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Abstract

The effects of irregular, open structures of two dimensional aggregates on the

rates of diffusion controlled reactions are examined by computer simulation.

The simulation model describes the reaction between two species. A and B. where

A is randomly distributed on a two dimensional square lattice and diffuses like

a random walker while B forms a fixed aggregate of different shapes and sizes.

Both unimolecular (i.e., B is non-destructive but A disappears upon reaction)

and bimolecular (i.e., both A and B disappear after the reaction) mechanisms are

examined. Different sizes of DLA aggregates are chosen to model the irregular

aggregates and to compare the reaction rates with the circular, compact

aggregates of different radii. For unimolecular reaction, with the same total

mass, the DLA aggregate shows a faster reaction rate than the circular one for

its open structure. In the bimolecular mechanism, the sizes (or radii) of the

aggregates decrease during reaction processes, and the reaction rate is slower

compared to the unimolecular reaction. This shrinkage effect is more distinct
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for DLA aggregates than the compact aggregates. It is found that the reaction

rates of DLA aggregates are compatible with that of circular aggregates with as

effective radius. The relation between the effective radius and the masses of

the DLA aggregates can be described through a power law. r off - No 6, where reoff

is the radius of circular aggregate with approximately the same reaction rate as

the DLA aggregate of total mass, No Thke values for & are 0.68 ±. 0.07 and

0.79 +- 0.08 for unimolecular and bimolecular reactions, respectively. From the

effective radius, the unimolecular reaction rates can be calculated by using

known theories of diffusion controlled reaction.
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I. Introductiom

The kinetic studies of reaction rate processes occurlng on solid

surfaces1 2  have been an interesting topic for different fields such as

reactions on catalyst 2- 5 adsorption, desorption and growth processes 6 ,7  on

metal or semiconductor surfaces. Unlike Sas phase reactions, where the reaction

rates are determined by the collision frequencyi many heterogeneous reactions

occuring at the surface of solids manifest that diffusion is an important step

in the reactions process.
3- 7

Recent studies8 have shown that many dendritic aggregates formed on the

surface possess fractal structure and obey a scaling law, N(R) -RD. where N(R)

is the number of particles within the radius R, and D is the fractal

dimensionality.1 4 The shape and the fitted fractal dimensionality, D. of these

dendritic aggregates are similar to DLA (diffusion limited aggregate) generated

by computer simulation according to the Witten-Sander model. 9 Because many

molecular aggregates involved in reaction processes possess complex, irregular

structureso it is difficult to model these systems by a theoretical approach.

Therefore, many computer simulation studies 4'5 have been carried out to mimic

possible reaction processes occuring on the two dimensional surface with

Irregular aggregates. Silverberg et. al.5 have studied the effects of

adsorbate interaction and aggreStioA on the rates of chemical reactions on

surfaces. The geometric properties (size and shape) of the aggregates, and the

lateral interactions are considered in their simulation. In their model, the

migration rate of reactant is dependent on the associated energy changes for

each step. Therefore, it is not quite clear whether the process is 'diffusion'

controlled, or 'reaction' controlled.

3
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In the present work, we study the effect of diffusion controlled process on

the surface reactions involving aggregates of irregular shapes. In this case,

the contact area between reactants is not a unique factor determining the

reaction rate. The geometric structure would play an important role for the

diffusion process and affect the reaction rate. In this study, we have chosen

the DLA to model the dendritic aggregates of irregular shapes, and use computer

simulation to investigate the reactions on the surface. We assume that each

particle (atom or molecule) is a hard sphere, and no long range interaction is

present. When two similar diffusive particles (A-A) touch each other, they

repel, and reaction happens when a diffusive particle A reaches the aggregate B.

Two reaction mechanisms are considered in the simulation. The first one is

unimolecular process, (e.g., catalytic unimolecular decomposition, or

isomerization), in which the aggregates keep the same shape and structure during

the reaction. The second one is bimolecular process, where both the aggregate

and diffusive particles disappear after the reaction. Because of the

non-uniform shape of the aggregates, and the geometric structure of the

aggregates play an important role in determing the reaction rate.

The concept of effective radius, reff, is used to compare the simulation

results of the DLA clusters to circular, compact aggregates where many

theoretical studies have been carried out.1 0 According to the diffusion

controlled reaction theories,1 0 the reaction rate would increase as the

aggregate radius increases. Because of the open structure of the DLA aggregates

(Fig. 1). the maximum length, rmax, from a particle on the aggregate to the

center is greater than the radius of the circular aggregate with the same total

mass. However, the open structure of DLA aggregate also indicates a penetration

effect which does not happen for the circular aggregates. This effect would let

4



the probing particle to diffuse among the open spaces between the dendritic

branches without reacting. Therefore, the effective radius, reff, would be

smaller than r &I but larger than the corresponding radius of a circular

aggregates with the same total mass.

In simulation studies of the growth process of DLA aggregate,1 1 an active

zone was found where most new particle join the existing cluster. The mean

deposition radius, (rN) shows a power law dependence on the total mass of the

aggregate, (rN N'. The value ofd for DLA aggregate is 0.584 +_ 0.02. Our

simulation of the chemical reaction is the reverse of growth process. From the

simulation results, the effective radius also exhibits a scaling law behavior

with respect to the total mass of the aggregate, reff - N06. The values of 6

for unimolecular and bimolecular mechanisms are 0.68 t 0.07 and 0.79 + 0.08,

respectively.

II. Theoretical Background of the Diffusion Controlled Reactions:

Consider reactions between reactants A and B with the following reaction

equations:

A + B ---) B + C (la)

A + B -- ) C (lb)

where both species (A and B) are randomly distributed and the reaction product C

has no influence on the further reaction processes. Both of two cases, (Il) and

(lb), are diffusion controlled processes. 10The first case is like a catalytic

reaction, where A particles are mobile and destructible while B is the fixed

S
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aggregate (e.g., a catalyst) and is indestroutible. An example of this could be

a catalytic unimolecular chemical process (e.g., unimolecular decomposition or

isomerization). Assuming A particles are undergoing an isotropic diffusion in

two dimensional lattice like a random walker, after several steps, an A particle

reaches the aggregate B, and reacts (i.e., disappears) in the simulation. By

counting all the survival A particles at different time t, the reaction rate can

be calculated by the following equation

dC A(t)

Rate - t (2)
dt

CB(t) = constant

The second case is a bimolecular surface reaction:2'5 e.g., 0 + CO -- > CO2 . At

the beginning of the reaction, one of the species. B. forms an aggregate on the

surface. The other reactant A covers the surface randomly. These A particles.

then, start to diffuse on the surface like random walkers. Once they reach the

aggregate B, both A and B react and disappear in the simulation. Therefore, the

size of aggregate B will shrink as the reaction goes on. By recording the

changes of the concentration of A (or B) with time, the reaction rate law can be

calculated as

dCA(t) dCB(t)
Rate--------.. -(3)

dt dt

To simplify the problem, we take the the center of the aggregate B as the

origin of the coordinates of the A particles. Assuming B particles are immobile

and indestructible sinks and A particles undergo isotropic two dimensional

diffusion with a diffusion constant D, then the spatial distribution of the A

particles around a sink (aggregate B) can be described in terms of a space and

time dependent function PA(rt), normalized with respect to the mean

6
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10
concentration CA(t). PA(rt) satisfies the diffusion equation:

PA(r, t)2a = D 2pA (r,t) (4)

with appropriate initial and boundary conditions.

If the system is spherically symmetric, the reactants A and B are assumed

spherical with radii rA and rB. respectively. A reaction takes place if two

particles approach one another within the contact distance rAB, rAB = rA + rB.

By using Laplace transformation, the partial differential equation (Eq. 4) can

be solved from the following boundary conditions:

P(0t)=l, (5a)

p(rAB,t):00 for t > 0 (b)

p(r,0)-1, for r ) AB (Sc)

The reaction rate can be obtained from the diffusion flow of A particles

into the boundary of the sinks B with concentration CB,

dCA (t )SA = - k(t) CB CA(t) 
(6)

dt

where the rate constant k(t) can be described as10(d)

a p(r,t)
k(t) = 2nDr AB (.------) 2-dim (7)

a r rr AB

which decreases as time increases due to the concentration depletion on the

boundary. The reaction rate k(t) is also dependent on the contact distance tAB,

The larger the radius (or the contact surface area) is, the faster the reaction

rate would be.

7
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Oven 13 has derived an analytic solution for the 2-dimensional case in

cylindrical coordinates and gave a closed form of k(t) as a function of rAB, and

D. In a good approximation, a simple interpolation formula was found for

k(t) 10(d)

k(t) - nD (a(t) + 2rAB (Dt) - 1 / 2 )  (8)

a(t) - Min (0.6.4/ln (4Dt/(rAB 2 )))

However, for the aggregates of irregular shape, there is no analytic solution.

Thus, the concept of effective radius, reff, which plays the role of rAB in the

above equation is proposed to describe the reaction rates of DLA aggregates.

Once the effective radius is obtained, the unimolecular reaction rate can be

calculated through the existing solutions for two dimensional disks.
10 (d).1 3

II. Simulation of Unimolecular and Bimolecular Reaction

The simulation is iarried out on the two dimensional square lattice within

a circular boundary of 300 lattice unit in diameter. The procedures of

simulation are as follows: First, a aggregate B, which can be any shapes and

sizes, is generated in the center of the two dimensional lattice. At time equal

to zero, the A particles with a given concentration are randomly distributed on

the same lattice where B already exists. Then, let A particles diffuse randomly

like a random walker. Once particles A reach the aggregate B, they react.

Either A alone or both A and B disappear depending on the mechanisms we are

considering. During the reaction period, we keep tracing the positions of both
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species and record the number of all the survival (unreacted) particles (i.e.,

concentration) to calculate the reaction rate.

Due to the time limitation of computer simulations, the largest radius of

the aggregates used for this simulation is 60, which is reasonable compared to

the radius of the whole system, 150. The total number of steps for the

simulation is 2000, and the average distance travels by a randomly diffusing

particle is 20001/2 _ 45 lattice units. Therefore, the results of simulation

would not be perturbed by the finite size effect. Each initial condition (e.g.,

the aggregate shape, and size) is run three times and the results are averaged

to reduce the fluctuations in the reaction rate calculation. When a particle

reaches the circular boundary, it would be deleted and a new particle is

generated on the opposite site of the boundary. The decay of the reactant

concentration, CA(t), is normalized to its initial concentration, CA(t = 0) to

compare the reaction rate for different initial conditions.

The simulations are carried out with two kinds of aggregates (Fig. 2).

First, circular, compact aggregates with different radii, which are equivalent

to the contact distance rAB in equation 7, are used. The simulation results are

then used as the reference curves to determine 'reff , for the aggregates of

irregular shapes. The aggregates generated by the diffusion limited aggregation

process are chosen to model the irregular aggregates in real systems. The sizes

of DLA aggregate are varied for comparison to the reaction rates of the

circular, compact aggregate. The effective radius, reff, for each DLA aggregate

(with different total mass) is determined by comparing its reaction rates to a

series of compact circular aggregates to find which one will give the same

reaction rate. By plotting log N (reff) vs. log (reff), a straight line is

obtained and indicates a scaling law behavior. The simulations are carried out

9
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for both the unimolecular and binolecular processes, and the scaling exponeats

are determined respectively.

IV. Results

The simulation consists of calculating CA(t) at different tie t. for

different shapes of aggregates (i.e., circular or DLA) and for different sizes

of aggregates. The simulation is performed on IBM 3090 computer, and follows

the procedure described in section III.

A: Effect of The Aggregate Shape:

The decay of the concentration of A at different time with differen sizes

(or radii) of the aggregates are shown in part A of Fig. 3. and 4 for circular

aggregates, and part B of Fig. 3 and 4 for DLA aggregates. In part A. the total

mass of DLA aggregates are 2000, 1800. 1500, 1300. 1000. 800. and 500. In part

B, the radii (total mass) of the circle are 60 (11310). 55 (9503). 50 (7854). 45

(6362). 40 (5027), 35 (3848). 30 (2827). and 20 (1257) lattice units. The

concentration of the diffusive particle A is 0.06. For the sane total mass, the

DLA aggregate reacts faster than the circular one. In other words. it has

larger effective radius. roff. The plot of reff vs. No  is given is Fit. 5.

The slope of straight lines, 8, is equal to 0.68 + 0.07 and 0.79 + 0.08 for

unimolecular and bimolecular reactions, respectively.

B: Effect of the Reaction Mechanism, Unimolecular vs. Bimolecular:

10
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Is Fig. 3 sad 4. the react ios mechanisms are snimolesular sad bimolesular.

respectively. For the bimolecular mechani sm. the asz (or radius) of the

aggregate decreaes as time increses. This would slow down the reaction is

s@mparis'. to the unimolecular mechanism. The shrinkage effect is more distinct

for DLA aggregates than circular ones do* to its open &tractor*.

V. Discussion

From above plots, we can see that the shap* of time dependent concentration

function of reactant A for DLA aggregates is similar to that of compact.

circular aggregates. However. the DLA aggregates &how faster reaction rate than

the circular one with the same aggregate size (total mess). This difference is

mostly due to the geometric structure of the aggregates which will chage the

* boundary conditions of the differential equation. Ek. 4 sad S. Basically. the

reaction kinetic for the dendritic DL.A aggregate can be described by the same

differential equation, Eq. 4, but with different boundary conditions. As shows

is Fig. 23. for the compact. circular aggregate. as the diffusing reactant A

reaches the circular boundary of aggregate D. the reaction occurs imediately.

This implies the same bondary conditions as shown in Eq. S. However. for the

irregular shape. DLA aggregate, (Fig. W.) when reactant A reaches the region 1.

it can either react when reach aggregate 3 or still be alive and diffuses among

the doadritic branches. Theorefore, the DLA aggregate possesses complicated

boundary conditions for the differential equation and does not have analytic

solution.

For the DLA aggregate, because of its open structure, the mazimums length'

of branches which determines the radius of the boundary between region I &ad 11

&ALLA A I1I
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(Fig. IA) is larger than the corresponding radius of circular aggregate with the

same amount of total mass. Mathematically, this behavior can be found from the

scaling law for tractal structures. N(R) - RD.14 The scaling law can be

rewritten as

r as ~ NO 1I/D

For the fractal structures. it is known that d I D. Therefore, the maximum

length rmax' is larger then the corresponding radius of compact disk. Since the

value of ra is related to the radius of the boundary between region I and II,

which is equivalent to the contact distance rAB as in equation g, the larger the

maximum length r is, the faster the reaction rate would be. However, due toma:

the open structure of the DLA pattern, when the diffusive particle A reaches the

distance which is equal to the maximum length of the branches, it may not

necessarily react at that tim. The particle can still diffuse but with the

survivial probability decreasing with time.1 2 This indicates that the real

nmber of reacted particles A is less than that with the circular boundary for

the same boundary radius. Therefore, these two conflicting factors: larger

maximum least' and penetratiag effect, would compete each other, and the

simulation results show that the increase in the mximum length. rmSal is more

importsntant than the effect of the penetration among branches for the DLA

aggregates. By compariag the reaction rate of DLA aggregate with given total

mass wtth reaction rates of a series of circular aggregates with different

radius, the effective radius, reff, for DLA aggregate (which is equivalent to

the contact radius r AS in Eq. 1) can be obtained. reff is determined as the

length which is equal to the radius of circular aggregate with the approximate

the same reaction rate as DIA aggregate of given total mass, No . Because of the

dendritic, open strcture of DLA aggregate, reff is larger than No1 / 2 (i.e.. the

12



radius of disk). However, roff is smaller than rnsx because the diffusing

reactant A may diffuse among the dendritic branches, and penetrates closer to

the center of aggregate.

The effect of reaction mechanisms, unimolecular vs. bimolecular, is also

examined in the simulation. For the bimoulecular case, the aggregate sites will

disappear when reached by the diffusive A particles, and the effective radius

ref f of the aggregate will shrink as reaction goes on. Since the time dependent

reaction rate constant, k(t), depends on rAB which is decreasing with time for

bimolecular mechanism and is a constant for unimolecular case, the bimolecular

reaction rate is slower than the unimolecular mechanism. Because of the open

structure of dendritic, DLA aggregate, for the same amount of particle B

(aggregate) consumed, the change in the maximum length, rax is larger for the

DLA than the circular aggregate. Therefore, the shrinkage effect is a more

dominant for the DLA than the circular aggregates, and for the aggregate with

smaller sizes than the one with larger sizes. Due to the complexity of the

shrinkage effect on the geometric boundary of the aggregates for bimolecular

mechanism, and the random positions of the aggregate sites being reacted, there

is no analytic solution available even for the compact, circular aggregates.

The results of reff for bimolecular mechanism can only describe qualitative

behavior, and can not give actual reaction rate.

In the simulation of growth kinetic of DLA aggregate,9 the growth can be

described in terms of an active zone defined as the region where new particle

join the existing cluster. This zone is characterized that the Nth particle is

deposited to the aggregate with (N - 1) particles at a distance rN from the

center of mass. The mean deposition radius (r N shows a power law scaling

behavior to the total mass of the aggregate,

13



<rN) - NhI (10)

The value of J for DLA aggregate is 0.584 ± 0.02.9 In this paper, we study the

diffusion controlled reaction which is the reverse of the growth process. If we

plot the reff versus No in the log log scale, a straight line can be obtained as

shown in Fig. 5 for both unimolecular and bimolecular mechanism. The slope, 6,

is equal to 0.68 t 0.07 and 0.79 t 0.08 for uni- and bi-molecular mechanism,

respectively. The difference in the values of a and 8 (for unimolecular

mechanism) between the growth and the reaction process could be due to the

initial distribution of the diffusive particles A. For the growth process, all

the probing particles are staying at far away from the aggregate. However, in

our simulation, the probing particles A are randomly distributed on the whole

lattice initially. This would allow some particles staying among the branches

of the aggregates in the beginning of the reaction. These particles could react

with the sites close to the center of aggregate without feeling the screening

effect from the outer branches. The meaning of 6 for bimolecular mechanism is

not very clear, and it is difficult to compare the values of d and 8.

For the bimolecular mechanism, the reaction consumes the same amount of

reactants A and B. If the number of reactant A reacted is compatible with the

total number of aggregate B, the relative change of reff would be larger during

the reaction period, and the shrinkage effect is more dominant in the smaller

aggregate. These factors would lead to a smaller value of & compared to the

unimolecular case. However, the total amount of reactant A (initial

concentration) would also affect the exponent 6. Because of the complexicity of

the shrinkage effect, there is no theoretical equation to predict the reaction

rate even for the circular boundary. The comparison between two kinds of

aggregates gives only the qualitative results, and there is no direct

14



correlation between the values of the 6 exponent for uni- and bi-molecular

mechanism.

In the earlier simulation of Silverberg et. &l.,$ they have studied the

effect of the geometric properties of aggregates to the reaction kinetics. The

reaction rate is dependent on the number of surface sites which are available

for the diffusive particles to react. However, for the dendritic DLA

aggregates, because of the strong screening effect, even though the surface area

12is linear to the total mass of the aggregate, only those sites which are

located at outer branches of the aggregate are useful for the reaction to occur.

Therefore, the diffusing reactant A might feel different screen effect of the

irregular surface (boundary) for the 'diffusion' controlled process and the

'reaction' controll process. In the present study, the 'diffusion' controlled

process is investigated, and we have concentrated on how the radii of these

'active zone' are varied during the reaction with the size of aggregates. With

the help of known results of diffusion controlled reaction on compact, circular

disk (Eq. 8), the information of reaction rate can be obtained from a single

parameter, roff, for the irregular shape aggregates.
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Figure Captions:

Figure 1:

The aggregate gernerated by the diffusion limited aggregation process as

described in reference 9. The total mass of the aggregate is 12,000 lattice

points.

Figure 2:

The slape of aggregate used for the simulation. (A) DLA aggregate with

2000 lattice point. (B) Circular aggregate with radii equal to 50.

Figure 3:

Plot of the reactant A concentration CAt) at different time t. CA(t) is

normalized to the initial concentration CA(t.0). The simulation is carried out

for unimolecular mechanism for the DLA aggregate (part A) and circular aggregate

(part B). In part A. the total mass of DLA aggregates are 2000.

1800,--- 1500, 1300,.---- 1000.--.- -800, and

500, respectively. In part B, the radii (total mass) of circular

aggregates are - 60 (11310), ---- 55 (903), - 50 (7854).

---- 45 (6362),.---- 40 (5027),.-.... 35 (3848), 30 (2827), and

20 (1257). respectively. For the same total mass, the DLA aggregates

react much faster than the circular one i.e.. DLA aggregate has larger effective

radius.
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Figure 4:

Plot of the reactant A concentration CA(t) at different time. CA(t) is

normalized to the initial concentration CA(two). The simulation is carried out

for bimolecular mechanism for the DLA aggregate (part A) and circular aggregate

(part B). In part A, the total mass of DLA aggregates are - 2000.

1800. --- 1500, ---.- 1300,---- 1000, -. . 800, aad

500, respectively. In part B, the radii (total mass) of circular

aggregates are - 60 (11310) 55 (9503),5--- 0 (7854),

-.-.- 45 (6362),.-----40 (5027).---- ..35 (3848), 30 (2827). and

- "20 (1257). respectively. For the bimolecular mechanism, the size (or

radius) of the aggregate decreases as time increases which would slow down the

reaction in comparison to the unimolecular mechanism. The shrinkage effect is

more dominant for DLA aggregate than the circular one due to its open structure.

Figure 5:

The 1oS-1oS plot of reff with No , where ref f  is the radius of circular

aggregate with the same reaction rate as the DLA aggregate of N total mass.0

Plots A and B are the resultS of unimolecular and bimolecular mechanism

respectively.
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