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PLANNING UNDER UNCERTAINTY USING PARALLEL COMPUTING 1

by George B. Dantsig

Abstract

Industry and government routinely solve deterministic mathematical programs for planning

and scheduling purposes, some involving thousands of variables with a linear or non-linear objective

and inequality constraints. The solutions obtained are often ignored because they don't properly

hedge against future contingencies. It is relatively easy to reformulate models to include uncertainty.

The bottleneck has been (and is) our capability to solve them. The time is now ripe for finding a

way to do so. To this end, we describe in this paper how large-scale system methods for solving

multi-staged systems, such as Bender's Decomposition, high-speed sampling or Monte Carlo simula-

tion, and parallel processors can be combined to solve some important planning problems involving

uncertainty. For example, parallel processors may make it possible to come to better grips with

the fundamental problems of planning, scheduling, design, and control of complex systems such as

the economy, an industrial enterprise, an energy system, a water-resource system, military models

for planning-and-control, decisions about investment, innovation, employment, and health-delivery

systems.
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1 Revision of an invited address before the XII"' Mathematical Programming Symposium, Au-
gust 1985, entitled "Need to do Planning Under Uncertainty and the Possibility of Using Parallel
Processors for this Purpose'
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Importance of Comng to Grips with Complexity

One approach to understanding complexity is to model large systems such as those of the

economy or large-scale enterprises and engineering systems in the form of mathematical systems

of linear and non-linear inequality constraints, and then seek a solution using computers that has

desirable properties such as maximising some objective function. The solutions can then be used as

guidelines for decision makers to follow. Parallel procemors may make it possible to come to better

grips with such problems.

Up to now, systems easiest to model and solve have been those whos resource availabilities,

possible choices of technology, and future demands are assumed known with certainty. Industry

and government routinely solve deterministic mathematical programs for planning and scheduling

purposes, some involving thousands of variables and inequality constraints. As noted in the ab-

stract, the solutions obtained are often ignored because they don't properly hedge against future

contingencies. It is relatively easy to reformulate models to include uncertainty. The bottleneck

has been (and is) our capability to solve them. The time is now ripe for finding a way to do so.

To this end, we describe how large-scale system methods for solving multi-staged systems, such as

Benders Decomposition, high-speed sampling, Monte Carlo simulation, and parallel procesors can

be combined to solve some important planning problems involving uncertainty.

Section 1 describes the classical approach to solving large-scale dynamic systems using nested

decomposition and how it can be applied to solving stochastic dynamic problems. Section 2 discusses

the computer architecture requirements and configurations in a broad sense that are suitable for

decomposition problems. Sections 3 and 4 detail the mathematical structure of the deterministic

and stochastic case including, in particular, capacity planning problems under uncertainty. Section

5 discusses a possible application to an intelligent control system with learning in a multi-stage

production system. Sections 6 and 7 describe on-going research and final comments.

1. PROGRESS TO DATE SOLVING LARGE-SCALE SYSTEMS

As early as 1970, it became evident that although much progress had been made in proposing

methods for solving very large-scale systems, especially those involving uncertainty, these were for

the most part ideas on paper - little or no testing had been done on practical problems. Because

there was no systematic testing, papers in the literature were in reality little more than academic

exercises in pure mathematics. In the 1970's, many places like Stanford's newly formed Systems

Optimisation Laboratory began to place greater emphasis on systematically testing algorithms on
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rea applications. Research has now reached the stage in which basic software tools are being used

for extensive testing and development an deterministic dynamic lnea programs. 2 Techniques under

study include variants of the simplax method, interior solution methods, and nested decomposition.
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While there has been much progres on the deterministic clas outlined on the left branch in

the above diagram, the many problems involving uncertainty shown on the right branch are by

far the most important and require for their solution computers more powerful or of a different

'architecture* than those presently available.

1.1 Soln Stochastc Dynamic Programs

Stochastic dynamic progrm or multi-stage programs can always be transformed into a de-

teministic one by a certainty equivalet, ie., by adding additional constraints. The resulting

2 Dmtsig, Dmp ter, and KaUio, ads. (1961) can be used as a gneral reference source of research
work os uncertainty; this source also contains 25 pages of references.

3 This is a photo copy of a diagram an pap S f Dantsig (1963).
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matrix structure consists of many submatrices strung together in a tree-like structure. While

forming a certainty equivalent is theoretically possible, it is rarely a practical approach because of

the exponential growth in the size of the system to be solved. Instead crude indirect methods are

used to account for some of the uncertainty. For example, after an analyst solves a large dynamic

linear program of an industrial complex, or a dynamic equilibrium-type model for studying the

economy, he typically tests how sensitive his solution is to various uncertainties by calculating the

effects of small changes in parameters and analyses the effects of larger changes by solving a number

of scenarios.

Other devices are also used. For example, the original problem is often treated as one of deciding

"here-and-now' what single path of actions to take into the future rather than deciding here and

now what myriad of alternative paths to take in the future, each path depending on which of a

myriad of future events occur. The 'system capacities expansion' problem, which we will discuss

later, belongs to this single-path class.

In spite of inherent difficulties solving problems involving uncertainty, there has been active

research extending large-scale deterministic methodology. Early examples are Dantsig (1955) and

Charnes and Cooper (1955); a more recent one is Beale, Dantsig, and Watson (1986). The case of

two-staged planning under uncertainty has been extensively studied by Wets and reported in Wets

(1984); also Edwards (1985).

1.2 Nested Decomposition

The recent research of Birge (1980) for the multi-stage case under uncertainty, the dual nested-

decomposition method of R. Wittrock (1983) for linear programs, and that of D. Scott (1985) for

non-linear programs provides a promising starting methodology for attacking dynamic stochastic

problems. Each time period is linked to the next time period by many subprograms in parallel each

representing some random set of circumstances. Each of these in turn have subprograms in the next

period in parallel and these in turn have many subprograms in parallel in the following period, etc.

These subprograms fan out forming the tree-like structure referred to earlier. All arcs of the directed

tree having a node in common correspond to the subprograms having the same starting conditions.

The general idea of dual nested decomposition is to provide each period with a set of additional

constraints that it must obey if it is to generate outputs that allow future periods to be feasible

and if feasible to take on values that include those that optimize the problem over all time periods.

I he iterative proems sharpens thes additional constraints, called *Bender@ Cuts', to the point
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that they become both necessry and sufficient. These 'cutse are substitutes or surrogate. for the

future. The method moves 'forward in time by supplying starting conditions for the next period

and 'backwards in time' by generating cuts for the proceeding period. Eventually the method

generates at most m additional inequalities that period t must satisfy (not counting those that are

not tight in the final solution) where m is the number of equations in the period t + 1 subproblem.

Parallel processors can be effectively employed in the dual nested decomposition approach to

estimate the cuts by means of high-speed sampling of random events.

The general case of dual dynamic stochastic planning appears to be intractable by current meth-

ods even if parallel processors were inexpensive and available in quantity because of the proliferation

in the number of branches in the tree of possible future paths. These grow exponentially as uncer-

tain events follow upon uncertain events, on and on into the future. However, there are important

subclasses, such as the one mentioned earlier of the determination of a plan for the expansion of the

vector of capacities of a production system, which show much promise. For the latter, proliferation

does not occur if the random events in a future period do not affect the amount of installed capaci-

ties, or the resources carried forward to the next period, or the random events of future periods. If

so, only expected values (in a certain sense) associated with the random events of a period need be

taken into account.

2. COMPUTER ARCHITECTURE

In the past, researchers in the large-scale linear programnming area have been content to make

the best use of thL- equipment available rather than to ask what future computer architectures would

be best suited to their needs. But this may no longer be the case, Parallel computers which can

be configured in various ways are becoming available and this has spurred interest in organizing

the computer architecture to make it more suitable for solving mathematical program. Thus, in

addition to ongoing research developing, comparing and perhaps merging promising approaches to

solve stochastic dynamic linear programs, such as special adaptations of the simplex method, interior

methods, and dual-nested decomposition, there is now the opportunity to explore ways in which new

architectures for supercomputers - parallel and pipeline - can also be used to improve efficiency.

It might seem that one way to modify LP computations to fit new architectures would be to

take advantage of their vector processing capabilities. However, present-day codes are efficient with

commercially available hardware because the software algorithms have been cleverly designed to

maintain during the course of the computations to the maximum extent possible the sparsity of
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non-zero coefficients of the initial data. Any obvious, simple-minded adaptation of current soft-

ware to parallel processors which does not maintain spaxsity but stores zeros explicitly is likely to

prohibitively increase storage requirements and not show much improvement, if any, over existing

methods.

In the dual nested-decomposition approach, it is possible to arrange the computation so that

each stage gathers dual 'price information from later stages and 'starting condition' information

from early stages. We believe for the deterministic case that efficient algorithms using this approach

can be devised which allow all computations to proceed in parallel while not stopping to wait for

the most current information to be communicated.

In the analogous stochastic problem, parallel processors at the next-to-last time period (or

stage) could be receiving as input the average of the dual vectors generated so far by the random

events of the next stage. This process can be repeated back to the first time stage. All of the

processors at all stages could be running in parallel, each feeding information to earlier and later

stages. In this configuration, there could be one or many computers at each node of the branching

tree busily doing high speed sampling of random events.

As noted earlier, for the most general case of planning under uncertainty there are severe

limitations to this extension of the nested decomposition approach because of the exponential growth

in the size of the problem. For the special case of the capacities expansion problem which we will

discuss later, the prospects are much brighter since there is only a single path of capacities to be

decided upon here and now for future periods. The capacities expansion problem, therefore, is a

natural one to develop because there is no special need to warp existing algorithms into a parallel

form. Indeed the parallel computer architecture required need be of nothing more sophisticated

than a string of inexpensive personal computers tied together by a simple closed-loop bus; the PCs

become high-speed sampling devices which simulate the uncertain events.

We will now discuss the mathematical structure of the multi-period and multi-staged planning

problems beginning with the deterministic case. It will enable us to see why the problem grows

exponentially in size when we extend its structure to include the general stochastic case. It will

also become clear why, if we restrict the extension to the important class of investment or capacity

expansion planning over time, the mss does not grow exponentially. For the latter, we decide here

and now what our expansion plan over time will be. There is no need for in-course corrections

(branching) later on because the random events that occur within a period do not affect capacities
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carried forward to subsequent periods. The formulation assumes that the random events of one

period are independent of those of subsequent periods.

Not all problems involving uncertainty, however, fit this "here and now" mold. Sometimes a

high demand for a product in one period implies a trend towards higher demand in the future. What

one can do in this more general case is to limit the number of alternative future paths considered

to a few main trends or contingencies that can happen in the future. In practice, this is donc by

boldly pruning the decision tree down to a few branches in order that the resulting model be of a

size that it can be solved. [Wets 1966, Birge 1980, Dantzig 1963.1

3. MATHEMATICAL STRUCTURE OF THE DETERMINISTIC CASE

Lower block-triangular matrix structures are typical for planning problems over time because

activities initiated in period t have input and output coefficients in periods t, t + 1. For example,

for T = 3 periods:

A 21  A 2  (1)
A31 A32 A33

By the introduction of in-process inventories and other devices linear programs of lower block-

triangular type are mathematically equivalent to staircase or multistage problems of the form:

FIND min Z and vectors Xt > 0, such that

b1 = A 1X

b2 = -BXj +A 2 X 2

= -BtjX,-. +AXt

6T = -B*- XT-1 +ATXT

(min) Z = cjX, +...+c X, +... +CrXT (2)

where matrices A4 , B, and vectors bt, ct are given [Dantzig 19683]. A number of promising methods for

solving such systems are known such as: Dantsig and Wolfe (1960), Glassey (1973), Ho and Loute

(1980), Ho and Manne (1974), Bisschop and Meeraus (1977), Fourer (1982, 1983, 1984), Nishiya

(1983), Jackson and Lynch (1986); for a general reference, see Dantsig, Dempster, and Kallio, eds.

(1981).
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4. IATHEMATICAL STRUCTURE OF STOCHASTIC CASE

For a very general class of stochastic planning problems, the values of lt, Bt- 1 A, c for t > 1

are not known to the planner with certainty at time 1 but could become known to him at some later

time r < t. The value r itself could be a random variable and there could be a different r for every

element of the matrices and vectors. While the values of these matrices may not be known, their

probability distributions could be given.

In such problems, the planner wants to make a decision X1 ; let random events happen; make

a decision in period t = 2; let random events happen; make a decision in period t = 3, etc. He may

wish to make the choice X, so that the expected value of Z is minimum. We now give reasons why

this general class of stochastic problems is likely to remain intractable in the foreseeable future with

or without the availability of parallel processors. We will then discuss less general, but important

classes of stochastic problems which at present are not practical to solve on mainframes but could

become so using parallel processors.

4.1. Two-stage Stochastic Case

We begin with the simplest two-stage case first studied in Dantzig (1955) and developed by R.

Wets (1966, 1984); see also E. Edwards (1985):

b1 = A1 X1  (XI,X 2):5 0

b2 = -B 1 X1 +A 2 X 2

(min) Z = c1 X1  +c2 X 2  (3)

where the first stage (b1 , A,, cl) are known with certainty while those of the second stage can take on

possibly a continuum of values (b2 (w), C2(w), B1 (w), A2 (w)) with probability (density) distribution

p2(c") for w in 0, or a discrete probability distribution p2 (w) where w = 1,2,..., K. The values of

w in 0 may therefore have a continuum of values, or it may take on a finite or an infinite set of

discrete values.

For (3), if the parameter w takes on say K = 3 distinct values, the stochastic problem of

minimizing expected costs under uncertainty has as its certainty equivalent the deterministic linear

program:

8



bind minZ, Xl > 0,X 2(w) > 0,w = 1,2,3-

bl(1) = A1X 1

........................................................... ..................

b2(1) -B(1)X 1 + A2(1)X2(1)

b2(2) -B(2)X1  + A2 (2)X 2 (2)

b2(3) - -BI(3)XI + A2 (3)X 2 (3)

. ................ ................... .................. ..... ..... .........

minZ = cX 1  +p2(1) c2 (1)X 2 (1) +p2(2)c2(2)X 2 (2) + p2 (3)c2 (3)X 2 (3) (4)

To simplify the discussion that follows, when optimal solutions exist we can assume without loss of

generality c2(w) _! 0; moreover, except as noted otherwise, B, is assumed independent of w.

Typically this problem is solved using "Benders" decomposition (see Benders (1962)). The key

idea is to replace the objective function contribution of the second period variables by a scalar 01,

and to replace the second period constraints - those shown in (4) between the dashed lines - by a

set of inequalities expressed in terms of X, and 01 only, which are necessary conditions for feasible

and optimal solutions to (4). These necessary conditions, (5.1), called "cuts", are added sequentially

(f = 1,2,...) to the first period problem until they become sufficient to solve (4). Cuts come in two

"flavors": feasibility cuts and optimality cuts. The 'MASTER" problem for Benders' decomposition

method has the form: A

MASTER PROBLEM. FIND min Z, X, 1 _ 0, > 0,

bi = AIX1,,

CUTS: g9<-G xi+6f10, =1, ,L (5.1)

min Z =cIXI + 1

where 61 = 0 for feasibility cuts if the corresponding subproblem is infeasible, and 6f = 1 for

optimality cuts if the corresponding subproblem is feasible. The solution X1 - X obtained is then

"tested" by solving the corresponding subproblem (6) below to see (i) if the starting conditions it

implies for the second period allows a feasible solution for the second period, and (ii) if it together

with the optimal solution to the second period provides a global optimum to the original problem.

The optimal W2(w) to (6) are used to generate the next cut 1+ 1 which is then added to those already

generated where
91+1 = w1 = (5.2)

(.9 (.9

91 = ritr2qli2mi) G'i a' N m io gi i mm 9.
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Assuming B, is independent of w, no more than L < m 2 of the cuts will be tight on any major

iteration, where m2 is the number of rows in B1 . This is so because G1 is geneated by linear

combinations of the rows of B, and hence has rank < r where r < n2 is the rank of B1 . The

remainder may be dropped (possibly to be regenerated on some later iteration).

This second period problem is called the *subproblem" or "SUB" for short. The SUB decom-

poses into K independent problems:

For each w in 0I, solve the SUB PROBLEM: Find min Z2 (w),X 2 (w) >_ 0:

Dual Prices

A 2 (W)X2 (W) = b(w) + BIX* :V2 (W)

P2(w) C2 (W)X 2 (c) = Z2 (W)(min) (6)

where fl = {wlw = (1,...,K)}. These problems are solved for w = 1,...,K and their optimal

prices or feasibility prices w(w) are computed to test feasibility and optimality. If the test fails

the expected values of ge+ 1 = C 2 (w)b 2 (w) and GE+1 = £ 2 (w)B1 are used to generate new cut

conditions to augment those of (5.1). Such an approach, however, is clearly only practical when

K is small. When K is large or infinite or varies as a continuous parameter, parallel computers

could be used as high-speed sampling devices to effectively solve such problems. One computer at

the MASTER level serves as an integrator. It is sequentially receiving as input estimates of cuts

(5.1) and solves (5), (5.1) to optimality with the estimates it has received so far; and generating,

as output, revised X, = X*. This process also provides a lower bound estimate for min Z which

monotonically increases with each solution of the master problem.

Several parallel computers could be at the SUB level each having as input the latest value of

X* and solving (6) in dual form for many random choices of w. When c2 , A2 are the same for all

w, the dual of (6) is an L.P. with only the dual objective b2 (w) changing. To provide cuts for the

MASTER, the parallel processors are used to determine the expected values of V2 (W) and X 2 (w) or

to approximate them by means of a large enough sample.

If it is practical to solve (6) for all w, the solutions to (6) would generate a valid cut and a

correct upper bound estimate for min Z. In that case, the difference between the lower bound and

upper bound estimates can then be used to test optimality of X1 for the original problem.

For the case where K is large, infinite, or w is continuous, it is no longer possible, in general, to

solve (6) for all w. Instead solutions to the SUB based on a ample ofw in n is used as the estimate. A
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key aspect of the current research a concerned with the sampling error of these estimates, particularly

the sampling error for the difference between the upper bound and lower bound estimates of Z which

is used as a stopping rule for terminating the computation.

Variance reduction techniques are often utilized in sampling to limit and decrease the total

computational work. The three most successful of these are for: 1) control variables, described in

Lavenberg and Welch (1981), and Rubinstein and Marcus (1985); 2) importance sampling, and 3)

stratified sampling. See Bratley, Fox, and Schrage (1983).

4.2. Multi-stage Stochastic Plannlng Problem.

The two-staged case (4) represents the simplest application of parallel computers to stochastic

programming. The general multi-staged case, using the corresponding "reduction' to the equivalent

deterministic linear program, however, becomes intractable due to the exponential increase in the

number of possible outcomes, see (7a) below for the case of T = 3.

2nd STAGE (7C

(7:1)

3rd STAGE E F G H I J L H N

In the first stage we have only one set of constraints for A, the same as (5.1). In the second

stage we could have K sets of constraints, shown as B, C, D in (7a), but there could be many more,

see (4). If each of these in turn has K outcomes in the third state, then we have a situation of K x K

sets of constraints in stage 3 shown as (EFGHIJLMN). It is now easy to see why, for K = co or

11 continuous, the proliferation of cae is out of hand. Even if large numbers of inexpensive parallel

procemors were available, it does not seem to be a practical way to solve stochastic problems in

general.

We therefore restrict our discussion to an important subclass of multistag uncertainty problems

whose tree-like matrixstruc more tractable, see (Th) below.
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91 (K1

E2(1)

STAGE 2 A2 CD a2(V2)

Z2(K) (7b)

STAGElr 3 A.3(Y3 )

The mathematical structure for T stages will be described later. For two stage, it has the form;

FIND min Z, vectors Xj _> 0, Uj (wt, Q) _? 0, wte E fn, t E rh such that

b, = AIX,

0 = -F (,,,OXI +DIUI(&j,(, )
dl (raj) = E ' '', 1
b2 = -BjXI +A2X2
0 =Ar2 +D2U2(",0)

d2 (02)F12 U2P2, 3 2

z = mx , + 2X2 +Cf1UI'(W,CO,) +C'f2U2(",rO)(8
where C denotes expectation over t stg , e E s at ,

An important application in this class is capacity planning problem under uncertainty. A

case in point in the fBeet planning by airlines - the problem in to plan over time the number of

aircraft of various types to have in the Res. Within each time period t (say one year), the Bleet

composition CAP is changed by buying now aircraft and selling off obsolete ones. Another good

example is the expansion of generating capacity and transmission line capacity of electric utilities.

For either example, the vector of capacities CAP in operating condition and the demand wre treated
as uncertin events in period t -s.hown ase,,),., u,f,, in th u di m.

12
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For this class of planning problems, the installed capacity is assumed not to be affected by

particular events that happen during the course of a year, i.e., by a particular value of the uncertain

demands or by a particular repair status of the capacity. Only the expected revenues and expected

failures (in some sense) to meet demands in the period affect the decision to invest in new capacity

or to get rid of old capacity. Note that our assumptions imply a "here and now" decision, namely

the solution takes the form of a single path over time and not one with branches for different

contingencies that arise in the future such as a high demand in year t implying a higher probability

of a high demand in year t + 1.

For this class of problems, the mathematical structure for capacity formation itself would be

the same as in (2), namely:

be = -B-,X-I + AtXt , for t = I,...,T and BoX0 - 0, (9)

where Xt >_ 0 are the planned capacities (to be determined) for period t at a cost Z = EceXt where

b/, At, Bt, ct are all known with certainty. The subproblem for period t is defined for some Xt = Xt

by first finding the amount of capacity available for use in period t:

wt(wt)Xt, wt in (It, (10)

which depends on Xt' and a random variable Wt measuring the proportion of Xt' requiring repair.

The probability distribution of wt is assumed known independent of X,. Letting dt (Qt) be uncertain

demand, we then solve for the dual multipliers and Zj that solves (11) below for each random choice

of right-hand side, i.e., for wt in 0, and vt, in fl, in order to determine their expected values. If the

number of discrete values of ,a are small, this can be done exactly. If large, then their expected

values can be estimated by sampling.

Dual Prices

D, U,(w,,Q) = F,,(w,)X, , U,(w,, ,) 0 0, : ,(,,)

E, U,(wi,r,) = d,(ro), Ds in fle, : ( 00

fU,( , Qt) = Z(min) (11)

where corresponding dual prices are shown on the right. These samples can be used to estimate

expected cuts I = 1,2,... of the form

4,< Gx, + ,; (12.1)

13



where 6,' = 0 if (11) is infeasible, else 6tt = 1, and where

= ,,(wt,G)d 2 (C ); G1 = E,,(Wt,rdt)F,(Wt) (12.2)

and a cost form
z = (caX + et). (13)

t

which, together with (9), form the MASTER PROBLEM (14) below.

Several parallel processors could be assigned to each stage. The processors receive Xt as inputs

from the MASTER PROGRAM generate random wt, at and solve the sub problems, and give back

to the MASTER approximate cuts (12.1) obtained by sampling. These cuts augment those obtained

earlier.

MASTER PROBLEM FOR A 3-STAGE PROBLEM.

FIND rin Z, Xt ? 0, Dt > 0:

b, = AIX,

b2 = -BIXI +A 2 X 2

b3 = -B2X2  +A 3 X3

t1' < G1 X +5110G
# ,,_< o 1 X 2 +"',02

0.1. _<+G3X 3 +$34 93

Min Z c1XA +01 +c2 X 2 +02 +C3 X3 +03 (14)

wheret=l,...,L1, 1=1,...,, 2 , 1 l ,...,Ls.

Note that the main MASTER PROBLEM has the form of a deterministic staircase system which

can be solved directly; or, if too large, can be solved using the dual nested decomposition approach,

see for example Abrahamson (1983) and Wittrock (1983). The advantage of the dual-decomposition

approach is that the parallel processors at each stage can be used effectively to provide information

in the form of X*+1 to the stage below and to pass back cuts generated in stage t to stage t - 1.

5. INTELLIGENT CONTROL SYSTEMS WITH LEARNING

In addition to the two important applicational mom for using parallel processors for planning

under uncertainty - two-stage planning and capacity planning over time - there is the possibility

14



of applying it to an automated production line. Envision a multi-stage production system with

sensors feeding information to computers which control each stage. Initially the control system is

provided with a set of general ground rules which is believed will keep the quality of the product

under control under a variety of random conditions and keep its variability to a inimum.

Suppose during production the sensors at some "down-stream" stage detect a loss of quality.

Under current procedures, feedback controls at that stage are activated to try to correct for the loss

of quality. Suppose we apply the same Benders Decomposition approach except to a multi-stage

P production system instead of to a time-stage system. Then in addition to the immediate feedback

control, the "cuts" passed back to the computer controlling the prior stage in the process can be

interpreted as ground rules that must be followed. This in turn generates cuts for stages further

upstream to obey. These cuts not only correct for the present "down-stream" loss of quality, but

cleverly erect a "barrier" that future states of the system must not cross. These can be "remembered"

by the computer in the form of a growing collection of necessary conditions (rules) which must not

be violated in the future. As new contingencies arise down-stream, the computers continuously learn

from experience by adding to their set of control constraints and thus become a control system with

memory and learning. 4

6. CURRENT RESEARCH AND TEST PROBLEMS

The Systems Optimization Laboratory at Stanford is currently doing research on a deterministic

version of the PILOT Macro-Economnic Model for the U.S. (see Dantzig, McAllister and Stone 1986)

and a simplified version of the electric-power expansion problem in stochastic form under the general

guidance of Mordecai Avriel and the author (see Bellovin 1986, and Yang 1985). The PILOT

Model is used for studying the impact of innovation, modernization, foreign competition, technology

assessment, and changes in economy due to shortages or high-cost energy supply (McAllister and

Stone, 1984). The electric-power generation and distribution problem is based on the electric power

generation and distribution network for California. We are currently using a version of the latter

two models for testing the applicability of using parallel procesors.

4 Pereira, Monticello, and Dantsig apply this approach to scheduling electric power systems with

security constraints (in progress).
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7. FINAL COMMENTS

Planning under uncertainty in the author's opinion is the most important outstanding problem

of Operations Research. In this paper we discussed the status of solving large-scale dynamic systems

and what types of large4cale stochastic time-stage systems are likely to remain intractable. What

we believe is tractable is the solution of an important subclass which we referred to as "capacity

planning over time. Examples include fleet planning problems for airlines or planning the expansion

of generators and transmission lines for multiple-area electric-power systems. We described an

approach to solving such problems using decomposition methods and parallel processors as high-

speed sampling devices.

Research has only just begun in this important field. The clasical approach has been to try

to reduce stochastic models to a *certainty equivalent' and to solve them by special large-scale

deterministic methods. In the author's opinion this approach remains important but limited in

scope. On the other hand, using Monte Carlo simulation in combination with large-scale methods,

while having a broader applicability, also has its limits, even if parallel processors were inexpensive

and available in quantity. A key problem that future research must solve is finding ways to keep

sample size small.
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SOL 87-1: "Planning Under Uncertainty Using Parallel Computing,"
by George B. Dantzig

Industry and government routinely solve deterministic mathematical programs
for planning and scheduling purposes, some Involving thousands of variables
with a linear or non-linear objective and inequality constraints. The
solutions obtained are often ignored because they don't properly hedge
against future contingencies. It is relatively easy to reformulate models to
include uncertainty. The bottleneck has been (and is) our capability to
solve them. The time is now ripe for finding a way to do so. To this end,
we describe in this paper how large-scale system methods for solving
multi-staged systems, such as Bender's Decomposition, high-speed sampling or
Monte Carlo simulation, and paralLel processors can be combined to solve some
important planning problems involving uncertainty. For example, parallel
processors may make it possible to come to better grips with the fundamental
problems of planning, scheduling, design and control of complex systems such
as the economy, an Industrial enterprise, an energy system, a water-resource
system, military models for planning-and-control, decisions about investment,
innovation, employment, and health-delivery sytems.
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