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1. Introduction

Magnetosphere and ionosphere interact electromagnetically by means of the

field-aligned current and the convection electric field (Vasyliunas, 1972).

Recent progress (Kan and Sun, 1985) shows that most of the substorm phenomena

(Akasofu, 1968) can be understood as manifestations of an enhancement of

magnetospheric convection. These include:

(i) The formation of the Harang discontinuity in the convection

electric field;

(ii) The intensification of field-aligned currents in the substorm

current wedge;

(iii) The rapid motion of auroral forms in the westward traveling

surge;

The purpose of this report is to summarize our present understanding of these

diverse and complicated substorm phenomena within the framework of magneto-

sphere-ionosphere (M-I) coupling. Motion of the westward traveling surge

(WTS) has been shown to depend on the magnetospheric Alfv6n time scale by Kan

and Sun (1985) and on the ionospheric recombination time scale by Rothwell et

al. (1984). The speeds of the WTS determined from the ionospheric time scale

are generally higher than the speeds of the WTS based on the magnetospheric

time scale. From these studies, it is evident that the motion of the westward

traveling surge must be governed by the combined effects of the magnetospheric

and the ionospheric time scales obtained from a global model. The present

model is an extension of the magnetos phere- ionosphere coupling model of Kan

and Sun (1985), by including the ionospheric recombination time scale in the

original model. This is accomplished by replacing the time-independent contin-

uity equation with the time-dependent continuity equation for the ionization



in the ionosphere. It is found that the head of the WTS moves at variable

speeds. The surge speed is relatively high at the beginning and then slows

irregularly to a standstill. Moreover, the polar cap potential defference is

found to oscillate irregularly as it increases.

2. Model

In the interest of time and space, we will concentrate on the formulation

of the extension, leaving the rest of the formulation to the original paper by

Kan and Sun (1985). The enhanced conductivity in the original model is deter-

mined from the time-independent continuity equation. In the present model, the

conductivity enhancement is determined from the time-dependent continuity

equation for the electron number density in the ionosphere, i.e.,

3n- 2 .()

= Qi S O n V(nv)

where Q is the number of ions (per charge) produced by an incident electron

per meter, So is the source term due to the solar UV radiation and the diffuse

auroral precipitation, B (=10 - 13 m3/sec. Walls et al., 1974) is the recombin-

ation coefficient and JI is the field-aligned current density carried elec-

trons. The expression for Q can be approximated by

0 J downward or (Jll < Jo

Qo J upward and V.E > 0

Y(IJiI-i o ) J, upward, V-E > 0 and Il 1 l < (2

Y(j-) J 10 upward, V.E > 0 and IJll > Jc

where j = 0.08 pA/m 2 is the electron thermal flux in the loss cone and
0



J- 1.6 VA/m 2 is the saturation current density limited by the electron

number density in the source region (Knight, 1973; Fridman and Lemaire, 1980).

Qo - 7 x 10-3 ions per charge per meter for 5.6 key electrons (Rees, 1963),

Y= 104 ions/e-m-A/m 2 . The condition V-E < 0 is required for El * 0 (Lyons,

1980) on discrete auroral field lines.

As a first approximation, the conductivity is proportional to the elec-

tron number density while the field-aligned current is given by the divergence

of ionospheric current. Making use of these two relationships in (1), the

height-integrated ionospheric conductivity can be written as (e.g., see Zhu

and Kan, 1986)

__HQ 8 2 2  B 0 E ) -

t BOR H o o1 H i eH oH B H

where H (=7 km for 5.6 key electrons) is the effective height of

the conducting ionosphere, Zo the background conductivity due to solar UV

radiation and diffuse auroral precipitation, Bo is the geomagnetic field in

the ionosphere and R = EH/EP which will be assumed to be independent of the

energy of the precipitating electrons. The last term in (3) comes from the

V-(nv) term in (1) after making use of the fact that V.(nv) - 0 in the iono-

sphere where B = B° = constant. Note that the second term in the square brack-

ets is at least one order of magnitude greater than the last term in (3),

i.e., HQ > 10 for electron energy greater than 1 key. Thus, the last term can

be neglected in (3) as long as the auroral electron energy is I key or more.

3. Numerical ProceC'are

The relation between incident wave field and reflected wave field can be

expressed as (e.g., Kan and Sun, 1985)

3



(E +E )V.Er + (VEp-BoxVH).E = (EA- )V.E - (yE-BoxVE).E ()
A P EP_ H E EA-EP )VE,-(EP_ 0 H E(4

-1

where E = (o V A) is the characteristic conductance of the plasma in the

Alfv~n wave, E. and E are the electric fields of incident and reflected1

Alfv6n waves respectively, and Bo is the unit vector of the magnetic field in

the ionosphere.

By specifying the reflection coefficient RmI the Alfv6n transit time

T(=L/VA), the initial ionospheric conductivity and the initial enhanced con-

-* iovection field E one can compute the time dependent ionospheric electric

field, ionospheric current, ionospheric conductivity, field-aligned currents

and the energy flux from equations (2), (3) and (4).

Numerical procedure for solution can be summarized as follows:

(a) The reflected wave field E from the ionosphere is determined by

the numerical solution of (4) using the initial ionospheric conductivity and

the initial field E (t=O). Here E (t) consists of two parts, that can be

written as

E (t) = o E (t) (5)

1i0
where E o. the field of the enhanced magnetospheric convection and is

asiumed to be a step function in time in our model, E (t) is the reflected

wave field from the magnetosphere and can be written as

0t < 2T

E (t) (6)

E (t-2T)R t Z 2T
m

%-. V -



(b) The ionospheric electric field Is the sum of the Incident wave

field and the reflected wave field. From the electric field and the initial

conductivity, we calculate the ionospheric current, field-aligned current and

precipitating energy flux.

(c) The conductivity is updated by the numerical solution of (2) and

(3) based on the ionospheric electric field and the conductivity of the pre-

vious time step.

(d) Using updated conductivity and the updated incident wave field

E (t=At) determined from equations (5) and (6), the reflected wave field Er _

of the next time step is determined from equation (3). Then the ionospheric

current, the field-aligned current and the energy flux are updated.

Repeat steps (a) through (d), quantities of the model can be updated

systematically in time.

4. Results

The inputs of the model are shown in Figure 1. Panel (A) shows the iono-

spheric projection of the enhanced convection in the magnetosphere, panel (B)

shows the input conductivity model, panel (C) and (D) show the distribution of

the magnetospheric reflection coefficient. The Alfv6n transit time T(=L/VA) is

assumed to be 2 minutes for all field lines throughout the following numerical

calculations. These inputs are the same as in the Kan-Sun (1985) model. Figure

2 shows the snapshots of the ionospheric convection pattern at (A) t=32 sec,

(B) t=356 sec, (C) t=716 sec and (D) t=1096 sec while it approaches steady

state asymptotically. The characteristic distortion leading to the formation

of the Harang discontinuity is clearly seen. Figure 3, 4 and 5 show the snap-

shots of the conductivity distribution, the ionospheric electrojets and the

field-aligned currents, respectively. Note that the Region II field-aligned

5



current is reasonably well reproduced in Figure 5 (D). This is consistent with

the finding that the Region II field-aligned current depends primarily on the

latitudinal gradient of the ionospheric conductivity (Cheng et al., 1986).

This is evident in Figures 3 and 5 where the conductivity gradient increases,

the Region II field-aligned current density also increases.

The new results, due to the coupling between the ionospheric time scale

and the magnetospheric time scale in the model, are:

(1) The polar cap potential difference in the ionosphere oscillates as

it increases toward the enhanced magnetosphere convection level. The average

rate of increase of the polar cap potential is a decreasing function of time.

These behaviors of the polar cap potential are shown in Figure 6. The oscil-

lations in the polar cap potential are due to the interaction between the two

time scales. The potential difference increases on the Alfv~n time scale upon

magnetospheric convection. Accompanying each enhancement of the potential

difference, the field-aligned current density increases which leads to a

conductivity enhancement on the ionospheric recombination time scale. The

potential difference is found to decrease as the conductivity increases. The

above qualitative description explains why the polar cap potential oscillates

irregularly as it rises toward the enhanced convection level.

(2) The westward traveling surge moves mainly in the westward direction,

but has a small northward component as shown in Figure 7. The westward speed

i3 about 6 km/sec initially and then decreases haltingly. The northward speed

reaches up to 1 km/sec for a short time duration, but most of the time is near

zero. The variable speeds in the surge motion can he under:itood as a con-

sequence of the "interaction" between the- magnetot-pheric Alfv6ri time scale and

the i onospheric recombination time ,'cale. The Alfvtn time scale is about two

m inute.3, 'and1 the recombi natinn time scal e is about ten seconds. wual itatively

-.



speaking, shorter time scale leads to faster speed and vice versa. It follows

that the surge on one hand tends to move fast under the ionospheric recombina-

tion time scale, but on the other hand is forced to slow down by the magneto-

spheric Alfv6n time scale. As a result, the surge moves at irregular speeds.

In addition, our results also show the development of the Harang discon-

tinuity and the intensification of substorm current wedge as described below:

The distortion of the convection pattern (Heppner, 1977; Evans et al.,

1980) is characterized by the Harang discontinuity in the pre-midnight sector.

The observed characteristics of the convection pattern is well simulated by

our model as shown in Figure 2. According to our model, the Harang discontinu-

ity forms because the ionospheric conductivity is anisotropic and the magneto-

sphere is not a constant voltage source except on open field lines deep inside

the polar cap. The divergence of the Hall current propagates along field lines

by Alfv6n waves in which the wave electric field is the polarization field

generated by the space charge produced from the field-aligned current. As a

result the divergence of the Hall current is counter balanced by the diver-

gence of the Pedersen current of the polarization electric field. In this

sense the Hall current is said to be blocked from diverging along field lines

(Kan and Kamide, 1985).

The substorm current wedge is a three-dimensional current system inferred

from observations in which the auroral electrojet currents are connected to

the cross-tail plasma sheet current by field-aligned currents (e.g. Clauer dnd

McPheron, 1974; Barfield et al., 1986).

The ionospheric current in Figure 4 and the field-aligned current in

Figure 5 are self-consistent with the convection field in Figure 2. In out,

model, the intensification of the auroral electrojets (Kamide and Akasofii,

1976) goes hand-in-hand with the intensification of the Region I field-aligned

7
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current (lijima and Potemra, 1976). The region II field-aligned current is

under-represented in our model. The three-dimensional current system in our

model is driven exclusively by the convection electric field which we believe

is fully responsible for the Region I field-aligned current and partially for

the region II current. On the dayside, the field-aligned current is centered

around the boundary between sunward and anti-sunward convection which corre-

sponds to the low-latitude boundary layer dynamo region (Eastman et al.,

1976). On the nightside, the situation is much more complicated. A few minutes

after the enhancement of magnetospheric convection, the upward field-aligned

current in the pre-midnight sector is centered around the convection reversal

boundary as is on the dayside. As the current intensifies, the center of the

upward current in the pre-midnight sector shift poleward into the anti-sunward

convection region between 700 and 800 latitudes where -1 < Rm < 0 which is

still on closed field lines. From our model, the substorm current wedge is

ertused by the enhanced electric field impressed on the ionosphere which inten-

sif'ies the clectrojets first. As the electrojet intensifies, it calls for more

field-aligned currents which are drawn from the cross-tail plasma-sheet cur-

rent. According to our model , the substorm current wedge intensifies not

bPc~use the cross-ta: current is interrupted by some plasma instability

processes. It intensifies because the ionosphere demands more field-aligned

currents which are drawn from the cross-tail current in the plasma sheet.

It h,-uld be noted that the upward field-aligned currents are located

where thfe space charges are negative. This is evidpnt by comparing the convec-

t ion patter; anti the field-aligned current in Figures 4.41 and 4.6. It is seen

that the upward field-aligned current in the pre-midnight sector, occurs where

th, convection streamlines rotate clockwise corresponding to negative space

charge. This i; consistent with the observations that the space charge is

w -op,



negative at the head of the westward traveling surge where the field-aligned

current is upward (Inhester et al., 1981).

In conclusion, we have shown that the interaction of the magnetospheric

Alfv~n time scale and the ionospheric recombination time scale leads to the

irregular oscillations in the polar cap potential differenoe and in the motion

of the westward traveling surge. These irregular oscillations are believed to

be a general property of multi-time-scale problems.
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Figure Captions

Figure 1. (A) Equipotential contours of the input potential Fo. (B) Contours

• of the input Hall conductivity. (C) Contours of the reflection

coefficient Rm at magnetospheric source regions projected along field

lines onto the polar ionosphere. (D) Latitudinal dependence of Rm along

the noon-midnight meridian.

Figure 2. Temporal evolution of the ionospheric convection patterns at (A)

t=32 sec, (B) t=356 sec, (C) t=716 sec and (D) t=1096 sec.

Figure 3. Temporal evolution of the ionospheric Hall conductivity.

Figure 4. Temporal evolution of the ionospheric electrojets.

Figure 5. Temporal evolution of the field-aligned currents.

Figure 6. Time variation of the polar cap potential difference

Figure 7. Time variation of the westward and the northward displacements of

the westward traveling surge.
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