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'
" September 15, 1986
s
R Director
y Defense Advanced Research Projects Agency
1400 Wilson Boulevard
2 Arlington, VA 22200
"
) Attention: Program Management
] ;
;& This letter is the Annual Progress Report for our research program supported under
“ DARPA-ONR Contract N00014-82-K-0727.
"
:E During the period of 1 July 1985 to 30 June 1986, we have continued to make
i rogress on the acquisition of acoustic-phonetic and lexical knowledge. Specifically:
P P
.‘ e We have concluded our studies of lexical stress and improved the performamce
o of the lexical stress recognition system. The system is composed of two parts:
K a syllable detector and a stress determiner. A number of modifications were
" made to the syllable detector, including the introduction of more robust in-
tervocalic consonant detectors, new algorithms for sonorant detection, and
P improvements in code to shorten run times and increase user flexibility for
B system development. The system now runs approximately three times faster,
K detects sonorants more accurately, makes fewer false insertions, and is more

Ry flexible.

; e We have conducted experiments to quantify the influence of phonetic context,
> including syllable structure, on the acoustic properties of stop consonants.
\ Our results indicate that both syllable structure and phonemic context play
: a significant role in determining whether a stop will be released, unreleased,
o or deleted altogether. By continuing to study such contextual variations and
their acoustic consquences, we hope to eventually implement a computational

framework that incorporates context knowledge in phonemic decoding.

e We have undertaken an investigation to capture the knowledge that humans
use to read spectrograms, and to apply this knowledge to the creation of an
expert system. Humans are able to read spectrograms by extracting and then

s integrating the relevant acoustic features, using rules that relate the underly-
o ing phonetic forms to their acoustic manifestations. To test the feasibility of
X
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developing a computer system that mimics such a process, we selected a task
of identifying stop consonants drawn from continuous speech. Our prelimi-
nary results indicate that machine performance comparable to that of human
experts can be attained.

We have begun development of a system that applies vision techniques to
extract acoustic patterns in speech spectrograms. By processing a spectro-
graphic image through a set of edge detectors and combining their outputs,
the system obtains two-dimensional objects that characterize the formant pat-
terns and general spectral properties of vowels and consonants. Preliminary
evidence suggests that the visual characterizations produced by this process-
ing technique may provide an effective alternative to traditional descriptions
of acoustic-phonetic events.

We have initiated development of an articulatory synthesizer, LAMINAR, ca-
pable of synthesizing speech from different vocal tract configurations. This
new speech research tool takes an articulatory configuration in the form of an
acoustic tube, and generates the resulting acoustic output. With continued
development, the system could realistically model many time-varying artic-
ulatory gestures, thus providing a useful mechanism for speech production
experiments.

We are including with this report copies of the following publications, in the form
of theses and papers presented at various conferences, written with ONR support
during this contracting period:

Enc.

Chen, F. R., “Lexical Access and Verification in a Broad Phonetic Approach
to Continuous Digit Recognition.”

Huttenlocher, D. P., “A Broad Phonetic Classifier.”

Leung, H. C., and V. W. Zue, “Visual Characterization of Speech Spectro-
grams.”

Unverferth, J. E., “Improvements to and Extensions of an Automatic Lexical
Stress Determiner.”

Zue, V. W., “Utilizing Speech-Specific Knowledge in Automatic Speech Recog-
nition.”

Zue, V. W, and L. F. Lamel, “An Expert Spectrogram Reader: A Knowledge-
Based Approach to Speech Recognition.”

Sincerely yours,
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Victor W. Zue

Principal Investigator S
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Chapter 1

Introduction

- As part of her Master’s Thesis, Aull constructed a Lexical Stress Determiner for
discrete words|1]. As-my thesis, I propose to make her system more robust, both from

a programmer’s point of view and from a performance and reliability perspective.

Aull developed this system in the course of studying the effect of lexical stress
information in large vocabulary speech recognition. Her system achieved 87% accuracy
in determining the correct number of syllables and the proper stress pattern. Her
system was written on a Symbolics Lisp Machine and was designed to interact with the
Spire[16] speech tool developed at the MIT Speech Group. The system was automated
such that you could speak an isolated word to it and it would soon return the stress
pattern. Because Aull concluded her work two years ago, extensive updating of her
code was needed. The efficiency of the code could also be improved to speed real-time
performance. Much of it had to be rewritten in order to run properly on current the

Lisp Machine operating system.




Her system consisted of two main components, a syllable detector and a stress

determiner. The syllable detector had problems finding boundaries in two cases: 1)

when two syllabic nuclei are separated by a sonorant consonant as in “zero” and 2) when
there are no intervening consonants, as in “react”. Aull’s syllable detector was fairly
accurate but relatively inflexible. It was not very good at finding syllable boundaries
that occurred at Vowel-Voiced-consonant-Vowel transitions. It also had problems with
short releases after consonant stops. The stress determiner gave only one answer with
no indication of a confidence level. This is a handicap when the system is used as a
front end of a large vocabulary lexical access system. If a mistake is made in stress
determination, then there is no way to find the correct target group of words. Mistakes
can include false insertions of syllables, deletions of syllables and incorrect labeling
of stressed syllables. Because the stressed syllables provide “islands of reliability”
for acoustic information within the word, it is especially important that the system
correctly identify them

The second chapter of this thesis describes lexical stress. It explores what lexical
stress is and how it might be important to a speech recognition system. The third
chapter describes Aull’s system for automatic detection of lexical stress in isolated
words, exploring the components of her system developed by others. The fourth chapter
explains the modifications that have been made to Aull’s system and how they changed
system performance. The last chapter contains conclusions and some possible directions

for future development.




.............................................................

Chapter 2

The Importance of Lexical Stress

2.1 What is Lexical Stress?

In this paper, as Aull did, I will be dealing exclusively with lexical stress in isolated
words. This isolates a stress pattern of the word from higher order effects such as

intonation and sentential stress.

Historically, stress has been a poorly defined concept. Lexical stress can be de-
scribed from several points of view. It can be viewed linguistically, phonemically and
phonetically. It has been variously described as the force with which a syllable is said
or as a feature composed of other features (i.e. fundamental frequency, duration and
intensity)[9]. However, it is generally agreed that what we perceive as stress is not a
feature of speech (or language) unto itself but is rather a combination of other, more

basic, features.

This chapter briefly describes what lexical stress is and then explains some of the

motivations for wanting to look at lexical stress and incorporating knowledge about it
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into speech recognition systems.

2.1.1 Stress in Language

Stress is a perceived parameter — it is easily detected by a human listener. Most
languages have measurable stress effects in their words. In Languages like French,
Finnish or Polish, the stressed syllable is fixed on a certain syllable in the word (such

as the first syllable or the last one). These languages are said to have fixed stress(8].

Other languages, most notably English, have what is called free stress, meaning
that the stressed syllable can fall anywhere in the word. stress can also have higher
order knowledge incorporated. In these languages the stressed syllables are not fixed.
In these languages, it is words themselves that have stress patterns associated with
them. Sometimes the same spelling can have two or more meanings and different stress
patterns to go with them (e.g. “permit” and “permit”). This is especially common
when the same word represents a two meanings that are different word types (like in

the previous example where permit is first a noun and then a verb).

The difference between stressed and unstressed syllable also changes from language
to language(8]. French, for example has very little difference which means that all their
syllables are fully articulated. In English, on the other hand, many syllables are not

fully articulated, resulting in shortened sonorant regions and schwa’s.

In English it is usually true that a word will have a given stress pattern consistently.
This is different from other languages where there is either fixed stress in words or there

is not enough difference in the stress between syllables to be reliably determined.

8




2.1.2 Components of Stress

Linguistically, stress is considered a parameter unto itself. The same can not be
said from an acoustic point of view. There is no single determiner for stress which
means that you can not look at one parameter (energy or some similar measure) which

will reliably determine the stress pattern of a word.

The Four Main Correlates of Stress

Through many studies, it has been determined that English stress is primarily
determined by four parameters. These parameters are energy, fundamental frequency,
duration and phonetic quality([9].

Energy refers to the measure of acoustic intensity of the syllable. Syllables said
with more force, exert more pressure on the surrounding air which shows that there is
more energy put into the articulation of these syllables. The absolute amount of energy
in each syllable is not as important as the energy ratios within the word’s syllables.
Ratios are more important than absolute values for all these parameters because there
is a great deal of variability in speech, not only between different speakers but also
different words uttered by the same person|15].

Fundamental frequency, perceived as pitch, is also a main component in the deter-
mination of stress. A syllable with higher pitch compared to another syllable, with
all else being equal will be heard as the stressed syllable. Many experiments have
shown that it is not necessarily the peaks or mean values of the fundamental frequency
that correspond to stress perception but rather the shape of the F contour that really
matters|9)].

Duration is important for stress perception as well. In general, the longer the

9




duration (relative to other syllables) the more likely that the syllable is going to be

perceived as stressed.
Phonetic quality is a measure of how fully articulated the syllable was. Aull mea-
sured this parameter when she labeled the qualifying syllables as reduced, that is, they

were short and had little energy when compared to other syllables.

How the Correlates Come Together

Using the words in her database, Aull found that no single parameter was a very
good indicator of which syllables were stressed. For example, maximal average energy
corresponded to the stressed syllable 84% of the time and the peak of the fundamental
frequency corresponded to the stressed syllable only 70% of the time. These results
were in good agreement with previous data.

Fry[5] found that both duration ratio and energy ratio were important cues for the
judgment of stress. He further found that the duration ratio was more reliable than
the energy ratio. Morton and Jassem|9] found that changes in fundamental frequency

had greater effect on stress perception than did changes in either energy or duration.

2.2 Usefulness of Lexical Stress in Speech Recogni-
tion Systems

The obvious question is that of the potential importance of lexical stress in speech
recognition systems. We want to know if there is any useful information contained
in the stress pattern. For this report, I am limiting my comments to isolated words.

When continuous speech is included, higher order stress patterns and rhythm effects

10
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start influencing stress patterns.

2.2.1 Lexical Stress and “Islands of Reliability”

Aull and Zue[2,15], among others, claimed that stressed syllables were reliable places
to look for acoustic information. That is, acoustic cues were much more robust in those
areas. They further note that spectrogram reading experiments and automatic recog-
nition systems tend to recognize phonemes around stressed syllables more accurately
than around unstressed syllables. This result seems to be true in humans as well. Cole
and Jakimak(3] found that it took subjects longer to recognize a mispronounced word

when the syllable was unstressed compared to when it was stressed.

2.2.2 Lexical Access and Large Databases

After doing studies on a lexicon developed from the Mirriam-Webster Pocket Dic-
tionary, Aull found that lexical stress was very useful in reducing the expected size of
word candidates in a recognition system. Studies by Huttenlocher and Zue[6] indicate
that determination of broad phonetic classes greatly reduce the number of potential
word candidates in an isolated word recognition system. Information about the num-
ber of syllables and their stress pattern can augment the phonetic class knowledge to
further reduce the word candidates in a recognition system, giving the later (and more
detailed) processing of such a system fewer possibilities to investigate.

All the evidence seems to indicate that knowledge of lexical stress would be quite
desirable in an isolated word recognition system. The information about stressed sylla-
bles points to regions that tend to be more acoustically reliable, improving recognition

in those regions. The stress pattern, once determined, also provides an additional con-
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f ‘»)\ straint that can reduce the candidates that a recognition system would have to sift

through. Thus determination of the stress pattern is potentially a useful tool in speech

; recognition systems.
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Chapter 3

Aull’s Lexical Stress Determiner

3.1 System Overview

Aull’s system was designed to determine the stress patterns of isolated words. Her
motivation was largely to determine if this would be an effective way to reduce the
search for target words in large vocabulary systems. Aull’s system was written on a
Symbolics Lisp Machine to be used in conjunction with a Floating Point Systems array
processor. The system had as an integral component, Spire, a speech research tool

developed within the MIT Speech Group.

The input to the system was digitized speech with no additional processing, and the
output was a time-aligned stress pattern of the word. The time-aligned stress pattern
corresponded to the vowel of the syllable and any surrounding sonorant segments. The
system labeled the syllables as either “stressed”, “unstressed” of “reduced”. There
could be only one stressed syllable in any word. If two syllables were close in the stress

rankings, the system labeled a second choice for the stressed syllable.

13

- e
SRAEIA N
Trat N




et i ot ot At inde i daidelin e A A B A A A o Sk ALA AN S ALA AL A A ata- e i’ ahe -t~ allae dc kit bl das lav behbc das 0l ik ded dad Aad A Ak Bt o |
!
|

The system was broken down into two main sections. The first section was the syl-
lable detector. This section looked for sonorant regicns and also looked for intervocalic
consonants whose presence indicated a single sonorant region that could contain two
or more syllables. The second section was the stress determiner. It performed compu-

tations on the different sonorant regions in order to determine their stress ranking.

3.2 The Computing Environment

As mentioned before, this system was developed on Symbolics LM-2’s that were
equipped with Floating Point System’s FPS-100 array processor. The system was built
around the Spire speech tool as well as including portions of systems developed by

others in the Speech Group.

The Computing Environment

The Lisp Machines provided a very flexible and convenient environment in which
to work. Both Spire and Aull’s system made extensive use of a Flavor! system which
is part of the Lisp Machine operating system. The machine’s large virtual memory
and networking capabilities allowed the the system to work with a great deal of data.

The Lisp Machine also has excellent facilities for system development[16]. The Lisp

language itself provided an exceptionally flexible and easy to work in programming
environment.

The Lisp Machine has extensive development facilities on which to develop an in-
teractive system. It has very versatile multiple window support and a high resolution ;

bit-mapped display. The speed with which it computes needed parameters also allows :

'Flavors are structures which are easy to manipulate and facilitate message passing.

14 |
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convenient interactive research. Using a mouse speeds interaction with the computer
and is more “user-friendly” than using the keyboard exclusively.

The system (especially the pitch detector written by Seneff{12]) used the FPS-100
a great deal. The array processor gave a great increase in speed over what would have

been possible on the Lisp Machine alone.

The FPS-100 is set up in a master/slave configuration with the Lisp Machine. It sits
idle until the Lisp Machine sends it something to do. Chunks of data are assembled
in the Lisp Machine and sent out to the array-processor. The array processor then
performs a series of steps, or a mini-program (stored there by the Lisp Machine) on
the data and finally sends the results back to the Lisp Machine. This continues until

the entire waveform (or any array) has been passed through the array processor.

The Spire Advantage

Spire is an interactive speech research tool developed at the MIT Speech Group by
D. Shipman, D. Scott Cyphers and David Kaufman. It has been evolving for several
years and many others have contributed to it.

Spire was developed on Symbolics Lisp Machines, mostly for the reasons stated
above. It was intended to be a replacement for other speech tools that existed at the
time. Its original implementation by David Shipman was completed in 1982. Following
that Cyphers and Kaufman completely rewrote Spsre in order to make it more flexible,
improve the user interface, improve data management and increase its efficiency (both
in run-time and in memory usage)[16].

As described vy Cyphers|[4], Spire has a four tier display system. A layout, at the top

of the hierarchy, is a screen of data. It is composed of displays, that are like windows.

15
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These displays hold any number of overlays, that are essentially drawing methods.
These overlays take on the name of tkeir associated atts. The atts are computations
performed on the data and are displayed in the manner specified by the overlay.

Spire works with representations called utterances. An utterance is an event or
an instance of someone saying something. That definition, while not very rigorous, is
sufficient for my purposes. Attached to the utterance are instances of flavors called
attributes. It is the attributes which define the atts.

Spire allows users to easily define new computations and modify old ones. Spire’s
design allows easy interaction with previously computed data. The display system is
the same way; it is very flexible and easily extendable. It is these characteristics that
make Spire desirable as a speech research tool.

It is a combination of the Spsre program and the Lisp Machine support that allows
systems to be easily built. Since many of the structures and methods needed in a large
system are already present in Spire, it makes sense and saves work to incorporate it

into any system in development.

3.3 Syllable Detection

As [ mentioned before, the first section of the system incorporated a syllable de-
tector. Because all syllables must have a vowel at their root, this part of the system
attempts to find and separate all the vowel regions in a word. The syllable detector
itself has two distinct components. The first is Hong Leung’s broad classifier that
was developed as part of a system that automatically aligns phonetic transcriptions
with continuous speech[14]. The second section, developed by Aull, separated sonorant

regions into different syllables if it found any intervocalic consonants.
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o 3.3.1 Leung’s Broad Classifier

|

e Leung’s broad classifier was the first stage of a system that provided a time- ‘
E alignment of a phonetic sequence to the speech waveform(7|. Aull used this classifier J
-

for her system to obtain a broad segmentation of the speech signal. }
o The approach that was taken was to first find acoustically robust regions in the 1
R |
. waveform. From there, more detailed analyses could be made in appropriate regions ‘
that would not necessarily meaningful to make in other regions. This breaks down one

large problem into several smaller ones that are more easily approached|14].
ANRY
':f-‘-j The data takes the structure of a binary decision tree. A series of classifiers make

e . . e
\‘-' decisions about whether or not a time-slice of speech has a certain characteristic. The

_ classifiers are all structurally the same but differ in the parameters that they look at

fass

o and where they clip their values. The speech is analyzed every 5 msec.

_":" A representative classifier uses M parameters, that are decided by previous speech
o) knowledge. The parameters are computed, then processed; they are smoothed, clipped
e
5 :;:J and then normalized. Now, for every 5 msec we have an M dimensional feature vector.
]

":: A decision is made in this M dimensional feature space through a K-Means clustering

- algorithm. In this manner Leung found that he could reliably divide the utterance into

\':..:
O six types of regions:
oo
i ] e

D e S (Sonorant) : vowel-like, this would be a syllable core.

o

Z;i;; e O (Obstruent) : exhibits high frequency “noise”.

XA

-3 e VO (Voniced Obstruent) : shares characteristics of both of the above.
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Figure 3.1: An example of the output of the Sonorant Detector including (a) Leung’s

Region Detector (S means sonorant) and (b) Aull’s Syllable Detector (S means syllable).

e Si (Silence) : characterized by absence of energy.

e B (Nasals and voice bars) : similar to sonorants .

e Ul (Unlabeled) : these exhibit energy dips in vowel regions.

The system goes through many classifiers, and segments are re-checked for accuracy
and possible low-energy, or weakly represented regions. Decisions can be reversed
in later processing to prevent an early mistake from propagating through the entire

process.
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The segments that Aull was most interested in were naturally the sonorants. This
is because they form the root of syllables and hence were the segments that she had
to find. Leung’s broad classifier was very good at determining boundaries between
every type of segments except for different voiced segments. To find harder boundaries

(Vowel-Vowel for example), Aull had to develop her own algorithms.

3.3.2 Aull’s Intervocalic Detectors

After the initial segmentation by Leung’s system, Aull inserted a subsystem that
was designed to find intervocalic, voiced regions. This is meant to include both voiced
consonants (like the “r” in “miracle”) and vowel-vowel transitions (like the “ie” in
“anxiety”). These phenomena often exhibit themselves through formant movements or
energy dips, but not always.

All of these detectors made extensive use of spectral weighting windows, specifically
short-time spectra of the waveform were multiplied by a frequency weighting function
designed to bring out spectral characteristics that were expected in certain frequency
ranges. Then the results of the multiplication are then accumulated into a Center of

Gravity function. The center of gravity function is as follows(1]:

Fy
Center of Gravity = Y_ W(f) S(f)

I=F
where
W(f) = linear weighting window
S(f) = spectrum valueat f

F\,F, = f{requency range

19
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Although Leung’s system performed rather adequately on intervocalic nasals, Aull
developed a subsystem just for that purpose. In this part of the system Aull did not
choose to use a spectral weighting scheme but rather, she looked for a robust drop in
energy in the frequency region of the first three formants (F,, F,, and F3). As a result
of Leung’s segmenter and Aull’s detector the system was quite robust in determining

nasal boundzries.

Leung’s system was not quite as good at detecting semivowels (/1/, /w/). These
are often characterized by a drop in energy similar to the nasals except that only F,
and F; show a significant drop. The drop in energy is more gradual than in the case

of nasals.

Even harder to detect were intervocalic semivowels /r/ and /y/. These are char-
acterized by a concentration of energy arouna 2KHz. There are sometimes dips (at
least for /r/) in formant frequencies as well, but far from always. The shape that these
semivowels take in the frequency domain are very context dependent and are hence
difficult to detect. Leung’s system generally misses these completely. Aull used a
spectral weighting window that emphasized 2000 Hz and 300 Hz while deemphasizing-
emphasizing the frequencies around 1100 Hz. In this way she can label regions as r-like

or not r-like(1.

The hardest types of intervocalic activity to detect are the vowel-vowel transitions.
For this type of decision, Aull used spectral weighting windows that attempted to
emphasize these changes. She took advantage of speech knowledge to determine window
that would emphasize transitions between different types of vowels. Even so, these

changes are nct very robust and are difficult to detect under the best of circumstances.

The syllable detector was designed to identify the sonorant regions of speech for

20
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further analysis. Leung’s broad classifier first separated the speech into acoustically
robust segments. After that, Aull applied a series of processes designed to further
separate the sonorant regions by determining if there were any intervening regions

between syllable cores.

3.4 Stress Determination

As I mentioned before, it has been found that fundamental frequency (pitch), dura-
tion and spectral energy are good correlates of what we perceive as lexical stress. The
problem that Aull encountered though, was that any one of these parameters could not
determine the stressed syllable correctly more than 87% of the time. As a result she
determined that using all of these parameters (as well as one other, spectral change)
was more reliable than using any one of them in determining the relative stress of

syllables in isolated words.

3.4.1 Acoustic Parameters

One of the parameters that Aull looked at was duration. She used the sonorant
region found by tke front-end as the basis for her duration measurement. The sonorant
boundaries were determined within 5 msec. Any more accuracy would have been un-
necessary due to the uncertainties involved with the determination of the boundaries.
From her own studies and those by others, she found that the final syllable or sonorant
region must have its length adjusted for an effect called prepausal lengthening, i.e. the
lengthening of the final syllable in an isolated word.

Aull then looked at the energy over two bands extending from 400 Hz to 5000 Hz
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and from 1200 Hz to 3300 Hz. These energies were picked to cover the range of sonorant
regions and to deemphasize energy regions associated with consonants.

Fundamental frequency or pitch was the third parameter to be measured. The
pitch was determined by using an enhanced waveform, which enhances the funda-
mental periodicity and then using an Average Magnitude Difference Function of the
waveform{12,1]. Aull also mentioned that the peak value of the pitch seemed more
significant in determining stress than its average value because of differences between
isolated words and continuous speech.

Another parameter that Aull incorporated was spectral change[14]. This parameter
was a measure of change of energy in sonorant regions. The energy change was measured

across several energy bands according to the following formulas:

S{n] = max(Dy[n], Dy[n])
where

_ - (E((n+1)T) - Ei((n - 1) T))"
Din} = § TE(nT)

_ s (E((n+2)T) - E((n-2)T))’
Dafm} = ; TE(nT)
TE(nT) = total energy of entire spectrum
Ei(nT) = energy valuein ith energy bank
T = 5 msec

This parameter was used because it was found that stressed syllables were more

acoustically stable than unstressed ones. This parameter was only extracted in the
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central parts of the sonorant regions so that the surrounding regions could not influence

the spectral change measurement.

o

3.4.2 Stress Determination Algorithm

- Aull had to combine these parameters into one meaningful measurement of stress.

g
[ She initially tried K-means Clustering techniques but found that they did not perform
Jl:'..
K- adequately. The main problem with any system that looks across a group of words is
“ that there is too much variability across isolated words. She then dropped this and
'f-j other methods that required accumulating statistics across many instances of isolated
L j:_:j speech and instead adopted a method that used only the particular word that the

system was currently working on.

10

"\

:_::. She associated a five-dimensional feature vector with each sonorant region. Then,
o
o for each parameter, the system determined the maximum value across all the sonorant |
, i
. regions and collected them into a maximum feature vector. This maximum feature '
-'.f,:". vector was the basis to which the sonorant regions in the word were compared. This
v'»_';z reduced interword variability.
3

.‘_.;f A Euclidean distance from the maximal feature vector to each sonorant feature

N : o : .

ey vector was determined. The region with the shortest distance was considered to be the

e, stressed syllable. The other syllables in the word were all labeled unstressed. Further

processing determined which sonorant regions were reduced by looking at their energy

T and duration.
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ks 3.6 System Performance

-_.;::;‘ Aull tested her system on a 1600 word database. Her system correctly determined

EI;:EZ the stress pattern 87% of the time. 3% of this error was due to confusion between
‘ '-' unstressed and stressed syllables within the word. The other 10% corresponded to

3:::::'- either missing a sonorant region, failing to insert a boundary in the case of intervocalic
:~. phenomena or false insertion of a region or boundary.

R Aull determined that the acoustic correlates of lexical stress, as determined by Fry(5]
) : and others, were quite adequate for determining the stress in a word. She did find,
:,';::'. much as she expected, that her system performance degraded as acoustic cues became
ey

o more subtle.

. V g
S
‘Cj{:

\

K 3.6 Summary of Aull’s System

NN
= Aull’s system consisted of two main subsystems, a syllable detector and a stress
‘fji:::' determiner. The syllable detector was made up of Leung’s acoustic front end and Aull’s
iy intervocalic detectors. The stress determiner extracted a five-dimensional feature vector
,_ from the sonorant regions. These parameters have been experimentally determined to
::E:::'. influence perception of stress. The feature vectors were then compared to a maximal
I-::" vector for stress determination.
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Chapter 4

Modifications of Aull’s System

4.1 System Flaws

Aull’s system was very good but, like all systems of its type, was not perfect. Aull
measured the system at 87% accuracy. That figure refers to correct determination of
the syllables and the stress pattern. She found that 3% of the time, the stress pattern
was not determined correctly by the sys@em. This means that 10% of the time, there
was a problem in finding the syllables correctly. These errors correspond both to false

insertions and false deletions.

Thus the largest problem that the system had was in the area of syllable detection.
This part was difficult because it relies on acoustic cues, some of which can be quite
ambiguous. The stress determiner, while not perfect, is more robust than the syllable
locator because the parameters used to determine stress have been heavily studied and
are fairly well understood. While this section also relies on acoustic parameters, it is

constrained to the boundaries determined by the syllable detector.
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One of the biggest problems was that Aull’s system was written almost two years
ago. Much of what she had done was unexplained. The computers that the group
currently works with are different from the ones that Aull worked on (though they
were still Symbolics machines and retained a great deal of compatibility). Also, both
the Lisp Machine operating system and Spire had undergone several major changes.
These conditions added up to the fact that much of the existing code had to be changed

in order to get the system running as before.

4.1.1 Problems with Syllable Detection

Aull’s system, as I stated before, was evaluated at about a 10% error rate for the
syllable detection section of the system. The system performed quite well in identifying
syllables that are separated by obstruents (as in *duplicate”) . These boundaries were
correctly determined by the acoustic front end and required little additional processing.

The syllable finder’s performance decreased as the consonantal regions between
vowel regions became less obstruent-like. This lowering of performance is due to the
fact that some intervocalic voiced consonants appear more vowel-like than others. As
mentioned before, /r/’s,/1/’s are always hard to find, because sometimes they take on
vowel-like acoustic properties.

The system also had trouble with vowels whose amplitudes are low. This phe-
nomenon occurs in reduced vowels. Some people reduce them more than others and
sometimes the reduction results in a deletion of the region. Even when there was a
very short, low energy sonorant, a human listener will still detect a syllable there. The
solution is to detect these regions and then eliminate any false alarms resulting from

from making the system more sensitive.
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}. Finally, the system has a great deal of difficulty with syllables that are not separated
) by consonants due to the fact that the acoustic cues for vowel-vowel transitions may
\-"\

z

be subtle and are not well understood.
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: 4.1.2 Problems with Stress Determination
.r:::
'bl While, this component proved to be more reliable than the syllable locator, it still
: had several problems. The largest problem was that it was not flexible enough for lexical
! "hx
:\ lookup into a large lexicon. The system provided a stress pattern and no additional
~: information. This means that the system will either be right or wrong, there is no
i margin of error. There is no second choice or quality of decision information. An
-; improvement in this part of the system would allow more flexibility and would go a
4-'_\.- e .
o long way to remedying the problem of misidentifying a word’s stress pattern.
o 4.2 System Code Changes
J
' ‘.',,' Almost two years elapsed between when Aull finished her research and when I
v
- started to look into her system. Unfortunately the system and machine that that her
f—\ stress determiner ran on did not remain static through that time. The Speech Group
: :: updated its machines to the newer Symbolics 3600 Series Lisp Machines, Symbolics also
o
2 introduced numerous changes in its operating system, and, most significantly, Spire
e was extensively rewritten by D. S. Cyphers and David Kaufman. All these changes
‘;:j contributed to the work that had to be done in order to return the system to its former
ro
,5::: status and hopefully beyond.
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4.2.1 Updating System Code

The first thing to be done was to rewrite the code so that it would run again.
Getting a system that would run and one that would run correctly turned out to be
two different things. To get the system running mostly entailed recompiling the system
and making some simple changes that included changing message names and other
system updates.

Much of the system’s Spire interface had to be rewritten in order to run properly.
Since Aull had finished her work, Spsre had changed a great deal. Both Spire dis-
plays and the representation of time-aligned data had changed incompatibly. In both
cases (operating system and Spire) there were also subtle changes that affected system

performance. These had to be corrected individually as they were found.

4.2.2 Improving System Efficiency

Improving system efficiency and run-time performance was a different issue from
updating the code. After the code had been updated, it was found that there were many
places that would benefit from being rewritten or modified. Some of the modifications
were for the sake of computation efficiency and others were done in order to make the
code more compact and smoothly flowing. The biggest change that were made had to
do with the way in which segments and their boundaries were accessed.

The major running-time improvement was contributed by Seneff who wrote a version
of the Gold-Rabiner pitch detection algorithm(11]. This algorithm was much faster than
the algorithm then being used. It seems that the system changes introduced by this
author have also improved the run-time performance of the system but it is difficult

to substantiate. The speed of the system was further improved by numerous hardware
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modifications to the Symbolics machines. The system now runs at least three times

faster than it did before, or about 95 times real time.

4.2.3 Improvements in System Flexibility

The system as Aull left it was rather rigid in that parameters that went into com-
putations could not be modified or accessed easily. Modification of computational
parameters is a task that Spire makes easy. What was done was to make these pa-
rameters changeable from Spire so that it was not necessary to constantly recompile
the system code when changing numbers or parameters. This change facilitated the
development stage, when thresholds were specified iteratively in order to minimize both

false insertions and deletions of segments.

4.3 Changes in Syllable Detection

The syllable detection section was broken into two different parts for the purposes
of modification. They followed the natural division of this section, that is Leung’s front

end and Aull’s detectors for intervocalic events.

4.3.1 Improving Sonorant Detection

The first goal was to improve the sonorant detection in the acoustic front end. This
is an important step because if a sonorant region was not detected there, it would be
unavailable for of all subsequent processing. However, erroneously inserted segments
arising from making the system more sensitive to sonorant regions could be eradicated

in later system components.
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The front end was missing sonorant regions, but was also falsely breaking up valid
regions. That is, it would first label a region sonorant and then insert another label
in the middle of it. This had the result creating two invalid sonorant regions from one

good one.

The solution to resolving the missing conorant problem was found in the K-Means
clustering algorithm used in the system. The initial step in that algorithm was to estab-
lish clipping values for each of the parameters investigated. The clipping values were
the extremes in the data-space that a given type of region was expected. These clip-
ping values were reevaluated iteratively so that bad regions were minimized, while low
amplitude sonorants were maximized. The effect was that many low energy sonorants

were found, while few false insertions resulted.

In order to decrease the number of false insertions into the middle of sonorant
regions, some of the processing done in the front end had to be eliminated. The system
would irnitially find and label sonorant, obstruent and silent regions. It would then
segment the regions further by looking for different acoustic cues within these regions.
It is in this later processing that the errors (the false insertions into the sonorant
regions) usually occurred. The key to solving this problem was to determine at what
point in the processing the most errors were inserted while not missing too many valid
regions. It was determined that some processing after the initial labeling was necessary

in order to keep the number of false insertions down to a minimum.

After changing the front end, more problems had to be dealt with. First, many of
the new sonorant segments were discarded by a module that tried to decide what was
really a sonorant and what wasn’t. This part of the system looked at the duration,

energy and spectral change of the sonorant region, and if the region was too short
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and/or had too little energy, it was deleted from the syllable list.

The thresholds at which the system would cut off sonorant candidates was changed
iteratively. Once the levels were changed, it had to be ensured that the falsely labeled
regions were kept to a minimum while the truly sonorant regions detected were max-
imized. In the end, all the average energy thresholds needed to qualify a segment as
sonorant were lowered. At the same time it was determined that the average length
of the falsely detected segments was less than even the most reduced real sonorant re-
gions. Because of this, I lowered the durational threshold as well. This allowed the low
energy sonorants to be detected while still keeping the false indications to a minimum.

Spectral change is used as a parameter in this computation because Aull felt that if a
region exhibited a great deal of spectral change then it was less likely to be a sonorant
than a more spectrally static segment. This conclusion is not exactly ‘obvious for
segments of such short duration, but the inclusion (or modification) of this parameter
bas not caused any system deterioration. Because the spectral stability gives another
clue to the segment’s identity, impostor sonorants of greater duration can be more

reliably removed from consideration.

4.3.2 Improving Detection of Intervocalic Consonants

This is the section that proved to be the most disappointing in terms of improving
system performance. While it seemed to make moderate performance gains in /1/
detection through changing some thresholds it had greater difficulty with /r/’s.

The problem was that if the system were made more sensitive to the spectral move-
ment that often occurs with intervocalic /r/’s (as in “interrupt”), it would then get

more false boundary insertions at /r/’s that were not intervocalic (as in “cohort”).
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- This trade-off between insertions and deletions was a problem that had always plagued
the system. Maybe a different parameter would have been better but time did not
permit an investigation of this possibility. One parameter, a spectral first difference,
was investigated but preliminary results indicated that it was not useful for intervocalic
/r/ detection.
Another difficult problem was that of vowel-voweltransitions. Detecting these tran-
s sitions reliably is difficult because of the many different, often subtle changes they pro-
duce in the spectrum of the word. Sometimes the changes can be very obvious while at
v other times, they can manifest themselves through slow formant changes. The difficulty
in finding and interpreting them is compounded by their variability from speaker to
speaker.
The previous two problems received much attention, mostly in the form of changing
parameters and thresholds, both in the acoustic front end and in Aull’s intervocalic

' ' detectors. Unfortunately both met with little success.

P

4.4 Changes in Stress Detection

The biggest problem with the stress determination mechanism was that it was not

very flexible. In addition it sometimes failed to correctly find the stressed syllable all

LUl Ay A PN

b, the time. A large part of this second problem can be attributed to the variability
with which sonorant regions surrounding the vowel are included in the segment. All
other things being equal, the region that is longer will be considered stressed by the
system. This could be a problem when two regions are similar in the amount of stress
that can be attributed to them and one region is significantly longer than the other.

Different weighting functions for the parameters in the distance metric were tried but
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this provided no measurable change in the stress determination.

To improve the flexibility of the system, new methods to provide data for further
processing of the stress information were considered. Time did not permit proper
investigation of the usefulness of the results of these methods, but it is felt that they
could contribute to overall system performance. Also, it was felt that this section was
not as critical as others because this aspect of the system performed relatively well.

a way to obtain the actual measurements of the system (rather than just “stressed”
or “unstressed”) was provided . This allows one to look at results of the Euclidean
distance measurement across the M dimensional feature vector. Another addition that
was made (and kept in the system because it both provided additional information and

was easily interpreted) was the inclusion of the ranking of the syllables rather than just

labeling them “stressed”, “unstressed” or “reduced”. This allows the user to see what

the output of the system is more clearly.

4.5 System Evaluation

The system was tested on 228 isolated words spoken by six speakers (3 male and 3
e female). These words were taken from databases used by Aull. Her system returned
- errors on all these words at some point. Some of the words were evaluated correctly
by ber final system but were included to determine if changes to the system degraded
performance on data that was already valid.

In Table 4.1, the V-V, Cons, and Son columns all correspond to a miss in either

ORI

the vowel-vowel( like in “anxiety”), consonant (such as /r/ or /1/) or sonorant (as in

-

the last syllable of “action™) contexts. The Insert column refers to false insertions of

PABIAEY
YA

sonorant regions and the Bad Stress refers to incorrect stress assignment. The numbers
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Table 4.1: Evaluation Results

System | V-V | Cons. | Son. | Insert | Bad Stress

Original 24 46 37 63 7

Modified | 24 47 22 56 5

are total number of that type of error resulting from evaluating the data base. This
was done because some words resulted in more than one error while others resulted in
none.

The number of missed vowel-vowel transitions did not change at all. This was
expected because nothing was done to the system that would directly affect performance
here. The important thing is that system performance did not degrade. The same can
be said for the missed sonorant regions. Although, an effort was made to improve

performance in this area, it was unsuccessful.

The number of missed sonorant regions dropped significantly. This was due mostly
to the changes in the initial processing of the acoustic front end. The remaining unde-
tected sonorant regions were very short and had low energy but still could be perceived

as syllables to human listeners.

The number of incorrect insertions also dropped. There were two effects going on
in this case. The sonorant detector defined more regions as sonorant than it did before
because of its increased sensitivity. That increased the number of false insertions. On
the other hand, fewer valid sonorant regions were being broken up, driving the number

of false insertions down. This was the dominating effect, bringing the total number of
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insertions down.

The number of words with incorrect stress assignment also dropped slightly. This
was due to the fact that sonorants had different boundaries than before, hence the
measurements for those regions were different. This was the only effect taking place
since there were no computing changes made to the system. It was found, however,
that in every case of bad stress assignment, the stressed syllable was always ranked
second, showing that the system was close.

In the course of investigating these results, it was found that most problems could
be corrected interactively. This indicates that system performance might be able to

benefit from some sort of time varying evaluations on a frame by frame basis.

4.6 Summary of System Improvements

The changes made to Aull’s system led to several improvements. These improve-

ments are:

e Run Time Performance - The speed of the system through improvements in code
efficiency and hardware changes decreased running time three fold to about 95

times real time.

e System Flexibility - Through code changes, the system was made easier to use

and change interactively.

e Syllable Detection - The system detected syllables more accurately through
changes that improved identification of sonorant regions. In addition, the in-

sertions of spurious regions into the middle of valid vowel regions is reduced. In
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’ these two areas, the number of errors was reduced from 37 to 22 and from 63 to 56

(40% and 11%) respectively.

o System performance did not degrade in any way as a result of these changes.




Chapter 5

Conclusions

5.1 Summary

In this thesis, lexical stress was described and its potential utility in automatic
speech recognition was outlined. The stress is a perceived quality measure of a syllable.
Acoustically stress can be determined primarily through four parameters: spectral
energy, duration, fundamental frequency and spectral quality. The lexical stress pattern
of a word is useful to determine in an automatic recognition system because it reduces

the search space of possible candidates.

Next, the system that Aull developed for her Master’s Thesis was investigated. The
system was made up of two main parts: A syllable detector and a stress determiner.
The syllable detector was composed of an acoustic front end and a series of intervocalic
consonant detectors. The stress determiner took an M-dimensional feature vector of
each sonorant region and compared it to a maximum feature vector and from that the

syilables were ranked.
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Then the problems that existed in Aull’s system were explained. These included
poor performance on some intervocalic consonants, on Vowel-Voweltransitions and on
low amplitude sonorants.

Finally this author’s changes to the system were described. These changes to Aull’s
system did improve its performance. The system ran approximately three times faster,
had improved sonorant detection, had fewer false insertions and was more flexible. The
number of missed vowel regions decreased by 40% and the number of false insertions
into sonorants decreased by 11%. Other regions were not improved, as indicated by

the evaluation data, but in no case did system performance deteriorate.

5.2 Suggestions for Future Research

There are many ways to further improve on the work done so far on this system.
Many of the parameter values used in the system (that have been changed by this
author) can still be improved on using statistical tools and knowledge of speech signals
and production. A different method for detection of intervocalic effects, also utilizing
more speech knowledge, could also be incorporated. More improvements in code effi-
ciency could be made, to be sure. An algorithm for assigning probabilistic values to
stress rankings would be quite useful for making the system suitable for incorporation

to an isolated word recognizer.
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LEXICAL ACCESS AND VERIFICATION IN A
BROAD PHONETIC APPROACH TO CONTINUOUS DIGIT RECOGNITION’

FRANCINE R. CHEN"*

Department of Electrical Engineering and Computer Science
and Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 USA

ABSTRACT

This paper describes an implementation of a robust
method of lexical access and a detailed phonetic verification
component for recognizing continuous digits using a broad
phonetic approach. The lexical access component uses a
scoring method which takes into account soft labeling errors
due to input signal variability. Verification is based on
the use of a small set of detailed acoustic features which
characterize phone hypotheses. Evaluation of the lexical
access method on a database of 74 new random length
digit strings, each spoken by 5 new speakers, shows the
method to be tolerant to front-end errors and variations
in pronunciation. Evaluation of the venfication component
indicates that use of a few detailed phonetic features is
adequate for verification of phones in the digit vocabulary.

INTRODUCTION

In [CASSP-82, Shipman and Zue [1] showed that a
broad phonetic representation imposes strong sequential
constraints on words in the English language. They then
proposed an isolated word recognition model which uses the
constraints provided by a broad phonetic representation. In
their model, the speech signal is segmented and classified
into several broad categories which can be determined
reliably. Next, indexing into the lexicon, only words which
match the sequence of broad phonetic lahels remain as
contending word candidates. Finally, the contendihg words
are examined using detailed phonetic analysis to identify
the input utterance.

Chen and Zue {2] extended Shipman and Zue's isolated
word recognition model to continuous speech and showed
that strong lexical constraints at the broad phonetic level
ean he exploited in a continnous digit recognition task.
To illustrate that the approach is viable, a broad phonetic
classifier and lexdcal access component were implemented.
Testing on 1718 digits by 5 speakers, the correct digit was
not one of the lexical candidates only 19 of the time. While

* This research was supported by the System Development
Feundation, a Vinton-Hayes Fellowship, and DARPA under rantract
Nong 4 §2-K-0727 as monitored thrangh the Office of Naval Research.
** F.R. Chen is now with Hewlett-Packard Laborataries, Palo Altn,
CAL
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the results were encouraging, this initial implementation
suffered in one important respect: The implementation did
not provide flexibility in accommodating similar but new
acoustic realizations of a word. Instead, new pronunciations
were accomodated by explicitly adding them to the lexdcon.
In other words, a digit was considered a candidate only
if the input string was a pronunciation supplied by the
lexicon.

In the current study, two aspects of the broad phonetic
recognition model were focused on. First, Chen and Zue's
work was extended in an effort to develop a more robust
method of lexical access which could tolerate reasonable
“errors” by the broad phonetic classifier. Second, a
preliminary examination of verification of word hypotheses
based on detailed phonetic features was performed.

LEXICAL ACCESS

Researchers {e.g. [3] and [4]) have developed systems
which perform lexdcal access and recognition directly from
a phonemic sequence. In contrast, this study is based
on the belief that a more robust recognition method is
to perform lexical access by scoring how well the broad
phonetic representation of an unknown utterance matches
the phonetic representation of a word in the lexicon.
Since less detailed distinctions are needed to produce a
broad phonetic representation than a detailed phonetic
representation, one should be able to compute a broad
phonetic representation with less error.

In the broad phonetic recognition model (Figure 1),
the broad phonetic classifier produces a broad class
segmentation string of the incoming signal. The
segmentation string may be composed of six possible labels:
weak fricative, strong fricative, short voiced obstruent,
vowel, sonorant, and silence. The lexical component
matches the phonetic representation of each word in the
lexicon against the broad class segmentation produced by
the system, vielding a lattice of word candidates.

Although a broad phonetic representation is more
robust than a detailed representation, unanticipated
acoustic realizations do occur. resulting in classification
errors at the broad phonetic level. For example, the clownre
in a stop gap may be incomplete, resalting in a *noiw”
stop gap which is labeled as a “weak fricative™. A lexical
access component was implemented which attempts to
handle these labeling errors using two types of knowledge:

7o
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broad phonetic lexical
classifier component

speech

‘Er@-’digit string
Figure 1: Broad phonetic recognition
model

1) how often a phoneme is mislabeled as another class—
for example, how often a /k/ closure is labeled as a
“weak-fricative” instead of “silence” and 2) how often
an insertion or deletion occurs in mapping a word’s
broad class representation to a phonetic representation—
for example, the frequency with which /s/ and /n/ in
the sequence /sn/ (as in “six nine”) are both labeled as
“strong-fricative,” due to the fact that the initial nasal
in that context may be deleted or extremely short. By
using these types of knowledge about the characteristics
of the segmentation strings produced by the front-end,
the lexical component allows for acoustic variations in
a phone. Furthermore, many alternate broad phonetic
representations of a word needed with the explicit matching
method become unnecessary.

The lexical component assigns a score reflecting how
well the phonetic representation of a word matches a
portion of the segmentation string, using knowledge about
the characteristics of the broad phonetic classifier's outpnt.
For example, the broad phonetic classifier may label /8/
as “weak fricative” 60% of the time and “strong fricative”
40% of the time. Knowing this, the lexical component does
not penalize the score much when matching /8/ to “strong
fricative.” In contrast, if /8/ is never classified as “vowel”
during training, then the match of /8/ to “vowel” would be
assigned a poor score. Insertions and deletions are handled
by using transition probabilities. If the broad phonetic
classifier consistently misses prevocalic nasals, as in the
word “nine”, then the system will know that very often
the /n/, as well as the /a’/, is labeled as “vowel”. This is
reflected by a high transition probability of matching /n/
to “vowel” and then matching /a¥/ to “vowel™.

A forward dynamic programming algorithm finds the
best matrh between the broad phonetic and phonetic
strings. Simple slope constraints require the path to be non-
decreasing in each direction. In contrast to the constraints
used in dynamie time warping of the speech signal, many
phonetic labels may map into a single broad phonetic
segment. For example, the /I/, /r/ and /0¥ / in “zero” may
map into the label “vowel™ if the broad phonetic classifier
has no knowledge for differentiating among these sounds.

The allowed paths from a sample node are illustrated
in Figure 2. Each node represents the mateh between a
broad phonetic label and a phone. The sequence of broad
phonetie labels {reference) aligns with the nodes from left
to right: and the sequence of phones (test) aligns with the
nodes from top to bottom. Three paths, or transitions, exit
from a typical node, here labeled “A”. When no insertion
or deletion occurs, the next broad class segment is matched
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to the next phone label; this is represented by Path AC.
If an extra label is created by the front-end, an insertion
occurred; this is represented by Path AB. And if the
broad phonetic classifier labels two sequential phones as
the same broad phonetic class, a deletion occurred; this is
represented by Path AD.

reference

test

Figure 2: Paths used in the dynamic
programming algorithm

The total accumulated score to node C, d¢, is:
de = d4 + log|Pr(pc,lc) « W)

where d4 is the total accumnulated score to node A.
Pr(pc,lc) is the probability of labeling the phone at node
C, pc, as the broad class label Ic. W is the prabability of
making a transition from node A to C, given that node A
is the current state and nodes B,C, and D are states which
may be entered from node A. W is computed as:
Pripala -+ pclc)

Wiom oL A
Pr(pala =+ peip) + Pripala +polc) + Pripala -~ pplp)

{

Wg and Wp are computed similarly and represent.
respectively, the probability of inserting and deleting a
segment,

The “best” alignment between the phonetic string
/zIro¥/ and the broad phonetic representation “strong-
fricative vowel” is shown on the left of Figure 3; the
associated match and transition probabilities are shown on
the right. A phonetic string is assigned the score of the hest
path, normalized by the number of transitions in the path.

Strong~Fric Vowe !

2
refe~ence test Antoh veight
' \, BI1ROMG-FRIC e @.77%e §.00@0
kS VOMEL 1: 9.9714 0 .%9pp
s VOWEL e @.923¢ 1.Qeae
' L VOWEL o 9.8414 1.000¢
L ®

reference

Figure 3: Alignment of /zlro*/ with
“strong-fricative vowel”

This method of lexdcal access was evalnated on a
database of digit strings ranging in length from one to
seven. The database was subdnided into training and new
speakers and into training and new sentences, resulting in
four mutually exclusive subsets as shown in Table 1.
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Table 1: Corpus Subsets

Total # of Speak Total #
Utterances peakers of Digits
262 training | 3 male, 3 female: training 1365
152 training 3 male, 2 female: new 599
370 new 2 male, 3 female: training 1440
370 new 3 male, 2 ferale: new 1440

Each broad class segment produced by the broad
phonetic classifierr was used as the beginning segment of
each word hypothesis and the scores of all possible matches
were computed. The distributions of scores for correct
words and for all word hypotheses, evaluated on new
utterances by new speakers, are shown in Figure 4 as
dashed and solid lines, respectively. Note that the log
probability scores of the correct words are much closer to
0. or a probability of 1. than the bulk of the scores of all
possible words. The distributions indicate that a word score
threshold can be set such that all words with a score below
the threshold can be ruled out as viable candidates.

30.0

Porcans of Total
o
[}

1
E __’__,_FI"’-’——\::EC_\_
AN AACAUSAEAS DRARS REARS BANAS NRARH SARDS DRARK DARMAREN) WU
«10.0 -§.0 -8.0 7.0 -8.0 -$.0 -4.0 -3.0 -2.0 1.0 °

[HRetogrem Bin Width o 0.23)

Figure 4: Histograms of correct and
incorrect word scores
Fignre 5 illnstrates the relationship between the amount.

of pruning achieved compared to the pereentage of correct
words pruned when evalnated on new utterances by new
sprakers.  Note that one can reduce the number of
hypothesized words by 50% without pruning any of the
correet words. The curves for training and new speakers
were found to be similar [5], indicating that the method is
potentially robust to speaker variabilities.

VERIFICATION

In the broad phonetic recognition model, the input to
the verifier is a lattice of word candidates produced by
the lexdral component, the most unlikely candidates having
heen remeved. The verifier selects the best word or string
of words from among the competing word candidates using
a set of detailed acounstic features.

Each word hypothesis is represented as a sequence
of phones and each phone is characterized by a set of
detailed acoustic features. This choice of representation
was motivated by linguistic reasons and by the desire for
extendability to other recognition tasks.

Ohservations of phone characteristics in spectrograms
nere used to select a small set of nine acoustic features.
These fratures were designed to capture salient acoustic
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FPigure 5: Pruning of all word hypotheses
versus correct word hypotheses

charactenistics of speech sounds and detailed differences
between similar phones in the digits. The features are:

e Position of the first three formants and movement of
the first two formants: In an effort to achieve a robust
characterization of formant motion and position, a
gross characterization based on spectral weights was
used, rather than a formant tracker which can exhibit
inconsistent behavior in nasalized regions. The spectral
weights emphasize energy in specific regions of the
spectrum.

e Nasal possibility: To detect the presence of the low
frequency resonance characteristic of nasal murmurs,
this feature compares the energy in a passband of 100-
350 Hz to energy in a passband of 350-850 Hz.

e Onset rate: This feature is the maximum change
in energy from 1000-7000 Hz within 20 msec of the
beginning of a phone. To capture rapid transitions,
the energy is computed every msec from the short time
Fourier transform using 2 msec Hamming window.

e Spectral offset location: This feature represents the
location of the first spectral dip higher in frequency
than the first major concentration of energy in a
smoothed spectrum.

e High frequency energy change: This feature is the slope
of the best linear fit to the energy in the 4500-7800 Hz
band over the duration of a phone. This feature is
intended to help diffrrentiate between fricatives (which
have relatively stable energy) and unvoiced plosive
releases (which generally have a strong onset followed
by aspiration which weakens).

Hypotheses sconing can be viewed as a discrimination
or identification problem. A binary discrimination allows
small differences between similar candidates to be weighed.
In contrast, identification indicates how well the measured
feature values match the expected values for a phone,
independent of the values for the other phones. Because
lexdcal access based on a broad phonetic representation
results in similar sounding word candidates, the sounds to
be scored shonld be similar; henee discrimination seems
the better approach. Preliminary results bear ont this
expectation, and a metric hased on discrimination between
competing phones was used in scoring [5].

To identify errors due to the venfication algorithm,
the inputs were idealized by mapping the phonetic
transcription of each utterance into a broad phonetic
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transcription and then performing lexical access on these
*ideal™ broad phonetic transcriptions. The venfier was
evalnated only on the subset of the lexical access database
which was phonetically transcribed.

Table 2 shows the word error rates under various test
conditions. Each insertion, deletion, or substitution was
counted as an error. The error rates illustrate the power
of using a few carefully selected acoustic features combined
with statistical measures to score each contending phone.
On new utterances, the error rate for training speakers
is only slightly better than for new speakers, indicating
that an acoustic-phonetic approach is potentially speaker-
independent.

Table 2: Word Krror Rates

. . # of # of Word
Utterances | Speakers |f L .
Speakers | Digits | Error Rate
training | training 6 1365 1.5%
training new 3 364 4.9%
new training 4 1126 5.0%
new new { 803 5.3%

Detailed analysis of the errors in all corpora revealed
that many of the errors were due to differences in
male/female speech. The most striking and consistent error
was the confusion of “four” and “five”. Al 16 cases in
which “five” was incorrectly recognized as “four” occurred
in speech by males. Eighteen of the 19 cases in which
“four” was confused as “five” occurred in speech spoken
by females.

To obtain an indication of the robustness of the
verification scores, the score of the correct word relative
to the scare of competing candidates was examined. When
the top candidate was correct, its score was compared to
the second best candidate’s score. When the top candidate
was incorrect, its score was compared to the correct word's
score. Fignure 6 shows the results of evaluation on new
utterances by new speakers. Note that the difference in
word scores is generally small when an incorrect word is the
best scoring word (dashed line), and that the difference has
alarge range when the correct word is the best scoring word
(solid line). In a recognition system, this information could
be used to identify words which do not score mueh better
than their competitors. Finer analyses conld be performed
on these words or the word could be rejected.

s0.0
F
40.0 =
3 3
J
- 90.0 -3
3 F
-
§ 20.0-4
f ER
10.0 = ‘l
E n
E LUt
L4 LR T T LEBE) T ' T T Al T ' LA & T T (lf‘»‘]
° 10 ?0

Metogrem Min Width . 0 029

Figure 6: Difference in word scores for
correct and incorrect classification
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The rank of the score of each phone in the correet word
is shown in Table 3. Note that for new utterances by both
the training speakers and the new speakers, the correct
phone is in the top position at least 86 of the time anid
within the top two candidates at least 98 of the time. This
similarity in rank again indicates the potential <peaker-
independence of using acoustic features in venrfication.

Table 3: Phone Rank in Correcr Words

Position
Utterances | Speakers - —
4] | 2 3
— —
traming tramning a3 SRR T
training new a0 a9 ga | ron |
new training K6 as o] on
new new K6 9% 99 1o

Two components of a broad phonetic based continnous
digit recognition system have been examined. A method
for lexical access was implemented and shown to allow
a recognition system to tolerate reasonable front-end
variations in labeling. The use of a small set of fine phonetic
features for word verification was investigated and found
to be adequate. Additionally, evaluation showed these
components to be potentially robust to speaker varations.
These results are encouraging and indicate that a broad
phonetic approach is viable, but evaluation should now be
performed on a larger database.
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A BROAD PHONETIC CLASSIFIER
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ABSTRACT

It has been <hown that bread phonetic sequences partition a
large lexaicon into small eqrivalence classes of words sharing the
same sequence  While these result<Hustrate the power of broad
phonetic constraints for differentiating words from one another,
they donot suggest how ta exploit cequential constraints in recog-
mtion This paper presents a method for deconphing sequential
phonetic constraints from a lexicon, by representing allowable
broad phonetic sequences in terms of n-th order Markov models
A «imple frame-based broad phonetic classifier is used to evalu-
ate the effectiveness of these madels in recognition. Tests on 300
centences from 30 male speakers demonstrate that the addition

of sequential constraints improves the classifier’s performance

INTRODUCTION

We have been investigating the use of broad phonetic se-
quences for hypothesizing words in speech recognition {1'. Ship-
man and Zue 2 demonstrated that broad phonetic sequences are
powerful for discriminating among the words in a large lexicon.
They showed that a large lexicon can be partitioned into small
equivalence classes by representing the words in the lexicon in
terms of sequences of six manner of articulation labels. For the
20.000-word Webster's Pocket Dictionary, there are an average of
approximately 35 words matching each broad phonetic sequence.
The largest equivalence class has about 200 words, or 1% of the

lexicon

A partitioned lexicon forms a table of words corresponding
to each broad class sequence. In the case of ideal data, a sequence
recognized in the speech signal can be used to lookup the possi-
ble matching words in the table This presumes that the word
boundary is known, and hence applies most directly to isolated
word recognition. The variability in real speech data complicates

this simple access model.

Onur previous research has forused an developing a lexical
representation which is relatively insensitive to variability. This
work 1s summarized 1n the next section  The current paper

presents a method for using sequential phonetic constraints to

reduce the variability in a broad phonetic classifier To evaluate
this methaod we implemented a =imple frame-based broad pho-
netic classifier and tested it both with and without the sequential

phonetic constraints

LEXICAL ACCESS

The high degree of variabulity in speech means that a given
recogmized sound sequence. & can correspond to many possible
sequences. Pos(S).in the lexicon  The size of Pos(S) depends
on bath the degree of variabihty in the speech, and the errors
imtroduced by the acoustic classifier

To find all the possible words given sequence S, either the
lexicon must be probed once for each sequence in PPos(S). or each
word must be stored according to all its possible realizations
Therefore, in order to reduce the number of word candidates
corresponding to S it is necessary to minimize the size of Pos(S)
This can be done in two ways (1) reduce the sensitivity of the
lexical representation to vaniability, and (2) reduce the variability
i the ontput of the broad phonetic classifier

The key observation in making the lexical representation less
variable is that the variability in speech is nat umform  For n-
stance, the stressed syllables of words are less vaniable than the
unstressed syllables. This is illustrated by the fact that deletion
of phonetic segmients occurs almost exclusively in unstressed syl
lables  Thus for two identical broad class sequences S, and §, .
recognized from stressed and unstressed syllables respectively.
the first will have fewer possible underlying sequences than the
Pos(S.) - Pos(K,)

In order to evaluate a representation based on stressed s\l-

second

lables, we compared the relative importance of stressed and un-
stressed syllables in partitioning a large lexicon '3 This inves-
tigation revealed that the phonemes in stressed syllables alone
provide almost as much constraint as the entire word  the size
of the lexical equivalence classes is almost the same for represen-
tations using only the stressed syllables as for those using the
whole word. For representations using only unstressed syliables.
on the other hand. the size of the equivalence classesis two orders
of magnitude larger. These results strongly <uggest that the lex-
ical representation should be based on the phonemes in stressed

syllables

The second way of mimnuzing the size of Pos(S) 1s to reduce
the variability in the output of the classifier The remaider of
this paper investigates how to use sequential phonetic constramts
to reduce the variability in the output of a broad phaonetic clas.
sifier. Since sequential phonetic constraints are impheit in the
words of a given lexicon, they must be decoupled from the lexi-

con before they can be used in a classifier
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DECOUPLING THE CONSTRAINTS

This section investigates representing the sequential pho-
netic constraints of Enghish explicitly in terms of allowable n-
tuples of broad phonetic segments To the extent that this repre-
sentation 1s independent of any particular lexicon. it can be said
to capture general sequential properties of English

Sequential phonetic constraints are relatively local For ex-
ample. English has the word imnial sequences spl and  spr |
but not  <pt At a broad phonetic level (using the six manner
of articnlation elasses vowel, nasal, hquid or ghde, stop, strong

fricative. and weak fricative) this rule can be charactenized as
[STROLG-FRIC] [STOP] [LIQUID]

1< allowable but
{STROLG-FRIC) [STOF] (STOP)

s not - The locahty of such rules imphes that a first or second or-
der characterization of legal sonnd sequences should be sufficient

for captuning wquonn-ﬂ phonetic constraints

N-th Order Models

Grven the locahty of sequential phonetic constraints, we
can nse the nth order sequences (for no< 2) i a large corpus
to construet a model of legal broad phonetic sequences. The
states of the madel are n-tuples of broad phonetic segments.
and the transitions are single <egments A transition {rom state
{ry.rs.  .r.Ytosrate (r,. 1, .r¢) occursoninput r,, where
the 7, are broad phonetie segments

For a broad phonetic scheme cuch as the one we have been
nsing, eonstructing these models s relatively easy because of the
<tnall number of svmbols A third order characterization of a six
symbol system, such as the manner of articulation classification
n<ed by Shipman and Zue has only 216 possible states For a
more detatled representational scheme. with forty or fifty sym.
bols. the number of possible states rapidly becomes intractable

A given model can be formed by observing the broad pho-
netic class seepiences i a particular lexicon For example, the
one-word lexicon “cast™. with the phoneme string  kast  and
the broad phonetic sequence

[sTOP} [VOCALIC] [STRONG-FRIC] [STOP)
generates a second order madel with three states and two trans.
tionse  However this model does not capture the legal sequences
at the beginmings and ends of words Therefore we make use of
two additional classes (BEG] and [END] which mark before and
after aword  Uang these two additiopal classes, the model shown

in Figure s obtamed for the one-word lexicon, “cast”

stop vac fric g

A A A, "4

Ltoeibvod [rociling [UININEIR (stopl{end];

g reel

. P

Figure | Serand order model of a one-word lexicnn

To determane how well these madels capture broad phonetie
conctramts independent of a given lexicon, we compared models
of ferent Jexicons If a model of ope lexicon recogmzes the <.
quences i other lexacons thenat has captared general properties
of Frglich «ound <equences rather than <specific properties of the

CSall Badh Sl Bal

lenscon Second and third order maodets of the Packet Dhotionary
of 200000 words, and Forge and Thorndike < 3500 im0t frequent
Fngheh words were comypared  The madels use the same <y
manner of articalatien classes as the levacon studies T e d
arder model of the 2500 word Tevaeon correcthy recipmzes Q000
of the words i the 200000 word Jexteoon Fhe third order model
correctlv recepmzes 90 A of the words Thes stronely ~supports
the fact that the roodele are independent of aprven oo
Inoaddition tospecfyine alb b oo b order broad phonen
sequences, the netw the can beoagecd teoencoode the Dikelibnoeod
of oceurrence for eah <equence This as e by augmenting
the ares of the network with tevation probabihties Uang o
lextcon with word fregquencns the b hibood Af 4 gnven tranaition
1< proportional to the froqurnes of thoesward=n whv h i accurs
Onr lesicons all have word frequens v anformatn froon the Brown
Corpus of written Foghsh 4 Woth the addin of tran<ition
probabilities, the netwarks foro noth order Markoy miodels of

the sequential phonetic constrinmts

APPLYING THE CONSTRAINTS

The goal of incorporating <equicntial phonetic constrams
it a classifier s toreduce the varmability an the cdlassiber’s oo
put To exaluate the eflectivencss of the madels developed in the
previous section we implemented a simple broad phonetic clase.
fier Given the output of the classifier. a Markes maodel is need
to deternnne the hest broad phonetic sequence consistent with
that model Figure 2 diagrams the relation between the clasa.
fier and the model In effect the sequential phonetic constrainte
of the model are used to “correct™ the output of the classifier
Comparing the best sequences for different models serves as a

paradigm for evaluating the power of the medels
Speech Signal

|
I Y T “
! € Lassifier
i

Sequence
P o
 Nlukos ; i o
. L of cst Soquence
Model “ | !

J
IR |

v
Sequence

Figure 2 Paradigm for comparine ditferent Markos med

of sequential phonetic constraimnte

The n-th order Markov model of a given lexicon captures
sequential phonetic constramts i terms of broad phenetio weg-
ments Sinee the classitier performs frame-by frame elassifieation
of the speech signal. the segment-based networks of the previons
section must he converted 1o frame-based petwaorks

Fach arc in a segment -based network carresponds toa given
broad phonetie segment. as dlustrated m Figure 1 To convert
this network mto a frame-hased network each arc s replaced by
a recogmzer for e corresponding <egment This cepment rec.
ngnizer models a sepment as one of more <cessive frames of
the <ame typeas shown n Figure 20 The colf-trananon prob

ability . py 1< obtamed by oboervimg the durations of each bread
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Frgure 3 Frame-by-frame madel of a broad phonetic seg-

ment

phonenie segment an a traming set The small number of broad
phonety segments makes robust tramming possible with relatively
httie data

The same segment recognizer 1= used regardless of what
<tates a trapsition occurs between  One obvions extension 1s to
determine the degree to which broad phonetic context imfluences
the aroustic realization of broad phonetic segments If context
prediets the aconstic reahization. then different segment recogniz-
ers can be ueed in different contexts

The network formed by replacing each segment are with ate
corresponding frame-based recognizer forms a Markov model of
frame sequences This model captures both the n-th order seg-
ment information in the lexicon and the duration mformation in

the traimng set

Finding the Best Frame Sequence

Given a sequence of frames generated by the classifier. we
wich 1o determine the best frame sequence given that input and
1in n-th order frame-based NMarkov maodel This can be done using
the forward-backward algorithm 5 _and defining the best frame
sequence to be the highest probability sequence given the model
and the input sequence

The highest probability sequence s cumply the highest prob-
ability state at each time The highest probability state at a
given time is found by using the forward-backward algorithm to
compute Prls, - g, O) the probability of being 1n <tate ¢, at
time t given the obeerved sequence & This computation s done

using the conditinnal probability

Pr(d and 50 q)

1
Pr(d) (m

Prise 9 )

and the relation

Pridand ¢ q)  adr)d()

where

a1y e O and & q,)
Jly PrlOgy o O s )

are the forward and Fackyard probabilities respectively These
probatilities and the dencmmaror of (1) can be computed ef
Boently (in O{n®) tune for an nostate model) uang recursion
formula-

The next =ection describes o clasafier which vector gqnantizes
the outpar of three bandypass filvercanto mht VO codewarnds 6
These codeward sopuenees are anpnt to the Torward-baekward
algorithim alone with the hkehhood of each broad phonetie elass

given a partienlar codeword

THE CLASSIFIER

The mput to the clasafier 1v a crude spectral shape i the
form of three bandpass Gitered encrgres in the ranges 01000 §{7
1000-2500 Hz and 23008000 Hz . computed evers T0 mntheeconds
Fach encergy value s computed using a 20 millicecond hamming
window  The three energy values at cach frame are then vector
quantized mto one of eight VQ rodewords This VQ codeword
sequence 15 used as nput to the forward-backward algorithm

The tranming procedure imvolves three stages The <ame <ot
of trainmng ntterances is used for all three stages The fiest <tag
estimates the self-transition probabilities, p, for the scegment rec-
ogmizers ised to construct the frame-based network These prob-
abihties are deternuned using the durations of the hand-tabeled
data segments

The second stage forms the vector quantization codebask
The three bandpass energy values for each frame of the trammning
data are imput to a someans clustoang procedore. using a bo-
chdean distance metnie The VQ cadeswards are the centronds of
the resulting clusters

The third «tage extunates the hkehihood of the broad pho-
netie classes given each S Q codewaord  These probabalities are
estimated from hand Iabeled data and the ontpar of the veetor
guantizer Cuven the somadl tnmbaer of Browd classes these praobe

abilities can be estimated from relatively hrrle dara

RESULTS

The clasabier was evaluare b ovane both four and five broad
phonetic elaswes The foir class s are oot (VOC) vojeed
closure (VCT norse (N7) and sibnee (ST The five dlasses
difter o)y an the noplacement of the siaele ctass N2 by thie tao
classes fricative (FROVand barst (BST)

The 1%02waord Texveon from the Harvard Ter centences was
used to form the Markoy models of broad phonene conences
This lexieon s «irnlar m camplesaty to the Toree-Thorn ke and
Pocket dictionartes desertbed abone A second order medel of
the Harvard lexiean using the five broad elasses recogmizes all the
words in the 2500 and 20 000 woard dirtenanes A third erder
model recopmzes 9270 and 87T of the two lexacons, respectinely

Performance was measured naug both frame avd cognent.
based ctatictics The frame-by franae performance compares the
best frame sequence ontpat by e forward-Fackward slearthm
against the hand Label for each franme This vields both a confu-
<ion matnix and an everall percent-correct hgnre for the frame-
by -frame classification

The cegment-based performance s computed by chpmng
together <urcesanve frames with the came label The reanlting
<¢-2l|u-m<' are thon o m;nnw] agnst the haned Tlabeled < privents
by computimg a bet match berween the tao s mment <o paenees
The mateh 1+ comstramed cach that «oprments st coss car an
tune moorder to be pmatched Thos provides i nore accurate
(and more consersative} performance measure than a best «tnng
match

The syerem was tested weparateh for cach ol thirn male
cpeakers Fach speaker ad ten sontences frome the Harvard T
For each test the tramng set copsisted of the remamng twentye

mine speakers This procednre was sed toestablich the s aher
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independence of the system. Table 1 shows the frame-by-frame
performance averaged across all thirty speakers for both four and
five broad phonetic classes. Three different sequential phonetic
models were evaluated. The first row shows the results for the
“0-th order” models, which incorporate durational information
but no sequential phonetic constraints. The second row shows
the results for the first order models. Since the results for the

second order models are almost the same, they are not presented.

"~ |

5 Classes i

Order 4 Classes
[ e e e T1
© Zero L68T A% I67.1% |
. . = . B
5% ! 71.8%¢ “

First
o |

Table 1
thirty speakers. System was trained and tested separately

Average correct frame-by-frame classification for

for each speaker; the test speaker was not used for training.

These results demonstrate that adding sequential phonetic
constraints increases the frame-by-frame recognition performance
over the zero-order model. Using more sophisticated segment
recognizers to convert the segment-based to frame-based models
could further increase the frame-by-frame performance.

Table 2 shows the segment-based performance. The per-
centage of segments correctly classified is reported, along with
the segment insertion rate in parentheses. The sequential pho-
netic constraints have a substantial effect in reducing the segment
insertion rate, without greatly decreasing the percentage of the
segments correctly recognized Recall that these results are rela-
tively conservative because automatic and hand labeled segments

must overlap in time in order to be considered a correct match.

Order 4 Classes 5 Classes
Vo . s e == o
Zero 81.5% (63.7%%) 83.0
First 7415 (11.0%) 75.1% (11.8%)
Table 2. Average segment-based correct classification for

thirty speakers. The segment insertion rate is in parenthe-

LT.13

The segment insertions for the first order models are highly
regnlar  For instance 66 of the insertions in the 5-class condi-
tion are VCL in a FRC VOC context. Thus additional process-
ing of the segments should be able to substantially reduce the
117 insertion rate. Without the sequential constraints the er-
rors show no such regular patterns, and hence further processing

18 not likely to reduce the error rate.

Syllable Stress Affects Classifier Performance

The classifier’s segment deletion rate is higher in the un-
stressed syllables than in the stressed syllables In making this
campatison. only mono-syllabic words were considered (R4°% of
the words in the utterances are mono-syllabic). A word was

called unstressed if the nuclear vowel was reduced  transcribed

asaschwa - and otherwise was called stressed. For the unstressed
words the deletion rate was 23.7 whereas for the stressed words
it was only 15.9%. This result adds further support to the earlier
observation that the stressed syllables are important in hypoth-
esizing words.

SUMMARY

While lexicon studies demonstrate the power of broad pho-
netic constraints for differentiating words from one another, they
do not suggest how such constraints can be directly exploited
in recognition. This paper has presented a method for decou-
pling sequential phonetic constraints from a given lexicon, by
representing allowable broad phonetic sequences in terms of n-th
order Markov models. Tests of a simple frame-based broad pho-
netic classifier on 300 sentences from 30 speakers demonstrate
that these models can be used to increase the performance of a
broad phonetic recognizer.
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VISUAL CHARACTERIZATION OF
SPEECH SPECTROGRAMS®

Hong C. Leung and Victor W. Zue

Department of Electrical Engineering and Computer Scicnre, and
Research Lahoratory of Electronics
Massachusetts Institute of Teehaology
Cambridge, Massachusetts 02139

ABSTRACT

This paper describes a system that applies vision techoignes to
extract acoustic patterns in the speech spectrogram. By processing
a spectrographic image through a set of edge detectors and combin-
ing their outputs, the system obtains two-dimensional ohjects that
characterize the formant patterns and general spectral properties for
vowels and consonants. As a validation of the approach, a limited
vowel recognition experiment was performed on the “object™ spec-
trograms. Preliminary results show that this processing techniqne
retains relevant acoustic information necessary to identify the under-
lving phonetic representation.

INTRODUCTION

For the past four decades, the prevailing form for display-
ing speech has been the spectrogram, a three-dimensional time-
frequency-intensity representation of the signal. The spectro-
gram provides a visual display of the relevant temporal and
spectral characteristica of the aconstic signal. It has been an
invaluable tool in the development of our understanding of the
acoustic properties of speech sounds.

Recently, the spectrographic display took on added signifi-
cance as it was demonstrated that the underlying phonetic rep-
resentation of an unknown utterance can be extracted almost
catirely from a visual examination of the speech spectrogram
(2]. [3]. [9]. In these experiments, a trained spectrogram reader
correctly identified the phonetic segments with 80% to 90% ac-
curacy, depending on the experimental conditions and the scor-
ing procedures. The reader’s performance, measired in terms of
accuracy and rank-order statistics, was considerably better than
that of the phonetic front-ends of available speech recognition
systems. These experiments stirred renewed interest in acoustic-
phonetic approaches to speech recognition, and supported the
speculation that hetter front-ends may be constructed if we can
learn the phonctic decoding procedure used by human experts.

Protocol analysis of spectrogram reading reveala that the
decnding process calls for the recognition and integration of a
myriad of acoustic patterns. In order to develop a system that
ntilizes such knowledge, one must first be able to extract these
aconstic patterns.

This paper is concerned with the visual characterization of
speech spectrograms. Our aim is to capture the essential acons-

*This research was enpparted by DARPA ander contract N0O014-82-K-
0727, monitored throngh the Office of Naval Research.

tic patterns of a spectrogram so that these abstracted pat-
terns may be nsed to characterize and recognire different speech
sounds. Traditional descriptions of acounstic-phonetic events
based on formant frequencies are often inadequate because the
formants cannot always be resolved reliably Thus visual char-
acterizations may provide an alternative, and perhaps more ef-

fective, description

FProcessing the spectrogram as a three-dimensional image
has a number of important advantages  First, one can better
capture the time-frequency dependency of the speech signal by
treating the time and frequency dimensions simnltaneously. Sec-
ond, we can liberally borrow from techniques developed through
many years of succeseful vision research  Third, characterizing
a spectrogram is a lighly constrained vision task  The three
dimensions of the spectrogram correspond to physically mean-
ingful quantitics, namely, time, frequency, and amplitude. The
patterns on the spectrogram are also imited by the nature of
the speech production mechanism and the restricted sound pat-
terns of a langnage.

SYSTEM DESCRIPTION

Our approach to visual characterization of speech spectro-
grams is to treat the acoustic patterns as visual objects. These
objects are obtained by applying edge detection to the spectro-
graphic image, producing an “edge map” as output. The edge
map inciudes explicit information about the position, the orien-
tation, and the relative strength of edges. These edge elements
are grouped into closed geometrical contours. The remainder of
this section deacribes the system in greater detail, focnsing on
the vowel-like sounds. Obstnient sounds have visual patterns
that are quite different from those of vowel-like sounds. Their
treatment will be described near the end of this section.

Edge Detection

The system obtains a narrow-band spectrographic represen-
tation by computing a short-time spectrim once every 5 ms with
a 25.6 ms window. The vowel-like regions of the image, deter-
mined throngh a broad phonetic classifier (5], are then processed
throngh two-dimensional directional edge detectors of different
acales. The cross-section in the frequency dimension is the sec-
ond derivative of a Gaussian, and the cross-zection in the time
dimension is a Gaussian. The directional Gauasian edge detec-
tor has been shown by Canny [1] to have many useful properties
such as robustneas against detection errors, good Incalization to
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true edges, and dimensional separability. Thus this operator
smooths the spectrogram in the time dimension and also de-
tects edges that are approximately orthogonal to the frequency
dimension. Zero-crossings of the filtered output correspond to
edges in the original spectrogram. Another advantage of using
Gaussian detectors is that the zero-crossings do not disappear
as the scale!decreases (7], [8]. This is an important property for
combining outputs from different scales.

QOne potential problem of using a directional operator is that
its performance might degrade if the formants are not quite
borizontal. Multiple directional operators oriented at different
angles might, therefore, be nceded. However, due to the slug-
gishness of articulatory movements, formant frequencies cannot
change very quickly. Preliminary results show that if the Gaus-
sian cross-section in the time dimension is made small enough
(on the order of 1 pixel), the edge detector can pick up fast
formant movement.

Combining Multiple Scales

Parts (a) and (e) of Figure 1 show the narrow-band and wide-
band spectrograms, respectively, for the nonsense word, “boyt”,
spoken by a female speaker. Parts (b). (¢), and (d) show the
results of filtering the narrow-band spectrogram with the direc-
tional edge detectors of different acales. The plots correspond
to a o of 4. 3, and 2 pixels, with sigma decreasing from left to
right in the figure. The output with the largest scale is the most
tobust but has the least resolution., whereas the one with the
smallest scale has the best resolution but also has many extra-
neous edges. In order to achieve robustness and good resolution
simultanconsly, these outputs must be systematically combined.

We have chosen to combine the outputs by performing a
coarse-to-fine tracking in a way similar to scale-space filtering
proposed by Witkin [7]. This approach has the advantage of
managing the ambignity of scale in an organized and natural
way. Since zero-crossings do not disappear as the scale de-
creases, the coarse-to-fine tracking works properly.

Figure 1(f) illustrates the result after combining edges from
the different scales. It can be seen that the result has good
tesolttion and is robust,

Applying Speech Knowledge

While coarse-to-fine tracking =olves the problem of localizing
large-scale events, it does not solve the multi-scale integration
problem. Which of the edges found by the small-scale operators
are robust, and which edges are due to noise? There are a num-
ber of ways to determine which edges are valid. One measure
is to examine the amount of iutensity change. The amplitude
of the ontput of the first derivative Ganssian, and the slope of
the zero.crossings of the second derivative Gaussian, are good
indicators of the amount of intensity change. However, some
form of thresholding is needed, which may lead to gross error.

We have chosen, instead. to apply specific speech knowledge
to select the edges. We first apply a bandwidth constraint. For
rome vowels, formants can be quite close ta each other. Some-
times they are 20 clnge together that it js impossible to separate
them by eye. Spectrngram readers are able to tell that there are

'The scale ie 8 measare of the width of an edge detectar. For a Ganssian
detector, the scale carreepnnds to the «tandard deviation, o,

two formants because of the bandwidth. Thus after the coarse-
to-fine tracking is performed, regions with significantly large
bandwidths are suspected of having more than one formant. In
these cases, edges from the smaller operator outputs can be in-
cluded if the bandwidths after the insertion of the additional
edges are still reasonable. This heuristic is quite robust in the
vowel regions. To avoid including spurious edges, however, the
original bandwidth needs to be quite large 0 as to trigger in-
sertion of edges. This means that some of the good edges from
the smaller-scale detectors are inadvertently omitted. In order
to locate these edges, more elaborate procedures are needed.

For some vowels, the formants are quite close to each other
for rome duration, but gradually separate and finally split apart.
After the formants split, edges can be detected quite reliably.
These edges can then be used as anchor points to find edges
when the two formants approach each other. As we have aeen
in Figure 1(f), F1 and F2 begin to split apart at approximately
the midpoint of the vowel. This kind of aplit provides strong
evidence that more edges should lie to the left of this point.
These subtle edges are located by the following “digging™ pro-
cedure. Starting from this poinf, edges to the left are exam-
ined. If these edges satisfy a coutinuity requirement, they are
considered “good™ edges. Building upon the extensions, edges
further to the left are then examined. This process repeats un-
til no more edges are found or until the continuity constraint
is violated. Figure 1(g) shows the rezult after the “digging”
operation. In this example, the operation has dug through the
entire region and correctly located the first two formants of the
vowel. (Note also that objects with average frequency above
3.5KHz have been discarded, since they do not contribute to
the phonetic identity of vowels.)

The scale-space filtering, augmented with the above two pro-
cedures, is quite robust in finding formant edges in the vowel
regions. At relatively high frequencies, the detected edges usu-
ally correspond to edges of the formant frequencies. However,
there is very often an energy concentration below 300 Hz due to
FO. When F1 is low, this small encrgy concentration is masked
by F1. But when F1 is higher in frequency, this energy con-
centration becomes more and more noticeable. Trained spec-
trogram rcaders are very good at ignoring it. We are not yet
sure how to deal with these shallow edges in the system. At this
moment, we have chosen to ignore edge contours with average
frequency less than 300 Hy, if there is another edge contour with
average frequency below 800 He. This condition ensures that
the ignored contour does not correspond to F1.

Processing of Obstruent Regions

Obatnienta are characterized by their general spectral distn-
butions rather than any specific formant patterns. As a result,
the processing for the ohstruent regions is considerably different
from that of sonorant regiona. The nbstruent regions are again
determined by the broad phonetic classifier. A very coarse edge
detector it applied to the wide-hand spectral alices, computed
with a 6.7 ma window. The objects are obtained from the edge
map with no further processing.

Figure 1{h) shows the final resnlt for the word “boyt.” in-
cIuding hoth the vowel-like and ohstruent-like regions. Compar-
ing this figure with the original spectrogram, we sce that rele-
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vant features in the original spectrogram have been captured in
the objects. As a more elaborate example, Figure 2(b) shows
the objects obtained from a continuous sentence spoken by a
male speaker. For comparison, the corresponding wide-band
spectrogram is shown in Figure 2(a). If the extracted objects
indeed capture the important information in the spectrogram,

The results of our vowel recognition experiments, based on
the 112 vowel tokens from eight speakers, show that the smoothed
spectra can be used to identify the vowels with an 83% first-
choice accuracy. The correct vowel is within the top two choices
94% of the time. This result compares favorably to that us-
ing the LPC/Itakura-Distance method. While it is premature

4'-:_ then they can be used as a mask to filter out irrelevant acous- to base our conclusion on such a restricted corpus, we are nev-
‘ ::'-: tic information, as shown in Figure 2(c). We see that important ertheless encouraged by the results. It appears that, for this
::. Bf'f"“'i‘: info"““'i‘"" in this utterance, f““'h as the formant tran- data set at least, our processing system did not remove acoustic
‘ :;-; sitions in vowel regions and the shift in spectral energy distri- information that is necessary for vowel identification.
: butions in obstruent regions, has been accurately retained after
A processing.
SUMMARY
I In summary, we developed an algorithm for the extraction of
,_-:‘_~ visual objects from speech spectrograms. Results from a limited
.. RECOGNITION EXPERIMENTS vowel recognition experiment suggest that the processing tech-
_,.'_:_ The examples shown in Figures 1 and 2, and informal “object- niqge rf'tains acoustic information that is useful for phonetic
reading” experiments performed by spectrogram-reading experts, distinction.
. suggest that the procedure described in the previous section In the future, we plan to cvaluate this system more exten
L H i i 1 i 1 . L . ™ A . ’
e is potentially useful in extracting important acoustic features sively, and to investigate the feasibility of using the objects for
g from the spectrograms. The extracted patterns can, for exam- phonetie recognition.
- ple, provide the necessary information for the development of a
- knowledge-based system for phonetic recognition [10]. Alterna-
o tively, one can build up an inventory of tbese' patterns in order REFERENCES
to characterize and recognize speech sounds directly, using a va-
- riety of visual object recognition algorithms [6]. Before we start (1] %‘(;’“;ﬂ;;_r “Finding Edges and Lines in Images,” MIT-TR-
T tc utilize these objects in either of the two tasks, however, we ) ’ . e
i must first make sure that these processed visual patterns in- 2 S‘Og;‘z:’;’qﬁzdﬁ:‘rz’r‘ .‘.‘lL;e“’:r;h?n:::ﬁ;:y:’dgfo! i.l;::;‘:
f deed retain the necessary information for the recognition of the Speech, RA. Cole, ed.', Hillsdale, NJ: Lawrence Erlbaum Assoc.,
JAN underlying phonetic segments, 1980, pp. 3-50.
-, As a step in this direction, we performed a small vowel recog- [3] Cole. R.A. and Zne, V.W., “Speech as Eyes See It,” in Atten-

tion and Performance VIII R.S. Nickerson, ed. Hillsdale, NJ:

.. . . . A it )
nition experiment. The task involves the recognition of 14 vow Lawrence Eribaum Assoc., 1980, pp. 475-494.

els, /i, 1, ¢, ¢, 2. a,2, A0, 1,32, ay, oy, aw/, spoken in the /b/-

- . - 4 Itakura, F., “Minimum Prediction Residual Principle Applied
. vowel-/t/ environment by 8 male speakers. Due to the limited 4 to Speech Recognition,” IEEE Trans. Acoust., Speech, Signal
B amount of available data, the recognition was performed using Process., vol. ASSP-23, no. 1, pp. 67-72, Feb. 1975.
SN a rotational procedure; in each trial the system was trained on (5| Leung, H.C. and Zue, V.W., “A Procedure for Automatic Align-

ment of Phonetic Transcriptions with Continuous Speech™ IEEE
Conference Proceedings, ICASSP, San Diego, CA, 1984, paper
2.9.

the data from seven speakers and tested on the remaining one.
For each vowel, the recognizer chose from the seven training
samples the one with the smallest intra-sample distance as the

L

A reference template. A dynamic time warping algorithm [4], with (6] Marr, D., Vieion, W.H. Freeman & Co.. San F"'"Lm;‘ ”;82'
et i straint sed t t 1 Witkin, A.P., “Scale-Space Filtering,” Proceedings of the Inter-

SN appropnnte. local p:.\th constraints, was used to compensate for bl national Joint Conference on Artificial Intelligence, pp. 1019-

K. differences in duration hetween the test and reference patterns. 1022, 1083

o .. N .

y o~ No attempt. was made for.normallmng the frequency scale to [8]  Yuille, A.L. and Poggio, T., “Scaling Theorems for Zero-crossings.”

gy account for inter-speaker differences. Al Memo 722, MIT.

. = [9] Zue, V.W.and Cole, R.A., “Experiments on Spectrogram Read-
" . . . ing,” b dinges, ICASSP, Washi D.C.
_’ . The oh'Jeds (jlctcrmmf'd by our processing syste.m do not re- ll!lgxfo,llﬁfﬁl(‘;'ll{g.m“ Proceedings ashington

. __ tmn amplitude information which is often useful in rhAf'acter- [10] Zue, V.W. and Lamel, LF., “An Expert Spectrogram Reader:

e izing speech sounds. Therefore, we created from the objects a A Knowledge-Based Approach to Speech Recoguition,” IEEE
-~ cartoonized spectrum for each time frame. Regions inside the Conference Proceedings, ICASSP. Tokyo, Japan, 1986, paper
.~ objects were replaced by a constant value that is equal to the 23.2.

Y average value of the corr~sponding regions in the original spec-

. trum, whereas regions outside were set to rero. The cartoonized

N spectrum was then smoothed with a Gaussian window. Parts

«.:-, (a). (b), and (c) of Figure 3 illustrate, respectively, a vowel

> spectrum (superimposed by an LPC spectrum), the cartoonized
::J‘.; spectrum derived from the edges, and the amonthed spectrum
j“ used for recognition. A Euclidean distance was used to mea-

3, sure similarities between spectra. For comparison, we also im-

— plemented an LPC-based system using the Itakura’s distance

N\ metric [4].
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From the Proceedinas of ICASSP 86, the IEEE-IECEJ-ASJ Internatioral Conference on
Acoustics, Speech, and Sianal Processing, held in Tokyo, Japan, April 8-11, 1986.

AN EXPERT SPECTROGRAM READER:
A KNOWLEDGE-BASED
APPROACH TO SPEECH RECOGNITION®

Victor W. Zue and Lori F. Lamel

Department of Electrical Engineering and Computer Science, and
Research Laboratory of Electronics
Massachusetts lnstitute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

Human experts can determine the phonetic identity of un-
known utterances from a visual examination of the spectrogram
with performance better than available computer systems. The
spectrogram-reading process involves the use of multiple sources
of knowledge, including articulatory movements, acoustic pho-
netics, phonotactics, and linguistics. In addition, the experts’
performance can be attributed to their ability to deal with par-
tial and/or conflicting information, as well as multiple cues.

This paper investigates the feasibility of constructing a know-
ledge-based system that mimics the process of spectrogram read-
ing by humans. In a task of identifying stop consonants ex-
tracted from continuous specch, the system’ achieved perfor-
mance that is comparable to that of the experts.

INTRODUCTION

Over the past four decades the spectrogram, a three-dimen-
sional time-frequency-intensity represcatation of the signal, has
been the single most widely used form of display for speech. Part
of its popularity stems from the fact that it is relatively easy to
produce, and it provides a visual display of the relevant temporal
and spectral characteristics of the acoustic signal. It has been
an invaluable tool in the development of our understanding of
the acoustic properties of speech sounds.

Recently, a series of experiments by Zue and his colleagues
demonstrated that the underlying phonetic representation of an
unknown utterance can be recovered almost entirely from a vi-
anal examination of the speech spectrogram (1), [2]. [3]. In their
experiments, a trained spectrogram reader correctly identified
the phonetic segments with 80% to 90% accuracy, depending on
the experimental conditions and the scoring procedures.

While the spectrogram-reading experiments were intended
to illustrate the richness of phonetic information in the speech
signal, the results are relevant to automatic speech recognition
in several respects. First, they demonstrate that a great deal
of phonetic information can be derived from the acoustic rignal
alone. The reader’s performance, measured in terms of accuracy
and rank-order statistics, was considerably better than that of
the phonetic front-ends of available speech recognition systems.
The experiments thus provide an “existence proof” that high-
performance phonetic recognition is attainable. Second, spec-
trogram reading is based on the recognition and integration of a
myriad of acoustic cues. Some of these cues are relatively easy

*This research was sapported by DARPA under contract N00014-82-K-
0727, monitored throogh the Ofice of Naval Research.

to identify, while others are not meaningful until the relevant
context has been established. One must selectively attend to
many different acoustic cues, interpret their significance in light
of other evidence, and make inferences based on information
from multiple sources. The discovery of the acoustic cues and,
more importantly, of the control strategies for utilizing these
cues are the keys to high-performance phonetic recognition. Fi-
nally, protocol analysis of the process of spectrogram reading
reveals that the decoding process often involves the use of ex-
plicit rules. Thus the knowledge used in spectrogram reading is
potentially transferable to others, both humans and machines.

Our experience with spectrogram reading suggests that the
reasoning process can be naturally expressed as a series of pro-
duction (or if-then) rules, where the preconditions and conclu-
sions may be phonetic features or acoustic events. Since the
acoustic-phonetic encoding is highly context-dependent and re-
dundant, we must be able to entertain multiple hypotheses and
to check for consistency. Acoustic features are often expressed
in a qualitative manner and described as being present/absent,
and having values such as high/mid/low, or weak/strong. Thus
in order to have the computer mimic the performance of spectro-
gram readers, we nced a system that can deal with qualitative
measures in a meaningful way.

In this paper, we report preliminary results of our attempt
to incorporate our knowledge about the spectrogram-reading
process in a knowledge-based system that mimics the process
of feature identification and logical deduction used by experts.
The knowledge base explicitly represents the expert's knowledge
in a way that is easy to nnderstand, modify, and update. Our
research direction is very similar to the efforts by Johanssen et

al. [4] and Johnson et al. [5].

TASK DEFINITION

The process of spectrogram reading involves extracting rele-
vant acoustic features and combining these features using rules
that relate the underlying phonetic forma to their acoustic man-
ifeatations. Our task investigates the feasibility of developing a
computer aystem that mimics such a process.

In order to keep the project manageable, we made some im-
portant design restrictions. First, we decided to focus on the ac-
quisition and formalization of the knowledge base, rather than
the development of an expert system itself. Az a result, our ini-
tial effort makes nse of an available Mycin-based|6], backward-
chaining'system. Ownr investigation thus far has revealed that
thia particular expert system may not be the most appropriate.
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Nevertheless, it has provided us with a convenient mechanism ! i )
to acquire and formalize our knowledge, while freeing us from ‘\ ’ ‘
the need to delve into a very difficult research area. | &q

Second, we bypass the problem of automatic extraction of |, Wik
acoustic features. Many of the acoustic features used during i
spectrogram reading are readily extracted by the human visual :’ |: N ! ﬁi: l J l. o
system, but are very difficult to extract automatically by com- Y o enen
puter. For example, there does not yet exist a formain tyru'ker el X 3'"35-5,5 P ”m,m P Tmmeram e
that can determine formant frequencies reliably, especially in re-
gions where the direction and the extent of formant transitions
provide important information about the place of articulation
for consonants. Thus, while the measurements were made auto-
matically whenever possible, the acoustic features were verified
by the experimenter before being entered into the database.
Recent work by Leung and Zue [7] attempts to locate two-
dimensional objects directly from the spectrogram. Their work
on visual object recognition may eventually play a role in the
feature extraction part of our system.

Finally, we selected the task of identifying stop consonants
both as singletons and in clusters, since the cues for stop con-
sonants are complex, interrelated, and easily modified by pho-
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Figure 11 A display of the interactive measurement system.

acoustic features are made with no error, and as a result, aystem
performance can be assessed in relation to the adequacy of the
acoustic features, the rules, and the control strategy.

Some of the acoustic features can be measured reliably with-
out human intervention. For example, the system can automat-
ically determine whether the following vowel is rounded from
the phonetic transcription. Some other measurements, such as
whether the stop release is pencil-thin, are qualitative in nature

.
1y

-‘::‘ petic context. Thi rt the identificati f word and must be provided by the expert. Most of the measurements,

NS ontext. This paper reports on the identification - ; i i i

‘-:\:‘ initial singleton sto:cgnion:nts that appear bc::een t:owvot:w however, can be made automatically, subject tolvenﬁcatlofut:y
‘-I at - . . e

T els. Stope have been extensively studied and r iti ult the expert. For example, although the time ocahog of t
i N 'xl’vbl I . ¥ ecoguution results burst is a measurement first made by the computer, verification

X ";:‘ are avariable for comparison. is mecessary partly because the measurement is inherently er-

(¥ ror prone, and partly because other measurements depend on
. J accurate burst location.

SYSTEM DESCRIPTION

The development of our knowledge-based system ior spec-
trogram reading is divided into two parts. First we select a
set of acoustic features that are important for phonetic decod-
ing, and outline the procedures for their extraction. Then we
develop rules that operate on these acoustic features to deduce
the underlying phonetic form. This latter task involves both the
formalization of our knowledge with respect to the terminology
and descriptions, and the actual statements of the acoustic-to-
pbonetic mapping. These two aspects of the system are de-
scribed next.

Making the Measurements

Feature Selection The acoustic features nseful for spec-
ifying a given phonctic contrast were initially determined by
combing the acoustic-phonetic literature and by observing spec-
trogram reading eessions conducted by experts. Next, several
hundred spectrograms containing stop consonants were anno-
tated by experts and studied to verify the usefulness of these
cues and to suggest supplementary measurements. For our cur-
rent task of stop identification, we obtained acoustic features
that describe the release burst, the closure interval, and the
surrounding contexts. These features include the voice onset
time (VOT), the location and the strength of the burst, and
the formant transitions preceding closure and {nllowing release.
Our system currently utilizes 26 aconstie features.

Feature Extraction As stated earlier, at this moment we
are not concerned with the antomatic extraction of the acous-
tic features. Instead, we assume that the measurements of the

'Many nearch problems can he treated as finding & path to a goal state
from some initial position. When the search proceeds from the initial
state toward the gnal state, it is said tn he a forward chaining system. la
contrast, when the eearch starty at the goal state and works back toward
the initial state, then it is said to he hackward chaining.

A
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To facilitate the measurement of the acoustic features by
hand, we have developed a semi-automatic system that makes
many of the measurements automatically based on a time-aligned
phonetic transcription [8]. In making measurements, the expert
has available displays of the spectrogram, the speech waveform,
the short-time spectra, and energies in selected {requency bands.
The system goes through a checklist of acoustic features, making
the measurements and querying the expert to verify or modify
them. An example of the dizplay used by the expert to make the
measurcments is shown in Figure 1. In this example, the system
determined the first three formants at the onset of the following
vowel without error. The formant frequencies are marked by
a short vertical line, with associated numerical values, in the
thort-time spectrum window at the upper right-hand corner of
the display.

Each sample in the database has an associated list of feature
values that are mostly numerical. These values are used to
develop rules and to test the knowledge-based system.

Formalising the Knowledge

Not much is known about how experts approach the spectro-
gram-reading problem. The general atrategy of expert spectro-
gram readera is to make some preliminary proposal separating
the segments into broad phonetic classes. The candidate act
is then refined by incorporating detailed acoustic cues to rule
out unlikely hypotheses. In our attempt to capture this com-
plicated problem-solving procedure, we employ several general
principles. First, multiple hypotheses based on diverse acous-
tic evidence must be entertained. Sccond, the presence of a cue
may be useful, but its absence need not be harmful. Third, very
strong evidence of one kind may preclude competing hypothe-
tes. An example utilizing these principles is shown in Figure
2. The place of articulation of the stop consonant in the right-
band panel can be readily identified as VELAR by the compact,

e,
vy
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:: The last set of rules deduces the distinctive features from
; :: " the acoustic descriptions. Two examples of rules that deduce
. —. — the feature VOICING are shown below:
[y
X . N If the VOT is 4hort,
N - and the following vowel is not a schwa,
e . ) then the stop is voiced. |
[ : ‘
- ' If there is prevoicing during closure,
. . . then the stop is vosced.
et ’ ‘
R i — The second example reflects the asymmetry of some of the
o TR T o TR T sT T E TS T T ST T ST TR 7 acoustic cues; in this case the presence of prevoicing is a good in-
- tupe keep coop dicator for a voiced stop whereas the absence of this cue does not |
. Flgure 3: Spectrograms of /t/ and [k/ preceding different vowels. necessarily rule out a voiced stop. Note also that the strength |
. of a rule's conclusions depends upon the belief in the precon-
- ditions. If one is uncertain about the acoustic measurements,
Y low-frequency burst. No other information is necessary. On the multiple rules can be fired, each with a lower confidence factor.
other hand, the bursts for the other two stops are very similar; Control Strategy Mycin uses a very simple goal-directed
- both are rich in high-frequency energy. Only after the vowel con- control strategy. It sets off to determine the identity of the stop,
: text is known can one infer that the first stop is ALVEOLAR and in the procesa needs to deduce its voicing and plme charac-
o (in a rounded environment) and the second stop is VELAR (in teristics. In each case, the system will exhaustively fire all the
: j a fronted environment). pertinent rules. We are able to affect the control strategy some-
o In our aystem, phonemes are represented as a bundle of dis- what by including preconditions that inhibit certain rules from
L tinctive features [9]. Thus, for example, the stop /t/, has the firing. For example, if the stop release is very weak, one should
features: STOP, VOICELESS, ALVEOLAR. A stop is identi- not pay attention to the frequency location of the burst, as it
fied when there is strong evidence for the presence of its distinc- will be unreliable. As another example, the formant transitions

OO

~

tive features. Our system uses three stages to identify stops.
First, the phonemes are mapped into a set of distinctive fea-
tures. Next, the numerical values of the acoustic features are
mapped into a set of qualitative descriptions, such as high/low
and strong/weak. Finally, a set of relatively independent rules
deduce each distinctive feature from the qualitative descriptions.

Structure of the Rules There are several types of rules in
our system, each dealing with a particular transformation of the
data. First, there are rules that define the relationship between
a phoneme and its distinctive feature values. For example, the
stop [t/ is defined by the following rule:

If the voicing of the stop is vosceless,
and the place of articulation of the stop is alveolar,
then the identity of the stop is /t/.

for voiced stops are measured after voicing onset. However, for
voiceless stops, the same measurements are made during aspi-
ration, since the trapsitions are already completed by voicing
onset.

EXPERIMENTAL RESULTS

To test the eflectiveness of our system we performed a stop
identification experiment in which the stops are known to be
word-initial and to appear between two vowels. We greatly re-
duced the complexity of the problem by restricting our infor-
mation to the segment to be identified and its immediate neigh-
bors. In making the measurements, the system was provided
with knowledge of the vowel contexts and with time points that
roughly correspond to the points of closure, release, and voic-
ing onset. Refined time-points and other measurements were
determined using the interactive system described earlier.

Data Description

Y All of the stops are defined in the same manner. Thus we
Two hundred intervocalic stops were randomly selected from

-

e s s s
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have converted the problem of deducing the identity of a stop
to one of determining its voicing and place characteristics.

When experts read spectrograma they use their visual aystem
to extract features in the image. Then, using a wealth of knowl-
edge. they combine these features to form phonetic hypotheses.
Experts use qualitative descriptions, such as a second formant
that is low, mid, or high, but rarely specify numeric values. Al-
thongh they have an intuitive sense of what these terms mean,
experts may have dificulty quantifying them reliably.

In order to simulate this process, a set of rules has heen
develnped to map the numerical values of the acoustic measure-
ments into qualitative descriptions. The mapping ranges have
all been band-selected from histograma. Generally the qualita-
tive descriptions are asaociated with disjoint nnmerical regions.
Measurements that fall between regions are associated with both
labels, each with a lower confidence factor,

a database of 1,000 sentences spoken by 100 speakers, 50 male
and 50 female. One hundred tokens were used for system train-
ing, and 100 for system testing. The stops for the training and
teat sets were obtained from 64 speakers; 45 appear in both data
sets. There was no restriction on the vowels; in fact, some of the
stops preceded a schwa. In order to compare the system's per-
formance to human performance, spectrograms of the training
and testing samples were read by five experts.

System training involves selecting the acoustic features, set-
ting the thresholds for the mapping functions, and formulating
the rules. Rule development is an iterative process; an initial set
of nules it proposed and tested on a aubset of training samples.
By examining the output of the syatem, the experimenter refines
the rules and tests them on other training samples. The process
continues until the aystem hehavior is judged to be satisfactory.
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first top 2
condition choice | choice
accuracy |accuracy
training human(2)] 90 92
system 88 95
(testing |buman(3)] 92 96
| system 84 92

Table 11 Comparison of human and systerm identification perfor-
mance

Performance Evaluation and Discussion

Table 1 summarizes the results of our experiments. For the
training data, the system’s performance is comparable to that
of the experts. The performance of the aystem degraded by 4%
when it was confronted with new data, whereas the experts’
performance on the test data remains high. We attribute the
degradation of performance from training to test data primarily
to the “lack of experience” of the system; it has not yet learned
all the acoustic features and rules used by the experts. Most of
the errors are not due to new speakers, and there is no obvious
male/female bias.

Table 2 displays the confusion matrix on the system's first
choice identification for the test data. All but one of the errors
are in identifying the place of articulation. Ten of the 16 er-
rors involve the VELAR place of articulation. Examination of
the spectrograms reveals that most of the errors made by the
system are judged to be reasonable by experts. For example,
/t/-/k/ confusion usually occurs when the /t/ is rounded, /k/-
f/t/ confusion when the /k/ is fronted, and /k/-/p/ confusion
when the /k/ is back and has a weak release.

We are encouraged by the initial performance results of our
system. Although the system did not perform as well as hu-
man experts, our results are comparable to stop recogmition
results reported in the literature on similar tasks. While stops
have been extensively studied, most recognition experiments re-
ported have been on word-initial stops in isolated words and/or
pre-stressed position. The recognit.on task closest to our own
was reported by Demichelis et al [10]. Using acoustic features
that were combined with fuzzy logic and rules, they achieved
recognition rates of 90 92% for stops in continuous speech.

SUMMARY

We believe that we are making headway in our efforts to cap-
ture the knowledge used by experts in the apectrogram-reading
task, and to encode that knowledge into features and rules.
While the rule set is still incomplete, we feel that the rules

stop i1dentity

systes ansuer

Table 3: Stop identification matrix

express our knowledge succinctly. As stated earlier, rule devel-
opment is an iterative and interactive process. Each iteration
improves our knowledge and understanding, which is then re-
flected in the system design and performance. As more and
more data is used for training, statistical techniques can be em-
ployed to arrive at a more accurate measurement-to-description
mapping.

While the performance of the system can be improved, the
current implementation does not accurately model the problem-
solving procedure used by human experts. This is partly due to
limitations imposed by the structure of the Mycin-based expert
system that we are using. The goal-directed, backward-chaining
inferencing of Mycin does not enable the system to evaluate mul-
tiple hypothesis at any given time. As a practical matter this
makes the system harder to use and debug. In contrast, ex-
perts tend to do forward induction, and to keep a set of possible
candidates. In the future, we plan to implement our rules in
a forward chaining system that better models expert behavior.
We also intend to evaluate the system more extensively, and to
increase the complexity of the task by extending the recognition
to include impostors and stops in clusters.
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Utilizing Speech-Specific Knowledge in Automatic Speech Recognition®

Victor W. Zue
Department of Electrical Engineering and Computer Science
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In automatic speech recognition, the acoustic signal is the only tangible con-
nection between the talker and the machine. While the signal conveys linguistic
information, it also contains eztralingusistic information about such matters as the
identity of the speaker, his or her physiological and psychological states, and the
acoustic environment. 1 believe that successful speech recognition is possible only
if we can determine ways to extract the linguistic information while discarding ir-
relevant information.

Over the past three decades, we have made slow but steady progress in research-
ing the complex relationship between the underlying linguistic representations of an
utterance and its various acoustic realizations. While decades may pass before we
reach a full understanding, we may still derive near-term benefits from the increased
utilization of speech knowledge in speech recognition algorithms. The benefits can
take the form of better algorithm performance or reduced sensitivity of systems to
variations in speaker and environment.

In my presentation, I will suggest the following:

e Signal representation based on human auditory system may be important in
enhancing phonetic contrasts.

e Performance of pattern recognition algorithms may be improved when aug-
mented with speech knowledge.

o New models of speech recognition utilizing constraints imposed by the lan-
guage may be effective.

e Optimum utilization of incomplete acoustic-phonetic knowledge in the form
of ignorance modeling may be important.

'Research supported by DARPA contract NO0OO14-82-K-0727, as monitored by the Office of Naval
Research.
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