. Simulation is best accomplished with object-oriented programming, as
opposed to rule-oriented programming or procedure-oriented programming, but,
fortunately, the object-oriented approach appears to be best also for a learning system

15

N PUPNALL. AL AT, » PAPAT AT AR P AN A g A
R GO O AT U ORI Vi OO O SO K DU Do it i OO DOt Ol s DO AR

SN

gty et
At St

of the kind proposed. Some high-level languages allow combinations of object-oriented
and rule-oriented programming. which means that testing of the parameter-control
rules (the product of the learning system and a rule-structuring and organizing
system) in the same expert system is feasible. While this project is concerned mainly
with the design of learning techniques., and does not address rule-structuring and
organizing, the learning techniques must be compatible with these other processes.

Figure 4(a) shows the basic structure of a system for learning radar parameter
control rules, and 4(b) shows in detail an example of the initial knowledge needed by
the subsystems. The initial knowledge shown would vary with the problem. For
example, when the objective is to design a radar system, there would be two types of
variable parameters—the design variable. which would stay fixed over all scenarios, and
the system variable, which generally could be varied from beam to beam or from
scenario to scenario.

Not shown in figure 4(b). but important to the learning process, are a number
of intermediate variables or measures. Examples of intermediate measures for an
agile-beam radar are average scan duration and average energy per scan.

The representation of the intermediate measures and performance measures are
under the hierarchy of the object initial _knowledge. The following are examples of
dependencies:

approx__dependency 1
type = against
quantityl = threshold
quantity2 = detection__probability

approx __dependency 2
type = against
quantityl = threshold
quantity2 = false-alarm__probability

16

A
ot

' “."*"s".“A'."\“"‘""v"."A’,"l"‘!"‘&".l.. \.‘l'..\ A W8N ‘l‘ S AY .'!.9 ‘n 'f‘*‘ N “.vv A -‘.mmmq

SIMULATOR

(b) lNlTlAL_
KNOWLEDGE
SPECIFICATION CONNECTION
OPTIMIZATION _ PERFORMANCE _
PROBLEM SPEC

ENVIR RADAR TRACKER
SPEC__ SPEC__ SPEC__ FORMULA DEPENDENCY
)
RADAR RADAR INTERMEDIATE __ EXACT__ APPROX _ UNKNOWN _
OVERVIEW PARAMETER MEASURE DEP DEP DEP
FIXED_ VARIABLE
PARAMETER PARAMETER
o0 PYY

AVRG
P1_SPEC

EXACT__DEP1 EXACT__DEP2)eee

PER-BEAM _
VARIABLE

POWER

Figure 4. Object-based system for radar parameter optimization. (a) High-level overview.
{b) Exampie of hierarchy in initial knowledge for an agile-beam radar.

17

exact__dependency 1
condition = CFAR [Constant False-Alarm Rate]
type = proportion
quantityl = false-alarm__probability
quantity2 = false-alarm__rate

Examples for an agile-beam radar:

approx__dependency 3
condition = agile_ beam
type = support
quantityl = default__dwell _time
quantity2 = average__scan__duration

approx__dependency 4
condition = agile_ beam
type = weak__support
quantityl = sit_3_ dwell__time
quantity2 = average__scan__duration .

Examples for designing a mechanical-scan radar:

exact__dependency 2
condition = mechanical__scan
type = inverse__proportion
quantityl = scan_ rate
quantity2 = pulses__per__beam

unknown__dependency 1
condition = mechanical _scan
type = mixed
quantityl = scan__rate
quantity2 = hit__rate

(Hit rate is the product of detection probability and scan rate, but detection
probability decreases as scan rate increases.)

The following is an example of a formula;

formula__1
type = increment
quantity = energy __units
calls = (power pulse__duration)
incr__interval = per__pulse
incr__duration = scenario
incr_size = (power * pulse__duration) .

To use this formula intelligently, some object, perhaps called “mathematician,”
should have a procedure for using the knowledge that multiplying by n is equivalent
to summing over n pulses when the power and pulse duration remain constant.

Formulas would also be used by the simulator’'s umpire to decide whether a
signal threshold has been exceeded. The actual representation of a formula would
vary widely among different object-oriented languages, and is unlikely to be in the
simple form shown. The implementation would involve messages: e.g.. at each beam
pointing, a message would be sent: (tell energy _units increment your value by (tell
mathematician compute (ask formula__1 recall your incr__size))). The representation
of the computation is more likely to be a LISP function (if procedures are written in
LISP) than a slot value as shown.

THE SIMULATION SYSTEM

A simple scheme for simulating targets for a two-dimensional radar and for
constant course and constant speed is shown in figure 5. The beam position
parameters in figure 5 are

O = 2x/n

xk = r cos k@

19

SN A (GRS N N TG ML PG L AL PN X L (0 A AL A A RSO AT IT ST RTATAINDI) |

e o -

- .-

- o

-~

&

' O\ I Y TS Ty 2 Cp s AT) o N A T N L L e e e e Tttt S T RIS T I LR
L] '5~ AT 0 Ve SN i 0 Lol ; » g 5 .

T - 4 PN U T

yk = r sin k@
and the beam/target intersection parameters are

x (exi - yi)/(c - yk/xk)

y = x'(yk/xk)

-
"

"2 l()2 e (v)?

P =t o+ v J(x' --xi)2 + (y —yi)2

ct,
n

A target is created by randomly generating an entrance time (uniform between
simulation start time and simulation end time) and two beam positions (each an
integer uniform between 0 and b - 1, for b beams), one for entrance and one for

exit. The entrance and exit points are labeled (xi,yi) and (xj.yj). respectively.

Each track will consist of a number of positions of the form (beam number,
range-bin number, time-in, time-out), and will have associated with it a speed and a
cpa (closest point of approach). (The track actually will be valid for various
combinations of speed and range-bin size.) Some tracks can be delayed versions of
others; i.e., additional tracks can be generated simply by adding a time constant to
the time-in and time-out, if computation time is expensive. A number of such tracks
for a variety of speeds would initially be generated, and each could be used with any
cross section consistent with its speed. For different scenarios, different combinations

of varying numbers of tracks would be chosen.

If the radar system allows the occasional use of a high-resolution waveform, a
temporary modification to the track sometimes will be needed. Rather than store
such extensive data in track form, it would be better to compute them upon demand.
For example, whenever two targets appear to be in the same range bin, the exact
range could be computed for each. |If the ranges differ by more than the range
resolution of the high-resolution pulse, the targets would be declared resolved.

20

WL

©O.r)

b v
O DL
DAL

{xj.vj)
MAXIMUM
DETECTION
RANGE |
RADAR
s L= AT (0,0}
.
LINE:
(x".y) Y = Xk xk)
CENTER OF L':'f;+ i oxi
kth BEAM y Moo
WHERE ¢ = (Yer)/(Xj'X',
(xk,yk)

{xi,yi) — PENETRAT
M

Figure 5. Geometry for a two-dimensional rada

21

r simulation.

‘ :2' ! -,1 AN\ 5} n Nt }'! \'!x'nu': E‘Gh'ﬂs'cﬁ'ﬁ't\x-‘ﬁ'm%

. [
.
5
4
3
2
1
(o]
n-1
. n-2
.
[]
OR ENTERS AT

NN AT Tt SR
lki::fd.'n_f::l';!l.*,

One scenario [e.g., one set of tracks and one set of assumptions about weather

(the simulator’s “umpire” uses weather assumptions in generating signal-present
decisions)] would be run over and over,” as different radar parameter sets or control
rules are tried. Since clutter and receiver noise introduce randomness to the detection
process, identical experiments sometimes will have to be repeated many times, with
detection differences resulting from a random-number generator used in the umpire
module. Additional runs using random variations in the same basic scenario would be
useful in the final stages of optimization; e.g., using variations having the same
number of tracks and the same distribution of speed and of cpa.

If the system is of the CFAR (constant false-alarm rate) type. which frequently
is the case, there is no need to have the simulator's threshold umpire decide whether
signal is present for every range bin of every beam. Instead, empty bins can be
randomly chosen as having signal decisions. This is also possible with a non-CFAR

radar, although other factors such as clutter regions have to be considered.
A RADAR DESIGN EXAMPLE

THE PROBLEM

As a3 simple example to work with, we have chosen a radar design problem.
The radar to be designed is a mechanical-scan, fan-beam, surface-search radar. It is
a simple, low-power radar, with, perhaps, navigation or collision avoidance its primary
purpose. Its beamwidth, instrumented range, and average power are specified, and the
PRF (pulse repetition frequency), peak power, pulse duration, scan rate, and PFA
(probability of false alarm) are to be chosen. There will be two sets of values of
these "variable” parameters. One is a high-target-density mode., for use when
traveling in a merchant lane or near a port. The other is a low-density mode for
traveling in open seas outside of all merchant lanes. The detection probability
formula models no real situation, but is about the simplest one having the correct

properties; e.g.. the computed detection probability will correctly increase or decrease

with the parameters that actually affect detection probability. Details are listed below.

V.
ot O

\’1 \'

"\

Fixed parameters

beamwidth

units = degrees

value = 1.5

instrumented __range

units

nautical miles
value = 25
average _power

formula =

peak__power * pulse_ duration * PRF
units = watts

value = 10.

Variable parameters

PRF

units =

pulses per second
minimum value = 500

maximum value

= 2100
peak __power
units = watts
maximum value = 1.0E4
pulse__duration
units = seconds
minimum value = 0.5E-6
maximum value = 1.0E-5
scan__rate
units = revolutions per minute
value = 6
maximum value = 18
PFA

units = probability (per range-bin decision)

23

’ N TRUATOIA :\ :s -!\ :-. t-s t-‘*.' " :‘\
s) .

We are assuming that energy is exactly proportional to peak__power, PRF, and
pulse__duration, and detection__probability is a function of energy _per__pulse (at the
receiver) and pulses__per_ beam. Since average energy is a fixed parameter, the
variable parameters peak__power and PRF are not varied independently in the
I optimization process. They are determined by the following rule: Use the smallest
i
E

PRF such that (1) PRF >=' 500, (2) pulses_per_ beam = integer, and (3)
peak__power =< 1E4 watts. An algorithm for this follows. (NLI = next lower -
integer.)

If pulse__duration > 2E-6,

let i = 1 + NLI(125 / scan__rate):
otherwise,

let i =1 + NLI(1 / (4E3 * pulse_ duration * scan__rate)).
Let PRF = 4 * i * scan__rate.

Intermediate measures

pulses__per__beam
formula = (PRF * beamwidth) / (6 * scan_ rate)
= PRF/(4 * scan__rate)
units = pulses per beam position per scan
range__resolution
formula = 0.5 * pulse__duration * ¢ [c = speed of light]
= 0.8094E5 * pulse__duration
units = nautical miles

= 25/range__resolution
units = resolution cells per beam
decision__rate
formula = (6 * scan__rate/beamwidth) * cells_ per beam
= 4 * scan_rate * cells__per__beam
units = signal or noise decisions per second

cells__per_ beam
' formula = instrumented__range / range resolution

false__alarm _rate
formula = 3600 * decision_rate * PFA

units = false alarms per hour

energy _per__ pulse
formula = peak__power * pulse__duration
= average__power/PRF
= 10/PRF
units = watt-seconds (transmitted)

detection__probability = exp((In PFA) /
(2500/SQRT(scan__rate * PRF) + 1))
units = probability (of detecting “standard target™) per scan.

A standard target here is a surface target having a cross section of 10 meters
squared and a range of 10 nautical miles. The formula for detection _probability uses
a Rayleigh approximation for noncoherent integration, where (see figure 6) signal-to-

noise ratio = constant * SQRT(pulses__per _beam) * energy per_pulse =
2500/SQRT(scan__rate * PRF).

hit _rate
formula = scan__rate * detection _probability

units = hits (detections) per minute per standard target.

Performance measures

Notes: 1. All have the units, rejection__units.
2. All have max__units_allowed = 100.
Figures 79 give plots of the performance measures.

FAR _units = 120 * exp(2 * ((log false-alarm _rate) - 2.1))

hit _rate _units = 115 * exp(-0.7 * (hit_rate - 3))

25

B RANGE OF SNR FOR I
standard__target
os | |
.'«]
' L PFA=10"4
]
‘ £
2 os}h 108
é 10-10
t '8
2 :; * 1014 -
s 3 l
X g o4 20
{:1 3 l 10
g
5 0.2 |
a
A I
|
"t
o 1
5 10 15 20 25
b 10 log, SR
f,l
::; Figure 6. Per-scan detection probability versus 10 log SNR (where SNR is the signal-to-noise
0 ratio) for a Rayleigh distribution of signal and noise. For average power = 10 watts and SNR =
' 2500/SQRT(scan__rate * PRF), SNR varies over the range shown as pulse__duration and
scan__rate are varied.
RS
|t.
i
', 10 |- I
4, '
! 1m e . e - - e o e - -y o E - - e - - - - -—
. MAXIMUM UNITS ALLOWED
: % -
B
Qt'
Y 70 p—
']
.'; g| 60 =
4"
.:¢ g 50 p—
i -
X 40 p—
Al
30 -
20 P~
0
.4‘ (o] { |
0.1 1 10 100
. faise-alarm__rate (alarms per hour)
R Figure 7. Performance measure FAR__units versus false-alarm__rate.
. 26
N
W

DL L N M T SN M N Wy W MR RIS ™ S ™ 0 S ¥ M AR p S T Ay)

MAXIMUM UNITS ALLOWED

8

3

hit _rate units

30

20

10

4 6 8 10 12 14
hit__rate

' Figure 8. Performance measure hit__rate__ units versus hit__rate, the expected

number of times per minute a particular “‘standard target” is detected. Here, a
standard target has a range of 10 nmi and a radar cross section of 10 m2.

110 »—1)l

< o e o g

target__
p resolution__
units

UNITS

blind
4 range__units

, I

1 1 1 1 i1 1
0 01 02 03 04 05 06 07 08 09

range__resolution (nmi)

Figure 9. Two performance measures (target__resolution__units and
f blind__range__units), as a function of range__resolution.

27

BRI A0
R,

Lot \:\r‘ \\g':" e ‘('5‘1{':., '{‘v‘:'i m Y&*‘ﬂ" ncc E’?E" "l;ﬂ

target _resolution _units = (50 + 3 * target count) * range__resolution.

(When two targets fall in the same resolution cell, they appear as one larger target.
The problem worsens as the cell size increases and the number of targets increases.
The target count is the actual number of ships, except ownship, within the

instrumented range.)
blind__range__units = 30 * range__resolution.

(The radar does not receive while transmitting: hence it is blind to targets at a

distance less than the range resolution.)

overall _measure = FAR__units + hit__rate__units +

target resolution __units + blind__range units.
RELATIONSHIPS AMONG PARAMETERS AND MEASURES

Figure 10 shows which measures are affected by which parameters and
measures. Note that a convenient alternative to computing an integer value of
cells_per beam from pulse duration is to specify the integer value and compute
range resolution. From figure 10, it is not obvious that detection probability, as
defined earlier, can be computed directly from PRF and scan_rate, but doing this is
a short-cut method of reducing computations. In a realistic formula for detection
probability, the energy per pulse and pulses per beam would be needed to estimate
the loss attributable to noncoherent integration. Not shown in figure 10 is

target count, which affects the performance measure target resolution _units.

The relationships listed below indicate whether a measure increases or decreases

with a parameter or other measure, and when this change is linear.
Notation:

==> implies

L=> implies linear relationship

1 increases

28

o on tw e v

NG

A 0 T
‘C.f\‘hqu ,

o

'

' ' ' .
PARAMETER | OTHER FIXED INTERMEDIATE PERFORMANCE
TO BE VARIABLE Y PARAMETER MEASURE MEASURE
OPTIMIZED L |
- S S S L N N K 8 N N] ——----—_-——-_-_-—

puise__
duration

q beam’

beamwndth

PFA
Figure 10. Flow diagram of parameter effect on performance measures,
via intermediate measures. Instead of specifying pulse__duration, an
integer value of cells__per__beam can be specified, and the range
resolution and pulse__duration computed from this.
{ decreases

dec__rate decision__rate
det__prob detection__probability
FAR false-alarm__rate

resol resolution

Effect of probability of false alarm

PFA t =L=> FAR t ==> FAR__units t

PFA t ==> det_prob t =L=> hit_rate t ==> hit__rate__units {.

29

"< . .-,'F,T IR R CACATREEE AT & - \ _, '.;_: o ‘:'~\- \.._‘~ _.-..'-._‘- W . N oAt AT ‘_- .." " __ .

.- W e w1
DY

e

Effect of scan rate
scan_rate t =L=> dec_rate t =L=> FAR t ==> FAR__units t
scan__rate T =L=> det_ prob { =L=> hit_rate { ==> hit__rate__units t

scan__rate T =L=> hit__rate t ==> hit__rate__units {.

[P

Effect of pulse duration

pulse__duration t =L=> range_ resol t ==> target_ resol units t
X pulse__duration t =L=> range_ resol t* ==> blind__range__units t

X pulse__duration t =L=> range__resol t =L=> cells_ per__beam { =L=>
dec_rate | =L=> FAR | ==> FAR__units {

For pulse__duration > 2E-6:

) pulse__duration | ==> PRF t ==> detection__probability {

L ==> hit__rate__units t

'

¥
Alternative to above:

f: cells _per__beam t =L=> range_ resol | ==> target _resol _units {
cells__per__beam t =L=> range_resol | ==> blind__range units {

cells__per__beam t =L=> dec_rate t =L=> FAR t ==> FAR_ units t

For cells__per beam > 154:
cells__per_beam t ==> PRF t ==> detection__probability !

¥

¥ . .
¥ ==> hit__rate__units {
Y

]

)

o

\

¢

'\l

)

N 30

AT T IR AN T W, W% 8 s e VA O O AN R A AT Y A M A N N A G O R R G i g

PERFORMANCE MEASURE BOUNDARIES

In the example problem chosen, two of the parameters, scan_rate and
pulse__duration (equivalently, cells _per__beam), have minimum and maximum values.
The range of PFA is less obvious except, of course, that it ranges from zero to unity.
Within the minimum and maximum parameter values, there may be values that result
in a performance measure exceeding its maximum. An example of this is shown in
figure 11, where scan__rate is fixed at 12 rpm and performance measures are
computed as PFA and cells__per__beam are varied. Low values of PFA result in a
small detection __probability and therefore in excessive hit __rate__units, and high values
result in a too-high false-alarm __rate. Low values (less than 35) of cells__per_ beam

result in excessive target resolution _units in the case where the target count is 30.

In our simple example, these boundaries can be computed. If we had chosen a
realistic probability distribution for detection probability, or had considered an agile-
beam problem, this would have been impractical or impossible. Therefore, we will
assume that our learning system does not have access to an inverse formula for
finding PFA as a function of detection _probability, cells _per _beam, and scan__rate.
Having the learning system discover the boundary when hit__rate_units exceed 100
permits experiments with techniques applicable to other boundary-finding situations.
On the other hand, finding PFA as a function of cells _per beam and scan _rate, for
FAR _units = 100, can be reasonably done with a formula in many radar optimization
cases, so a formula will be used for this boundary. This maximum value of PFA is

max__PFA = 0.0070872 / (scan__rate * cells_per_ bcam) .

In the simple method described in appendix A, the user specifies the coarse-scan
parameters. The ones used there are the following.

scan _rate = 6, 8, 10, 12, 14, 16, 18

cells__per beam = 35, 100, 200, 300, 400, 500, 600

PFA = coarse factor * max_PFA,

where coarse factor = 1,V0.1. 0.1.\/0.01. 0.01.\/0.001. 0.001.

cells__
per__beam

200

100

o

i‘,,,f. \‘_‘r.‘r..-“'r \-r 5'— L

FIND MINIMUM(S)

N

777777777 7777777773777 0

10-20 10°15 1010 10°5

PFA
(PROBABILITY OF FALSE ALARM)

Fi?ure 11. Optimization problem for a 12-rpm scan rate. The value of
cells__per__beam varies from 31 to 618 because of constraints on
pulse__duration. For cells__per__beam >> 154, the PRF increases with
cells _per__beam, causing the output signal__to__noise ratio to decrease,
and thus the hit rate to decrease for fixed PFA. For target__count = 30,
the target__resolution__units exceed 100 if cells__per__beam < 35.

32

v v
ay

TWEWY YWY W

\\\\\"

OF overall__measure \
IN THIS AREA.

Ut e T Rt T e Y\ T T L A’ e g e o
N S I AR AT N A AT R TP B SR AT AT RV AT AT A LAY WV AT

Ay R R R R Y R N U R

-

If a system is to be used for several optimization problems, it would be practical to
build in the capability of automatically computing maximum and minimum values as
well as an appropriate increment. Furthermore. the increment for each parameter
could vary. depending on previous results. The user may have to specify whether the
parameter should be incremented linearly, logarithmically (as with PFA), or by some
other method.

SAVINGS IN COMPUTATION TIME

Optimization of the parameters for the problem described would require much
less effort and computation time if, instead of using a learning system, we used a
“fine scan” over promising regions after the coarse scan, or even simply used a fine
scan over the entire region. We chose this simple example because experimenting
with learning techniques then does not require a computer program for simulating
radars and trackers. If a simulator is available, more realistic performance measures
can be used, some relating to false-track rate, track quality, and target separation.
However, this realism is not needed in the early development of the learning
techniques, when the learning techniques are developed to the point that they can
greatly cut down on the number of simulations that must be performed. Then they
can be combined with a simulator, and used for real applications.

CONCLUSIONS

When we began this project as a small effort in FY85, we expected to code and
experiment with some learning techniques applicable to systems as complex as agile-
beam radars. During that year, we became aware of the enormous complexity and
detail needed even for a simple problem, and determined that we did not have the
time or adequate computing capability for realistic experiments. We decided that a
considerable amount of knowledge could be gained just by designing a system in
generic object-based code. We completed such a design in FY86 (although sketchy in
parts), and we hope later, under other funds, to implement the example described and
to expand the implementation to more complex applications.

33

The learning techniques proposed for the example problem of a simple
mechanical-scan radar are based on humanlike reasoning processes. The problem was

modeled as one of optimizing parameters. with the conversion of results into
parameter-control rules occurring after the parameter optimization process. It was
pointed out that in the case of an agile-beam radar system. one could formulate rules
containing parameters and then apply parameter optimization procedures to the rules’
parameters. In practice, the rules’ structures would also need to be optimized. and
the problem is larger than that of parameter optimization.

In FY86. this project was expanded to include investigating other learning
techniques that might be applicable to system optimization problems or to pieces of
the problem. These techniques differ from those discussed here in that they do not
primarily imitate human behavior and in that they directly address the problem of
learning rules about optimum parameters. The results of these investigations will be
reported on separately. In other work (reference 6) of possible interest to the
reader, researchers at the Naval Surface Warfare Center are investigating the use of
genetic algorithms to refine a combat system’s doctrine rules.

Our investigations have substantiated our original supposition that a learning
system would not be practical unless it was very general and could be applied to a
variety of specific problems. Recall that figure 1 shows an “initial data/knowledge
acquisition system” that understands the basics of the generic radars and learns from
the user the specifications of the particular system and the environment. The
techniques used in the simple example in appendix A are essentially applicable to very
general parameter optimization problems having a similar definition of “optimum.”

34

N AF N S RNTT A TR ad WA A N WA N o

Sa bt e B e B o o g oh g ob

REFERENCES

McArthur, D., and P. Klahr, The ROSS Language Manual, Rand Note N-1854,
Sep 1982.

Langley, P.W., Rediscovering Physics with BACON.3, 1JCAI-6, vol. 1, 505-507,
1977.

Cohen, P.R., and E.A. Feigenbaum, The Handbook of Artificial Intelligence, vol
I, HeurisTech Press, Stanford, CA, 1982.

Robson, D., Object-Oriented Software Systems, Byte, vol. 6. no. 8, pp 74-86,
Aug 1981.

Robson, D., and A. Goldberg, The Smalltalk-80 System, Byte, vol. 6, no. 8, pp
36-48, Aug 1981.

Kuchinski, M.J., Battle Management Systems Control Rule Optimization Using
Artificial Intelligence, NSWC/MP-84-329, Jun 1985.

35

....................

)

AL AT T R I S T P WA R YL TR 16 WS N L T Ny
$2’!:'-:ﬁiﬁhﬁ':\i"’:‘hi\f‘-t&\:\'{\}_\f‘\(\(ﬁf\'ﬂ\.ﬁ.{\.{mﬁx'\:ﬁs'f;.(d

oy Ty d g - -

S, @ e

APPENDIX A:
AN EXPERIMENTAL SYSTEM IN GENERIC OBJECT-BASED CODE

Notes:

1. Prefix $ marks an object whose value can vary with each test or each
environment. (Value is one “attribute” of certain objects.)

2. Prefix & marks the value of an object. If <name> is a fixed parameter, let
&<name> be the value of <name>. If <name> is a variable parameter or an

intermediate measure, let & <name> be the value of $<name>.

3. Formulas are listed just below where first referred to, rather than in the section
on Initial Knowledge.

4, <> represents a value to be assigned by the action of some object. Angle

brackets also enclose a description of what is in that slot.

5. Two hyphens (--) precede lines of comment that appear in the code but are not
part of it.

TOP-LEVEL OBJECT

object

offspring = (initial__knowledge fake _simulator performance _monitor learner)
INITIAL KNOWLEDGE
-- See figure Al.
initial _knowledge

parent = object

offspring = (connection specification)

A-1

- e) A e e Y o N L L ; Ry 2Ny T Ny Y S N T LA S N L NN N R e
T N 1 N A 0 N O B QN N TGN A0 A R N o DR P O 2T A NN SE A S AT AT, |

o

ASIYY P Y

[
e
v

3 o . Y p ')'I'I-"f' -"f'/.f." 'f.f.."-
2008 2 LD N G SN G T N, s S o L S A

connection
parent = initial__knowledge

offspring = (formula dependency)

formula
parent = connection

offspring = (formula_ 1 formula_2 ...)

-- Formuias appear where first referred to.
dependency

parent = connection

offspring = (exact _dependency approx__dependency unknown _ dependency)

-- Dependencies are treated later.
specification
parent = initial _knowledge

offspring = (optimization problem environment__spec radar__spec
performance _spec text)

text
parent = specification

offspring = (goal step 1 goal step_ 2 PRF_ formula spread_ formula)

-- Text is sometimes used here to describe initial knowledge of algorithms
-- or procedures to be called by the behavior of objects in other subsystems.
-- A subroutine, LISP function, or other form would be used in a specific
-- object-based system. The text shown (in quotes in later examples) could

-- be saved under the attribute “description,” and the parent would become
-- “subroutine” or other.

-- optimization _ problem --
-- See figure A2.

optimization __problem

parent = initial__knowledge

object
initial__knowledge

optimization__ radar__ text formula p—
problem spec depe

(fig. A-2) (fig. A-4)

A - :

N environment __ performance_

N (fig. A-3) spec

§ ‘ exact__ approx__ unknown__
dependency dependency dependency

&, performance__ overall _
‘. measure measure
W
g Gerformance_spreaD

L}
" Figure A-1. Top-level objects under initial__knowledge.
L4
:

A

L
)

K
g
A
:
i8]
.|‘
R optimization__
¢ problem

2
¥
\ system _

'. optimized .

!v (optimization__case)
s parameter__
4 optimized

}
3 optimization_ optimization__
] - case__1 case_ 2
»

v

g

. Figure A-2. Specification of the optimization__problem,

:. under initial knowledge.

4

D

L3

£

.4

Y

1

)

5

%
4 A-3

!l

B v - —— ~pnp - - .'- LY DT LE B Ty B LY 38 'J‘r{ L) -’- - g™ '.n.-.-"‘l."\ - \.'| - -'.v “ \\\'\ \.
OO O N0 DU A O Tt e O Y 44 el L5 ol \‘ LDl S ety AN . WhG A

m—w

offspring = (system __optimized parameter__optimized optimization _case
goal)

system__optimized
parent = optimization__problem
type = radar
system _spec = radar__spec

parameter _optimized
parent = optimization _problem
parameters = (scan__rate pulse__duration PFA)

varies_ with = optimization__case

-- See the explanation below (under “radar _spec”) of why the variable

-- parameters peak power and PRF are not involved in the optimization process.

optimization__case
parent = optimization__problem

offspring = (optimization case 1 optimization__case_ 2)

optimization case_ 1
parent = optimization case
environment = environment 1

radar _mode = mode__1

optimization case 2
parent = optimization case
environment = environment 2
radar__mode = mode 2

goal
parent = optimization problem
varies__with = optimization _case

value = (goal stepl goal step2)

A-4

¥ i7 M
“"I.‘.‘l‘?.) ,.n‘ .'ﬁf‘-im‘»

goal _stepl

parent = text
value = “Find the parameter set such that overall _measure M is
minimized, and denote it s1.”

goal _step2

parent = text

value = “To balance component performance measures, find parameter set s2
such that performance_ spread S is reduced at a small sacrifice in
overall__measure M. In particular, find s2 such that S(s2) is the
minimum S within the constraints:

M(s2) / M(s1) < 1.1

and S(s1) - S(s2) > 4 * (M(s2) - M(s1)) / M(s1). "

Goal _stepl and goal _step2 are used in the design of the “optimizer”
-- part of the learner. The algorithm is just a simple example.

The performawasures. overall__measure, and performance__spread are
defined under “p€¥ormance _spec.”

-- environment __spec --
-- See figure A3.

environment _ spec
parent = specification

offspring = (target _type environment)

target type

parent = environment _spec

offspring = standard target -- Normally, there would be several types.
standard _target

parent = target type

category = surface

cross__section = 10

A-5

WO e T e S - % \ - €, Cplo Caln @, € 5 O T
T SO T RN T NN T W G T R TEAS) ROt S SR R N S A

cross__section __units = meters__squared
range = 10

range__units = nautical_miles

environment
parent = environment__spec

offspring = (environment__1 environment __2)

environment _ 1
target__count = 1
sea state = 1
weather = clear

environment __2
target__count = 30
sea_state = 1

weather = clear

-- radar__spec --

-- See figure Ad4.

radar__spec
parent = specification

offspring = (radar__overview parameter mode intermediate_ measure)

radar__overview !
parent = radar__spec
name = radar__simplistica
scan__type = mechanical _scan
beam _type = fan
function = surface__search

processing = noncoherent__pulse _integration

A-6

specification

environment__spec)

(stoncard_target) (Cenvironment _: environment _2)

Figure A-3. Specification of the environment, under initial__knowiedge.

k! PP

W specification

‘4 radar__ intermediate__
) overview) measure

;. =

: fixed variable__
: parameter parameter mode__1 mode_ 2

average pulse__
power PRF duration PFA

G &

Figure A-4. Specification of the radar, under initial__knowledge.

beamwidth

A " . . , B - o LY RATE BV T I R e --vyv‘v"\.\'.\’\
"‘:N‘u"\.:.!.:'.’&'ﬁ :":“.'l'ln ".!.2'0‘. .." .‘l'!‘l‘..h J’l‘-‘o‘?’! ' Y ~ -.l..' ‘l .|-'lt"l|) u.k . .h .(5' ! ~ { '..\ -) Il- ‘04 { 3 *‘ » !

-- parameter --

parameter
parent = radar__spec
offspring = (fixed__parameter variable__parameter)

fixed _parameter
parent = parameter

offspring = (beamwidth instrumented range average _power)

beamwidth
parent = fixed _parameter
value = 1.5

units = degrees __azimuth

instrumented __range
parent = fixed _parameter
value = 25
units = nautical__miles

average _power
parent = fixed _parameter
value = 10
units = watt-seconds

-- average _power = peak__power * pulse duration * PRF

variable __parameter
parent = parameter

offspring = (PRF peak __power pulse duration scan__rate PFA)

-- We are assuming that energy consumption is exactly proportional to

-- peak__power, PRF, and pulse__duration; and detection performance is a

-- function of energy per pulse and pulses per beam. Since average energy is
-- a fixed parameter, the variable parameters peak _power and PRF are not

-- varied independently in the optimization process; they are determined by

A-8

PEIR P UPEPR I R TN A PR S o8 LA SR
X A R e e i KA) .eCrA‘»j

-- the following rule: Use the smallest PRF such that (1) PRF >= 500;

-- (2) pulses _per__beam = integer; - and (3) peak__power =< 1E4 watts. An
-- algorithm for this follows.

PRF__formula
parent = text
value = “Let NLI = next lower integer.
If pulse_ duration > 2E-6,
let i = 1 + NLI(125 / scan_ rate);
otherwise,
let i =1 + NLI(1 / (4E3 * pulse_ duration * scan_ rate))
Let PRF = 4 * | * scan__rate.”

PRF
parent = variable__ parameter
description = pulse__repetition _ frequency
varies_ with = mode
constraint = (integer & pulses__per beam)
formula = formula_ 1
value_ type = integer
min__value = 500
max__value = 2100

units = pulses__per__second

formula_1
parent = formula
quantity = PRF
calls = (pulse__ duration scan_ rate)
output = PRF__ formula

-- For a 1.5-degree beamwidth, PRF's constraint is satisfied if PRF is a
-- multiple of 4 * scan_ rate.

peak__power

parent = variable_ parameter

.................

varies__with = mode
formula = formula__ 2
value__type = continuous
max__value = 1.0E4
units = watts

formula__ 2
parent = formula
quantity = peak _power
calls = (&average_ power &PRF & pulse__duration)
output = &average power |/ (&PRF * &pulse _duration)

pulse__duration
parent = variable _parameter
constraint = (integer &cells_per _beam)
varies__with = mode
value__type = continuous
min__value = 0.5E-6
max__value = 1E-5
formula = formula 3
units = seconds
-- Since the pulse _duration has a constraint that the cells__per_ beam
-- must be an integer, it is easiest to fix the intermediate measure
-- cells__per__beam, compute the intermediate measure range__resolution
-- (using the alternative version of formula 5), and then compute
-- pulse__duration (using formula__3).

formula__3
parent = formula
quantity = pulse duration
calls = &range _resolution
output = 1.236E-5 * &range resolution

scan__ rate

parent = variable parameter

A-10

I

R L O S G G AN A PG A S ST AT AT AT NS T

varies__with = mode

value__type = continuous . -- integer preferred

min__value = 6

max__value = 18

coarse__value = (6 8 10 12 14 16 18)

-- A coarse__valley will be built using only the coarse values of the
-- parameter.

units = revolutions__per__minute

PFA
parent = variable__parameter
description = prob__of _false__alarm__per__resolution __cell __decision
varies__with = mode
category = indirect
value__type = continuous
min__value = 0
max__value = 1
coarse__value = computed
-- Coarse _scanner computes &coarse__scan_ PFA,
units = probability

-- mode --

mode
parent = radar__spec
offspring = (mode 1 mode_ 2)
-- Could be more than two if multiple usable valleys exist.
varies__with = environment

mode 1
parent = mode
employment = environment__ 1
PRF = <>

peak _power = <>

pulse _duration = <>

|,|?C.‘.I,.tl

scan__rate = <>
PFA = <>
-- Final values correspond to an optimum _set.

mode _ 2
parent = mode
employment = environment__2
-- Same attributes as mode__1

-- intermediate _measure --

intermediate__measure
parent = radar-spec
offspring = (pulses__per__beam range__resolution cells__per _beam
decision __rate false-alarm __rate energy _per_ pulse

detection _ probability hit__rate)

pulses__per _beam
parent = intermediate _measure
type = predetermined
formula = formula_ 4
units = pulses_per _beam _per _scan
-- The value of pulses__per beam affects detection probability,

-- but is not used directly.

formula_ 4
parent = formula
quantity = pulses per_ beam
calls = (&PRF &scan_ rate)
output = &PRF / (4 * &scan_rate) -- for a 1.5-degree beamwidth

range _resolution
parent = intermediate measure

type = predetermined

A-12

DA AT O O A0 0 7 Y, y Y) ¥) ¥
N .‘1‘].‘,““!\. REAN R RN ,“\‘th.‘,'t‘,h‘.) ',..",h BP0 Nl &.“I !.l \ “. N ROR A .-,~ ' ‘ .*' X N I oy » 'J. \ ~

PP < P . L P ~ Wi W

formula = formula_5

units = nautical _miles

‘ formula_5

: parent = formula

- quantity = range _ resolution

\ calls = &pulse__duration

S output = 0.8094E5 * &pulse__duration

-- Next formula allows integer value of cells__per_ beam to be specified.

formula__5 -- alternative

parent = formula

-

quantity = range__resolution

calls = &cells__per _beam

output = 25 / &cells__per__beam -- for a 25-nmi instrumented range

- e P

cells__per__beam
parent = intermediate __measure
3 description = resolution _cells__per _antenna__beam

type = predetermined

value__type = integer
K min__value = 31
K max__value = 618
:3 coarse__value = (35 100 200 300 400 500 600)
A formula = formula__6
X units = cells__per __beam
.
‘ ‘ -- Next formula not necessary if previous formula employed.
i} formula__ 6
N parent = formula
E? quantity = cells__per__beam
g calls = &range _resolution
. output = 25 / &range resolution -- for a 25-nmi instrumented range

A-13

——— ;
o v ey s T

| Munamn 3 TP R T e LT] "Rt P "M ATR A, - ~ AN P
I’..‘l*;'l"'l‘?‘l"‘l‘.‘\‘?‘l't‘!': l'!’t"n‘. .l‘.\'. ol .98 04N, o AN ,O‘Q. A L Y B) a0 A R

decision _rate

parent = intermediate__measure
description = signal _or__noise__decisions__per__second
type = predetermined

formula = formula_7

—

units = cells__per__second

formula_ 7
parent = formula
quantity = decision__rate
calls = (&scan rate &cells per__beam)
. output = 4 * &scan__rate * &cells__per__beam

-- for a 1.5-degree beamwidth

false-alarm __rate

parent = intermediate__measure

type = probabilistic
formula = formula__8

‘ units = false alarms__per__hour

formula__ 8
parent = formula
quantity = false-alarm _rate
calls = (&decision _rate &PFA)
t output = 3600 * &decision rate * &PFA

energy _per__pulse
parent = intermediate measure
type = predetermined
formula = formula_ 9
units = watt-seconds
-- The value of energy per pulse affects detection__probability, but is

-- not used directly.

A-14

"| ‘. r '. by | P 1. ‘ ¥ 4 N s 3%] W Yy W VoW T v B " 3% | Y% %% A% % 'l e X 2l
vty e, \-'i':‘l‘- O AU s \'»‘l‘. RONOANN |'.'\ A '\O a'!'o' 00, Y10, N0 0 0 R0 00 K0 T K0T T N0 T8 90,900 5,6,54, NG, 5 B, a'-\'- Ahlia AlA

. formula_ 9
parent = formula

quantity = energy _per__pulse

calls = &PRF

output = 10 / &PRF

-- = &peak _power * &pulse__duration

detection __probability
parent = intermediate __measure
type = probabilistic
formula = formula__10
units = probability _per _scan

formula_ 10
parent = formula
quantity = detection __probability
calls = (&PFA &scan__rate &PRF)
output = exp((ln &PFA) / (2500 / SQRT(&scan__rate * &PRF) + 1))
-- Approximated with Rayleigh distribution.

For standard _target only (10 nmi, 10 m?).

Assumes noncoherent integration: Output SNR =

constant * energy per pulse * SQRT(pulses per beam)

hit_rate
parent = intermediate __measure
description = average number _detections _of target per__minute
type = probabilistic
formula = formula__11

units = hits__per _minute

formula _ 11
parent = formula
quantity = hit_rate
calls = (&scan__rate &detection _probability)
output = &scan_rate * &detection__probability

-- performance__spec --

-- See figure Al.

performance _spec
parent = specification

offspring = (performance _measure overall _measure performance__spread)

performance _measure
parent = initial__knowledge
varies _with = scenario
offspring = (FAR _units hit_ rate _units target _resolution _units

blind__range__units)

FAR _units
parent = performance measure
formula = formula__12
units = rejection _units

max __units _allowed = 100

formula_ 12
parent = formula
quantity = FAR _units
calls = &false-alarm_ rate
output = 120 * exp(2 * ((log &false-alarm rate) - 2.1))

hit _rate_ units
parent = performance measure
formula = formula 13
units = rejection _ units

max__units _allowed = 100
formula 13

parent = formula

quantity = hit__rate__units

A-16

\”i 2 ‘.!,i - ‘..‘-‘:'-¢

PRIEREIL y AT
el h‘?’«""\ O e ® S W Yo Wb P AN

calls = &hit__rate
output = 115 * exp(-0.7 * (&hit__rate - 3))

target__resolution __units
parent = performance__measure
formula = formula__ 14
units = rejection__ units
max__units__allowed = 100

formula 14
parent = formula
quantity = target__resolution _units
calls = (&range__resolution &target count)

output = (50 + 3 * &target_count) * &range resolution

blind _range__units
parent = performance__measure
formula = formula__15
units = rejection__units

max__units__allowed = 100

formula_ 15
parent = formula
quantity = blind__range__units
calls = &range resolution

output = 30 * &range resolution

overall _measure
parent = performance__spec
varies__with = simulation__test
formula = formula__16

units = rejection __units

PP Y T PRPT Y ST LRI T R PR A L, AR TR TR L P PRI T
"A" , " A0 AL O W o

LR RN
. AL .

formula__16
parent = formula
quantity = overall _measure
) calls = <offspring of $performance__measure>
v output = <sum of offspring of $performance measure>

o performance spread

b -

\J —

\ parent = performance _spec

b

4 varies_ with = simulation test
) - -

formula = formula 17
units = normalized _rejection __units

E formula_ 17

parent = formula
;f quantity = performance _spread
n calls = (<offspring (Mi) of performance measure>
g <offspring of $performance__measure>)

output = spread _ formula

! spread _formula

3 parent = text

t

value = “performance spread = max{qi} - min{qi}, where

‘: qi = &Mi / (max__units__allowed of Mi)
3 ql = &FAR __units / 100
;3 q2 = &hit__units / 100
q3 = &target _resolution _units / 100
. q4 = &blind__range__units / 100 "
;
: -- dependencies --
; approx__dependency
»A parent = dependency
:: offspring = (approx _ dependency 1 ...
W
'
h
. A-18

A, LA) (AN . N . N - N N - ra-a e
ROIOC MO0 NN “A.I"J“.l!‘.t "l“\" DANAN RN A ‘..‘.‘ ¢ .‘ ...l .h".. o '\ \'\.\ . \ X q ne \-.)(\x,. w.,v .

/ wa atet Y
LA AN W

unknown __dependency
parent = dependency
offspring = (unknown__dependency 1 ...)

approx__dependency 1
parent = approx__dependency
type = support
quantityl = PFA
quantity2 = FAR __units

approx __dependency _ 2
parent = approx__dependency
type = against
quantityl = PFA
quantity2 = hit__rate__units

approx __dependency _ 3
parent = approx__dependency
type = support
quantityl = scan_rate
quantity2 = FAR__units

unknown __dependency 1
parent = unknown__dependency
type = mixed
quantityl = scan_ rate
quantity2 = hit_rate__units
-- Hit opportunities increase with scan__rate, but detection__probability

-- decreases.

approx__dependency 4
parent = approx __dependency
type = against
quantityl = cells__per _beam
quantity2 = target _resolution _units

A-19

approx _dependency 5
parent = approx _dependency
type = against
quantityl = cells__per__beam
quantity2 = blind__range _units

approx _dependency_ 6
f parent = approx__ dependency
: type = support
quantityl = cells__per__beam
quantity2 = FAR_ units

i T o

: approx__dependency 7
parent = approx__dependency
type = against

,e constraint = (less_ than 154 cells _per__beam) -- from PRF_ formula
g ~ quantityl = cells__per__beam

quantity2 = hit__rate__units
M
;
3 -- Dependencies involving intermediate measures could also be given and,
:, -- in fact, could have been used to automatically generate all those

-- given above.
]
.
p FAKE SIMULATOR
t
]
t
-- See figure AbS.

g fake _simulator
N
. parent = object
’ offspring = (radar__simulator $target__count)
M
[$target _ count
¥ parent = fake simulator

units = targets
X value = <1 or 30>
1

A-20

O A AT A CCs o TR (A TR e T e T Ty Xa Ta® Wi Tatal,
OO P A OCP A My P Tt B R RN \‘ R\B " > * uv P

VARG "\\.v.\t\-"‘- 0 ';v.‘w AR COE 1.\.!. Ny
Ca)N N W R 2N . D K o 2 « £ i3

radar _simulator

parent = fake__simulator
offspring = (Stest__parameter $intermediate__measure)

-- $test__parameter --

Stest _ parameter
parent = radar__simulator
offspring = ($PRF $peak power $pulse__duration $scan__rate $PFA)
test = <integer>
-- Attribute “test” has same value for all objects having this
-- attribute. The value is incremented by 1 after the outcome

-- of a test is used to produce a new parameter set.

$PRF
parent = S$test__ parameter
value = <>

$scan__rate
parent = Stest_ parameter

value = <>

$pulse__duration
parent = Stest_ parameter
value = <>

$peak__power
parent = Stest parameter
value = <>

SPFA
parent = Stest__parameter

value = <>

-- Sintermediate__measure --

$intermediate__measure
parent = radar__simulator

offspring = ($pulses__per__beam $range__resolution $cells__per _beam

$decision _rate $false-alarm__rate Senergy__per__pulse

$detection _probability $hit__rate)
test = <integer>

$pulses__per _beam

parent = Sintermediate__measure
value = <>

-- Value for information only, since not used in calculations.

$range__resolution

parent = $intermediate__measure
value = <>

$cells _per__beam

parent = S$intermediate__measure
value = <>

$decision _rate

parent = Sintermediate__measure
value = <>

$false-alarm _rate

parent = $intermediate__measure
value = <>

v i o | |

$energy per_ pulse

parent = $intermediate_measure
value = <>

A-22

$detection__probability
parent = Sintermediate__measure
value = <>

$hit__rate
parent = Sintermediate__measure
value = <>

PERFORMANCE MONITOR
-- See figure A6.

performance__monitor
parent = object

offspring = (Sperformance_ measure $overall__measure)

$performance__measure
parent = performance__monitor
offspring = ($FAR _units $hit_ rate__units Starget _resolution _units
$blind__range _units)
test = <integer>

$FAR__units

parent = Sperformance_measure
value = <>

$hit__rate__units
parent = $performance__measure
value = <>

$target __resolution _units

parent = Sperformance_measure
value = <>

A-23

...........

k J ', "y ’) T } >
"'..'n‘.‘\‘;":.‘\:q‘t.g'i,n"‘.\.‘ln".a'\."“o"tu".' » 0"‘0 n.‘.\" 0 ‘.|" ALN R ‘ G 2 v"."‘:v"‘.!..‘.l o8, A0 O

- - -

) -l.‘.\ EaaNyX)

|

fake__simulator
oo

$intermediate __
measure

Figure A-5. The fake__simulator. Estimates of
detection probability and other measures can
substitute for a simulator in early experiments.

$test__parameter

1
&
t
£
4
\
: performance
[} monitor
<
‘ sperformance
' measure (soverall_measure) Sperformance_spreao
R
¥
t
Shn rate__ unns $blind__range__units
< $target__resolution umts)

Figure A-6. The performance__monitor. Early experiments can

use performance measures that are functions of the intermediate

measures computed or estimated by the fake__simulator. :
¥
1]
1
)
! A-24
i
3
L ; | - o et .ty G gt Ry [CYE T P LR e~ - f AT Rp B
‘!-“-*"'&“’t"'\"l\"l.«' K K‘A“? ‘ 1, ". " " |. W «"{ . L N (" A A "" -, A LTRLSS '. N o Motk ‘ . Slal 50

$blind__range __units
parent = S$performance__measure
value = <>

Soverall__measure
parent = performance__monitor
test = <integer>
value = <>
accuracy __measure = <>

$performance __spread
parent = performance__monitor
test = <integer>
value = <>

LEARNER

-- See figure AT.
learner
parent = object
offspring = (next__set history file valley _finder optimizer)

next__ set
parent = learner
offspring = (next__set 1 next_set 2 ...)
-- offspring attributes:
test = <integer>
scan__rate = <>
cells__per__beam = <>
PFA = <>
desired__accuracy = <>
behavior = <Tells fake__simulator when the set is available for
the next test.>

-- Receives parameters from valley _finder or optimizer offspring.

A-25

-

"

- e

A . o)
"'."’a‘.'c"‘l‘. |"‘|.'. (LK o"‘n”n‘.kn‘.. WRY

next_set
valley_ finder —
— optimizer
history__file

valley

balancer

e) Cem) e

G/ |G |

reduction
direction

coarse__scanner

boundary__
checker

‘ inbound_direction)

TRy

ZERO-IN METHOD

valley__finder

< boundary__checker

coarse__valley
slice__valley

coarse__min

inbound__
direction

Figure A-7. The learner.

A-26

-

coarse_ valley
slice__valley

COARSE-SCAN METHOD

(Y) W™ W e W > N ey w
u.n.n'.‘n’ |"-‘l .‘)’!‘Q.»o- An .'l!'.l. o A T A "* th“. Nt Syt h7

optimum__
set

‘b ige

-- history _ file --

history _file
parent = learner
offspring = (slice line point recorder)

-- See figure AS8.

slice
parent = history _file
offspring = (slice_1 slice 2 ...)
scan__rate = <> -- offspring attribute

line
parent = history _file
offspring = (line__1 line_ 2 ...)
-- offspring attributes:
slice = <>
cells__per _beam = <>
range__resolution = <>
PRF = <>
decision _rate = <>
blind__range__units = <>

target _resolution units = <>

-- For this simple case where simulation is not actually performed,

-- each line instantiation can have the attribute target resolution _

-- units__1 and target__resolution__units__ 2, corresponding to environment__1 and
-- environment 2. (Otherwise, environment should be an attribute of each

-- slice.) Similarly, there would be two instantiations each of the

-- overall_measure and performance spread for each point (next object).

point
parent = history file

offspring = (point__1 point _2 ...)

history__file

,...! line__49 ,

point__1 1)

Figure A-8. History__file after coarse scan.

-- offspring attributes:

line = <>
PFA = <>
FAR = <>

detection __ probability = <>
hit__rate = <>

FAR _units = <>
hit__rate__units = <>

P a o YRy B,

L\ g 5 O ¥ 0) P
l-,“l."i:' u?" "-J‘-."l. M e U U Ut " gt ™ e e 1 LN Ui,

A-28

AL T e A

R

™ e e em e g

R T

-

o)) y

e A L A Y e o Y T g Y A Y N B Y A YR A s A

overall _measure = <>
accuracy measure = <>
performance__spread = <>

The mapping of slice, line, and point to scan__rate, cells_per _beam, and

PFA is arbitrary; any mapping would work.

The following are examples of instantiations for the first point of a

coarse scan. Here, the calculations have been made for both environments:
-- i.e., for target count = 1 and 30.

slice_ 1
parent = slice

scan__rate = 6

line_1 -- Integer same as value of attribute “test”
parent = line
slice = slice_ 1
cells__per__beam = 35
range _ resolution = 0.71422857
PRF = 504
decision _rate = 840
blind__range _units = 21.428571
target _resolution __units 1 = 37.857143
target _ resolution _units 30 = 100

point 1
parent = point
line = line__1
PFA = 3.3749E-5 -- max_PFA
FAR = 102.056

detection probability = 0.79405
hit__rate = 4.7643

FAR _units = 100
hit__rate__units = 33.445663
overall__measure 1 = 192.731377

A-29

\'..’f. -r r-r -fl"

IR SARAS ‘k“.ﬁ'j\fﬂ

Pt X

‘-’J

e

-

g -

L]
v

overall _measure__ 30 = 254.874234
performance__spread 1 = 0.785714
performance__spread 30 = 0.785714

recorder -
parent = history file
test = <integer> .
behavior = <Gets results from fake__simulator and performance _monitor,

and creates slices, lines, and points.>
-- valley _finder --

valley _finder -- coarse-scan version

parent = learner

offspring = (coarse _scanner boundary__checker line_ min line_ next__min
coarse__min coarse_next_ min slice_valley coarse _valley)

behavior = <After a coarse scan, creates line__mins, a coarse_ min,
slice__valleys, and a valley. Might also create
line__next__mins, a coarse next _min, and, around it, an
extra valley. Has further duties (discussed later) if

the valley's type is edge or incomplete.>

Coarse__ scanner

parent = valley finder

offspring = ($min__ PFA $coarse value PFA)

behavior = <Specifies values of next__set for simulator to use, resulting
in successive slices (one per coarse value of scan rate),
line-by-line (cells_ per__beam coarse values). Each line has
a point per coarse__value PFA.>
<Calls on boundary checker to avoid going more than one
point beyond the max _allowed value of a performance
measure. Uses inbound__direction to decide whether to start
a new line or to start a new slice. Deletes any such

inbound _ direction when done.>

A-30

‘ .
P, (O WM e I Py M AT R PR R P e Wy r e T (o T Oy Xy P S TR P PRI R PR T LR R D
N a N N R B T A A S R AT STy YN N D A R A P AT s

NS

N - T

PR

- -

K

o

O X

PR

R

.o oo W &

-~

N
i

$min__ PFA
parent = coarse__scanner
description = PFA_giving_ 100 _FAR_ units
varies__with = line
formula = formula_ 18
value = <>

formula__18
parent = formula
quantity = $min__ PFA
calls = (&scan_rate &cells_ per beam)
output = 0.0070872 / (&scan_rate * &cells__per _beam)

$coarse__value_ PFA
parent = coarse__scanner
formula = formula__ 19
value = <>

formula__ 19
-- Output is (10**(-i/2)) * max_ PFA, for i from 0 to 6.

boundary checker
parent = valley finder
offspring = inbound _ direction
behavior = <Compares each performance__measure with its max__allowed
_ value. If exceeded, uses dependencies (between
parameters and performance measures) to create an

inbound__direction. Reports back when done.>

inbound __ direction
parent = boundary checker

offspring = (inbound__direction__ 1 inbound__direction 2 ...)

A-31

—— . . ’) - AT AL LAY)
N "v'f'n"“u‘«‘"~"‘.' -“ u\"n‘f‘o‘. o, 800 ‘n.‘;".'a".l‘.\ -'.‘-“'JC ‘.!".0- KX ',‘"‘ 0 ‘.0“.0 AN “v LX) ..o.‘.t“.o A IR A P N ~F ROSOR

-~
NN,

-- The following is an example of an inbound __direction.

inbound _ direction__3
parent = inbound _direction
point = point__ 41
exceeded = hit__rate _units

option = ((increase PFA) (mixed scan__rate) (decrease cells__ per__beam))
line_min -- if coarse-scan

parent = valley finder

offspring = (line__min_1 line_min_2 ... }
-- offspring attributes:

environment = environment <1 or 2>
slice = slice__ <integer>

min__point = point__<integer i>
left__point = point_ <i-1 or i-2>

right _point = point__<i+1 or i+2>
outside _point = point_ <i-1 or i+1>

-- The “outside point” is used instead of the left _point or right _point when
-- the min__point is just next to or on an “edge.” The edge may result from a
-- parameter constraint or from exceeding a component measure limit. The

-- min__point must be inside the permissible area. If no simulation is

-- performed just outside of an edge with a min_ point, the attribute

-- outside point is created with a value = nil.

-- Next is an example of an instantiation.

line_min_3
parent = line _min
line = line_3
min__point = point_ 5
left__point = point 3
right_ point = point_ 6

A-32

AN T T AN AT AT A BT ST AT A s S N A A e N A

line__next__min -- if coarse-scan

Same attributes as line__ min.
Occurs if another point is deeper than a point in the valley

-- around the line__min.
-- Used to see if a second valley exists.

-- The coarse__min is generated from the line__mins over all slices, for each
-- environment.

coarse__min
parent = valley finder
offspring = (coarse__min__1 coarse__min__2)
-- one for each environment
-- offspring attributes:
environment = environment <1 or 2>
slice = slice__<integer>
line = line__<integer>
-- slice and line attributes are optional
point = point__ <integer>

coarse__next__min -- if coarse-scan
-- Has same attributes as coarse min.
-- Is deepest point (chosen from line__mins and line__next__mins) outside of
-- coarse__min's valley and comparable in overall measure to that valley’s

-- points. Probably none will exist.

slice__valley
parent = valley finder
offspring = (slice__valley 1 slice valley 2 ...)
-- offspring attributes:
environment = environment_ <1 or 2>
slice = slice__<integer>
valley point = (<list of points>)
min__line = line__<integer i>
lower _line = line__<i-1 or i-2>

A-33

upper_line = line__<i+1 or i+2>
outside _line = line__<i-1 or i+1>

The “outside__line” is used instead of the upper__ or lower__line when the
-- min__point is on an edge (see the discussion above for outside_ point). It
-- has value nil if no simulation or computation is made for that line.

-- The first slice__valley will have coarse_ min as its min__point.

ot w pe -
[]
]

Figure A9 illustrates a slice_ valley, after the coarse scan. The upper or

3

- lower line could have contributed a line__next__min rather than a line__min as

& r——————-—-—ﬂ

. ' '

_ | | SLICE
A (scan__rate fixed)

p 1 e e 0 000 0 00 |

Y 1
e¥ E ® 0 0 ©6 00 6 0 % 0 o |
4 s | |
B 21
% | e e 00 00 06 00 0 o '

s |
. 8]' cecoscs oS ohre e :
5t / [.
< »n upper line
a 2 | ; ' -
:t 3 ! e0 000 P | min__line ATTF:)IEUTES
» i .
" | e e e e 00 p 0 o~ l lower_ line slice__valley
) | Yem? min__point
® 6 © 0 ¢ & ¢ 0 0 o o O o

;s | |
. R |

(

" PFA —
By

e , .

] ¢ min_point ATTRIBUTES

<» left_ point OF OBJECT

K & right__point “line__min"

‘I

K

0 Figure A-9. Exampie of a valley in one slice, after a coarse scan.
t

4

3.!

4

’
#
.',.‘
o

K

N

¥

L

[}

N

: A-34

:

a2

&

0 8y N H g 3 '
B N N N X A S S N O N X A A NP AN NN M e NN p P M A

.‘0.".&. .cﬁ\lo

.

-- shown. Attributes left _point, right__point, upper__line, and lower__line
-- need be computed only as needed to construct a valley.

coarse__valley
parent = valley _finder
offspring = (valley _1 valley 2 ...) -- only 2 for zero-in method
-- offspring attributes:
environment = environment__ <1 or 2>
source = <scan__primary, scan__secondary, or zero-in>
min__point = point__ <integer>
slice__valley = (<3 or more slice valleys>)
type = <complete, incomplete, or edge>

-- Additional valley finder behavior:

-- <Classifies valley’s type as edge if the min__point is on or next to an edge
-- (an edge as described under "line__min” earlier). Classifies as incomplete
- if fails to build a three-slice valley there after the coarse scan.>

- <If the valley's type = edge, may direct the simulator to perform

-- simulations for additional outside points adjacent to the min_ point. Those
-- outside because a component measure was exceeded will already have had
-- simulations. Although the outside sets of parameters are not usable, the
-- results are useful for curve fitting. If the valley’s type = incomplete,

-- the valley _finder directs the simulator to improve the accuracy in the area
-- of the min__point.>

v -- Figure A10 shows a simple way of creating a valley by using tiers of slice
b -- valleys. Three tiers are shown, but up to five can occur.

valley finder -- zero-in version

: - g

parent = learner

offspring = (boundary _checker coarse__min slice_valley coarse__valley)

behavior = (<Specifies value of "next__set” for simulator to use. Uses
only coarse values of parameters. Unless specified
otherwise, can begin with a mid-range value of each

1 parameter; e.g., scan__rate = 12, cells__per__beam = 300,

A-35

e et g 1) Y Yy 19T, ’
Sttt A P L Sl

PFA = 6E-8.>

<After each simulation, calls on boundary checker and uses
its inbound _ direction, if needed, to get within bounds.
Algorithmically performs 3-dimensional search for
coarse__min, using comparisons of overall__measure values.>
<When finds coarse__min, builds slice valleys and a
coarse__valley around it and behaves as does coarse-scan
version.>)

scan__rate

4

cells__per__beam

- PFA

Figure A-10. A simple “'three-tier’’ method of finding a valley.

A-36

-- When optimization is completed for environment__1, the process for
-- environment 2 would use the results to find an initial parameter set.

slice__valley -- if zero-in method
parent = valley _ finder
offspring = (slice__valley 1 slice__valley 2 ...)
-- offspring attributes:
environment = environment__<1 or 2>
slice = slice__<integer>
valley point = (<list of points>)

min__point = point_ <integer>
-- optimizer --

optimizer
) parent = learner
offspring = (minimizer valley balancer curve__fitter)
cycle = scenario
behavior = (<Calls on minimizer to find true__min (goal_step_ 1).>
<Calls on balancer to produce optimum _set (goal _step 2).>)

[y ——

minimizer
parent = optimizer

offspring = true__min

- - s

behavior = <Begins with a coarse__valley, and proceeds to accomplish
goal _step 1, using the curve_ fitter. Creates a valley from
. the coarse__valley and new points, while finding the point

having the minimum overall _measure. Successively uses
. ' points in the new valley in curve-fitting methods to find

that minimum point, and creates the true__ min.>

true__min |
parent = minimizer ‘
offspring = (true__min_1 true_min_2 ...} -- only 2 if zero-in
-- offspring attributes:

A-37

RN ‘t",‘o‘ "yd r"' 'x‘_‘t’.,'l',‘g“ L Rty ‘;'9;'.'.’}{‘4,'.“,‘ OO O OO XA OO OO M

environment = environment_ <1 or 2>
valley = valley _<integer>
point = point__<integer>

valley
parent = optimizer
offspring = (valley 1 valley 2 ..) -- only 2 if zero-in
-- offspring attributes:
coarse__valley = coarse__valley _<integer>
new_point = (point__<k> point__<k+1> ...)

balancer

parent = optimizer

offspring = (reduction__direction optimum__set)

behavior = <When the true__min has been created, proceeds to accomplish
goal _step 2. Generally adds points to the valley in the
process. Initially and after each simulation, uses
goal __step 2 algorithm to see if satisfied. If not., creates
a “reduction _direction” for the maximum performance measure,
using the dependencies involving that measure.>

reduction __direction
parent = balancer
-- same attributes as an inbound__direction
The following is an example of a reduction__direction.

reduction _ direction _6
parent = reduction _direction
point = point__ 46
exceeded = FAR __units

option = ((decrease PFA) (decrease cells__per__beam) (decrease scan _rate))

optimum _ set
parent = balancer
offspring = (optimum _set 1 optimum_set 2 ...) -- only 2 for zero-in

A-38

TP Rt AP Ty

SN A, \.lh,t", UM W K W N NS WO N w MU A i i e L LS

3

- s gl W

-- offspring attributes:

valley = valley _<integer>
point = point__<integer>

curve _fitter
parent = optimizer
offspring = (problem__formulator accuracy _extender adjuster least__squares
n-dim__combiner)
behavior = <When asked to estimate the minimum of a valley, uses its
offspring to do so.>

-- See figure A1l.

problem __formulator

parent = curve__fitter

offspring = (edger refiner)

behavior = (<When 2 coarse__valley has been defined, asks
accuracy __extender to check accuracy and to improve it if
needed.>
<If the accuracy was extended, asks the valley finder to
redefine the valley, if necessary, since the min_ point may
have changed.>
<Next, for each dimension (scan__rate, cells_ per _beam, and
PFA), unless min__point is on an edge, asks adjuster to
perform any transformations or normalizations needed before
curve__fitting. Asks the least__squares to estimate the
minimum in that dimension. [f the min__point is on an edge
in that dimension, turns control over to edger.>
<When the fitted _min is found in every dimension, asks the
n-dim_combiner to estimate the valley minimum.>)

-- The behavior described is for curve fitting individually in each dimension.
-- The behaviors are different if paraboloids are fitted.

A-39

AT P : ' «, o T A At T AT e Py X,
. 7‘.'v.":,"k ‘e-“'n' y My "L '.\."*. ’.I~,"‘ui'h".‘u‘..u...h‘. l'..ln LA ..'o.x'c...a'o OO OA J M) 3 e NI SN, ~ W

I SO

L

curve_ fitter

n-dim__combiner

problem__
formulator

accuracy__ adjuster

least__squares

‘ refiner >

AP b hi‘?i.q S

H

extender

adjustment

history

gradient__
measurer

transformer

Figure A-11. The curve__fitter.

A-40

) O W N
B e D D O O O N D R T A A A R A NP N

edger

parent = problem__formulator

behavior = <When the valley’s type is edge, for the dimension(s) in which
an edge occurs, directs the curve-fitting process to find
the fitted__min on the edge.>

refiner

C i ap =y =

parent = problem formulator

behavior = <Similar to that above for the problem formulator, but occurs
after simulator provides more points in the area of the
previously estimated n-dim__ min. Unless simulations are also

made on either side of the estimated minimum in each

dimension, a paraboloid fitting is needed.>

accuracy _extender
parent = curve__fitter
behavior = <When asked by problem formulator to improve, if needed, the
accuracy in a coarse valley, compares overall measure
differences of points in valleys with the accuracy measure

of the points. Determines if additional accuracy is needed
and, if so, asks the simulator, point by point, to extend

the accuracy of the overall measure at that point by some
amount. If the original accuracy is very poor, extends
accuracy for points just outside the valley. Does this
mainly because the valley might shift and because additional

points can be used in gradient measurements.>

adjuster
parent = curve_fitter
offspring = (gradient _measurer transformer adjustment _history)
behavior = (<In dimension specified (scan__rate, cells _per _beam, or PFA),
calls on gradient _measurer to measure gradients on either

side of min__point. Calls on transformer if gradients

indicate need. If normalized or transformed, again calls on

gradient _measurer. In general, prepares the problem for the
least _squares computations. As a result of final gradient
measurements, determines the degree of polynomial needed.
(Early experiments would simply use second degree.)>
<When directed by the refiner with additional point

in some valley, uses adjustment _history to decide on needed

transformation or normalization.>)

. gradient__measurer
parent = adjuster
behavior = <Measures slopes from pairs of points around min__point, in

specified dimension.>

YD

transformer
K parent = adjuster
;?‘ behavior = <A precurve-fitting transformation or normalization of
‘ variables, if needed. Probably not needed except possibly
‘ for PFA in this simple application.>
b
y adjustment __history
2' parent = adjuster

behavior = <Records transformations and normalizations made on a
parameter during curve _fitting preparations. Uses this
later when curve _ fitting with additional points. (Optional,

! to save repetitious operations.)>

least __squares
parent = curve _fitter
offspring = fitted min

fitted _min
parent = least__squares
offspring = (fitted_ min__1 fitted min_2 ...)
valley = valley <>
points __fitted = (point_ <> ...)

A-42

IR SRR PR A U I8 SRR L S T
N Y AN N AV VLAY

curve__type = <e.g., parabola>

degree = <>

parameter = <scan__rate, cells__per__beam, or PFA>
parameter __value = <>

measure __estimate = <>

n-dim_ combiner
parent = curve__fitter
offspring = n-dim__min
behavior = <Collects fitted__min values in each dimension and produces

fitted valley minimum. (See appendix B.)>

n-dim_min
parent = n-dim__combiner
offspring = (n-dim_ min_1 ..)
valley = valley <>
fitted _min = (fitted min<j> fitted _min__ <j+1> fitted _min__ <j+2>)
scan__rate = <>
cells__per beam = <>
PFA = <>

measure _estimate = <>

A-43

2

LAVOLY

2 ta s ~rd

-

=S

APPENDIX B:
CURVE-FITTING METHODS

In practice, an existing computer program for least-squares curve fitting should
be selected and adapted to this application. For early experiments, simple parabola-
fitting techniques can be implemented. A few basic relationships concerning parabolas
and paraboloids are given in this appendix.

Exact Fit to Parabola

The parabola P(x) = Ax2 + Bx + C fits the three points (x1. My). (x2.M,),
(x3,M3), when

A =-[M;{xpx3) + Ma(xsxs) + Ma(xs-x2)] / (x-%2)(x2-X3)(x3-x1).

B =[M(xz? -x3?) + Ma(xs%xs?) + Ms(x%-xz2)] [(x4-x2)(x2-%3){x3-x1),

C =[x13(Max3-Maxz) + x2?(M3x;-Mixs) + x32(Myx-Maxy)] /
[x12(x2-x3) + x2(x3-x1) + x3%(xs-%2)].

The minimum value of P(x) occurs at x = D, where D = -B/2A. The minimum
value is P{D) = C - B?/4A.

If the samples are equally spaced over x, with increment size size s, the
coefficients are given by

A =(M; - 2M; + M;) [/ 282,
B :~[M1 (2x2+s) - 4Myx, + M3(2X2-S)] / 2s2,
C =-[Myxy(x2+s) - 2My(x;2-5?) + Ms(xz-s)xz] / 2s2

Alternative Parabola Form

It is sometimes more convenient to represent the parabola P(x}) = Ax? + Bx +
C in the form

P(x) = Ax? - 2DAx + D?A + min,
where B = -2DA. C = D?A + min, and P(D) = min. (See figure B1.)

Paraboloid - Two Independent Variables

The paraboloid of the form

B 1

P(xy) = Ax2 + A'y2 + Bx + By + C + C
can also be written as
P(x.y) = Ax2 + A'y? - 2DAx - 2D'A'y + D?A + D'?A’ + min,

where P(D D') = min. Through this minimum point (D,D") in the x = D plane and
= D' plane, respectively, are the parabolas

P(Dy) = A'y2-2D'A'y + D'2A’ + min
and
P(x.D') = Ax? - 2DAx + D?A + min.

Paraboloid - k Independent Variables

For k independent variables Vi, ..., Vx. a paraboloid can be written as
k 2 2 .
P(Vl,...,vk) = i£1 [Aivi - 2DiAivi + Di A] L J lllln,

where P(Dj.....Dx) = min.
For Vj = Dy, j # i, we have the parabola
P(V|) = AV;2 - 2 DAV, + Di2A; + min.

Paraboloid Minimum

The minimum of a paraboloid can be found or estimated without the complexity
of fitting a paraboloid to the sample points. In the case of two independent variables
(see fig B2), a parabola can be fit in both dimensions through the minimum measured
point (X*,y*), and the minimum of the paraboloid (fitting the same points) found
from the minimum of the parabolas. If the minimums of the two parabolas are,
respectively, m = P(D,y*) and m' = P(x*,D’), and the measured minimum value is
M* = P(x*,y*), then the minimum of the paraboloid P(x.y) is

min = m + m' - M%,
This relationship is exact if the parabolas and the paraboloid exactly fit the sample

points. If additional points are used in a least-squares fit (e.g.. points diagonal to
x*.y* when fitting the paraboloid), the relationship is an approximation.

B-2

PPN WV M N AW W AT TG W E R AN

P

o - - e

. - + . ¥
e "o'{n ',"' + :.-.c“,l K

— <

min e

P(x)

:’X

[=)]

Figure B-1. Parabola P(x) = Ax2 - 2DAx + D2A + min.

SAMPLE YIELDING MINIMUM

o<

P PR P,) > ..
A .1‘., v("‘ Ra® i o ol Yy N 5

7‘q>\\
| MINIMUMS OF
. . i | o RESPECTIVE PARABOLAS
|
|
|
|
1 | -
0

Figure B2 Parabolas in the x - x* plane and the y = y* plane
are fitted to the sample points. and their minimums occur at
y D andx D respectively The minimum of the paraboiowd
fitting these points occurs at (D.D’)

B3

. Te 4™ o B R T I TR AL T A Y
R YA B B\ 9 *"”

PO PO

e o % N oW
C“.- ¥ o I o W W

W e 2T % o
A e a o)

For a paraboloid with k independent variables (Vj....,Vi). the relationship is

min = (m + m2 +...+ my - M*) / (k-1)

where m; is the minimum of the ith parabola through the minimum measured point
(V1*, V2*....Vi*) and M* is the measured value at that point.

Precurve-Fitting Operations

A plot of a performance measure versus a parameter x (through a measured
minimum value, other parameters held constant) might produce (from simulation)
values of performance such as in figure B3. A human could quickly hand fit a curve
through the points and estimate the minimum point, while the computer must use
more difficult methods. The simplest procedure is to fit a parabola to the minimum
and two adjacent points. (Assume this is not a case where the minimum occurs at
an edge.) Often this will produce unsatisfactory results, and a higher degree
polynomial fitted to additional points is advisable. As a step in selecting the
appropriate method, the system could make measurements of the gradients on both
sides of the measured minimum and use these in an algorithm to determine the
general shape of the curve.

In some cases, the decision should be to transform the variable to produce a
curve more easily fitted. Figure B4 shows how a curve of performance measure
plotted as a function of log x may be fitted with a parabola, while the same values
plotted as a function of x would be difficult to fit.

B4

PERFORMANCE
MEASURE

?

'
. : / ESTIMATED OPTIMUM
A

PARAMETER x

PN

Figure B-3. Example of a hand-fitted curve through a number of
points versus a parabola approximation through three points.

-

PERFORMANCE
: MEASURE
]
t
B
i
¥
b
1
M
, 0 106
P PARAMETER x
?
.
) PERFORMANCE
! MEASURE
[}
¢
+
,
' - 10 -9 -8 -7 -6
[} log x
¢ Figure B-4. A simple transformation of variables can
sometimes produce data better fitting a parabola. In
; this example, the transformation is logarithmic.
+
' B-5

'.u'.'1'.‘1‘.1-\'-“.‘.".‘\ .,'q L1 h"l K .!t.'.‘i‘.,h.h...llth KRN AAN "Q .‘! 51 ¢ ‘- \‘ -'! 5" .$'.J~' ! -\' ~. .\ . ;b '.- W \‘ ". \'\' N »

TR mmummmummmmmi

