
Ki

I
<

&

OnC FILE COPY

DTIC
S.ELECT-jJI

mxtamau

Case-based Planning: An Integrated
Theory of Planning, Learning and Memory

Kristian John Hammond

YALEU/CSD/RR#488

October 1986

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

87 5 15 022N

This work was presented to the Graduate School of Yale University in candidacy for the
degree of Doctor of Philosophy.

Case-based Planning:
An Integrated Theory of Planning, Learning and Memory

Kristian John Hammond

YALEU/CSD/RR#488

October 1986

This work was supported by the Advanced Research Projects Agency of the Department
of Defense and monitored by the Office of Naval Research under contract N00014-82-K-
0149, Office of Naval Research contract NOOO14-85-K-0108 and N00014-75-C-1111, NSF
grant IST-8120451, and Air Force contract F49620-82-K-0Ü10.

SECURITY CLASSIFICATION OF THIS PACE (Wbti Dmlm Enlmfd)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER

»468

2. COVT ACCESSION NO. 1. RECIPIENT'S CATALOO NUMBER

4. TITLE (ltd Submit)

Csse-baeed Planning: An Integrated Theory
of Planning, Learning and Memory

S. TYPE OF REPORT A PERIOD COVERED

Research Report
S. PERFORMING ORG. REPORT NUMBER

7. AUTHORfiJ

Kristisn John Hammond

*. CONTRACT OR GRANT NUMBERf«;

N00ai4-8a-K-0149
NCI0014-a5-K-0108
N00014-75-C-1111

9 PERFORMING ORGANIZATION NAME AND ADDRESS

Yale University - □ejTdrtment of Computer Science
10 Hillhouse Avenue
New Haven, CT 06520

10. PROGRAM ELEMENT. PROJECT, TASK
AREA « WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS

Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 2E20S

12. REPORT DATE
October 1966

IS. NUMBER OF PAGES

234
14. MONITORING AGENCY NAME A ADDRESSf/f dlllittnl Irani Cenlrolllnt Olllct)
Office of Naval Research
Information Systems Program
Arlington, VA 22217

IS. SECURITY CLASS, fa/l/il» rcporr;

Unclassified
Mm. DCCLASSIFICATION/DOWNGRADING

SCHEDULE

16. OISTHIBUTION STATEMENT Cof IM» lUporO

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol Iht mbtlrmel tnltnd In Block 20, II dllltitnl Item Rtpotl)

II. SUPPLEMENTARY NOTES

IS. KEY WORDS (Conllnu* on rtvoeoo oldo II nocomtmry and Idonltly by block numbor)

planning
Case-based reasoning
learning
Artificial Intelligence

20. ABSTRACT (Conllnum on rovroo »Ido II noeoooory and Idonllly by block numbor)

This dissertation presents a theory of case-based planning that integrates
memory oriented learning with an active planner. Case-based planning, as
described here, requires a machine planner that makes use of its own past
experience in developing new plans. A case-based planner relies on memory
instead of a base of rules. Memories of past successes are accessed and
modified to create new plans. Memries of past failLres are used to warn the
planner of impending problems, and memories of past repairs a-e called upon

oo,: FORM 1473

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Enltrad)

SECURITY CLASSIFICATION OF THIS PAGEfBTinn DUm F.nltrtd)

to tell the planner how to how to deal with them.

This view of planning from experience is supported by s learning system
that incorporates new experiences into the planner's episodic memory. This
learning algorithm gains from the planner's failures as well as its successe^.
Successful plans are stored in memory, indexed by the goals they satisfy and
the problems they avoid. Failures are also stored, indexed by the features
in the world that predict them. By storing failures as well ss successes,
the planner is able to anticipate and avoid future plan failures.

A process of plan repair is also presented in which plan failures are
diagnosed through a causual analysis of the steps and states that led to the^r
occurrence. This causel analysis is used to access repair strategies for
the general situation. These strategies are then transformed into
specific alterations for the faulty plan at hand.

This theory improves on past planning models in three areas: failure
avoidance, plan repair and plan reuse. It makes gains over learning systems
doing both inductive category formation and explanation-driven learning.
It losrns from single examples, uses causal knowledge to focus on
relevant features to laarn and builds functional categories that are used in
Ister planning.

These ideas of memory, learning and planning are i.^lemented in the
casa-based planner CHEF, which creates new plans in the domain of
Szechwan cooking.

Accasion Fo'.

NTIS CRA&I
OTIC TAB
Unannounced
Justification

By _
Distribution/

Availabliity Codes

P^ , Aviail and/or
*** ' Special

SECURITY CLASSIFICATION OF THIS PAGEfl«i»n Dmlm Enffd)

OFFICIAL □ISTRIBUTION LIST

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

12 copies

Office of Naval Research
Information Systems Program
Code 437
Arlington, Virginia 22217

2 copies

Dr. Judith Daly
Advanced Research Projects Agency
Cybernetics Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209

3 copies

Office of Naval Research
Branch Office - Boston
495 Summer Street
Boston, Massachusetts 02210

1 copy

Office of Naval Research
Branch Office - Chicago
536 South Clark Street
Chicago, Illinois 60615

1 copy

Office of Naval Research
Branch Office - Pasadena
1030 East Green Street
Pasadena, California 91106

1 copy

Mr. Steven Wong
New York Area Office
715 Broadway - 5th Floor
New York, New York 10003

1 copy

Naval Research Laboratory
Technical Information Division
Code 2627
Washington, D.C. 20375

6 copies

Dr. A.L. Slafkosky
Commandant of the Marine Corps
Code RD-1
Washington, D.C. 20380

1 copy

Office of Naval Research
Code 455
Arlington, Virginia 22217

1 copy

Office of Naval Research
Code 458
Arlington, Virginia 22317

Naval Electronics Laboratory Center
Advanced Software Technolog/ Division
Code 5200
San Diego, California 92152

Mr. E.H. Gleissner
Naval Ship Research and Development
Computation and Mathematics Department
Bethesda, Maryland 20084

Captain Grace M. Hopper, USNR
Naval Data Automation Command, Code DON
Washington Navy Yard
Washington, D.C. 20374

Dr. Robert Engelmore
Advanced Research Project Agency
Information Processing Techniques
1400 Wilson Boulevard
Arlington, Virginia 22209

Professor Omar Wing
Columbia University in the City of New York
Department of Electrical Engineering and
Computer Science
New York, New York 10027

Office of Neval Research
Assistant Chief for Technology
Code 200
Arlington, Virginie 22217

1 copy

1 copy

1 copy

1 copy

2 copies

1 copy

1 copy

Computer Systems Management, Inc.
1300 Wilson Boulevard, Suite 102
Arlington, Virginia 22209

5 copies

Ms. Robin Dillard
Naval Ocean Systems Center
C2 Information Processing Branch (Code 8242]
271 Catalina Boulevard
San Diego, California 92152

Dr. William Woods
BBN
50 Moulton Street
Cambridge, MA 02138

1 copy

1 copy

Professor Van Dam

Dept. of Computer Science
Brown University
Providence, RI 02912

1 copy

Professor Eugene Charniak
Dept. of Computer Science
Brown University
Providence, RI 02912

1 copy

Professor Robert Wilensky
Univ. of California
Elec. Engr. and Computer Science
Berkeley, CA 94707

1 copy

Professor Allen Newell
Dept. of Computer Science
Cernegie-Mellon University
Sehenley Park
Pittsburgh, PA 15213

1 copy

Professor David Waltz
Univ. of 111 at Urbane-Chempalgn
Coordinated Science Leb
Urbana, IL 61801

1 copy

Professor Patrick Winston
MIT
545 Technology Square
Cambridge, MA 02139

1 copy

Professor Marvin Minsky
MIT
545 Technology Square
Cembridge, MA 02139

1 copy

Professor Negroponte
MIT
545 Technology Square
Cambridge, MA 02139

1 copy

Professor Jerome Feldman
Univ. of Rochester
Dept. of Computer Science
Rochester, NY 14627

1 copy

Dr. Nils Nilsson
Stanford Research Institute
Menlo Park, CA 94025

1 copy

Dr. Alan Meyrowitz 1 copy
Office of Naval Research
Code 437
800 N. Quincy Street
Arlington, VA 22E17

LCQL Robert Simpson 1 copy
IPTO-DARPA
1400 Wilson Bivd
Arlington, VA 22209

Dr. Edward Shortliffe 1 copy
Stanford University
MYCIN Project TC-117
Stanford Univ. Medical Center
Stanford, CA 94305

Dr. Douglas Lenat 1 copy
Stanford University
Computer Science Department
Stanford, CA 94305

Dr. M.C. Harrison 1 copy
Courant Institute Mathematical Science
New York University
New York, NY 10012

Dr. Morgan 1 copy
University of Pennsylvania
Dept. of Computer Science S Info. Sei.
Philadelphia, PA 19104

Mr. Tred M. Griffee 1 copy
Technical Advisor C3 Division
Marine Corps Development

and Education Command
Quantico, VA 22134

Dr. Vinoe Sigilitto 1 copy
Program Manager
AFDSR/NM
Boiling Airforoe Base
Building 410
Washington, DC 20332

© Copyright by Kristian John Hammcnd 1986

ALL RIGHTS RESERVED

ACKNOWLEDGMENTS

I never went into this with the belief that it would come to an end. I was convinced
it would go on forever. I thought that I could spend the rest of my days at Yale thinking
about planning and memory. Fortunately there were those around me who did not.

At the head of this group was my advisor, Roger Schänk. Roger strongly and repeatedly
suggested that I finish. For this and many other things, I owe Roger a professional and
personal debt that I cannot imagine I'll be able to repay. I certainly am not going to try to
do so within the confines of this preface.

Also helping me along was Chris Riesbeck. As of this writing, I have known Chris as
a friend and advisor for well over a decade. He gave me my first introduction to AI and
provided both encouragement and support during the difficult times of qualifying exams,
defense and thesis writing. He and his wife have repeatedly gone well beyond the
requirements and expectations of friendship.

But Yale AI is not just Chris and Roger. Drew McDermott continues to be intellectually
intimidating while Elliot Soloway remains damned enthusiastic about it all. Bob Abelson
also stops by now and again. During one of these stops he did me the favor of being one of
my readers.

Larry Birnbaum gave me a great deal of help by reading and commenting on early
versions of the ideas in this thesis. Diane Schänk and Peter Childers helped smooth out the
language in the final draft.

I would like to stop here but that is not the way we do it at Yale. So I am forced to
thank for being the world's worst best man, Colleen Seifert for being the only
other member of my graduate class and Gregg Collins for the joke about the two guys and
the bear. Without you three, I'd have finished years ago. And, while I deplore his eating
habits, I cannot stop myself from thanking Charles Martin for his help and conversation
over the past two years.

I am also compelled to thank Chris Owens and David Leake for doing their part in
convincing me that I know something by occasionally listening to me and Alex Kass for
working hard at trying to make me a less nasty person. Nice try, Alex.

in

ABSTRACT

Case-based Planning:
An Integrated Theory of Planning, Learning and Memory

Kriotian John Hammond
Yale University

1986

'This dissertation presents a theory of case-based planning that integrates memory oriented
learning with an active planner. Case-based planning^-as desuiboLhete, requires a machine planner
that makes use of its own past experience in developing new plans. A case-based planner relies on
memory instead of a base of rules. Memories of past successes are accessed and modified to create
new plans. Memories of past failures are used to warn the planner of impending problems, and
memories of past repairs are called upon to tell the planner how to how to deal with them.

This view of planning from experience is supported by a learning system that incorporates new
experiences into the planner's episodic memory. This learning algorithm gains from the planner's
failures as well as its successes. Successful plans are stored in memory, indexed by the goals they
satisfy and the problems they avoid. Failures are also stored, indexed by the features in the world
that predict them. By storing failures as well as successes, the planner is able to anticipate and
avoid future plan failures.

A process of plan repair is also presented in which plan failures are diagnosed through a causal
analysis of the steps and states that led to their occurrence. This causal analysis is used to ac-
cess repair strategies for the general situation. These strategies are then transformed into specific
alterations for the faulty plan at hand.

This theory improves on past planning models in three areas: failure avoidance, plan repair
and plan reuse. Jt makes gains over learning systems doing both inductive category formation
and explanation-driven learning. It learns from single examples, uses causal knowledge to focus on
relevant features to learn and builds functional categories that are used in later planning. <■ —

These ideas of memory, learning and planning are implemented in the case-based planner CHEF,
which creates new plans in tn« domain of Szechwan cooking.

Contents

1 Planning and Memory 1

1.1 Case-based planning 1

1.2 A new theory of planning 2

1.2.1 Building an initial plan 3

1.2.2 Debugging failed plans 4

1.2.3 Storing plans for later use 5

1.3 Learning from planning 6

1.4 The structure of case-based planning 7

1.5 Building it from the bottom 8

1.5.1 Why case-based? 8

1.5.2 Plan retrieval 9

1.5.3 Plan modification 12

1.5.4 Plan storage 14

1.5.5 Plan repair 16

1.5.6 Learning from failure 19

1.5.7 Problem anticipation 21

1.5.8 The final package 24

2 Learning from Planning 27

2.1 CHEF: A case based planner 28

2.1.1 When plans fail 31

2.1.2 Explaining plan failures 32

2.1.3 Plan repair strategies and TOPs 34

v

vi

2.1.4 Anticipating failures 37

2.2 Learning plans 42

2.3 Learning to predict failures 46

2.4 Learning critics 50

2.5 How learning from planning is different 53

2.6 How learning from planning is better 55

3 Planning from Memory 57

3.1 The function of memory 58

3.2 A planner's memory 59

3.2.1 Memory of plans 61

3.2.2 Memory of failures 77

3.2.3 Memory of modifiers 83

3.2.4 Memory of repairs 87

4 Planning TOPs and Strategies 03

4.1 TOPs in understanding and planning 93

4.2 TOPs and strategies 95

4.3 TOPs 97

4.4 CHEF's TOPs 98

4.4.1 SIDE-EFFECT (SE) 98

4.4.2 DESIRED-EFFECT (DE) 102

4.4.3 SIDE-FEATURE (SF) 106

4.4.4 DESIRED-FEATURE (DF) 108

4.4.5 STEP-PARAMETER (SP) 110

4.5 Why TOPs? Ill

4.6 CHEF's repair strategies 113

4.7 Strategies not used by CHEF 117

5 Modifying Plans 119

5.1 The MODIFIER'S tools 121

5.1.1 Role specifications on plans 121

5.1.2 Modification rules 123

5.1.3 Critics 124

5.2 The different situations for altering plans 126

5.2.1 Addition 126

5.2.2 Substitution 130

5.2.3 Replacement 132

5.3 The introduction of failure 134

6 Repairing Plans 136

6.1 Noticing the failure 136

6.2 Explaining the failure 139

6.3 Getting the TOP 145

6.4 Applying the strategies 148

6.5 Choosing the repair 153

6.6 Storing the plan 156

7 Planning and Planners 150

7.1 Case-based planning as planning 159

7.1.1 Building an initial plan 159

7.1.2 Debugging failed plans 165

7.1.3 Storing plans for later use 170

7.2 Case-based planning as learning 171

7.2.1 Functional categories 171

7.2.2 Credit assignment , 174

7.2.3 When to learn 177

8 Case-based Planning 179

8.1 CHEF as a program 179

8.2 CHEF's gains 182

8.3 The real difference ' 185

, V1U

A A Causal Vocabulary for TOPs 187

B CHEF's Simulator 191

C CHEF's Recipes 100

C.l CHEF's initial recipes 200

C.2 The recipes CHEF creates 210

List of Figures

1.1 The RETRIEVER 12

1.2 The MODIFIER 14

1.3 The STORER 16

1.4 The REPAIRER 19

1.5 The ASSIGNER 20

1.6 The ANTICIPATOR 22

2.1 Goals satisfied by STRAWBERRY-SOUFFLE 45

2.2 Avoidance goal under STRAWBERRY-SOUFFLE 45

2.3 Marking FRUIT and SOUFFLE and predictive of problems 48

2.4 Marking LIQUID and SOUFFLE and predictive of problems 49

2.5 Repairing DUCK-DUMPLINGS with REMOVE-FEATURE 52

2.6 Storing new critic under DUCK 52

2.7 Using new DUCK critic 53

3.1 The definition of BROCCOLI-WITH-TOFU 62

3.2 Goals point to plans 64

3.3 Discrimination network of plans indexed by goals 66

3.4 Finding plans that satisfy partially matching goals 67

3.5 Discriminating on the features of partially matching goals 68

3.6 Three plans that could be used 74

3.7 Using new DUCK critic 75

3.8 Features linked to the memory of a failure 79

3.9 Table of standard modification rules 84

IX

4.1 The Three Blocks Problem 105

4.2 Definition of ALTER-PLAN:SIDE-EFFECT strategy 115

4.3 Definition of RECOVER strategy 116

5.1 Definition of the role specifications of STYLE-STIR-FRY 122

5.2 Rule for adding FRUIT to SOUFFLEs 123

5.3 Two critics for SHRIMP 125

5.4 Merging ADD or MIX steps 128

5.5 Merging cooking steps 129

5.6 Removing steps for an obsolete goal 133

6.1 Section of result table for BEEF-WITH-BROCCOLI 137

6.2 Finding fault with BEEF-WITH-BROCCOLI 139

6.3 Finding fault with FISH-STIR-FRIED 140

6.4 Test and Response for RECOVER strategy 149

6.5 Definition of RECOVER strategy 150

6.6 Failing to find an ADJUNCT-PLAN to deal with liquid in a pan 151

B.l Definition of preconditions on MIX 192

B.2 Precondition tests associated with SHELL 192

B.3 Definition for two normal STIR-FRY rules 194

B.4 Definition for normal FILL rule 194

B.5 Rules used to infer soggy broccoli 195

B.6 Section of Result Table for BEEF-WITH-BROCCOLI 196

Chapter 1

Planning and Memory

1.1 Case-based planning

Case-based planning is the idea of planning as remembering. When a surgeon approaches
an operation, he does not build his course of action piece by piece out of a set of primitive
steps. He recalls past operations from similar situations and modifies his behavior to suit
the new situation. When an architect starts a new design for a client, he does not go back
to first principles and try all possible combinations of sub-plans. Instead he recalls past
plans and changes them to fit his current needs. And when you get into your car to go home
tonight, you will not create a new plan for buckling up, starting the car and finding a route
home You will just recall the plan that has worked before and make use of it directly

Planning from cases means remembering failures so that they can be avoided; remem-
bering successes so that they can be reused; and remembering repairs so that they can be
reapplied. Case-based planning is entirely different from rule-based planning. Questions of
memory organization, indexing and plan modification are important in case-based planning
because a case-based planner must make extensive use of memory. Learning is central to
case-based planning because a case-based planner must reuse its own experiences to build
new plans and to avoid past errors.

A planning task is, in essence, a memory probleii. A plan for a set of goals is not
built up piece by piece from the individual plai's for each goal. It is instead constructed by
modifying a plan from memory that already satisfies or partially satisfies many if not all
of the planner's goals. Plan fail.ires are not only planning problems; they are expectation
failures that have to be remembered so that the faulty expectations can be changed. They
are indications that the knowledge the planner has of the world is faulty and should be
altered in much the same way as the plan is altered. And plans are not disposable items
that should be built and then discarded. They are valuable commodities that can be stored
and recalled for later use. The problem of building and maintaining plans is a problem of
the interaction between a planner's knowledge base and the world. Any problem that arises

out of a disparity between what the planner knows and how the world is actually structured
indicates that the model of the world, a model shaped by the planner's memories, has to
be changed.

A case-based planner uses its knowledge of the world and the effects of its actions in
the world to build a plan. As a result, the plan becomes a test of that knowledge. If the
plan is faulty, something about the planner's knowledge is faulty. In planning, plans are
recalled from memory and allowed to interact with the world. The result of this interaction
is then used to modify existing plans and add new plans to memory. These modifications
and additions change the planner's understanding of what can happen in different situations
and make it possible for the planner to understand which plans are appropriate for certain
situations.

A case-based planner must make use of memory whenever possible. It must begin
planning by using its memory of past failures to warn of problems. It must then search its
memory of successes for a plan that can be modified for its current goads and problems. If
it has a plan failure, the planner must treat it as a failui ? of its understanding of the world
and explain the failure so that it can repair the faulty plan and the knowledge of the world
that allowed it to create the plan. Finally, it must save its successes in memory, indexed
by the goals they satisfy and the problems they avoid, so that they can be used again to
satisfy similar goals and avoid similar problems.

By definition, case-based planners must learn. They must learn new plans in order to
store the plans they create for later use. They must learn to predict problems based on
their own experiences so that they can find the plans that avoid those problems. And they
must learn specific repairs to planning problems that can be applied again when similar
problems arise.

A case-based planner must learn only when that learning will help the planner in later
situations. A case-based planner must store new plans in memory so that it can use them
again in similar situations. It must learn to associate goals with the problems it encounters
while planning for them so it can anticipate and avoid those problems in the future. And
must it learn new repairs for problems so that it can apply with less effort once the problems
have been predicted.

1.2 A new theory of planning

If we consider planning problems are memory problems, a number of basic features of most
theories of planning must be altered:

1. Rather than planning for individual goals and then merging the results, a case-based
planner must search its memory for plans that satisfy many of its goals at once.

2. Rather than recovering from planning errors and then forgetting the results of that
recovery, a case-based planner must treat these errors as opportunities to learn and
to recall more about its domain and the problems that arise in it.

3. Rather than discarding the plans that it builds, a case-based planner has to save them
in memory for later use in similar circumstances.

The theory of case-based planning sees planning as an activity that tests a planner's un-
derstanding of the world. Planning and learning form a closed loop, in which planning
errors lead the planner to learn more about what causes them, which gives it a better
understanding of how to avoid them.

The issues involved in case-based planning are not confined to planning in the strictest
sense of the word. Although plan modification and validation, which are planning issues in
the narrower sense, play a role in case-based planning, the issues of memory, indexing and
learning are far more basic.

In order to plan from past experience, a planner must have a rich understanding of that
experience and a clear method for organizing it and incorporating it into memory. The
memory structures and learning mechanisms needed to support a case-based planner must
have the ability to integrate past failures and successes into memory so that the former can
be avoided and the latter reused.

Case-based planning differs from other approaches to planning and problem solving
([Fikes and Nilsson 71], [Korf 82], [Sacerdoti 75], [Sussman 75], [Täte 77], [Wilensky 80]) in
three areas: in initial plan building, in the reaction to plan failures, and in the vocabulary
for describing and storing plans. Although there is a great deal of overlap in these areas -
given that the initial choice of a plan affects the way in which it is debugged, and that tht
way in which debugged plans are stored affects the way in which they are chosen for later
use - it is important to separate them and understand how different planners handle them.

1.2.1 Building an initial plan

A case-based planner builds new plans out of old plans. It stores these past planning
experiences in an episodic memory that is organized hy two sorts of indices: goals to be
satisfied and failures to be avoided. Plans are organized around goals so that they can be
retrieved when the goals that they satisfy are requested. They are also organized under
failures that the planner encountered when originally putting them together. Anticipated
failures can then be avoided by finding plans that were constructed to deal with similar
failures in the past.

In order to use its own memory organization, a case-based planner must begin the task
of building a plan for a set of goals by considering how they will interact. By doing this, it
can anticipate any failure that it has experienced before and use this anticipation to search
for a plan that solves the problem it has predicted. It can also use the prediction of any

positive interaction between goals to characterize its current set of goals in terms of an
already existing exemplar in memory that can be accessed directly. It has to anticipate
problems that will arise in order to find plans that will avoid them. This just means that
a case-based planner has to be able to infer from the fact that it is raining that it will get
wet if it plans to go outside and thus it must find a plan that avoids that problem instead
of building and having to repair a faulty plan that does not.

The case-based approach to finding an initial plan is to anticipate problems so
the planner can find plans that avoid them.

By organizing plans around planning futures as well as goals, a planner can avoid prob-
lems it has encountered before. The planner can use the prediction of a failure that results
from a goal interaction to find a plan that avoids it. This idea of using a prediction mecha-
nism along with a memory organization that can make use of these predictions to anticipate
and avoid planning problems contrasts strongly with the create and debug paradigm that
has been the thrust of machine planning over the past fifteen years ([Fikes and Nilsson 71],
[Sacerdoti 75], [Sussman 75], [Wilensky 80], [Wilensky 83]). The main difference between
these approaches is that the anticipate and avoid approach tries to predict problems and
then avoid them by finding plans in memory that deal with them, whereas the create and
debug approach debugs failures only after they arise during the planning process.

1.2.2 Debugging failed plans

A case-based planner can anticipate and thus avoid failures having to do with plan inter-
actions. It can only do this, however, with interactions it has seen before. In order to plan
effectively it must be able to recover and learn from failures that it hasn't seen before and
isn't able to anticipate. So, like create and debug planners, it has to have knowledge of how
to identify and repair faulty plans that have failed due to unforeseen interactions between
steps.

Although there are technical differences between the way plan failures are handled by
a case-based planner and the way programs such as NOAH [Sacerdoti 75] or PANDORA
[Wilensky 80] deal with them, the most important difference between them is that a case-
based planner treats its mistakes as expectation failures as well as planning failures. Planning
is a test of understanding the world. Planning failures indicate where that understanding
has broken down and where it has to be fixed. They tell the planner when it needs to learn.

A planning failure occurs when a plan does not satisfy some goal that it was designed to
deal with. For example, if a planner puts together a plan to get a newspaper on a rainy day
that is a simple "go outside, get paper, come back" plan, it will end up getting wet. Because
the planner is wet and doesn't want to be, it has had a planning failure. But because it
did n' expect to get wet, it has also had an expectation failure. An expectation failure
is different from a planning failure. It occurs when an expected event does not take place

or when an unexpected event occurs. In the newspaper situation, the expectation failure
occurs at the same time as the planning failure, but the response to the planning failure
is the alteration of a plan whereas the response to the expectation failure has to be the
alteration of the planner and its understanding of the world.

A planner should respond to planning failures by building a causal explanation of why
the failure has occurred and then using that explanation to access replanning strategies
designed for the situation in general. It should respond to expectation failures by again using
that explanation to add new inference rules that will allow it to anticipate the problem that
it previously was unable to foresee. It should first ask itself, "What went wrong with the
plan?" and then ask "What went wrong with the planning?"

In other words, a planner has to repair its expectations about the world when those
expectations lead to plans that fail.

Plan-repair is one capability which sets case-based planning apart from other theories
of planning. The experiences a planner has while planning are tests of its knowledge of the
world. Any failure of a plan is a failure that forces a re-evaluation of that knowledge.

A case-based planner responds to planning failures by repairing both the faulty
plan and its own faulty knowledge base that allowed it to build the plan incor-
rectly.

The notion of learning from expectation failures is not a new one. Schänk has argued
that learning occurs when an understander is confronted by expectation failures [Schänk
82]. Although the failures a planner faces are planning failures, it learns from them only in
that they are also expectation failures.

1.2.3 Storing plans for later use

To store a plan in memory, a planner has to understand when it will be appropriate to use
again. For most planners this has meant storing plans in relation to the goals they satisfy.
For a case-based planner that tries to anticipate problems and find the plans that avoid
them, this is not enough. To access a plan that avoids a certain problem, the plan must
have been indexed so as to allow such a connection. The basic vocabulary of plan indexing
is necessarily the vocabulary of the planner's domain, and of the goals of the domain. But
this vocabulary is not sufficient to allow a planner to actively avoid the problems that it
anticipates. Plans must also be stored by descriptions of the negative goal interactions they
avoid. A plan to go outside with an umbrella has to be indexed by the fact that it gets the
planner outside, but also by the fact thai it does so while protecting him from the rain. It
also has to be indexed by the fact that it avoids the problem of the planner is getting wet.
This is so it can later be accessed when the need for such a plan is inferred. As with any
vocabulary item based on a plan satisfying a goal, the fact that a plan successfully avoids

a problem must be used to index it for later use when a goal to avoid the same or similar
problems arises.

Plans are indexed by the goals they satisfy and by the problems they avoid.
This allows a planner to find plans that achieve the goals it is planning for while
avoiding the problems it predicts will arise while doing so.

1.3 Learning from planning

A case-based planner must also be a learning system because it must reuse its own ex-
periences. The learning done by a case-based planner is learning by remembering. This
is a type of learning that is not addressed by either the theories of concept learning via
induction, {e.g., [Lebowitz 80], [Michalski and Larson 78] and [Winston 70]), or explanation
driven learning of the form described by [DeJong 83] and [Mitchell 83]. Case-based planning
requires a knowledge-based learning that makes use of the planner's understanding of the
world to determine what should be learned and when it should be learned. This learning
breaks down into three types: plan learning, expectation learning and critic learning.

Plan learning is the creation and storage of new plans as the result of planning for
situations that the planner has never encountered before. The planner has to build a new
plan and decide what features are best for indexing it in memory. Any new plans are stored
in memory, indexed by the positive goals they satisfy as well as by the negative effects they
avoid. For example, a plan for going outside in the rain to get a paper would be indexed
by the fact that it is a plan to retrieve a paper and by the fact that it allows the planner
to avoid getting wet.

Expectation learning is somewhat more complex than plan learning, but is closely linked
to the indexing of plans in memory. It is learning the features in a domain that are predictive
of negative interactions between plan steps. This predictive ability is used to anticipate
particular problems and then to search for plans in memory designed to avoid them. These
features are learned by building causal explanations of planning failures and marking the
states and steps that lead to the failures as predictive of them. The fact that it is raining
and the planner ha& a goal to pick up his paper would be marked as predictive of the
problem of getting wet. Once predicted, this problem could be planned for by finding a
plan that avoids it. Once one of these predictions is activated, they can be avoided by
searching memory for a plan that takes it into account.

Critic learning occurs when a problem in a plan can be traced back to a specific object
or prop rather than to an interaction between steps. Any repair that is made to a plan
because of an idiosyncratic object can be saved and associated with the object. The fix
to a specific problem can become a general repair that can be applied in later cases of the
problem. Even if an overall plan to avoid a problem cannot be found the repair can then

be reapplied to fix a plan that satisfies other goals. This would be like predicting that the
rain would get someone wet in any case of going outside and then applying the repair of
using an umbrella to a plan for going outside that does not already include this fix.

Case-based planning involves three types of learning:

• Learning new plans that avoid problems.

• Learning the features that predict the problems.

• Learning the repairs that have to be made if those problems arise again in
different circumstances.

All three of these types of learning are supported by a planning vocabulary that describes
plans in terms of the direct goals they satisfy and the interactions they deal with. Storing
plans in terms of the goals they satisfy is not enough if the planner wants to reuse them.
They also have to be stored in terms of the problems they avoid. This makes it possible
for the planner to rediscover these past plans when it predicts the same problems again in
a different planning situation.

1.4 The structure of case-based planning

Human behavior often seems capricious. Minds wander from topic to topic. Ideas con-
nected by thin strands of associations follow one another as though intimately related. Past
experiences that have little to do with the apparent features of a new situation present
themselves as solutions to the present problem.

Any effort at cognitive modeling must begin by explaining these seemingly capricious
acts. One set of approaches to this modeling task has grown out of the idea that what
appears to be capricious action actually is capricious. The theories and programs that
have resulted from this idea often include random number generators, random weights
on links or random connections between conceptual structures. They treat the seemingly
random leaps of human thought as truly random, as a failure in an otherwise orderly system.
Unfortunately, these theories have a seductive allure because they present models that look
very much like what they are trying to explain.

The key word here, however, is, "explain." These theories look like what we want to
explain, but they do not explain what we want to explain. They are mere simulations
of the behavior that do nothing to explain why it arises. They are, "Non-explanation
explanations".

Another way of looking at human behavior is to ask what function the behavior serves.
Instead of looking at a behavior in a vacuum, examine it in terms of its possible use in

performing a cognitive task. Let the function served by the behavior guide the examina-
tion of it. Make the function that underlies the behavior have more importance than the
simulation of the I/O of the behavior itself.

The difference between these approaches is simple. It is the difference between simulating
an engine by building a box that makes engine noises and modeling an engine through an
examination of the function it has and how internal combustion satisfies it.

An example of this approach is the work on naturally occurring remindings done by
Roger Schänk. In Dynamic Memory [Schänk 82], Schänk looked at the phenomencu of
remindings and argued for their use in learning. More recently, he has augmented this view
and argued that remindings also play a role in the construction of explanations ([Schänk
and Riesbeck 85], [Schänk 84a] and [Schänk 86]). This work is aimed at a functional model
of why people have these remindings and what they can do with them, rather than a mere
descriptive simulation of how to go about generating them.

The theory of case-based planning is aimed at a functional explanation of certain aspects
of human cognitive behavior. In building the theory, one eye was kept on the data concerning
episodic reminding and the other on the needs of a case-based planner. As a result, the
theory describes how to use past plans in the construction of new ones and how to use
remindings of past failures to avoid repeating mistakes. The planner has remindings that
are similar to those people have, but only has them because they are required to solve
particular planning problems. It is reminded of past episodes for the same reason that
people are reminded of past episodes: these episodes contain information that can help in
planning for new problems.

1.5 Building it from the bottom

The following sections will look at the nature of case-based planning in general, arguing why
planning should make use of the case-based paradigm and then looking at what it takes to
build such a planner. To do this we will start with the simplest possible t xse-based planner
- a plan retriever - and expand it with the additions required to do plan repair and problem
anticipation.

1.5.1 Why case-based?

The argument for case-based planning is straightforward: we want a planner that can learn
and recall complex plans rather than having to repeat work it has already done. In the
case of a single plan for building a car or a house, the number of steps involved is huge.
Although such plans can be built up from a set of rules or from plan abstractions each time
the planner needs them, it is more economical to save entire plans and recall them for reuse
when situations that require their use arise.

It is always useful for a planner to save the plans it creates, especially in those situations
where a plan includes information about how to avoid problems that the planner's base of
rules tended to lead into. For any planning task involving the reuse of information, the
best approach is to make use of a detailed representation of the experience itself. Given
that all planning tasks make use of past information, this argues that the best approach to
planning in general is to find and modify past plans rather than rebuild from a set of rules
each time.

The functional justification for case-based planning is the need to learn from
experience.

The needs of a case-based planner are somewhat different from those of a rule-based
system in that a case-based planner relies almost entirely on its memory of past plans.
A rule-based system, on the other hand, makes almost no use of its nearly non-existent
memory. The sections that follow will discuss the functional needs of a case-based planner,
beginning with a basic planner and then expanding to deal with problems as they arise.

1.5.2 Plan retrieval

At its simplest, a case-based planner is a memory that returns to a past plan whenever
it is given a new set of goals. If it cannot find a plan that satisfies all of the goals it has
been handed, it returns a plan that meets most or many of them. It is trying to find what
we will refer to as the best match between the current situation and some situation in the
past for which it has a plan. There is no guarantee that the best match will actually be the
best possible plan for use in the current situation, but our effort is to construct a memory
organization that will aim in that direction. We will call this basic planner that only finds
best matches a RETRIEVER. Its input is a set of goals to be achieved and its output is a
plan from its memory that achieves as many of these goals as is possible.

For a planner to find the right plans, the goals that it is asked to achieve have to be used
to index past instances in memory. Planning episodes have to be indexed in memory by the
goals they have satisfied. An episode in which a planner flies to London should be indexed
in memory as a plan to get to London and, at a more general level, as a plan to get to
someplace distant. An episode in which the planner removes an inflamed appendix should
be indexed as satisfying that goal but also by the the more general result of removing an
diseased organ. The simple plan of calling down to the hotel desk for a wake-up call has to
be indexed by the fact that it satisfies the goal of getting you up in the morning. A planner
has to be able to discriminate between plans on the basis of all of the goals it is trying to
accomplish.

Along with goals, a planner must also know what its initial planning situation is. It
must know the states that are currently true and the goals it wants to satisfy. Then plans
that are designed for particular situations, not just particular goals, can be found and used.

10

For example, a plan to retrieve a newspaper from the porch when it is raining, which would
include the use of an umbrella, must be indexed in memory under the features that make
its use relevant. This means indexing it not only by the goal that it satisfies, getting the
newspaper, but also by the conditions under which it is appropriate to use, when it is
raining. Likewise, the plan to call down to the hotel desk for a wake-up call cannot just be
indexed as a good plan for satisfying the goal to wake-up at a specific time in the morning.
It also has to be indexed as a good plan in the context of being in a hotel to begin with . It
is not particularly effective when at home. This means having a number plans in memory
that satisfy the same goal or goals but are distinguished by different situations. The states
that define these different situations must also be used by the planner to index plans in
memory.

Specific goals and states alone, however, are not sufficient to find the plans that the
RETRIEVER has to return. Sometimes there is no plan that satisfies a particular goal, so
the best match has to be a plan that satisfies a similar goal. If there is not a plan to get
to London, a plan that worked in getting the planner to Paris may have to be used as the
planner's starting point. Or a plan to build a two-story house may have to be modified
when the planner requires a plan for a three-story building. A planner's representation
must include some notion of similarity between goals. This similarity can be expressed by
placing similar goals into sets, by building them into an ISA hierarchy, or by dynamically
evaluating their similarity on the basis of individual features. Paris and London may both
be considered as foreign countries; a gall bladder that has to be removed may be thought
of as belonging to the same abstract class as an appendix; or a house with two stories may
be understood in terms of structural features that are shared with a three-story building.
When a planner cannot find a plan that fully satisfies the goals it is planning for, it has
to have some way to find a plan or plans that partially satisfy them. No matter what the
method, there has to be some metric for the similarity of goals that a planner can use to
judge partial matches.

But a planner has to be able to do more than just find plans. It has to be able to choose
between plans. Given a set of goals, a planner needs to find the plan in memory that is the
best match for the plan that would satisfy all the goals. In the trivial case of having a plan
that satisfies all the goals, this is no problem. As soon as a planner is confronted with a
set of plans that are all partial matches, however, a problem arises: how does it determine
which plan out of a group of plans best satisfies a set of goals if each of the plans satisfies
some of the goals?

If goals all had the same value, the solution would be that the plan that satisfies the
largest number of goals would be the best match. But goals are not featureless objects that
all have the same value. Some goals have more value than others. The plan RETRIEVER
has to know about the relative value of goals and find a plan that qualitatively maximizes
the planner's utility rather than quantitatively maximizing the number of goals satisfied.

The goals themselves, then, have to be in some sort of valve hierarchy that is used to
determine the relative utility of different plans with respect to a set of goals. It is important

11

to distinguish this from the abstraction hierarchy that is used to determine the similarity
between plans. The abstraction hierarchy tells the RETRIEVER if a plan partially satisfies
a goal; the value hierarchy tells it how much that goal is worth. The source of this hierarchy
is not important. What is important is the notion of deciding between competing plans on
the basis of their relative utility, no matter how that utility is determined.

For example, imagine a memory with two plans: one for a two-story building of glass
and steel and one for a five-story building of brick. A set of goals comes in for a five-story
building of steel and glass. AU other factors being equal, a planner would have to decide
which plan would be the best to modify, the plan that uses the materials requested or the
one that has the basic structure that has been asked for. In this case, the first plan for the
two-story building can be easily modified to have extra stories; the other plan would have
to recreated from the bottom up. The choice of the first plan would be on the basis of the
ease with which the initial plan could be changed to accommodate all of the planner's goals.
The value hierarchy of the goals would be linked to the planner's own abilities. Goals that
are easier to incorporate into existing plans are less important than those that are more
difficult to satisfy.

In order to get a plan that is the best match for a set of goals, a planner needs three
kinds of knowledge:

1. A memory of plans indexed by the goals they satisfy.

2. A similarity metric for judging the similarity of goals that is required for determining
partial matches.

3. A value hierarchy of goals used to judge the relative utility of plans with respwt to a
set of goals.

To integrate this knowledge (Figure 1.1), the RETRIEVER must function as an indexing
system that uses goals and abstractions of the goals to discriminate through memory and
then use its knowledge of the relative value of the different goals to decide between the
overall value of competing plans. This defines a basic case-based planner that takes a set of
goals and recalls a plan from memory which satisfies as many of the most important goals
as possible thus maximizing the planner's utility.

For example, in designing a building for use as an office complex there are many goals
having to do with access, available floor space and cost that have to be planned for. A
plan retriever has to search for a single plan that satisfies as many of the goals as possible,
with the understanding that some goals are more important than others and that goals that
cannot be satisfied directly can often be partially satisfied. In this case, a past instance of
a known office complex that satisfies similar goals can be found and then modified to fit
the exact needs of ',he planner. By finding a base-fine plan that satisfies some goals and
partially satisfies others, the planner avoids redoing the work that was already done and
stored away in memory.

12

Figure 1.1: The RETRIEVER

To get a best match,the RETRIEVER needs a plan memory, a goal similarity
metric and a goal value hierarchy.

But this conception isn't complete. Aside from the fact that a RETRIEVER alone is
not a real planner, there is also the fact that what has been defined in this section is not
quite a full RETRIEVER. It can find past plans on the basis of similarities between surface
level goals, but it cannot find past plans on the basis of interactions between those goals. A
planner also needs a vocabulary that describes similarities between situations not captured
by the surface features alone. This problem will be examined after some discussion of the
repair mechanisms from which this vocabulary emerges.

1.5.3 Plan modiflcation

A plan retriever can only find and suggest past plans for new situations: it cannot do
anything about modifying thes« plans to satisfy new goals. AnotliPf process, one that
modifies plans to satisfy goals not already satisfied by the retrieved plan must be added to
the retriuval process. This process is called plan modification.

In order to modify a plan, a planner needs a variety of information. It needs a library of
modification rules that are designed for plans and classes of goals. These rules will be sets of
steps that can be added to particular plans to achieve particular goals. These modification
rules do not have to be complete plans for achieving any particular goal. They can just be
the modifications that are needed to alter an existing plan to achieve that goal. Access to
these modification rules will allow a MODIFIER to add new steps to a plan in a way that is

13

sensitive to the type of plan being modified and the particular goal that is being changed.
A MODIFIER also needs to have information about items in its domain that tells it how
to change those items to meet the conditions required by the more general modification
rules. This information, in the form of special purpose critics, will let it tailor the general
modifications of a plan to the specific needs of the items required to achieve particular goals.
Finally, a MODIFIER needs to know about what the plans it is modifying are supposed to
be doing in general. This is needed so that it doesn't violate the goals of the overall plan
when it modifies it to satisfy a specific goal.

To alter old plans to meet new goals, the MODIFIER needs a set of modifica-
tion rules, critics with knowledge of goal specific requirements, and general plan
specifications.

Thinking back to architecture, this means that to add a window to an existing design, a
MODIFIER would have to know the goal to be achieved (an added window) and the type
of design that is being altered (an office, apartment or house). It would have to take into
account the features of the particular window (the type of glass, the size or shape). The
changes required for adding a window to the design for an apartment building are different
from those that have to be made to a plan for a standard house. By storing modifications
in terms of both the goal to be added and the type of plan begin altered, a MODIFIER
can be sensitive to these differences. By also storing idiosyncratic steps that deal with the
features of particular items in a domain, it can deal with those items within the context of
a more general process of plan alteration.

Another example is in the domain of automotive design. Imagine a situation in which
one of a planner's goals is to have different parts of a car it is designing be colored red. If
the part is an exterior metal piece, the alteration to the initial plan will involve changing
the color of the paint that is used to cover the part. If the part is an interior plastic part,
the change will involve altering the pigments used in the initial mixing of the plastic. The
different initial plans determine different alterations in response to the same goal. No one
plan for changing the color will do. Different alterations, associated with the different initial
plans, have to be used for the different situations.

The RETRIEVER and MODIFIER together make up a basic case-based planner. The
RETRIEVER takes a set of goals and finds the past plan that best satisfies them. The
MODIFIER takes the plan and the goals that it fails to meet and modifies the plan to
satisfy all of the goals it has been given. To do this it needs to have plan modification
rules, rules on actions that have to be peiformed in order to use certain items, and general
information about the goals that types of plans are supposed to satisfy (Figure 1.2). For
a given set of goals, then, the RETRIEVER finds a good plan and MODIFIER makes it
better.

14

c Planner-;

Goals

Figure 1.2: The MODIFIER

1.5.4 Plan storage

The idea of case-based planning was initially justified by the need to learn. The whole
notion of this kind of planning rests on the desire to alter the planner's abilities on the basis
of its own experience. Within the confines of the planner that we have built so far, only one
kind of learning is really possible. This is learning by remembering; that is, learning a new
plan that has been built by storing it, along with existing plans, in the planner's memory.

The features that are used to store a plan must be the same as those used to access it.
The knowledge that a planner needs to store a plan is exactly parallel to the knowledge
it needs to find one. The indices used to store plans, then, are the goals that the plan it
is storing satisfies. A planner can identify these goals using the general goal information
associated with the type of plan it is building and the specific goals satisfied by the particular
plan it is storing. General plans have descriptions of the nature of the goals that they satisfy.

For example, the general notion of a plan for an electrical circuit includes the idea that
the input and output behavior of the circuit is important. It also includes the notion that
the cost, size and durability of actual implementations ...re important. A particular circuit
will have particular characteristics, in terms of I/O, costs of implementation, size and so
forth; but it will have other characteristics as well, such as its color or its overall aesthetic
character. However, only those features that relate to the goals of circuits in general or to
the planner's own immediate goals are used to store the particular plan for later use. The
features not relating to the goals satisfied by the plan will not be used to index the plan
for a particular circuit in memory. Later, when a new set of goals is being planned for, the
planner can use its current goals to search for a plan in memory that satisfies them.

By using only the goals that the plan was designed to meet rather than the entire set

15

of states that are true as a result of running the plan, a planner can limit the features it
uses to index a plan in memory while still guaranteeing that the plan is indexed under all
the features that are used to retrieve plans.

But a planner cannot just store plans only by the goals they satisfy. As in the RE-
TRIEVER, it has to attend to the circumstances under which they do so. A plan to use an
umbrella to stay dry is a great plan to use when it is raining, but a less than effective one
to use when the planner wants to go into a flooded basement. Plans and planning episodes
have to be distinguished by the goals they satisfy and by the circumstances under which
they do so. The circumstances that effect the choice of a plan in the initial construction,
then, have to be included in the indexing of the plan in memory.

The STORER aids in the building of later plans by storing the work that has been
done by the RETRIEVER and the MODIFIER. The STORER does nothing to help in
the building of a present plan. The job of the STORER is not to alter the plan that has
been built. Rather, it must alter the memories of the planner itself, giving it access to a
complete plan that previously had to be built from another plan and from the application of
the planner's modification rules. Although this only means a savings of time at this stage,
later, when the planner is given the ability to recover from its own failures, it will mean
that the planner will be able to use memories of past plans to avoid repeating mistakes that
waste other resources.

The vocabulary used by the retriever and store to access plans in memory is not yet
complete. In particular, it lacks the vocabulary currently lacks any way to describe plans
in terms of the problems they avoid, will be expanded to include those problems Both the
STORER and the RETRIEVER require access to this vocabulary, giving the STORER the
ability to place a plan in memory indexed by the fact that it avoids certain problems and
giving the RETRIEVER the ability to find plans when it anticipates the need to avoid the
same problems.

The learning by remembering that the STORER does is not the only kind of learning
that will be done by the planner we are building. This kind of learning will be augmented
with a module that does two other types of learning: it will learn the features in a situation
that predict problems; and it will learn new rules for adapting particular items to the
general modification plans associated with the plan types. This planner, then, will not only
remember new plans, it will also will learn to anticipate problems and build rules for adding
new goals to already existing plans.

To place new plans in memory, the STORER needs to index them under the same
features that the RETRIEVER uses to find them: the goals that they satisfy and
the situations in which they are appropriate.

16

(Planner's^

Goals J
(Modified^

Figure 1.3: The STORER

A basic case-based plannrr must incorporate these three processes:

1. A plan retriever that finds a plan from the past that is a "best match" with the current
situation.

2. A plan modifier that can alter a plan with changes that are responsive to the goal
being added and the plan being altered.

3. A plan storer that can place a complete plan into memory indexed by the goals that
it satisfies and the conditions under which it does so.

1.5.5 Plan repair

For a planner to be practical, it has to be able to repair failed plans. No matter how good
the planner is, at one time or another it will have to confront problems that arise out of
its own lack of knowledge and the limits of its ov/n heuristics. Given that the planner is
going to make mistakes, we have to give it some mechanism for repairing the faulty plans
it builds. This mechanism will be called the REPAIRER.

The input to the REPAIRER has to have two parts: a faulty plan and some description
of the fault itself. In other words, the input must include the plan and either the desired
state that it has failed to achieve or the undesired state that it has caused to come about.
How a planner gets this information can vary. It can actually run its plans and examine
the results. It can run simulations of the plans and use this to diagnose errors. It can even
ask an outside source if the plan will do what it wants it to. But no matter how it does it,
a planner has to be able to notice and respond to its own failures.

17

The basic approach that we will take here is to first diagnose and then repair. The
REPAIRER is going to have to have some vocabulary for describing plan failures that can
be used to index methods for repairing the plan itself. This vocabulary can be a simple
statement of the fact that the plan is faulty. Unfortunately, a statement like, "The plan has
failed" doesn't provide a lot of guidance as to how to go about repairing it.

Given that a planner has to understand the goals it is trying to achieve and the states
that are associated with these goals in order to even recognize planning failures, it should
therefore also have access to its vocabulary of goals in order to describe those failures. This
would allow the planner to make statements to itself like, "The engine failed to start when 1
turned the key." This vocabulary, however, doesn't capture all of the information that can
be used to access appropriate repair methods because there could be many ways in which
the states that constitute the failure could have come into being. A single type of failure
such as d.n engine failure can be the result of many different situations, so the information
about the failure of the goal provides only a little guidance as to how to deal with the
problem. The best it can give is a method for responding to the failed goal in general,
which may or may not be appropriate to the facts of the matter. For example, an engine
may fail to start because there is no gas in the car or the battery is dead. A vocabulary
that includes only the fact the the engine has failed to start, then, could not be used to find
the best strategy for dealing with the problem.

A more extensive vocabulary must include an explanation of why a failure has occurred
along with a description of the failure itself. This would mean forming descriptions like,
"The engine failed to start because a wire leading to the starter has shortet' out on the
body where it passes behind the side-mounted air-filter. The heat exchange from the air-
filter melts the insulation on the wire." The explanation, because it points to the states
and actions that participate in causing the failure, provides the focus as to what parts of
a design have to be changed. Even if a specific method for fixing the particular problem
doesn't already exist, one can be generated out of a method for dealing with the general
problem (a side-effect of one part violating the maintenance conditions of another) and the
particular states (the side-effect is excess heat, the maintenance condition is the fact of
the insulation and so on). This could be used to suggest general methods that could be
instantiated, using the specific facts of the current problem. This would allow a response
like recovering from the side-effect (find a way to drain off the heat from the air-filter) or
or altering the part being interfered with to compensate for the presence of the side-effect
(use a heat resistant insulation on the wire) or change the initial plan being interfered with
(reroute the wire altogether).

No matter what vocabulary the REPAIRER uses, the idea is the same: describe the
failure and use this description to find methods for dealing with it. Along with the vocab-
ulary for describing planning failures, then, the REPAIRER needs a set of repair methods
that can be accessed with that vocabulary. These methods should be organized such that
the description of a given failure will access those and only those repair methods that have
a chance of repairing that particular plan fault. This organization is the main reason that
the REPAIRER describes the problem at all. This relationship between problem and repair

18

is like the relationship between goals and plans. Plans are indexed under the goals they
satisfy and repair methods are indexed under the types of failures that they deal with.

A plan repairer needs access to two types of knowledge: a vocabulary for describing
plan failures and a set of repair methods that correspond to those descriptions. With these
it can describe problems and then use those descriptions to access the strategies for dealing
with them.

There is a learning aspect of the REPAIRER that goes beyond the confines of the single
plan it is repairing. That is, once the plan is repaired, it is not only a plan that satisfies
a set of goals, it is also a plan that avoids a particular problem. The goals the planner
was originally planning for have interacted to cause a failure. The repaired plan, because
it is the repaired version of the failed plan, is now designed to cope with that interaction
between goals and to avoid the failure altogether. If the REPAIRER allows the STORER
to store the new plan, only by the goals it satisfies directly it will lose the information that
the plan is also one to use if the planner is trying to avoid a particular problem.

The failures that a plan avoids while satisfying other goals cannot be identified by
looking at a plan after it has been completed. It is only during the planning process,
when the plan fails and is repaired, that the problems arising out of certain interactions
can be identified. The /act that a plan avoids a particular problem can only be seen by
the REPAIRER, and the REPAIRER has to then tell the STORER about the goals that
the repaired plan satisfies and the failures that it avoids along the way. Given this added
vocabulary the STORER can place successful plans in memory, under the goals it achieves
and the problems it avoids.

With the addition of the REPAIRER, the STORER can now index plans by the
problems that they avoid as well as the goals that they satisfy.

The REPAIRER is invoked only when a plan fails. Its task is to repair the plan and
tell the STORER how to characterize it so that it can be found again in a similar problem
situation. The REPAIRER is called only after a plan has been modified and run, only
after the plan has been committed to by the RETRIEVER and MODIFIER. It requires a
vocabulary for describing planning problems and a set of strategies that are indexed by the
descriptions of the problems that they solve. Once it repairs a plan, it then has to hand it
to the STORER for placement in memory, indexed by the goals that the plan satisfies and
the problems it avoids (Figure 1.4).

To repair failed plans and describe them to the STORER, the REPAIRER re-
quires a vocabulary of plan failures and repair strategies that are indexed by that
vocabulary.

19

Figure 1.4: The REPAIRER

1.5.6 Learning from failure

A case-based planner indexes the plans it builds by the problems it avoids while achieving
its goals; but there is still a stumbling block to reusing that plan for similar problems in the
future. This is the planner's ability to figure out when the problem is going to arise again.

The fact that a plan solves a particular problem is not useful unless the planner can
anticipate that problem in the appropriate circumstances and use that prediction to find the
plan in memory. The usefulness of a plan that solves a problem rests not only on having
the plan indexed by the fact that it does so. It also rests on the ability to predict that
the planner is going to need a plan that solves that particular problem. Having a plan
that solves a problem does the planner no good if it cannot recognize the circumstances in
which that problem will arise. The ability to predict when a problem is going to arise in
the future, however, rests on the ability to figure out why it happened in the past. To do
that, the planner heeds a function that can decide which features of a failed plan caused

20

the failure to occur. Then it can extrapolate from these to the features in later situations
that will predict when the problem will arise again. This function, which does the credit
assignment as to which features are to blame for a failure, is called the ASSIGNEE.

The job of the ASSIGNER is to look at a failed plan and decide what circumstances
will be predictive of that failure in the future. The knowledge it uses can vary in much
the same way that the knowledge used by the REPAIRER can vary: it can be simple and
unreliable or complex and robust.

(Plafl) \ Memory /

RETRIEVER MODIFIER
CModifiedN

STORER

REPAIRER
(ExplanationN

of Failure^/
ASSIGNER

Figure 1.5: The ASSIGNER

To decide which features in a situation are to blame for a failure, the ASSIGNER
needs to be able to describe the causes of the failure. The more extensive its
vocabulary for this description, the more exact its credit assignment will be.

21

Take for example a situation in which a plane traveler has missed a ride to his hotel with
a fellow traveller because he has had to wait for his baggage to come off the plane. Here
is a case where a failure has occurred that can be related to the features that will predict
it: checking baggage while travelling with others. When later performing a similar plan,
that is, taking a flight with other people and checking baggage, a planner that can recall
the failure and now plan for it by taking only carry-on luggage will be in a better position
than one that could not anticipate the problem.

In the example of the failed engine: the fact that a new design for a side-mounted air
filter caused a set of wires to be routed through an area of high heat should be assigned
the blame for the problem. If this problem arose out of the combination of default plans,
this assignment has to be such that when the goals associated with those plans are asked
for again (such as the goal for a side-mounted air filter), the problem can be predicted and
thus avoided.

No matter what the method, the ASSIGNER's task is to mark features in a situation as
predictive of the problems that arose in that situation. Like the STORER, its function has
no effect on problems that the planner is currently working on. Instead, its job is to assure
that the planner is able to predict when the current problem is going to arise again in later
circumstances. Its output can be a set of inference rules that are fired in the early stages
of planning, links going from surface goals to predictions or a table of effects that matches
features to predictions. The form of the output is not the issue here. The issue is that the
planner, because the ASSIGNER is able to identify the features that predict a problem, is
now able to anticipate that problem and use the goal of avoiding it to find a plan that does
so. While it looks at problems along with the REPAIRER, then, its output is not a plan,
but is instead a knowledge base of possible problems that can arise and the circumstances
that predict them (Figure 1.5).

1.5.7 Problem anticipation

When a plan fails, the features that participated in that failure are built into a base of rules
or connections that allows the planner to anticipate problems that will arise on the basis
of the goals it is planning for and the situation it is in. Another module, which anticipates
problems on the basis of these features, has the task of taking thesa rules or connections
and making the predictions.

The job of an ANTICIPATOR is to look at the planner's goals and the situation that
surrounds them and decide if there is anything in the situation that is predictive of a problem
before any other planning is done. This is so the prediction of a problem can be used to find
the plans in memory that avoid it. The whole point of an ANTICIPATOR is to provide
information about problems that have to be avoided, information that will be used by a
RETRIEVER to find a plan that does so, so it makes sense that an ANTICIPATOR has
to be called prior to any search for plans (Figure 1.6). This problem anticipation is done

22

prior to the initial search for a plan in order to give the planner the information about what
problems it has to avoid so ii can search for a plan that does so.

(Planners^

Goals J

r*- ANTICIPATOR

(Goals and"\

Predictions^

CMÖdifiwTN

STORER

C Failed N
REPAIRER

(Repaired A

CExplanatlonN

of Failure>^
ASSIGNER

Figure 1.6: The ANTICIPATOR

The knowledge that it uses is the base of information about the features that predict
problems that the ASSIGNER has built up as a result of examining the planner's failures.
The more failures a planner has, then, t'.ie better it becomes at anticipating problems and
thus avoiding them.

23

To anticipate a problem on the basis of surface features, the ANTICIPATOR
needs the base of information built by the ASSIGNER

Let us examine again the example of the traveller. The task of the ANTICIPATOR is
to take the features of the situation that the planner is dealing with and recall the problems
that have arisen in past situations to handle them. By being reminded of the problems
caused by waiting for luggage, a planner can either find a past plan that deals with the
problem or alter another plan in response to the prediction. The problem can be avoided
because it can be predicted.

Likewise, when the goal to have a side-mounted air filter arises again, the prediction of
the problems that result from the modifications required to satisfy this goal can be used
either to find the past plan that already deals with the problem or the past repairs that
were made that could also be made to a plan, so that the problem is avoided. In this
way, problems that have been encountered before can be avoided. This is in contrast to
a procedure in which plans are built without attending to past problems. A procedure in
which the problems are repeated and must be repaired.

There is an important relationship between plans stored in memory and the tasks of
the ANTICIPATOR and the RETRIEVER. Once a problem plan has been repaired, it is
stored in memory, indexed by the fact that it deals with a particular problem. At this
point, however, there is no way for the planner to look at a new situation and predict that
it will have to avoid that problem. So there is no way for it to find the plan in situations
where the problem will come up again. Because of this, it will continue to make the same
mistake because it does not know that the planning approach it used before in a similar
situation led to problems. If it can figure out the causes of a failure, however, it can use this
information to anticipate the problem in similar situations and look for a plan that avoids
it. The ASSIGNER figures out the causes of problem. The ANTICIPATOR then uses the
information built up by the ASSIGNER to predict the problem again when similar causes
are present. The ANTICIPATOR notices that a problem is going to arise and then tells
the RETRIEVER to find a plan that avoids it.

This communication from ANTICIPATOR to RETRIEVER is important in that it
gives the RETRIEVER the added vocabulary for describing planning situations that the
STORER is using to place plans in memory. The STORER, because the REPAIRER can
tell it what problems a plan solves, is able to place plans in memory indexed by the fact that
they do so. The RETRIEVER, because it has the ANTICIPATOR to look at the surface
features of a situation and provide predictions concerning the same problems, is now able
to request a plan that avoids that problem. So plans that deal with particular planning
difficulties due to the interactions between plan steps can be stored and retrieved, indexed
by the fact that they do so. The STORER uses information about the problems the plan
solves to put it into memory and the RETRIEVER uses the predictions of the reoccurrence
of those problems to get them back out.

24

With the addition of the ANTICIPATOR, the RETRIEVER can search for plans
on tht basis of the problems that they avoid as well as the goals they satisfy

1.5.8 The final package

The basic case-based planner that grows out of the need to reuse plans and adapt them for
new goals functions as follows: A set of goals is handed to the planner and sent directly to the
ANTICIPATOR. The ANTICIPATOR, based ou the knowledge built up by the ASSIGNER,
makes any predictions of planning problems that it thinks will arise out of the current
goals. The goal«, are then handed to the RETRIEVER along with the ANTICIPATOR'S
predictions of problems that have to be avoided. The RETRIEVER uses both to search
for a plan in memory that best satisfies the goals it is trying to achieve and avoids any
problems that have been anticipated. The result is a past plan that matches some or all of
the goals now being planned for.

This plan is sent to the MODIFIER, which adds or substitutes new steps to the plan
in order to make it satisfy any of the planner's goals that it does not yet achieve. Once
modified, the plan is run and the results checked against the goals of the planner. If there
is a failure, either because a desired goal has not been achieved or because an undesirei
state has resulted from the plan, the plan is given to the REPAIRER.

The REPAIRER builds a characterization of the failure and uses this to find and apply
one of its repair methods. The repaired plan, along with a description of the problems that
had to be solved along the way, are then sent to the STORER for placement into memory.
The STORER indexes the new plan by the goals it achieves and the problems it avoids.
Now the plan can be used again in similar circumstances in the future.

While the REPAIRER is repairing the plan, the ASSIGNER is deciding which features in
the original request, that is, which goals, interacted to cause the failure to occur. Once it has
done this, it marks these features as predictive of the problem so that the ANTICIPATOR
can anticipate the problem if it encounters the goals in a later input.

This planner does two things as it builds a plan. It is trying to satisfy a set of goals using
its model of what plans are appropriate for different situations. But it is also testing that
model of the appropriateness of those plans against the real world so that later planning
will be easier and more reliable.

To serve its first function, the planner has to react to failures by repairing the present
plan. To serve its second function, it has to alter its view of the world by adding new plans
indexed by the problems they solve and by altering its predictions so that it can anticipate
those problems and find the plans that avoid them.

The fact that planning and learning are so intimately connected in case-based planning
is no accident. The power of a case-based planner is directly dependent on its ability to

25

reuse plans, and the only way to reuse plans effectively is to take seriously the notion of
learning which features in a planning situation determine when they are appropriate to use.

26

Chapter 2

Learning from Planning

The learning that a case-based planner looks more like planning than learning because what
is being stored in memory are the results of planning. This makes it a bit odd to talk about
some aspects of learning from planning. A case-based planner does learn new plans, but
learning a new plan actually involves deciding which features are important for indexing a
plan that it has already built. The learning is not in the building, it is in the storing and
indexing of things that already have been built.

A case-based planner learns by correctly indexing its planning experiences in
memory.

A planner can improve by recalling its past experiences, anticipating problems it has
encountered before, so that they can be avoided. The task of learning in this case is not
building the failure, it is deciding which features caused it in the original case and thus
which features will predict it in later cases. By linking the features which are predictive of
a failure to the memory of it, the planner can anticipate problems before they occur and
use this anticipation to retrieve a plan in memory that solves the problem.

If a surgeon above encounters a problem while performing an operation, such as a
patient's low blood pressure being reduced even further by a particular anesthetic, thus
leading to heart failure, it makes sense for him to learn something from this failure. In
particular it makes sense for him to learn that patients with low blood pressure will go into
cardiac arrest if this anesthetic is used on them. By linking these features to the memory
of the failure, the surgeon will be able to anticipate the problem when it arises and use this
prediction to find a plan that avoids the problem.

Memories of past planning experience can also be helpful to a planner in dealing with
the situation in which it predicts a failure but is unable to find a plan that deals with it. In
these situations, the memory of the change that was made to repair a past plan in response
to the same failure can often be used to repair the current plan before it is run. Just as

27

28

the anticipation of a failure can ;. -not the planner to a past plan that deals with it, in the
absence of that plan it could point the planner to a past repair that could be applied to
whatever new plan is being devised. The problem of recalling past repairs is somewhat
different than recalling past plans in that not all repairs can be transferred between plans.
Like memories of plans, memories of past repairs have to be indexed by the failures that
they deal with, but they also have to have some provision for the fact that not all repairs
to a problem can be transferred for use on all plans in which that failure arises.

Even in this case, the problem is not to construct a new piece of information. The repair
itself is constructed by the planner. It is only then that any learning mechanism comes into
play. Here again, the job of the learner is to choose the features that will be used to
index the information. A repair such as using an alternate anesthetic when performing
appendectomies can be stored as a general repair to other plans that will be performed on
low blood pressure patients. The overall appendectomy plan is saved so that it can be used
again, but the specific repair of altering the anesthetic is saved as well so that it also be
used to repair other plans in which the same problem is predicted.

In all three of these learning situations, the main task of the learner is to figure out
which features a piece of information should be indexed under. Any generalization that is
done takes the form of generalizing these features without changing the specificity of the
information being stored. The plans that are placed in memory are the actual plans created
by the planner. They are not generalized versions of these plans. The goals that are used
to index them, however, are generalized so that the plans can be found in situations that
are similar if not identical to those in which they were originally constructed.

The theory of case-based planning presented here is a theory of learning in each of these
three areas. It is a theory of learning new plans, new problems and new solutions. It is a
theory of learning within the context of active planning.

A case-based planner learns new plans, the features that predict failures and past
repairs to faulty plans that it can reuse. This learning is accomplished by saving
the different results of the planner's own experience.

2.1 CHEF: A case-based planner

The theory of case-based planning in this thesis is implemented in the computer program
CHEF. CHEF is a case-based planner. CHEF's approach to planning is to make use of
memory whenever possible. It begins planning by using its memory of past failures to warn
of problems. It then uses its memory of successes find the best plan to modify for its current
goals and problems. If it has a plan failure, CHEF treats it as a failure of its understanding
of the world and explains the failure so that it can repair the plan and the knowledge of the
world that allowed it to create the plan. Finally, it saves its successes in memory, indexed

29

by the goals that they satisfy and the problems that they avoid, so that they can be used
again to satisfy similar goals and avoid similar problems.

CHEF's domain is Szechwan cooking. Its task is to build new recipes on the basis of
a user's requests for dishes with particular ingredients and tastes. Because it is building
recipes, it has a constraint that many planner's do not: it has to build integrated plans
for multiple goals in which all of the goals are satisfied by a single plan. This is similar to
the constraint in many design domains, such as industrial design or circuit construction, in
which a single object has to meet a set of specifications.

Here is an example of CHEF planning for the problem of building a stir fry dish with
beef and broccoli.

The input to CHEF is a set of goals to be satisfied with a single integrated plan. In this
case CHEF is given three goals: the goal to have a stir-fried dish, the goal to include beef
and the goal to include broccoli. Instead of searching for individual plans that satisfy each
of the goals separately and then merging them, as most hierarchical planner's would do,
CHEF searches its memory for a single plan that matches, or partially matches, as many
of the goals as possible. In cases where multiple plans match its goals, CHEF chooses one
of the plans at random.

Searching for plan that satisfies -
Include beef in the dish.
Include broccoli in the dish.
Hake a stir-fry dish.

Found recipe -> REC2 BEEF-WITH-GREEI-BEAIS

Recipe exactly satisfies goals ->
Hake a stir-fry dish.
Include beef in the dish.

Recipe partially matches ->
Include broccoli in the dish.

in that the recipe satisfies:
Include vegetables in the dish.

CHEF begins planning by finding a single plan that satisfies as many of its active
goals as possible.

Once the base-line plan is found, it is modified to match whatever goals it doesn't already
satisfy. The modification is controlled by rules related to the kind of dish being designed
(in this case a STIR-FRY dish), and by the goal that the original plan is being modified
to satisfy (the goal to include broccoli). This kind of knowledge in cooking is similar to
the knowledge in other design domains such as architecture. In architecture, instead of

30

knowing how to modify STIR-FRY plans, an expert knows how to alter plans for houses
and apartment buildings. Likewise, instead of knowing how to add broccoli or beef to an
existing recipe, an expert would know how to add windows or doors to an existing plan.

In this case, the fact that there is a partial match between the target goal, including
broccoli, and an object in the existing recipe, green beans, tells the planner that it can
replace the broccoli for the green beans directly. Other structures, called object critics,
allow it to correctly reduce the cooking time of the vegetables to account for the difference
between the requirements of green beans and broccoli. They also tell the planner that it
has to chop the broccoli before stir frying it.

Building n«w name for copy of BEEF-UITH-GREF«-BEAKS
Calling recipe BEEF-AMD-BROCCOLI

Modifying recip«: BEEF-AID-BROCCOLI
to »atiefy: Include broccoli in the dish.

Placing some broccoli in recipe BEEF-AID-BROCCOLI

- Considering ingredient-critic:
Before doing step: Stir fry the -Variable-
do: Chop the broccoli into pieces the size of chunks.

- ingredient-critic applied.

CHEF alters old plans to satisfy new goals using a set of modification rules and
a set of object critics.

Once these modifications are made, the planner has a plan that should satisfy all of the
initial goals it was asked to plan for.

BEEF-AID-BROCCOLI

A half pound of beef
Tso tablespoons of soy sauce
One teaspoon of rice vine
A half tablespoon of corn starch
One teaspoon of sugar
A half pound of broccoli
One teaspoon of salt
One chunk of garlic

31

Chop the garlic into pieces the size of matchheads.
Shred the beef.
Marinate the beef in the garlic, sugar, corn starch,
rice wine and soy sauce.
Chop the broccoli into pieces the size of chunks.
Stir fry the spices, rice wine and beef for one minute.
Add the broccoli to the spices, rice aine and beef.
Stir fry the spices, rice wine, broccoli and beef
for three minutes.
Add the salt to the spices, rice wine, broccoli and beef.

There is more to CHEF's knowledge to this plan that just the steps that are included
in it, however. It also knows about the goals that should be satisfied when it is run. These
goals are derived from its knowledge of stir-frying and its understanding of what items are
important in this recipe. So it has the understanding that running this plan should result
in the following:

The beef is now tender. The dish no« tastes salty.
The dish now tastes savory. The dish now tastes sweet.
The broccoli is now crisp. The dish now tastes like garlic.

CHEF derives the goals that a plan should satisfy from general plan specifications
and the particulars of the current plan.

But not all plans work the first time. In this plan, the goal to have the broccoli crisp
will fail, because it is being stir fried with the beef and is cooked in the liquid that the beef
produces.

2.1.1 When plans fail

When a plan fails it is because the planner's understanding of the world has failed. It has
expected that the plan would have a result that it has not had. So the explanation of a
failure serves two functions: it identifies the parts of the plan that have to be altered and
it identifies the places where the planner's knowledge is faulty.

CHEF discovers the failure by monitoring a simulated execution of the plan it has pro-
duced. This simulation is the program's equivalent of real world execution. The simulator
consists of a set of inference rules that are used to determine the outcome of each step of the
plan. Once the plan has been run, CHEF checks the final states that have resulted against
its goals, looking for any failures to achieve its positive goals as well as any instances of
negative states that it would like to avoid.

32

Checking goal» of recip« -> BEEF-AID-BROCCOLI

Äecip« -> BEEF-AID-BROCCOLI nai failed goals.

The goal: The broccoli is no* crisp.
is not satisfied.
It is instead the case that: The broccoli is now soggy.

Unfortunately: The broccoli is now a bad texture.
In that: The broccoli is now soggy.

Changing name of recipe BEEF-AID-BROCCOLI
to BAD-BEEF-AID-BROCCOLI

CHEF checks the goals of a plan against the results of a simulation of the plan
that is its equivalent of the real world.

A plan failure such as this means two things to CHEF. First, it must repair the plan
itself, changing the steps so that the failure does not occur. Second, it has to repair its
understanding of the world, an understanding that has been shown to be faulty in light of
this failure. For both of these tasks it is important that CHEF understand exactly why the
failure has come about. It is not enough that it can point to the fact that the broccoli isn't
crisp and call this a failure. It must also be able to explain why this particular failure has
happened. The final state that defines the failure is not enough. It must have an explanation
of why it has occurred. It has to understand the series of steps and states that led to the
failure in order to alter its plan and its understanding of the world. This explanation gives
it a description of the problem that can then be used to access repair strategies fitted to
that problem. Because a causal explanation is used to describe the problem, a set of fixes
that are aimed at altering the causality behind the failure can be used instead of weaker
methods such as back-up or total replanning.

2.1.2 Explaining plan failures

The explanation of a failure provides a causal description of why it has occurred. An
explanation describes the state that defines the failure, the step that resulted in it, and the
conditions that had to be true for it to come about. It is also a description of what the
planner was trying to do when the failure occurred. It includes a description of the goals
being served by the steps and states that caused the failure and even those being served
by other steps in the plan that may have participated in the failure. It identifies what has
to be changed in the plan to solve the present problem and also identifies what has to be
changed in the planner's knowledge of the world so that the failure will not occur again.

CHEF explains failures using a set of inference rules that tell it about the effects of each
step in its domain on each object in its domain. It uses these rules to determine what the

33

nature of the failure is, why it has occurred, and what goals are served by the steps and
states that led to the failure. These rules are the same as those used to simulate the plan,
meaning that CHEF can always explain the failures it encounters.

These rules are used to chain through the steps and states of the plan to answer a set
of questions that will form the explanation of why the failure has occurred. Each of these
questions is associated with a particular point in the causal chain explaining the failure.
Each answer is a step from the original plan or a state caused by one of these steps. These
answers are use to fill in a causal framework which will later be used to find a set of repair
strategies for fixing the plan.

Explaining the following failures:
It is not the case that: The broccoli is now crisp,

in that: The broccoli is now soggy.
The broccoli is now a bad texture,

in that: The broccoli is now soggy.
In: BAD-BEEF-AHD-BROCCOLI

ASKING THE QUESTION: 'What is the failure?'

ANSWER-> The failure is: It is not the case that: The broccoli irs
now crisp.

ASKIIU THE QUESTIOI: 'What is the preferred state?'

ANSWER-> The preferred state is: The broccoli is now crisp.

ASKING THE QUESTION:
'What was the plan to achieve the preferred state?'

ANSWER-> The plan was: Stir fry the sugar, soy sauce, rice wine,
garlic, corn starch, broccoli and beef for three minutes.

ASKING THE QUESTIOI:
'What were the conditions that led to the failure?'

ANSWER-> The condition was: There is thin liquid in the pan
from the beef equaling 4.8 teaspoons.

ASKING THE QUESTION:
'What caused the conditions that led to the failure?'

ANSWER-> There is thin liquid in the pan from the beef equaling
4.8 teaspoons was caused by: Stir fry the sugar,
soy sauce, rice wine, garlic, corn starch, broccoli
and beef for three minutes.

34

ASKIIG TIE QUESTIOI:
'Do th« condition* that caused the failure satisfy any goals?'

AISWER-> Th* condition: There is thin liquid in th* pan from
th* beef equaling 4.8 teaspoon* is a sid* effect
only and meets no goal*.

ASKIIG THE QUESTIOI:
'What goal* do** th* step which caused the condition enabling the
failure satisfy?'

AISHER-> The step: Stir fry th* sugar, soy sauce, ric* win*,
garlic, com starch, broccoli and beef for three
minutes.
enables the satisfaction of th* following goal*:
Th* dish now tastes savory.
The beef is now tender.

CHEF explains the failures that it encounters through a causal description of
why they have occurred.

At this point, then CHEF knows what steps and states combined to cause the current
failure. Using its inference rules for the domain it has been able to construct a causal chain
that explains why the failure has occurred. It also knows which goals were being pursued
in taking the actions and creating the states that led to its failure.

2.1.3 Plan repair strategies and TOPs

This explanation serves two functions. For the short term task of repairing the plan, it
describes the planning problem in a general causal vocabulary that can be used to access
some equally general plan debugging strategies. Repair techniques are indexed in memory
under causal descriptions of the situations that they are built to handle. For the long term
task of altering the planner's approach to later problems so it will not repeat its current
mistake, the explanation serves to point out which features in the domain interact to cause
this sort of failure to occur.

The explanation of the failure is used to find a structure in memory that organizes a set
of strategies for solving the problem described by the explanation. These structures, called
Thematic Organization Packets oi TOPs [Schänk 82], are similar in function to the critics
found in HACKER [Sussman 75] and NOAH [Sacerdoti 75]. Each TOP is indexed by the
description of a particular type of planning problem and each organizes a set of strategies
for deal with that type of problem. These strategies take the form of general repair rules
such as REORDER steps and RECOVER from side-effects. Each general strategy is filled
in with the specifics of the particular problem to build a description of a change in the plan

35

that would solve the current problem. This description is used as an index into a library
of plan modifiers in the cooking domain. The modifications found are then tested against
one another using rules concerning the efficacy of the different changes and the one that is
most likely to succeed is chosen.

The idea behind these structures is simple. There is a great deal of planning information
that is related to the interaction« between plans and goals. This information cannot be
tied to any individual goal or plan but is instead tied to problems that rise out of their
combination. In planning, one important aspect of this information concerns how to deal
with problems due to the interactions between plan steps. Planning TOPs provide a means
to store this information. Each TOP corresponds to a planning problem due to the causal
interaction between the steps and the states of a plan. When a problem arises, a causal
analysis of it provides the information needed to identify the TOP that actually describes
the problem in abstract terms. But the TOPs are not there to just describe problems. Under
each TOP is a set of strategies designed to deal with the problem the TOP describes. By
finding the TOP that relates to a problem, then, a planner actually finds the strategies that
will help to fix that problems.

This explanation of the failure in this example indexes to SIDE-EFFECT:DISABLED-
CONDITION:CONCURRENT, a TOP related to the interaction between concurrent plans
in which a side effect of one violates a precondition of the other. This is because the side
effect of liquid coming from tht stir-frying of the beef is disabling a precondition attached
to the broccoli stir-fry plan that the pan being used is dry.

The causal description of the failure is used to access this TOP out of the twenty that
the program knows about. All of these TOPs are associated with causal configurations
that lead to failures and store strategies for fixing the situations that they describe. For
example, one TOP is DESIRED-EFFECT:DISABLED-CONDITION:SERIAL, aTOP that
describes a situation in which the desired effect of a step interferes with the satisfaction
conditions of a later step. The program was able to recognize that the current situation
was a case of SIDE-EFFECT:DISABLED-CONDITION:CONCURRENT because it has
determined that no goal is satisfied by the interfering condition (the liquid in the pan), that
the condition disables a satisfaction requirement of a step (that the pan be dry) and that the
two steps are one and the same (the stir fry step). Had the liquid in the pan satisfied a goal,
the situation would have been recognized as a case of DESIRED-EFFECT:DISABLED-
CONDITION:CONCURRENT because the violating condition would actually be a goal
satisfying state.

Found TOP TOPI -> SIDE-EFFECTrDISABLED-COMDITIOIC: CONCURRENT
TOP -> SIDE-EFFECT:DISABLED-CONDITION:CONCURRENT has 3

strategies associated with it:
SPLIT-AND-REFORM
ALTER-PLAN:SIDE-EFFECT
ADJUNCT-PLAN

36

CHEF uses its causal description of a problem to find a TOP that has strategies
which will solve it.

The TOP SIDE-EFFECT:DISABLED-CONDITION:CONCURRENT has three strate-
gies associated with it, SPLIT-AND-REFORM, which suggests breaking the parallel plans
into serial steps; ALTER-PLAN:SIDE-EFFECT, which suggests using a different plan for
the initial side-effect causing step; and ADJUNCT-PLAN, which suggests making use of an
adjunct plan that would disable the side-effect. In this example, CHEF can only find one
possible instatiation, of the strategy SPLIT-AND-REFORM, so it is applied directly to the
problem. The other modifications suggested have no actually instantiation, given the facts
of the situation.

There are two stages to this process: finding the different changes that the strategies
suggest and then actually implementing the one that CHEF judges to be the best in this
situation.

Applying TOP -> SIDE-EFFECT :DISABLED-COiroiTI0I:C0«CURRE»T
to failure it is not th* case that: The broccoli is no» crisp.
in recipe BAD-BEEF-AID-BROCCOLI

Asking questions needed for evaluating strategy:
SPLIT-AID-REFORH

ASKIIG -> Can plan
Stir fry the sugar, soy sauce, rice wine, garlic,
com starch, broccoli and beef for three minutes.

be split and rejoined

Found plan: Instead of doing step: Stir fry the sugar,
■oy sauce, rice wine, garlic, corn starch, broccoli
and beef for three minutes
do:
SI = Stir fry the broccoli for three minutes.
32 = Remove the broccoli from the result of action SI.
53 ■ Stir fry the sugar, soy sauce, rice vine, garlic,
com starch and beef for three minutes.
54 • Add the result of action 82 to the result of action S3.
55 = Stir fry the result of action 34 for a half minute.

Asking questions needed for evaluating strategy:
ALTER-PU«: SIDE-EFFECT

37

ASKIIG -> It th«r« an alttmativ« to
Stir fry th« sogar, soy aauca, rie« win«, garlic,
com starch, broccoli and baal for thraa minntas.

that «ill anabl«
Th« dish now tastes savory,

which do«« not cans«
Th«r« is thin liquid in tha pan fron th« b««f
«qnaling 4.8 teaspoons.

■o altamat« plan found

Asking qnastions n«od«d for «valuating strategy: ADJUICT-PLAI

ASKIIG -> Is th«r« an adjunct plan that will disabl«
Th«r« is thin liquid in th« pan fron tha b««f
•qnaling 4.8 taaspoons.

that can b« run with
Stir fry tha sugar, soy sane«, ric« win«, garlic,
com starch, broccoli and b««f for thr«« ainutss.

lo adjunct plan found

Deciding b«t«««n nodification plans suggsstsd by strat«gi«s:
Only on« nodification can b« impl«m«nt«d -> SPLIT-AID-REFORM

lBpl«n«nting plan -> Instand of doing stap: Stir fry th« sugar,
■oy sauc«, ric« win«, garlic, corn starch, broccoli
and b««f for thr«« ninut««.

do: SI = Stir fry th« broccoli for thr«« ninut««.
52 = R«BOV« th« broccoli fron th« rasult of action SI.
53 = Stir fry th« sugar, soy sauca, ric« win«, garlic,
com starch and baaf for thr«« ninut««.
54 = Add th« r«sult of action S2 to th« rasult of action S3.
55 = Stir fry th« r««ult of action 54 for a half ninut«.

Suggest«d by strategy SPLIT-AID-REFORM.

CHEF tries to implement the strategies suggested by the TOP by searching for
the actual plan modifications that the strategies define.

2.1.4 Anticipating failures

After changing the plan to solve immediate problems, CHEF also changes its understanding
of the world so that it will be able to anticipate and thus avoid similar problems in the future.
To do this CHEF must figure out what it was that caused the failure in the first place. It

must decide which features in the initial situation contributed to the failure so that later
requests for i imilar goals can be planned for. Here CHEF again makes use of the causal
explanation that it has for the failure to back-chain to the features that can be used to
predict this kind of problem. These features are then generalized to the highest level of
description allowed by the rules which explain the situation. This means taking a feature
like BEEF and generalizing it to MEAT because the rule that explains the liquid in the pan
states that stir frying any meat will have this result so the feature can be generalized up to
this level. The resulting descriptions are marked as predictive of this problem. Once this is
done, CHEF is able to predict and plan for a problem of this kind whenever it encounters
a similar situation.

Building demons to anticipate failure.

Building demon: DEHOIO to anticipate interaction between rule*:
"Neat sweats when it is stir-fried."
"Stir-frying in too ouch liquid makes vegetables soggy."

Indexing demon: DEHOIO under item: MEAT
by test:

Is the item a HEAT.

Indexing demon: DEHOIO under item: VEGETABLE
by test:

Is the item a VEGETABLE,
and Is the TEXTURE of item CRISP.

Goal to be activated = Avoid failure of type
SIDE-EFFECT:DISABLED-COIDinOI:COICURREIT exemplified be the
failure 'The broccoli is now soggy' in recipe BEEF-AID-BROCCOLI.

Building demon: DEH0I1 to anticipate interaction between rules:
"Liquids make things wet."
"Stir-frying in too much liquid makes vegetables soggy."

Indexing demon: DEH0I1 under item: SPICE
by test:

Is the TEXTURE of item LIQUID.

Indexing demon: DEH0I1 under item: VEGETABLE
by test:

Is the item a VEGETABLE,
and Is the TEXTURE of item CRISP.

Goal to be activated • Avoid failure of type
SIDE-EFFECT: DISABLED-COIDITIOI: COICURREIT
exemplified by the failure 'The broccoli is now soggy' in recipe
BEEF-AID-BROCCOLI.

39

CHEF uses its explanation of why a failure has occurred to build links that will
allow it to predict the failure later, in similar circumstances.

Once a plan is debugged and the sources of any problem are marked as predictive of
that problem, CHEF stores the plan using two types of features. The first is the standard
vocabulary of goals met by the plan, such as what foods and tastes are included in it, as well
as what type of dish it is. These features are generalized so that plans which only partially
satisfy a set of goal requests can be accessed in the absence of exact matches. The second is
a different sort of vocabulary that relates more to the failures encountered in building the
plan than the goals that the finished plan now directly satisfies. This means that the plan
is indexed by the possible problems between sub-steps that it avoids. By storing plans this
way, it is possible for the planner to use the prediction of a previously encountered problem
to find a plan that solves that problem. CHEF can avoid past errors by predicting them
and then finding a plan that deals with them. In the case of the beef and broccoli, the plan
is indexed by the fact that it deals with the interaction between the meat sweating and the
need to have a dry pan while cooking crisp vegetables.

Before searching for a plan at all, CHEF tries to anticipate any failures that will result
from the goals it has been given, using the links formed between goal features and the
failures that they have caused in past episodes. By doing this before searching for a plan,
the anticipation of a problem can tell CHEF to find a plan to avoid it.

The program usss its new knowledge of what went wrong in the making the BEEF-
AND-BROCCOLI recipe to anticipate and avoid the same problem in making a later one.

While planning for a stir-fried dish with chicken and snow peas it predicts the possibility
of the snow peas getting soggy if cooked with the chicken and uses this prediction to find
ehe beef and broccoli plan which deals with this problem. This plan, rather than one having
to do with either chicken or snow peas, is then modified to account for the specific goals.

Searching for plan that satisfies -
Include chicken in the dish.
Include snow pea in the dish.
Hake a stir-fry dish.

Collecting and activating tests.

Fired: Is the dish STYLE-STIR-FRY.

Fired: Is the item a MEAT.

Fired: Is the item a VEGETABLE.
Is the TEXTURE of item CRISP.

Chicken ♦ Snow P«a ♦ Stir frying = Failur«
"HMt sscati wh«n it it itir-friad."
"Stir-frying in too auch liquid naka* vagatablaa aoggy."
Raaindad of BEEF-AID-BROCCOLI.
Firad daaon: DENOIO

Baaad on foatnrai found in itaaa: «now paa, chiekan and atir fry
Adding goal: Avoid failure of typa
SIDE-EFFECT :DISABLED-COIDITIO«:COICURREIT azaaplifiad by
tha failnra 'Tha broccoli is now soggy' in racipa
BEEF-AID-BROCCOLI.

CHEF uses its understanding of past failures to anticipate problems that will
arise in new situations.

Once a problem has been anticipated, CHEF can use the prediction of the problem to
find a plan that avoids it. It does this by adding a goal to explicitly avoid the problem
to the list of goals it is using to search for a plan. The BEEF-AND-BROCCOLI plan is
indexed in memory by the fact that it avoids the same problem of the interaction between
meat and \egetable that has been predicted. So CHEF is able to use the anticipation of
problem to find the plan that avoids it.

Searching for plan that satisfies -
Include chicken in the dish.
Include snow pea in the dish.
Hake a stir-fry dish.
Avoid failure of type SIDE-EFFECT :DISABLED-C0n)ITIOI:C0ICURREIT

exemplified by the failure 'The broccoli is now soggy' in recipe
BEEF-AID-BROCCOLI.

Found recipe -> REC9 BEEF-AID-BROCCOLI

Recipe exactly satisfies goals ->
Avoid failure of type SIDE-EFFECT :DISABLED-COIDITIOI:COICURREIT

exemplified by the failure 'The broccoli is now soggy' in recipe
BEEF-AID-BROCCOLI.

Hake a stir-fry dish.

Recipe partially Batches ->
Include chicken in the dish.

in that the recipe satisfies: Include aeat in the dish.

41

Recipe partially matches ->
Include «now pea in the dish.

in that the snow pea can be substituted for the broccoli

Building new name for copy of BEEF-AID-BROCCOLI based on its goals.
Calling recipe CHICKEI-STIR-FRIED

Modifying recipe: CHICKEI-STIR-FRIED
to satisfy: Include chicken in the dish.

Placing soae chicken in recipe CHICKEI-STIR-FRIED

Modifying recipe: CHICKEI-STIR-FRIED
to satisfy: Include snow pea in the dish.

Placing SOBS snow pea in recipe CHICKEI-STIR-FRIED

Created recipe CHICKEI-STIR-FRIED

CHICKEI-STIR-FRIED

A half pound of chicken
Two tablespoons of soy sauce
One teaspoon of rice wine
A half tablespoon of corn starch
One teaspoon of sugar
A half pound of snow pea
One teaspoon of salt
One chunk of garlic

Bone the chicken.
Chop the garlic into pieces the size of matchheads.
Shred the chicken.
Marinate the chicken in the garlic, sugar, corn starch,
rice wine and soy sauce.
Chop the snow pea into pieces the size of chunks.
Stir fry the snow pea for three minutes.
Remove the snow pea from the pan.
Stir fry the spices, rice wine and chicken for three minutes.
Add the snow pea to the spices, rice wine and chicken.
Stir fry the spices, snow pea, rice wine and chicken
for a half minute.
Add the salt to the spices, snow pea, rice wine and chicken.

CHEF uses its anticipation of a problem to find a plan that avoids it.

When CHEF decides to use the beef and broccoli recipe as its starting point it is passing

up other recipes in memory that have similarities to the current goal situation. It has, in

42

fact, a recipe with chicken and green beans that, in the absence of the beef and broccoli
experience, it would have been happy to modify to account for the chicken and snow peas.
But because it has encountered a failure stemming from a similar situation in the past,
it anticipates the problem and prefers a plan for a situation that was built to deal with
that problem. It favors this plan, although it has fewer surface features in common with
the current situation than another plan in memory, because it knows that this plan deals
with an interaction between goals that is not addressed by the other. This interaction
between plan steps because it has so great an effect on the final structure of the plan, is
more important to CHEF than the details of the surface goals in choosing its initial plan.

Surface features of a situation in which a failure has been anticipated are important,
however. If CHEF were given the goals to make a stir fry dish with chicken and bean
sprouts after storing its new CHICKEN-STIR-FRIED plan in memory, it would anticipate
the problem with the bean sprouts getting soggy, but would not use the BEEF-AND-
BROCCOLI plan as its baseline. Instead it would use the CHICKEN-STIR-FRIED plan
that deals with the problem of stir frying meats and crisp vegetables together and has more
surface features in common with the current situation than the other plan that also deal
with this problem, the BEEF-AND-BROCCOLI recipe. Once a failure is anticipated, it
becomes one of the features that is used to find a plan, but not the only one.

CHEF is a model of memory intensive planning. CHEF designs new plans out of its
memories of old ones. It uses memories of successful plans as the basis for new ones. It
uses memories of its own failures to warn itself of possible problems. And it uses memories
of past repairs to fix those problems when they arise.

As CHEF plans it learns. It learns new plans by creating successful recipes and storing
them in memory. It learns to predict problems by experiencing and explaining failures. It
also learns new ways to avoid the problems it predicts by repairing failed plans and storing
the repairs for later use. The essential idea of CHEF is that planning is interaction with
the world and that interaction can lead to learning.

2.2 Learning plans

A case-based planner learns plans in the sense that it stores the new plans it creates in its
plan memory. Learning, in this context, means figuring out the features that should be used
index the plan in memory and then storing the plan using them. The task is to organize
experience such that it can be retrieved and reused at the appropriate time.

A case-based planner stores the most obvious result of planning, the plan itself,
in a plan memory.

The object that a case-based planner stores in memory is the plan itself. The plan is
a series of steps and list of ingredients that has been built to satisfy some particular set of

43

goals. This plan is not generalized in any way. To do so would be to lose information that
could be used again, without gaining anything in terms of more general applicability.

For example, in the CHEF program, altering a specific plan such as STRAWBERRY-
SOUFFLE to satisfy a slightly different set of goals, such as including kirsch, is no more
difficult than altering a generalized version of the same plan. But in a situation where
the planner has to plan for goals that are identical to those in the original situation, a
generalized plan would be more difficult to adapt, because the specifics of the original plan
would be lost.

While a case-based planner need not generalize the plans it stores, it does need to
generalize the features that are used to index them. Because of this, the plan can be
suggested for use in a wide range of situations and can still retain the specific information
that makes it more useful when applied to situations in which the goals that are being
planned for are completely satisfied by the plan itself. By generalizing the indices rather
than the plan, a case-based planner is able to avoid much of the trade-off between generality
and power of application. The general indices makes it applicable in many situations and
the specificity of the plan makes it a powerful tool in those situations in which the match
between the current goals and those satisfied by the plan is a good one.

In storing a plan in memory, a case-based planner does not generalize the plan
itself. It instead generalizes the features that are used to index the plan in
memory.

A case-based planner has to index the plans it stores by two different sorts of features.
First it indexes them by the goals that they satisfy. Second, it indexes them by the problems
they avoid. In actually placing a plan in memory, these features are used in exactly the
same way, but they come from somewhat different sources.

By the time a planner stores a plan in memory, it has been run and has been repaired
if necessary. This means that the planner knows what goals the plan satisfies and what
problems it has had to deal with in doing so. The goals that a plan satisfies form of state
descriptions that have to be true once the plan has been run. The problems that a plan
avoids should take the form of a causal description of the problems, so that the prediction
of similar problems can be used to access the plan in memory.

In the CHEF program, the goals include the taste and texture of the different items in a
plan and the ingredients that are included in it. These goals, along with the goal to make the
type of dish that the plan builds are the initial features that are used in indexing the plan.
Problems that a plan avoids are represented by the TOP that describes the abstract causal
situation linked to the specific failure state. For example, the BEEF-AND-BROCCOLI
plan that was repaired to avoid the problem of soggy vegetables is marked as dealing with
this problem. In CHEF, a plan can have many problems due to goal interaction that it
solves, just as it can satisfy many goals directly. These two sets of items are combined into
a single list of features that will be used to index the plan in memory.

44

The fact that a plan avoids a particular problem can be treated by a case-based planner
as a 90a/ to avoid that failure that the plan associated with it satisfies. These goals to avoid
failures can be treated as any other goal for use in indexing of plans in memory. They
are may be considered more important than most other goals, however, because it is often
easier to alter a plan to satisfy a new goal than to make the changes required to deal with
an interaction between goals.

A plan is indexed in memory, then, by the goals that it satisfies and the problems that
it avoids. It also has to be indexed by the features of a situation that are independent of
the goals but do direct the planner to one plan or another. As mentioned before, the plan
to call the front desk for a wake-up call is a good plan to get the planner up in the morning,
but only in certain circumstances. These circumstances, which can be reduced to states
that describe the world, also have to be used to index plans in memory.

In the CHEF program, the actual implementation of its memory of plans is via a dis-
crimina'.ion net in which plans are indexed by the goals that they satisfy and the problems
that thiy avoid. These goals and problems are ordered by their importance, with the higher
priority features used at the higher levels of discrimination. Once the features are ordered, a
plan is placed in a discrimination net, using the features as indices. The ordering of features
allows CHEF to somewhat limit the branching in this net by allowing discrimination from
any one node to be made only or. the basis of features of less importance than the last one
used to index to it.

As each goal is used to place a plan in memory, more general versions of the goals
are also used. BEEF-AND-BROCCOLI is indexed by the fact that it includes beef and
broccoli, but it is also indexed by tho fact that it includes meat and vegetables in general.
The level of generality of the goals used to index plans is preset and corresponds to the
level of generality that is used in defining the modification rules used in substituting one
ingredient for another in a plan. As a result, the goal to include one type of ingredient can
be used to find a plan for a similar ingredient.

CHEF stores new plans indexed by the goals that they satisfy and the problems
that they avoid.

Once a plan is placed in memory this way it can be accessed by the planner when it is
searching for a plan that satisfies similar goals and for a plan that avoids failures that it
predicts may appear and wants to avoid.

For example, in building the STRAWBERRY-SOUFFLE recipe CHEF has to deal with
the fact that the liquid from the fruit disables the conditions required for the souffle to
rise. It deals with this by adding more egg white to the recipe thus re-establishing the
relationship between liquid and leavening that the fruit put out of balance. The final recipe
satisfies a set of goals having to do with making a souffle, including strawberries, making
the souffle taste sweet and like berries and having a fluffy texture. These goals come from
the input request and some are generated by the planner out of its understanding of what

45

Cr««t«d r«cip« STRAWBERRY-SOUFFLE

If this plan is succsssful, th« following should b« tru«:

Th« batter is now bakod.
Th« batter is now risen.
The dish now tastes like berries.
The dish now tastes sweet.

The plan satisfies -
Incl ide strawberry in the dish.
Make a souffle.

Figure 2.1: Goals satisfied by STRAWBERRY-SOUFFLE

this type of plan should be like in general (figure 2.1). The plan also has a token associated
with it that indicates that it deals with the problem of the added liquid from the fruit
interfering with the baking (figure 2.2).

Thase goals are collected and used to index the plan in memory, the goal to make a
souffle and the goals to avoid the failure taking priority over all others. These are then used
to insert the plan into CHEF's plan memory. The only generalization that goes on is with
the goal to include the strawberries, which is generalized up to the level of FRUIT. There
are no other goals that can be furtl er generalized.

Once stored this plans can be found whenever the planner is trying to plan for any
subset of the goals that it satisfies and can be found in any situation in which the problem
of an imbalance between liquid and leavening is predicted. Even without the prediction of
the failure having to do with the liquid from the fruit giving the plan problems, it could be
found when the planner is given the goals to make a souffle with fruit. Because it is also

Created recipe STRAWBERRY-SOUFFLE

Th« plan avoids th« failure of type
SIDE-EFFECT:DISABLED-COMDITIO»: BALANCE
exemplified by the failure 'The batter is now flat'
in recipe STRAWBERRY-SOUFFLE.

Token = SIDE-EFFECT: DISABLED-COIDITIOI:BALAICEO

Figure 2.2: Avoidance goal under STRAWBERRY-SOUFFLE

46

indexed by the fact that it does avoid this particular problem with added liquid, it can also
be accessed when the planner is given the goals to make a kirsch souffle, which activates the
prediction of the problem and then allows CHEF to find the plan. So, this additional index
allows the planner to find the plan in situations that do not match the individual goals but
do have problems occurring in them that the plan solves.

2.3 Learning to predict failures

A case-based planner can use its own memories of past failures to anticipate new ones by
associating failures with the surface features that predict them. This association can be
made at the time of a failure by forming links between features of goals and the failures
that they have caused. These links can then used to activate the memory of the failure
when the goals arise again, thus giving the planner the warning that it should find a plan
that avoids the problem. The problem of learning to predict failures so as to anticipate and
avoid them is a problem of figuring out which features of an existing situation have caused
a current failure so that these links can be created.

A case-based planner saves memories of failures, indexed by the features that
predict them. It uses these memories to anticipate problems when these features
arise again in new situations.

When reminded of a failure, the planner needs to recall the token that has been built to
represent the failure and to index the plan that avoids it in memory. By having the planner
be reminded of the same representation of the failure that was used to index the plan which
avoids it in memory, it can use the reminding of the failure directly in searching for the
approriate plan.

In CHEF, for example, the program stores a STRAWBERRY-SOUFFLE in plan mem-
ory, indexed by the fact that it avoided a particular problem. The token used to index
the plan was then associated with the planner's memory of the failure. Because of this the
activation of the memory of the failure could be used directly to index to the plan that
deals with it.

In saving a memory of a failure, CHEF saves the token that was used to index
the plan that avoids that failure in CHEF's plan memory.

A case-based planner that does any sort of causal analysis of a problem in order to
repair it has a powerful tool for figuring out which features in a situation have to take the
blame for causing a problem. The explanation created to fix a faulty plan can also be used
to identify the features of a situation that will later predict that fault. As in learning new
plans, the planner does most of the work and the learner's task is to form the links that

47

will recall that work. The planning task is to repair the plan by figuring out what went
wrong and then changing the circumstances that caused the problem. The learning task is
to just recall these circumstances so the planner can recognize when a failure is imminent
and search for a plan to avoid it.

CHEF, for example, uses the explanation of why a failure has occurred to point out
which features arc responsible in a current situation for the problem and then uses it again
to find the features that will be predictive of the problem in later situations. These are the
same features, but the learner in CHEF wants to know not only the exact features that
caused the problem but also the more general versions of them that might cause it again.
It gets these more general features by doing what I call generalizing to the level of the rules.
This means generalizing an object in an explanation up to the highest level of generality is
possible while still staying within the confines of the rules that explain the failure.

The difference between this notion of explanation and that suggested by other theories of
explanation-driven learning ([DeJong 83] and [Mitchell 83]) lies in what is learned. Within
case-based planning, the explanation of why a plan has failed is used to figure out the
features that will later predict similar failures. In other theories of explanation driven
learning, explanations of why a plan has been successful are used to weed out the steps
that are irrelevant and generalize those that are too specific. Explanation of failures is far
more constrained a task in that only single anomalous state has to be accounted for and
the planner is not trying to generalize the plan it is building at all. It is only trying to
generalize its understanding of the circumstances in which that plan can be used.

A case-based planner uses the explanation of a failure to identify the features
that will predict it. It generalizes these features to the highest level of description
allowed by the rules in the explanation.

In an example of the CHEF program dealing with the problem of the a failed strawberry
souffle, in which the liquid from chopped strawberries causes the souffle to fall, one of the
links in the chain of the explanation is provided by a rule that states that the extra liquid
in the batter was a product of the chopping of the strawberries. A simple way to avoid this
failure in the future would be for the planner to mark strawberries as predictive of it and
be reminded of the failure and the repaired plan whenever it is asked to make a strawberry
souffle. But it turns out that the rule that explains the added liquid as a side-effect of
chopping the strawberries does not require that the the object of the chop be strawberries
at all. It actually explains that chopping any fruit will produce this side-effect. Instead of
marking STRAWBERRY as predictive of the problem, then, CHEF can mark FRUIT as
predictive (figure 2.3).

In some cases, the rule that explains a link in the causal chain leading to a failure does
have specific requirements. For example, in explaining the soggy broccoli in the BEEF-
AND-BROCCOLI plan, CHEF uses a rule that explains that stir frying any crisp vegetable
in liquid will make it soggy. In this case, BROCCOLI is too specific a feature to hang

48

Building dCBOna to anticipate failur*.

Building daaon: DEM0I2 to anticipate interaction between rules:
"Chopping fruits produces liquid."
"Without a balance between liquids and leavening the batter
•ill fall."

Indexing demon: DEM0I2 under item: FRUIT
by test: Is the item a FRUIT.

Indexing demon: DEH0I2 under style: SOUFFLE

Goal to be activated = Avoid failure of type
SIDE-EFFECT: DISABLED-COIDITIOI: BALAICE
exemplified by the failure 'The batter is no* flat' in recipe
STRAWBERRY-SOUFFLE.

Figure 2.3: Marking FRUIT and SOUFFLE and predictive of problems

the prediction off of and VEGETABLE is too general. To deal with this, CHEF uses the
tests on the rule itself to control the activation of the failure prediction. These tests are
associated with the general ingredient type that the rule tests for, VEGETABLE, and tests
for the features that are required for the rule to apply, (TEXTURE = CRISP). This means
that each time the planner has to deal with stir frying vegetables it will test their texture
and partially activates the memory of the failure if they are crisp.

In most situations, it is not a single feature but a set of features that combine to cause a
failure. The BEEF-AND-BROCCOLI situation is one of these because the failure is not the
result of either stir frying the beef or stir frying the broccoli but is the result of stir frying
them together. In these situations, a single feature alone should not activate the prediction
of the failure. It is only when all of the features are together, (style-stir-fry, meat and crisp
vegetable), that the prediction should be made. To deal with this, the activation of a single
feature that is linked to a failure only partially activates the memory. It is only when all
features send a signal that they are present that the memory of the failure is itself activated
and the planner is warned of the impending problem. CHEF does not anticipate a problem
when it plans for crisp vegetables alone, it only does so when it is asked to plan for stir
frying crisp vegetables along with other goals that will combine with the first to cause the
problem again.

When multiple features are required to predict a failure, all of them are linked to
the memory of the failure. This memory is not activated unless all of the linked
features are present.

49

In tracing back through the explanation of a failure to the initial causes, a planner
passes through states that those original causes have created. These states are the ones
that are the more proximate causes of the problems but not the first causes in terms of the
recipe. The liquid from chopping the strawberries is the actual cause of the problem with
the strawberry souffle but it is not the initial cause, the goal to include strawberries itself.

Although these states are not the initial causes of the problems that the planner has to
deal with, they can still be used to predict the problems in later situations. A planner has
to handle these intermediate states in the same way as it handles the ingredients it has to
mark as predictive of problems. It generalizes them up to the level of the rules that explain
the failure and link them to the token representing the failure. If other conditions are also
required for the failure to occur, they are also linked to the memory of the failure so that
the one feature alone will not predict the failure when it is inappropriate.

The CHEF program responds to the failure of the strawberry souffle by marking the
goal to include any liquid spice in a souffle as predictive of that souffle falling (figure 2.4).
This is implemented by placing a test on the concept SPICE that checks for the texture
and partially activates the memory of the failure when the test is true.

Intermediate states that serve as links in the causal chain that led to a failure
are also linked to the memory of the failure and thus can be used to predict it if
they arise in a later situation.

Building demons to anticipate failure.

Building demon: DEMONS to anticipate interaction between rules:
"Liquids make things vet."
"Without a balance between liquids and leavening the batter
will fall."

Indexing demon: DEM0N3 under item: SPICE
by test: Is the TEXTURE of item LIQUID.

Indexing demon: DEM0N3 under style: SOUFFLE

Goal to be activated • Avoid failure of type
SIDE-EFFECT: DISABLED-CÜ»DITIOH:BALA«CE
exemplified by the failure 'The batter is now flat' in recipe
STRAWBERRY-SOUFFLE.

Figure 2.4: Marking LIQUID and SOUFFLE and predictive of problems

When a set of features that combine to predict a failure is present, a case-based planner

50

is reminded of the memory of the failure itself. In CHEF, the request for a souffle with
raspberries in it reminds the planner of the problem of extra liquid in a souffle and allows
it to find and modify the STRAWBERRY-SOUFFLE plan that deals with it. It also allows
CHEF to be reminded of it when planning for a kirsch souffle, in which the added liqueur
would have the same effect as the liquid from the chopped fruit. This is a plan that the
planner would not have used had it not been for the prediction of the failure. The fact that
the ASSIGNER has earlier established these links between features and failures allows it to
find and make use of plans that otherwise would have not interesting features in common.

Before closing the discussion of learning to predict failures, there is one point that has
to be made about indexing in a case-based planner. A case-based planner indexes its plans
by the fact that they avoid particular problems. It also indexes memories of these problems
by the features that predict them. Given this fact, the question that arises is why not just
index the plans by the features that predict the problem that they solve directly.

There are two answers to this question. First, because a single class of problems can have
many specific causes, it is just more efficient to index the plan under a single characterization
of the problem and have the problem be predicted independently instead of indexing the
plan by all possible circumstances that might cause the problem. Problems can be predicted
with only a few features. There is little interaction between them that would lead to the
need for a complex indexing system. But adding these features to the those already used
to index plans would increase the complexity of plan indexing dramatically.

But efficiency is not the only argument. A more compelling argument is that indexing
the plans that solve problems by the features that predict them, without any marking those
features in any way, doesn't work. As was pointed out earlier in this chapter it is often the
case that the best plan for a situation is not the one that has the closest match in terms of
low level features.

In CHEF, for example, the prediction of the "soggy vegetable" failure allowed the pro-
gram to find the beef and broccoli plan that avoided it. Without this prediction, however,
the planner would have to rely on finding a plan using only the features of the initial goals.
Because the planner does have a plan for CHICKEN-AND-PEANUTS in memory, this
would be taken as the base-line plan. But this plan, when modified for the current goals,
will lead to soggy snow peas while a modified BEEF-AND-BROCCOLI will not.

The fact that a case-based planner indexes plans by the problems they solve and then
predicts these problems for use in search allows it to recover them in situations where the
low level features of the current goals will lead it to less appropriate plans.

2.4 Learning critics

Aside from storing plans and failures, a case-based planner also stores some of the repairs
that it makes to plans so that they can be used again. These repairs, stored in the form of
critics, allow a planner to repair plans it knows to be faulty before it runs them. A planner

51

would run into this situation when it predicts a problem, but cannot find a plan of the
proper type to deal with that problem. When this occurs, it has to use a plan that it knows
to be faulty and then change it with the same patch it used to repair another faulty plan
in the past.

A case-based planner stores some of the repairs that it makes, indexed by the
problems that they solve.

As with learning plans, the task of the learner is not to build the repair that is going to
be stored, but only to decide how it is going to be indexed so that it can be accessed at the
right time. There is a difference however in that not all repairs can be saved. Some repairs,
because they involve interactions between many parts of a plan are too complex to transfer
to new problems. Others are also linked to the type of plan that is being built, so there is
never a possibility that the problem is predicted but no plan of the dish type needed can be
found. Aside from deciding where to store the repair, the learner also has to decide which
repairs can be saved at all.

The decision to save a repair as a critic is based on the repair strategy that is used
to build the specific repair and on the cause of the failure in the first place. Some fail-
ures are the product of multiple ingredients interacting so no one ingredient can be blamed
for the problem and thus no one ingredient be given a critic that will repair. The first
test for turning a repair into a critic, then, is whether it relates to a single ingredient. The
second test depends on the complexity of the repair itself. Some strategies, such as ALTER-
PLAN:PRECONDITION,ALTER-PLAN:SIDE-EFFECT, and SPLIT-AND-REFORM de-
pend on specific steps being present in a plan and their changes cannot reliably be reused.
On the other hand, strategies such as REORDER and REMOVE-FEATURE create simple
changes that can be added to most plans. For example, the addition of a step to remove the
fat from duck created by REMOVE-FEATURE, can be added to any plan involving duck.
Likewise, the ordering change suggested by REORDER when the marinating of shrimp
blocked shelling it later can be applied to any case of the the two steps being misordered.

A case-based planner can only save those repairs that can be transferred to any
plan in which the problem that they repair arises.

In turning a repair into critic, a case-based planner has to store the specific change
suggested by the strategy under the ingredient that it relates to. This is again so the
prediction of a problem can lead to finding the repair that will fix it. By doing this, the
past repair can be suggested when and only when the problem it relates to is noticed or
predicted.

In CHEF, for example, a repair that the planner creates that adds the step of removing
the fat from the duck is stored under the concept duck itself. Unlike other repairs that take
the form of critics, however, these new critics are indexed by the problem that they solve.

52

To activate them, then, CHEF has to anticipate the problem and then fail to find a plan
that solves it. This restriction prevents CHEF from applying a repair to a plan that has
already been fixed. It only applies the new critic when the features predicting the problem
are anticipated and the plar that is used by the planner fails to deal with it.

Building a critic out of a repair requires that the planner only put together the pieces
that have already been built or identified. The explanation that is used to repair the plan
in the first place identifies where the critics should be stored. The critic itself is the actual
repair that was built by the strategy to patch the plan in the first place.

CHEF builds new critics out of current repairs and then indexes them by the
description of the problem being repaired.

Applying TOP -> SIDE-FEA1JRE:G0AL-VI0LATI0I
to failure Th« bunch of dumplings is now graasy.
in recipe BAD-DUCK-DUMPLIIGS

Implementing plan -> After doing step: Bone the duck
do: Clean the fat from the dnck.

Suggested by strategy REMOVE-FEATURE

Figure 2.5: Repairir.g DUCK-DUMPLINGS with REMOVE-FEATURE

An example of this notion arises when the CHEF program has to confr nt problem of
the grease from duck fat. In dealing with the fat from duck making the dish greasy, CHEF
repairs the plan using the strategy REMOVE-FEATURE (figure 2.5). Because the repair
is a simple one having to do with only one ingredient, it can then go on to store it as a

Building critic to avoid failure: The bunch of dumplings is
now greasy.
caused by condition: The duck is now fatty.

Critic =
After doing step: Bone the duck

do: Clean the fat from the duck
because: The duck is now fatty.

Storing critic under DUCK
Indexing by SIDE-FEATURE: GOAL-VIOUTIORO

Figure 2.6: Storing new critic under DUCK

53

critic under DUCK, indexed so that the prediction of the problem will activate the critic
for use in a different plan (figure 2.6). When it later has to make a duck pasta dish and
cannot use its DUCK-DUMPLINGS, it is in the position of predicting a problem that it
does not solve with a complete plan. During modification, then, it activates the critics and
adds the step that removes the fat from the duck (figure 2.7). Even though it could not
find a complete plan to deal with the problem then it is able to avoid it before running its
new plan by using its earlier repair.

Problem predicted - SIDE-FEATURE:GOAL-VI0UTI0I0

Considering critic:
After doing step; Bone the duck

do: Clean the fat from the duck
because: The duck is now fatty. - Critic applied.

Figure 2.7: Using new DUCK critic.

As with the other aspects of a case-based planner's learning, the stress in learning new
critics is not on the construction of the critics themselves. The stress is on how they are to
be stored so that they can be accessed at the appropriate time. By indexing the patches to
a plan under the prediction that it will fail, a case-based planner can activate those patches
only when the features that predict the failure are present and thus avoid them before the
plan is run.

2.5 How learning from planning is different

Learning for a case-based planner is a by-product of planning, so the needs of the planner
determine what is going to be learned, when it is going to be learned and how it is going to
be learned. Other learners that learn categories or plans in the absence of a use for what
they learn are concerned with creating new structures but have little interest in how they
are stored and managed for use in an active memory. A learner associated with a planner,
on the other hand, does not do any building on its own. It is instead concerned with how
to organize the results, both positive and negative, of its planner in a dynamic memory of
experience that the planner can use.

Learning is the organization of experience. As a result, the core issues of learning are
memory organization and indexing. The most important problem in learning is deciding
how to describe and store an experience so that it can be used again. In a planner that
learns, this means finding a way to organize the planner's results so they can be used again
in the appropriate situations.

Because a case-based planner makes use of existing plans to create new ones, the most

54

natural thing for it to be learning is new plans so that it can adapt them for later use.
A case-based planner plans by finding the "best match" between new goals and old plans
that satisfy them so it also makes sense that the most important issue in learning plans is
indexing them so that they can be found at the appropriate time. A case-based planner
must predict problems so that it can find plans that avoid them, so it makes sense for it to
learn the features that predict the problem it encounters. Because it is possible to predict
a problem that cannot be handled with an existing plan, it also makes sense for a planner
to to learn specific fixes that can be applied to repair the plan it has to use. The needs of
the planner decide what is going to be learned: plans, problems and repairs.

Planning is a test of the planner's knowledge. When that knowledge fails, the planner
can see through its own experience that it needs to learn some new way to discriminate
between the situation it thought it was in and the one it is actually in.

Because a planner is able to test its knowledge of the world by building new plans,
its planning experiences can tell it when it has to learn something from those experiences.
When a case-based planner builds a successful plan, it knows to store it for later use.
Because it knows in what sense the plan is successful, in that it knows the goals it satisfies
and the problems it avoids, it also knows how to index it in memory. When a case-based
planner fails, it knows to mark the features that caused the failure as predictive of it so that
it can anticipate it in the future. The failure itself tells the planner that its knowledge has
a gap, and that the gap has to be filled with the prediction of a problem that the planner
was not able to anticipate before. And when a case-based planner repairs a plan, it knows
that this repair is a patch that fixes a failure created by its own modification process. In
response, the planner adds this patch to the knowledge used by that process. The planner
determines when the learner is turned on: when the planner succeeds, fails and repairs.

Finally, the planner itself provides the learner with the content of what is learned. It
builds the plans that are stored in memory. It builds the explanation that is used to assign
blame for a failure. It even builds the patch that is stored as a new ingredient critic. The
learner does not create what is Irarned, the planner does. In every case, the task of the
learner is the task of collecting the features that should be used to index the planner's work
and then store that work away for later use.

The planner does the reasoning. The learner examines that reasoning and decides how it
should be stored in memory such that it can be recalled again when needed. Unlike systems
that do nothing but learn and as a result do nothing with what they learn, a case-based
planner that learns is managing a dynamic memory of experience in service of planning.

Learning means storing storing the different results of the planner's activity in-
dexed by the features that determine their usefulness.

55

2.6 How learning from planning is better

A ca-oe-based planner must build functional categories that allow it to anticipate problems
and then react to them. This is opposed to programs that build definitional categories
that are no more than lists of necessary and sufficient features. The notion of learning not
only a plan, but the features that it should be indexed by is an improvement over other
learners that are aimed at plan learning. A planner is concerned with the reuse of its plans
while other systems are not. It is not satisfied with just having the plan in hand, it has to
understand when it should be used and thus where it should be stored.

A case-based planner can use its knowledge as a planner to guide the credit assignment
decisions it makes in marking features as predictive of problems so it does not run into the
difficulties associated with inductive learning algorithms. It only has to see one instance of
a problem to learn the features that predict it. It ignores extraneous features. It uses the
explanation of a situation to determine the level of generality that those features will be
pushed to. And it does not have to rely on a tutor to hand it the correct set of examples
for generalization. By using the knowledge of what it is learning to guide it, a case-based
planner can replace credit assignment through repetition with an more powerful credit
assignment through relevance.

A planner knows when to learn. Unlike learning systems that do nothing but learn, a
planner actually has a motivation for learning: the improvement of its planning abilities.
Because it learns in response to the needs of the planner, it learns when and only when the
planner requires it to. Because it learns in to improve the planner its learning is constrained
to be only that which will help the planner with later efforts. The stress of the learning is
on the use of what is learned instead of on the moment of learning itself.

Learning from planning is an improvement over other types of learning in that
it uses the knowledge of the planner to determine what it learns, how to index it
and when to learn it at all.

All of these improvements come for the basic idea that learning is not separate from
planning. Learning is the management of the planner's memory of its own experience so
that it can plan more effectively and avoid the problems that it has encountered before.
Learning does not just involve memory, learning is memory.

56

Chapter 3

Planning from Memory

Popular culture has created quite a few myths about computers and Artificial Intelligence.
One of the oddest of these is the notion that computer intelligences will have memories
that are vastly superior to those of human beings. They will be able to recall details with
greater clarity, access huge libraries of knowledge and be reminded of situations from the
past that exactly fit the needs of the present. Science fiction is filled with annoying super
memory computers and robots who are always reminding their users about events they have
neglected and details they have wanted to forget.

The popular culture view of robot and machine memory is built, however, on a faulty
model of how memory works in the first place. It is built on the vie v that, somehow,
we never search for anything in memory. Instead, we just name a memory and out it
pops. When a person does this, the memory that comes out is something faulty, because
human memory is implemented on hardware that slowly decays with time. However when a
machine does this, the memory is crisp and clear, because the memory of a machine resides
in the cold, clean, and unchanging world of digital circuitry.

The problem with this view is that it ignores the fact that a memory structure requires
two elements: the objects being stored and the organization that makes it possible to find
them. The science fiction view that depicts robots and thinking computers includes only the
first requirement of raw material and has ignored the need for organization. A memory with
no organization - no notion of how to find the objects stored there - is as useless as a library
without a card catalog. It contains information, but it is inaccessible. Even if each memory
is named or each book titled, finding a desired one without some sort of organization would
be a tedious task at best and practically impossible at worst. The best strategy for such a
situation would be to just grab memories or books at random and check them against some
description of what is wanted, discarding them until the right one is found. This method
fails at the leisurely level of libraries, and does worse than fail at handling the real time
needs of a working memory.

Defining a memory requires more than a description of what will be stored there. It

57

58

also requires a description of how those stored items are going to be organized, how they
are going to be indexed and searched for, so they can be found again at a later time.

Memory is defined by the objects it stores, the vocabulary used to store them
and the search that is used to rediscover them.

3.1 The function of memory

Libraries are organized in a straightforward way. Books are all indexed by author, title and
subject matter. A user can look for a book on the basis of who wrote it, what its name is
or what subject he is interested in. Books are indexed this way because they are used this
way, because these ^re the features that determine their function. Books are indexed by
the features that ihr librarians of the world have decided are the most functional, given the
needs of library uspr» The indexing reflects the needs of the search. The features used to
organize books r^'Wt the use to which they will be put.

Given anotW ** ">f needs, another set of features would be used to index books. In
a world where b...,r %l ^ just ornamental items used to support works of art, they might
be indexed by «w«, ■Mm * *»d rover design. These would be the features that would most
affect their functioMi' -helt usefulness, and thus they would be the features most useful
in indexing them.

Unfortunately, in trying to «describe human memory and prescribe machine memory,
some r»»*«rrhers have given people far leu« credit for intelligent organization of knowledge
than tbry piv* their loc»l libraries. Tl»ey don i seem to think of memory as a resource that
serves th« needs of undeft^itnding and planning. They don't seem to think of memory as
something organized and indexed to beat fulfil its own function. Instead they have opted
for the view that the fead. TS used t« organize memory, the features that control what a
person is remwided of frfHn one situtation to the next, are almost random in nature.

For example, both Gents« [Centner and Landers 85] and Holyoak [Gick and Holyoak
83] have argued that features used to •ontrol analogical remindings, that is remindings from
one situation to anothet, are primarily based on the surface similarities between the two
situations. Holyoak has also gone on to propose a computer model of memory for planning
that makes use of spreading activation through a random set of features that link episodes
together [Thagard and Holyoak 85].

The problem with this work, as with much of the work on human memory organization,
is that it is an attempt to look at memory abstracted away from the function it serves.
Centner and Holyoak have spent much of their time looking at the features that they feel
are used to access memories. But they have done so while ignoring the tasks that are being
performed by their subjects when these memories are accessed. As a result their theories
do not take into account the needs of the task being performed or even the information

59

that their subjects would actually have in hand as a result of the partial completion of
these tasks. This second omission is particularly troublesome in that they are ignoring
information that is more than likely used by their subjects in accessing memories.

There are a set of problems that rise out the lack of attention to questions of function
in examining memory. Because they are interested only in the details of the similarity
between individual episodes involved in the reminding from one situation to another, both
Centner and Holyoak seem to ignore the fact that a reminding of one episode from another
is a reminding out of all of memory. They forget that their task is not to just explain why
one episode was found but also explain why others weren't. They are satisfied to explain
a reminding from a current episode to one in the past by simply listing the features that
they have in common. But the major problem with this work is that it avoids the fact that
memory is used for something. They have failed to ask what purpose the reminding they
have studied might have, and thus have failed to ask why and how it was retrieved in the
first place.

The point here is simple: memory exists to serve a function and any study of memory
has to be in terms of that function. If memory does not serve a function, then what is the
point of studying it at all?

No matter what the situation, the features used to index something should have a
functional relationship to its use. The vocabulary used to index episodes and the choice of
the particular features of a situation used to find those episodes, then, should be decided
by the needs of the program that makes use of the memory they define. This gives a user
the ability to describe an item in terms of his needs and then use that description to find
the object that fits it. Without this ability, what would be the point of indexing at all?

The organization of a memory should reflect its function. The content of the
objects stored in memory, the vocabulary used to index those objects and the
features used to search for them should rise out of the needs of the process that
ultimately uses them.

3.2 A planner's memory

The memory organization of a case-based planner can be seen as four separate organizations
that are defined by the planner's different needs. These are:

A plan memory that provides initial plans for a set of goals to be satisfied and problems
to be avoided.

A failure memory that predicts failures on the basis of the similarity between past and
current situations.

60

A modifier memory that provides the alterations that have to be made to an old plan
to account for new goals.

A repair memory of strategies and their implementations that suggests the strategies
that will be useful in repairing particular plan failures.

These four memories exist for different reasons as they serve different processes and
different functions. As a result, they make use of four very different indexing schemes. They
are not different in that they are implemented with different processes or data structures.
They are different in that the vocabulary that is used to describe the objects they store
reflect the different needs of the function to which those objects will are put.

For example, a case-based planner's memory of plans has to be indexed by at least two
kinds of descriptors: the goals that the plans satisfy and the problems that they avoid. The
strategies that it uses to repair faulty plans, however, have to be stored in a very different
way. They have to be stored by a description of the failures that they repair. While they
make use of different vocabularies and even store different types of knowledge, both make
use of the same principle in indexing that knowledge: index objects by the features that
determine their usefulness. For a plan memory, this means the goals that the plans satisfy.
For a memory of plan repairs, this means the different situations for which the particular
repairs are useful.

Memories that serve different functions should have different organizations. Each
organization, however, should reflect the needs of that function.

Even if the many memories used by a case-based planner are implemented as a single
network, a single collection of connected concepts, the needs of the different processes
using that memory will have to be reflected in different vocabularies that can be used to
access the memory objects themselves. The argument is not that different processes that
use memory define different memories that are physically distinct, but that they define
different vocabularies as a result of their different indexing needs.

In the GHEF program these different memories are implemented as independent struc-
tures. Its memory of successful plans is implemented as a discrimination net indexed by
the goals that the plans satisfy and the problems that they avoid. Its memory of failures
is implemented as a network of nodes through which markers are passed to connect the
surface features of a new planning situation to the failures that they predict. Its memory
of modifications is a table, indexed by the general plan to be altered and the new goal that
is being added. Its memory of repair strategies is stored under TOPs, which themselves are
indexed in a discrimination network by causal descriptions of planning problems.

The first three of these memories, plan, failure and modifier, are dynamic. That is, they
change in response to CHEF's experiences. It is through alterations of these memories that
CHEF learns.

61

The memories of a case-based planner change in response to the experiences it has. A
plan memory grows with each new plan that is built. But the features that are used to access
this inemoiy also changes, reacting to the information about their relative importance that
a planner gets through experiencing failures that they cause. A memory of failures begins
empty and expands as a planner encounters difficulty in building plans on its own. But as
its memory of failures expands, so does its ability to predict and avoid the failures that it
can recall. By remembering its own failures, then, a planner can avoid their reoccurrence.
Finally, a planner's knowledge of the modifications to plans it has to make to account for
the idiosyncrasies of the objects in its domain also changes in response to its failure to
anticipate those idiosyncrasies. The more a case-based planner fails, the more it learns
about the world and thus the better a planner it becomes.

A case-based planner's dynamic memories all respond to its failures, storing the
information as to why and when it failed and how it recovered so that it can
recognize and avoid the problems it has already encountered.

3.2.1 Memory of plans

A case-based planner's most important resource is its memory of past successes. This
memory is used to find the past plan that it will adapt to its current goals and is also
used to file away successful plans for later use. Without this memory of plans, a case-based
planner would have nowhere to start its planning from and nowhere to place the results of
its planning once it was done.

There are two issues that are essential in building a plan memory: the form of the
objects that are stored and the vocabulary that is used to store them. In a case-based
planner, the objects that are stored are specific plans rather than abstractions of plans, the
vocabulary that is used to index these plans in memory is a vocabulary of the goals that
the plans satisfy and the problems that they avoid.

Rather than storing generalized versions of plans in memory, a case-based planner stores
specific plans for specific circumstances. But this does not mean there is no generalization
going in a case-based planner. The generalization is just at the level of the features used to
index plans rather than at the level of the plans themselves. By indexing plan by general
descriptions of the goals that they satisfy as well as the specific goals, the plans can be
retrieved for use in situations where they partially satisfy the planner's current goals. This
means that the planner can use the plans, after modification, in a wide range of situations
in which they partially match the current goals while still retaining the specificity required
to be used directly in those situations where they exactly match the current goals.

The first component of a case-based planner's memory of plans is the plans themselves.
These plans are represented as a fully ordered set of steps at the level of the planner's

62

primitive actions. Along with the steps is an explicit description of the specific objects that
the steps are run on.

In CHEF, these plans are the recipes that the planner either knows about or has created
on its own. The representation for the initial plans that CHEF begins with and the plans
that it creates on its own are are identical. Each has a set of ingredients and a set of steps
that make use of those ingredients. The steps all refer back to the ingredients themselves,
to the results of previous steps, or to size and time restrictions. Each plan is also defined as
being a particular type of plan, a plan for a certain type of object. In the CHEF domain this
means that each plan is something like a STIR-FRY plan or a SOUFFLE. This information
does not limit the types of steps that can be included in the plan, it only defines the class
of results, the class of goals that the plan is expected to satisfy. The definition of a plan,
then, basically includes its ingredients, its steps aud the type of plan it is (figure 3.1).

(del:r«c brocccli-with-tolu
(ingr«dl«nti

ingrl (tofu lb .6)
ingr2 (soy-sauce tablespoon 2)
ingr3 (rice-wine spoon 1)
ingr4 (corn-starch tablespoon .5)
ingrB (sugar spoon 1)
ingr6 (broccoli lb 1)
ingrT (r-pepper piece 8})

(action*
•ctl (chop object (ingrl) size (chunk))
act2 (marinade object (result actl)

in (* (ingrt) (ingr3) (ingr4) (ingr6))
tiac (20))

acts (chop object (ingrO) size (chunk))
act4 (stir-fry object (ft (result act2) (ingr7)) time (1))
acts (add object (result act3) to (result act4))
act« (stir-fry object (result acts) time (2)))

(style style-stir-fry))

Figure 3.1: The definition of BROCCOLI-WITH-TOFU.

Every plan that a case-based planner has in memory has a set of goals associated with it
that is generated from general role information on the plan type and the specific ingredients
in the current plan. These goals are inferred from the knowledge about the requirements
of the general dish type of the plan, (in CHEF this would mean plan types such as STIR-
FRY, SOUFFLE and PASTA-DISH) combined with the information associated with the
items that are included in the plan itself (broccoli, beef, shrimp). In CHEF for example, a
STIR-FRY plan that includes broccoli generates the goal to have the broccoli crisp while a
SOUFFLE plan that includes broccoli includes the goal to have the broccoli be soft. Going

63

back to the example from architecture in which windows were added to different designs,
a window in a two story house would have to open and close while a window in a climate
control high-rise would have to be sealed shut. The general nature of the overall plan effects
the specifics of individual goals. So, from the basic definition that includes the general plan
type and the objects that are included in it, a case-based planner can infer the goals that
a plan should satisfy.

In an plan for a stir fry dish of broccoli and tofu that CHEF builds, it combines the
general knowledge stir frying with the specifics of the particular plan to general the following
goals:

BROCCOLI-HITH-TOFU

If this plan is successful, the following should be true:

The dish no« tastes savory. The dish no« tastes sweet.
The dish no« tastes salty. The broccoli is no« crisp.
The dish no« tastes hot. The tofu is no« soft.

Plans also have links to any failures that occurred while they were being built. These
links are attached to plans that have failed and and have been repaired to now avoid those
failures. Every plan, then, has knowledge of the goals it satisfies and the problems it avoids.
This, of course, is only the case with plans that a planner experiences problems with. Plans
that run smoothly the first time will have no failures associated with them.

But plans tint are the result of repaired failures are linked to the failures that they
avoid.

In CHEF, the BEEF-AND-BROCCOLI plan discussed in the first chapter that was
repaired after having had a failure resulting from the the interaction between the stir frying
of the beef and the stir frying of the broccoli records the fact that it does so.

BEEF-AHD-BROCCOLI

If this plan is successful, the following should be true:

The beef is no« tender.
The dish no« tastes savory.
The broccoli is no« crisp.
The dish no« tastes salty.
The dish no« tastes sweet.
The dish no« tastes like garlic.

The plan avoids failure of type
SIDE-EFFECT:DISABLEO-CORDITIOI:CONCURRENT
exemplified by the failure 'the broccoli is no« soggy'
in recipe BEEF-AND-BROCCOLI.

64

Each of the plains in CHEF's memory of plans knows the ingredients it requires,
the steps it defines and the general type of plan that it is. Each plan also knows
the goals it is supposed to achieve and the problems that it is designed to avoid.

Recipes make up the content of CHEF's plan memory. It only begins with 10 recipes
for different types of dishes and expands this to a final set of 40 recipes that it uses as the
basis for later planning. As CHEF makes modified versions of the recipes it has on hand,
the task of planning becomes easier as it stores the results of that planning away for future
use.

A set of plans is useless however, if they are not organized so that they can be accessed
at the appropriate times. So we need more than plans, we need plans and a memory
organization. But the question of memory organization is actually a question of function,
a question of use. So what function is this memory of plans going to have, what use are
the individual plans going to be put? In answering this, we will start with the basic needs
a simple plan retriever and expand the memory it uses as those needs are expanded.

Given that we are discussing a planner with the primary task of building plans that
achieve its goals, it seems straightforward enough to think that the plans in its memory of
plans should be stored by the goals that they satisfy. Each goal that a case-based planner
has to plan for, then, should be able to find some plan, if it exists, that satisfies it.

In CHEF, the goal to have a stir fry dish should point to one or more stir fry plans. The
goal to have a dish that is hot should point to a set of hot dishes and so on for goals such
as including beef in a dish or having a shrimp in the dish. In general there should be a link
between the planner's different goals and the plans that satisfy them (figure 3.2). Such a
link would allow CHEF to find plans that satisfy individual goals and also allow it easily
place plans in memory by associating them with the particular goals they satisfy.

Make a stir-fry dish Include beef Make the dish taste hot

STIR-FRIED-SHRIMP SESAME-BEEF

Figure 3.2: Goals point to plans.

HOT-AND-SOUR-SOUP

But it is often the case that a case-based planner has to plan for many goals at once
and has to find a single plan that satisfies a set of goals rather than just one. In order to

65

deal with this, it needs a memory of plans that is organized by more than just simple links
between goals and plans. It needs to be able to hand a set of goals to its memory and have
it return a plan that satisfies all of them, if one exists. The memory of a case-based planner,
then, has to be designed so that multiple keys can be used in combination to find plans in
memory.

A case-based planner's memory has to be organized such that multiple features
can be used in combination to search for plans.

One way to implement a memory that uses a set of features to index to the objects it
stores is through a discrimination net. To organize and access plans by the multiple goals
that they satisfy, CHEF's plan memory is implemented as a discrimination net of plans in
which the discriminators are the goals that each plan satisfies. Given a set of goals such as
having a hot stir fry dish with shrimp, CHEF can drive down through the discrimination
network of its plan memory and find a plan that satisfies all of these goals, if one exists
(figure 3.3). If the CHEF cannot drive down any further, it picks between the plans lower
down in the net at random.

The basic organization of CHEF's plan memory is a discrimination net of plans
indexed by the goals they achieve.

Often there are times when there isn't a plan in memory that satisfies all of the goals
that the planner is interested in. At these times, the "best match" that the planner requires
will be a plan that only satisfies some if its goals that it will have to be modified to satisfy
others. In these situations it would be helpful if the planner could find a plan that accounted
for at least some of the features of the goals that it does not completely satisfy. This partial
satisfaction of goals not fully satisfied would mean less work later on for the process that
has to add the steps for the unsatisfied goals to the plan. It would be helpful, then, to have
some sort of notion of a partial match between goals so plans that satisfy goals similar to
the current ones could be identified. A plan that partially satisfied a ^oal has to be altered
less than a plan that did not satisfy the goal in any respect whatsoever.

Imagine that CHEF is trying to find a plan that satisfies the goal of having a hot stir
fry dish that includes shrimp. Imagine that it does not have such a plan, that it only has
a hot beef dish and a hot fish dish. Now, because the fish has a lighter taste than the
beef, the amount of seasoning used in it is slightly lower than for the beef dish. If the beef
dish is chosen as the initial plan, its seasoning will have to be altered along with its main
ingredient. If the fish dish is taken, however, the shrimp can be added directly in place of
the fish along with a step for shelling the shrimp. There is an advantage, then, to choosing
a plan that satisfies goals similar to the planner's own goals, even if one cannot be found
that satisfies the goals directly. So a case-based planner needs some idea of which goals
are similar to each other. It can then use this similarity metric to find plans that at least

66

Include shrimp

Make a stir-fry dish

Make the dish taste hot

Figure 3.3: Discrimination network of plans indexed by goals.

partially satisfy a goal if it cannot find one that exactly satisfies it.

CHEF implements its similarity metric using a hierarchy tha' links similar goals to one
another. The more alike two goals are, the closer they are in this hierarchy. The information
in this hierarchy is used when plans are searched for and when they are placed in the plan
memory. When a new plan is stored in memory, each goal that it satisfies is used in placing
it deeper into the network and, at each level of discriminaiion, more general versions of these
goals are also used to index it, in anticipation of the later need to find partial matches. So
a plan that includes fish will be indexed by the fact that it includes fish and by the fact
that it includes a seafood. If a specific goal cannot be used to drive deeper down into the
network, more general versions of it are tried. In looking for a plan that includes shrimp,
the RETRIEVER will first use "shrimp" and then will back off and use the more general
"seafood". Doing this it finds the plan that includes fish (figure 3.4). So partiell matches
on particular goals are only searched for after exact matches fail to b" found.

If a plan to satisfy a particular goal cannot be found, CHEF searches for a plan
that satisfies a similar goal.

In cases where there are many plans that partially match the goal that is currently

67

souffle stir-fry

pasts
—T-

Include shrimp

Make a stir-fry dish

Make the dish taste hot

seafood red-fish

beef

bland hot

sweet
T

5
hot

SPICY-RED-FISH

Figure 3.4: Finding plans that satisfy partially matching goals.

determining a planner's search, it must be able to use other features to decide which of
the plans that partially satisfy the goal does so in the best possible way. For example, if
there were two seafood plans in memory, one for red fish and one for crawfish, a planner
would have to choose between them when looking for a plan that partially satisfies the
goal to include shrimp. While both have similar seasoning, the plan that includes the
crawfish also has provisions for shelling the fish, making it the better plan for adaptation to
shrimp. The fact that both shrimp and crawfish have shells, represented in the TEXTURE
slot of both items, should be used to choose the crawfish plan over the red fish plan. A
case-based planner, then, needs to be able to notice the similarity between the features
within individual goals as well as noticing that two goals are specialized versions of same
abstraction.

In order to allow this sort of discrimination on individual features of the goals in a plan
rather than features of the plan itself, CHEF's plan memory has a level of feature discrim-
ination that immediately follows any discrimination on the basis of general versions of the
goals that a plan satisfies. While both the red fish and the crawfish plans are discriminated
by the fact that they both include seafood, there is a further level of discrimination under
that which uses the features of each of the goals themselves rather then the features of the
overall plan. The TASTE, TEXTURE, SIZE and COLOR of each item included in the
goal is used at this level. After discriminating down to the two plans that include seafood,

68

because shrimp is a seafood, the plan retriever uses the individual features of shrimp to
further discriminate down to a plan that is not only for an item of the same general type
but also for an item that shares features in common with the goal currently being planned
for (figure 3.5).

Include shrimp

Make a stir-fry dish

Make the dish taste hot

Figure 3.5: Discriminating on the features of partially matching goals.

In deciding which of the individual features of a particular goal to use in further discrim-
inating between possible partial matches, the CHEF uses a static ordering of the features
that determines which should be discriminated off of first. This ordering for goals involving
the inclusion of particular foods, the only goals for which partial matching is really useful,
is TASTE, TEXTURE, SIZE and COLOR. To decide between possible partial matches, the
planner checks the features of the its current search goal against the features of the goals
satisfied by the plans in memory in this order. If all or none match on TASTE, it goes on
to TEXTURE, then on to SIZE and COLOR. Any ties, in which one feature determines a
set of plans rather than just a single plan is decided by the next significant feature.

The features that are important to a match, however, often change in response to con-
text. In choosing between the plan which includes red fish and the one which includes
crawfish for use as the baseline plan for the shrimp, the important factor is actually the
TEXTURE of the items not the TASTE. It would be desirable, then, to be able to choose
the features of a partial match that are most relevant to the current situation to use in

69

further discrimination down to a particular plan. Further, this choice of features should be
made on the basis of the experiences that the planner has had with the particular features
it is looking at.

CHEF deals with this issue by associating the features of an item to be included in a
dish with the failures that it has participated in. For example, CHEF knows that the fact
that crawfish have a shell has caused a failure because of the ordering constraint that the
removal of the shell places on a plan. It knows that the shell has to be removed before
any other steps are performed on the crawfish, but learned this only after a plan was tried
in which the crawfish were going to be shelled after being marinated. This resulted in a
failed precondition on the SHELL that the crawfish be manageable before shelling. Besides
repairing the plan, CHEF also marks TEXTURE = soft/shell as problematic. Later, when
the plan retriever is deciding which feature to use to discriminate between partial matches, it
sees that shrimp has TEXTURE = soft/shell and uses this feature to discriminate between
possible plans rather than the first feature on its static ordering, TASTE. The fact that
a feature has been problematic in the past, then, gives the planner the idea that it may
be problematic in the present. If it turns out that more than one feature has a failure
associated with it, the one with the greatest number of associations is used first. Failures
alone are used to mark features because a failure associated with a feature is an indication
of the fact that it is problematic.

This method of choosing relevant features allows CHEF to find the plan that is best
suited for adaptation to a particular goal, because it makes use of its past experiences to
identify problematic features that should be planned for even if the entire goal cannot be.

In making similarity judgments between goals, a case-based planner tries to find
goals of the same type that have similar features. In matching goals, it first looks
at those features which it has experienced as being problematic.

It is important to point out that this use of experience to select relevant features is not
the indexing by problems that plans avoid which has been mentioned in earlier sections.
That sort of indexing will be discussed later and relates to interactions between the plans
for multiple goals. The method that has just been described here relates only to the use
of experience to select the features of goals that are most important in putting together a
partial match between a new goal and the goals that an existing plan already satisfies.

There is another sort of problem that arises when a case-based planner is using its
plan memory. It is the problem of deciding between plans that satisfy the same number of
different goals. For example, in trying to find a plan for a stir fry dish that includes both
beef and broccoli, the CHEF planner is faced with two possibilities: a plan for broccoli with
tofu and a plan for beef with green beans. Each of these plans satisfies two of the three
goals that the planner has. The first satisfies the goal of making a stir fry dish and the goal
of including broccoli. The second satisfies the goal of making a stir fry dish and the goal
of including beef. Each satisfies two of the three goals held by the planner, but one could

70

be more useful to its needs. The question is, which of these plans does the planner actually
want, and what kind of knowledge can it use to assure that it will choose or find the right
one.

The choice of the right plan here is not altogether obvious. But because the meat in a
stir fry dish usually determines the seasoning the right choice in this situation is the plan
that already includes the beef. If the other plan were taken, more changes would have to
be made to it giving the planner more work to do. One of the considerations in choosing
between two plans then, has to be the amount of work that the planner at large is going
to have to do to alter them to account for the goals that they do not satisfy. Just as
the plan retrieval mechanism needs a similarity metric to decide how well a plan partially
satisfies a goal, it also needs some way to determine the relative utility of the goals that
it fully satisfies. If CHEF had to use the tofu dish as a starting point, it would have to
go through the process of removing the tofu and any special steps or ingredients that it
required before adding the beef. This would require more work on the part of the planner
than just replacing the vegetables.

CHEF implements this utility metric through a static ordering of the general goal types
that reflects the difficulty of altering an existing plan to satisfy a member of that type. For
example, it is trivial to add spices to a dish, but it is very difficult to modify a dish of one
type to be a dish of another type. Because of this, the general goal to have a certain type
of dish ranks higher on the priority list used to order goal types than does the general goal
to include the tastes associated with spices. So in searching for a plan to satisfy the two
goals of having a stir fry dish and having the dish be hot, the planner uses the fact that the
first is a high priority goal and the second a very low priority goal to choose a stir fry plan
that isn't hot rather than a stew plan that is. It is just easier to add red pepper to a stir
fry plan than it is to modify a plan for a stew to be a stir fry dish.

CHEF decides between competing plans that satisfy the same number of different
goals using a notion of the relative value of each goal. This value metric is based
on how hard CHEF will have to work later to incorporate a new goal into a plan
it has found. It uses goals that are less difficult to incorporate into existing plans
only after the more problematic goals have been exhausted.

The memory that has been defined thus far is able to react to a set of goals and provide
a plan that satisfies or partially satisfies as many of the high priority goals as possible.
A case-based planner first uses its knowledge of the relative difficulty of modifying plans
to prioritize the goals it is handed. This difficulty is represented by an ordered list of the
general goal types. It then uses the highest priority goal to drive into memory and abandons
the search on the basis ofthat goal only after it has failed to find a plan that even partially
satisfies it.

The effectiveness of this is seen the first time CHEF builds a plan for fish when it only
has access to stir fry plans for chicken, beef and tofu and a plan for fish stew. It never

71

even sees the plan for fish stew, because it first discriminates on the goal of having a stir
fry dish. While it misses the specifics of the fish plan it gains the information that it has to
have to make the stir fry plan in general. Unfortunately, it cannot find a fish stir fry plan.
Because of this, it has to back off on the goal for fish itself and be satisfied with the partial
match with chicken. The chicken plan is chosen because the TASTE of the chicken is a
closer match to the fish than either the tofu or the beef. Once it make this discrimination,
it is able to continue to drive down in memory and find a stir fry chicken plan that also
tastes hot. This gives it a plan that can then be simply modified to include the fish rather
than the chicken.

Searching for plan that satisfies -
Include fish in the dish.
Have the dish taste hot.
Make a stir-fry dish.

Placing goals in order of difficulty -
Hake a stir-fry dish.
Include fish in the dish.
Have the dish taste hot.

Driving down on: Hake a stir-fry dish.
Succeeded -

Driving down on: Include fish in the dish.
Failed - Trying more general goal.

Driving down on: Include sea food in the dish.
Failed - Trying more general goal.

Driving down on: Include any animal in the dish.
Succeeded -

Driving down on: TASTE
Succeeded -

Driving down on: Have the dish taste hot.
Succeeded -

Found recipe -> REC6 HOT-CHICKEI

Recipe exactly satisfies goals ->
Make a stir-fry dish.
Have the dish taste hot.

Recipe partially matches ->
Include fish in the dish,

in that the fish can be substituted for the chicken.

While this type of organization organization satisfies many of the requirements that a
case-based planner has for its plan memory, we have not yet discussed the one feature that
makes the plan indexing of a case-based planner that learns from failure so different than

72

the plan storage of other planners: indexing plans by the problems that they avoid. This
indexing allows a planner that learns from failure to anticipate and avoid problems that it
has encountered before.

When an anticipate and avoid planner is planning for a set of goals, it is often the case
that it is able to predict that the normal plans for some of the goals will interact to cause a
problem. That is, it predicts that its normal indexing methods and its normal modification
procedures will result in a failed plan. The next section will discuss how a case-based
planner makes this type of prediction, but for now, this is not as important as the fact that
it is able to do it at all.

When the CHEF program looks at the goals to make a stir fry dish with chicken and
snow peas, it can predict that the snow peas are going to end up soggy as a result of stir
frying them with the chicken. When it looks at the goals to make a pasta dish that includes
duck, it predicts that the fat from the duck is going to make the dish too greasy. When it
looks at the goals to make a souffle with Kirsch, it can predict that the liquid is going to
make the batter too wet to rise. In many different situations, it can predict that some sort
of failure is going to occur if the normal planning procedures are followed.

But what can a case-based planner do with this sort of prediction? How can it change
its regular approach of finding a plan that satisfies as many goals as possible and then
modifying it?

One thing it can do is take the prediction and use it to find a plan that explicitly avoids
the problem that has been predicted. It can search for a plans that avoid soggy vegetables,
do something to take care of the grease or deal with the problem of too much liquid. It can
use the fact that it predicts a problem to find a plan that avoids it. This is exactly what
the CHEF planner does.

When CHEF generates the prediction of a failure from a set of goals it generates a goal
to avoid that failure. This goal is then added to the initial set of goals that is handed to the
the plan retriever, which then uses this goal to search for a plan that avoids the problem
in exactly the same way it searches for plans that directly achieve other goals.

A planner, however, can only use the fact that a plan avoids a particular problem if
it is stortxi in memory indexed by that fact. This turns out not to be a problem, in that
each plan that is altered in response to a failure, and now avoids that failure, carries the
information that it does so. This information can be associated with the plan when it is
repaired and later used to index it in memory. So each plan that avoids a particular problem
is indexed by the fact that it does so. Thus the a case-based planner can later find the plan
when it predicts the need to avoid that problem.

One example of this rises out of the beef and broccoli plan built by CHEF. The BEEF-
AND-BROCCOLI plan mentioned in the last chapter initially was a failure. The broccoli,
because it was stir-fried with the beef, ended up being soggy. But it was repaired so it now
avoided the problem that rises out of stir frying a crisp vegetable with meat. To make it
possible to find that plan again it was then indexed under the fact that it does avoid that

73

problem along with the other goals that it satisfies. This means that the goal to avoid this
problem can now be used to find this plan, independent of any other goak in the current
situation that the BEEF-AND-BROCCOLI plan might satisfy.

If a case-based planner predicts that a problem will occur while planning for a set
of goals, it will search for a plan that avoids that problem while also satisfying
or partially satisfying its current goals.

In terms of which goal should be used initially to search memory, the priority on goals to
avoid problems should rank higher than most other goals. In CHEF for example, when the
program searches for a plan for a set of goals that includes a goal to avoid a problem, the
only goal that will have more priority and thus be used in the search before the avoidance
goal is the goal to make the particular kind of dish that has been specified. In the example
where CHEF anticipate*- that the snow peas are going to end up soggy if stir fried with the
chicken, the goal to avoid that situation has higher priority than either the goal to include
chicken or the goal to include snow peas. It has lower priority, however, than the goal to
make a stir fry dish.

Goals to avoid problems must have high priority. This chicken and snow pea example
shows why.

Imagine a memory that has only three plans in it. The first is a plan for beef and
broccoli that avoids the problem of the vegetable getting soggy because of being stir fried
with the meat. The second is a plan for chicken and green beans. The third is a plan for
snow peas and shrimp.

The first plan deals with the problem of the interaction between the meat and vegetable
by first stir frying the vegetable, removing it from the pan, stir frying the meat and then
adding the vegetable back in before serving. The other two plans, because green beans do
not get soggy if stir fried in liquid and shrimp does not put off the liquid that other meats
do, just have the meat and vegetables stir fried together (figure 3.6).

In trying to find a baseline plan to modify, the planner has four goals that it has to
satisfy: make a stir fry dish, include snow peas, include chicken, and avoid the problem of
the snow paas getting soggy because of the liquid from the chicken. The first three goals
were handed directly to the planner and the final avoidance goal was generated by the plan
as a result of anticipating the problem.

Now it seems clear that the first plan, the plan for beef and broccoli, is the best match
for the goals that CHEF currently has. For it to completely satisfy CHEF's goals, it only
has to have the chicken substituted for the beef and the snow peas substituted for the
broccoli. The chicken will also have to be boned, but this step is added automatically. The
other two plans, even though each will require only one ingredient substitution, will require
major alterations of their steps to accomodate the interaction between the stir frying of the
chicken and the stir frying of the snow peas. Because it is a plan to deal with the interaction

74

Make stir fry dish

Include chicken

Include snow peas

Avoid soggy vegetables

Figure 3.6: Three plans that could be used.

between a set of goals, it is a plan for the overall situation rather than a plan for any of the
individual goals alone.

But if the goal to avoid the failure is given lower priority than either the goal to include
the chicken or the goal to include the snow peas, then the beef and broccoli plan will not be
used. Instead the chicken and green bean plan, which requires alteration that CHEF is really
not up to, will be chosen. While it can make the changes to add or delete new ingredients,
the modification mechanisms are not designed to make changes to avoid predicted failures.
But this plan, if the normal modifications to add a new goal are taken, will result in exactly
the failure that CHEF has anticipated. If the other plan, to stir fry shrimp and snow peas, if
used, the same sort of failure will occur as a result or the normal plan modification procesF

Goals to avoid problems, then, have to have a higher priority in search than the goals
to include particular items and tastes. They must have lower priority than the goals to
make the plan a certain type of dish, (such as STIR-FRY or SOUFFLE) because there is a
qualitative difference between changing the specifics of a particular plan and changing the
general type of plan that it is.

Goals to avoid the problems have higher priority in search than goals for indi-
vidual additions. This allows CHEF to find plans for the overall situation in
preference to plans that only attend to the details.

As with other goals, however, it is possible that no plan in memory exists that satisfies
both the goal to avoid a particular problem and the goal to make a particular kind of dish.

75

Found recipe -> REC9 AITS-CLIMB-A-TREE

Recipe fails to match ->
Avoid failure of type SIDE-FEATURE:GOAL-VIOLATIOIO

exemplified by the failure 'The dumpling* are now greasy' in recipe
DUCX-DUHPLIIGS.

Problem predicted - SIDE-FEATURE:GOAL-VIOLATIOIO

Considering critic:
After doing step: Bone the duck

do: Clean the fat from the duck
because: The duck is no« fatty. - Critic applied.

Figure 3.7: Using new DUCK critic.

In these cases, the planner has to prefer the plan that satisfies the goal for the dish type.
This means that the planner has to make the changes that the plan requires to avoid the
problem which has been predicted. In one example from CHEF, the planner anticipates a
problem due to the grease from a fatty duck when requested to build a dish with duck and
pasta but is unable to find a plan that avoids the problem. The program is able to anticipate
the problem of grease from the duck because of its experience in making Duck Dumplings,
but has no PASTA plan that doals with it. In this case, the planner has to select a pasta
dish for pork and deal with the problem of the extra fat (figure 3.7) by modifying the plan
that is being built.

Adding goals to avoid problems to the set of achievement goals used to retrieve plan
does not change the process of plan retrieval. It only changes the attributes of a plan that
can be used to store and search for it. The avoidance goals are treated just like any other
goal, and are used to discriminate down into memory in the same way.

In CHEF, aside from the form of one of the goals the planner treats the task of finding
a baseline plan for the goals of including chicken and snow peas in a stir fry dish in the
same way it treated the task when confronted with the goals of including fish in a hot stir
fry dish.

Searching for plan that satisfies -
Include chicken in the dish.
Include snow pea in the dish.
Make a stir-fry dish.
Avoid failure of type SIDE-EFFECT:DISABLED-COHDITIO!t:COIICURREMT

exemplified by the failure 'The broccoli is now soggy' in recipe
BEEF-AID-BROCCOLI.

76

Placing goals in order of difficulty -
Nak* a itir-fry dish.
Avoid failure of typ« SIDE-EFFECT: DISABLED-C0IDITIOI:COHCURREIT

axenplifiad by the failure 'The broccoli it now soggy' in recipe
BEEF-AID-BROCCOLI.

Include chicken in the dish.
Include snow pea in the dish.

Driving down on: Hake a stir-fry dish.
Succeeded -

Driving down on:
Avoid failure of type SIDE-EFFECT :DISABLED-C0n)ITIOI:COICURREIT
ezeaplified by the failure 'The broccoli is no* soggy' in recipe
BEEF-AID-BROCCOLI.

Succeeded -
Driving down on: Include chicken in the dish.
Failed - Trying sore general goal.
Driving down on: Include Beat in the dish.

Succeeded -
Driving down on: Include snow pea in the dish.
Failed - Trying Bore general goal.
Driving down on: Include vegetable in the dish.
Succeeded -

Found recipe -> REC9 BEEF-AID-BROCCOLI

Recipe exactly satisfies goals ->
Avoid failure of type SIDE-EFFECT :i)ISABLED-COn}ITIOI:COICURREIT

exemplified by the failure 'The broccoli is now soggy' in recipe
BEEF-AID-BROCCOLI.

Make a stir-fry dish.

Recipe partially matches ->
Include chicken in the dish.

in that the recipe satisfies: Include neat in the dish.

Recipe partially matches ->
Include snow pea in the dish.

in that the snow pea can be substituted for the broccoli.

With the addition of indexing plans by the problems they solve, a case-based planner's
memory of plans is complete. The planner can use its memory to find the plans that fit its
needs. Plans that best achieve the goals that it is given and avoid the problems that it can
anticipate. Plans that partially satisfy goals can be found along with those that completely
satisfy them. The features that a case-based planner uses to discriminate between plans
that partially satisfy a particular goal change with the planner's experiences, reflecting the

77

problems it has had and the features it has seen cause them. The plans that the planner
finds satisfy the goals that are most difficult for it to deal with, meaning that the work
that the planner has to do after finding a plan is reduced to the minimum. A case-based
planner's plan memory, then, is designed to meet the needs of the planner at large and the
features that are used to access it are those that best describe the problems that the plans
searched for have to solve.

A case-based planner's plan memory organizes plans by the goals they satisfy
and the problems they avoid. It searches through this memory using its current
goals and predictions of problems. It uses a notion of similarity between goals
and the idea of their relative value to find a "best match" even in those situations
where a plan that satisfies all of its goals cannot be found.

3.2.2 Memory of failures

To avoid failures, a case-based planner has to be able to anticipate them, to notice that
they are going to occur in order to give the planner the goal to avoid them. The process
that predicts the occurrence of failures anticipates them on the basis of goal features that
predict them and the knowledge base it uses to do this is the planner's memory of failures.

The idea behind problem anticipation is to predict failures on the basis of the surface
features of a situation that have caused similar failures in the past. This is what happens
when a surgeon predicts the possibility of cardiac arrest when putting a patient with low
blood pressure under general anesthetic or when an engineer predicts heat build up problems
when clustering a power supply next to a communications bus. The reoccurrence of features
that participated in past failures brings the memory of the failures to mind, warning the
planner of the pioblems that have to be attended to in building the current plan.

In CHEF, this means predicting that the plan for the goals of including a meat and a
crisp vegetable in a stir fry dish will lead to the vegetable becoming soggy after being stir
fried with the meat. Once this prediction has been made, a plan that avoids this problem
can be found by adding the goal to avoid the problem to the other goals that are used to
search for a plan. But before the problem can be solved, it must be anticipated. And to
anticipate these failures, a case-based planner's memory of them has to be organized so as
to link its memory of past failures to the features of the goals that predict them.

Before the question of what the organization of case-based planner's memory of failures
looks like can be answered, the question of what a single memory of a failure looks like has
to be addressed.

Planner's in general judge failures using the the goals associated with each of their plans
and their knowledge of undesirable states that it wants to avoid in general. A failure can
be a goal that is unsatisfied or an undesired state that has resulted from a plan. In either
case, however, a failure is a particular state in the world that has come about or failed to

78

come about as a result of the running of the current plan. This notion of failure is at the
level of the plan as it is run, not at the level of the construction of tue plan. These are not
failures in plan building. These are failures in the results of the plan that has been built.

In most domains failures are straightforward: a patient dies, a wall fails to stay in place
or a car fails to start.

In the CHEF domain they are equally straightforward. In the example of the beef and
broccoli recipe, the failure is that the broccoli is soggy. In the case of the strawberry souffle,
the failure is that the souffle is flat. In the case of the duck dumplings, the failure is that
the dumplings are greasy. Even in those situations where the failure is the lack of a certain
state, as in the case of the souffle where the failure is actually that the souffle didn't rise,
the failure that CHEF recalls and reasons about is identified with the state that actually
occurred.

But the failure state itself is not all that CHEF stores when it places the recollection of
a failure in memory. It also stores three other aspects of the situation: the general causal
configuration of the situation that led to the failure, the plan in which the failure occurred,
and the features which are predictive of the failure. Of these, the most important is the set
of features that are predictive of the failure, because these are used to organize the failure
in memory.

A case-based planner's memory of a failure includes the failure state itself, the
plan in which it failed, the causal situation that led to the failure and the features
that can be used to predict it.

The organization of a memory of failures is less complex than its organization of plans.
It is simpler because its function and the requirements of the process that uses it are simpler.
The task that uses this memory is to infer the possibility of a failure from a set of surface
features. The memory of failures that it uses, then, has to be organized in a way that
connects those features to the failures they predict.

A case-based planner's memory of failures can be thought of as a simple network of
nodes, in which particular failures are connected to the goal features that predict them. In
case-based planning, the surface features of a situation all stem from the goals that it is
asked to plan for. The goals that the planner is planning for define its situation, ao it makes
no sense to link memories of failures to anything but these goals. In CHEF, for example,
the failure in the beef and broccoli situation is linked to the goal to include meat, the goal
to include any crisp vegetable and the goal to have a stir fry dish. These features then
predict the failure.

When a particular feature of a goal can be identified as participating in a failure, a
test is built for that feature and is associated with the most specific version of the goal
that allows the most general use. If all members of a class of items is associated with the
failure, a link is made directly from that class to the memory of the failure itself. If only

79

specific members of a class predict a certain failure, a link can be made to the class which
passes through a test for the specific, predictive features before going on to link up with
the memory of the failure itself.

* Include vegetable

ISA X Test:

Texture = Crisp

Include brocollr /
^r'Include meat 1 activation

ISA \ ' /
Include beef^ activation /

y^ /
\ Make stir-fry oi&n 1 —- i / rwmwnB

1 act'«t'on 1 [inffy

V vegetable /

Figure 3.8: Features linked to the memory of a failure.

There is a simple example of this from CHEF. As a result of the beef and broccoli failure,
a test on the texture of vegetables, is built and associated with the concept VEGETABLE
because a goal for a crisp vegetable predicts this failure while goals for other vegetables do
not. It is associated with VEGETABLE rather than BROCCOLI because the prediction is
valid for all crisp vegetables not just broccoli. Because any meat will put off the liquid like
that which participated in the failure no test is needed and a link is built directly from the
presence of the goal to the memory of the failure. The same holds true for the goal to make
a stir fry dish (figure 3.8). These links and tests are constructed after a failure has occurred
to enable the planner to predict their occurrence again in the appropriate situation.

The features that predict a failure are linked to the memory of the failure itself.
This allows the presence of those features to activate the memory of the failure
at a later time.

There are various ways to choose which features in a situation should be linked to a
failure that has arisen. CHEF chooses which features of a failure to mark as predictive of
it on the basis of a causal explanation it builds of why the failure occurred. The rules that
explain the individual causal links are used to create tests that are associated with each
goal.

80

Building demon: DEHOIO to anticipate interaction betaean rule*:
"Heat awaata whan It la atlr-frlad."
"Stir-frying In too auch liquid makes crisp vegatablss soggy."

Indexing marker passing demon under item: MEAT
by test: Is the Item a HEAT.

Indexing marker passing demon under item: VEGETABLE
by test: Is the item a VEGETABLE.

and Is the TEXTURE of item CRISP.

Goal to be activated = Avoid failure of type
SIDE-EFFECT: DIS ABLED-COIDITIOI: COICURREIT
exemplified by the failure 'The broccoli la now soggy' la recipe
BEEF-Aib-BROCCOLI.

When a new set of goals is handed to a case-based planner, its first step is to collect
all of the tests associated with the goals and fire them. The true firing of a test activates
the associated feature, which, in turn, sends a marker to a node related to the failure the
feature predicts. If all of the features that are required to predict any failure send markers
to its node, it activates itself and the planner builds a goal to avoid that, failure and adds
it to the planner's goal list.

When CHEF looks at the goals to have a stir fry dish that includes chicken and snow
peas, for example, the fact that the chicken is a meat and the snow peas are a crisp vegetable
activates the memory of a past stir fry failure stemming from these features.

Searching for plan that satisfies -
Include chicken in the dish.
Include snow pea in the dish.
Make a atlr-fry dish.

Collecting and activating tests.

Fired: Is the dish STYLE-STIR-FRY.

Fired: la the item a MEAT.

Fired: Is the item a VEGETABLE.
Is the TEXTURE of item CRISP.

Chicken ♦ Snow Pea + Stir frying = Failure
"Meat awaats when it is stir-fried."
"Stir-frying in too much liquid makes vegetables soggy."

Reminded of BEEF-AND-BRDCCOLI.
Fired demon: DEMOHO

81

Basad on faaturas found in items: sno« pea, chicken and atir fry
Adding goal: Avoid failure of typ«
SIDE-EFFECT:DISABLED-COIDITIOI:COICUIUIEBT exemplified by
the failure 'The broccoli is now soggy* in recipe
BEEF-AID-BROCCOLI.

A case-based planner uses the features of its current goals to activate the mem-
ories of any failures that they predict. If a failure is recalled, a goal to avoid it
in the current situation is added to the planner's list of active goals.

Sometimes the surface features that led to a failure and are predictive of a problem
were not the immediate cause of the problem. The failure in the example of the strawberry
souffle that didn't rise is a case in point. The failure of the souffle to rise was a result of too
much liquid as opposed to just the result of adding fruit. In cases like this, links are made
to the memory of the failure from both the features that predict the failure, such as the goad
of including high moisture fruit, and from the actual cause, in this case added liquid. This
even happens in the case of the soggy broccoli, because the planner understands that the
true problem is the liquid in the wok and will predict this failure if it is asked to increase
any liquid while stir-frying broccoli.

Building demon: DEM0I3 to anticipate interaction between rule*:
"Liquids make things aet."
"Without a balance between liquids and leavening
the batter will fall."

Indexing marker passing demon under item: SPICE
by test: Is the item a SPICE.

Is the TEXTURE of item LIQUID.

Goal to be activated - Avoid failure of type
SIDE-EFFECT: DISABLED-CONDITIOH: BALANCE
exemplified by the failure 'The batter is now flat' in recipe
STRAWBERRY-SOUFFLE.

A case-based planner also has to link features that were not part of the initial
planning situation, but did participate in the failure, to its memory of the failure.

If a new situation arises which has goals that are different from those in the original
situation that led to the failure, but are related to the states that actually caused it, these
states will be activated thus activating the failure. This, in turn, will cause the creation of
a goal to avoid the failure to be added to the planner's goal list. For example, if the planner
is asked to build a recipe for a souffle dish that includes the liqueur kirsch the passing of

82

activations is made through the memory of failures and the goal to avoid the problem of
liquid causing the souffle to fall is added to the goal list. This means that even situations
that are different than those which led to a past failure can be used to activate the memory
of that failure and give the plan retrieval mechanism the information it needs to find a plan
that avoid the problem.

Searching for plan that satliflas -
Includ« kirscli in th« dith.
Hake a louffl«.

Collecting and activating tests.

Firod: Is th* dish STYLE-SOUFFLE.
Firod: Is th« it» a SPICE.

Is th« TEXTURE of item LIQUID.

Kirsch ♦ Souffl« ■ Failure
"Liquids Hake things vet."
"Without a balance between liquids and leavening
the batter will fall."
Reminded of STRAWBERRY-SOUFFLE.
Fired demon: DEM0I3

Based on features found in items: kirsch and souffl«.
Adding goal: Avoid failure of type
SIDE-EFFECT:DISABLED-COIDinai:BAUICE exemplified by
the failure 'The batter is now flat* in recipe
STRAWBERRY-SOUFFLE.

A case-based planner uses all connections between the features of a situation and
its memories of failures to predict failures even in situations that are for very
different goals than those that first caused them.

A case-based planner's memory of failures is organized around the features of the goals
and states that predict them. This lets the planner go directly from a set of goals to
be planned for to a memory of those failures that it should be trying to avoid. By also
associating the failures with the actual features that caused them, features that may not
have been directly attached to a goal that the planner was working on when the failure
occurred, it is also able to be reminded of failures in situations that have surface features
different from those of the original situation. So the planner's memory of failures can provide
appropriate predictions of problems in situations that are similar to those it has seen before
at the level of initial goals and at the level of the actual causes of particular problems.

The CHEF program had to deal with and learn from a range of problems. It had to be
able to deal with plans that had objectionable side-effects, those did not satisfy their own
goals and those that were not able to run to completion. These included:

83

• The problem in a BEEF-AND-BROCCOLI plan rising out of the interaction between
the meat and vegetables being stir fried together.

• The problem in a FISH-STIR-FRY plan of the iodine taste of the fish ruining the
dish.

• The problem in CHEF's first shrimp dish of ordering the SHELL step after the MAR-
INATE.

• The problem of stir frying beef with salt, a step which dries the meat out, in the dish
HOT-BEEF.

• The problem on maintaining a balance between liquid and leavening encountered by
CHEF in two different forms in making souffles.

• The problem encountered in building duck dishes of the dish becoming too greasy.

Other problems had to do with misordered steps and problems rising out of the side-
effects of different approaches to satisfying the same goals.

3.2.3 Memory of modifiers

A case-based planner's memory of plan modifiers is designed to give the planner the alter-
ations it needs to make to an old plan so as to make it satisfy new goals. In order to do
this, the memory of modifiers has to be sensitive to the plan that is being changed and
the new goal that is being added. It also has to be aware of any failures that have been
predicted but are not avoided by plan that the plan retrieval mechanisms have found. The
memory needed to do this actually combines two storage systems. The first is a static table
of standard modifications, indexed by the plan being altered and the goal being added. The
second is a dynamic set of ingredient critics that are stored under particular ingredients,
indexed by the failures that they repair.

As was argued in the first chapter, the goal to add a window to a wall will be implemented
in different ways given different initial designs. A Window in a house will be different than
one in a high-rise. So the mechanisms that add new features to a design or goals to a plan
have to be sensitive to both the goal being added and the plan that is being altered.

A case-based planner's memory of plan modification has to be sensitive to both
the goal being added and the plan being modified.

The rules that the CHEF program uses to alter plans to accomodate new goals are
indexed by both the goal and the general plan type. Its memory of standard modifiers is a
table, indexed by the general plan type, (e.g., STIR-FRY, SOUFFLE, PASTA) and general
versions of each of the planner's goals (e.g., Include meat, Include vegetable. Make dish

84

taste hot). Searching for a set of steps to add a new goal is a matter of looking up the entry
in the table and adding the steps listed there. If an entry is empty, a more general version
of the goal is used, until a set of steps is found.

CHEF stores rules for modifying plans in a table of steps that is indexed by the
plan to be modified and the general type of the goals to be added.

In adding broccoli to a stir fry dish CHEF searches its memory of standard moc 'cations
for steps indexed under BROCCOLI and STIR-FRY. As it is, no such modificatioi, exists,
forcing the MODIFIER to look for the steps indexed under VEGETABLE and STIR-fRY.
Here it finds the steps that tell it to CLEAN, CHOP and STIR-FRY the broccoli (fi^ e
3.9).

SOUFFLE STIR-FRY PASTA DUMPLING

Solid spices

Liquid spices

Vegetables ?S-
Meats \V

Taste: hot \ \. Taste: savory \
Taste: sweet

\ /^lean »v»! \
—

Chop »v*!

size (chunk)

Stir-fry «v*!

ime(3)

Figure 3.9: Table of standard modification rules.

There are some steps that are specific to particular objects that the planner knows
about. In the CHEF domain, for example, shrimp has to be shelled in every plan and
chicken has to be boned before chopping. To deal with these idiosyncratic problems, the
planner has access to a set of critics, which are stored under the ingredients that they deal
with. Each of these critics has a test that it applies to the current plan, and a modification
it makes if the test is true. These critics deal with the specific problems not covered by the
more general modification rules.

Critics are rules that add steps which compensate for the idiosyncrasies of par-
ticular ingredients. They are stored under the ingredient that they handle.

85

In adding chicken to a recipe that once used beef, CHEF applies a critic associated with
chicken that says the chicken must be boned before chopping:

Modifying rcclp«: CHICKEH-STIR-FRIED
to aatisfy: Include chicken in the dish.

Role substitution of chicken for beef in CHICKEK-STIR-FRIED.

Placing some chicken in recipe CHICKEB-STIR-FRIED

Considering critic:
Before doing step; Chop the chicken
do: Bone the chicken. - Critic applied.

While a case-based planner can start out with a set of critics that are useful, its initial
set can never be exhaustive. A planner often encounters objects or items that have features
it has never had to deal with before, features that lead to planning failures. When a
planner has an encounter like this, and is able to assign blame for the resulting failure to an
individual object rather than to an interaction between many objects, it can builds a new
critic that describes the same alteration to a plan that was originally done to correct the
plan in which the failure occurred. This new critic can then stored under the problematic
item, indexed by the problem that it solves. If, in a later planning situation, the planner
predicts that this failure is going to occur again, but cannot find a plan that avoids it, the
planner will still be able to access the new critic because it has the prediction of the problem
to use as an index.

One example of this occurs when the CHEF program is building a plan for Duck
Dumplings. After running a basic plan that just replaces duck for pork in an existing
recipe, it finds that the fat from the duck makes the recipe too greasy. It repairs this prob-
lem in its new plan by removing the fat from the duck before grinding it. It also creates
an ingredient critic that suggests the same step. Later, when it is planning for a pasta dish
with duck, it predicts that the same problem will occur but cannot find a pasta dish that
avoids it. The best it can find is the recipe for Ants Climb a Tree, a pasta dish with pork,
that it puts the duck into. Because it has predicted a problem with grease, however, it has
access to the ingredient critic that deals with it and can apply the repair before the failure
occurs again.

Modifying recipe: DUCK-PASTA
to satisfy: Include duck in the i'.ish.

Role substitution of duck for pork in recipe DUCK-PASTA.

Placing some duck in recipe DUCK-PASTA

86

Conaidaring critic:
Bafor« doing »tap: Grind the duck
do: Bon« th« duck. - Critic applied.

Considering critic:
After doing step: Bone the duck
do: Clean the fat from the duck
because: The duck is no« fatty
avoiding: SIDE-FEATURE:GOAL-VIOLATIOI

- Critic applied.

A case-based planner learns new critics when it repairs faulty plans. These are
stored under the item they relate to, indexed by the problems they solve.

This two part system, then, makes up a case-based planner's memory of modifiers, used
to store information about how to add new plans to existing goals while avoiding failure that
the initial plan was not able to. It consists of a static table of standard modification steps,
indexed by the type of plan being altered and the goal being added. This is augmented by
a set of critics that make changes to a plan to deal with problematic features of particular
objects. These critics are storer under the objects that they provide for, indexed by the
particular failure that they repair. This system then, allows the planner to access changes
that have to be made to add new goals to a plan and to avoid problems that will rise out
of the modifications it has just made.

There is a point to be made about the three that have been mentioned thus far.

All three of these memories are dynamic organizations that are altered in response
failures on the part of the planner. When a case-based planner has a failure it makes three
changes to its view of the world:

e First, it changes its plan memory by adding a new repaired plan that now avoids a
particular problem. This plan is indexed by the fact that it avoids the problem the
planner first encountered.

e Second, it changes its memory of failures, adding links between the features that
predict the problem to its memory of the problem itself. With these links it can now
predict the failures it has encountered and use that prediction to find plans that avoid
them in its memory of plans.

e Third, it also stores the change« that it had to make to the original plan in repairing
it, indexed so that they will be accessed when those repairs have to be made again.

87

When a case-based planner learns from a failure, it learns more than just a new
plan. It also learns the features which predict failures, which are used to find
plans that avoid them, and it learns new ingredient critics which are used to
repair existing plans that do not avoid the problems its has predicted.

When a case-based planner encounters and repairs a failure it saves the plan *' i now
avoids it, saves a description of the situation that predicts it and saves the ch -,t's that
had to be made to repair it.

3.2.4 Memory of repairs

CHEF has a set of strategies that suggest repairs to the failures it en- mnters. Its memory
of these repair strategies is completely static. It does not add new ' rategies and Joes not
alter their organization. It begins with a set of strategies for repair'.jig failed plars and ends
with exactly the same set. While it is not at all dynamic, this oiganization has the same
functional motivation as the organization of the planner's other memories. The details of
this organization and the specific strategies that it stores ' il be discussed later. Right
now, however, an "in principle" argument about the type r indexing used to organize these
strategies will make some clarifying points about the ' .ture and the use of memory in
general.

While it is not dynamic, CHEF's memory o^ repairs is organized to best serve
the function of plan repair.

When a plan that a case-based planner has built does not function correctly, it must
repair the plan on the spot. To do this, the planner needs a set of repair strategies that tell
it how to fix a plan. It is important to contrast these with the modification rule which ars
designed to add a new goals to exist;.ig plans. These repair strategies are not designed to
add new goals. They are designed 'o al'er a plan to achieve the goals that it was supposed
to achieve but did not, because of an unforscen feature of some ingredient or an interaction
between many ingredients.

Each repair strategy suggests a plan alteration chat will fix a particular kind of
problem.

CHEF has 17 of these strategies. These are repair strategies that any planner, case-based
or otherwise, needa to deal with to fix plans that fail. They reorder steps that interfere with
each other, replace steps that have bad side-effects, recover from bad states and add steps
that will allow bad states to stand without destroying the overall plan. In most situations
only a few of these strategies will be of any help at all in repairing the plan.

88

These strategies are specific, in that they suggest repairs for particular classes of prob-
lems, but they are not domain specific:

• ALTER-PLAN:SIDE-EFFECT • ALTER-PLAN:PRECONDITION
• RECOVER • REORDER
• ADJUST-BALANCE:UP • ADJUST-BALANCE:DOWN
• ADJUNCT-PLAN:REMOVE • ADJUNCT-PLAN:PROTECT
• ALTER-TIME:UP • ALTER-TIME:DOWN
• ALTER-ITEM • ALTER-TOOL
• SPLIT-AND-REFORM • ALTER-PLACEMENT:BEFORE
• REMOVE-FEATURE • ALTER-PLACEMENT:AFTER
• ALTER-FEATURE

The problem, then, is to find a way to link problem that the planner is faced with to the
strategies that will solve that problem. But what are the features of a planning problem
that are most closely linked to the kind of repairs that will fix it?

The features that best describe a problem for the purposes of finding a way to solve it
are the features of causal situation that actually defines it.

Organizing the strategies used to repair different problems are set of structures that
correspond to different causal configurations defining the circumstances leading up to a
problem. These are planning TOPs. Each of these structures organizes a small set of
repair strategies, with each repair strategy being associated only with the TOP or TOPs
for which it is appropriate. Any one strategy can be associated with many TOPs, because
each strategy suggests an alteration of one aspect of the causal situation that led to the
failure and that one aspect can be part of many different configurations.

Repair strategies are stored under planning TOPs. Each TOP corresponds to
a planning problem and the strategies it stores are all designed to fix with that
problem.

When a case-based planner is confronted with a failure it builds up a causal explanation
of why that failure has occurred. The explanation describes the steps and states that have
caused the failure and the goals that were being served by each of those steps and states.
This explanation of the causes of the failure indexes to a TOP and the strategies that will
repair the failure.

The causal description of a failure provides an explanation as to why the failure occurred.
This explanation takes the form of answers to a series of questions that the planner asks
about the failure.

Each TOP is indexed in memory by a causal description of the type of problem it
corresponds to. So the strategies stored under each TOP are only recalled when
the problems that they fix arise.

89

Going to CHEF for an example, in the case of the fallen strawberry souffle built by
the program, the explanation that the planner builds for why the failure occurred is that
a side-effect of chopping the strawberries, (liquid in the bowl), has caused an imbalance
in the relationship between the liquid and the leavening in the souffle, which has disabled
a precondition of the bake step. It also includes the fact that the goal of chopping the
strawberries was to enable adding them to the batter, that the precondition on the bake
step was that the liquid and leavening be in a particular balance and that the goal of baking
the batter was to make it rise.

The general version of this explanation, (the side effect of a step violates a balance
condition on a later step) accesses SIDE-EFFECT:DISABLED-CONDITION:BALANCE,
a TOP which has 5 repair strategies indexed under it. Each of these strategies describes a
change in the causal structure of the situation that will break the chain of events that led
up to the failure without interfering with the goals being planned for:

• ALTEF-PLAN:SIDE-EFFECT suggests finding a step that satisfies the initial goal
that does not have the offending side-effect.

• ALTER-PLAN:PRECONDITION suggests finding a step that satisfies the later goal
but does not have the precondition that is violated by that side-effect.

• RECOVER suggests recovering from the side effect before running the second step.

• ADJUNCT-PLAN suggests adding an adjunct plan that allows the later step to suc-
ceed even in the presence of the side-effect.

• ADJUST-EALANCE:UP suggests adjusting the relationship that the side-effect has
put out of balance.

Searching for top using following indices:

Failure = It is not the case that: The batter is no« risen.
Initial plan ■ Bake the batter for twenty five minutes.
Condition enabling failure ■ There is an imbalance between

the whipped stuff and the thin liquid.
Cause of condition = Pulp the strawberry.
The goals enabled by the condition = NIL
The goals that the step causing the condition enables =

The dish now tastes like berries.

Found TOP T0P3 -> SIDE-EFFECT:DISABLED-COHDITIOH: BALANCE
TOP -> SIDE-EFFECT:DISABLED-CONDITION:BALANCE has 6

strategies associated with it:

90

ALTER-PUI: SIDE-EFFECT ADJUICT-PLA«
ALTER-PUI:PREC09DITI0I RECOVER
ADJUST-BAUICE:UP

Each repair strategy suggests a repair that breaks a link in the causal chain that
leads to the failure.

These strategies are used to find the actual alterations that have to be made to the steps
in the plan, out this is not the issue right now. At this point the issue is the relationship
between the features in the initial situation, the TOP that those features allow access to
and the strategies that are stored under that TOP.

At the surface level, the situation defined by the failed strawberry souffle plan has a
multitude of features. Any of these could be used to find either a memory of past plans
that might be helpful in dealing with the problem or a set of strategies aimed at correcting
it. Any of the ingredients, the steps or the states that the ingredients passed through while
the plan was being run, could be used to index to some memory that might be applied to
the situation. But what would be the point of using any feature except those that actually
participate in the problem. What would be the point of looking for a past plan that was
linked to the current one by the fact that they both include salt? In general, what would
be the point of indexing to a past episode or more abstract structure on the basis of any
feature outside of the problem description?

If indexing is to be of any use at all, the needs of the search have to be reflected in the
mean« of the search. The indexing has to reflect the function of the items being indexed.
If strategies for dealing with particular planning failures are going to be organized at all,
they should be indexed by a description of the problems that they deal with. Likewise, if a
planner is trying to find the strategies it needs to deal with a problem, it should use only
those features of the situation that participate in that problem. To search for a solution to a
planning problem using features other than those involved with the problem is like looking
for a ballerina in a football locker room. You may find what you are looking for, but there
is no reason whatsoever to believe that you will. And there are far better places to look.

The needs of plan repair define the organization of the planner's memory of |
possible repairs.

This argument for storing and retrieving general strategies can be applied to episodic
memory. In storing an episode that solves a problem, it make sense that among the features
that are used to index it will be those that actually define the problem. It may be stored by
other features as well, because it could have uses besides those of solving that one problem
alone, but it makes sense to store it by the features that will allow it to be found again if a
similar problem arises. Further, when new problems arise, it makes no sense whatsoever to

91

search for past solutions using any features other than those that define the problem itself.
This would be like searching for general strategies for dealing with a problem using features
that have nothing to do with the problem. It could be done, but what would be the point?

Any discussion of indexing and memory has to attend to the ultimate function of the
items in memory and to the needs of the process doing the searching. Because the point
a memory organization is to allow outer processes to effectively find what they need, so
an organization that does not reflect that need is useless. The fact that humans have a
memory organization at all argues that it must be one that has grown out of the needs of
the process that use it, otherwise why would it be there at all?

The memory of repair strategies that CHEF uses to deal with plan failures is static.
But its organization has much to say about the organization of a dynamic memory where
processes are actively deciding how to store new items in memory and how to access them
at a later date. Any memory organization should be centered around the function of the
object that it organizes. Processes that store new items in memory should index them by
the features that determine their usefulness. Later processes that have to access those items
should search for them on the basis of the features of its present situation, whether it be an
understanding or planning situation, that best describes the problem it is trying to solve.
The organization of repair strategies is based on this idea, with repairs indexed in memory
by the descriptions of the very problems they solve.

A case-based planner's memory of plan repairs is indexed by the features that
determine the use of the items it stores. Each repair is indexed by a description
of the problems it deals with.

There has to be a relationship between the function to which a memory is put, whether
it be a memory of a past episode or a memory of a set of strategies, and the features that
are used to find it. In the case of a memory of repairs, this means that the memory of repair
strategies is indexed by causal descriptions of the problems that they solve. In choosing the
indices to use in finding these strategies, then, the planner has to identify the causal chain
that leads to the failure it is repairing and use the description of that chain of events to
access the appropriate strategies.

92

Chapter 4

Planning TOPs and Strategies

Any planner, case-based or otherwise, should repair plans by explaining the circumstances
behind a failure and then using this explanation to find the TOP and the repair rules stored
under it that will deal with the problem. As the last chapter argued, without these repair
rules and the TOPs that house them, the planner would have to backtrack and replan
entirely, losing work that has already been done. The ability to identify when a set of
repairs is applicable and which of them can be instantiated is crucial to planning in that it
allows the planner to intelligently recover from its own errors.

4.1 TOPs in understanding and planning

In Dynamic Memory [Schänk 82] Schänk suggested the idea that structures relating to the
interaction of goals and plans could be used to organize narrative episodes in memory. He
called these structures Thematic Organization Packets or TOPs. The idea behind these
structures was. simple: just as the concept underlying a primitive action such as ATRANS
[Schänk and Abelson 77] could be used to store inferences relating to that action, structures
relating to the interactions between these actions and the goals that they serve could also
be used to store inferences that relate to the interaction. He also suggested that these
structures could be used to organize episodes that they describe to as well as the inferences
that they relate to.

Schänk suggested that these structures could be used for understanding in two ways: to
supply expectations about a situation and to provide remindings of past situations that are
similar to a current one that could be used in generalization.

In one of Schank's examples, he discussed the similarity between the stories Romeo and
Juliet and West Side Story. The similarity, he argued, could be described at an abstract
level of the goals interactions in both stories. Both stories had young lovers, but more im-
portantly, both stories were cases of Mutual Goal Pursuit; With Outside Opposition

93

94

which corresponds to the TOP MG;00. This is simply saying that both stories were cases
of two individuals joining together to plan for the same goal in the context of opposing
forces. What is interesting about this characterization is that it gives the understander
some expectations. One possible expectation is that the opposing forces will try to divide
the partners, thus reducing their chances of success. Another is that there may be conflicts
that rise out of each of the partners using a different plan to achieve the mutual goal.

But there are also specific expectations that can be made because of the further similar-
ities between the two stories. The details of Romeo and Juliet can actually provide specific
expectations that can be used in understanding West Side Story. We can predict the prob-
lems due to the false account of Maria's death because we have seen them before in the
false account of Juliet's death. We can tell what will happen in West Side Story because
we are reminded of what happened before in Romeo and Juliet.

Having expectations and memories stored under TOPs like MG;00 allows an under-
stander to make predictions on the basis of the interactions between story elements along
with those that can be made on from the individual story elements themselves. But the
fact that these structures store actual memories allows the understander to also learn more
about these interactions by comparing repeated instances of them and then generalizing.
In the Romeo and Juliet/ West Side Story example, the understander is able to learn that
in case of MG;00, lack of communication between partners can lead to problems of misun-
derstanding and cross-planning. This is a piece of information that can be associated with
MG;0O itself, not only those cases of MG;00 that relate to star-crossed lovers.

By having structures in memory that correspond to goal interactions rather than in-
dividual goals or actions, an understander can have access to expectations that relate to
those interactions and can learn more about them by generalizing across similar instances
that they describe.

Planning TOPs are quite similar to understanding TOPs in that they are memory
structures that correspond to the interactions between the steps and states of a plan. Each
planning TOP describes a planning problem in terms of a causal vocabulary of effects and
preconditions. Instead of storing inferences about the situation described, however, each
planning TOP stores possible repairs to the planning problem it corresponds to. Once a
problem is recognized, the planner can use the repairs stored under the TOP that describes
it to alter the faulty plan and thus fix the failure.

For example, the TOP SIDE-EFFECT:BLOCKED-PRECONDITION describes situa-
tions in which the side effect of one step violates the preconditions for a later one. One
case of this would be Sussman'r example of a planner painting a ladder [Sussman 75] before
painting a ceiling and then finding tli' he precondition for painting the ceiling, having a
useable ladder has been violated by a.i earlier step in the plan that has left the ladder wet.
This TOP is recognized because the planner can can see that a step is actually blocked, the
state that blocks it is the product of an earlier step and the state itself does not satisfy any
goals. Once the planner has the TOP it is then able to apply the different general strategies

95

for repairing the faulty plan that are stored under the structure. In this case, the strategies
are:

• ALTER-PLAN:PRECONDITION - Find a way to paint the ceiling that does not
require a ladder.

• ALTER-PLAN:SIDE-EFFECT - Find a way to paint the ladder that does not leave
it wet.

• REORDER - Paint the ceiling before painting the ladder.

• RECOVER - Do something to dry the ladder.

Each of these strategies is designed to break a single link in the causal chain that leads to
a failure.

Like understanding TOPs, planning TOPs correspond to situations involving the in-
teractions between goals and plans, unlike understanding TOPs that organize inferrences,
however, planning TOPs organize the steps that a planner can make in response to the
problems that the TOPs describe.

The planning TOPs discussed in this chapter were developed for the CHEF program and
are built out of a general vocabulary of causal interactions (see Appendix A). The problems
that they describe include many of those discussed by both Sussman [Sussman 75] and
Sacerdoti [Sacerdoti 75] but the descriptive detail of TOPs allows a richer description than
was possible using the vocabulary of critics suggested by them. As a result, a planner that
uses TOPs to diagnose and repair planning problems is able to describe problems in greater
detail and as a result to suggest a wider variety of repairs for each problem encountered.

4.2 TOPs and strategies

CHEF's approach to plan repair is based on the idea that the strategies for repairing a
problem should be stored in terms of that problem. In much the same way that it makes
sense to organize plans in terms of the goal that they satisfy, so that they can be found
when the goals arise, it makes sense to store plan repair strategies in terms of the situations
to which they apply, so that too they can be found when those problems arise.

CHEF implements this idea of storing repairs in terms of the problems that they solve
using a set of planning TOPs that correspond to different planning problems. Each TOP
organizes a set of repair strategies, which in turn suggest abstract alterations of the circum-
stances of thf problem defined by the TOP. For CHEF, part of the definition of a problem
includes the positive goals that were being attempted by the steps that participate in it. A
TOP is defined not only by the serie.. of steps that define the failure, it is also defined by
the goals that those steps were originally designed to satisfy. Only those strategies that will

fix the problem defined by a TOP while at the same time maintaining the goals that are
already satisfied by the existing steps are found under that TOP. Any strategy that can be
applied, then, will repair the current problem without interfering with the goals that the
steps involving with that problem still achieve.

A planning TOP consists of the description of a planning problem and the set of
repair strategies that can be applied to solve the problem.

A TOP stores those and only those strategies that will solve the problem corresponding
to the TOP without interfering with the goals that are satisfied by the steps included in
the problem is an important one that deserves an example.

In the plan failure encountered by CHEF in creating its strawberry souffte plan, the
problem is diagnosed as a case of SIDE-EFFECT:DISABLED-CONDmON:BALANCE.
This TOP is distinguished by the fact that the condition that is disabled is a balance
condition and the state that disables it is a side-effect. That the state that undermines the
plan is a side-effect is important in that it allows the strategies RECOVER and ALTER-
PLAN :SIDE-EFFECT to be associated with the TOP. The first of these suggests finding a
step that will remove the side-effect state before it interferes with a later step and the second
suggests finding a replacement for the step that caused the side-effect that accomplishes the
goal of the original step without producing the undesired effect. Both of these strategies
depend on the fact that the state in question is a side-effect, that is, a state that does not
satisfy any goals that the planner is trying to achieve.

If the situation were different and the added liquid satisfied some some goal that the
planner had, these two strategies would no longer apply. Adding a step that would re-
move the added liquid would violate the goal that it achieved. Replacing the step that
causes the liquid with one that does not would likewise violate the goal. Changing the goals
changes the strategies that can be applied to the problem because some strategies will now
interfere with those goals while fixing the problem. Such differences between situations are
reflected in the TOPs that are found to deal with them. If the liquid served some goal but
violated a balance condition, the TOP found would be DESIRED-EFFECT:DISABLED-
CONDITIONiBALANCE. Unlike SIDE-EFFECT:DISABLED-CONDmON:BALANCE,
this TOP does not suggest the strategies of RECOVER and ALTER-PLAN:SIDE-EFFECT,
because they would fix the initial problem only at the expense of other goals.

Another important point about the relationship between planning TOPs and the strate-
gies they store is the problem of applicability. Every strategy that is stored under a TOP
will, if it can be applied, repair the problem that originally accessed the TOP. There is
no guarantee, however, that a strategy can be applied in every situation. In the case of
the problem when CHEF it stir fries beef and broccoli together, one strategy, ADJUNCT-
PLAN, suggests finding a step that can be run concurrent with the STIR-FRY step that
will absorb the liquid produced by the beef. Unfortunately, no such step exists in CHEF's
knowledge of steps. So ADJUNCT-PLAN, while it would have repaired the plan, can not

97

be implemented in this situation because the steps required to turn it into an actual -hange
of plan do not exist. Each strategy describes what a change that would fix a failed plan
looks like but no strategy can be implemented if the steps that would make that change do
not exist.

Every TOP describes a specific causal configuration that defines a problem. In turn,
each of the strategies under a TOP describe one way to alter the configuration that will
solve the problem described by the TOP. The individual strategies suggest changes to one
part of the overall configuration. Because the different causal configurations are built out
of a vocabulary of interactions that is common to all of them, some share many features.
For example, one TOP corresponds to the situation in which the side-effect of a step alters
the conditions required for the running of a later step while another corresponds to the
problem of the side-effect of a step itself being an undesired state. These two TOPs share
the feature that a side-effect of a step is interfering with the planner's goals, although in
different ways. Because of this, they share the strategy ALTER-PLAN:SIDE-EFFECT
which suggests finding a step to replace the original step in the plan that causes the side-
effect with one that achieves the same goals but does not cause the side-effect. Each of these
TOPs also organizes other strategies, but because some aspects of the problems that they
describe are the shared, they also share the strategy that suggests changes to that aspect
of the problem.

The repair strategies stored under a TOP are those and only those that will repair
the problem described by the TOP. Because each strategy alters one aspect of
the problem it may be associated with many TOPs that share that aspect.

4.3 TOPs

Each of CHEF's TOPS has two components: the features of the problem used to index to
it and the strategies that it suggests to deal with that problem. CHEF stores its TOPs
in a discrimination network, indexed by the features that describe the problem that they
correspond to. In searching for a TOP CHEF extracts these same features from its expla-
nation of the current problem and then the TOP suggests the strategies it stores to solve
that problem.

It is important to note that there are two ideas here. The first is that repair strategies
should be organized by the problems that they solve. This is the idea that goal interactions
should be used to organize plan repairs at all. This is the structural part of the notion
of using TOPs in planning. The second idea is composed of the actual content of the
different TOPs and strategies that are presented here. The suggestion that a TOP such as
SIDE-EFFECT:DISABLED-CONDITION:CONCURRENT exists as a particular structure
is different than the idea that these structures exist at all.

CHEF uses sixteen TOPs in organizing its repairs. Each is defined and indexed by the
features of a particular planning problem and organizes the two to six strategies that can be
applied to the problem it corresponds to. While there are clearly more TOPs that can be
used in plan repair than CHEF knows about, those it has describe the planning problems
that it is forced to deal with. An expanded domain with a different set of problems and
possible reactions to them, would require an equally expanded set of TOPs and strategic

4.4 CHEF's TOPs

CHEF's TOPS fall into five categories or families of problems. Some have to do with side-
effects of step interfering with later steps, some with the features of objects enabling bad
effects and some with the problems of blocked preconditions. The TOPs within each family
share features with one another. The fact that they describe similar problem situations
means they must share those strategies that are designed to repair the aspects of the problem
that they have in common.

• SIDE-EFFECT, or SE, TOPs that describe problems that are generated by the side-
effects of STEPs.

• DESIRED-EFFECT, or DE, TOPs that describe problems that are generated by the
desired effects of STEPs.

• SIDE-FEATURE, or SF, TOPs that describe problems generated by the features of
OBJECTs that do not satisfy any goals.

• DESIRED-FEATURE, or DF, TOPs that describe problems generated by the goal
satisfying features of OBJECTs.

• STEP-PARAMETER, or SP, TOPs that describe problems generated by improperly
set STEP parameters.

CHEF's TOPs fall into families of configurations whoso r.iembers correspond to
similar causal situations and organize similar repair strategies.

4.4.1 SIDE-EFFECT (SE)

The most commonly used TOPs in CHEF are from the family of TOPs that describe
problems with the side-effects of one step interfering with the overall plan in one way or
another. There are five TOPs that belong to the general familv of SIDE-EFFECT TOPs
(SE):

99

• SE:DISABLED-CONDITION:CONCURRENT - The side-effect of a step disables its
own success requirements or the requirements of a concurrently run step.

• SE:DISABLED-CONDITION:SERIAL - The side-effect of a step disables the success
requirements of a later step.

• SE:DISABLED-CONDITION:B ALANCE - The side-effect of a step disables a success
requirement of a later step by causing an imbalance in a required relationship.

• SE:BLOCKED-PRECONDITION - The side-effects of a step violate the preconditions
of a later step that are required for it to run at all.

• SE:GOAL-VIOLATION - The side-effects of a step are in themselves an undesired
state.

SE TOPs describe situations in which the side-effects of a step interfere with the
successful running of a plan.

SE:DISABLED-CONDITION:CONCURRENT (SE:DC:C)

This TOP describes situations in which a side-effect of a step interferes with the satisfaction
conditions of the step itself or of another step that is being run concurrent with it. Here
the side-effect has to occur as the step is being run, not just at the end. Likewise the
condition that is violated is not just a precondition, it is a condition that has to be true
for the entire duration of the step. In CHEF these are referred to as developing side-effects
and maintenance conditions. One example of this situation is in the case of the BEEF-
AND-BROCCOLI plan in which the liquid generated by stir frying the beef violates the
maintenance condition on the st.?p to stir fry the broccoli that the pan remain dry. As a
result, the plan fails because th« broccoli becomes soggy.

The indices for SE:DC.C s .M-,

• There is a failure.

• The failure is caused by a violated condition.

• The step that caused the state violating the condition is concurrent with the step
which has resulted in the failure.

• The condition satisfies no goals.

• The step that causes the condition satisfies at least one goal directly or indirectly.

100

The strategi« that are stored under SE:DC:C are: SPLIT-AND-REFORM, ALTER-
PLAN^IDE-EFFECT, ADJUNCT-PLAN:REMOVE, ADJUNCT-PLAN:PROTECT and
ALTER-PLAN:PRECONDITION.

Each of these strategies aims its attack at one part of the causal chain that led to the
failure. For example, SPLIT-AND-REFORM suggests breaking the self defeating single
step into a series, ALTER-PLAN:SIDE-EFFECT suggests that a different step be used
that does not produce the violating condition and ADJUNCT-PLAN:REMOVE suggests
that a new step be added that removes the effects altogether.

SE:DISABLED-CONDITION:SERIAL (SE:DC:S)

The complement to the TOP SE:DC:C is SE:DC:S, which differs from its sibling in that the
step that causes the problem side-effect occurs before the step which the side-effect interferes
with. The problem condition is still a side-effect, but the steps involved are separate so there
are more options than in the rase of SE:DC:C.

The indices to this TOP differ from those of SE:DC:D only by the fact that the two
steps involved are not the same:

• There is a failure.

• It is caused by a violated condition on a step.

• The step that would have achieved the desired state follows the step that caused the
violating conditions.

• The condition satisfies no goals.

t The step that causes the condition satisfies at least one goal directly or indirectly.

The fact that two steps are separate in time gives the planner more options than if they
had been the same. The strategies under the TOP reflect this: REORDER, ALTER-
PLAN :SIDE-EFrECT, ALTER-PLAN:PRECONDITION, RECOVER, and ADJUNCT-
PLAN:REMOVE ana ADJUNCT-PLAN:PROTECT.

SE:DISABLED-CONDITION:BALANCE (SE:DC:B)

A slightly different situation in which a side-effect causes problems is defined by SE:DC:B.
This is the situation in which the side-effect of a step produces the effect of increasing an
already existing state thus causing an imbala.nc in a relationship required for a later step.
Unlike SE:DC:S, the condition caused by the earlier step is already accounted for by the
plan but not to the extent that the new version of the plan causes. The fallen souffle in
the STRAWBERRY-SOUFFLE plan is an example of this problem. The added liquid from

101

the chopped berries causes an imbalance between liquid and leavening in the batter which
leads to a fallen souffle.

The difference between the features that access this TOP and those that access SE:DC:S
is clear. SE:DC:B is found when the condition that is violated is a balance relationship that
has to hold for a step to succeed.

• There is a failure.

• There is a violated balance condition on the step that caused it.

• The step that would have achieved the desired state is different from the step that
caused the violating conditions.

• The condition satisfies no goals.

• The step that causes the condition satisfies at least one goal directly or indirectly.

The strategies organized by the TOP are also the same, with the exception of the new
strategy, ADJUST-BALANCE:UP. These strategies are: ALTER-PLAN:SIDE-EFFECT,
RECOVER, ALTER-PLAN:PRECONDITION, ADJUST BALANCE:DOWN, ADJUST-
BALANCE:UP, ADJUNCT-PLAN:PROTECT and the strategy ADJUNCT-PLAN:RE-
MOVE.

SE:BLOCKED-PRECONDITION (SE:BP)

SE:BP describes the situation in which the side-effect of a step actually halts the running of
the plan. This occurs in the case of the first stir fried shrimp dish CHEF creates in which
the MARINADE step that is run before the SHELL step blocks the precondition on SHELL
that the shrimp be handleable.

The features used to access this TOP are:

• There is a blocked precondition.

• The condition that caused the block was caused by an earlier step.

• The condition satisfies no goals.

• The step that causes the condition satisfies at least one goal directly or indiicctly.

The strategies organized under this TOP are: ALTER-PLAN:PRECONDlTION,
ALTER-PLAN:SIDE-EFFECT, REORDER and RECOVER.

102

SE:GOAL-VIOLATION (SE:GV)

The TOP SE:G V describes the situation in which the side-effect of a step itself is an unde-
sired state in the present circumstances. The state generated by the step does not interfere
with other steps, it is just objectionable in its own right.

The features used to index to this TOP are:

• There is a failure.

• The step that caused it has no violated conditions that the planner can identify.

The strategies stored under this TOP are: RECOVER, ALTER-PLAN:SIDE-EFFECT
and ADJUNCT-PLAN:REMOVE.

4.4.2 DESIRED-EFFECT (DE)

A somewhat different class of TOPs are those that describe situations in which the desired
effect of a step, that is a state that either directly satisfies a goal or enables the satisfaction of
a goal, causes problems later in the plan. The main difference between DESIRED-EFFECT
and SIDE-EFFECT TOPs is that DE TOPs do not suggest strategies designed to remove
or avoid the effects that are interfering with the plan. To do so would be to undercut the
goals satisfied by the interfering state.

There are four DE TOPs. They are parallel to the first four SE TOPs that were discussed
in the last section. But because these correspond to situations in which the interfering state
satisfies a goal, the strategies that they store are aimed at altering the aspects of the problem
that are not related to the desired effect itself. The DE TOPs are:

• DESIRED-EFFECT:DISABLED-CONDITION:CONCURRENT - A desired effect of
a step disables its own success requirements.

• DESIRED-EFFECT:DISABLED-CONDITION:SERIAL - A desired effect of a step
disables the success requirements of a later step.

• DESIRED-EFFECT:DISABLED-CONDITION:BALANCE-A desired effect of a step
disables a success requirement of a later step by causing an imbalance in a required
relationship.

• DESIRED-EFFECTBLOCKED-PRECONDITION - The desired effects of a step
violate the preconditions of a later step that are required for it to run at all.

103

CHEF does not use the TOP DESIRED-EFFECT:GOAL-VIOLATION because it de-
fines a situation that it never has to encounter. DE:GV describes a situation in which the
goal satisfying effect of a step is itself a state the planner warts to avoid. While this can
happen in some planning situations, it is never the case that CHEF has to deal with states
that both meet and violate its goals.

DE TOPs describe situations in which the desired effects of a step interfere with
the successful running of a plan.

DE:DISABLED-CONDITION:CONCURRENT (DE:DC:C)

This TOP describes the ultimate self defeating plan. The desired effects of a step infer
with the conditions that it itself requires to succeed. Because the violating state is also
serving the planner's goals, strategies such as ADJUNCT-PLAN:REMOVE and ALTER-
PLAN:SIDE-EFFECT cannot be applied because they would negate a state that the planner
wants to maintain. Only those strategies that are aimed at correcting the situation without
altering the part of the causal chain leading to the failure that includes the violating state
are included under this TOP.

The features that are used to find this TOP are:

• There is a failure.

• There is a violated condition on the step that caused it.

• The plan to achieve the desired state itself caused the violating conditions.

• The condition satisfies at least one goal directly or indirectly.

The strategies stored under this TOP are: ALTER-PLAN:PRECONDITION, SPLIT-
AND-REFORM and ADJUNCT-PLAN:PROTECT.

DE:DISABLED-CONDITION:SERIAL (DE:DC:S)

Like its brother DE:DC:C, the TOP DE:DC:S is aimed at situations in which the desired
effect of a step interferes with the plan rather than a side-effect that can be removed or
avoided altogether. This TOP describes the situation in which the desired effect of a step
violates the satisfaction conditions of a later step.

The features that index to it are:

• There is a failure.

104

• There is a violated condition on the step that caused it.

t The step that would have achieved the desired state is different from the step that
caused the violating conditions.

• The condition satisfies at least one goal directly or indirectly.

The fact that two steps are separate in time give the planner more freedom than if they
took place in parallel. The strategies under the TOP reflect this: REORDER, ALTER-
PLAN:PRECONDITION, RECOVER and ADJUNCT-PLAN:PROTECT.

DE:DISABLED-CONDITION:BALANCE (DEiDCtB)

A variant of the situation in which a relationship between two states is put out of balance
is DE:DC:B, which describes the situation in which the desired effect of a step is the culprit
rather than a side-effect.

DE:DC:B is indexed by the following features:

• There is a failure.

• There is a violated balance condition on the step that caused it.

• The step that would have achieved the desired state is different from the step that
caused the violating conditions.

• The condition satisfies at least one goal directly or indirectly.

The strategies organized by the TOP reflect the fact that the state causing the problems
is a desired one by including only those that deal with the problem without interfering with
that state. They are: ALTER-PLAN:PRECONDITION, ADJUNCT-PLAN:PROTECT
and ADJUST-BALANCE:UP.

DE:BLOCKED-PRECONDITION (DE:BP)

The TOP DE:BP describes the situation of one of the classic problems in machine planning:
the problem of ordering the steps required to build a three block tower [Sussman 75] In this
problem, the planner has the dual goals of having block A on block B, (ON A B), and
block B on block C (ON B C). Unfortunately, if it starts the tower by putting A on B,
(MOVE A B), before putting B on C, (MOVE B C), it is unable to continue because of
the precondition on the MOVE step that the block being moved must have a clear top
(figure 4.1). Because A is on B, B cannot be moved but having A on B is also one of the
planner's goals. The effects of the first step violate the preconditions for the later one. This

105

is the situation described by DE:BP. The desired effect of one step blocks the preconditions
required to perform another step, where both steps satisfy one or more of the planner's
goals. The problem is how to change the situation so that both parts of the plan can be

A B C
Fa

B

Goal State

Initial State

Figure 4.1: The Three Blocks Problem.

Problem State

The solution that has been suggested in the past ([Sacerdoti 75] and [Sussman 75]) is
to repair the plan by reordering the steps, putting B on C before putting A on B. This
solution is the same as one of the two suggested by the TOP DE:BP. But DE:BP also
suggests the strategy of finding some way to move the B block that does not require that it
has a clear top. At the very least, then, the approach of splitting the process of plan repair
into diagnostic and prescriptive stages has allowed a gain of one new solution to this classic
problem. But, quite truthfully, this is not a particularly exciting gain.

A more exciting gain lies in the vocabulary used to describe this problem at all. The
vocabulary suggested by Sussman in building HACKER describes this situation as one of
Brother-goal-clobbers-brother-goal. While this description coven cases of DE:BP, it
also covers cases of SE:BP where the state blocking the goal is not a protected one. Be-
cause of this, HACKER would suggest the limited solution of REORDER in cases described
by SE:BP where CHEF would be able to suggest the strategies of RECOVER, ALTER-
PLAN:SIDE-EFFECT, ALTER-PLAN:PRECONDITION, ADJUNCT-PLAN:REMOVE
as well as REORDER. Because the CHEF is able to distinguish between situations in which
an interfering state serves some goals and those in which it does not, it is able to know when
it can apply more powerful strategies than those planner's that could not describe problems
in these terms.

This is less a point about TOPs and more a point about the level of detail used to define
them and describe different causal situations. Because the description of the situations
leading to failures include distinctions between side-effects and desired effects, CHEF is
able to distinguish between cases where different strategies apply where earlier planners
could not. Because it has knowledge of exactly what steps and states in the problem

106

have to be protected it is able to make alterations that other planners would not have the
assurance to make.

The features that are used to index to DE:BP are almost identical to those used to
access SE:BP but the single difference between them has a great affect on the strategies
that CHEF can apply to deal with the different situations. The features the access DE:BP

• There is a blocked precondition.

• The condition that caused the block was caused by an earlier step.

• The condition satisfies satisfies at least one goal directly or indirectly.

Because the planner has to protect the goals satisfied by the blocking condition it only
has two strategies that it can apply to repair the situation: REORDER and ALTER-
PLAN:PRECONDITION.

4.4.3 SIDE-FEATURE (SF)

In many situations, a failure will rise out of a problem having to do with a particular feature
of an item in a plan rather than having to do with the effects of one step relating (o the
effects of another. This is the type of situation described by TOPs in the SIDE-FEATURE
family of structures. These SF TOPs relate to situations in which the features of new
items that have been added to plans interfere with the goals that the plans are trying
to achieve. This family of TOPs is called "SIDE-FEATURE" because the TOPs in it all
describe situations where a feature of an object that does not satisfy a goal interferes with
the plan. This is opposed to the DESIRED-FEATURE TOPs that describe situations in
which the desired feature of an object disrupts a plan.

There are three TOPs in this family that are actually used by CHEF:

• SIDE-FEATURE:ENABLES-BAD-CONDITION - An object's feature enables a step
to have a faulty result.

• SIDE-FEATUPE;BL0CKED-PREC0NDrnON - An object's feature disables a re-
quired precondition on a step.

• SIDE-FEATURE:GOAL-VIOLATION - An object's feature is itself an objectionable
state.

SF TOPs describe situations in which a non-goal satisfying feature of an item
interferes with the successful running of a plan.

107

SF:ENABLES-BAD-CONDITION (SF:EBC)

The TOP SF:EBC describes situations in which some feature of an object enables a step to
have a bad result. The failure CHEF encounters in building FISH-STIR-FRY is an example
of this sort of situation. The taste of the fish interacts with the stir fry step to create an
iodine taste. The failure is caused by a feature of the fish itself rather than by the side-effect
of a step leading into a later one.

The features of the situation that lead to recognizing this TOP are as follows:

• There is a failure.

• There is a violated condition on the step that caused it.

• The plan to achieve the desired state has a violated satisfaction condition.

• The violating state satisfies no goals.

• The condition is an inherent feature of an object.

Because there is only one step involved in this type of situation, the strategies to deal
with the failure are centered around it. But because there is an identifiable state that is
related to an object feature, there is also a strategy that is aimed at removing that fea-
ture: ALTER-PLAN:PRECONDITION, ADJUNCT-PLAN:PROTECT and REMOVE-
FEATURE.

SF:BLOCKED-PRECONDITION (SF:BP)

Sometimes a new object is added to a plan that the steps of the plan are not designed to
deal with at all. If the MODIFIER allows this to happen, it is possible that certain steps
will be blocked altogether by some feature of the new object. This is the situation described
by SF:BP. One example of this is the problem adding lobster to a fish dish, replacing it for
the existing fish. In this situation, the planner has to deal with the problem of the shell,
either when building the plan or later when a failure points to the problem. Because the
texture of the lobster does not meet the preconditions for a CHOP step, the plan cannot
be run without alteration. The problem is not that one step is interfering with another. It
is that that one of the items in the plan does not meet the requirements for running one of
its steps.

The features that make it possible to recognize this situation are:

• There is a blocked precondition.

• The condition that caused the block is a feature of an object.

108

• The feature satisfies no goals.

The strategies that this TOP organizes are again aimed at changing the violated step
itself and altering the feature of the object involved: ALTER-FEATURE and ALTER-
PLAN :PRECONDITION.

SF:GOAL-VIOLATION (SF:GV)

Sometimes the problem with an item is not in that it leads to difficulties, but instead that
it has a feature that by itself is a problem. This is the situation described by SF GV. One
example of this situation that CHEF deals with is the problem it encounters while trying
to create Duck Dumplings. In this case, the fat from the duck itself is an objectionable
feature that violates one of the planner's goals. This TOP has only those strategies that
are aimed at removing the features from an item that are themselves objectionable and has
no suggestions about changing the existing steps in the plan.

This situation is easy to recognize:

• There is a failure.

• The failure is an inherent feature of an object.

The strategies suggested in this situation are aimed only at changing the object itself:
ALTER-ITEM and REMOVE-FEATURE.

4.4.4 DESIRED-FEATURE (DF)

Another family of TOPs related to the features of items rather than the interactions of
steps is DESIRED-FEATURE (DF). DF TOPs all describe situations in which a feature of
an object that actually satisfies a goal causes trouble. Unlike SIDE-FEATURE TOPs, DF
TOPs store strategies that only alter the steps affected by the problem feature.

There are only two TOPs in this family that CHEF uses:

• DESIRED-FEATURE:DISABLED-CONDmON - A goal satisfying feature of an ob-
ject enables a faulty result from a step.

t DESIRED-FEATURE:BLOCKED-PRECONDITION - A goal satisfying feature of
an object actually blocks a required precondition of a step.

DF TOPs describe situations in which a goal satisfying feature of an item inter-
feres with the successful running of a plan.

109

DF:DISABLED-CONDITION (DF:DC)

DF:DC describes situations in which a desired feature of an object causes a step to have a
bad result.

The features used to recognize this situation are:

• There is a failure.

• There is a violated condition on the step that caused it.

• The plan to achieve the desired state has a violated satisfaction condition.

• The violating state satisfies at least one goal directly or indirectly.

• The condition is an inherent feature of an object.

The strategies suggested to deal with this problem are limited: ALTER-FEATURE,
ADJUNCT-PLAN:PROTECT and ALTER-PLAN:PRECONDmON.

DF:BLOCKED-PRECONDITION (DF:BP)

This TOP describes a situation in which an object's feature blocks a step but the feature
itself is a desired one. Because the step is actually blocked by the feature thus removing
the possibility of running an adjunct plan as in DF:DC, the the strategies associated with
this TOP are very limited.

The features used to recognize this situation are:

• There is a blocked precondition.

• The condition that caused the block is a feature of an object.

• The condition satisfies at least one goal directly or indirectly.

The strategies that this TOP organizes are again aimed at changing the violated step
itself and altering the feature of the object involved: ALTER-FEATURE and ALTER-
PLAN PRECONDITION.

no

4.4.5 STEP-PARAMETER (SP)

The last family of TOPs relates to problems involving the amount of time a step takes and
the tools it uses. Problems involving objects are described the SF: and DF: TOPs.

The STEP-PARAMETER family has two TOPs:

• STEP-PARAMETER:TIME - A failure is blamed on the amount of time step has
run.

• STEP-PARAMETER:TOOL - A failure is blamed on the tool used in a step.

SF: TOPs describe situations in which the bad parameter of a step interferes
with the successful running of a plan.

SP:TIME (SP:T)

SP:T is actually two TOPs, one for steps that have run too long and one for steps that
have not run long enough. These are particularly useful TOPs in the CHEF domain where
cooking times have a great effect on the results of a step. While significant, however, the
features used to index to the TOPs and strategies used to repair the problems described by
those TOPs are trivial.

The indices for SP:T:LONG, which describes situations in which steps have been run
too long, are:

• There is a failure.

t The plan to achieve the desired state has a violated satisfaction condition.

• The violated condition is a time that is greater than the time constraint on the objects
of the step.

There are two strategies to deal with this problem: ALTER-TIME:DOWN and SPLIT-
AND-REFORM.

The indices for SP:T:SHORT, which describes the reverse situation in which situations
in which step have not been run long enough, are:

• There is a failure.

• The plan to achieve the desind state has a violated satisfaction condition.

Ill

• The violated condition is that the time on the step is less than time required by the
objects of the step.

Again there are two strategies to deal with this problem: ALTER-TIME:UP and
SPLIT-AND-REFORM.

SP:TOOL (SP:TL)

Sometimes the instruments used in a step lead to problems of their own. Baking a souffle
in the wrong size pan, for example, will lead to the outside cooking too fast or too slowly.
SP:TL describes situations in which a step fails because of an inappropriate instrument.

The indices for SP:T are:

• There is a failure.

• The instrument used causes the failure.

There is only one strategy associated with this TOP: ALTER-TOOL.

4.5 Why TOPs?

In CHEF, TOPs are used to organize the repair strategies that can be applied to the
problems that they describe. But strictly speaking, this is not necessary. The different
strategies could each be indexed under the particular causal connection that they deal
with. Instead of using a causal description of a situation to index to a TOP and then
accessing the strategies that are housed under it, a planner could use the pieces of the same
causal description to index directly to each of the strategies independently. Given this,
what function do CHEF's TOPs really serve?

The answer to this has three parts: two within the CHEF implementation and one
outside of it.

The first part of this answer is that CHEF uses its TOPs for something other than
organizing repair strategies. It also uses them to guide it in learning from its failures. Along
with the strategies it organizes, each TOP also indicates which features in the situation
it describes should be marked as predictors of the current problem. Because each TOP
corresponds to a particular causal configuration, it can store the information as to which
aspects of the overall situation are important for CHEF to notice in future planning.

For example, CHEF had to repair the problem of the iodine taste of fish ruining a
dish. In doing so, it diagnosed the situation as one of SIDE-FEATURE:ENABLES-BAD-
CONDITION. This TOP organizes a set of strategies that can be applied to the problem,

112

but because the TOP describes a situation in which a feature of an item interacts with a
step (the taste of sea food and the stir-fry step), it is able to direct the planner to mark
both of them as predictive of the failure. Once this is done, the co-occurrence of the two
features, the goal to include sea-food and the goal to make a stir fry dish, will cause the
planner to anticipate and try to avoid the failure. Neither feature alone, however, predicts
this problem.

The TOP Sn)E-FEATURE:GOAL-VIOLATION, which describes situations in which
a feature of an item directly violates a goal, directs the learning in a slight'y different
direction. Like SF:EBC, SF.GV directs that the feature of the object should be marked,
but it does not direct that any particular step be marked, because the feature violates one
of the planner's goals independent of any step that has acted on it. CHEF diagnoses the
greasy texture in the Duck Dumplings it builds as a case of SF:G V, because duck will have
fat in any situation. As a result, CHEF marks the duck itso'f as predictive of a greasy
texture in all circumstances.

CHEF uses its TOPs tu indicate which aspect of a situation should be marked as pre-
dictive of a problem in later planning. Because the TOP corresponds to the causal circum-
stances of the situation it can indicate which features are important to a current problem
and which will be important to later ones. Unlike organizing repair strategies, this is a func-
tion that requires the knowledge of all aspects of a planning problem. The entire description
of the problem is needed to choose the features that will be marked. Even if the individ-
ual aspects of the problem could be used independently to point out individual features
that were important, they would have to be combined at some point to form the proper
conjunction of features that would predict a particular problem. One way or another, the
configurations that correspond to the TOPs would have to be recognized.

The second answer to the question of the functionality of TOPs has to do with the
prediction of failures and the indexing of plans. When CHEF anticipates a problem it has
to have some way of describing that problem to its RETRIEVER so it can search for a plan
that solves it. Instead of using a description that stays at the level of a specific failure, (e.g.,
soggy broccoli), CHEF uses its TOPs to describe what it predicts and what it is looking for.
CHEF also indexes the plans that deal with probleirs by the TOPs that described them.
The prediction of a problem described by a TOP, then, is used to find a plan that solves
that problem. The TOPs, then, allow the planner to access plans that solve problems that
are analogous to current ones.

The different plans that are indexed by a single TOP are similar in that the causal
configuration of the problems they solve are the same. Each TOP is used to index to the
plans that deal with different instances of the single causal situation it describes. So each
TOP acts as the access mechanism that links problems to the analogous plans in memory
that will solve them.

The last part of this answer lies well outside the current implementation of CHEF but
is an extension of the basic idea of using past episodes to store information.

113

One possibility that CHEF does not explore in dealing with plan failures is searching
for another plan to replace its current one altogether. This would be a process similar to
the initial retrieval of a plan to deal with a problem that CHEF does when it predicts one.
In this case, however, it world happen after CHEF actually encounters a failure and has
to recover from it. In this sort of situation, the TOPs themselves could be used to store
past episodes that deal with the problems they describe. This situation demands that the
plan being searched for deals with the causality of the current problem, which is described
by the TOP, and so it makes sense to store these plans under the TOP itself. TOPs could
carry greater weight by directly storing complete replacement plans to deal with failures as
well as strategies.

Beyond this, TOPs could also be used to help deal with the problems that would rise out
of a more realistic implementation of repair strategies. In a more ambitious implementation
of strategies, one in which the table look-up of steps that meet certain requirements is
replaced with a planner that can deal with simp'e state changes, the current approach to
the competition between strategies would have to change. Generating all possible alterations
and then choosing between them is too costly. A better approach would be to associate the '
successful and unsuccessful applications of a strategy to problems described by a TOP with
the TOP itself. These episodes could then focus the planner's attention on the strategies that
have been most helpful in this situation, suggest implementations of different strategies and
warn if certain strategies have had problematic results in this type of situation [Hammond
84]. These functions have to be linked to the TOPs in that the competition between
strategies has to be between them as they apply to the current problem not as they apply
globally to all problems.

In CHEF, TOPs organize strategies, indicate the features that will predict a failure,
and link predictions of problems to the plans that solve them. They also have the potential
to organize plans so that they can be suggested as replacements for failed plans and to
better manage the choice between strategies that can be applied to a problem. While many
of these functions could be implemented without the use of TOPs, others require TOPs
because they correspond to entire causal situations and can be used to organize inferences
that have to be made about those situations. The functional gains from the use of TOPs
more than justifies their presence as organizing structures for planning.

4.6 CHEF's repair strategies

The repair strategies used by CHEF owe a great deal to the work on plan repair that has
preceded it ([Sacerdoti 75], [Sussman 75], [Wilensky 80] and [Wilensky 83]). CHEF's repair
rules, however, are somewhat more detailed than those that have gone before and make
greater use of an organization that links the description of a problem to the solutions that
can be applied to it. Because many planning projects have been developed in somewhat
impoverished domains many repair strategies have been overlooked because they had no
application within the these domains. Sussman's blocks world and Sacerdoti's pump world

114

limited the actions of any planner working within them and thus limited the kinds of
repairs that a planner could make. The failures encountered by HACKER and NOAH were
usually the product of scheduling errors and were repaired by one or another variation of
REORDER. They did not, in general have to deal with questions such as the difference
between a side-effect and a desired effect of an action. Wilensky suggested a wider range of
plan repair strategies in PANDORA, but did not provide the organization that would have
made them useful or give a method for actually implementing the general strategies to for
use when solving specific problems.

CHEF's repair strategies differ from those of past planner's in that they are more
specific and are organized such that a single situation can have multiple strategies
applied to it.

In CHEF the repair rules are all organized under specific TOPs and each TOP is as-
sociated with a particular causal configuration. The TOP SIDE-EFFECT:DISABLED-
CONDmON:CONCURRENT, for example, is accessed only when a single action has a
side-effect that disables states that have to be maintained during the course of that action.
CHEF accesses these strategies then, by accessing the TOP that stores them, and the TOP
is indexed by the causal explanation of the problem that corresponds to it.

For CHEF it is always the case that the repair strategies that are applied to a particular
problem are those and only those that suggest changes to the causal configuration that will
repair the plan. It may be that the change is not possible, because of the specifics of the
problem, but if the change can be made then the plan will be repaired. In the beef and
broccoli failure, one of the suggested repairs is to run an adjunct plan that will remove the
liquid from the pan as the broccoli is cooking. In this case, CHEF does not know of any
step to do this, but if such a step were known, such as throwing a sponge in the pan with
the food, it would solve the problem. Even though it cannot find such a plan, CHEF is able
to describe the kind of action it needs, in terms of the preconditions and effects of different
steps.

In order to use this description to find specific plans, CHEF makes use of a library of
actions, indexed by their preconditions and effects and by other plans that they are similar
to. When a repair strategy is applied, CHEF builds a request into this library using the
general description associated with the strategy, filled in with the specifics of the problem.
The general strategy is turned into a specific request for a step or set of steps in the domain
that have particular preconditions and effects.

Requests to this library of steps can take two forms. They can be requests for steps
that have particular results or requests for steps that are similar to given steps but have
different preconditions or effects. A strategy such as ALTER-PLAN:SIDE-EFFECT, that
suggests replacing an existing step with one that does not produce a particular side-effect
builds a request of the second type (figure 4.2V A strategy such as RECOVER, that directs
the planner to add a new step to a plan that will remove a particular state builds a request

115

of the lirst type (figure 4.3). Each one is defined as a general structure which is filled in
with the current answers to CHEF's explanation questions.

(d«f:itrat altar-plan:*id«-«ffact
binding! («condition* «zpansvar-condition

♦step* axpansser-stap
»sgoal* azpanawar-atap-goal)

question (antar-taxt ("la thara a alternativ« to " t
»step* t

"that «ill enable " t
•agoal* t
"that does not causa " t
•condition*)

test (search-alter-Benory nil »step* *condition* *sgoal*)
azit-taxt ("Thara is a plan" »answer*)
fail-tast ("lo alternate plan found")

response (text ("Response: Instead of doing step: " *step* t
" Do: " *ans«er*)

action (replace *8tap* «answer*))))

Figure 4.2: Definition of ALTER-PLAN:SIDE-EFFECT strategy

For example, one problem that CHEF encounters in creating a recipe for FISH-WITH-
PEANUTS is that the rice wine marinade it uses to remove the iodine taste of the fish makes
the fish crumble during cooking. Because it recognizes that the side-effect of one plan
is enabling an undesired condition, CHEF evokes the TOP SIDE-EFFECT:DISABLED-
CONDITION:SERIAL, which suggests the repair strategy ALTER-PLAN:SIDE-EFFECT,
as well as many others. ALTER-PLAN:Sn)E-EFFECT is a general strategy to use a plan
that achieves the initial goal but does not have the undesired side-effect. Because CHEF
knows the problematic state, the goal that is to be achieved and the initial plan that has
gone wrong, it is able to build a request for a step described by the general strategy. It
builds a request for a plan that removes the iodine taste from fish that does not have the
side-effect of adding liquid to the dish. This describes the plan segment in which the fish is
marinated in ginger.

CHEF uses its explanation of what has gone wrong to suggest the TOP, which in turn
suggests a set of possible repairs. It then uses it again to provide the specific states and
steps that convert the general repair rules into domain specific requests for plans. Having
a detailed causal description of the problems it encounters allows it to find very general
repair rules and instantiate them as specific repairs.

To apply an abstract strategy, CHEF fills in the general structure with specific
information about the current situation from its explanation of the problem.

116

(d«f:atr»t racoTar
bindings (»condition» «xpanamr-condition

•■tap* azpuisaar-itap}
question («ntsr-tszt ("Is thsr« a plan to racovsr fron "

»condition»)
test (saarcb-stap-nanory »condition» nil)
•zit-tazt ("Thara is a plan" »ansaar»)
fail-tart ("Mo racovar plan found"))

rasponsa (taxt ("Rasponsa: Aftar doing step: " »»tap» t
" Do: " »answor»)

action (aftar »»tap» »ansaar»)))

Figure 4.3: Definition of RECOVER strategy

CHEF uses seventeen general repair rules in the normal course of its planning. Each
one of these is associated with one or more TOPs and suggests a fix to a specific causal
problem. Each one of these rules carries with it a general description of a fix to a plan,
through reordering of steps, an alteration of the objects involved or a change of actions.
These general descriptions are filled in with the specific states that the planner is concerned
with at the time when the repair rule is suggested.

It important to realize that these strategies, while they are designed for specific situa-
tions, are not domain specific. Stated generally, they are:

a ALTER-PLAN:SIDE-EFFECT: Replace the step that causes the violating condition
with one that does not have the same side-effect but achieves the same goal.

a ALTER-PLAN:PRECONDITION: Replace the step with the violated precondition
with one that does not have the same precondition but achieves the same goal.

a RECOVER: Add a step that will remove the side-effect before the step it interferes
with is run.

a REORDER: Reorder the running of two steps with respect to each other.

a ADJUST-BALANCE:UP: Increase the down side of a violated balance relationship.

a ADJUST-BALANCE:DOWN: Decrease the up side of a violated balance relationship.

a ADJUNCT-PLAN:REMOVE: Add a new step to be run along with a step that causes
a side-effect that removes the side-effect as it is created.

a ADJUNCT-PLAN:PROTECT: Add a new step to be run along with a step that is
affected by an existing condition that allows the initial step to run as usual.

117

• SPLIT-AND-REFORM: Split the step into two separate steps and run them indepen-
dently.

• ALTER-TIME:UP: Increase the duration of a step.

• ALTER-TIME:DOWN: Decrease the duration of a step.

• ALTER-ITEM: Replace an existing object with one that have the desired features but
not an undesired one.

• ALTER-TOOL: Replace an existing tool with one that has the desired effect but does
not cause an undesired one.

• ALTER-PLACEMENT:BEFORE: Move an existing step to run before another one.

• ALTER-PLACEMENT:AFTER: Move an existing step to run after another one.

• ALTER-FEATURE: Add a step that will change an undesired attribute to the desired
one.

• REMOVE-FEATURE: Add a step that will remove an inherent feature from an item.

The reason that these strategies can be as specific as they are is because they are only
applied after the planner is able to describe in detail the causality of the problem to be
repaired. As a result, more powerful changes that would be inappropriate in the case of a
less specific problem description can be applied. Just as no knowledge means that only the
most general, and thus weakest, repair techniques can be used, more knowledge means that
more specific, and thus more powerful techniques can be applied. Because CHEF does have
an understanding of why each of its failures has occurred, it is able to choose and apply the
most powerful strategies for repairing those failures.

4.7 Strategies not used by CHEF

While CHEF uses quite a few repair strategies to deal with its planning failures, there exists
a whole set of these repair rules that it ignores. CHEF excludes these strategies not because
they are not useful, but because they deal with problems that CHEF never encounters and
suggest changes that make no sense in CHEF's domain. For example, CHEF does not have
strategies to deal with planning failures having to do with interactions with other actors.
The entire range of coun/er-p/ormmjf strategies ([Carbonell 79] and [Wilensky 78]) designed
to deal with problems that arise when two or more planners interact have been ignored.
CHEF also ignores those strategies that require that it alter the initial goals that it is
handed as its input. While the changes that CHEF makes to a plan may modify goals that
it has generated on its own, it never makes any changes that require modifications of the

118

initial goals it is given as input. This means that sub-goals that CHEF is planning for may
be changed, but the main goals that CHEF has remain intact.

CHEF is not able to delegate its planning tasks to others, so it does not use strategies
such as ALTER-ACTOR, because the problem that this strategy solves never arises for
CHEF. Likewise, although the actions controlled by the planner all have durations which
can be changed, none of them have alterable rates. For example, it is not possible for CHEF
to change the amount of time that it takes to chop vegetables. It can change the duration
of cooking steps, but it cannot change the rates of those steps. This means that it cannot
use strategies such as SPEED-UP or SLOW-DOWN. They are useful when the amount of
time that an action takes to perform cam be altered by the planner by changing the rate
at which he performs them. These strategies allow a planner to coordinate the times when
actions end, to minimize ill effects produced by the performance of an action, or maximize
any positive effects produced.

In general, domains with different sorts of actions will allow a planner to use different
sorts of strategies. Just as the cooking domain allows CHEF to make use of more interesting
and powerful strategies than are possible in a blocks world, a more expansive domain than
cooking would suggest a greater set of strategies than CHEF could make use of. The main
reason for the expansion of strategies in CHEF, however, has less to do with the domain
and more to do with the addition of the vocabulary required to distinguish between goal
satisfying and non-goal satisfying actions and states.

Chapter 5

Modifying Plans

Case-based planning is driven by the idea that it is less expensive to find and modify an
old plan than to build a new one up from a set of primitive steps. By recalling the results
of work that has already been done, a case-based planner can avoid repeating it. Past
efforts are recalled in the form of past plans, plans chosen because they satisfy many of the
planner's current goals. Because of this, the amount of modification to a plan that has to
be done is kept to a minimum. So the MODIFIER that alters them can be a fairly simple
process that deals with only the less difficult goals in the domain.

A case-based planner's plan modifier is not designed to be a general purpose planner.
It is designed to alter plans to satisfy new goals. A weak MODIFIER that reasons at
a fairly shallow level can be supported by a strong RETRIEVER and REPAIRER. The
MODIFIER does not have to reason about past problems that the planner has already
encountered because it can depend on the RETRIEVER to find the plans for it to alter
that already avoid those problems. It does not have to go on to reason about the possible
problems that can result from its modifications because it can depend on the REPAIRER to
repair those problems if they arise. Further, any problems that it does create in a plan can
be avoided in the future because the REPAIRER incorporates repaired plans into memory.

CHEF's MODIFIER is not concerned with the problems of planning having to do with
the interaction between steps that the rest of CHEF are concerned with. Its only concern
is adding the steps that will act to achieve a goal to existing plans.

Both the RETRIEVER and the REPAIRER have far more knowledge about the causal-
ity of the CHEF domain than the MODIFIER. The RETRIEVER ha» knowledge about
the features that predict failures, the similarities between goals and the relative difficulty of
adding new goals. The MODIFIER, on the other hand, has only the limited knowledge of
how new goals are added to existing plans in general. The REPAIRER analyzes problems
in terms of their deep causal structure The MODIFIER just links new steps into old steps
without asking what the real results of those new steps will be. But because the MODI-
FIER is supported by the ability of the PREDICTOR to find the plans that will be easiest

119

120

to modify and the power of the REPAIRER to repair and learn from failures, it is able to
effectively add new goals to old plans using a only a small amount of knowledge about the
causality of its domain.

A case-based planner's plan MODIFILR is a simple mechanism that is designed
to add new goals to plans that it knows are successful. It relies on the greater
knowledge of the RETRIEVER to find the plan that is appropriate to its current
situation.

Because CHEF plans in what we will call a design domain, a domain where a set of goals
have to satisfied by a single plan that results in a coherent object, all of the goals that it is
given at any one time have to be satisfied by a single plan. A new goal cannot be planned
for on its own. It always has to be dealt with through the addition of the steps to satisfy
it to an existing plan. In some sense, then, CHEF does not know how to plan directly. It
instead knows how to find past plans that satisfy some goals and how to alter those plans
to satisfy others.

The work of the MODIFIER is controlled by a set of rules which tell it how to add new
goals to existing plans. These modification rules for plan alteration are stored in a table,
indexed by two features of the planning situation: the plan being altered and the goal to
be added. In most cases, the goal to be added is a goal to include a particular ingredient or
taste. CHEF usually has to deal with the problems of adding broccoli to a dish or making
that dish hot. Adding goals such as these is done by finding the appropriate rule, indexed by
the goal to be added and the plan to be altered, and incorporating the steps and ingredients
in the rule with the existing plan.

Sometimes, however, it has to add steps for goals to avoid a particular problems, prob-
lems that that relate to a single ingredient rather than an interaction between ingredients.
The fat in duck and the taste of iodine in seafood are example of this kind of problem in
that the features of the ingredients themselves directly cause problems in plans. To deal
with the features of problematic ingredients, the MODIFIER has access to plan critics that
are stored under individual ingredients. These critics suggest steps that avoid the problems
Hue to special features of particular ingredients. These would be steps such as removing the
fat from the duck before using or marinating seafood to covor its iodine taste. After adding
a goal to a plan, using the standard modification rule associated with the goal and plan,
the ingredient critics associated with the ingredients that have been added are then fired.

In all cases where the MODIFIER adds new goals to plans, the idea is to integrate the
plans into a coherent whole. The rules it has for adding new goals are rules for adding goals
to a plan, not rules for satisfying the plan on its own.

121

5.1 The MODIFIER'S tools

CHEF's MODIFIER has three baisic tools or sources of knowledge that guide its alterations.
First it has a set of role specifications that define the basic structure of the plans it is altering
in general. This is used to guide it in decisions about whether to add a new goal directly
or to substitute it for an existing goal in the plan being altered. Second, it has a table
of standard modifications that is indexed by the type of plan being altered and the go« 1
that is to be added. This table provides a listing of the steps that have to be taken to
add a new goal to an existing plan. Finally, it has its ingredient critics, which correct for
the peculiarities of particular ingredients. Some of these are directly associated with the
ingredient and some are learned when CHEF repairs failures and are associated with both
the ingredient and the prediction that that failure is going to arise.

5.1.1 Role specifications on plans

Each of CHEF's general plan types has a set of role specifications associated with it. These
specifications amount to general descriptions of the different type of foods that could be
added to the plan and the effects that should be expected to result from the i^teps in the
plan. These specifications are used after a plan is built to infer the goals that it should
satisfy but are also used earlier on to tell the MODIFIER whether it should add a new item
directly or substitute it for an existing item, thus making the new ingredient play the same
role in the plan as the original once did.

These role specifications are not simply lists of the type of ingredients that can be added
to a plan. There are three pieces of information associated with each role: the different
types of ingredients that can fill the role, the normal and maximum number of ingredients
that ran fill the role and the purpose or goals that are associated with the role.

When a new goal is added to a plan role information is used to decide whether to add
the new steps or to substitute for those already in the plan. The substitution has to be
done in most cases to avoid the problem of having plans that keep expanding, satisfying
not only all of the new goals that they have been asked to achieve but also all of the old
goals that they were originally designed for. Role specifications define the limits of a plan,
define how much it can be expanded. They limit the type and number of goals that can be
added directly to a plan, forcing substitution in order to keep the plan within the confines
of the overall specifications of the plan type.

Role specifications on general plan types tell the MODIFIER when it has to
substitute a new item for an old one and when it can just add the new item
directly.

The specification for STYLE-STIR-FRY, the plan type of all stir fry plans has four
roles associated with it: The main ingredient, (MAIN), the vegetable (VEGE), the liquid

122

spices (LSPICE) and the solid spices (SSPICE). The main ingredient in a stir fry dish can
be any meat, seafood, non-spice vegetable or tofu. The specification on the MAIN role
assumes one main ingredient but allows two. The main ingredient is expected to provide
taste and texture to the dish. The VEGE role of a stir fry dish can be filled with either a
major vegetable {e.g., broccoli, carrots, snow peas\ a spice vegetable (e.g., scallions, dried
mushrooms, lily buds) or tofu. The VEGE specification allows there to be three vegetables
in any one dish but favors two. Fillers of the VEGE role are expected to provide taste
and texture. LSPICE and SSPICE respectively are filled with liquid and solid spices. Each
allows up to 4 items but favors three. Each of the fillers of these roles is assumed to add
taste to the overall dish (figure 5.1).

(def:speca style-stir-lry
main (meat seafood major-vegetable tofu) (1 2) (taste texture)
vege (major-vegetable spice-vegetable) (2 3) (taste texture)
Ispice ((spice texture (liquid))) (3 4) (taste)
sspice ((spice texture (solid)) (spice texture (powder)))

(3 4) (taste))

Figure 5.1: Definition of the role specifications of STYLE-STIR-FRY

This notion of role specification is not limited to the CHEF domain. Any design domain
in which the goal of a planner is to satisfy a set of goals which are actually specializations
of a class of objects ha« to have this sort of role information associated with those classes
of objects. In architecture, for example, the goals are all associated with specialized ver-
sions of different general object types. The goals in architecture break down into goals for
particular type of objects (e.g., Houses, apartment buildings, office buildings, etc.) and
specifications on those objects {e.g., Number of rooms, number of stories, material used,
etc.). In architecture, a goal for a type of object, such as a house for example, is equivalent
to the CHEF domain goal to make a STIR-FRY or SOUFFLE dish. The goal provides
the general outline of the final product, an outline that is filled in by the other goals for
including particular features in the object being built.

The choice of the general object type, then, limits the kinds of goals that can be associ-
ated with any particular instance of it. Adding a goal to have a bedroom with a southern
view to a general plan for a three bedroom house does not mean simply adding another bed-
room. It instead means changing the location of a bedroom that is already there. Adding a
new bedroom would change the general description of the object, a description that should
be considered as important as any particular goal. When chicken is added to an existing
stir fry plan, it is not just added, it is used in place of existing items that play a similar role
in the original. The idea is to add a new goal while staying within the limits of the general
type of object that is being created.

Role specifications on a dish style do nothing to determine the steps that are included

123

in the plan. Instead, they determine the form of the end result. They serve to limit the
number of goals, by instructing the MODIFIER to substitute items rather than add them
directly. This keeps the overall plans that result within certain guidelines. This avoids the
problem of a constant expansion of the number of goals that each new plan satisfies, an
expansion that would ultimately lead to a library of plans that are so unwieldy that no new
plcns can be added to tlnm at all.

The specifications on a plan type define the expectations for the result of the
plan but do not determine the steps to be taken to achieve that result.

5.1.2 Modification rules

To add a new step to an existing plan, CHEF uses a set of modification rules, each of which
is indexed by the type of plan that is being altered and the new goal being added. Each of
these modification rules lists the set of steps that have to be added to an existing plan in
order to achieve the current goal. Each also specifies the amount of the item that should be
added. Each of these also includes BEFORE and AFTER information. This information
specifies where in an existing plan the new steps have to be placed.

For example, the modification rule for adding any FRUIT to a SOUFFLE is to first
chop the fruit into a pure and then mix it into the batter. There is a requirement on the
MIX step that it occur before the step of pouring the batter into a pan for baking (figure
5.2). This rule is stored in the MODIFIER'S table of standard modifications, indexed by
FRUIT and STYLE-SOUFFLE.

(add:BOd
index (fruit style-soulfla)
aaount (cup number (1))
steps ((do (chop object ?nea-item size (pulp)))

(before (pour object ?object into (nina-inch-baking-dish))
do (mix object ?naw-item aith ?object))))

Figure 5.2: Rule for adding FRUIT to SOUFFLEs.

The modification rules tell the MODIFIER the steps it has to take to add a new
goal to an existing plan. These rules are indexed by the goal to be added and
the plan to be altered.

Because they are related to both the goal being added and the plan that is being
changed, these modification rules can know about what it being changed and how to go

124

about changing it. They can detail how to add new steps and how to remo^ them later.
In cases where the plan that is found does not even partially satisfy a goal, then, they can
be used to add that goal to the existing plan. While it is not clear that this kind of rule
could weather an expansion of the domain, they are useful within the context of the needs
of a domain centered case-based planner.

5.1.3 Critics

While most of the changes that have to be made to add a new goal to a plan can be handled
with modification rules, some ingredients have special features that have to be handled by
an equally special set of rules. These rules, called critics are designed to augment the table
of standard modification rules by tailoring plans to the needs of problematic ingredients.

CHEF has two classes of critics. The first is the set of critics that CHEF starts with.
These are directly associated with the ingredients that they compensate for. The second
is the set of critics that CHEF learns by experiencing failures in handling particular in-
gredients. These are also associated with the ingredients that they relate to but are also
associated with the failure that they protect the planner from making. In theory, however
there is no real difference between these two sets. The first is merely a set of degenerate
cases of the second. That is, critics that apply to failures that can be predicted by just the
presence of a particular item.

Ingredient critics give the MODIFIER information about special steps it has to
add to plans to account for the idiosyncracies of particular items.

The instructions that are attached to an ingredient critic are somewhat broader in
scope than those attached to modification rules. Along with instructions to add steps, the
ingredient critics can also instruct the MODIFIER to reorder steps, remove steps, add new
ingredients and remove ingredients that are already there. In directing the MODIFIER to
add new ingredients, it can also specify what steps the new ingredients should participate in.
The MODIFIER, then, does not have to make use of its table of standard modifications in
order to add the ingredients that it is instructed to by a critic. This allows the MODIFIER
to alter plans to deal with the idiosyncracies of particular ingredients that could not be
dealt with effectively using the modification rules alone.

A single ingredient can have multiple critics. Some ingredients, such as shrimp, start
off with multiple critics and have more added as CHEF encounters failures associated with
them. These critics are ordered and new critics are added to the end of this ordering. New
critics are run after initial ones because they correspond to changes that were made in a
plan after the original critics were run and may depend on changes that they make.

One example of an ingredient that has critics associated with it is shrimp. CHEF begins
with two critics associated with its knowledge of shrimp. One points out that shrimp, unlike

125

other seafoods, does not need to be chopped because it is already the right size for all dishes
that it is included in. CHEF's default is that everything has to be chopped because this is
the case for most of the ingredients it has to deal with. The second critic associated with
shrimp points out that it has to be shelled before it is cooked. Together these critics define
the changes that have to be made to accomodate the fact that shrimp is smaller and has a
different texture than most seafoods (figure 5.3).

(add:crit shriBp
bind« (shriBp •n«»-it««*)
step« ((bafor« (cook-stap object »n«w-it««*)

do (shall objoct *B«w-lt«B*))})

(add:crlt ahriap
binds (shriap *naw-ita««)
stapa ((dalata (chop objact (»naw-ita«»)))))

Figure 5.3: Two critics for SHRIMP.

CHEF initially has a set of critics that are stored under the ingredients they
relate to and applied whenever those ingredients are added to existing plans.

But CHEF can also build new critics for items when its experience with them demon-
strates that it has to add new steps to deal with them. In building its first plans with
shrimp, CHEF encounters a problem with because the SHELL step that the MODIFIER has
added is placed after a MARINATE step, violating a condition on SHELL that the object
shelled is handleable. CHEF calls the failure that results SIDE-FEATURE:BLOCKED-
PRECONDITION, because there is a precondition on a step blocked by the results of
another plan, but that other plan does not serve any goals before the time of the block
takes place. At this point CHEF not only reorders the steps, it also builds an ingredient
critic that is associated with the failure. When the failure is predicted, any time a plan has
to be altered to include shrimp, this critic is suggested.

CHEF augments its initial set of ingredient critics with new ones learned while
it repairs failures related to unexpected properties of new ingredients.

CHEF's critics take care of planning for the idiosyncracies of problematic ingredients.
They expand in response to new information, information that CHEF discovers as it plans
for certain ingredients and finds that the details of those plans are incorrect. By storing
and recalling the repairs that it has to make to improve those details it is able to reuse
the repairs in the form of new critics that improve its ability to deal with the specifics of
non-standard ingredients.

126

5.2 The different situations for altering plans

Whenever CHEF has to alter a plan, it does so to make the plan achieve a new goal. While
the alterations that it makes are determined by the new goal it is adding, they are also
affected by the relationship that that the new goal has to the initial plan. A goal that
is partially satisfied by a plan is added to it in a different way than a goal that is not
addressed at all by the steps in the plan. So CHEF's MODIFIER is confronted by different
relationships between existing plan and new goals that define different approaches to plan
modification.

There are three relationships between plan and goal that CHEF has to deal with that
define three somewhat different approaches to plan modification.

The first of these is the situation in which CHEF has to add a goal to a plan that does
not include any provisions for that goal, either by satisfying a goal that is similar to it or
by satisfying a goal that plays the same role as the new goal to be added. In this situation
the MODIFIER has to add the steps to satisfy the goal directly. It doesn't make any
substitutions or replacements. It just adds the steps that are dictated by the modification
rule that applies.

The second of these is the situation in which CHEF has found a plan that partially
matches the goal it is going to add. In this case the MODIFIER can just substitute the
new for the old, ignoring the modification rule and relying only on the ingredient critics. It
can do this because the new item matches the old, is of the same class of items as the old,
and thus will have the same set of standard modification steps as the old.

The final situation that CHEF has to deal with lies between the first two. It is the
situation in which the new goal is not of the same type as any goal already satisfied by the
existing plan, but will play a role that is the same as some item that is in the plan. In this
case CHEF replaces the new for the old, removing the steps and ingredients that satisfied
the original goal before placing in the steps and ingredients used to satisfy the new.

5.2.1 Addition

The MODIFIER has to add new steps to a plan when it is confronted with a new goal that
has no equivalent in the existing plan. In these situations, it has nothing to remove from
the plan. It only has to add new steps and ingredients, using the information stored in its
modification rules to guide its actions.

The MODIFIER has to directly add a new goal to a plan when the role that it
plays in the plan that is not already filled.

The best example of CHEF's modifier having to add a new t oal to an existing plan that
does not have a similar goal associated with it is when it is faced with the task of making

127

a strawberry souffle. In this situation, it begins with a plan for vanilla souffle, a plan that
does not have any goal that fills the FLAVOR role. It does have vanilla, but this is plays
the BASE role in STYLE-SOUFFLE. Thus the MODIFIER is in the position of having to
directly add the steps that it needs to make the plan satisfy its new goals.

Adding a new goal is straightforward: the MODIFIER gets the rule that relates to the
goal and the type of the plan from its table of standard modifications, it makes the changes
directed by the rule and then applies any critics that are related to the ingredient being
added.

We have already seen the definition for the modification rule associated with FRUIT
and SOUFFLE. It directs the MODIFIER to add a CHOP step that pures the fruit and
then add a step that MIXes the fruit into the batter. In adding the strawberries, then, the
MODIFIER has to also add two new steps, steps that have to be integrated into the plan
as a whole.

Adding a new goal to an existing plan requires running the modification rule
associated with the goal and plan and then running the critics associated with
the new ingredients.

Because CHEF plans in a design domain, new goals are interpreted as alterations to an
existing object. When it is adding a goal to include strawberries, the results of the plan
steps it adds have to somehow be merged into the results of the steps in the original. To
assure this, there is a restriction on the modification rules used by the MODIFIER. The
final step of a plan in a modification rule has to be one of two things: either a step that
combines the results of the new steps with the results of the existing plan, such as an ADD
or a MIX step, or a step such as STIR-FRY that can be merged with an STIR-FRY step
already in the plan. This means that the results of the steps from the modification rule can
either be merged with the results of the original plan by explicitly adding them together at
one point or by merging a step in the existing plan with a similar one in the modification
rule.

In actually putting these steps into place, the MODIFIER starts with the final step
in the rule and works back to the first step. This is so any steps that can or must be
merged with steps in the existing plan can be recognized. If the MODIFIER starts from
the beginning and merges a step in the existing plan with one in the rule, it could turn out
that the steps that follow in the plan are not the same as those determined by the rule. But
because the steps were merged too early, the results of the merged steps would be linked
and this link would have to be broken. Two ingredients that are chopped the same size may
not have the same cooking time, so they cannot be merged at the time of the chopping. In
working back, the MODIFIER checks each new step that is being put in place to see if it
can be merged with steps already in the plan. If it is unable to merge steps at any point it
gives up on merger altogether, because the steps have now diverged.

In CHEF's plans, any step that uses the results of a prior step is linked to it by a

128

pointer to those results. A step to ADD the results of one step to the results of another
has its OBJECT and TO slots filled with pointeis back to those results. Placing a new
ADD step or MIX step requires breaking these links and inserting the new step in between
the originals. This requires building a link from the original step that follows the new one
back to the results of the new step and also building a link from the new step back to the
results of the earlier step so that the new step can use it. CHEF adds strawberries to souffle
by adding a new CHOP step and then ADDing its results to the existing batter before it
is POURed (figure 5.4). In the three figures that follow, arrows leading away from a step
indicate the results of the step feeding into later steps.

MIX1 • POUR1

Original Plan

Modified Plan
Figure 5.4: Merging ADD or MIX steps.

In adding the strawberries to the souffle, the MODIFIER starts from the MIX step and
works back. It places the new MIX step in before the POUR step and builds a link between
the OBJECT of the POUR and the results of the MIX. This means that the OBJECT of
the POUR will filled with the results of the MIX, the batter with the strawberries added.
The new MIX step then uses the filler that was originally in the OBJECT of the POUR, a
pointer to an earlier MIX step which resulted in the original batter as the filler of its TO
slot. The CHOP step is then added, and the links between it and the MIX step are made
as directed by the rule. So the results of the CHOP are used to fill the OBJECT slot of the
MIX.

Building MW nan« for VAHILLA-SOUFFLE band on its goals.

Calling rscip« STRAWBERRY-SOUFFLE

Modifying rscip«: STRAWBERRY-SOUFFLE
to satisfy: Include straabsrry in th« dish.

129

Applying plan
do: Pulp th« «travbarry.
Bafora doing atap: Pour tha -Variabla- into a nina inch baking-dlah

do: Mix tha atraabarry with tha -Variabla-. - Plan appliad.

Cooking steps are handled in a somewhat different way. The final cooking step of a
modification rule is always merged with the final cooking step of the existing plan. If their
times differ, the one with the longest time is broken into two steps, the second of which has
a time that meets the requirement that both the step in the existing plan and the step in
the rule have the same times. If a rule for adding a vegetable ends with a two minute stir
fry step and the plan it is being put into ends with a three minute step, the three minute
step is broken into a one minute step followed by a two minute step and the second step is
merged with the step from the rule (figure 5.5).

STIR-FRY

object (BEEF)

time (3)

STIR-FRY

object (BROCCOLI)

time (2)

STIR-FRY

object (BEEF)

time (1)

STIR-FRY

object (AND (BEEF) (BROCCOLI))

time (2)

Figure 5.5: Merging cooking steps.

Once a new ingredient is added, its critics are called up to make whatever alterations
they have to. The MODIFIER has no critics for strawberries, but idea is the same for every
item. If there are steps that are particular to the items, like the SHELL step is to shrimp,
then the critic adds those steps.

Adding the steps to satisfy a new goal to an existing plan is a relatively simple task.
The new steps are accessed through the appropriate modification rule. They are added in
reverse order of their execution, merged with existing steps when they can be and spliced
between the results of one step and the later use of those results when they have to be. Any
critics associated with the new ingredients that have to be added are then called, and their
directions are also spliced into the plan.

130

5.2.2 Substitution

When the new goal the MODIFIER is adding is a partial match for an existing goal that
is already satisfied by that plan, it can do a simple substitution of the new ingredient for
the old. A substitution only requires that the MODIFIER put the new ingredient in place
of the existing one and then run the critics for the new item. The critics for the item that
has been removed also have to be accessed and run in reverse, so as to remove the steps
that were added to compensate for its idiosyncracies. The need to be able to reverse the
effects of critics limits them to adding, deleting and reordering steps and adding or deleting
ingredients.

The rationale behind this substitution is simple, the old item and the new item are both
of the same type, so the steps that would be generated by the standard modification rule
for both are the same. The only differences between the two items are accounted for by
their ingredient critics. Rather than remove the original item and all of its steps and then
add E. new item with the same steps, the notation in the ingredients listing of the the plan
that is being changed can be made directly.

The MODIFIER substitutes new goals for old goals in the plan when the goals
i play the same role in the plan and are of the same class of items.

A very simple substitution is done when CHEF is building a plan for a raspberry souffle.
Because it anticipates the problem with the liquid from the fruit, it is able to find the
strawberry souffle recipe to use as its base-line plan. It also has a partial match between
the raspberry and the strawberry, meaning that it can directly replace the new ingredient for
the old. In this case, a partial match means that the two items have the same modification
rule for this type of plan.

Because no ingredient critics are stored under either RASPBERRY or STRAWBERRY,
the MODIFIER can just build a new token for the raspberry and put it in place of the
strawberry in the ingredients listing of the new plan it is building.

Found recipe -> REC12 STRAWBERRY-SOUFFLE

Recipe exactly satisfies goals ->
Avoid failure of type SIDE-EFFECT:DISABLED-COHDITICH: BALANCE

exemplified by the.failure 'The batter is no« flat* in recipe
STRAWBERRY-SOUFFLE.

Make a souffle.

Recipe partially matches ->
Include raspberry in the dish.

in that .he recipe satisfies: Include fruits in the dish.

131

Building new naa« for copy of STRAWBERRY-SOUFFLE based on it* goals.

Calling recip« RASPBERRY-SOUFFLE

Modifying rtclp«: RASPBERRY-SOUFFLE
to satisfy: Include raspberry in the dish.

Placing raspberry in recipe RASPBERRY-SOUFFLE in place of strawberry.

Sometimes the new item is of the same basic type of the old, but has special properties.
The substitution is followed, then, with the application of the ingredient critics of the new
item. If the item that is being removed also has critics, these are applied in reverse, removing
rather than adding, adding rather than removing.

We have already seen one example of substitution followed by critics application in the
case of altering PEANUT-AND-FISH to be PEANUT-AND-SHRIMP. After the shrimp
is substituted for the fish, its critics are applied, removing the CHOP step and adding
a SHELL step. Shrimp's new critic then corrects the problem of the order SHELL and
MARINATE.

Considering critic:
Delete step: Chop the shrimp. - Critic applied.

Considering critic:
Before doing step: Cook the shrimp,

do: Shell the shrimp. - Critic applied.

Considering critic:
Before doing step: Marinate the shrimp
do: Shell the shrimp
because: It is not the case that: The shrimp can be handled.
avoiding: SIDE-FEATURE:BLOCKED-PREC0HDITI0I

- Critic applied.

Ingredient substitution is done when a new goal to be added partially matches a goal
already satisfied in the plan to be altered. To make a substitution the MODIFIER only
has to change the ingredient listing so as to include the new ingredient in place of the old.
The only steps that have to be changed are those mentioned by the ingredient critics of the
original item, which have to be removed, and those mentioned by the ingredient critics of
the new item, which have to be added. Using the fact that similar ingredients are handled
in a similar way, the MODIFIER is able to reduce the amount of work it has to do when
adding new goals to plans that already satisfy similar ones.

132

When a new goal is substituted for an old one in a plan, the new item takes the
place of the old one in the plan's ingredient list. Once this is done, the critics
related to the old goal are run in reverse and the critics related to the new goal
are run in the normal order.

5.2.3 Replacement

There are some situations where the MODIFIER has to put a new item in a plan in place of
an existing item because they share the same role in the plan. The need for this replacement
is determined by the role specifications on the general plan type. If a plan requires only
one item filling a particular role, then the original filler for that role has to be removed
to make room for a new one. In the case where the two items are of the same class of
items, the MODIFIER has only to do an ingredient substitution. There are other cases,
however, where the items fill the same role, but are of different types and thus have different
modification rules. When this happens the MODIFIER has to do a role replacement, in
which it removes an item from the original plan, unwinding and removing its steps, and
then adds the ingredients and steps for the new goal.

The MODIFIER has to replace one goal for another when they play the same
role in the plan but are not of the same class of items.

The only difference between the MODIFIER doing a replacement and doing a goal
addition is that it has to remove the existing steps and ingredients relating to the original
goal before adding those related to the new one. This removal has two phases. First the
critics relating to the object being removed are run in reverse. This is exactly the same
process that is run when a substitution is done. The second phase, however, is unique to
replacement. The modification rule associated with the ingredient being removed is also
run in reverse, the steps unwound and removed.

As it turns out, it is easier to remove a set of steps than to put them in place. All of
the steps that were not merged with steps in the initial plan are removed completely. The
first step that does merge the results of the modification rule steps with the results of the
plan itself is then drawn out of the plan and the step that makes use of its results is altered
to now make use of the earlier results that the step itself used (figure 5.6). Finally, the
ingredient is then removed from the ingredient listing at the head of the plan.

Once the steps for a particular goal have been removed, however, there is the possibility
that a cooking step that was split to allow a merger is now unnecessarily divided. If a four
minute stir fry step was turned into a three minute step followed by a one minute step to
accomodate the one minute cooking time of a new item and that new item is later removed,
the split will remain. After removing the steps for an item, then, the MODIFIER checks for

133

Original Plan

MIX1 •- POUR1

Modified Plan

Figure 5.6: Removing steps for an obsolete goal.

any adjacent cooking steps that have identical objects. If any are found, they are merged
back into one step with a longer time.

Once the obsolete goal is removed, the MODIFIER then follows the course directed by
the standard modification rule associated with the new goal and by the critics associated
with the ingredient.

In the example of replacing Kirsch for strawberries in a souffle, this is exactly what the
MODIFIER does:

Calling r«cip« KIRSCH-SOUFFLE

Modifying racip«: KIRSCH-SOUFFLE
to ■atisfy: Include kirsch in the dish.

Raaoving plan
do: Pulp th« atrawbarry.
Bofor* doing »tap: Pour tha -Variabla- into a nina inch baking-dish
do: Nix tha atrMbarry with tha -Variabla-. - Plan raaovad.

Adding plan
Bafora doing atap: Pour tha -Variabla- into a nina inch baking-dish
do: Nix tha Kirach »ith tha -Variabla-. - Plan appliad.

The MODIFIER replaces one goal for another by first removing the steps placed
in by the modification rules and critics of the old goal and then adding in the
steps given by the modification rule and critics of the new goal.

134

Except for the unwinding of existing steps, the p. ocess of role replacement is exactly
the same as that of goal addition. The modification rules associated with the goals to be
added are applied, and the steps they direct are merged with the existing steps in the plan.
After this, the critics associated with each of the ingredients are also run and the changes
they direct are made.

5.3 The introduction of failure

The three different type of modifications that the MODIFIER is capable of are designed
to keep the amount of work it does to a minimum. This is to reduce the changes that
take place in a plan, enforcing a conservativism that strives to maintain the structure of
successful plans. The less change that is made to a plan, the less possibility there is of
introducing error.

Even within the confines of minimal change however, the MODIFIER often creates plans
that have new interactions in them that lead to failures. The very fact that the MODIFIER
changes a plan at all, that it alters what could be a balance between factors in the plan it
cannot even consider, means that its efforts will sometimes lead to plans that do not satisfy
the goals that it has added to them.

Because the MODIFIER does not do any causal reasoning on its own, it cannot antici-
pate the failures that it may have inserted into a new plan. By using the plans handed to it
by the RETRIEVER, it starts with plans that avoid problems that CHEF has encountered
before, but it is unable to reason about problems that the planner in general has had no
experience with. When failures do to inexperience in the domain are added to a plan, they
have to be discovered by executing the plan itself.

For CHEF, plan execution is done through a simulation of the plan, a simulation that
is enabled by an extensive set of inference rules that allows the planner to see the results of
every action it has built into its plans. This simulation, however, does not correspond to a
mental running of the plan. It is the CHEF equivalent of actually running the plan in the
real world. A failure that arises when running this simulation is not a failure in CHEF's
mind alone. It is a failure in what amounts to CHEF's version of the world.

Just as the MODIFIER depends on the RETRIEVER to give it plans that avoid prob-
lems that CHEF has encountered before, it depends on the REPAIRER to handle new
problems that the planner has not yet had to deal with. The next chapter, then, will look
at the function of the REPAIRER and how it diagnoses and repairs the problems that the
MODIFIER has not been able to anticipate and avoid.

Chapter 6

Repairing Plans

The problem of a failed plan presents a case-based planner with the joint tasks of repairing
the plan so that it can be used in the present and repairing its own knowledge base so that
the failure can be avoided in the future. The result of the first task is a plan that satisfies
the planner's current goals. The result of the second task is a set of links that allows the
planner to predict the current failure in similar circumstances, a plan in memory that is
indexed by that prediction and, if it is appropriate, a new ingredient critic that can change
a plan that ha« a similar fault into one that does not.

The process of failure repair has six phases to it:

• Notice the failure.

• Build a causal explanation of why it happened.

• Use the explanation to find a TOP with repair strategies.

• Apply each of the general repair strategies using the specifics of the problem.

• Choose and implement the best repair.

• Store the repaired plan in the plan memory.

The reason behind most of these steps is straightforward. A planner has to notice a
failure before it can react to it at all. It has to try each of its strategies in order to choose
the best one. It has to implement one of them to fix the plan. And it has to store the
repaired plan in memory if it is going to use it again. The only steps that are not quite
straightforward are the second and third steps of building an explanation and using it to
find a TOP.

The explanation that a case-based planner builds for a failure is a causal description of
why that failure occurred. Each of the TOPs corresponds to the different descriptions that

135

136

it can build. But these TOPs are not just descriptions of problems. They are descriptions
of problems that are paired with the solutions that can be applied to fix the problems. The
strategies under a TOP are those and only those alterations of the problem described by the
TOP that can solve that problem. The strategies themselves are not specific repairs, they
are the abstract descriptions of changes in the causality of the situation that the planner
knows about. Finding a TOP that corresponds to a problem means finding the possible
repairs that can be used to fix that problem.

Each TOP is stored in memory, indexed by the features of the explanation that describes
the problem the TOP deals with. To get to the strategies that will deal with a problem,
then, the planner has to explain why it happened and then use this explanation to find
the TOP and strategies that will fix the plan. This is a simple idea: the solution to a
problem is based on the nature of the problem. It makes sense, then, to index solutions to
problems descriptions of the problems themselves and use these descriptions to later access
the appropriate solutions.

6.1 Noticing the failure

The first step in dealing with a failure is noticing it. There are three types of failures that
we are concerned with here:

• Failures of a plan to be completed because of a precondition failure on some step.

• Failures of a plan to satisfy one of the goals that it was designed to achieve.

• Failures of a plan because of objectionable results in the outcome.

In terms of its domain, CHEF can notice that a plan has stopped when the shrimp
cannot be shelled because it is too slippery, that a plan to make a souffle fails because the
batter hasn't risen and that a stir fry dish with fish fails because the fish has developed an
iodine taste.

After CHEF has built a plan, it runs a simulation of it. This simulation is the program's
equivalent of the real world and a plan that makes it to simulation is considered to be
complete. The result of this simulation is a table of descriptions that characterize the states
of the ingredients used in the plan. Any compound objects created out of those ingredients
are also described.

For example, after running a plan to make a beef and broccoli dish the table of results
includes descriptions of the taste, texture and size of the different ingredients as well as the
tastes includes in the dish as a whole (figure 6.1).

Once a simulation is over, CHEF checks the states on this table against the goals that
it believes should be satisfied by the plan that it has just run. These goals take the form

137

(SIZE OBJECT (BEEF?) SIZE (CHUIK))
(SIZE OBJECT (BROCCOLI1) SIZE (CHUIK))
(TEXTURE OBJECT (BEEF2) TEXTURE (TEIDER))
(TEXTURE OBJECT (BROCCOU1) TEXTURE (SOGGY))
(TASTE OBJECT (BEEF3) TASTE (SAVORY IBTEISITY (0.)))
(TASTE OBJECT (BR0CC0LI1) TASTE (SAVORY IBTEISITY (6.)))
(TASTE OBJECT (GARLIC1) TASTE (GARUCY IITEISITY (9.)))
(TASTE OBJECT (DISH) TASTE (AID (SALTY IITEISITY (9.))

(GARLICY IITEISITY (9.))
(SAVORY IITEISITY (9.))
(SAVORY IITEISITY (5.))))

Figure 6.1: Section of result table for BEEF-WITH-BROCCOLI.

of state descriptions of the ingredients, the overall dish and the compound items that are
built along the way. No matter what its object, each goal defines a particular TASTE or
TEXTURE for that object. Goal have the same form as the states placed on the simulator's
result table, allowing CHEF to test for their presence after a simulation. CHEF tests for
the satisfaction of goals by comparing expected states against those on the table of results.

Most of the failures that CHEF is able to recognize are related to the final result of the
plan rather than the steps that the plan goes through on the way to that result. This is
because CHEF notices failures by looking at that final product rather than monitoring the
plan as it is being executed. The only failures that CHEF recognizes that are related to
the running of the plan rather than its effects are those that result from the inability to
perform a step because the conditions required for that performance aren't satisfied.

The easiest failure for CHEF to notice is the failure of a plan to finish because of a
blocked precondition on a particular step. When this occurs, the simulator stops execution
of the plan and sets a flag that tells CHEF that the plan has failed because of a violated
precondition. This is what happened in the case of the SHRIMP-STIR-FRY plan that
CHEF created out of its memory of the FISH-STIR-FRY plan.

Inferring from -> Marinate the shrimp in the soy sauce,
sesame oil, egg white, sugar, corn starch and rice wine.

RULE
RULE
RULE
RULE
RULE
RULE
RULE

"When things are marinated together they pick up tastes.
"Marinated things are in the bowl with other things."
"Liquid* sake things wet."
"Things in the same pan are linked together."
"Liquids make things vet."
"Things in the same pan are linked together."
"Solids marinated in liquids are hard to handle"

138

Unabl« to infer froa -> Shall the shrimp.
: failed precondition.

RULE: "i thing ha* to exist and be handleable in order to shell it."

Some precondition of step: Shell the shrimp.
has failed.

Changing name of recipe SHRIMP-STIR-FRIED
to BAD-SHRIMP-STIR-FRIED

One type of failure CHEF recognizes is the failure of a plan to run to completion
because the preconditions for a step have not been met.

More often than not CHEF's plans run to completion. Even though a plan may run, this
is no guarantee that it will run well or that it will succeed in doing all that it is supposed
to do. After a plan finishes, then, CHEF must check its outcome to be sure that it has not
failed to achieve the desired results.

CHEF evaluates its results along two dimensions. First it has to check for any of the
plan's goals that might not have been achieved. Second, it has to check for any objectionable
states that might also have resulted from the plan that CHEF wants to avoid in general.

Each of CHEF's plans has a set of goals associated with it. These goals are generated by
CHEF using the general role information attached to the general plan type and the specific
ingredients of the plan itself. Each role specifies the expected contribution of its fillers and
each ingredient provides the particulars of that contribution.

These goals take the form of state descriptions of the ingredients, the overall dish and
the compound items that are built along the way. No matter what its object, each goal
defines a particular TASTE or TEXTURE for that object. These goals all have the same
form as the states placed on the simulator's result table, allowing CHEF to test for their
presence after a simulation.

Once a plan has been run, the goals associated with the plan are searched for on the
table of results built up by the simulator. If a goal is not present, then the plan has not
succeeded in achieving it and is considered a failure. This is the second kind of failure that
CHEF can recognize. It is the failure of a plan to achieve one of its goals. The failure in the
beef and broccoli recipe is one of these types. CHEF finds the goal to have crisp broccoli
associated with the plan, checks it against the states on the simulator's table of results and
finds that the desired state is not there. Because the plan has failed to achieve one of its
own goals, it is considered a failure (figure 6.2).

139

Checking goal« of recipe -> BEEF-AID-BROCCOLI

Checking goal ->
It should be the case that: The broccoli is no« crisp.

The goal: The broccoli is no« crisp.
is not satisfied.
It is instead the case that: The broccoli is no« soggy.

Recipe -> BEEF-AID-BROCCOLI has failed goals.

Figure C.2: Finding fault with BEEF-WITH-BROCCOLI.

The second type of failure that CHEF recognizes is the failure of a plan to achieve
a goal it was designed to satisfy.

The final type of failure that CHEF can recognize is a failure that results from a state
that has been included rather than excluded from the results of a plan. In this case, however,
the state is one that the planner knows to be objectionable. Its inclusion in the results of
a plan is a liability rather than an asset. In this situation, the plan actually achieves all of
the goals it is designed to but also results in states that are a priori objectionable.

To recognize these failures CHEF uses descriptions of states that it wants to avoid. Like
positive goals, these states are of the same form as the states on the simulator's table of
results so they can be tested for directly.

One example of this type of failure occurs as a result of CHEF's first attempt to build
a stir fried fish dish, the plan that is created achieves all of the goals that it was designed
for but also results in a dish that has the taste of iodine. This taste is a by-product of
the fish which was treated in the same way as the chicken that was originally in the dish.
CHEF recognizes this by checking the states resulting from the plan against its knowledge
of states to be avoided in general (figure 6.3).

The last type of failure CHEF can recognize is the occurrence of an objectionable
state in the result of a plan.

6.2 Explaining the failure

Once a failure is noticed it has to be explained. This is because the explanation of a plan
failure is used to access the TOP and strategies that can be applied. The best way to

140

Checking goal» ol r«cipe -> FISH-STIR-FRIED

Checking for negativ« feature* ->

Unfortunately: The dish now tastes a bad taste.
In that: The dish now tastes fresh, like iodine, like sea-food,
like garlic, hot, oniony, sweet, nutty and salty.

Recipe -> FISH-STIR-FRIED has failed goals.

Figure 6.3: Finding fault with FISH-STIR-FRIED.

organize plan repairs is under the descriptions of '.he problems that they solve so that the
problem itself is a pointer to the solution. And the best description in this case is a causal
explanation of the problem. So the next step in dealing with a failed plan is to causally
explain why the failure occurred.

CHEF's explanation of a failure is a causal description of the steps and states
that led to it.

In the case of a failure due to a precondition that was not satisfied, the explanation is of
the events that led up to the state that violated that condition. In the case of a failure due
to an unsatisfied goal, it is an explanation of why the steps that normally lead to the goal
state did not do so in this plan. And in the case of a failure due to a result that includes
an objectionable state, it is an explanation of why that state has come about.

In general, the explanation of a failure is aimed at finding out:

e What state constitutes the failure?

e Why caused the failure?

• What goal were being planned for when the failure happened?

By finding out the answers to these general questions, the planner can then find out how
to respond to the failure while protecting the rest of the plan. This is the information that
any planner would need in order to make an intelligent decision about how to react to a
planning failure.

To build its explanations CHEF uses the trace left by the forward chaining of the
simulator. The links built by the simulator are a very simple set of causal connections
that reflect the requirements of the domain. Steps are connected to the states that follow

141

from them by RESULT links. States lead into new steps by filling slots and by satisfying
PRECONDITIONS. The tests on preconditions are limited to tests on the texture, taste
and existence of ingredients as well as their amounts and the relationship of those amounts
to other ingredients. Failures arc traced back from the failed states themselves through the
steps that caused them, back to the conditions that caused the steps to fail, and so on back
to the step that caused the unexpected condition itself.

CHEF constructs its causal explanation of failures by backchaining through the
causal links built during the simulation of the failed plai 5.

CHEF's movement through the causal network built up by the simulator is controlled
by a set of explanation questions [Schänk 86]. These questions tell CHEF when to chain
back for causes and when to chain forward for goals that might be satisfied by a particular
state or step. Each answer tends to be used as the starting point for the next part of the
search. For example, the answer to the question of what step caused an undesired state is
the starting point in searching for the answer to the question of what condition altered the
expected outcome of that step.

CHEF has a different set of questions for different situations. For failures in the results
of a plan, CHEF has seven questions aimed at identifying the steps and states that have
combined to cause an objectionable state or block a desired one. For situations involving
plans that cannot be completed because some precondition of a step is blocked, CHEF
asks a somewhat different set of questions that are designed to identify the ~ause of the
precondition violation. Both sets of questions, however, have the overall aim of diagnosing
the problem so that the appropriate repair strategies can be found and applied.

CHEF's search through the simulator's causal trace is guided by a set of expla-
nation questions that focus on the relevant steps and states.

When a plan fails because of a faulty result CHEF asks the the following questions, in
this order:

• What is the failure?

This identifies the particular problem state. In situations where the failure is an
unsatisfied goal, the negation of the goal state serves as the answer. In situations
where an objectionable state has come about, the state itself serves.

• What is the preferred state?

Where a goal has not been achieved, the goal itself is the answer. Where an objec-
tionable state has come about, the desired state of the object affected is focused on
instead.

142

• What was the plan to achieve the preferred state?

This question identifies the step that has actually caused the failure. The answer is
found by chaining back from the failure to the step that actually caused it to come
into being. To do this CHEF traverses a RESULT link back to the step.

• What were the conditions 'hat led to the failure?

With this question, CHEF is trying to identify the non-normative conditions that
caused the step to go wrong. Using the step that caused the failure as a starting
point, CHEF searches back along PRECONDITION links to any states that had to
be true for the original inference of the failure to be made.

• What caused the conditions that led to the failure?

This question identifies the actual cause of the non-normative conditions. Continuing
to chain back, CHEF identifies the causes of the state that altered the predicted
conditions and thus allowed the failure to result.

• Do the conditions that caused the failure satisfy any goals?

This question directs CHEF's attention forward. It looks to the effects of the condition
that led to the failure for any goals that it directly or indirectly satisfies. If the
condition does satisfy a goal then the explanation is complete.

• What goals does the step which caused the condition enabling the failure
satisfy?

This question is similar to the last one in that it directs CHEF's attention to the goals
satisfied by the step that eventually led to the failure.

In explaining failures of a plan to complete, because of the failed preconditions of a step,
CHEF uses a slightly different set of questions.

• What was step that was blocked?

In this situation, CHEF begins by identifying the blocked step itself.

■ What was the condition that disabled the step?

Checking the preconditions on the step CHEF chains back to find the one that has
failed.

■ What caused the precondition to fail?

Next it chains back along RESULT links to the step that caused the state which in
turn violated the precondition.

143

• What goals does the step which caused the condition disabling the step
satisfy?

This question directs CHEF to chain forward to the goals satisfied by the step which
caused the violating state.

• Do the conditions that caused the failure satisfy any goals?

Just as the last question looked forward to the goals satisfied by the step this question
looks forward to the goals satisfied by the violating state itself.

• What goals does the blocked step serve?

With this question, CHEF again chains forward to find the goals served by the step
that was blocked.

The answers to these questions give CHEF the same flexibility and assurance in this
situation that it gets from the explanation of failures rising out of the results of a plan.
It has the extended causal chain that leads back from the blocked step to the state that
blocked it and then back to step that caused that state. This gives it the knowledge of
where it can change the plan. It also has the understanding of what goals the different
steps satisfy. This gives it the knowledge it needs to alter a step or state while maintaining
goals that they serve.

While CHEF asks different explanation questions in different situations, the ques-
tions it asks are always aimed at building a causal chain of the states and steps
that led to the failure.

One good example of the kind of explanation that is built by CHEF is found in the case
of the fallen strawberry souffle. The problem is that the added liquid from the chopped
strawberries disturbs the balance between the amount of liquid in the batter and the amount
of whipped egg and flour used as leavening. Because there is too much liquid, the souffle
falls. One important aspect of this situation is that the condition that prevents the souffle
from rising is not just that there is too much liquid. It is that there is no longer a balance
between the amount of liquid and the amount of leavening. When CHEF has to chain back
to find the cause of this condition it has to check the two parts of the relationship against
the normative case. The part that is irregular is then traced down as the cause of the
imbalance.

• ASKIHG THE QUESTIOM: 'What is the failure?'

• ANSWER-> The failure is: It is not the case that: The batter is now risen.

144

ASniO THE QOESTIOI: 'What 1* th« preferred *t«t«?'

AISWER-> Th« prtfarrad stat« im: Th« batter 1* not risen.

ASniO THE QOESTIOI: 'What was th* plan to achi«7« th* prtfarrad «tat«?'

USUER-> Th« plan was: Bak« th« battar for twanty fiT« ainutaa.

iSKHO THE QOESTIOI: 'What Mr« th« condition» that lad to th« failura?'

llSUER-> Th« condition «as: Thar« is an iabalanc« b«tw«an th« «hipped stuff
and th« thin liquid.

noting balance failura

Only on« aspect of the inbalance:
There Is an inbalance between th« «hipped stuff and the thin liquid,

is unexpected.

The state:
There is «hipped stuff in the bowl fron the total equaling 60 teaspoons,
nomally participates in the goal:
Th« battar is no« risen.

Only th« other aspect of the inbalance:

There is thin liquid In the bowl fron the strawberry equaling 2.4
teaspoons is an unexpected condition.

ASXIIQ THE QOESTIOI: 'What caused the conditions that led to the failure?'

AISVER-> There is thin liquid in the bowl fron the strawberry equaling 2.4
teaspoons.

«as caused by:
Pulp the strawberry.

iSKIIG THE QOESTIOI:
'Do th« conditions that caused th« failura satisfy any goals?'

ilSVER-> The condition:
There is thin liquid in the bowl fron th« strawberry equaling 2.4
teaspoons is a side effect only and seats no goals.

ASKING THE QUESTIOH:

'What goals does the step which caused the condition enabling the
failura satisfy?'

145

• USVER-> The »tep:

• Pulp the stravberry.
• astablishes the precondition« for:
• Mix the strawberry with the ranilla, egg white, egg yolk, «ilk,
• sugar, salt, flour and butter.
• This in turn leads to the satisfaction of the goals:
• The dish now tastes like berries.

This explanation gives CHEF the descriptors that will index to the planning TOP and
repair strategies that will propose the appropriate set of solutions.

The fact that the CHOP step has the side-effect of producing liquid makes it a candidate
for change. The fact that it exists to enable adding the strawberries to the batter, thus
making the batter taste like berries, means that any change that is made to this step to
avoid the side-effect has to include some addition '.hat satisfies that goal. Likewise, the
fact that the liquid is itself a side-effect that satisfies no goals means that the planner can
add steps that remove that side-effect without having to worry about any goals that the
condition served. The TOP and strategies that are found using these features reflect the
constraints that they place on the type of repair that can be made to the plan.

The explanation of why a failure has occurred is used to search for the planning
TOP and repair strategies appropriate to the problem.

This is a simple idea: the solution to a problem is based on the nature of the problem.
Because of this, it makes sense to index different sets of solutions by the descriptions of
different sorts of problems and then use the descriptions of the problems to find the solutions
that are appropriate.

6.3 Getting the TOP

CHEF's repair strategies are all stored under planning TOPs, structures that correspond to
different planning problems. The TOPs themselves are stored in a discrimination network,
indexed by the features of the explanations they correspond to. The strategies organized
under a TOP describe the alterations to the failed plans described by the TOP. These alter-
ations are designed to repair the failure without interfering with the other goals in any plan
that the TOP describes. The TOPs include structures such as SIDE-EFFECT:DIS ABLED-
CONDITION:BALANCE and SIDE-FEATURE:ENABLES-BAD-CONDITION.
The strategies include changes such as REORDER steps, REMOVE condition, and SPLIT-
AND-REFORM step.

To get to a TOP, CHEF uses the answers to each of its explanation questions as an index
through a discrimination network that organizes its TOP. The features that are important
in this discrimination include the nature of the violated condition, the temporal relationship

146

between the steps and the nature of the failure itself. The vocabulary for describing these
features is discussed in Chapter 6.

The answers to CHEF's explanation questions are used to index through a dis-
crimination net to the TOP that corresponds to the situation described by those
answers.

In the case of the strawberry souffle failure, the fact that the condition violated in the
plan is a balance requirement between two amounts and the fact that the condition that
causes the imbalance is a side-effect of a step that does not satisfy any goals are very
important in discriminating down to the TOP that corresponds to the situation. If the
condition chat caused the imbalance had not been a side-effect or the requirement had not
been one for a balance condition, different TOPs, with different strategies would have been
found.

Searching for top using following indicts:

Failure = It is not the case that: The batter is now risen.
Initial plan ■ Bake the batter for twenty five minute».
Condition enabling failure = There is an imbalance between
the whipped stuff and the thin liquid.

Cause of condition » Pulp the strawberry.
The goals enabled by the condition = MIL
The goals that the step causing the condition enables =

The dish now tastes like berries.

Found TOP T0P3 -> SIDE-EFFECT:DISABLED-COIDITIOI: BAUICE
TOP -> SIDE-EFFECT:DISABLED-C01IDITI0«:BALANCE has 6

strategies associated with it:

ALTER-PLAI:SIDE-EFFECT
ALTER-PLAI:PRECOIDITIOI
ADJUICT-PLAI
RECOVER
ADJUST-BALAICE:UP

The TOP that is found to deal with the problem of the fallen souffle is indexed so that it
can be found using the explanation of any situation in which a side-effect of one step violates
the conditions of a later step by causing an imbalance in a required relationship. Each of
the strategies that is stored under SIDE-EFFECT:DISABLED-CONDITION:BALANCE
is designed to deal with one aspect of this problem. If the problem had been different,
a different TOP would have been found and a different set of strategies would have been
suggested. The strategies under a TOP are limited by the types of changes CHEF is able to
make and by the kinds of actions the domain allows. For instance, CHEF does not have the

147

ability to have other actors perform tasks for it, so the strategy of having a step performed
by a different actor is not available to it.

Each TOP organizes a set of strategies that, if implemented, will repair any
problem described by the TOP.

The strategies under SIDE-EFFECT:DISABLED-CONDITI0N:B ALANCE are also un-
der other TOPs that share features with it. Each strategy suggests an alteration to the
initial plan that will cause a break in a particular part of the causal chain that leads to
the failure. Each change suggested by a strategy is, in principle, sufficient to repair the
plan. So they are used individually and are not designed to be used in concert. Each
changes one link in the causal chain that leads to the failure. The strategies under SIDE-
EFFECT:DISABLED-CONDITION:BALANCE are:

ALTER-PLAN:SIDE-EFFECT: Replace the step that causes the side effect with one that
does not. The new step must satisfy the goals of the initial step.

ALTER-PLAN:PRECONDITION: Replace the step that has the violated condition with
a step that satisfies the same goals but does not have the same condition.

ADJUNCT-PLAN: Add a new step that is run concurrent with the step that has the
violated condition that will allow it to satisfy the goal even in the presence of the
violation.

RECOVER: Add a new step between the step that causes the side-effect and the step that
it Hocks that removes the violating condition.

ADJUST-BALANCE:UP: Adjust the imbalance between conditions by adding more of
what the balance lacks.

Each of these five strategies suggests a change in the causal situation that will solve the
current problem without affecting the other goals of the plan. They are those and only
those changes that will alter the causal structure of the current faulty plan so as to remove
that fault.

The strategies stored under a TOP may also be stored under other TOPs. Each
strategy under a TOP deals with a particular aspect of a planning problem that
may occur in other planning situations.

If the features of the problem had been different, the TOP and the strategies found would
also be different. For example, if the condition violated by the side-effect had not been a bal-
ance condition, the TOP found would have been the simpler SIDE-EFFECT:DISABLED-
CONDITION TOP that lacks the ADJUST-BALANCE:UP strategy. Likewise, if the con-
dition satisfied goals of its own, DIRECT-EFFECT:DISABLED-CONDITION:BALANCE

148

would have been selected, a TOP that lacks both ALTER-rJ.AN:SIDE-EFFECT and RE-
COVER because strategies that remove the condition would aiter any plan to no longer
satisfy the goal achieved by the condition. So as the situation charges, the fixes that can be
applied to it change and thus the TOP and strategies that are found tu deal with it change
as well.

Different problem descriptions allow access to different TOPs and different TOPs
organize different strategies. The causality of a situation determine the strategies
that will be suggested to deal with it.

Once it has found a planning TOP, CHEF has access to a set of strategies that, if
implemented, will repair its current problem. It may not be the case, however, that every
abstract repair will have a real implementation in every situation. It may also be the case
that the change suggested by one strategy will be better than those suggested by others.
So CHEF must test each strategy and decide which to apply to the partic ilar problem. It
does this by generating the changes to the plan that the TOP's strategies suggest, choosing
between those changes and then implementing the change it has chosen.

6.4 Applying the strategies

Once a TOP has been found, the strategies that are stored under it are applied to the
problem at band. For CHEF, applying a strategy means generating the specific change to
the failed plan that is suggested when the abstract strategy is filled in with the specifics
of the current situation. The idea here is to take an abstract strategy such as RECOVER
and fill it in with the specific states and steps in from the current problem. In this way a
general strategy for repairing a plan becomes a specific change to the plan at hand.

To apply a strategy, CHEF fills the framework the strategy defines with the
particulars of the curre.it situation, turning it into a specific change rather man
just an abstract alteration.

Each strategy has two parts: a test and a response. The test under each strategy deter-
mines whether or not the strategy has an actual implementation in the current situation.
The response is the actual change that is suggested. In most cases, the results of the test
run by the strategy is used in the response. For example, one of CHEF's strategies is
RECOVER, which suggests adding a new step between two existing ones that removes a
side-effect of the' first before it interferes with the second. The test on RECOVER checks
for the existence of a step that will work for the particular problem. The response is a set
of instructions that will insert that step between the two existing ones. The action that
is returned when CHEF searches for the step described by RECOVER is used in building
the response (figure 6.4). The general format of the strategies is to build a test and then

149

use the response to that test in building the set of instructions that CHEF has to follow in
order to implement the change directed by the strategy.

Asking question naadtd for «valuating strategy: RECOVER

ASKIIG ->
Is thsr« a plan to rscovsr froa
Thsrs Is thin liquid in th« bowl Iron the strawberry equaling 2.4
teaspoons

There Is a plan: Drain the strawberry.

Response: After doing step: Chop the strawberry
Do: Drain the strawberry.

Figure 6.4: Test and Response for RECOVER strategy

These strategies fall into four general classes of changes: some alter the sequence of
events in a plan, some break single steps into multiple ones, some add new steps and others
replace new steps for old ones. Each of these classes of response has a slightly different
type of test associated with it. Those involving changes to the order of steps in a plan only
test for conflicts that the reordering might cause. Strategies that split steps test the step
to check for any problems that splitting it might cause. Strategies that add steps check a
library of actions for the existence of the steps that they describe. This library has actions
indexed by their effects and preconditions which makes it possible for CHEF to search for
a particular action that has the effect described by a strategy. Similarly, the strategies that
direct planner to replace steps check this library for actions that meet their precondition
and effect specifications.

These repair strategies make up the core of the strategies needed to deal with planning
problems in general. They are not strategies that are related to the CHEF domain alone.
Just as the planning TOPs are built out of a general vocabulary for describing different
causal interactions, the repair strategies used by CHEF are general methods for altering
plans. The vocabulary for describing TOPs is taken from a basic vocabulary of plan interac-
tions and can describe a wide rang«.- of planning problems. Because the TOPs are products
of the combination of these descriptors, however, each one is very specific. So the strategies
stored under each can be equally specific. This means that the TOPs approach allows a
planner to deal with a wide range of planning problems with very specific plan repairs.

This does not mean, however, that these strategies are in any way domain specific. They
are specific changes to plans that can be applied in response to specific problems that arise
in all domains. And with the general descriptive powers of the TOPs vocabulary, a wide
range of problems can be described at this level of specificity.

150

(del:strat racovar
bindings («condition* axpanswer-condition

♦step* axpanswer-stap)
question (entar-text ("Is there a plan to recover from "

♦condition*)
test (search-step-memory «condition* nil)
exit-text ("There is a plan" *answer*)
fail-text ("Ho recover plan found"))

response (text ("Response: After doing step: " «step* t
" Do: " »answer*)

action (after »step* »answer*)))

Figure 6.5: Definition of RECOVER strategy

Each strategy has a test that can be run to check for the conditions that have to
hold for the strategy to be implemented. Each strategy also has a response, which
gives CHEF the actual changes that it has to make to implement the strategy.

In building the tests and responses during the application of a strategy to a particular
problem, CHEF uses the answers to its explanation questions to fill in the specific steps and
states that the strategy will test and possible alter. The tests and responses are actually
empty frames that are filled with the specifics of the the current explanation. The strategy
RECOVER, for example, uses the answ».. to the question of what condition caused the
current failure to construct its test and the answer to the question of what step caused that
condition to build its response. This is so it can find a step that will remove the condition
and run it immediately after the condition arises. The definition of each strategy refers to
the answers to the explanation questions that are important to it, making it possible to
build the specific test and response at the appropriate time. Each definition begins with a
binding of the existing explanation answers to variables that the strategy will then use to
construct its query and response (figure 6.5). When the strategy is actually applied, the
specific answers are inserted into the appropriate slots in the strategy structure.

CHEF builds the changes suggested by a strategy by filling its framework in with
the appropriate answers to its earlier explanation questions.

While each of the strategies that a TOP suggests for repairing a plan will result in a
successful plan if implemented, there is no guarantee that an implementation will be found
for a specific correction. In the Beef and Broccoli case, for example, one strategy that is
suggested is ADJUNCT-PLAN. This directs the planner to find a step that can be run along
with the original STIR-FRY step that will continuously remove the effects of stir frying the
beef as they are created. While any such addition would repair the plan, because the liquid

151

would be removed before it could affect the broccoli, CHEF does not have knowledge of
such a step so the strategy cannot be implemented in this situation (figure 6.6).

Asking question naaded for evaluating strategy: ADJUICT-PLAI

1SKIIG ->
Is thsra an adjunct plan that »131 disable

There is thin liquid in the pan from the beef equaling 4.8 teaspoons,
that can be run with
Stir fry the sugar, soy sauce, rice vine, garlic, corn starch, broccoli
and beef for three minutes.

■o adjunct plan found

Figure 6.6: Failing to find an ADJUNCT-PLAN to deal with liquid in a pan.

While not all strategies will be useful in all situations, most of the time many changes
are suggested that the planner can make. In the example of the strawberry souffle, the five
strategies associated with the TOP end up generating four possible changes that will repair
the plan. CHEF generates all possible changes so that it can compare the specific changes
and choose which one to actually implement on the basis of the changes themselves rather
than on the basis of the abstract strategies.

Applying TOP -> SIDE-EFFECT:DISABLED-CONDinOH: BALANCE
to failure It is not the casa that: The batter la now risen.
In recipe BAD-STRAWBERRY-SOUFFLE

Asking questions needed for evaluating strategy: ALTER-PLAH:SIDE-EFFECT

ASKING ->

Is there an alternative to
Pulp the straaberry.

that vill enable

The dish no* tastes like berries,
which does not cause

There Is thin liquid in the bowl fro» tha strawberry equaling 2.4
teaspoons

There is a plan: Using tha straabarry preserves.

Pjsponse: Instead of doing step: Pulp the strasberry
do: Using the strasberry preserves.

Asking questions needed for evaluating strategy: ALTER-PLAN:PRECOHDITIOH

152

jksniG ->
Is then an alt •mat IT« to
Bak« th« battar for twantjr tin ilnutas.

that ■ill »atiafy
Tha batter la now risen,

which does not require
It is not the case that: There is thin liquid in the bosl fron the
strawberry equaling 2.4 teaspoons.

■o alternate plan found

Asking questions needed for ewaluating strategy: ADJUICT-PLAI

ismo ->
Is there an adjunct plan that will disable
There is thin liquid in the bowl fron the strawberry equaling 2.4
teaspoons
that can be run with
Bake the batter for twenty five ainutes.

There is a plan: Mix the flour with the egg, spices, strawberry, salt,
■ilk, flour and butter.

hesponse: Before doing step: Pour tha egg yolk, egg white, vanilla, sugar,
strawberry, salt, silk, flour and butter into a baking-dish

Do: Mix the flour with the egg, spices, strawberry, salt, ailk,

flour and butter.

Asking questions needed for evaluating strategy: RECOVER

ASKIIO ->
Is there a plan to recover fro«

There is thin liquid in the bowl fron the strawberry equaling 2.4
teaspoons

There is a plan: Drain the strawberry.

Response: After doing step: Chop the strawberry

do: Drain tha strawberry.

Asking questions needed for evaluating strategy: ADJUST-BALANCE

ASKING ->

Can ■• add «ore whipped stuff to BAD-STRAVBERRY-SOUFFLE

There is a plan; Increase the anount of egg white used.

Response: Increase the anount of egg white used.

The changes suggested by the different strategies are aimed at altering different aspects
of a problem. Some change the steps that caused a particular condition, some add sets

153

that will remove the condition itself and others change the circumstances of that make the
condition a problem. The next chapter will look at the different strategies CHEF uses in
greater detail and discuss the TOPs that they are stored under.

Each of CHEF's strategies generates a change that is a combination of the abstract
description of a repair provided by the strategy itself and the specifics of the failed plan.
Because each TOP only stores those strategies that will repair the situation described by
it and used to find it, any one of them will fix the plan if implemented. Because each
TOP does have multiple strategies, however, CHEF must have a mechanism for not only
generating these changes, but also choosing between them.

6.5 Choosing the repair

Once all of the possible repairs to a failed plan are generated, CHEF has to choose which
one it is going to implement. To do this CHEF has a set of rules concerning the relative
merits of different changes. By comparing the changes suggested by the different strategies
to one another using these heuristics, CHEF comes up with the one that it thinks is most
desirable.

This set of heuristics is the compilation of general knowledge of planning combined with
knowledge from the domain about what sort of changes will be least likely to have side-
effects. Some of these heuristics are closely tied to the domain, such as "It is easier to add
a preparation step than a cooking step." and "It is better to add something that is already
in the recipe than something new." Others are more domain independent, such as "It is
better to add a single step than to add many steps." and "It is better to replace a step
than add a new step."

In the strawberry souffle example, the final repair that is chosen is to add more egg
white to the recipe. This change is generated by the strategy ADJUST-BALANCE:UP
which suggests altering the down side of a relationship between ingredients that has been
placed out of balance. This repair is picked because it is the least violent change to the plan
that can be made and has the least likelihood of creating one problem as it solves another.

• Deciding between »odification plans suggested by strategies.
*
• Casparing plan:
• Aiter doing step: Chop the strawberry
• do: Drain the strawberry.
*
• With plan:
• Increase the amount of egg white used.
*
• Plan: Increase the amount of egg white used.
• is better because: It is better to add sore than to reaove.

154

Coaparing plan:
Before doing step: Pour the egg yolk, egg white, vanilla, sugar,
strawberry, salt. Bilk, flour and butter into a baking-dish
do: Mix the flour with the egg, spices, strawberry, salt, «ilk, flour and
butter.

With plan:
Increase the aaount of egg white used.

Plan: Increase the aaount of egg white used.
is better because: It is better to add sore than to add new.

Coaparing plan:
Instead of doing step: Pulp the strawberry
do: Using the strawberry preserve».

With plan:
Increase the aaount of egg white used.

Plan: Increase the aaount of egg white used.
is better because: It is better to add aore than to rep1 *

Best plan suggested ->
Increase the aaount of egg white used.

CHEF chooses between the competing changes suggested by diffrront atrategies
using a set of repair heuristics designed to find the most reliable alteratio.

Once a change is selected, CHEF actually impiements the chati£'-x using it» procedural
knowledge of how to add new steps, split steps into pieces, remove steps and add or increase
ingredients. These functions are the same as those used to implement (he plan chuigee made
by the MODIFIER when it adds new goals to existing plans.

In the strawberry souffle situation the final change is marginal, whkh is the best sort
of change if it actually can repair the problem. The onl v difference between the original
strawberry souffle plan and the new one is that the new one has mure egg white in it. This
was the change generated by the strategy ADJUST-BALANCE:UP.

Changing name of recipe BAD-STRAWBERRY-SOUFFLE
to STRAWBERRY-SOUFFLE

Implementing plan -> Increase the amount of egg shite used.
Suggested by strategy ADJUST-BALANCE:UP

Hew recipe is -> STRAWBERRY-SOUFFLE

155

STRAWBERRY-SOUFFLE

T»o teaspoons of vanilla
A half cup of flour
A quarter cup of sugar
A quarter teaspoon of salt
A half cup of milk
Tao cups of milk
One piece of vanilla bean
A quarter cup of butter
Five egg yolks
Six egg whites
One cup of strawberry

CHEF implements the changes suggested by a strategy using the same alteration
functions used by the MODIFIER to add new goals to plans.

Once a change is made, the plan is simulated again to assure that the change has led
to the expected result. If another failure occurs, it is once again passed through the repair
process of explaining the failure, finding the TOP and applying the appropriate strategy.
Although past changes will not be marked explicitly, the fact that they participate in
satisfying a goal will stop the REPAIRER from removing them. For example, after fixing
a Fish and Peanuts recipe to solve the problem of the iodine taste of the fish, CHEF adds
the set of marinating it in rice wine. Unfortunately, this causes the fish to become soggy.
In trying to fix the new failure, CHEF recognizes that it cannot just remove the marinate
step, because it satisfies a goal of keeping the fish tasting good. Instead of removing the
step, then, CHEF replaces it with another step that satisfies the same goal, removing the
iodine taste of fish but does not add any more liquid. Rather than marinating the fish in
rice wine, it marinates it in crushed ginger.

If the plan is successful, it is then indexed in memory like any other plan, except it is
marked by the fact that it avoids a particular kind of failure that can be used when that
failure is predicted to occur at some later date.

le» recipe is -> STRAWBERRY-SOUFFLE

If this plan is successful, the following should be true:

The batter is now baked. The batter is now risen.
The dish now tastes like berries. The dish now tastes sweet.
The dish now tastes like vanilla. The plan avoids the failure

And the following avoidance goals should be met:

156

'It is not the cast that: The batter is now risen.'
caused by conditions:

"Chopping fruits produces liquid."
"Without a balance between liquids and leavening the batter
»ill lall."

A repaired plan has the fact that it now avoids the failure that was repaired
associated with it.

6.6 Storing the plan

Because CHEF uses the plans it builds over and over again, just building them is not
enough. It also has to place the the plans it creates in memory so that they they can be
accessed again.

Storing a repaired plan in memory is no different than storing a plan that never failed
at all, except that the repaired plan has an extra feature that can be used to index it: the
fact that it avoids the failure from which the planner has recovered. By storing a repaired
plan in terms of this feature, the later prediction of a similar failure can be used to find the
plan that avoids it once again.

Plans that run with no failures the first time through are stored in CHEF's plan mem-
ory by the positive goals that they achieve. Goals having to do with taste, texture and
ingredients used are taken from the plan and used as indices for storing it. The type of dish
that the recipe creates is also used as an index. The strawberry so file plan discussed in
this chapter is stored under the fact that it is a SOUFFLE, includes strawberries is sweet
and has the taste of berries. It also is indexed by the only textural goal of the dish that the
batter is risen.

Plans that have failed and have been repaired are somewhat different in that they avoid
a particular problem and should be indexed so that they can be used is situations where
that problem will arise. To do this, CHEF generates a new token out of the name of the
TOP that describes this failure and associating this token with CHEF's prediction of the
failure. It then also uses this token to index the plan in memory. With this, CHEF's
ANTICIPATOR can later predict this failure on the basis of the surface features that are
associated with it, find this token and hand it to the RETRIEVER so it can find the plan in
memory that it indexes. This token also has other information about the failure associated
with it, but this is less important than the fact that the same token that is recalled when
a failure is predicted is used to index the plan that avoids that failure in memory.

157

CHEF stores a repaired plan in memory indexed by the fact that it avoids the
problem that has just been fixed. The token used to do this indexing is also
linked to CHEF's memory of the failure itself, so the prediction of a failure can
be used directly to locate the plan that avoids it.

Searching for plan that satiofies -
Include raspberry in the dish.
Hake a «ouffle.

Collecting and activating tests.

Fired: Is the dish SOUFFLE

Fired: Is the itea a FRUIT.

Fruit ♦ Souffle • Failure
"Chopping fruits produces liquid."
"Without a balance between liquids and leavening the batter
sill fall."
Resinded of STRAWBERRY-SOUFFLE
Fired demon: DEH0H2

Based on features found in iteas: raspberry and souffle
Adding goal: Avoid failure of type
SIDE-EFFECT: DISABLED-COHDITIOK: BALANCE exesplifled
by the failure 'The batter is now flat' in recipe
STRAWBERRY-SOUFFLE.

Placing goals in order of difficulty -
Hake a souffle.
Avoid failure of type SIDE-EFFECT:DISABLED-CONDITION:BALANCE
exeaplified by the failure 'The batter is no* flat' in recipe
STRAWBERRY-SOUFFLE.
Include raspberry in the dish.

Driving down on: Hake a souffle.
Succeeded -

Driving dora on:
Avoid failure of type SIDE-EFFECT:DISABLED-CONDITION-JALANCE
exeaplified by the failure 'The batter is now flat' in recipe
STRAWBERRY-SOUFFLE.

Succeeded -
Driving down on: Include raspberry in the dish.
Failed trying aore general goal.

Driving down on: Include fruit in the dish.
Succeeded -

Found recipe -> REC12 STRAWBERRY-SOUFFLE

Recipe exactly satisfies goals ->

158

Avoid failure ot typ« SIDE-EFFECT:DISABLED-COIIDITIOR:BALAICE
ezeaplif ied by the failure 'The batter is now flat' in recipe
STRAWBERRY-SOUFFLE.

Hake a souffle.

Recipe partially Batches ->
Include raspberry in the dish.

in that the recipe satisfies: Include fruits in the dish.

If a new plan is built out of one that avoids a failure, the fact that it too avoids the same
failure is associated with it. When the new plan is stored in memory, it too is stored by
the token which is related to the prediction of the failure. This means that any one failure
can have many plans in memory that can be used to avoid it. Each one of these is indexed
by the token related to the failure and is also indexed by the goals that it satisfies and any
other failures that it also avoids. Every time a once failed plan is stored in memory, the
token that is associated with the prediction of a failure is used to index it in memory. This
closes the repair loop, allowing the prediction of a failure to provide the information needed
to find the plan that will avoid it.

Chapter 7

Planning and Planners

Case-based planning suggests an approach to planning that is somewhat different than that
taken by planners in the past. It suggests that planning is actually remembering and that
many constructive tasks are actually recollection tasks. By definition a case-based planner
has to be a learner. The learning done by a case-based planner is linked to its functions as
a planner. A case-based planner learns by remembering, in that it stores past plans, past
failures and past repairs for use in later planning.

Because so much of the emphasis in case-based planning is on memory use, it is not
surprising that many ideas in case-based planning differ sharp'y from those in both machine
learning and planning.

7.1 Case-based planning as planning.

Case-based planning differs from other planners in three areas: its initial plan building, its
reaction to plan failures, and its vocabulary for describing and storing plans. While there is
a great deal of overlap in these areas, given that the initial choice of a plan affects the way
in which it is debugged and the way in which debugged plans are stored affects the way in
which they are chosen for later use, it is important to tease apart these different areas in
order understand how different planners handle them.

7.1.1 Building an initial plan.

A case-based planner builds new plans out of old plans that it is reminded of. It finds these
past planning experiences by searching an episodic memory. This memory is organized by
two sorts of indices: goals to be satisfied and failures to be avoided. Plans are organized
around goals so that they can be retrieved when the goals that they satisfy are requested.
But plans are not organized under goals alone. Plans are also organized under failures that

159

160

the planner encountered when originally putting them together. Anticipated failures can
then be avoided by finding plans that were constructed to deal with similar failures in the
past.

In order to use its own memory organization, a case-based planner must begin the task
of building a plan for a set of goals by considering iiow they'll be interacting. By doing
this, it can anticipate any failure that it has experienced before, and use this anticipation to
search for a plan that solves the problem that it has predicted. It can also use the prediction
of any positive interaction between goals to characterize its current set of goals in terms of
an already existing exemplar in memory that can be accessed directly.

The case-based approach to finding an initial plan is to anticipate problems so it
can find plans that avoid them.

The anticipate and avoid approach to planning is different in many ways than the create
and debug approach taken by past planners. The create and debug strategy ib to plan for sets
of goals by planning for each of the individual goals and then dealing with any interactions
between plans as they arise. Create and debug planners store plans in terms of the individual
goals that they satisfy. The same plan, then, that is used when the planner is planning
for a single goal alone is also suggested when the planner is planning for the same goal
in conjunction with others. Because of this, create and debug planners have to debug the
problems that are discovered in faulty plans rather than anticipating problems and then
suggesting plans that are appropriate to all aspects of a goal situation in the first place.
Even when the planner has the knowledge that would allow it to anticipate the problems
that arise, it has to first build the faulty plan and later encounter the problem during a
simulation or analysis of the plan itself. While this approach is reasonable in the case of
a planner that lacks knowledge of a particular problem, it is unacceptable in those cases
where a planner is faced with a problem that it has the knowledge to deal with.

While there have been many suggestions as to how a planner can deal with interactions
between plans once they are discovered, they have all been implemented within the confines
of this basic framework. Unfortunately, this framework itself stands in the way of the most
effective method for dealing with plan interaction problems: anticipate them and start with
a plan that already deals with them. This is not to say that such planners could not then
recover from this kind of error, it is just that they would continue to make them even in
the presence of rules and experiences that should allow them to anticipate and avoid them.

The create and debug strategy makes it impossible to organize complex plans dealing
with goal interactions in a way that makes them accessible to the planner. Even if plans
exist to deal with some set of goal interactions, they cannot be stored by the fact that
they solve some goal interaction problem because that kind of feature is not included in
the vocabulary used to index and organize the plans themselves. The planner, then, has
to constantly replan in situations involving interact-ons between goals, even when it has
already designed plans that can effectively deal with these situations. While this does

161

not mean that such planners are incapable of producing finished plans for goal interaction
situations such as presented in this example, it does mean that they must constantly repeat
the errors that they have made in the past.

The first and most straightforward example of this approach was STRIPS [Fikes and
Nilsson 71], a planner based on the ideas presented in GPS [Newell and Simon 72]. STRIPS
built plans out of a series of operators that were stored in a table of preconditions and
effects. Each goal that it planned for was viewed in terms of the difference between the
current description of the world and the description proved by the goal itself. Each operator,
when applied to STRIPS understanding of the world, would add or delete states in accord
with its effects. For STRIPS planning consisted of building up operators one by one that
would reduce the differences between the initial state of the world and that described by
the goals that it was currently planning for.

Planning for many goals at once was no different for STRIPS than planning for a single
goal. The multiple goals were translated into a set of states that had to obtain at the end
of the plan execution and STRIPS planned for these each in its turn.

STRIPS could reuse complete plans and plan segments that it had built up during past
planning experiences, but only when the current conjunct of goals was an exact match
for those it had planned for in the past. The vocabulary it had for storing the plans and
plan segments that it built was not sufficient to describe many of the similarities between
different goal situations. In particular it could not describe problems having to do with
goal and plan interactions. Without such a vocabulary to describe the similarity between
different situations, STRIPS could not know that a past plan stored in its table of operators
would be useful in a solving a present planning problem.

The problem with STRIPS was not in the level of generality of the indexing vocabulary
that it used to access its initial plans and operators. The problem was instead in the type
of vocabulary that it used. STRIPS only attended to surface features of the goals it was
handed and did not concern itself with the interactions between them. Though there has
been research that is aimed at improving the search performance of STRIPS and STRIPS-
like planners, ([Korf 82] and [Minton 85]), none of it has been directed at developing a new
vocabulary for plan storage.

Many of the problems that arose because of STRIPS were addressed by two later the-
ories, HACKER [Sussman 75] and NOAH [Sacerdoti 75]. In particular, a way to avoid the
combinatorics of a best-first search of a planning space of primitive operators was suggested
in the form of hierarchical planning. Neither of these programs, however, suggested any
reasonable alternative to the create and debug paradigm. In fact, HACKER and NOAH
stand as the prime examples of this planning philosophy.

Sussman's HACKER was designed to learn by saving debugged plans for later use.
HACKER would plan for a conjunct of goals by finding the plan segments in its answer
library that achieved each of the individual goals and proposing an initial plan composed of
each of these segments in an arbitrary order. Once the initial plan was created, HACKER

162

would then run it in a care/«/mode. In this mode HACKER would examine the effects of
each plan step and notice failures as they occurred. Bugs were both noticed and repaired by
plan critics that had knowledge of planning problems in general as well as. specific knowledge
of the limited physics of the blocks world itself. Once a bug was detected and corrected,
the resulting plan was generalized and added to a plan library for later use.

Like STRIPS, the intent in HACKER was to reuse past plans by storing them in a
library, indexed by the goals they satisfied. Unfortunately, also like STRIPS, the indexing
did not reilect the fact that a particular problem having to do with a goal interaction was
solved by a particular plan. It was only by rebuilding the failed plan again that HACKER
could recognize that it was in a similar situation and then make use of the alterations that
it had devised earlier.

Like HACKER, Sacerdoti's NOAH built plans for multiple goal situations by combining
the plans associated with each of the individual goals. Unlike HACKER, however, NOAH
did not linearize its pfautt «r run simulations to check for errors. NOAH instead assumed
that the plan steps mid b* run 'n any order unless the specifics of the preconditions or
effects of one step p);: «da constraint on the others. NOAH would notice such constraints
while expanding eacii of its planning steps into more primitive actions and analyzing the
resulting plan using critics similar to those suggested by Sussman in HACKER. This analysis
took the place of the simulation that HACKER ran.

The choice of initial plan segments was approximately the same in NOAH as in HACK-
ER. NOAH would find the plan steps associated with each of the individual goals it was
given and compose its final plan out of them. While both NOAH and HACKER could
manipulate the order of the plan steps they had, once they were chosen, they did not have
the ability to choose new plan segments for the goals that they were planning for. Neither
of them, then, had the ability to make use of the context surrounding a goal to choose the
plan to be used to achieve it. For example, NOAH would begin planning for the need to
use many tools by forming a plan to go to the tool box for each one. Later it could merge
this series of trips into one trip, but it could not access a plan such as going to the tool box
and bringing it back. This is because to be useful this plan would have to be indexed by
the fact that it is a good plan that subsumes [Wilensky 78] a large number of goals to have
tools, but this kind of description is not included in HACKER and NOAH's vocabulary of
simple goals.

A different approach to the problem of goal and plan interactions was proposed by
Wilensky in PANDORA ([Wilensky 80] and [Wilensky 83]). While he suggested an alter-
native to dealing with planning problems once they arise, he did so within the confines of
the create and debug paradigm.

PANDORA is a planner that reacts to interactions between plans and goals by intro-
ducing meta-lcvel goals into the basic planning agenda. If, for example, the planner is given
the goal to get a newspaper that is outside while it is raining, it notices the conflict between
the goal to get the paper and the goal to remain dry. Once an interaction such as a goal

163

conflict is detected, a meta-level goal to resolve this conflict is introduced into the planner's
agenda and this is dealt with like any other goal.

PANDORA is not designed to reuse of any plans that it designs, so it must repeatedly
confront and repair any planning failures. Even with a method of storing plans, however,
its basic planning algorithm of finding and combining the plan segments for each of the
individual goals it is given, independent of other goals or relevant states, firmly places it
in the create and debug family. It has no mechanism or vocabulary for searching for plans
related to a set of goals or even the goal interaction types that it uses to debug it own plans.
Like STRIPS, HACKER and NOAH, it must repeat its failures and its debugging efforts
because it has no way to effectively save its debugged plans for future use.

To sum up, although their response to the identification of an interaction between goals
and plans is different, these planners have the same basic strategy for indexing into plans
initially. They assume that the first step in planning for a set of goals is to find the best
plans for each of the planner's individual goals and then mediate between them when the
need arises. They assume that the final plan for a set of goals will rise out of a combination
of the individual plans for each goal alone. They ignore the fact that often the best plan for
a situation has less to do with surface features and more to do with the interactions that
arises between them. Thus they have no vocabulary or mechanism for searching for plans
using a characterization of goal situations as a whole or for searching for a plan that relates
to the interaction between goals as opposed to just the individual goals alone.

There are two problems with the strategy of originally indexing to plans on the basis of
single goals alone. First, the "best" plan for satisfying a single goal alone is not necessarily
also the best one to use when satisfying that goal when it appears in conjunction with
others. Second, there is no method by which these planners can effectively retrieve complex
plans that have been built up in the past, because they begin by looking for plans related
to individual goals first. These problems alone make it clear that a more abstract form of
characterizing goals and indexing plans has to be found.

The first difficulty with the "each goal first" strategy used by the create and debug
planners is the assumption that the best plan used to satisfy a goal in general is also the
best one for dealing with tha goal when it is one of many that have to be satisfied. NOAH
for example could change a series of trips to its tool box into a single trip during which it
would retrieve many tools. While this is a reasonable solution to the problem, it is not as
effective or intelligent a plan as simply carrying back the entire tool box. The difference
between the two plans of carrying back each of the tools as opposed to carrying back the
tool box is subtle, to be sure, but it is not trivial. The plan to go to the box once, and
carry back each of the tools is a solution that joins each of the original plans into a single
structure. The plan to bring back the tool box, on the other hand, is a solution that adopts
a plan that is different in kind than the original set of plans that it replaces. It is a plan for
the overall situation rather than for each of the individual goals. It is itself a subsumption
plan [Wilensky 78]. The point is that best plan for a satisfying a set of goals does not have
to include each of the best plans for the individual goals.

164

The second problem with this "each goal first" strategy involves the reuse of existing
plans. There seems to be no method, within the context of just searching for plans under
individual goals, for storing and accessing complex plans that are the product of previously
solved problems. At best, there have been suggestions, such as PANDORA's "canned
plans", that the planner look for past solutions after it has run into planning difficulties
[Wilensky 83]. In Wilensky's newspaper and rain situation for example, any solution to the
problem of getting the newspaper without getting wet is lost when the planning is over.
Even if it is saved as a "canned plan", the next time this situation is seen again, the same
"each goal first" strategy will be used prior to the planner noticing the existence of this
plan which is perfectly suited to the situation. It is only after the planner has tried and
failed, attempting less useful plans, that it will be in a position to to find the plan that was
designed precisely for the situation that it is currently in. It can then only be found if the
current situation includes all of the goals that were present when the canned plan was first
built.

Because plans are indexed by goals and goals alone, features in the initial situation,
which may in fact predict goals but not be goals themselves, are ignored in choosing a plan.
Although the rain predicts the need to do something to avoid getting wet, it is not itself
a goal and is thus ignored by any planner that indexed plans on the basis of goals alone.
For such planners, it is only after the plan has been run or simulated, and the actual goals
have arisen that a plan to deal with them can be activated. Because plans are indexed by
goals alone, the other features in a situation, that are not goals but may predict that the
planner will develop a goal, can not be used to search for plans. This forces these planners
to simulate the world in order to tease out the goals that these surface features predict.
But a dependence on simulation is basically a dependence on unconstrained inference.

This problem is far more severe than the fiist in that it undercuts the ability of a
planner to learn from its own mi^akes. Planners using this approach must constantly
replan, using inappropriate sub-plans obtained from individual goals, before they can begin
to search for the more appropriate solutions that they have previously built. There are of
course straightforward solutions to this problem. Using a notion such as that of Wilensky's
canned plans, it is possible to index a plan under each of the simple goals that it satisfies.
These canned plans, stored under individual goals, could be found when all other goals
originally satisfied by the plan are present in the current input. Unfortunately, this allows
for the use of existing canned plans only in the case of those situations which are exactly
like those that originally motivated their development. This same objection can be leveled
against BACKER'S use of conjuncts of goals to index complex plans. So while this addition
to the basic "each goal first" strategy could be adapted to the reuse of some complex plans,
it would not allow any but the most inflexible learning to occur.

A further problem with any approach that stores complex plans in terms of the con-
junction of the individual goals that they solve is that, in many cases, the goals that are
interacting may not all be in the initial input that the planner has to work with. This is
certainly the case in Wilensky's newspaper-andrain example where the goal to remain dry
does not arise until the program has already begun to execute, or at least simulate, the plan.

165

While the specific goal does not arise until the initial plan of going outside is in motion, the
features that a planner could use to anticipate the conflict are present in the input. The
fact that it is raining should have an effect on the choice of plan that the planner will use
to get the paper. But, because the fact of rain is not itself a goal, it is not used to index
any plans. A planner that can only index plans in terms of specific goals and conjuncts of
goals can never make use of the presence of these features in the input and must instead
rely on a simulation of some initial plan to expose problems by giving rise to particular
goals or goal violations that will occur given the first order plan. It seems clear that any
indexing process could be improved with the addition of a a vocabulary that includes all of
the features that participate in the choice of a plan. This includes descriptions of relevant
states in the world and predictions of possible conflicts that the plans may resolve as well
as the goals that the plans satisfy.

Case-based planning suggests dealing with these problems by storing plans under the
goal interactions that they deal with and by associating these interactions with the features
that predict them. When these features arise in planning the planner is able to immediately
predict the possibility of a problem and then use that prediction to access a plan that deal
with it. Rather then repeating the same mistake over again, then, a case-based planner is
able to anticipate it and by anticipating it avoid it.

7.1.2 Debugging failed plans.

A case-based planner can anticipate and thus avoid failures having to do with plan inter-
actions. It can only do this, however, with the interactions it has seen before. In order
to plan effectively, then, it must be able to recover and learn from those failures that it
hasn't seen before and isn't able to anticipate. So, like create and debug planners it has to
have knowledge of how to identify and repair faulty plans that have failed due to unforeseen
interactions between steps.

While there are technical differences between the way case-based planning handles plan
failures and the way programs such as NOAH or PANDORA deal with them, the most
important difference between them is that a case-based planner treats its mistakes as ex-
pectation failures as well as planning failures. Planning is a test of its understanding of
the world. Planning failures are indicators of where that understand has broken down and
where it has to be fixed. They tell CHEF when it needs to learn.

A planning failure occurs when a plan dees not satisfy some goal that it was designed
to deal with. For example, in the plan created by CHEF for a beef and broccoli dish, the
fact that the broccoli ended up soggy was a planning failure because soggy broccoli is a bad
state that any planner wants to avoid. An expectation failure is different. It occurs when an
expected event does not come about or when an event for which there was no expectation
does. In the beef and broccoli example, there is an expectation failure that occurs at the
same time as the planning failure, because CHEF did not anticipate that the broccoli would
end up begin soggy.

166

CHEF responds to plan failures by building a causal explanation of why the failure has
occurred and then using that explanation to access replanning strategies designed for the
situation in general. It responds to expectation failures by again using that explanation
to add new inference rules which allow it to anticipate the problem that it previously was
unable to foresee. It first asks itself, "What went wrong with the plan?" and then asks
"What went wrong with the planning?"

Of the planners already discussed, none deal with the failures they encounter as expecta-
tion failures. While STRIPS and HACKER do save plans, they do not change the inferences
they make that would allow them to anticipate the problems that the plans were designed to
deal with. The plans they save can only be used when the planner is confronted with goals
that have surface features in common with the past situation. But surface features alone
do not account for many of the similarities between different situations in which a single
plan is applicable. In the beef and broccoli situation, for instance, neither of these planners
could save the final plan in a way that would make it useful to the later problem of planning
of chicken and snow peas, because the similarity between the two problem situations is not
in the individual goals, but in way in which they interact.

There are also differences between CHEF and these past planners in the way they deal
with planning failures as planning failures alone. CHEF's approach to planning failures
has three parts: first it explains why the failure has occurred, next it finds the TOP and
general repair strategies that are associated with that type of failure, and finally it uses
the strategy which has the best implementation, given the specifics of the problem and
circumstances surrounding it. In the becf-and-broccoli example, this means explaining that
the soggy broccoli is the product of stir frying it with the liquid from the meat, seeing this as
an instance of the TOP SIDE-EFFECT:DISABLED-CONDITION:CONCURRENT, and
then searching for an implementation of each of that TOP's strategies before choosing to
SPLIT-AND-REJOIN the single step of stir-frying into a series of steps.

CHEF's approach to failure recovery draws a great deal from the tradition established
by Sussman and Sacerdoti by their use of planning critics and then extended by Wilensky.
Both Sussman and Sacerdoti suggested that planners need to know about planning error in
general to intelligently debug faulty plans. With this knowledge, a planner would not have
to perform the tedious backtracking and replanning that a STRIPS-like planner has to do
when it hits a dead end. Instead, it would be able to apply one of a set of planning critics,
each having knowledge of a specific problem and the means to solve it, thus repairing the
faulty plan by changing only the steps that participate in the failure. The only difference
between the two views of planning critics suggested by Sussman and Sacerdoti had to do
with when the critics, were applied. Sussman's HACKER would apply its critics while
running a fully expanded plan in a careful mode while Sacerdoti's Noah would have its
critics check for plan interactions at each stage of expansion down to primitive planning
steps.

There are difficulties with the critics approach presented by both Sussman and Sacerdoti,
however. The first stems from the fact that they both wrote planners that functioned in

167

somewhat impoverished domains, Sussman working in a blocks world and Sacerdoti working
in a world where the problem task was the building of simple machines such as pumps.
Unfortunately, in such worlds, there is usually only one plan for each goal and the effects of
each plan tend to be those and only those that directly satisfy the goal being planned for.
Because of this, only a limited vocabulary was needed to describe the problems the critics
were confronted with and each problem required oiily a single transformation to solve it.
As a result the critics suggested by both Sussman and Sacerdoti only begin to scratch the
surface of what is needed to deal with complex domains.

Sussman suggests one critic, PREREQUISITE-CLOBBERS-BROTHER-GOAL, which
has the repair REORDER. This is used to repair bugs such as putting a block on top of a
block that has to be moved. But this is not a precise enough description of the situation.
It does not capture the fact that the state doing the "clobbering" is a state the planner
is directly planning for rather than a side-effect. The difference is that a side-effect can
be recovered from by adding a step that removes it where a desired effect is a state that
the planner's wants to have maintained for some duration. A problem due to a side-effect
can be dealt with by removing that side-effect but problems due to desired effects have to
be planned around while maintaining that effect. This distinction is not captured in the
vocabulary used by either Sussman or Sacerdoti and it is a distinction that has an effect on
how the planner should react to the different bugs.

This lack of depth in the planner's domain has more of an effect than just limiting the
number of critics or the level of detail used to describe them. It also disguises the fact that
there is not a one-to-one correspondence between problems that can be recognized and ways
in which they can be solved. This assumption of a correspondence between problems and
solutions, however, is implicit in the entire critics approach. Critics are units that contain
both a description of a problem and a description of how the planner should deal with it. A
more reasonable approach is to first diagnose a problem and then decide between alternative
solutions that can be applied to solve it.

The major problem with critics, then, is the same quality that makes them so seductive:
their unity. The notion of a set of general purpose rules for debugging plans, rules that ai°
independent of the the planning knowledge of any domain, is appealing in its elegance. B<it
it ignores the fact that often a planner has to use domain knowledge to choose between the
applicability of different repair strategies suggested by the debugging rules. Even in the
block tower case, it is difficult to see how critics alone could deal with a choice between
reordering the plans or using an alternative plan for the second step that would allow the
plan to move the already built two block tower as a unit. The choice between these different
plans has to be based on information in the domain itself (i.e., the difficulty of individual
plans, their existence, and other interactions) as well as information about the general
advisability of using the different strategies (i.e., is it better to reorder existing plans or
replace steps). The structure of the knowledge in critics, however, makes it difficult to
compare different strategies or to see how the specifics of the planner's domain would affect
the choice between them.

168

While the idea of making use of domain independent knowledge of planning itself to
debug plans is a powerful idea, the structure that Sussman and Sacerdoti gave it, that of
critics, is highly limited. This is a problem inherent to the notion of using a single structure
for both the diagnosis and treatment of a bug: there is no place to put the possibility of
multiple treatments or to be able to recognize a problem that has no treatment at all.

In an effort to remedy these problems with critics, Wilensky has suggested the idea
of meta-phnning ([Wilensky 80] and [Wilensky 83]). Rather than representing abstract
planning knowledge in a set of critics, Wilensky has represented it in the form of meta-goals
and meta-plans that are identical in form to the specific goals and plans of the planner's
domain. When confronted with a problem stemming from plan interactions, a goal to deal
with that interaction is spawned and the general planning mechanism deals with it directly.
This allows the planner to notice a problem, insert a goal to deal with it into its general
planning agenda and then find plans to deal with it. Wilensky, then, has taken the same
knowledge that Sussman and Sacerdoti stored in critics, and has divided it into diagnostic
knowledge which recognizes problems and prescriptive knowledge which solves them.

In an example done by Wilensky's PANDORA, the planner tries to get a newspaper
that is outside in the rain. On simulating the plan, the planner sees that going outside in
the rain will make it get wet. Getting wet, however, is the violation of a P-GOAL [Schänk
and Abelson 77] to remain dry. This violation means that there is a conflict between the
goal to get the paper and the P-GOAL to remain dry. Seeing this the planner builds the
meta-goal RESOLVE-GOAL-CONFLICT and hands this back to itself for further planning.
RESOLVE-GOAL-CONFLICT has a set of meta-plans associated with it, including one that
has the planner look under the violated goal to stay dry for a canned plan. Here it finds the
plan USE-RAINCOAT and adds this to the steps it has to take in getting the newspaper.
Rather than having a critic to deal with this situation Wilensky diagnoses the problem
and then prescribes a treatment, splitting the knowledge used in the critics of HACKER
and NOAH into two more flexible units. The major advantage to this approach is that a
meta-planner would be able to suggest many different solutions to a single problem where
a planner using critics would have only the single solution suggested by the critic that
recognized the problem.

While the meta-planning idea of splitting the repairing of plan bugs into diagnosis and
prescription is a step forward, there is a problem in what PANDORA considers to be a
diagnosis. PANDORA is able to analyze the newspaper and rain situation down to the
level of GOAL-CONFLICT. This means that the planner knows that there is a problem in
the plan to get the newspaper, but is unable to identify why the conflict has arisen. This
information is contained in the event simulator that it runs in order to detect planning
problems, but the simulator's assessment of the problem is not handed back to the planner.
The simulator is only interested in the states that the planner passes though while running
a plan, and is not interested in why those states occur. The information given back to the
planner is simply that there is some threat to the P-GOAL to remain dry, but it is unable
to identify the conditions which cause this threat. For example, the feature in the input
situation that has determined the need for some alteration of the initial GET-NEWSPAPER

169

plan (e.g., it is raining) is never used by the planner itself in either characterizing the input
problem or deciding on a a plan to deal with it.

Without a causal description of what has led up to the violation of the P-GO AL, there is
no way to know where tq alter the existing plan. The plans that are available, then, are only
those associated with the P-GOAL itself. In this case, the P-GO AL is the goal to remain
dry, which has the plan of using a rain coat associated with it. But what if a different set of
circumstances causes the violation of this goal? If, for example, the planner has to go into a
flooded basement, it will again be told by the simulator that it will have a conflict between
its initial plan and the P-GOAL to remain dry. Again, it will build the meta-goal and again
it will try the normal plan to remain dry, use a rain coat. But here using a rain coat makes
no sense, because the rain coat will not do anything to alter the causal circumstances that
led to the planner getting wet. Because the planner does not have a full description of the
causality that led up to the failure, it is unable to appropriately alter the circumstances.
Without a description of these circumstances, only the most genen. strategies and plans
can be reliably suggested for repairing a bug.

The causality behind a problem, the reason why it has happened, is not used by PAN-
DORA to decide what to do about it. While Wilensky has given PANDORA more flexibility
in dealing with bugs than HACKER or NOAH, by splitting its planning knowledge into sep-
arate diagnosis and prescription stages, he has not changed the level of description of those
bugs that would have allowed the use of even more specific and powerful strategies. Like
HACKER and NOAH, PANDORA does not have the vocabulary needed to describe the
details of a bug. While they can describe what has happened, they cannot describe why
it has happened. But without the knowledge of why something has happened, a planner
cannot make the best decisions about how to stop it from happening in the present or how
to avoid having it happen again in the future.

The difference between the CHEF approach and that of PANDORA is the level of
description that each uses in building a diagnosis of a problem. There is no doubt that
dividing the knowledge used to debug plans into separate diagnostic and prescriptive orga-
nizations is a plus. As argued earlier in discussing problems with NOAH and HACKER,
this sort of division is necessary for the planner to adequately decide between competing
debugging strategies. For PANDORA a diagnosis consists of a description of the failure
alone, in Wilensky's newspaper and rain example, a description that begins and ends with
the planner seeing the violation of a particular P-GOAL, stay dry. For CHEF, a diagnosis
includes the states and steps that causally led to the failure, as well as the positive goals
that were being planned for by those states and steps. With this information, CHEF is able
to suggest strategies tailored to the exact situation and choose between them making use
of its abstract knowledge of planning combined with its concrete knowledge of its domain.

In building PANDORA, Wilensky argued that HACKER and NOAH did not go far
enough in taking seriously the role 01 goal and plan interactions, the main source of plan-
ning failures. He argued that the way to deal with problems rising out of goal and plan
interactions is to elevate them to the status of goals themselves. He argued, in fact, that

170

the basic structure of the planner should reflect the fact that it will often be encountering
failures due to these interactions. This argument is continued in CHEF, and extended to
include the argument that a planner needs to have a rich causal description of why a failure
has occurred rather than just a description of what the failure is.

CHEF uses a vocabulary of causal interactions to describe its own planning fail-
ures. It then uses these descriptions to find very specific strategies for dealing
with the failures.

7.1.3 Storing plans for later use.

Once a case-based planner has built and debugged a plan it tries to store it in memory
indexed by the features that will allow the planner to access it in similar situations. While
this is basically what any planner that saves its plans does, the notion of "similar" is
somewhat different for a case-based planner than for other planners.

For example, like STRIPS and HACKER, CHEF indexes the plans it builds in terms
of the particular goals that they satisfy. The basic vocabulary of plan indexing is the
vocabulary of the planner's domain. For instance, the beef and broccoli plan built by
CHEF is indexed by the foods that it includes {e.g., beef, broccoli and garlic), the tastes
that it exhibits (e.g., savory, lightly sweet, spicy) and by the type of dish that it is, (stir-fry).
It is also indexed by a generalization of the features that it exhibits, allowing this beef and
broccoli plan to also be stored as a more general meat and vegetable plan. These surface
features, are used as the initial vocabulary for storing plans in a discrimination network.

Unlike other planners, CHEF also uses descriptions of goal and plan interactions to
index its plans. The plan interactions that CHEF encounters on the way to building a
working plan, such as the liquid from the beef leading 10 the soggy broccoli, are as much
a part of why a particular set of step was chosen as is the initial surface goals. When
a plan is stored then, it is stored by a description of the negative goal interactions that
it avoids. Later, when CHEF infers that a set of goals is going to lead to a problem, a
plan to deal with that problem can be accessed because the plan is indexed by the fact
that it avoids problems of this sort. This indexing allows CHEF to use the prediction of
a problem to find a plan that deals with it. The plan for beef and broccoli, designed to
deal with the interaction between the two major ingredients is indexed as an example of a
SIDE-EFFECT:DISABLED-CONDITION:CONCURRENT plan. It can later be accessed
when the need for such a plan is inferred. Like any other vocabulary item based on a plan
satisfying a goal, CHEF uses the fact that a plan successfully avoids a problem to store the
plan for later use when a goal to avoid the same or similar problem arises.

171

CHEF stores plans by the goals they satisfy and the problems that they avoid.
This allows it to find plans that achieve the goals it is planning for while avoiding
the problems it predicts will arise while doing so.

In summary, CHEF begins the task of planning by making inferences based on past
experiences as to what might go wrong in planning for a set of goals. It then searches its
memory for a plan that best satisfies the goals it has and best avoids the failures that is able
to anticipate. Ingredient critics for modifying initial plans are organized around the type
of plan to be modified and the goal to be added, allowing CHEF to have different plans for
a single goal indexed by context. Any failures that CHEF encounters are explained, using
CHEF's causal rules for the domain. This explanation tells CHEF how to repair the plan
and also tells it which features can be marked as predictive of similar failures in the future.
CHEF then stores its final plan in terms of the goals that it satisfies as well as any problems
that it encountered so that it may be used to avoid similar problems in the future. CHEF,
then, has a closed experiential loop, encountering a problem, solving it and then storing the
final plan so that it can be applied to later instances of the problem.

7.2 Case-based planning as learning.

A case-based planner is a planner, but it is a planner that learns. The learning it does,
however, is not concept learning via induction, (e.g., [Lebowitz 80], [Michalski and Larson
78] and [Winston 70]), or even explanation driven learning (e.g., [DeJong 83] and [Mitchell
^3]) of the form that emerged in recent years. It differs from past theories in three ways.
First, the categories CHEF forms are functional categories that help in later planning.
Second, the process of credit assignment used for deciding which features of a situation will
be included as part of a new category is based on a causal analysis of the situation. And
finally, the motivation for building a new category is provided by the needs of the planner.
This means that CHEF only learns when it recognizes that its understanding of which plans
are appropriate to a situation is faulty.

Learning from cases differs from other types of learning in what is learned (func-
tional categories), how it is learned (though causal analysis of failures) and when
it is learned (when the planner fails).

7.2.1 Functional categories

Initial work on learning was based on the idea that a program could build up categories of
feature conjunctions by viewing repeated instances of members of those categories. These
programs built categories defined by those features included in all instances of a class that

172

they were shown. Some of these programs took the step of building generalizations of
features into the category being defined. These generalizations were the product of taking
different features from two or more examples and finding a single description that would
cover them all. The source of this description was often a semantic hierarchy in which the
two features shared a common abstraction or a disjunction of the two features that allowed
either one as part of the category description.

The best known program of this class was built by Patrick Winston. His program
was given descriptions of compound objects in a blocks world and would learn concepts
like ARCH and STACK by seeing repeated instances of members of these categories and
instances of "near misses'1, objects that lacked only one feature for determining membership.
By viewing members of the categories, the program could build up a feature list that defined
what was sufficient for membership. By viewing "near misses" it could identify the features
in that list that were necessary requirements for membership.

After learning a category, the program could identify members of the category it had
just constructed. But that identification required the use of all of the features used in the
definition. Identifying an object as an ARCH did not mean that the program could then
make any further conclusions about the object, because all of the features that were included
in the definition were used in the recognition. The categories that the program built were
functionless. Although they could be used to recognize objects of a particular class, no
other features could then be attributed to that object as a result of that identification.

This is an inherent property of the concept learning paradigm, because the task itself
is to learn the features that define a category. The feature lists that concept learners build
up do not distinguish between the features of an object that can be observed and tested for
and the features of an object that the learner would want to infer from the fact that it has
identified that object.

An example of where the concept learning paradigm goes wrong is pointed out in Schänk,
Collins and Hunter [Schänk, Collins and Hunter In press.]. They discuss the problem of
learning the categories of edible and inedible mushrooms. The task is not to learn the
definition of edible and inedible, but to learn the features of each that that could be to
classify new instances. These features include the shape, color, smell and texture. Although
the goal is to be able to determine whether particular mushrooms are poisonous or not, the
tests that should be built to classify them can not depend on a direct examination of this
feature. The idea is to be able to predict when a mushroom is inedible on the basis of a
set of features, not to define what features have to be present for it to be inedible. The
second task is all too easy, the class of inedible mushrooms has the necessary and sufficient
condition that each member of that class is inedible. But this is not a particularly good
test to use when picking mushrooms.

In this case, a functional categorization of mushrooms has to be based on recognition
tests that allow a user to infer the edibility of the mushrooms tested on the basis of other
observable features. A functionless category would be one that just defines the two classes
of edible and inedible mushrooms on the basis of these individual features alone.

173

Although the task of concept learners is building categories, the categories they build
lack any function, because they use all of the features that define the category to test for
membership. What they need, then, is the notion of the difference between features that
predict membership and those that result from membership. The predictive features are
used to classify, while the resulting features are used to make inferences that react to that
classification.

For a category to be functional, it needs to be constructed somewhat like an "IF-THEN"
rule. The left side, the "IF", has the features that are used to recognize a category. The
right side, the "THEN", has the response or inferences that are appropriate for the category.

CHEF builds categories as well. CHEF's categories are descriptions of different planning
situations. These situations are recognized on the basis of features in its input. The response
to recognizing a situation is to find a plan that is indexed by the description of the category
it defines. The categories that CHEF learns are functional, the "IF" is the set of goals that
predict a planning problem, the "THEN" is the plan or plans that can be used to deal with
it.

The categories that CHEF builds are composed of features that can predict problems
and plans that can be used to respond to them. When CHEF builds a new category The
predictive features are used to recognize problem situations, while the plans related to that
problem are used to solve it. The categories that CHEF builds are actually categories that
define when it is appropriate to use certain plans.

For example, at one point CHEF builds a bad strawberry souffle that falls because
strawberries have too much liquid in them to be put into a standard souffle . CHEF solves
this problem by adding extra egg to the souffle that balances out the extra liquid. But now
it has a plan for a situation that has to be distinguished from the normal souffle situation.
It has the problem of figuring out which features in the current situation should be used to
define that category. The problem is to find the features that predict the failure so that the
plan that deals with it can be accessed. Because this category is going to be used later, it
has to include only those features that will be apparent to the planner when it is making
it choice of which plan to use in a new planning situation. So it has to include only those
features that will be in its input.

The input fo.- CHEF is the goals it has to satisfy, so the categories it forms are recognized
through an examination of those features. In this case, the goal to include strawberries and
the goal to make a souffle are blamed for the problem because strawberries have a high
liquid content and souffles are sensitive to liquids. These features are generalized and a new
category is formed. The category defines those situations in which this new souffle plan
with added egg to compensate for extra liquid is appropriate. It is recognized when the
planner has the goal to build a souffle and a goal to include a high moisture fruit in that
souffle . By doing a little bit of causal reasoning, the planner also is able to recognize this
situation when it has the goal to make a souffle and a goal to include any liquid spice. The
category is not just the features that are used to recognize it. It is also the plans that are
designed to deal with it. The planner's recognition of this situation allows it to find the

174

past plan it built, the strawberry souffle plan, that can be modifier to fit the exact needs
of other aspects of the situation.

Unlike concept learners, the categories that CHEF builds are functional. They have two
parts to them: the features that allow it to recognize a situation and the responses that it
has to deal with the situation. It uses these categories to differentiate between the different
planning situations it faces and the different planning responses it should have.

CHEF learns functional categories that consist of tests for recognizing new in-
stances of situations it has already encountered and plans for reacting to those
situations.

7.2.2 Credit assignment

One of the biggest problems in learning is that of credit assignment. That is, given a set of
features that make up a situation, how does a learner decide which of those features should
be included in the new category, functional or otherwise, that is being learned.

The most prevalent method for doing credit assignment has been through induction.
The question of relevance is reduced to the question of persistence, the relevant features
being those that persist from example to example. The features that persist through a
series of examples end up being included in the definition of the category being formed.
As an inductive learner looks at more and more examples, its definition of the category
it is building becomes more and more precise. The assumption being that the relevant
features will have to be included in all examples and extraneous features will have at least
one example in which they are not present.

In the case of Winston's program, features such as the size of the blocks and their shape
were weeded out of the definition of ARCH by having it look at examples of arches in
which these features varied. By getting one example in which the top block of the arch
was triangular and one in which it was square, the program was able to remove the shape
requirement on the top block from its definitional list. The program could not look at a
single example and decide which features were relevant to any new category it was forming
but it was able to constantly narrow the field of features by noticing those features that did
and did not appear in repeated examples.

There are many problems with this approach to credit assignment. Most of these prob-
lems rise out of the substitution of the notion of relevance with the idea of repetition.
Instead for figuring out the features in a situation that are relevant and then building a
new category on that basis, these learners give up on that task and wait until the constant
repetition of certain features points out which ones are constant if not relevant. Because
of this, none of these learners can glean anything from single instances. They cannot learn
about a class of situations from a instance of that situation because they are not designed to
even understand the situations they look at at all. These programs were in the position of

175

being able to build up classifications of objects that they had no individual understanding
of.

The second problem with this type of learning is the inability of these learners to weed
out features that reoccur but are not relevant. Because they have no notion of relevance,
they are content to build and maintain categories with spurious features. These features are
maintained when the learner is given examples of a class that include spurious features. For
example, Mike Lebowitz's IPP could learn categories of actions such as "IRA bombings"
which would contain information about the location of the bombing and who took respon-
sibility for the action. Unfortunately, because the program had no notion of the relevance
of particular features it would also include features like the the number of people killed,
thinking that if it was an IRA attack, two people would always be killed. In some ways
this was a reasonable generalization to make, in that this is what happened in every story
the program read. In other ways, however it is quite unreasonable, because the number of
people killed is not linked to the organization doing the killing in any coherent way. It was
just a feature of the episodes the program read that did not vary between readings.

The final problem with this approach to credit assignment lies in the need to tell these
learners what they are learning as they are learning it. Because these systems build up cat-
egories by matching new example against old definitions, each example has to be identified
with the category it is a member of. Each example that Winston's program looked at was
identified as an ARCH a STACK or a "near miss" of one of its categories. Without this,
the program would not know which category to try to fit the new example to and might fit
it to the wrong one thus ruining the definition by altering it to fit a non-instance.

Lebowitz's IPP tried to get around this problem by building new categories for pairs of
examples that had any features at all in common. Once a category was built, it would have
a certainty factor added to it that required more that one non-example to undercut. But
this meant a trade-off between having to hand feed examples to the program and having to
weed out the propagation of spurious generalizations that provided a stream of erroneous
predictions.

CHEF tries to avoid these problems by taking a different approach to credit assignment.
CHEF does not wait for repetitions of similar situations, which is to say similar planning
failures, to indicate which features should be used to predict those failures. Instead, CHEF
decides which features are relevant to a situation, and thus predictive of the failure, using
a causal description of the situation. By back-chaining using a set of causal rules, CHEF
can describe why a failure has occurred. The features that participated in the failure are
included in this description and are assigned the blame for causing it. These features are
then used LO define the predictive side of the new category. The plan that is built in response
to the failure is used as the reactive side.

The only features that CHEF includes in a category are the features that are actually-
relevant to the problem, in that that they caused it and can now be used to predict it.
These are the features that should predict the problem and are the features that define the
situation in which the use of the repaired plan is most appropriate.

<^i^^."ÄV,r>w.v.^v.vLj^v/<jA'rfirAVJV.^^ wyirjju »i^uf ^NiejiTUL

176

In the case of the strawberry souffle mentioned earlier, the causal explanation is that
the liquid from the strawberries caused an imbalance in the relationship between liquid and
leavening in the plan which in turn caused the souffle to fall. The features that are included
in the new category are derived from this explanation. The goal to include a high moisture
fruit and the goal to make a souffle define the predict side of the category. The new plan
that uses more egg to compensate for the added liquid becomes the reactive side.

By using an explanation of why a failure has occurred, CHEF is able to focus on the
features that are relevant to that failure. It does not have to see repetitions of the failure
because it understands the event and its understanding is able to tell it which features are
truly relevant. It not only rejects features such as the fact that strawberries are red or
the souffle has sugar in it, it does not even consider them, because these features did not
participate in causing the failure. A feature that does not participate in a failure simply
has no relevance in defining the situation that will later predict it.

By using explanations to focus in on the relevant features of a situation, CHEF avoids
all of the problems of credit assignment through repetition. It does not have to see repeated
instances of a problem to figure out how to predict it. It does not have to rely on getting
the right examples to figure out which features of a problem are relevant. It is not fooled by
irrelevant features. And it does not have to be told what category a situation is a member
of because it does not have to match between situations at all.

Unlike programs doing inductive generalization, CHEF is able to build new cat-
egories on the basis of single examples. It does so by using a causal description
of why the situation is different than expected to pick out the features that are
relevant to the new category.

CHEF's approach to credit assignment is by no means unique. There are many learning
programs that are now explanation driven, that is, doing the assignment of credit using an
explanation of the events in an episode.

DeJong [DeJong 83] has recently proposed a set of programs that all fall within the
same general design. A learner is presented with a plan, builds up a causal explanation
of the reason behind each step in the plan, and then saves only those steps that actually
participate in achieving the goals of the plan. Each step is then generalized to the level of
the rules that explained the reason behind the step.

This is a somewhat different task than the one addressed by CHEF. Instead of explaining
planning failures so as to predict and avoid them in the future, DeJong is interested in
explaining successful plans so as to weed out extraneous steps. It is the fact that he is
explaining successes that causes most of his problems. Instead of having to explain why a
single failure, which amounts to a single state, has occurred, DeJong is forced to explain why
each step in his plan is taking place. His program is forced to run a huge, detailed simulation
of every plan it sees. DeJong's programs have to explain entire plans from beginning to
end, a task which amounts to the equivalent of building the plan up from scratch.

177

Because the explanation task is so difficult, the input, to De Jong's programs U overly
detailed. This gives the programs very short inference chains to build. The level of detail is
so minute that it is arguable that the entire task of building the explanation has been side
stepped altogether. So, like learners in the concept learning paradigm DeJong's programs
have to be hand fed the planning examples that they look at. A plan that lacks the detail
cannot be explained and thus cannot be used.

The difference between this approach to explanation and that in CHEF is that CHEF
only explains when it has to. It assumes that the modifications it makes to existing plans,
modifications that are designed to maintain the integrity of the plan, will not add new
failures to the already successful plans. Because the cost of explanation is so high, it only
builds one when it is forced to: in order to diagnose the causes of a failure. Because it
does not examine its successful plans for extraneous steps as DeJong's programs do, it can
miss plans that are more complex than they need to be. But because it begins with plans
that have minimal complexity and uses a modification method that adds only those steps
required for new goals, it does not run into situations in which it adds more complexity to
a plan than is needed.

While CHEF uses the same basic notion of credit assignment through explanation as
do DeJong's programs, they differ in what they try to explain. DeJong's programs build
explanations for every new plan they look at, while CHEF only builds them when it is
forced to by its own failures.

CHEF differs from other programs doing explanation driven learning in that it
waits until it is forced to build an explanation to do so.

7.2.3 When to learn

Most programs that learn have no reason for learning. They learn because their task
is learning. This is true of all of the learning programs mentioned so far. Even Mike
Lebowitz's IPP, though it was associated with a parser, did not use the generalizations it
learned in parsing. Because of this, there has been little said about when a program should
learn or what it should do with what it has learned.

The problem here has to do with when programs or theories are actually called upon
to learn. Most learning systems, even those designed to learn functional categories, do not
take their own knowledge into account in deciding when to learn. They either learn by
analyzing their own output or by looking at examples handed to them by a tutor, passively
taking in and processing the new information. None of them are designed to say, "I don't
need to learn this because I already know it."

CHEF, on the other hand, does the bulk of its learning from its own failures, so it
always is trying to learn in those situations where it needs it the most. In CHEF, the

178

decision of when to learn is linked to the planner's abilities. When those abilities are shown
to be lacking, the planner's failure tells the learner that it it time correct the planner's
understanding of the world. In CHEF, the decision about what examples to look at and
what those examples will tell the program is taken away from the user and placed in the
hands of the program. As a result, the planner decides what it needs to be learning on the
basis of its own performance.

The problem of having an external source of examples is obvious when looking at the
work on concept learning. The categories that are learned are functionless. They are
definitional lists that cannot be used for any task. Although the programs actually run
and build up new categories, it is not at all clear that the task they perform is of any use
to other processes such as planning and understanding. But if a new concept is of no use,
what is the point of learning it at all?

The argument is less apparent for the theories and programs that have recently grown
out the explanation driven learning paradigm but it is there none the less. In DeJong's work,
for example, the task is to examine and learr new plans. But because plans are handed
to the program and are not integrated into the memory of an active planner, DeJong has
ignored the issues of memory, indexing and reminding that have to be addressed by any
planner that reuses plans. His stress is on the moment of learning rather tha

Chapter 8

Case-based Planning

8.1 CHEF as a program

In thr :ourse of generating the examples used in this thesis CHEF created twenty-one new
recipes starting from a data-base of ten initial plans. Many recipes that lie well within the
range of CHEF's abilities were never created because they were nothing more than minor
variations of existing plans that had little of value to saying about CHEF's abilities. In
general, the situations that CHEF planned for served one of two functions. Some were situ-
ations that caused CHEF problems, prompting it to explain and fix the problems and learn
to recognize when to predict them. Others were situations designed to test the knowledge
CHEF built while dealing with its own failures.

CHEF began with ten basic recipes:

• BEEF-WITH-GREEN-BEANS

• CHICKEN-WITH-PEANUTS

• PORK-SHREDS-WITH-HOISIN-SAUCE

• BR0CC0LI-WITH-TOFU

• GINGER-CHICKEN

• VANILLA-SOUFFLE

• BEEF-WITH-CARROTS

• PORK-DUMPLINGS

• ANTS-CLIMB-A-TREE

• PEPPER-SOUFFLE

179

180

The recipes that CHEF created on its own were all based on these initial recipes or on
the recipes that it derived from them. These new recipes are created in response to goals
given to CHEF by the user.

BEEF-AND-BROCCOLI: In response to a request for a stir fry dish with beef and broccoli,
CHEF creates BEEF-AND-BROCCOLI out of BEEF-WITH-GREEN-BEANS. The
first version of this fails, teaching CHEF about the interaction between crisp vegetables
and meats.

CHICKEN-AND-SNOW-PEAS: The recipe was built in response to a request for a stir
fry dish with chicken and snow peas. Reminded of the past problem involving crisp
vegetables and meats it uses the BEEF-AND-BROCCOLI recipe as its baseline plan.
It modifies the original recipe by replacing the beef with chicken and the broccoli with
snow peas.

BROCCOLI-STIR-FRY: In response to a request for broccoli stir fry dish with ooy sauce,
CHEF again predicts the problem of soggy vegetables. It again uses the BEEF-AND-
BROCCOLI recipe as its baseline plan. It alters the plan by removing the beef.

CHICKEN-AND-BROCCOLI: When asked to build a recipe for chicken and broccoli, the
planner is again reminded of the potential problems with the crisp vegetables and
meat. It uses this prediction to find the CHICKEN-AND-SNOW-PEAS plan and
then modifies it to include the broccoli.

STRAWBERRY-SOUFFLE: In response to a request to build a strawberry souffle, CHEF
modifies a vanilla souffle to include strawberries. The additional liquid from the fruit
cause the souffle to fall and the plan is repaired through the addition of extra egg
white.

RASPBERRY-SOUFFLE: When requested to make a raspberry souffle, CHEF is reminded
of the problem of making a souffle with fruit. It uses this reminding to find the
STRAWBERRY-SOUFFLE plan that already deals with the problem. It modifies
this plan by replacing the strawberries with raspberries.

KIRSCH-SOUFFLE: When asked to make a kirsch souffle, CHEF is again reminded of
the failure with the STRAWBERRY-SOUFFLE, because the failure was caused by
an excess of liquid. As a result, it uses the STRAWBERRY-SOUFFLE as its baseline
recipe and modifies it by replacing the strawberries with kirsch.

CHOCOLATE-SOUFFLE: When asked to make a chocolate souffle in the context of know-
ing only about strawberry souffles, CHEF ere. tes a CHOCOLATE-SOUFFLE out of
the STRAWBERRY-SOUFFLE. This recipe has too much egg white in it that results
in a dry souffle. CHEF modifies the recipe to include less egg white.

181

DUCK-DUMPLINGS: When asked to make a dumpling dish with duck, CHEF modifies
its PORK-DUMPLING recipe to include duck rather than pork. The resulting recipe
is too greasy and CHEF has to then modify it again by adding a step that removes the
fat from the duck before it is placed in the dumplings. A critic that adds a de-fatting
step to duck dishes is then stored under the concept DUCK.

DUCK-PASTA: When asked to build a plan for a pasta dish with duck, CHEF anticipates
the problem with duck experienced in duck dumplings but cannot find a pasta dish
that avoids it. It builds a dish out of ANTS-CLIMB-A-TREE by replacing the pork
with duck and adds the step of removing the duck fat that the new duck critic suggests.

CHICKEN-DUMPLINGS: When asked to make a dumpling dish with chicken, CHEF
CHEF creates the dumplings out of its DUCK-DUMPLINGS recipe. As it removes
the duck it reverses the effects of the critic it has built, removing the step having to
do with the duck fat.

BEEF-PASTA: When asked to make a pasta dish with beef, CHEF modifies its ANTS-
CLIMB-A-TREE recipe by replacing the pork with beef with no ill effects.

FISH-STIR-FRIED: When asked to make a stir fry dish with fish CHEF modifies its
GINGER-CHICKEN recipe. The plan fails and CHEF discovers the problem of the
iodine taste of stir fried fish. This problem is solved by marinating the fish in rice
wine.

SHRIMP-STIR-FRIED: When asked to make a shrimp dish, CHEF predicts the problem
of the iodine taste of the sea-food coming out during the stir frying. It uses this
prediction to find the FISH-STIR-FRY dish. Unfortunately, the MARINADE step
interferes with the SHELL step that CHEF has to add to the dish. This problem is
solved by reordering the two steps.

SHRIMP-AND-GREEN-PEPPER: When asked again to make a shrimp dish with green
pepper CHEF predicts the problem of the iodine taste of sea-food and the problem
with the ordering of the MARINADE and SHELL steps that can occur in shrimp
dishes. It finds the SHRIMP-STIR-FRIED plan on the basis of both these predictions.
It modifies this recipe to include green pepper.

HOT-BEEF: In response to a request to make a hot beef dish, CHEF builds HOT-BEEF
out of its BEEF-WITH-CARROTS recipe. In building this dish, CHEF adds salt to
the beef as it is stir frying which dries it out. CHEF repairs the plan by putting the
salt in after the cooking is over. Because the salt is put in to bring out the taste of
the hot pepper it marks adding pepper to a meat plan as predictive of this problem.

HOT-CHICKEN: When asked to make a hot chicken dish, CHEF is reminded of the
problem of adding salt along with red pepper and uses this reminding to find the
HOT-BEEF recipe that already deals with this problem. It then alters the plan by
replacing the beef with chicken.

182

FISH-AND-PEANUT; When asked to make a fish dish with peanuts, CHEF modifies the
FISH-STIR-FRIED to include peanuts. This plan is modified to include peanuts, but
this requires the further addition of salt to bring out the taste of the nuts. Unfortu-
nately, the salt also brings out the taste of the iodine again. CHEF repairs this by
adding more rice wine. The added liquid in turn ruins the texture of the fish. In a
last repair, CHEF replaces some of the rice wine with crushed ginger, a step that still
masks the taste of the iodine but does not add additional liquid to the dish.

PEANUT-AND-SHRIMP: When asked to create a recipe for shrimp and peanuts, CHEF
predicts the problem having to do with the taste of the shrimp and any added salt. The
problems with the ordering of the MARINADE and SHELL steps are also activated.
CHEF chooses the FISH-AND-PEANUT recipe as its initial plan instead of any of
its shrimp dishes. After modifying the plan to include shrimp and adding a SHELL
step, a critic CHEF learned to reorder the MARINATE and SHELL steps is applied
and the two steps are put in their appropriate order.

BROCCOLI-SOUFFLE; In response to a request for a souffle that includes broccoli, CHEF
creates a recipe for broccoli souffle out of its PEPPER-SOUFFLE plan. It does this
by adding broccoli to the existing plan.

As CHEF learned these new recipes, it learned the features that predict the problems
it encountered, {e.g., crisp vegetables stir fried with meats, high moisture fruits in souffles,
seafood in stir frying and duck in general). It also learned a small set of critics that it could
apply to situations in which it could not find an appropriate plan to deal with the problems
it predicts {e.g., remove fat from duck, marinate seafoods and reorder any case of a SHELL
step following a MARINATE in making shrimp). The features that predict problems were
necessary for CHEF to be able to anticipate failures and thus search for the plans that avoid
them. The critics gave CHEF the flexibility to deal with a predicted problem when it could
not find a plan that both avoided the problem and satisfied its other goals.

8.2 CHEF's gains

As a planner CHEF proposes a somewhat new approach to planning that allows it to avojd
some of the problems of past systems. Most of these advances center around CHEF's reuse
of its own plans and the mechanism it has for storing and recalling them when it predicts
a failure. Other advances lie in the areas of plan repair and learning.

CHEF is designed to recall and modify old plans rather than build up new ones from
scratch. This is a clear gain for CHEF, because it can avoid repeating much of the work
it has done before. Because it has the results of past planning cached in memory, it can
recall them and thus avoid repeating the same processing. Because CHEF has knowledge
of the similarities between goals it is able to make use of plans that at least partially satisfy
its current goals even if they do not fully satisfy them. Because it has a notion of the

183

relative difficulty of adding new goals to existing plans it is able to choose the plan among
competing plans that will minimize its own efforts.

The big advantage in CHEF, however, is its ability to predict problems and find the
plans in memory that will deal with them. Because it associates its memory of past failures
with the features that predict them, it is able to anticipate problems before they occur.
Because it also indexes plans by the problems that they deal with, it is then able to find
the appropriate plan in memory that will solve the problem that it has predicted.

This ability means that CHEF is able to avoid many of the mistakes that other planner's
have to repeat over and over again because they have no way to describe or store these plans
such that they will be available in the appropriate circumstances. In part, CHEF's ability
to do this is the result of the notion of reusing plans in the first place. But even within this
approach, the reuse of plans that avoid problems is not practical unless a planner stores its
plans in terms of the problems that they avoid and then learns the features in its planning
situations that predict that problem so the planner knows when to search for the plan in
the first place. The crucial fact is that CHEF indexes plans by the problems that they avoid
as well as the goals that they satisfy.

In situations where CHEF is unable to predict a problem, and has to deal with a failure
directly, it also has some advantages over past planners. The most apparent of these is
its ability to characterize plan failures with a causal explanation of why they occurred and
then use that characterization to find the repair strategies that will fix the faulty plan.

The vocabulary that CHEF uses to build up these causal descriptions is a vocabulary of
interactions that characterizes steps and states in terms of the problems they cause and the
goals that they satisfy. CHEF builds up its explanations by back chaining from failure states
to their antecedent causes and then forward chaining to the goals that those antecedents
satisfy. These explanations are then used to access planning TOPs which correspond to
different problem descriptions and which store the replanning strategies that can be used
to solve the problems described.

This vocabulary includes distinctions between the side-effects and desired effect of a
action and between the required preconditions, satisfaction conditions and maintenance
conditions on an action. This level of description allows CHEF to distinguish between
situations that past planner's could not tell apart. This allows it to then access and apply
a greater range of strategies than past planners have had access to.

CHEF's response to its own failures is two-fold: it repairs the plan and then it repairs
the faulty knowledge that allowed it to build the plan in the first place. Because it treats
planning failures as expectation failures and adds inference links from the features that
caused the failure in the present case to a memory of that failure that can be activated if
those features arise in later circumstances. This is the process that builds up the data-base
CHEF later use to predict failures so that they can be avoided. In conjunction with building
up the inferential ability to predict problems, CHEF also stores the plans that it creates to
avoid tliem by the fact that they do so. CHEF's treats failures as opportunities to learn.

184

An encounter with a failure, then, always results in learning a new plan to avoid it and
learning the features that predict it so the problem can be anticipated and the new plan
applied before CHEF fails again.

Most of CHEF's planning ability is supported by its learning ability. In this area CHEF
also stands as a gain over past systems.

CHEF's learning is driven by the explanations it builds of the problems it encounters.
CHEF determines which features of a situation should be assigned the blame for a failure by
looking at the causal explanation it builds of the situation. In doing this, CHEF avoids many
of the problems that systems that learn through inductive generalization cannot. Unlike
inductive learning programs that have to see repeated examples of a class, CHEF can create
new categories of planning situations with only one example. Because its criterion for the
relevance of a feature is based on the role that the feature plays in actually causing problems,
it is able to weed irrelevant features out of the generalizations it builds immediately. And
because CHEF does nut have to be presented with repetitions of a problem situation in order
to learn it, it does not have to be tutored with the "approoriate" examples as inductive
learners are.

But the most interesting contribution that CHEF makes in the area of learning is in the
integration of a learning system with an active planner.

CHEF is essentially a planner that learns only when failures indicate that its knowledge
of the world is faulty. Because of this, CHEF's learning is always motivated by its needs
as a planner and the concepts it builds are always designed to satisfy those needs. CHEF
does not learn new concepts for the sake of learning alone. It learns them so that it can
plan better and this requirement puts a constraint on when it learns and the form of what
it learns.

CHEF's failures indicate where its understanding of the world is not detailed enough to
discriminate between situations in which different plans are needed. What it learns in these
situations are the features it needs to perform this discrimination. So it learns what amount
to functional categories which are composed of the features that predict failures and the
plans that avoid them. Its learning does not consist of building up lists of the features that
define the different categories it is concerned with. It is interested instead, in learning the
features that will allow it to predict problems so that it can then find the plans that solve
them.

This is very different from the task of learners that are built for learning alone. These
learners are doing learning in a vacuum and do not apply the concepts they have learned to
independent tasks. Because they do not learn in service of a task, they have no constraints
on the form of what they learn or what is done with the concepts they learn. So they
have nothing to say about memory organization or the difference between the features in a
concept that are used to recognize it as opposed to the features that should be inferred by
the fact that it has been recognized.

Learning systems that learn in service of no other function, may learn sophisticated

185

concepts, but do not question how the concepts should be organized for use. Although they
may learn descriptive categories or even plans, they are more concerned with the moment
of learning than the use to which what they have learned will be put to. They ignore the
problems of memory organization, indexing and failure prediction that CHEF addresses
directly. When CHEF learns a plan it learns the steps that are required to run it, but it
also learns the situations in which that running is appropriate.

As a planner, CHEF stands as an improvement over past systems in that it reuses past
processing and uses what it learns about the features that caused past problems to predict
and avoid them in the future. It also uses a more detailed description of its domain to better
diagnose and treat the problems that it cannot predict and avoid. As a learner, CHEF gains
in that it uses a causal model of its domain to focus in on the features of a situation that
it has to learn about. This allows it avoid many of the problems inherent to the syntactic
nature of learning via inductive generalization and thus learn about its world faster and in a
more knowledge directed manner. Because its learning is within the context of the needs of
a planning system it also makes use of a more interesting model of what learning is. Instead
of viewing learning as the amassing of feature lists that define categories, it models learning
as the creation of functional categories in memory that allow a planner or understander to
both recognize new situation and then react to them in the appropriate way.

8.3 The real difference

Although there are technical gains that CHEF makes in some areas of planning, the real
difference between CHEF and other planner's is not really a technical one. It is much more
a difference in view point as to what the task of planning is at all.

CHEF's approach to planning is to treat planning tasks as memory problems. Planning
as a closed loop in which past successes and failures guide present processing and memories
of current solutions and even failures are stored for later use. As much as is possible,
CHEF goes to its memory of its own experiences to perform planning tasks. Instead of
simulating plans in order to recognize problems, it tries to predict problems by recalling
past situations similar to its current one. Instead of building plans up from primitive steps,
it searches its memory for those plans that satisfy as many of its goals as possible. Instead
of throwing plans away after execution, it saves them for future planning. And instead of
treating failures as planning problems alone, it treats them as opportunities to learn so it
can improve its understanding of its world and its ability to manipulate it.

For CHEF, planning is a test of its own understanding and its understanding is built
out of the planning experiences it has.

186

Appendix A

A Causal Vocabulary for TOPs

Each of CHEF's TOPS corresponds to a causal configuration that describes a failure. The
vocabulary that is used to build up these configurations and define the TOPs is one of
causal interactions between steps and states. This vocabulary differs from those used by
past planner's to describe the problems they encounter primarily in that it distinguishes
the effects of steps that lead to satisfied goals from those that do not. It also distinguishes
problems that cause a plan to halt from those that allow the plan to run to completion but
ruin the result.

CHEF's causal vocabulary is based on four classes of things that it knows about:

• OBJECTS, which are physical objects such as the ingredients and the utensils used
in the CHEF domain.

• STATES, which are features of the OBJECTS such as TASTE, TEXTURE and SIZE.

• STEPS, which are actions taken on OBJECTs with the aim of altering some STATEs.

• GOALs, which are STATEs that the planner is trying to achieve. Unlike other
STATEs, GOALs are hypothetical STATEs that actual ones are tested against.

With the exception of a distinction between certain types of STATEs, the bulk of CHEF's
vocabulary has to do with relationships between these OBJECTs, STATEs and STEPs. One
important aspect of the relationships that CHEF uses to describe causal configurations is
that they depend on the presence of goals. Many of the relationships change as the planner's
goals change, even if the causality of the situation does not change. If a STATE satisfies
a goal, that fact is reflected in the description of any problems that result from it. If the
goal it satisfies is no longer part of the planner's overall goal structure, the description of
the situation will change to reflect this. CHEF's descriptions of causal situations depend
on its goals because it is going to has to use these description to find appropriate changes

187

188

to make to its plans, and these changes cannot be such that they violate the goals already
met by the plan in hand.

The vocabulary used to describe planning TOPs is based on the different rela-
tionships that can hold between OBJECTs, STATEs, STEPs and GOALs.

One of the most powerful distinctions that CHEF's vocabulary makes use of is the
distinction between different relationships between STATEs and the STEPs that cause
them. CHEF understands three types of relationships:

■ DESIRED-EFFECTS are states that result from steps that satisfy the planner's goals.
This satisfaction can either be the direct result of the state being one of the goal states
or the indirect result of the state enabling a later step that satisfies a goal.

• SIDE-EFFECTS are the results of steps that do not satisfy any goals either directly
or indirectly.

• DEVELOPING-SIDE-EFFECTS are side-effects that come about during the running
of a step rather as the final result.

All of the effects of a step are linked to it by RESULT links that lead from the step to
the state and RESULT-OF links that lead from the state back to the step.

The effect of distinguishing between these different relationships lies in the types of
strategies that each will allow. Problems having to do with SIDE-EFFECTs can be solved
by making changes to a plan that remove the effects in one way or another while those having
to do with DESIRED-EFFECTs cannot. Likewise, those states that are DEVELOPING-
SIDE-EFFECTS can be dealt with using adjunct steps that can be added to a plan to
remove the effects of the steps as they are produced.

CHEF recognizes three types of preconditions for STEPs:

• REQUIRED-PRECONDITIONs are those states that have to hold for a step to be
run at all.

• SATISFACTION-CONDITIONS are those states that have to hold as a step is entered
for its desired effects to result.

• MAINTENANCE-CONDITIONS are those states that have to hold during the entire
running of a step for its desired effects to result.

STATEs that meet the preconditions of a STEP have ENABLES links going from the
STATEs to the STEP. The STEP has ENABLED-BY links going from it back to the
STATEs. For example, the STATE representing the texture of the crushed strawberries in

189

the strawberry souffle plan is linked to the the MIX step by an ENABLES link and the
MIX step points back to it by an ENABLED-BY link.

Along with the relationships between STATEs and STEPs there are relationships be-
tween OBJECTS and STATEs and OBJECTs and STEPs. An OBJECT can link into a
STEP in two ways:

• As a STEP-OBJECT, which means that the STEP acts on the OBJECT in order to
change a STATE related to it.

• As an INSTRUMENT, which means that the STEP uses the OBJECT in order to
enable a STATE change in another OBJECT.

The STATEs that CHEF knows about are actually features of OBJECTs. The different
STATEs describe the TASTE, TEXTURE and SIZE of the OBJECTs as they are modified
by the STEPs in the plan. Each STATE is not only the RESULT of a STEP, it is also a
feature of an object. The texture of strawberries after they are chopped is the RESULT of
the CHOP step but it is also a feature of the strawberries.

CHEF only recognized two types of relationships between an OBJECT and the STATEs
that define their features:

• DESIRED-FEATURE is a feature of an OBJECT that satisfies or enables the satis-
faction of a goal.

• SIDE-FEATURE is a feature that is incidental to the satisfaction of any current goals.
It is not UNDESIRED in that it does not necessarily cause problems. It just doe not
satisfy any goals.

There three relationships that a STATE can have with a GOAL:

• A SATISFY relationship exists when one STATE matches the preconditions of a step
or the final GOAL of a plan.

• A VIOLATE or BLOCK relationship exists when a particular STATE is supposed to
SATISFY a GOAL or step precondition but does not.

• A DISABLE relationship exists when a state VIOLATED the satisfaction conditions
of a step.

STEPs, can only relate to one another in terms of their running order in the p'. a. CHEF
only requires two relationships to describe its failure situations:

• Two STEPs are SERIAL when they are run at different times.

190

• Two ST^Ps are CONCURRENT when they are run at the same time.

Like other features that CHEF uses to describe situations, the time sequence of two
STEPs determine the strategies that can be applied to different problems involving the
interactions between them.

The last set of features that CHEF uses to describe situations has to do with nature of the
STATEs it has to deal with rather than the relationship between STATEs and either STEPs
or OBJECTs. The distinction here however, still makes use of the notion of relationship
in that it points to the fact that some states are themselves relationships between many
STATEs at once. CHEF understands two sorts of STATEs:

• A BALANCE STATE is defined as a relationship that has to hold between two or
more STATEs.

• AN ABSOLUTE STATE is the feature of a single OBJECT.

By noticing this distinction CHEF is able to suggest strategies in cases of violated
BALANCE STATEs that it is not able to suggest in cases of violated ABSOLUTE STATEs.

The vocabulary of TOPs is one of causal interactions. It describes the relation-
ships between OBJECTs, STATEs, STEPs and GOALs and mnkes distinctions
between those that serve goals and those that do not. It distinguishes between
these different situation because the different problems included in them require
different repair strategies.

All of the features in CHEF's TOPs are described by this vocabulary, but there are
structures that could be built by this vocabulary that are not included in CHEF's knowledge
base. This it is only a reflectic-u cf the fact that they were not needed to deal with the
problems in the CHEF domain.

Appendix B

CHEF's Simulator

CHEF runs a plan by putting it through a simulator that runs each step of the plan and
produces a symbolic representation of the results that would entail if the step were actually
performed in the real world. The simulator computes the results of each step and tests for
the conditions that have to be present for running later steps and determining their effects.
During the simulation the results of each step are accessible to the simulator and after the
simulation they are accessible for evaluation by CHEF itself.

CHEF's simulator is forward chainer that uses two sets of rules associated with the steps
in its domain. The first are PRECONDITION rules that test for the conditions that have
to be true for a step to be performed at all. The second are RESULT rulet that describe the
effects of each step as it is run. Before running a step, CHEF uses the PRECONDITION
rules for that step to test if the conditions required for its running are satisfied. If they are,
it runs the step by asserting it and firing the inferences in the RESULT rules related to the
step.

The conditions that PRECONDITION rules test for include the existence of the objects
of the step, their texture and their accessibility. These rules look at the results of earlier
steps and at the ingredients to test for characteristics that may be a product of the plan
itself or be inherent properties of the ingredients. For example, the rule associated with
the MIX step tests for the existence of the ingredients that are to be mixed and tests
their texture (figure B.l). Any ingredient that is the object of a MIX step has to have a
MIX-TEXTURE, which is defined as bung either LIQUID, POWDER, VERY-SOFT or
GROUND. Any object that is one of these textures can be combined with other ingredients
using a MIX step. In searching for the states that satisfy the conditions on this and other
PRECONDITION tests, the simulator looks at its own record of the results of past steps
and at the definitions of the ingredients themselves. The information about the texture of
a piece of meat that has been ground earlier in a plan would be on the simulator's record of
results, while the same texture information about soy sauce would be found in the definition
of soy sauce itself.

191

192

(d*f:pr«con Mix
vari fTvarl ?var2)
bindings (?vart object ?/ar2 with)
test (and (exists object ?varl)

(exists object ?var2)
(texture object ?varl texture (mix-texture))
(texture object ?var2 texture (mix-texture)))

text "A thing has to be chopped or soft in order to mix it.")

Figure B.l: Definition of preconditions on MIX.

The conditions that are tested for by the precondition rule associated with a step are the
conditions that have to be true for the step to be run at all, not the conditions that have to
obtain for the step to be successful. If the conditions required by a step's PRECONDITION
rule are satisfied, the step can be run and it results computed. If, however, they are not
satisfied, the simulator cannot continue and the plan has to be halted at that point. If this
occurs, the simulator reports this halt to CHEF and the planner recognizes this as a failure.

(def:precon shell
vars (?varl)
bindings (?varl object)
test (and (exists object ?varl) (handleable object ?varl))
text "A thing has to exist and be handleable in order to shell it.")

Figure B.2: Precondition tests associated with SHELL.

For example, in building a recipe for stir fried shrimp out of an existing plan for stir
fried fish, CHEF has to add a new step, SHELL, to the plan. The PRECONDITION test
on SHELL looks for two conditions: the shrimp has to exist and it has to be handleable
(figure B.2). Any object soaked in liquid or ground to a pulp is not longer handleable.
Unfortunately, CHEF adds the SHELL step after an already present MARINATE step,
which has the result that the shrimp is no longer handleable because it is too slippery.
When the simulator tries to run the SHELL step, the tests for its running fail and the
simulator halts execution. After this happens, the simulator communicates the halt to
CHEF and the plan is set for eventual repair.

Inferring fron -> Marinate the shrimp in the soy sauce,
sesame oil, egg white, sugar, corn starch and rice sine.

RULE: "When things are marinated together they pick up tastes."
RULE: "Marinated things are in the bowl with other things."

193

RULE
RULE
RULE
RULE
RULE

"Liquids make things ««t."
"Things in the SUM pan arc linked together."
"Liquids sake things wet."
"Things in the same pan are linked together."
"Solids marinated in liquids are no longer handlaable"

Unable to infer from -> Shell the shrimp.
: failed precondition.

RULE: "A thing has to exist and be handleable in order to shell it.'

Some precondition of step: Shell the shrimp,
has failed.

The simulator's PRECONDITION rules test for the conditions that have to be
true for a step to be run at all.

Because the steps in CHEF's domain are fairly robust, that is they are rarely stopped
by failed preconditions, it is usually the case that each step in a plan can be executed.
This means that the simulator can run the step by firing the RESULT rules associated
with it. The definition of these rules includes the step that it relates to, the results that
can be inferred and the conditions that have to be true for those results to come about.
The conditions tested for by the RESULT rules are different than those tested for by the
PRECONDITION rules. They describe the conditions under which an inference can be
made from the fact that a step has been run but never stop the running of any step. With
different conditions, there are different effects, so rules that account for the effects have to
test for the conditions under which their firing is appropriate.

Most steps have a rule related to them that describes the effects of their running under
normal circumstances. These normative rules have very simple tests associated with them
that check the initial states of the objects and the time of the step itself. They allow the
simulator to infer most of the changes to ingredients that CHEF is trying to plan for. For
example, STIR-FRY has a rule associated with it that allows the simulator to infer the
texture change of any solid stir fried for over two minutes and another that also allows the
simulator to infer changes in the taste of the dish (figure B.3).

Most steps result in changes to the ingredients that they are acting on. A CHOP step
will change the size and texture of an item, a STIR-FRY step will change the texture and
taste and a MARINADE will change the taste. Some steps, such as MARINADE, ADD
and MIX, because they move items around, change the location of items. Other steps, such
as STIR-FRY, change the tastes and textures of the dish as a whole. Still others, such as
MARINATE, change the handleability of items, making it impossible for some other steps
to be run on them once the step is completed.

194

(d«f:infer stir-fry
v»r» (Tvarl ?»«r2)
text "Stir-fried things are cooked."
itea-teet (etir-fry object ?»arl ti»e ?v*r2)
var-te»t» (?object (i:feature 'Tvarl 'texture 'solid)

Ttiae (i:gt '?var2 '(2)))
action (s-cooked object ?varl cooked (cooked)))

(def:Infer stir-fry
vars (Tvarl ?var2 ?var3)
text "The dish picks up the taste of the things that are stir-fried."
item-test (stir-fry object ?varl time ?var2)
var-tests (Ttime (i:gt '?var2 '(2)))
avals (?var3 (i:expand (i:get '?var2 'taste)))
action (taste object (dish) taste ?var3))

Figure B.3: Definition for two normal STIR-FRY rules.

But not all steps result in just changes to the items that they function on. Some actually
create new items while "destroying" the ingredients that they act on. Often a MIX will
result in a batter that uses up the flour, milk and sugar it acted on. A FILL step will result
in a dumpling, which is a compound object combining the OBJECT of the FILL and the
ingredients that it is filled WITH (figure B.4). Just as a new item is created the original
ingredients that go into making it are "destroyed", used up by in the process of making the
new item.

(def:infer fill
vars (?varl ?var2)
text "Filling a skin makes a dumpling."
item-test (fill object Tvarl with ?var2)
var-tests (Tvarl (irfeature '?varl 'texture 'mix-texture)

?var2 (l:isa '?vith 'skin))
action (and (exists object (dumpling))

(not (exists object ?varl))
(not (exists object ?var2))
(contains contains ?var2 object (dumpling))))

Figure B.4: Definition for normal FILL rule.

The simulator's RESULT rules allow it to infer changes to the ingredients and
the overall dish and to infer the creation of new items out of old ones.

195

While the simulator to be able to infer the results of actions in normal circumstances
it also has to be able to infer the results of conditions that the that the planner has not
anticipated. To do this, the simulator has rules that allow it to infer the results of steps
in irregular situations. These are the situations in which states that are not planned for
arise to interfere with the plan. There is no structural difference between the rules that are
applicable in the normative and non-normative situations. The only difference is that the
states described by ore are those that the planner wants and the states that are described
by the other are those that it wishes to avoid. In the absence of goals that the planner is
trying to achieve, however, there is no difference in the content of these rules. They are just
rules that are for different situations that predict different results

One example of these rules is the stir fry rule that allows the inference that crisp vegeta-
bles will become soggy when stir fried in liquid. This rule states that any crisp vegetable,
if it is stir fried for more than 2 minutes in a pan that h.as liquid in it, will become soggy
(figure B.5). This rule, combined with the rule that beef that is stir fried will produce liquid
in proportion to its weight, makes it possible for the simulator to infer that broccoli stir
fried with beef will end up being soggy.

(def:infer stir-fry
vars (?varl ?var2)
text "Stir-frying in too much liquid make« vegetables soggy."
item-test (stir-fry object ?varl time ?var2)
var-tests (?varl (i:and (i:isa '?varl 'vegetable)

(i:feature '?varl 'texture 'crisp})
?var2 (i:gt '?var2 '(2)))

test (in-pan object (liquid))
action (texture object ?varl texture (soggy)))

(def:infer stir-fry
vars (?varl ?var2 ?var3)
text "Meat sweats when it is stir-fried."
item-test (stir-fry object ?varl time ?var2)
var-tests (Tvarl (i:isa '?varl 'meat) ?var2 (i:gt '?var2 '(2)))
evals (?var3 (i:solid-liquid '?varl))
action (in-pan object (thin-liquid amount ?var3) source ?varl))

Figure B.5: Rules used to infer soggy broccoli.

To run a plan the simulator tests and runs each step in turn. The precondition tests
for each step are fired and the step is continued only if the tests are true. The result rules
for each step are then run in order of least to most specific. The results of each nil' are
placed on a table of results (figure B.6), with new state information for each ingredient
overwriting old information. Conflicts between results are resolved by having the later rules
overwrite the results of earlier ones. As new tests are made for following steps, the simulator

196

(SIZE OBJECT (BEEFS) SIZE (CHUIK)}
(SIZE OBJECT (BROCCOLI1) SIZE (CHUIK))
(SIZE OBJECT (GABLIC1) SIZE (lUBB))
(TEXTURE OBJECT (BEEF2) TEXTURE (TEIDER))
(TEXTURE OBJECT (BRC.CCOLI1) TEXTURE (SOGGY))
(TEXTURE OBJECT (GARLIC1) TEXTURE (SOGGY))
(TASTE OBJECT (3EEF2) TASTE (SAVORY IITEISITY (9.)))
(TASTE OBJECT (BROCCOLI1) TASTE (SAVORY IITEISITY (6.)))
(TASTE OBJECT (GARLIC1) TASTE (GARLICY IITEISITY (9.)))
(TASTE OBJECT (DISH) TASTE (AID (SALTY IITEISITY (9.))

(SWEET IITEISITY (7.))
(GARLICY IITEISITY (9.))
(SAVORY IITEISITY (9.))
(SAVORY IITEISITY (6.))))

Figure B.6: Section of Result Table for BEEF-WITH-BROCCOLI.

first checks its table of results for a state being tested and then checks the defaults on the
ingredient in question. To test if a piece of beef has a GROUND texture, the simulator first
checks its table of results for a statement of the beef's texture and if it fails to find such a
statement it checks the default texture on the concept BEEF. This allows the effects of a
CHOP step that grinds the meat and thus changes its texture to be noticed by a later mix
step that requires that the beef be ground.

The simulator is able to infer the results of actions in both normative and non-
normative situations. This allows it to infer the existence of states that CHEF
is planning for as well as those that count as failures.

In the beef and broccoli situation, the rules about stir frying meat and the rules about
stir frying crisp vegetables allow the simulator to produce the result of soggy broccoli. But
this isn't all the simulator infers about the situation. It also makes inferences along the

197

way about the effects of the CHOP, MARINATE and ADD steps. In this way it simulates

changes in the ingredients and the overall dish that will later be compared to the planner's

own goals.

Inferring Iron -> Chop th« garlic into piacas th« tiz« of matchheads.

RULE: "Chopping things nkos than ■ullor."
RULE: "Chopping things snail ■akss th» chang« taxtur«."

Inferring from -> Shrad tha baaf.

RULE: "Chopping things makes the» smaller."

Inferring from -> Marinate the beef in the garlic, sugar, com starch,
rice »ine and soy sauce.

RULE
RULE
RULE
RULE
RULE
RULE
RULE
RULE

"When things are marinated together they pick up tastes."
"Marinated things are in the bowl with other things."
"Liquids make things vet."
"Things in th« same pan are linked together."
"Liquids make things wet."
"Things in the same pan are linked together."
"Solids marinated in liquids are no longer handleable"
"Liquids in a marinade are absorbed by the solids"

Inferring from -> Chop the broccoli into pieces the size of chunks.

RULE: "Chopping things makes them smaller."

Inferring from -> Stir fry the spices, rice wine and beef for one minute.

RULE: "Stir-fried things are in the pan with other things."
RULE: "The dish picks up the taste of the things that are stir-fried."

Inferring from -> Add the broccoli to the spices, rice wine and beef.

Inferring from -> Stir fry the spices, rice wine, broccoli and beef
for three minutes.

RULE
RULE
RULE
RULE
RULE
RULE
RULE
RULE

"Stir-fried things are in the pan with other things."
"The dish picks up the taste of the things that are stir-fried.
"Meat sweats when it is stir-fried."
"Things la the same pan %re linked together."
"Stir-fried things are coiAed."
"Cooked things change teztur«."
"Cooked things change texture."
"Stir-frying in too much liquid makes vegetables soggy."

198

Inferring from -> Add the salt to the ■pices, rice wine, broccoli and beef.

RULE: "Adding salt enhances the flavor of the dish."

The final product of a simulation is a table results that describes the states of the original
ingredients, the overall dish and any compound items that were created during execution.
This table includes the new tastes and textures that have developed and describes not only
the states that the planner is trying to achieve but also those that it has not anticipated and
may very well be trying to avoid. Along with the states on the result table, the simulator
creates links between the states and the steps that caused them. Other links leading back
from the steps to the conditions that enabled their results are also built. These include
links to states actually caused by steps during their execution that had some effect on other
aspects of the outcome of the step.

The final product of a simulation of a plan is a table of results that is given back
to CHEF for testing against the planner's goals.

Once the table of results has been built for a plan, CHEF is given access to it and it
can then check the final states of the ingredients and the overall dish against the goals that
it thinks the plan should accomplish.

Appendix C

CHEF's Recipes

While the intent behind CHEF was to demonstrate a set of planning ideas rather than
develop an automatic cookbook, CHEF does create actual recipes along the way. Working
from an initial base of ten plans it created twenty-one new recipes on the basis of user
requests. Other recipes within the ability of CHEF to create were neglected because they
lacked any theoretical interest.

In creating these recipes, CHEF had to deal with a wide range of plan failures, which
resulted in its learning more about its domain and the problematic features in it. Each
failure was repaired using CHEF's planning TOPs and repair strategies.

This appendix includes the recipes that CHEF started with (pages 200 - 209) ([Chen
82], [Rombauer and Becker 64] and [Schrecker 76]) and those that it created on its own
(pages 210 - 229). All of the recipes include here have gone through CHEF's simulation of
its "cooking world" without failure. While they may not be up to human standards they
have at least passed the test of a machine's hallucination of the world.

All of the following recipes are actual output from the CHEF program.

199

200

C.l CHEF's initial recipes

C.l.l BEEF-WITH-GREEN-BEANS

BEEF-UITR-GREEI-BE1IS

A half pound of b««f
Two tablcapoona of soy sauc«
Ona taaapoon of rlca aina
A half tablespoon of corn starch
Ona taaapoon of sugar
A half pound of grasn bean
Ona taaapoon of aalt
Ona chunk of garlic

Chop tha garlic into piacas tha sizs of matchheads.
Shred tha baaf.
Marinate tha baaf in tha garlic, sugar, corn starch, rica aina
and soy sauce.

Stir fry tha spices, rica sine and beef for ona minute.
Add the green bean to tha apices, rice aine and beef.
Stir fry the spicea, rice vine, green bean and beef for three minutes.
Add the salt to tha spicea, rice vine, green bean and baaf.

201

C.1.2 CHICKEN-WITH-PEANUTS

CHICKEI-VITH-PEAIUTS

A half cup of peanut
On« pound of chicken
On« tablespoon of toy sauc«
A half teaspoon of sugar
On« teaspoon of sesame oil
On« teaspoon of rice «in«
On« egg «hit«
On« tablespoon of corn starch
Two green peppers
Ten pieces of garlic
On« chunk o* ginger
Five pieces of red pepper
Two scallions

Bone the chicken.
Chop the chicken into pieces the size of chunks.
Marinate the chicken in the corn starch, sugar, egg white, rice «ine,
sesame oil and half the soy sauce.

Chop the green pepper into pieces th« size of chunks.
Chop the ginger and garlic into pieces the size of matchheads.
Chop th« red pepper into pieces the siz« of nubbs.
Shred th« scallion.
Add th« scallion to th« «gg «hit«, spices, rice »in« and chicken.
Stir fry th« green pepper for a half minute.
Add th« spices to th« green pepper.
Stir fry the spices and green pepper for a half minute.
Add the «gg «hit«, spies«, ric« «in« and chicken to th« spies« and
green pepper.
Stir fry the spices, green pepper, «gg «hite, ric« «in« and chicken for two
minutes.
Add the peanut to the spices, green pepper, egg «hite, rice «ine
and chicken.

Add th« remaining soy sauce to the egg «hite, spices, rice «ine, vegetables
and chicken.
Stir fry the egg «hite, spices, rice «ine, vegetables and chicken for
one and a half minutes.

202

CJ 3 PORK-SHREDS-WITH-HOISIN-SAUCE

PORK-SBREDS-WITH-HOISII-SAUCE

On* pound of pork
Tan scallions
On« tablespoon of soy sauce
On« taaspoon of ric« «in«
On« teaspoon of sesame oil
On« egg white
On« chunk of ginger
On« tablespoon of water
Two tablespoons of hoisin

Shred the pork.
Chop the scallion into pieces the siz« of pieces.
Marinate the pork and scallion in the «gg whit«, sesame oil, rice win«,
soy sauc« and water.

Chop the ginger into pieces the siz« of matchsticks.
Stir fry th« ginger for a half minute.
Add th« «gg whit«, spices, rice win«, water and pork to th« ginger.
Add th« hoisin to th« «gg whit«, water, spices, rice wine and pork.
Stir fry the egg white, water, spices, rice wine and pork for
three minutes.

■

203

C.1.4 BROCCOLI-WITH-TOFU

BROCCr t X-WITH-TOFU

i hall pound of tolu
Two tablespoons of soy sauce
On« teaspoon of rice aine
A half tablespoon of corn starch
One teaspoon of sugar
One pound of broccoli
Six pieces of red pepper

Chop the tofu Into pieces the size of chunks.
Marinate the tofu In the sugar, corn starch, rice vine and soy sauce.
Chop the broccoli into pieces the size of chunks.
Stir fry the red pepper, tofu, spices and rice «ine for one minute.
Add the broccoli to the spices, tofu and rice wine.
Stir fry the tofu, spices, rice win« and broccoli for two minutes.

204

C.1.5 GINGER-CHICKEN

GIIGER-CHICKEI

On« pound of chicken
On« tablespoon of soy sauce
A half teaspoon of sugar
One teaspoon of sesame oil
On« egg «hit«
On« tablespoon of corn starch
Ten piece« of garlic
One chunk of ginger
Two «callions

Bone the chicken.
Chop the chicken into pieces the size of chunks.
Marinate the chicken in the corn starch, sugar, egg whit«, sesame
oil and half the soy sauce.

Chop the garlic and ginger into pieces the size of matchheads.
Shred the scallion.
Add the scallion to th« «gg whit«, spies« and chicken.
Stir fry th« garlic and ginger for a half ainut«.
Add th« «gg whit«, «pic«« and chicken to th« garlic and ginger.
Stir fry the spices, «gg whit« and chicken for two ainut««.
Add the remaining «oy sauce to the spice«, «gg whit« and chicken.
Stir fry th« «gg whit«, «pic«« and chicken for a half minute.

205

C.1.6 VANILLA-SOUFFLE

VAIILLA-SOUFFLE

Two taaspoons of vanilla
A hnll cup of flour
A quarter cup of sugar
A quarter teaspoon of salt
A half cup of milk
Two cups of milk
One piece of vanilla bean
A quarter cup of butter
Five egg yolks
Five egg whites

Mix the flour with the sugar end salt.
Mix the ailk with the mixture of sugar, salt and flour.
Boil the ailk and vanilla bean for less than a half minute.
Remove the vanilla bean from the ailk.
Mix the mixture of ailk, sugar, salt and flour with the ailk.
Simmer the mixture of ailk, sugar, salt and flour for five ainutes.
Whip the egg yolk.
Add the butter and mixture of egg yolk to the mixture of ailk, sugar, salt
and flour.

Cool the mixture of egg yolk, ailk, sugar, salt, flour and butter.
Whip the egg white.
Add the vanilla and mixture of egg white to the mixture of egg yolk, ailk,
sugar, salt, flour and butter.

Pour the mixture of spices, egg, ailk, salt, flour and butter into a nine
inch baking-dish.

Bake the batter for twenty five ainutes.

206

C.1.7 BEEF-WITH-CARROTS

BEEF-VITB-CARROTS

Thre« carrot«
On« pound of b««f
On« and a half teaspoons of «oy «auc«
A half teaspoon of sugar
On« teaspoon of sesame oil
One teaspoon of rice «in«
On« egg white
One tablespoon of corn starch
Ten pieces of garlic
Two seallions

Shred the beef.
Marinate the beef in the com starch, sugar, egg white, rice wine,
sesame oil and soy sauce.

Shred the carrot.
Chop the garlic into pieces the six« of matchhaads.
Shred th« scallion.
Add th« carrot and scallion to th« «gg whit«, spies«, ric« win« and b««f.
Stir fry the garlic for a half minute.
Add the egg white, spices, ric« win«, beef and carrot to th« garlic.
Stir fry th« «gg whit«, spies«, ric« win«, carrot and b««f for
three minute«.

207

C.1.8 PORK-DUMPLINGS

PORX-DUNPLIIGS

Fifteen scallions
A hall chunk of ginger
One pound of ground pork
A quarter cup of soy sauce
One and a half tablespoon« of seeaae oil
A half teaspoon of szechwan popper
One egg
One and a half teaspoons of salt
70 jiaoz skins

Chop the scallion into pieces the size of aatchheads.
Chop the ginger into pieces the size of aatchheads.
Mix the scallion and ginger with the salt, sgg, szechwan pepper,
sesame oil, soy sauce and ground pork.

Fill the jiaoz skin with the mixture of salt, egg, spices and ground pork.
Boil the bunch of dumplings filled with the salt, egg, spices and
ground pork for twenty minutes.

208

C.1.9 ANTS-CLIMB-A-TREE

ARS-CLINB-A-TREE

Fiftcan icallions
A half chunk of ginger
On« pound of ground pork
A quarter enp of soy aauc«
On« and a half tablespoons of sesane oil
A half teaspoon of szechsan pepper
One egg
One and a half teaspoons of salt
One pound of noodles

Chop the sealllon Into pieces the size of aatchheads.
Chop the ginger into pieces the size of aatchheads.
Mix the scallion and ginger with the salt, egg, szechaan pepper,
sesame oil, soy sauce and ground pork.

Stir fry the «ixture of salt, egg, spices and ground pork for five minutes.
Boil the noodles for three minutes.
Serve the mixture of salt, egg, spices and ground pork over the noodles.

209

C.1.10 PEPPER-SOUFFLE

PEPPER-SOUFFLE

Two green pepper*
A half cup of flour
A quarter teaspoon of «alt
A half cup of ailk
Two cups of ailk
Three pieces of red pepper
A quarter cup of butter
Five egg yolks
Six egg whites

Mis the flour with the salt.
Mix the ailk with the mixture of flour and salt.
Boil the Bilk and red pepper for less than a half minute.
Remove the red pepper from the ailk.
Nix the mixture of milk, salt and flour with the ailk.
Simmer the mixture of Bilk, salt and flour for five minutes.
Whip the egg yolk.
Add the butter and mixture of egg yolk to the mixture of milk, salt and
flour.

Cool the Bixture of egg yolk, Bilk, salt, flour and butter.
Whip the egg white.
Pulp the green pepper.
Add the green pepper and Bixture of egg white to the Bixture of egg yolk,
Bilk, salt, flour and butter.
Pour the Bixture of green pepper, egg. Bilk, salt, flour and butter into a
nine inch baking-dish.

Bake the batter for twenty five minute*.

210

C.2 The recipes CHEF creates

From these basic plans CHEF created the following new recipes.

C.2.1 BEEF-AND-BROCCOLI

BEEF-AID-BROCCOLI

A half pound of b««f
Two tablaspoon* of soy sane*
On« toaspoon of ric« win«
A half tablespoon of com starch
On« t«aspoon of sugar
A half pound of broccoli
On« t«aspoon of salt
On« chunk of garlic

Chop th« garlic into piacas th« sis« of Batchhaads.
Shred th« beef.
Marinate th« beef in the garlic, sugar, com starch, ric« win«
and soy sauc«.

Chop th« broccoli into pieces th« siz« of chunks.
Stir fry th« broccoli for throe >inut«s.
Remove th« broccoli from th« pan.
Stir fry th« spices, ric« win« and b««f for three ainutes.
Add th« broccoli to th« spies«, ric« win« and beef.
Stir fry th« spies«, rice win«, broccoli and beef for a half ainut«.
Add th« salt to th« spicss, ric« win«, broccoli and beef.

In this recipe CHEF learns about the problem of stir frying meats with crisp vegetables.
The plan itself is indexed by the fact that it solves the problem and the goals are marked
as predictive of the problem.

211

C.2.2 CHICKEN-AND-SNOW-PEAS

CBICKBI-ilD-SIOH-PEAS

A half pound of chickan
Two tablespoon« of soy sauce
On« teaspoon of rice «In«
A half tablespoon of corn starch
On« teaspoon of sugar
A half pound of snow pea
On« teaspoon of salt
On« chunk of garlic

Chop th« garlic Into pieces th« siz« of matchheads.
Bon« th« chicken.
Shred th« chicken.
Marinate th« chicken in th« garlic, sugar, corn starch, ric« win« and
soy sauce.

Chop th« snow pea into pieces the sic« of chunks.
Stir fry th« snow pea for three minutes.
Remove the snow pea from the pan.
Stir fry the spices, rice wine and chicken for three minutes.
Add th« snow pea to the spices, rice win« and chicken.
Stir fry the spices, snow pea, rice wine and chicken for a half minute.
Add th« salt to th« spices, snow pea, rice wine and chicken.

This recipe uses what CHEF learned in building BEEF-AND-BROCCOLI. Because it is
asked to build a plan for another stir fry dish with a crisp vegetable and meat, it predicts a
problem do to the interaction of these goals. With this prediction it finds and then modifies
the BEEF-AND-BROCCOL! it built previously.

212

C.2.3 BROCCOLI-STIR-FRIED

BROCCOU-STIR-FKIED

FOOT tablespoons of soy sauca
On« teaspoon of ric« win«
A half tablespoon of corn starch
On« teaspoon of sugar
A half pound of broccoli
On« teaspoon of salt
On« chunk of garlic

Chop th« garlic into pieces the size of matchheads.
Chop th« broccoli into pieces th« six« of chunks.
Stir fry th« broccoli for three Minutes.
Add th« th« spices and rice vine to th« broccoli.
Stir fry th« «pic«*, ric« «in« and broccoli for a half ninute.
Add th« salt to th« spices, rice «in« and broccoli.

In this recipe CHEF predicts the same sort of problem that it saw in building BEEF-
AND-BROCCOLI, because it is asked to make a dish with broccoli and extra soy sauce.
The fact that there is added liquid reminds it that the failure solved by the BEEF-AND-
BROCCOLI plan was actually one of liquid interacting with the vegetable. The BEEF-
AND-BROCCOLI plan is found and modified to include only broccoli. The form of the
initial plan is maintained and all of the liquid is added to the dish after the broccoli is stir
fried.

213

C.2.4 CHICKEN-AND-BROCCOLI

CHICKEI-AID-BROCCOLI

i half pound of chicken
Two tablespoons of soy sauce
On« teaspoon of rice wine
A half tablespoon of com starch
One teaspoon of sugar
k half pound of broccoli
One teaspoon of salt
One chunk of garlic

Chop the garlic into pieces the size of matchheads.
Bone the chicken.
Shred the chicken.
Marinate the chicken in the garlic, sugar, corn starch, rice wine and
soy sauce.

Chop the broccoli into pieces the size of chunks.
Stir fry the broccoli for three minutes.
Renove the broccoli from the pan.
Stir fry the spices, rice wine and chicken for three minutes.
Add the broccoli to the spices, rice wine and chicken.
Stir fry the spices, rice wine, chicken and broccoli for a half minute.
Add the salt to the spices, rice wine, chicken and broccoli.

Once again, the planner makes the same prediction of a failure is the texture of the
vegetable. Because the CHICKEN-AND-SNOW-PEA plan built out of the original BEEF-
AND-BROCCOLI recipe is indexed under the fact that it avoids the this problem as well,
it is picked as the initial plan.

214

C.2.5 STRAWBERRY-SOUFFLE

STRAWBERRY-SOUFFLE

Two teaspoons of vanilla
A half cup of flour
A quarter cup of sugar
A quarter teaspoon of salt
A half cup of Bilk
Two cups of ailk
On« piece of vanilla bean
A quarter cup of butter
Five egg yolks
Six egg whites
One cup of strawberry

Mix the flour with the sugar and salt.
Mix the Milk with the mixture of sugar, salt and flour.
Boil the ailk and vanilla bean for less than a half minute.
Remove the vanilla bean from the milk.
Mix the mixture of milk, sugar, salt and flour with the milk.
Simmer th mixture of milk, sugar, salt and flour for five minutes.
Whip the egg yolk.
Add the butter and mixture of egg yolk to the mixture of milk, sugar, salt
and flour.

Cool the mixture of egg yolk, milk, sugar, salt, flour and butter.
Whip the egg white.
Add the v.\nilla and mixture of egg white to the mixture of egg yolk, milk,
sugar, salt, flour and butter.

Pulp the strawberry.
Mix the strawberry with the spices, egg, milk, salt, flour and butter.
Pour the mixture of egg, spices, strawberry, salt, milk, flour and butter
into a nine inch baking-dish.

Bake the batter for twenty five minutes.

In building this plan, CHEF learns about the problem of liquid in souffles. Here it
encounters and repairs the problem of a souffle that falls because of too much liquid.

2U

C.2.6 RASPBERRY-SOUFFLE

RASPBERRY-SOUFFLE

Two teaspoons of vanilla
A half cup of flour
A quarter cup of sugar
A quarter teaspoon of salt
A half cup of ailk
Two cups of ailk
One piece of vanilla bean
A quarter cup of butter
Five egg yolks
Six egg whites
One cup of raspberry

Mix the flour with the sugar and salt.
Mix the ailk with the mixture of sugar, salt and flour.
Boil the Bilk and vanilla bean for less than a half minute.
Remove the vanilla bean from the Bilk.
Mix the mixture of Bilk, sugar, salt and flour with the Bilk.
Simmer the Mixture of Bilk, sugar, salt and flour for five minute».
Whip the egg yolk.
Add the butter and mixture of egg yolk to the mixture of Bilk, sugar, salt
and flour.

Cool the mixture of egg yolk, miik, sugar, salt, flour and butter.
Whip the egg white.
Add the vanilla and mixture of egg white to the mixture of egg yolk, Bilk,
sugar, salt, flour and butter.

Pulp the raspberry.
Nix the raspberry with the spices, egg. Bilk, salt, flour and butter.
Pour the mixture of egg, spices, salt, raspberry, milk, flour and butter
into a nine inch baking-dish.

Bake the batter for twenty five minutes.

In this plan CHEF makes use of its knowledge of the difficulties with high moisture
fruit in making souffles to anticipate the past problem and uses this prediction to find the
STRAWBERRY-SOUFFLE plan that avoids it.

216

r.2.7 KIRSCH-SOUFFLE

KIRSCH-SOUFFLE

Two taupoons of vanilla
A half cup of flour
A quarter cup of «ugar
A quarter teaspoon of salt
A half cup of milk
Two cups of Bilk
On« piece of vanilla bean
A quarter cup of butter
Five egg yolks
Six egg ahites
One tablespoon of kirsch

Mix the flour with the sugar and salt.
Mix the ailk «ith the Mixture of sugar, salt and flour.
Boil the milk and vanilla bean for less than a half minute.
Remove the vanilla bean from the milk.
Mix th« mixture of milk, sugar, salt and flour with the milk.
Simmer the mixture of milk, sugar, salt and flour for five minutes.
Whip the egg yolk.
Add the butter and mixture of egg yolk to the mixture of milk, sugar, salt

and flour.
Cool the mixture of egg yolk, milk, sugar, salt, flour and butter.
Whip the egg white.
Add the vanilla and mixture of egg white to the mixture of egg yolk, milk,
sugar, salt, flour and butter.

Mix the kirsch with the spices, egg, milk, salt, flour and butter.
Poor the mixture of egg, spices, salt, milk, flour and butter into a nine

inch baking-dish.
Bake the batter for twenty five minutes.

Because CHEF has understood that it is liquid and not just fruit that causes planning
problems with souffles, it also anticipates and avoids a fallen souffle when building a recipe
to include the liqueur kirsch in a souffle.

217

C.2.8 CHOCOLATE-SOUFFLE

CBOCOLiTE-SOUFFLE

Two teaspoons of vanilla
Fiv« teaspoons cocoa
A half enp of flour
A quarter cup of sugar
A quarter teaspoon of salt
A half cup of Milk
Two cupk of ailk
One piece of vanilla bean
A quarter cup of butter
Five egg yolks
Five egg «Kites

Nix the flour with the sugar and salt.
Mix the Bilk with the mixture of sugar, salt and flour.
Boil the ailk and vanilla bean for less than a half minute.
Remove the vanilla bean from the milk.
Add the cocoa to the milk.
Mix the mixture of milk, sugar, salt and flour with the milk.
Simmer the mixture of milk, sugar, salt and flour for five minutes.
Whip the egg yolk.
Add the butter and mixture of egg yolk to the mixture of milk, sugar, salt
and flour.

Cool the mixture of egg yolk, milk, sugar, salt, flour and butter.
Whip the egg white.
Add the vanilla and mixture of egg white to the mixture of egg yolk, milk,
sugar, salt, flour and butter.

Pour the mixture of spices, egg, milk, salt, flour and butter into a nine
inch baking-dish.

Bake the batter for twenty five minutes.

In planning for a CHOCOLATE-SOUFFLE, CHEF creates a souffle with too little rather
than too much liquid. This results in a dry souffle that is repaired by decreasing the eggs
in the recipe.

218

C.2.9 DUCK-DUMPLINGS

DUCK-DUNPLIIGS

Fifteen icallions
A half chunk of ginger
One pound of duck
A quarter cup of soy sauce
One and a half tablespoon* of sesame oil
A half teaspoon of szechwan pepper
One egg
One and a half teaspoons of salt
70 jiaoz skins

Chop the scallion into pieces the size of matchheads.
Chop the ginger into pieces the size of matchheads.
Bone the duck.
Clean the fat from the duck.
Grind the duck.
Mix the scallion and ginger with the salt, egg, szechwan pepper,

sesame oil, soy sauce and duck.
Fill the jiaoz skin with the mixture of salt, egg, spices and duck.
Boll the bunch of dumplings filled «1th the salt, egg, spices and

duck for twenty minutes.

In building this recipe CHEF learns about the problem of duck fat. It builds a new plan
and anticipation links and also builds a new critic that adds a step to remove the fat from
the duck. This critic is then stored under the concept DUCK, indexed by the problem it
solves.

219

C.2.10 DUCK-PASTA

DUCK-PASTA

Filteen scallions
A half chunk of ginger
On* pound of duck
A quarter cup of soy sauc«
On« and a half tablespoons of sesame oil
A half teaspoon of szechsan pepper
One egg
One and a half teaspoons of salt
One pound of noodles

Chop the seallion into pieces the size of matchheads.
Chop the ginger into pieces the size of Mtchluads.
Bone the duck.
Clean the fat from the duck.
Grind the duck.
Mix the seallion and ginger with the salt, eyg, ssechwan pepper,

sesame oil, soy sauce and duck.
Stir fry the mixture of salt, egg, spices and duck for five minutes.
Boil the noodles for three minutes.
Serve the mixture of salt, egg, spices and duck over the noodle*.

In building a plan for a pasta dish with duck, CHEF anticipates the problem with duck
but cannot find a pasta dish that avoids it. It builds a dish out of ANTS-CLIMB-A-TREE
and adds the step of removing the duck fat that the new DUCK critic suggests.

220

C.2.11 CHICKEN-DUMPLINGS

CBICKEI-DUMPLIIGS

Fifteen scallions
A half chunk of ginger
One pound of chicken
A quarter cup of »oy sauce
One and a half tablespoon* of sesame oil
A half teaspoon of szechwan pepper
One egg
One and a half teaspoons of salt
70 jiaoz skins

Chop the scallion into pieces the size of utchhaads.
Chop the ginger into pieces the sis« of aatchheads.
Bon« the chicken.
Grind the chicken.
Mix the scallion and ginger with the salt, egg, szechvan pepper,
sesaa« oil, soy sauc« and chicken.

Fill the jiaoz skin with th« Mixtur« of salt, «gg, spices and chicken.
Boil the bunch of duaplings filled with the salt, egg, spices and

chicken for twenty minutes.

In this dish, there is no anticipation of a problem, and CHEF creates the dumplings
out of its DUCK-DUMPLINGS recipe. As it removes the duck it reverses the effects of the
critic it has built, removing the step having to do with the duck fat.

221

C.2.12 BEEF-PASTA

BEEF-PASTA

Flft««n «callioa»
A half chunk of gingar
On« pound of baaf
A quarter cup of soy fauca
Ona and a half tablespoons of sasam« oil
A half teaspoon of szachwan pepper
One egg
One and a half teaspoons of salt
One pound of noodles

Chop the scalllon into pieces the size of aatchheads.
Chop the ginger into pieces the size of matchheads.
Grind the beef.
Mix the scalllon and ginger with the salt, egg, szechwan pepper,
sesaa« oil, so; sauce and beef.

Stir fry the Mixture of salt, egg, spices and beef for five minutes.
Boil the noodles for three «inutes.
Serve the mixture of salt, egg, spices and beef over the noodles.

For this recipe, CHEF just modifies its ANTS-CLIMB-A-TREE recipe with no ill effects.

222

C.2.13 FISH-STIR-FRIED

PISH-STIR-FMED

On« pound of fish
On« tablespoon of soy sane«
A half teaspoon of sugar
On« teaspoon of sesame oil
On« egg white
On« tablespoon of com starch
Ten pieces of garlic
Five pieces of red pepper
Two scallions
On« tablespoon of rice win«

Chop th« fish into pieces the siz« of chunks.
Narinat« th« fish in half th« soy sauce, sesame oil, egg white, sugar,
com starch and rice win«.

Chop th« garlic into pieces the size of matchheads.
Chop th« r«d pepper into pieces th« siz« of nubbs.
Shred th« scallion.
Add th« scallion to th« «gg whit«, «picas, ric« win« and fish.
Stir fry th« garlic and r«d pepper for a half minute.
Add th« «gg whit«, spies«, ric« win« and fish to th« garlic and red pepper.
Stir fry th« spices, egg white, ric« win« and fish for two minutes.
Add th« remaining soy sauce to th« spices, egg white, ric« win« and fish.
Stir fry th« «gg whit«, spies«, ric« win« and fish for a half minute.

In this recipe CHEF discovers the problem of the iodine taste of stir fried fish. It

understands that this is a feature of seafood in general. This problem is solved by marinating

the fish in rice wine.

223

C.2.14 SHRIMP-STIR-FRIED

SBRIMP-STIR-FRIED

On« pound of ihriap
On* and a half taaapoona of icy *auc«
A half taaspoon of sugar
On« teaspoon of sssaa« oil
On* «gg whit«
On« tablespoon of com starch
Tan pi«c«s of garlic
Fiv« pieces of red pepper
Two scallions
One tablespoon of rice wine

Shell the sbrimp.
Marinate the shrimp in half the soy sauce, sesame oil, egg shite, sugar,

corn starch and rice vine.
Chop the garlic into pieces the size of Mtchheads.
Chop the red pepper into pieces the size of nubbs.
Shred the scallion.
Add the scallion to the egg white, spices, shriap and rice wine.
Stir fry the garlic and red pepper for a half ainute.
Add the egg white, spices, shrimp and rice win« to the garlic

and red pepper.
Stir fry the spices, egg white, shrimp and rice wine for two minutes.
Add the remaining soy sauce to the spices, egg white, shrimp and rice win«.
Stir fry the egg white, spices, shrimp and rice wine for a half minute.

CHEF predicts the problem of the iodine taste of the sea-food coming out during the
stir frying. It uses this prediction to find the FISH-STIR-FRY dish. Unfortunately, the
MARINADE step interferes with the SHELL step that CHEF has to add to the dish. This
problem is solved by reordering the two steps.

224

C.2.15 SHRIMP-AND-GREEN-PEPPER

SHRIKP-AID-GREEI-PEPPER

Thr«« grean ptppara
On* pound of ahrinp
On« and a half taaspoons of aoy aauce
A half taaapoon of augar
On« taaapoon of aeaana oil
On« «gg «hit«
On« tableapoon of com atarch
Tan piacaa of garlic
Fiva piacaa of rad pepper
Two acalliona
On« tableapoon of ric« win«

Shall th« ahrimp.
Marinate th« ahrimp in half th« aoy aauce, aaaaa« oil, egg white, augar,
com «torch and rice «in«.

Shred th« gr««n pepper.
Chop th« garlic into piacaa the size of matchheada.
Chop th« red pepper into piecea the aiz« of nubba.
Shred th« acallion.
Add th« green p«pp«r and acallion to th« «gg whit«, «pic««, ahrimp and
ric« win«.

Stir fry th« garlic and red pepper for a half Minute.
Add th« «gg «hit«, «pic««, ahrimp, ric« win« and green pepper to
th« garlic and red pepper.

Stir fry th« «pic««, «gg whit«, ahrimp, ric« win« and green peppei
for two cinutea.
Add the remaining aoy «auc« to th« «pic««, «gg «hit«, ahrimp, ric« win«
and gr««n p«pp«r.
Stir fry th« «gg whit«, «picea, ahrimp, rice wine and green pepper for
a half minut«.

Here CHEF predicts the problem of the iodine taste of sea-food and the prcblem with
the ordering of the MARINADE and SHELL steps. It finds the SHRIMP-STIR-FRIED
plan on the basis of both these predictions.

225

C.2.16 HOT-BEEF

HOT-BEEF

Thra« carrot«
On« pound of b««f
On« and a half teaspoon« of «oy sauce
A half teaspoon of sugar
On« teaspoon of sesame oil
One teaspoon of rice aine
One egg whit«
One tablespoon of corn starch
Ten pieces of garlic
Tao scallions
One piece of red pepper
One teaspoon of salt

Shred the beef.
Marinate the beef in the corn starch, sugar, egg white, rice aine,
■ estute oil and soy sauce.

Shred the carrot.
Chop the garlic into pieces the size of aatchheads.
Shrsd th« scallion.
Add th« carrot and scallion to th« «gg ahit«, «pic««, ric« «in« and beef.
Stir fry the red pepper and garlic for a half minute.
Add the egg white, «pic««, ric« win«, beef and carrot to the red
pepper and garlic.

Stir fry the spices, egg white, rice aine, beef and carrot for
three minutes.

Add the salt to the spices, egg white, rice wine, beef and carrot.

In building a hot beef dish out of BEEF-WITH-CARROTS, CHEF adds salt to the beef
as it is stir frying. This dries the beef out. CHEF repairs the plan by putting the salt in
after the cooking is over. Because the salt is put in to bring out the taste of the hot pepper
it marks adding pepper to a meat plan as predictive of this problem.

226

C.2.17 HOT-CHICKEN

HOT-CHICXEI

Thra« carrot*
On« pound of chickan
Ona and a half teaspoons of aoy sanca
A half taaapoon of sugar
On* taaapoon of aasana oil
On* taaapoon of ric* aina
Ona agg whit*
Ona tablaapoon of corn starch
Tan piaeaa of garlic
Two acalllona
Ona piaca of rad pepper
Ona taaapoon of aalt

Bon* th* chicken.
Shred th* chicken.
Marinate th* chicken in th* corn starch, sugar, egg white, rice wine,
sesame oil and aoy aanca.

Shred the carrot.
Chop the garlic into piaeaa the size of aatchhaada.
Shred th* acallion.
Add tha carrot and acallion to the agg whit*, spices, ric* win*
and chicken.

Stir fry th* r*d p*pp*r and garlic for a half minut*.
Add th* egg whit*, spicas, rice wiue, chicken and carrot to the rad pepper
and garlic.

Stir fry tha apices, agg white, rica wine, chicken and carrot for
three minutes.

Add tha aalt to th* apices, egg white, rice wine, chicken and carrot.

Predicting problems that will result from adding red pepper and thus salt to the chicken,

CHEF finds and modifies its HOT-BEEF recipe.

227

C.2.18 FISH-AND-PEANUT

FISH-AID-PEAIUT

On« cup of peanut
On* pound of fish
On« tableipoon of icy sauce
A half taaspoon of sugar
On« taaspoon of ••tan« oil
On« «gg whit«
On« tablespoon of com starch
T«n pi«c«s of garlic
Fiv« places of red pepper
Two scallions
One teaspoon of salt
One tablespoon of rice wine
One chunk of ginger

Chop the fish into pieces the size of chunks.
Marinate the fish in half the soy sauce, sesame oil, egg white, sugar,
com starch, gingar and rice wine.

Chop the garlic into pieces the site of matchheads.
Chop the red pepper into pieces the six« of nubbs.
Shred the scallion.
Add the peanut and scallion to the egg white, spicas, rice wine and fish.
Stir fry the spicas and salt for a half minute.
Add th« «gg whit«, spices, rice wine, fish and peanut to the spices.
Stir fry the spices, egg white, rice win«, fish and peanut for two minutes.
Add th« remaining soy sauce to the spices, egg white, rice wine, fish
and peanut.

Stir fry th« «gg whit«, spices, rice wine, peanut and fish for a
half minute.

Predicting the taste problem with fish, CHEF modifies FISH-STIR-FRIED to include
peanuts. It adds salt to bring out the taste of the nuts. Unfortunately, the salt also brings
out the taste of the iodine again. CHEF repairs this by adding more rice wine. The added
liquid in turn ruins the texture of the fish. In a last repair, CHEF replaces some of the rice
wine with crushed ginger, a step that still masks the taste of the iodine but does not add
additional liquid to the dish.

228

C.2.19 PEANUT-AND-SHRIMP

PEUDT-AID-SHKIKP

On« cup of peanut
On* pound of shrimp
On« tablaspoon of soy aauc«
A half taaspoon of sugar
On« taaspoon of sasana oil
Ona agg whita
Ona tablaspoon of com starch
Ter. piacas of garlic
Fiva piacas of red pappar
Two scallions
Ona taaspoon of salt
Ona tablaspoon of rica win«
Ona chunk of ginger

Shell the shrimp.
Marinate the shrimp in half the soy sauce, sesame oil, egg white,
sugar, corn starch, ginger and rice wine.

Chop the garlic into pieces the size of matchheads.
Chop the red pepper into pieces the size of nubbs.
Shred the scallion.
Add the peanut and scallion to the egg white, spices, shrimp and rice wine.
Stir fry the spices and salt for a half minute.
Add the egg white, spices, shrimp, rics wine and peanut to the spices.
Stir fry the spices, egg white, shrimp, rice wine and peanut for
two minutes.

Add the remaining soy sauce to the spices, egg white, shrimp, rice wine
and peanut.

Stir fry the egg shite, spices, shrimp, rice wine and peanut for
a half minute.

In building a recipe for shrimp with peanuts, the previous problem of the added salt
increasing the iodine taste of the sea-food is activated. The problem with the ordering of
the MARINADE and SHELL steps is also activated. But this later problem has a critic
associated with it, so CHEF uses the FISH-AND-PEANUT recipe instead of one of its
shrimp plans. After modifying it to include shrimp and the SHELL step, the MARINATE
and SHELL steps are reordered.

229

C.2.20 BROCCOLI-SOUFFLE

BROCCOLI-SOUFFLE

A half pound of broccoli
A half cup of flour
A quarter teaspoon of salt
A half cup of Bilk
Two cup« of «ilk
Thra« piacaa of rod pappar
A quartar cup of buttar
/iva agg yolki
Six agg whites

Mix the flour with the salt.
Mix the ailk with the mixture of flour and salt.
Boil the «ilk and red pepper for less than a half minute.
Ramove the red pepper fron the milk.
Mix the Mixture of milk, salt and flour with the milk.
Simmer the mixture of milk, salt and flour for five minutes.
Whip the egg yolk.
Add the butter and mixture of egg yolk to the mixture of milk, salt and
flour.

Cool the mixture of egg yolk, milk, salt, flour and butter.
Whip the egg white.
Pulp the broccoli.
Add the broccoli and mixture of egg white to the mixture of egg yolk, milk,
salt, flour and butter.

Pour the mixture of egg, milk, salt, flour, butter and broccoli into a nine
inch baking-dish.

Bake the batter for twenty five minutes.

CHEF creates a recipe for broccoli souffle out of its PEPPER-SOUFFLE plan.

230

References

[Carbonell 79] Carbonell, J., Subjective Understanding: Computer Models
of Belief Systems, Ph.D. Thesis, Yale University, 1979.

[Carbonell 81] Carbonell, J., A Computational Model of Analogical Prob-
lem Solving, Proceedings of the Seventh International Joint
Conference on Artificial Intelligence, Vancouver, B.C., Au-
gust 1981.

[Carbonell 83] Carbonell, J., Derivational Analogy and its Role in Problem
Solving, Proceedings of the National Conference on Artifi-
cial Intelligence, AAAI, Washington, DC, August 1983.

[Chen 62] Chen, J., Joyce Chen Cook Book, 3. B. Lippincott, New
York, NY, 1962.

[Dean 85] Dean, T., Temporal Imagery: An Approach to Reasoning
about Time for Planning and Problem Solving, Technical
Report 433, Yale University Department of Computer Sci-
ence, October 1985.

[DeJong 83a] DeJong, G., An Approach to Learning From Observation,
Proceedings of the International Machine Learning Work-
shop, University of Illinois, Monticello, IL, June 1983, pp.
171-176.

[DeJong 83b] DeJong, G., Acquiring Schemata Through Understanding
and Generalizing Plans., Proceedings of the Eight Interna-
tional Joint Conference on Artificial Intelligence, IJCAI,
Karlsrhue, Germany, August 1983a.

[Fikes and Nilsson 71] Fikes, R., and Nilsson, N., STRIPS: A new approach to the
application of theorem proving to problem solving, Artificial
Intelligence, 2 (1971).

231

232

[Gentner and Landers 85] Gentner, D. and Landers, R., Analogical Reminding: A
Good Match is Hard to Find., Proceedings of the Interna-
tional Conference on Systems, Man and Cybernetics, Tus-
con, AZ, Novemberl985.

[Gick and Holyoak 83] Gick, M. and Holyoak, K., Schema induction and analogical
transfer. Cognitive Psychology, 15 (1983), pp. 1-38.

[Hammond 83] Hammond, K., Planning and Goal Interaction: The Use of
Past Solutions in Present Situations, Proceedings of the Na-
tional Conference on Artificial Intelligence, AAAI, Wash-
ington, D.C., August 1983.

[Hammond 84] Hammond, K., Indexing and Causality: The organization
of plans and strategies in memory, Technical Report 351,
Yale University Department of Computer Science, Decem-
ber 1984.

[Korf 82] Korf, R., A Program that Learns to Solve Rubik's Cube,
Proceedings of the National Conference on Artificial Intel-
ligence, AAAI, Pittsburg, PA, August 1982, pp. 164-167.

[Lebowitz 80] Lebowitz, M., Generalization and Memory in an Integrated
Understanding System, Ph.D. Thesis, Yale University, Oc-
tober 1980.

[Michalski and Larson 78] Michalski, R., Larson, J., Selection of Most Representative
Training Examples and Incremental Addition of VLI hy-
pothesis: The Underlying Methodology and the Description
of Programs ESEL and AQ11, Technical Report 867, Com-
puter Science Department, University of Illinois, 1978.

[Miller 85] Miller, D., Planning by Search Through Simulations, Tech-
nical Report 423, Yale University Department of Computer
Science, October 1985.

[Minton 85] Minton, S, Selectively Generalizing Plans for Problem-Solving,
Proceedings of the Ninth National Conference on Artificial
Intelligence, AAAI, Los Angeles, CA, August 1985, pp.
313-315.

[Mitchell 79] Mitchell, T., An Analysis of Generalization as a Search
Problem, Proceedings of the Sixth International Joint Con-
ference on Artificial Intelligence, 1979.

233

[Mitchell 83] Mitchell, T., Learning and Problem Solving, Proceedings
of the Eighth International Joint Conference on Artificial
Intelligence, Karlsrhue, Germany, August 1983. Computers
and Thought Award Lecture.

[Newell and Simon 72

[Rombauer and Becker 64

[Sacerdoti 74

[Sacerdoti 75

[Schänk and Abelson 7

[Schänk and Riesbeck 85

[Schänk, Collins and Hunter p

[Schänk 82

[Schänk 84a

[Schänk 84b

[Schänk 86

[Schrecker 76

Newell, A. and Simon, H., Human Problem Solving, Prentice-
Hall, Englewood Cliffs, NJ, 1972.

Rombauer, I. and Becker, M., The Joy of Cooking, New
American Library, New York, NY, 1964.

Sacerdoti, E., Planning in a Hierarchy of Abstraction Spaces.
Artificial Intelligence, 5 (1974), pp. 115-135.

Sacerdoti, E., A structure for plans and behavior. Technical
Report 109, SRI Artificial Intelligence Center, 1975.

Schänk, R. and Abelson, R., Scripts, Plans, Goals and Un-
derstanding, Lawrence Erlbaum Associates, Hillsdale, New
Jersey, 1977.

Schänk, R., and Riesbeck, C, Explanation: A Second Pass,
Technical Report 384, Yale University Department of Com-
puter Science, July 1985.

Schänk, R., Collins, G., Hunter L., Transcending Inductive
Category Formation in Learning, The Behavioral and Brain
Sciences, (In press).

Schänk, R., Dynamic memory: A theory of learning in com-
puters and people, Cambridge University Press, 1982.

Schänk, R., The Explanation Game, Technical Report 307,
Yale University Department of Computer Science, March
1984.

Schänk, R., Explanation: A First Pass, Technical Report
330, Yale University Department of Computer Science, Septem-
ber 1984.

Schänk, R., Explanation Patterns: Understanding Mechan-
ically and Creatively, In preparation, 1986.

Schrecker, E., Mrs. Chiang's Szechwan Cookbook, Harper
and Row, New York, NY, 1976.

234

[Sussman 75] Sussman, G., Artificial Intelligence Series, Volume 1: A
computer model of skill acquisition, American Elsevier, New
York, 1975.

[Täte 77] Täte, A., Generating Project Networks, Proceedings of the
Fifth International Joint Conference on Artificial Intelli-
gence, IJCAI, Cambridge, Ma, U.S.A, August 1977, pp.
888-893.

[Thagard and Holyoak 85] Thagard, P. and Holyoak, K., Discovering the Wave The-
ory of Sound: Inductive Inference in the Context of Prob-
lem Solving., Proceedings of the Ninth National Conference
on Artificial Intelligence, AAAI, Los Angeles, CA, August
1985, pp. 610-«12.

[Wilensky 78] Wilensky, R., Understanding Goal-Based Stories, Ph.D. Thesis,
Yale University, 1978. Research Report #140.

(Wilensky 80] Wilensky, R., META-PLANNING, Technical Report M80
33, UCB College of Engineering, August 1980.

[Wilensky 83] Wilensky, R., Planning and Understanding, Addison-Wesley,
Reading, Mass, 1983.

[Winston 70] Winston, P., Learning Structural Descriptions from Exam-
ples, Technical Report 231, AI Laboratory, Massachusetts
Institute of Technology, 1970. Reprinted in P.Winston,
Ed., The Psychology of Computer Vision, 1975, McGraw-
Hill.

