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PLANNING UNDER UNCERTAINTY USING PARALLEL COMPUTING !

' by George B. Dantszig

\
\
Abstract

~
Industry and government routinely solve deterministic mathematical programs for planning

and scheduling purposes, some involving thousands of variables with a linear or non-linear objective
and inequality constraints. The solutions obtained are often ignored because they don’t properly
hedge against future contingencies. It is relatively easy to reformulate models to include uncertainty.
The bottleneck has been (and is) our capability to solve them. The time is now ripe for finding a
way to do so. To this end, we describe in this paper how large-scale system methods for solving
multi-staged systems, such as Bender’s Decomposition, high-speed sampling or Monte Carlo simula-
tion, and parallel processors can be combined to solve some important planning problems involving
uncertainty. For example, parallel processors may make it possible to come to better grips with
the fundamental problems of planning, scheduling, design, and control of complex systems such as
the economy, an industrial enterprise, an energy system, a water-resource system, military models

for planning-and-control, decisions about investment, innovation, employment, and health-delivery

systems.
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Importance of Coming to Grips with Complexity

One approach to understanding complexity is to model large aystems such as those of the
economy or large-scale enterprises and engineering systems in the form of mathematical systems
of linear and non-linear inequality constraints, and then seek a solution using computers that has
desirable properties such as maximizing some objective function. The solutions can then be used as
guidelines for decision makers to follow. Parallel processors may make it possible to come to better
grips with such problems.

Up to now, systems easiest to model and solve have been those whose resource availabilities,
possible choices of technology, and future demands are assumed known with certainty. Industry
and government routinely solve deterministic mathematical programs for planning and scheduling
purposes, some involving thousands of variables and inequality constraints. As noted in the ab-
stract, the solutions obtained are often ignored because they don’t properly hedge against future
contingencies. It is relatively easy to reformulate models to include uncertainty. The bottleneck
has been (and is) our capability to solve them. The time is now ripe for finding a way to do so.
To this end, we describe how large-scale system methods for solving multi-staged systems, such as
Benders Decomposition, high-speed sampling, Monte Carlo simulation, and parallel procesors can
be combined to solve some important planning problems involving uncertainty.

Section 1 describes the classical approach to solving large-scale dynamic systems using nested
decomposition and how it can be applied to solving stochastic dynamic problems. Section 2 discusses
the computer architecture requirements and configurations in a broad sense that are suitable for
decomposition problems. Sections 3 and 4 detail the mathematical structure of the deterministic
and stochastic case including, in particular, capacity planning problems under uncertainty. Section
5 discusses a possible application to an intelligent control system with learning in a multi-stage
production system. Sections 8 and 7 describe on-going research and final comments.

1. PROGRESS TO DATE SOLVING LARGE-SCALE SYSTEMS

As early as 1970, it became evident that although much progress had been made in proposing
methods for solving very large-scale systems, especially those involving uncertainty, these were for
the most part ideas on paper - little or no testing had been done on practical problems. Because
there was no systematic testing, papers in the literature were in reality little more than academic
exercises in pure mathematics. In the 1970’s, many places like Stanford’s newly formed Systems
Optimisation Laboratory began to place greater emphasis on systematically testing algorithms on
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real applications. Research has now reached the stage in which basic software tools are being used
for extensive testing and development on deterministic dynamic linear programs.? Techniques under
study include variants of the simplex method, interior solution methods, and nested decomposition.

Classification of Programming Problems?®

Discrete or Continuous
Multistage or Noa-Multistage
(Dynamis or l'tu-byu-ie)

Deterministio Probebilistic
N J
|

e e =

Convex Na- Known Unknown  Two- Multi.

Strue-  Strue- Proba- Proba. Pereon Person
tures tures bility bility Games Games
Distribu- Distribu.
tion tion

SpEciAL CasEs OF TRE ADOVE

Linear Dynamic Decreasing Incressing Inventory Sequential Zero-sum Coalition
hoqulity-ym. payoft, returns  ocontrol, decisions games theory
Leontisf Chemical to scale, Markov
models, equilib- Many chains
Networks rium, local
Convex maxime

programs

While there has been much progress on the deterministic class outlined on the left branch in
the above diagram, the many problems involving uncertainty shown on the right branch are by
far the most important and require for their solution computers more powerful or of a different
“architecture® than those presently available.

1.1 Solving Stochastic Dynamic Programs

Stochastic dynamic programs or multi-stage programs can always be transformed into a de-
terministic one by a “certainty equivalent®, i.e., by adding additional constraints. The resulting

? Dantsig, Dempster, and Kallio, eds. (1961) can be used as a general reference sourcs of research
work on uncertainty; thummnhomtmzspuudrdmneu

S This is & photo copy of a diagram on page 8 of Dantsig (1963).
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matrix structure consists of many submatrices strung together in a tree-like structure. While
forming a certainty equivalent is theoretically possible, it is rarely a practical approach because of
the exponential growth in the sise of the system to be solved. Instead crude indirect methods are
used to account for some of the uncertainty. For example, after an analyst solves a large dynamic
linear program of an industrial complex, or a dynamic equilibrium-type model for studying the
economy, he typically tests how sensitive his solution is to various uncertainties by calculating the
effects of small changes in parameters and analyses the effects of larger changes by solving a number

of scenarios.

Other devices are also used. For example, the original problem is often treated as one of deciding
“here-and-now” what single path of actions to take into the future rather than deciding here and
now what myriad of alternative paths to take in the future, each path depending on which of a
myriad of future events occur. The “system capacities expansion” problem, which we will discuss
later, belongs to this single-path class.

In spite of inherent difficulties solving problems involving uncertainty, there has been active
research extending large-scale deterministic methodology. Early examples are Dantsig (1955) and
Charnes and Cooper (1955); a more recent one is Beale, Dantsig, and Watson (1986). The case of
two-staged planning under uncertainty has been extensively studied by Wets and reported in Wets
(1984); also Edwards (1985).

1.2 Nested Decompoeition

The recent research of Birge (1980) for the multi-stage case under uncertainty, the dual nested-
decomposition method of R. Wittrock (1983) for linear programs, and that of D. Scott (1985) for
non-linear programs provides a promising starting methodology for attacking dynamic stochastic
problems. Each time period is linked to the next time period by many subprograms in parallel each
representing some random set of circumstances. Each of these in turn have subprograms in the next
period in parallel and these in turn have many subprograms in parallel in the following period, etc.
These subprograms fan out forming the tree-like structure referred to earlier. All arcs of the directed
tree having a node in common correspond to the subprograms havﬁg the same starting conditions.

The general idea of dual nested decomposition is to provide each period with a set of additional
constraints that it must obey if it is to generate outputs that allow future periods to be feasible
and if feasible to take on values that include those that optimise the problem over all time periods.
The iterative process sharpens these additional constraints, called *Benders Cuts”, to the point
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that they become both necessary and sufficient. These “cuts® are substitutes or surrogates for the
future. The method moves “forward in time” by supplying starting conditions for the next period
and “backwards in time® by genmerating cuts for the proceeding period. Eventually the method
generates at most m additional inequalities that period ¢t must satisfy (not counting those that are
not tight in the final solution) where m is the number of equations in the period ¢ + 1 subproblem.

Parallel processors can be effectively employed in the dual nested decomposition approach to
estimate the cuts by means of high-speed sampling of random events.

The general case of dual dynamic stochastic planning appears to be intractable by current meth-
ods even if parallel processors were inexpensive and available in quantity because of the proliferation
in the number of branches in the tree of possible future paths. These grow exponentially as uncer-
tain events follow upon uncertain events, on and on into the future. However, there are important
subclasses, such as the one mentioned earlier of the determination of a plan for the expansion of the
vector of capacities of a production system, which show much promise. For the latter, proliferation
does not occur if the random events in a future period do not affect the amount of installed capaci-
ties, or the resources carried forward to the next period, or the random events of future periods. If
so, only expected values (in a certain sense) associated with the random events of a period need be

taken into account.

2. COMPUTER ARCHITECTURE

In the past, researchers in the large-scale linear programming area have been content to make
the best use of th= equipment available rather than to ask what future computer architectures would
be best suited to their needs. But this may no longer be the case. Parallel computers which can
be configured in various ways are becoming available and this has spurred interest in organizing
the computer architecture to make it more suitable for solving mathematical programs. Thus, in
addition to ongoing research developing, comparing and perhaps merging promising approaches to
solve stochastic dynamic linear programs, such as special adaptations of the simplex method, interior
methods, and dual-nested decomposition, there is now the opportunity to explore ways in which new
architectures for supercomputers — parallel and pipeline — can also be used to improve efficiency.

It might seem that one way to modify LP computations to fit new architectures would be to
take advantage of their vector processing capabilities. However, present-day codes are efficient with
commercially available hardware because the software algorithms have been cleverly designed to

maintain during the course of the computations to the maximum extent possible the sparsity of
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non-zero coefficients of the initial data. Any obvious, simple-minded adaptation of current soft-
ware to paralle] processors which does not maintain sparsity but stores zeros explicitly is likely to
prohibitively increase storage requirements and not show much improvement, if any, over existing
methods.

In the dual nested-decomposition approach, it is possible to arrange the computation so that
each stage gathers dual “price” information from later stages and “starting condition® information
from early stages. We believe for the deterministic case that efficient algorithms using this approach
can be devised which allow all computations to proceed in parallel while not stopping to wait for

the most current information to be communicated.

In the analogous stochastic problem, parallel processors at the next-to-last time period (or
stage) could be receiving as input the average of the dual vectors generated so far by the random
events of the next stage. This process can be repeated back to the first time stage. All of the
processors at all stages could be running in parallel, each feeding information to earlier and later
stages. In this configuration, there could be one or many computers at each node of the branching
tree busily doing high speed sampling of random events.

As noted earlier, for the most general case of planning under uncertainty there are severe
limitations to this extension of the nested decomposition approach because of the exponential growth
in the size of the problem. For the special case of the capacities expansion problem which we will
discuss later, the prospects are much brighter since there is only a single path of capacities to be
decided upon here and now for future periods. The capacities expansion problem, therefore, is a
natural one to develop because there is no special need to warp existing algorithms into a parallel
form. Indeed the parallel computer architecture required need be of nothing more sophisticated
than a string of inexpensive personal computers tied together by a simple closed-loop bus; the PCs
become high-speed sampling devices which simulate the uncertain events.

We will now discuss the mathematical structure of the multi-period and multi-staged planning
problems beginning with the deterministic case. It will enable us to see why the problem grows
exponentially in size when we extend its structure to include the general stochastic case. It will
also become clear why, if we restrict the extension to the important class of investment or capacity
expansion planning over time, the sise does not grow exponentially. For the latter, we decide here
and now what our expansion plan over time will be. There is no need for in-course corrections

(branching) later on because the random events that occur within a period do not affect capacities




carried forward to subsequent periods. The formulation assumes that the random events of one
period are independent of those of subsequent periods.

Not all problems involving uncertainty, however, fit this “here and now” mold. Sometimes a
high demand for a product in one period implies a trend towards higher demand in the future. What
one can do in this more general case is to limit the number of alternative future paths considered
to a few main trends or contingencies that can happen in the future. In practice, this is donc by
boldly pruning the decision tree down to a few branches in order that the resulting model te of a
size that it can be solved. [Wets 1966, Birge 1980, Dantzig 1963.)

3. MATHEMATICAL STRUCTURE OF THE DETERMINISTIC CASE

Lower block-triangular matrix structures are typical for planning problems over time because

activities initiated in period t have input and output coefficients in periods ¢,t+1,.... For example,
for T = 3 periods:
A1
A1 A (1)
As1 A3z Ass

By the introduction of in-process inventories and other devices linear programs of lower block-

triangular type are mathematically equivalent to staircase or multistage problems of the form:

FIND min Z and vectors X; > 0, such that

b = A1 X
by = -B1X; +A43X;

h = —B_1X¢-1 +AcX,
br = —Br_y Xt +Ar Xr
(min) Z = e; X1 +-oteeXe +oo0 +orXr 2

where matrices A¢, B, and vectors b, c, are given [Dantzig 1963]. A number of promising methods for
solving such systems are known such as: Dantzig and Wolfe (1960), Glassey (1973), Ho and Loute
(1980), Ho and Manne (1974), Bisschop and Meeraus (1977), Fourer (1982, 1983, 1984), Nishiya
(1983), Jackson and Lynch (1986); for a general reference, see Dantsig, Dempster, and Kallio, eds.
(1981).
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4. MATHEMATICAL STRUCTURE OF STOCHASTIC CASE

For a very general class of stochastic planning problems, the values of b, B;—y, A¢, ¢ for t > 1
are not known to the planner with certainty at time 1 but could become known to him at some later
time 7 < ¢t. The value r itself could be a random variable and there could be a different r for every
element of the matrices and vectors. While the values of these matrices may not be known, their

probability distributions could be given.

In such problems, the planner wants to make a decision X,; let random events happen; make
a decision in period t = 2; let random events happen; make a decision in period t = 3, etc. He may
wish to make the choice X; so that the expected value of Z is minimum. We now give reasons why
this general class of stochastic problems is likely to remain intractable in the foreseeable future with
or without the availability of parallel processors. We will then discuss less general, but important
classes of stochastic problems which at present are not practical to solve on mainframes but could

become so using parallel processors.

4.1. Two-stage Stochastic Case

We begin with the simplest two-stage case first studied in Dantzig (1955) and developed by R.
Wets (1966, 1984); see also E. Edwards (1985):

h =4A41X, (X1,X2) <0
b = -B1 X1 +A2X;
(min) Z =e1X1 +exXy (3)

where the first stage (b;, A1, c;) are known with certainty while those of the second stage can take on
possibly a continuum of values (b3(w), c2(w), B1(w), Az(w)) with probability (density) distribution
p2(w) for w in 01, or a discrete probability distribution p;(w) where w = 1,2,..., K. The values of
w in {1 may therefure have a continuum of values, or it may take on a finite or an infinite set of

discrete values.

For (3), if the parameter w takes on say K = 3 distinct values, the stochastic problem of
minimizing expected costs under uncertainty has as its certainty equivalent the deterministic linear

program:




Find min Z, X, >0,X;(w)>0,w=1,2,3:

.............................................................................

ba(1) = —~By(1)X, + A3(1)X3(1)

52(2)2 —Bl(Z)Xl + A3(2)X3(2)
b:(3) = —Bi1(3)X, +  A3(3)Xa(3)
mnZ= aXi +pa(l) 2(1)Xa(1) +pa(2)ea(2)Xa(2) + pa(3)e(3)Xa(3) (4)

To simplify the discussion that follows, when optimal solutions exist we can assume without loss of

generality c3(w) > 0; moreover, except as noted otherwise, B, is assumed independent of w.

Typically this problem is solved using “Benders® decomposition (see Benders (1962)). The key
idea is to replace the objective function contribution of the second period variables by a scalar 4,,
and to replace the second period constraints — those shown in (4) between the dashed lines — by a
set of inequalities expreased in terms of X; and 6, only, which are necessary conditions for feasible
and optimal solutions to (4). These necessary conditions, (5.1), called “cuts”, are added sequentially
(¢=1,2,...) to the first period problem until they become sufficient to solve (4). Cuts come in two
“flavors”: feasibility cuts and optimality cuts. The “MASTER” problem for Benders’ decomposition
method has the form:

MASTER PROBLEM. FIND min Z, X, >0, §, > 0,

b = A1 X;,
CUTS: ¢f <-GiX,+6%,, €=1,...,L (5.1)
minZ =¢, X; + 6,
where 5{ = O for feasibility cuts if the corresponding subproblem is infeasible, and 6f = 1 for
optimality cuts if the corresponding subproblem is feasible. The solution X; == X} obtained is then
“tested” by solving the corresponding subproblem (8) below to see (i) if the starting conditions it
implies for the second period allows a feasible solution for the second period, and (i) if it together
with the optimal solution to the second period provides a global optimum to the original problem.
The optimal x3(w) to (6) are used to generate the next cut £+ 1 which is then added to those already

generated where

07 = Cm@h) G = Y x(w)Bi(w) G2

9
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Assuming B, is independent of w, no more than L < m; of the cuts will be tight on any major
iteration, where m; is the number of rows in B;,. This is so because G¢ is geneated by linear
combinations of the rows of B, and hence has rank < r where r < m; is the rank of B;. The

remainder may be dropped (poesibly to be regenerated on some later iteration).

This second period problem is called the “subproblem” or “SUB” for short. The SUB decom-
poses into K independent problems:

For each w in (1, solve the SUB PROBLEM: Find min Z;(w), X3(w) > O:

Dual Prices
Aj(w) X3 (w) = ba(w) + B1 X3 : wg(w)
Pa(w) - c3(w)X3(w) = Z3(w)(min) (6)

where 1 = {wjw = (1,...,K)}. These problems are solved for w = 1,..., K and their optimal
prices or feasibility prices x(w) are computed to test feasibility and optimality. If the test fails
the expected values of gi*! = £xy(w)by(w) and Gt = £x,(w)B; are used to generate new cut
conditions to augment those of (5.1). Such an approach, however, is clearly only practical when
K is small. When K is large or infinite or varies as a continuous parameter, parallel computers
could be used as high-speed sampling devices to effectively solve such problems. One computer at
the MASTER level serves as an integrator. It is sequentially receiving as input estimates of cuts
(5.1) and solves (5), (5.1) to optimality with the estimates it has received so far; and generating,
as output, revised X; = X7. This process also provides a lower bound estimate for min Z which

monotonically increases with each solution of the master problem.

Several parallel computers could be at the SUB level each having as input the latest value of
X; and solving (6) in dual form for many random choices of w. When c;, A, are the same for all
w, the dual of (8) is an L.P. with only the dual objective b;(w) changing. To provide cuts for the
MASTER, the parallel processors are used to determine the expected values of x5(w) and X, (w) or

to approximate them by means of a large enough sample.

If it is practical to solve (6) for all w, the solutions to (6) would generate a valid cut and a
correct upper bound estimate for min Z. In that case, the difference between the Jower bound and

upper bound estimates can then be used to test optimality of X} for the original problem.

For the cases where K is large, infinite, or w is continuous, it is no longer possible, in general, to

solve (6) for all w. Instead solutions to the SUB based on a sample of w in 1 is used as the estimate. A
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key aspect of the current research is concerned with the sampling error of these estimates, particularly
the sampling error for the difference between the upper bound and lower bound estimates of Z which

is used as a stopping rule for terminating the computation.

Variance reduction techniques are often utilised in sampling to limit and decrease the total
computational work. The three most successful of these are for: 1) control variables, described in
Lavenberg and Welch (1981), and Rubinstein and Marcus (1985); 2) importance sampling, and 3)
stratified sampling. See Bratley, Fox, and Schrage (1983).

4.2. Multi-stage Stochastic Planning Problem.

The two-staged case (4) represents the simplest application of parallel computers to stochastic
programming. The general multi-staged case, using the corresponding “reduction” to the equivalent
deterministic linear program, however, becomes intractable due to the exponential increase in the

number of possible outcomes, see (7a) below for the case of T' = 3.

1st STAGE

2nd STAGE c D

l (73)

3rd STAGE € F G H I J L M N

In the first stage we have only one set of constraints for A, the same as (5.1). In the second
stage we could have K sets of constraints, shown as B, C, D in (7a), but there could be many more,
see (4). If each of these in turn has K outcomes in the third state, then we have a situation of K x K
sets of constraints in stage 3 shown as (EFGHIJLMN). It is now easy to see why, for K = oo or
1 continuous, the proliferation of cases is out of hand. Even if large numbers of }nexpensive parallel
processors were available, it does not seem to be a practical way to solve stochastic problems in
general.

We therefore restrict our discussion to an important subclass of multi-stage uncertainty problems
whoee tree-like matrix struc more tractahle, see (7b) below.

11
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STAGE | A

STAGE 2 Az

(75)

STAGE 3 A,

The mathematical structure for T stages will be described later. For two stages, it has the form;

FIND minZ, vectors X; >0, Up(we,@¢) 20, wy €0y, @ € 3¢ such that

b = A1 X3

0 = -Fi(w1)X) +D, Uy (wy,@1)

di(@1) = EyUy(wy,@1)

by =-Bi1 Xy +A3X,

(] = ~Fa(wq) +DyU3(wa,@q)

d3(@3) = EyUs(wa, @3)

zZ =aX +eaXs  +€ [1Ui(w1,@1) +€ f3Ua(wa, @3) (8)

where £ denotes expectation over w; € {3y, @, € {1;.

An important application in this class is capacity planning problems under uncertainty. A
case in point is the fleet planning by airlines — the problem is to plan over time the number of
aircraft of various types to have in the fleet. Within each time period ¢ (say one year), the fleet
composition CAP; is changed by buying new aircraft and selling off obsolete ones. Another good
example is the expansion of generating capacity and transmission line capacity of electric utilities.
For either example, the vector of capacities C AP, in operating condition and the demand are treated
as uncertain events in period ¢ — shown as Ey(1),..., E¢(w),. .. in the diagram.

12




For this class of planning problems, the installed capacity is assumed not to be affected by
particular events that happen during the course of a year, i.e., by a particular value of the uncertain
demands or by a particular repair status of the capacity. Only the expected revenues and expected
failures (in some sense) to meet demands in the period affect the decision to invest in new capacity
or to get rid of old capacity. Note that our assumptions imply a “here and now” decision, namely
the solution takes the form of a single path over time and not one with branches for different
contingencies that arise in the future such as a high demand in year ¢ implying a higher probability
of a high demand in year ¢ + 1.

For this class of problems, the mathematical structure for capacity formation itself would be

the same as in (2), namely:
b‘=—B¢_1Xt—1+A¢X¢, for t=l,...,T and BoXoEO, (9)

where X; > O are the planned capacities (to be determined) for period ¢ at a cost Z = ¢, X where
be, A¢, By, ¢, are all known with certainty. The subproblem for period t is defined for some X; = X
by first finding the amount of capacity available for use in period t:

Fe(we) Xy, we in O, (10)

which depends on X; and a random variable w; measuring the proportion of X; requiring repair.
The probability distribution of w, is assumed known independent of X;'. Letting d¢(@,) be uncertain
demand, we then solve for the dual multipliers and Z; that solves (11) below for each random choice
of right-hand side, i.e., for w, in {1, and @, in {1, in order to determine their expected values. If the
number of discrete values of wy,@, are small, this can be done exactly. If large, then their expected
values can be estimated by sampling.

Dual Prices
D¢ Up(we, @) = Fe(wn) X7 Us(we, @) >0, : w¢ (we, @)
Eq Ug(we, @) = de(@e) , @¢ in £, : ®e(we, @e)
feUe(we, @) = Zy(min) (11)

where corresponding dual prices are shown on the right. These samples can be used to estimate
expected cuts £=1,2,... of the form

9 < G{X, + 80, ; (12.1)

13
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where 8¢ = 0 if (11) is infeasible, else §¢ = 1, and where
98 = Exg(we, @ )da(@); Gf = Eme(we, @) Fie(wr) (12.2)
and a cost form
Z=) (ceXe+0:). (13)
t

which, together with (9), form the MASTER PROBLEM (14) below.

Several parallel processors could be assigned to each stage. The processors receive X as inputs
from the MASTER PROGRAM generate random wy, & and solve the sub problems, and give back
to the MASTER approximate cuts (12.1) obtained by sampling. These cuts augment those obtained

earlier.

MASTER PROBLEM FOR A 3-STAGE PROBLEM.
FIND min Z, X, > 0,0, > O:

b =A X,
b =-B1X) +A3X,
by = -B3X; +As X3
gt <Ghxy +500
97 < G X +6320;
93 < +GE Xy +6520,
mnZ =Xy 40 +ec3 Xz +02 +cs Xs +0s (14)

where £; =l,...,L1, lq=l,...,L2, ‘g=l,...,L3.

Note that the main MASTER PROBLEM has the form of a deterministic staircase system which
can be solved directly; or, if too large, can be solved using the dual nested decomposition approach,
see for example Abrahamson (1983) and Wittrock (1983). The advantage of the dual-decomposition
approach is that the parallel processors at each stage can be used effectively to provide information
in the form of X7, ; to the stage below and to pass back cuts generated in stage ¢ to stage t — 1.

5. INTELLIGENT CONTROL SYSTEMS WITH LEARNING

In addition to the two important applicational areas for using parallel processors for planning
under uncertainty — two-stage planning and capacity planning over time — there is the possibility
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of applying it to an automated production line. Envision a multi-stage production system with
sensors feeding information to computers which control each stage. Initially the control system is
provided with a set of general ground rules which is believed will keep the quality of the product

under control under a variety of random conditions and keep its variability to a minimum.

Suppose during production the sensors at some “down-stream” stage detect a loss of quality.
Under current procedures, feedback controls at that stage are activated to try to correct for the loss
of quality. Suppose we apply the same Benders Decomposition approach except to a multi-stage
production system instead of to a time-stage system. Then in addition to the immediate feedback
control, the “cuts” passed back to the computer controlling the prior stage in the process can be
interpreted as ground rules that must be followed. This in turn generates cuts for stages further
upstream to obey. These cuts not only correct for the present “down-stream” loss of quality, but
cleverly erect a “barrier” that future states of the system must not cross. These can be “remembered”
by the computer in the form of a growing collection of necessary conditions (rules) which must not
be violated in the future. As new contingencies arise down-stream, the computers continuously learn
from experience by adding to their set of control constraints and thus become a control system with

memory and learning. *

6. CURRENT RESEARCH AND TEST PROBLEMS

The Systems Optimization Laboratory at Stanford is currently doing research on a deterministic
version of the PILOT Macro-Economic Model for the U.S. (see Dantzig, McAllister and Stone 1986)
and a simplified version of the electric-power expansion problem in stochastic form under the general
guidance of Mordecai Avriel and the author (see Bellovin 1986, and Yang 1985). The PILOT
Model is used for studying the impact of innovation, modernization, foreign competition, technology
assessment, and changes in economy due to shortages or high-cost energy supply (McAllister and
Stone, 1984). The electric-power generation and distribution problem is based on the electric power
generation and distribution network for California. We are currently using a version of the latter

two models for testing the applicability of using parallel processors.

4 Pereira, Monticello, and Dantsig apply this approach to scheduling electric power systems with
security constraints (in progress).
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7. FINAL COMMENTS

Planning under uncertainty in the author’s opinion is the most important outstanding problem
of Operations Research. In this paper we discussed the status of solving large-scale dynamic systems
and what types of large-scale stochastic time-stage systems are likely to remain intractable. What
we believe is tractable is the solution of an important subclass which we referred to as “capacity
planning® over time. Examples include fleet planning problems for airlines or planning the expansion
of generators and transmission lines for multiple-area electric-power systems. We described an
approach to solving such problems using decomposition methods and parallel processors as high-
speed sampling devices.

Research has only just begun in this important field. The classical approach has been to try
to reduce stochastic models to a “certainty equivalent® and to solve them by special large-scale
deterministic methods. In the author’s opinion this approach remains important but limited in
scope. On the other hand, using Monte Carlo simulation in combination with large-scale methods,
while having a broader applicability, also has its limits, even if parallel processors were inexpensive
and available in quantity. A key problem that future research must solve is finding ways to keep

sample size small.
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