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RESEARCH LABORATORY OF ELECTRONICS, 86-9 1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSA CHUSETTS @ 2 1 8 a

September 15, 1986

Director
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22200

Attention: Program Management

This letter is the Annual Progress Report for our research program supported under
DARPA-ONR Contract N00014-82-K-0727.

During the period of 1 July 1985 to 30 June 1986, we have continued to make
progress on the acquisition of acoustic-phonetic and lexical knowledge. Specifically:

9 We have concluded our studies of lexical stress and improved the performamce
of the lexical stress recognition system. The system is composed of two parts:
a syllable detector and a stress determiner. A number of modifications were
made to the syllable detector, including the introduction of more robust in-
tervocalic consonant detectors, new algorithms for sonorant detection, and
improvements in code to shorten run times and increase user flexibility for
system development. The system now runs approximately three times faster,
detects sonorants more accurately, makes fewer false insertions, and is more
flexible.

* We have conducted experiments to quantify the influence of phonetic context,
including syllable structure, on the acoustic properties of stop consonants.
Our results indicate that both syllable structure and phonemic context play
a significant role in determining whether a stop will be released, unreleased,
or deleted altogether. By continuing to study such contextual variations and
their acoustic consquences, we hope to eventually implement a computational
framework that incorporates context knowledge in phonemic decoding.

* We have undertaken an investigation to capture the knowledge that humans
use to read spectrograms, and to apply this knowledge to the creation of an
expert system. Humans are able to read spectrograms by extracting and then
integrating the relevant acoustic features, using rules that relate the underly-
ing phonetic forms to their acoustic manifestations. To test the feasibility of

1%%



developing a computer system that mimics such a process, we selected a task
of identifying stop consonants drawn from continuous speech. Our prelimi-
nary results indicate that machine performance comparable to that of human
experts can be attained.

o We have begun development of a system that applies vision techniques to
extract acoustic patterns in speech spectrograms. By processing a spectro-
graphic image through a set of edge detectors and combining their outputs,
the system obtains two-dimensional objects that characterize the formant pat-
terns and general spectral properties of vowels and consonants. Preliminary
evidence suggests that the visual characterizations produced by this process-
ing technique may provide an effective alternative to traditional descriptions
of acoustic-phonetic events.

* We have initiated development of an articulatory synthesizer, LAMINAR, ca-
pable of synthesizing speech from different vocal tract configurations. This
new speech research tool takes an articulatory configuration in the form of an
acoustic tube, and generates the resulting acoustic output. With continued
development, the system could realistically model many time-varying artic-
ulatory gestures, thus providing a useful mechanism for speech production
experiments.

We are including with this report copies of the following publications, in the form
of theses and papers presented at various conferences, written with ONR support
during this contracting period:

" Chen, F. R., "Lexical Access and Verification in a Broad Phonetic Approach
to Continuous Digit Recognition."

* Huttenlocher, D. P., "A Broad Phonetic Classifier.'

" Leung, H. C., and V. W. Zue, "Visual Characterization of Speech Spectro-
grams."

" Unverferth, J. E., "Improvements to and Extensions of an Automatic Lexical

Stress Determiner."

" Zue, V. W., "Utilizing Speech-Specific Knowledge in Automatic Speech Recog-
nition."

o Zue, V. W., and L. F. Lamel, "An Expert Spectrogram Reader: A Knowledge-
Based Approach to Speech Recognition." Jt

Sincerely yours, ,.., . [
J., ti;ct
[ . ...... ....

• 1 .4.
Victor W. Zue U.~
Principal Investigator .... .... ...
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As part of her Master's Thesis, Aull constructed a Lexical Stress Determiner for
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Chapter 1

Introduction

As part of her Master's Thesis, Aull constructed a Lexical Stress Determiner for

discrete words[1]. As-my thesis, I propose to make her system more robust, both from

a programmer's point of view and from a performance and reliability perspective. -

Aull developed this system in the course of studying the effect of lexical stress

information in large vocabulary speech recognition. Her system achieved 87% accuracy

in determining the correct number of syllables and the proper stress pattern. Her

system was written on a Symbolics Lisp Machine and was designed to interact with the

Spire[16] speech tool developed at the MIT Speech Group. The system was automated

such that you could speak an isolated word to it and it would soon return the stress

pattern. Because Aull concluded her work two years ago, extensive updating of her

code was needed. The efficiency of the code could also be improved to speed real-time

performance. Much of it had to be rewritten in order to run properly on current the

Lisp Machine operating system.

5
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Her system consisted of two main components, a syllable detector and a stress

determiner. The syllable detector had problems finding boundaries in two cases: 1)

when two syllabic nuclei are separated by a sonorant consonant as in "zero" and 2) when

there are no intervening consonants, as in "react". Aull's syllable detector was fairly

accurate but relatively inflexible. It was not very good at finding syllable boundaries

that occurred at Vowel-Voiced-consonant-Vowel transitions. It also had problems with

short releases after consonant stops. The stress determiner gave only one answer with

no indication of a confidence level. This is a handicap when the system is used as a

front end of a large vocabulary lexical access system. If a mistake is made in stress

determination, then there is no way to find the correct target group of words. Mistakes

can include false insertions of syllables, deletions of syllables and incorrect labeling

of stressed syllables. Because the stressed syllables provide "islands of reliability"

for acoustic information within the word, it is especially important that the system

correctly identify them

The second chapter of this thesis describes lexical stress. It explores what lexical

stress is and how it might be important to a speech recognition system. The third

chapter describes Aull's system for automatic detection of lexical stress in isolated

words, exploring the components of her system developed by others. The fourth chapter

explains the modifications that have been made to Aull's system and how they changed

system performance. The last chapter contains conclusions and some possible directions

for future development.

6
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Chapter 2
4.

4,

The Importance of Lexical Stress

2.1 What is Lexical Stress?

In this paper, as Aull did, I will be dealing exclusively with lexical stress in isolated

words. This isolates a stress pattern of the word from higher order effects such as

intonation and sentential stress.

Historically, stress has been a poorly defined concept. Lexical stress can be de-

scribed from several points of view. It can be viewed linguistically, phonemically and

phonetically. It has been variously described as the force with which a syllable is said

or a. a feature composed of other features (i.e. fundamental frequency, duration and

intensity)[9]. However, it is generally agreed that what we perceive as stress is not a

feature of speech (or language) unto itself but is rather a combination of other, more

basic, features.

This chapter briefly describes what lexical stress is and then explains some of the

motivations for wanting to look at lexical stress and incorporating knowledge about it

7
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into speech recognition systems.

2.1.1 Stress in Language

Stress is a perceived parameter - it is easily detected by a human listener. Most

languages have measurable stress effects in their words. In Languages like French,

Finnish or Polish, the stressed syllable is fixed on a certain syllable in the word (such

as the first syllable or the last one). These languages are said to have fixed stress[8].

Other languages, most notably English, have what is called free stress, meaning

- that the stressed syllable can fall anywhere in the word. stress can also have higher

order knowledge incorporated. In these languages the stressed syllables are not fixed.

" . In these languages, it is words themselves that have stress patterns associated with

-. them. Sometimes the same spelling can have two or more meanings and different stress

-.-. patterns to go with them (e.g. "permit" and "permit"). This is especially common

when the same word represents a two meanings that are different word types (like in

the previous example where permit is first a noun and then a verb).

" The difference between stressed and unstressed syllable also changes from language

to language[8]. French, for example has very little difference which means that all their

syllables are fully articulated. In English, on the other hand, many syllables are not

fully articulated, resulting in shortened sonorant regions and schwa's.

In English it is usually true that a word will have a given stress pattern consistently.

This is different from other languages where there is either fixed stress in words or there

is not enough difference in the stress between syllables to be reliably determined.

8
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2.1.2 Components of Stress

Linguistically, stress is considered a parameter unto itself. The same can not be

said from an acoustic point of view. There is no single determiner for stress which

means that you can not look at one parameter (energy or some similar measure) which

will reliably determine the stress pattern of a word.

The Four Main Correlates of Stress

Through many studies, it has been determined that English stress is primarily

determined by four parameters. These parameters are energy, fundamental frequency,-. " .-

duration and phonetic quality[9].

Energy refers to the measure of acoustic intensity of the syllable. Syllables said

* "with more force, exert more pressure on the surrounding air which shows that there is

more energy put into the articulation of these syllables. The absolute amount of energy

in each syllable is not as important as the energy ratios within the word's syllables.

Ratios are more important than absolute values for all these parameters because there

is a great deal of variability in speech, not only between different speakers but also

different words uttered by the same person[15].

Fundamental frequency, perceived as pitch, is also a main component in the deter-

'_ mination of stress. A syllable with higher pitch compared to another syllable, with

all else being equal will be heard as the stressed syllable. Many experiments have

shown that it is not necessarily the peaks or mean values of the fundamental frequency

that correspond to stress perception but rather the shape of the F0 contour that really

matters[91.

Duration is important for stress perception as well. In general, the longer the

N ~ 9
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duration (relative to other syllables) the more likely that the syllable is going to be

perceived as stressed.

Phonetic quality is a measure of how fully articulated the syllable was. Aull mea-

sured this parameter when she labeled the qualifying syllables as reduced, that is, they

were short and had little energy when compared to other syllables.

How the Correlates Come Together

Using the words in her database, Aull found that no single parameter was a very

good indicator of which syllables were stressed. For example, maximal average energy

corresponded to the stressed syllable 84% of the time and the peak of the fundamental

frequency corresponded to the stressed syllable only 70% of the time. These results

were in good agreement with previous data.

Fry[5] found that both duration ratio and energy ratio were important cues for the

judgment of stress. He further found that the duration ratio was more reliable than

',..-. the energy ratio. Morton and Jassem[9] found that changes in fundamental frequency

had greater effect on stress perception than did changes in either energy or duration.

2.2 Usefulness of Lexical Stress in Speech Recogni-

tion Systems

The obvious question is that of the potential importance of lexical stress in speech

recognition systems. We want to know if there is any useful information contained

in the stress pattern. For this report, I am limiting my comments to isolated words.

- When continuous speech is included, higher order stress patterns and rhythm effects

1 J10
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start influencing stress patterns.

2.2.1 Lexical Stress and "Islands of Reliability"

Aull and Zue[2,15], among others, claimed that stressed syllables were reliable places

to look for acoustic information. That is, acoustic cues were much more robust in those

areas. They further note that spectrogram reading experiments and automatic recog-

nition systems tend to recognize phonemes around stressed syllables more accurately

than around unstressed syllables. This result seems to be true in humans as well. Cole

and Jakimak[3 found that it took subjects longer to recognize a mispronounced word

when the syllable was unstressed compared to when it was stressed.

2.2.2 Lexical Access and Large Databases

After doing studies on a lexicon developed from the Mirriam-Webster Pocket Dic-

tionary, Aull found that lexical stress was very useful in reducing the expected size of

word candidates in a recognition system. Studies by Huttenlocher and Zue[6] indicate

that determination of broad phonetic classes greatly reduce the number of potential

word candidates in an isolated word recognition system. Information about the num-
ber of syllables and their stress pattern can augment the phonetic class knowledge to

further reduce the word candidates in a recognition system, giving the later (and more

detailed) processing of such a system fewer possibilities to investigate.

All the evidence seems to indicate that knowledge of lexical stress would be quite

desirable in an isolated word recognition system. The information about stressed sylla-

bles points to regions that tend to be more acoustically reliable, improving recognition

in those regions. The stress pattern, once determined, also provides an additional con-

II



straint that can reduce the candidates that a recognition system would have to sift

through. Thus determination of the stress pattern is potentially a useful tool in speech

recognition systems.
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Chapter 3

Aull's Lexical Stress Determiner

3.1 System Overview

Aull's system was designed to determine the stress patterns of isolated words. Her

motivation was largely to determine if this would be an effective way to reduce the

search for target words in large vocabulary systems. Aull's system was written on a

Symbolics Lisp Machine to be used in conjunction with a Floating Point Systems array

processor. The system had as an integral component, Spire, a speech research tool

developed within the MIT Speech Group.

The input to the system was digitized speech with no additional processing, and the

output was a time-aligned stress pattern of the word. The time-aligned stress pattern

corresponded to the vowel of the syllable and any surrounding sonorant segments. The

system labeled the syllables as either "stressed", "unstressed" of "reduced". There

could be only one stressed syllable in any word. If two syllables were close in the stress

rankings, the system labeled a second choice for the stressed syllable.

13
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Z The system was broken down into two main sections. The first section was the syl-

lable detector. This section looked for sonorant regions and also looked for intervocalic

consonants whose presence indicated a single sonorant region that could contain two

or more syllables. The second section was the stress determiner. It performed compu-

tations on the different sonorant regions in order to determine their stress ranking.

3.2 The Computing Environment

As mentioned before, this system was developed on Symbolics LM-2's that were

equipped with Floating Point System's FPS-100 array processor. The system was built

around the Spire speech tool as well as including portions of systems developed by

others in the Speech Group.

The Computing Environment

The Lisp Machines provided a very flexible and convenient environment in which

to work. Both Spire and Aull's system made extensive use of a Flavor ' system which

is part of the Lisp Machine operating system. The machine's large virtual memory

and networking capabilities allowed the the system to work with a great deal of data.

The Lisp Machine also has excellent facilities for system development[16. The Lisp

language itself provided an exceptionally flexible and easy to work in programming

environment.

The Lisp Machine has extensive development facilities on which to develop an in-

teractive system. It has very versatile multiple window support and a high resolution

bit-mapped display. The speed with which it computes needed parameters also allows

Flavors are structures which are easy to manipulate and facilitate message passing.

14
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.

convenient interactive research. Using a mouse speeds interaction with the computer

and is more "user-friendly" than using the keyboard exclusively.

a'. .The system (especially the pitch detector written by Seneffl12]) used the FPS-100

a great deal. The array processor gave a great increase in speed over what would have

been possible on the Lisp Machine alone.

The FPS-100 is set up in a master/slave configuration with the Lisp Machine. It sits

-~ idle until the Lisp Machine sends it something to do. Chunks of data are assembled

in the Lisp Machine and sent out to the array-processor. The array processor then

-" "performs a series of steps, or a mini-program (stored there by the Lisp Machine) on

the data and finally sends the results back to the Lisp Machine. This continues until

the entire waveform (or any array) has been passed through the array processor.

The Spire Advantage

Spire is an interactive speech research tool developed at the MIT Speech Group by

D. Shipman, D. Scott Cyphers and David Kaufman. It has been evolving for several

years and many others have contributed to it.

-a,- Spire was developed on Symbolics Lisp Machines, mostly for the reasons stated

above. It was intended to be a replacement for other speech tools that existed at the

time. Its original implementation by David Shipman was completed in 1982. Following

that Cyphers and Kaufman completely rewrote Spire in order to make it more flexible,

improve the user interface, improve data management and increase its efficiency (both

in run-time and in memory usage)[16].

As described oy Cyphers[4), Spire has a four tier display system. A layout, at the top

of the hierarchy, is a screen of data. It is composed of displays, that are like windows.

p.,o5
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These displays hold any number of overlays, that are essentially drawing methods.

These overlays take on the name of tLeir associated atts. The atts are computations

performed on the data and are displayed in the manner specified by the overlay.

Spire works with representations called utterances. An utterance is an event or

an instance of someone saying something. That definition, while not very rigorous, is

sufficient for my purposes. Attached to the utterance are instances of flavors called

attributes. It is the attributes which define the atts.

Spire allows users to easily define new computations and modify old ones. Spire's

. design allows easy interaction with previously computed data. The display system is

the same way; it is very flexible and easily extendable. It is these characteristics that

O make Spire desirable as a speech research tool.

It is a combination of the Spire program and the Lisp Machine support that allows

systems to be easily built. Since many of the structures and methods needed in a large

system are already present in Spire, it makes sense and saves work to incorporate it

into any system in development.

3.3 Syllable Detection

As I mentioned before, the first section of the system incorporated a syllable de-

tector. Because all syllables must have a vowel at their root, this part of the system

attempts to find and separate all the vowel regions in a word. The syllable detector

.:*44 itself has two distinct components. The first is Hong Leung's broad classifier that

was developed as part of a system that automatically aligns phonetic transcriptions

with continuous speech[141. The second section, developed by Aull, separated sonorant

regions into different syllables if it found any intervocalic consonants.

16
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3.3.1 Leung's Broad Classifier

Leung's broad classifier was the first stage of a system that provided a time-

"... alignment of a phonetic sequence to the speech waveform[7]. Aull used this classifier

. for her system to obtain a broad segmentation of the speech signal.

- The approach that was taken was to first find acoustically robust regions in the

-'-.. waveform. From there, more detailed analyses could be made in appropriate regions

that would not necessarily meaningful to make in other regions. This breaks down one

. large problem into several smaller ones that are more easily approached[14l.

The data takes the structure of a binary decision tree. A series of classifiers make

decisions about whether or not a time-slice of speech has a certain characteristic. The

classifiers are all structurally the same but differ in the parameters that they look at

and where they clip their values. The speech is analyzed every 5 msec.

A representative classifier uses M parameters, that are decided by previous speech

knowledge. The parameters are computed, then processed; they are smoothed, clipped

and then normalized. Now, for every 5 msec we have an M dimensional feature vector.

A decision is made in this M dimensional feature space through a K-Means clustering

algorithm. In this manner Leung found that he could reliably divide the utterance into

six types of regions:

* S (Sonorant) : vowel-like, this would be a syllable core.

* (Obstruent) : exhibits high frequency "noise".

. VO (Voiced Obstruent) : shares characteristics of both of the above.

17
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0.0000 POTATO-RG 0.7415
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0.0000 PoTATO-RG 0.7415

Figure 3.1: An example of the output of the Sonorant Detector including (a) Leung's

Region Detector (S means sonorant) and (b) Aull's Syllable Detector (S means syllable).

* Si (Silence) : characterized by absence of energy.
'V

* B (Nasals and voice bars) : similar to sonorants

* Ul (Unlabeled) : these exhibit energy dips in vowel regions.

The system goes through many classifiers, and segments are re-checked for accuracy

and possible low-energy, or weakly represented regions. Decisions can be reversed

in later processing to prevent an early mistake from propagating through the entire

process.

18
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The segments that Aull was most interested in were naturally the sonorants. This

is because they form the root of syllables and hence were the segments that she had

to find. Leung's broad classifier was very good at determining boundaries between

every type of segments except for different voiced segments. To find harder boundaries

(Vowel-Vowelfor example), Aull had to develop her own algorithms.

3.3.2 Aull's Intervocalic Detectors

*-- After the initial segmentation by Leung's system, AuU inserted a subsystem that

was designed to find intervocalic, voiced regions. This is meant to include both voiced
- *"-. consonants (like the "r" in "miracle") and vowel-vowel transitions (like the "ie" in

"anxiety"). These phenomena often exhibit themselves through formant movements or

energy dips, but not always.

All of these detectors made extensive use of spectral weighting windows, specifically

short-time spectra of the waveform were multiplied by a frequency weighting function

designed to bring out spectral characteristics that were expected in certain frequency

ranges. Then the results of the multiplication are then accumulated into a Center of

P• -Gravity function. The center of gravity function is as follows[l]:

Center of Gravity = W(f) S(f)
f =Fj

where

W(f) = linear weighting window

S(f) = spectrum value at f

F1 ,F = frequency range
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Although Leung's system performed rather adequately on intervocalic nasals, Aull

developed a subsystem just for that purpose. In this part of the system Aull did not

choose to use a spectral weighting scheme but rather, she looked for a robust drop in

energy in the frequency region of the first three formants (F, F2 , and F3). As a result

of Leung's segmenter and Aull's detector the system was quite robust in determining

nasal boundaries.

Leung's system was not quite as good at detecting semivowels (/1/, /w/). These

are often characterized by a drop in energy similar to the nasals except that only F2

and F3 show a significant drop. The drop in energy is more gradual than in the case

of nasals.

Even harder to detect were intervocalic semivowels /r/ and /y/. These are char-

acterized by a concentration of energy around 2KHz. There are sometimes dips (at

least for /r/) in formant frequencies as well, but far from always. The shape that these

semivowels take in the frequency domain are very context dependent and are hence

difficult to detect. Leung's system generally misses these completely. Aull used a

spectral weighting window that emphasized 2000 Hz and 300 Hz while deemphasizing-

emphasizing the frequencies around 1100 Hz. In this way she can label regions as r-like

or not r likeA.

The hardest types of intervocalic activity to detect are the vowel-vowel transitions.

For this type of decision, Aull used spectral weighting windows that attempted to

-. ', emphasize these changes. She took advantage of speech knowledge to determine window

that would emphasize transitions between different types of vowels. Even so, these

changes are not very robust and are difficult to detect under the best of circumstances.

The syllable ,letector was designed to identify the sonorant regions of speech for
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further analysis. Leung's broad classifier first separated the speech into acoustically

robust segments. After that, Aull applied a series of processes designed to further

separate the sonorant regions by determining if there were any intervening regions

between syllable cores.

3.4 Stress Determination

As I mentioned before, it has been found that fundamental frequency (pitch), dura-

tion and spectral energy are good correlates of what we perceive as lexical stress. The

problem that Aull encountered though, was that any one of these parameters could not

* determine the stressed syllable correctly more than 87% of the time. As a result she

determined that using all of these parameters (as well as one other, spectral change)

was more reliable than using any one of them in determining the relative stress of

syllables in isolated words.

3.4.1 Acoustic Parameters

One of the parameters that Aull looked at was duration. She ased the sonorant

region found by the front-end as the basis for her duration measurement. The sonorant

boundaries were determined within 5 msec. Any more accuracy would have been un-

necessary due to the uncertainties involved with the determination of the boundaries.

From her own studies and those by others, she foaud that the final syllable or sonorant

region must have its length adjusted for an effect called prepausal lengthening, i.e. the

lengthening of the final syllable in an isolated word.

.y. Aull then looked at the energy over two bands extending from 400 IHz to 5000 Hz
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and from 1200 Hz to 3300 Hz. These energies were picked to cover the range of sonorant

regions and to deemphasize energy regions associated with consonants.

Fundamental frequency or pitch was the third parameter to be measured. The

pitch was determined by using an enhanced waveform, which enhances the funda-

mental periodicity and then using an Average Magnitude Difference Function of the

waveform[12,1]. Aull also mentioned that the peak value of the pitch seemed more

significant in determining stress than its average value because of differences between

isolated words and continuous speech.

Another parameter that Aull incorporated was spectral changef141. This parameter

was a measure of change of energy in sonorant regions. The energy change was measured

*across several energy bands according to the following formulas:

S[n] = max(DI[n],D 2[n])

where

D = (E,((n + 1) T) - E ((n - 1) T)) 2

i=1 TE(nT)
N2n (E ((n + 2) T) - E ((n - 2) T) )2

D2[n] TE(nT)

TE(nT) = total energy of entire spectrum

E,(nT) = energy value in ith energy bank

T = 5 msec

This parameter was used because it was found that stressed syllables were more

acoustically stable than unstressed ones. This parameter was only extracted in the
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central parts of the sonorant regions so that the surrounding regions could not influence

the spectral change measurement.

3.4.2 Stress Determination Algorithm

Aull had to combine these parameters into one meaningful measurement of stress.

She initially tried K-means Clustering techniques but found that they did not perform
-- adequately. The main problem with any system that looks across a group of words is

that there is too much variability across isolated words. She then dropped this and

other methods that required accumulating statistics across many instances of isolated

speech and instead adopted a method that used only the particular word that the

system was currently working on.

She associated a five-dimensional feature vector with each sonorant region. Then,

for each parameter, the system determined the maximum value across all the sonorant

regions and collected them into a maximum feature vector. This maximum feature

vector was the basis to which the sonorant regions in the word were compared. This

reduced interword variability.

A Euclidean distance from the maximal feature vector to each sonorant feature

vector was determined. The region with the shortest distance was considered to be the

stressed syllable. The other syllables in the word were all labeled unstressed. Further

processing determined which sonorant regions were reduced by looking at their energy

and duration.
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Figure 3.3: An Example of Stress Determiner Output. The numbers correspond to

ranking and the letters mean Stressed, Unstressed or Reduced.
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3.5 System Performance

Aull tested her system on a 1600 word database. Her system correctly determined

* -""the stress pattern 87% of the time. 3% of this error was due to confusion between

-unstressed and stressed syllables within the word. The other 10% corresponded to

either missing a sonorant region, failing to insert a boundary in the case of intervocalic

phenomena or false insertion of a region or boundary.

Aull determined that the acoustic correlates of lexical stress, as determined by Fry[51

and others, were quite adequate for determining the stress in a word. She did find,

much as she expected, that her system performance degraded as acoustic cues became

more subtle.

3.6 Summary of Aull's System

Aull's system consisted of two main subsystems, a syllable detector and a stress

determiner. The syllable detector was made up of Leung's acoustic front end and Aull's

intervocalic detectors. The stress determiner extracted a five-dimensional feature vector

from the sonorant regions. These parameters have been experimentally determined to

influence perception of stress. The feature vectors were then compared to a maximal
-' .vector for stress determination.
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Chapter 4

Modifications of Aull's System

4.1 System Flaws

Aull's system was very good but, like all systems of its type, was not perfect. Aull

measured the system at 87% accuracy. That figure refers to correct determination of

the syllables and the stress pattern. She found that 3% of the time, the stress pattern

was not determined correctly by the system. This means that 10% of the time, there

was a problem in finding the syllables correctly. These errors correspond both to false

insertions and false deletions.

Thus the largest problem that the system had was in the area of syllable detection.

This part was difficult because it relies on acoustic cues, some of which can be quite

ambiguous. The stress determiner, while not perfect, is more robust than the syllable

locator because the parameters used to determine stress have been heavily studied and

are fairly well understood. While this section also relies on acoustic parameters, it is

constrained to the boundaries determined by the syllable detector.
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One of the biggest problems was that Aull's system was written almost two years

ago. Much of what she had done was unexplained. The computers that the group

currently works with are different from the ones that AuU worked on (though they

were still Symbolics machines and retained a great deal of compatibility). Also, both

the Lisp Machine operating system and Spire had undergone several major changes.

These conditions added up to the fact that much of the existing code had to be changed

in order to get the system running as before.

- - 4.1.1 Problems with Syllable Detection

Aull's system, as I stated before, was evaluated at about a 10% error rate for the

syllable detection section of the system. The system performed quite weil in identifying

=.* syllables that are separated by obstruents (as in 6duplicate") . These boundaries were

correctly determined by the acoustic front end and required little additional processing.

The syllable finder's performance decreased as the consonantal regions between

" vowel regions became less obstruent-like. This lowering of performance is due to the

fact that some intervocalic voiced consonants appear more vowel-like than others. As

mentioned before, /r/'s,/I/'s are always hard to find, because sometimes they take on

vowel-like acoustic properties.

The system also had trouble with vowels whose amplitudes are low. This phe-

- - nomenon occurs in reduced vowels. Some people reduce them more than others and

sometimes the reduction results in a deletion of the region. Even when thlere was a

very short, low energy sonorant, a human listener will still detect a syllable there. The

solution is ;o detect these regions and then eliminate any false alarms resulting from

from making the system more sensitive.
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Finally, the system has a great deal of difficulty with syllables that are not separated

by consonants due to the fact that the acoustic cues fcr vowel-vowel transitions may

be subtle and are not well understood.

44.1.2 Problems with Stress Determination

While, this component proved to be more reliable than the syllable locator, it still

had several problems. The largest problem was that it was not flexible enough for lexical

lookup into a large lexicon. The system provided a stress pattern and no additional

information. This means that the system will either be right or wrong, there is no

margin of error. There is no second choice or quality of decision information. An

improvement in this part of the system would allow more flexibility and would go a

long way to remedying the problem of misidentifying a word's stress pattern.

4.2 System Code Changes

Almost two years elapsed between when Aull finished her research and when I

started to look into her system. Unfortunately the system and machine that that her

stress determiner ran on did not remain static through that time. The Speech Group

updated its machines to the newer Symbolics 3600 Series Lisp Machines, Symbolics also

introduced numerous changes in its operating system, and, most significantly, Spire

was extensively rewritten by D. S. Cyphers and David Kaufman. All these changes

contributed to the work that had to be done in order to return the system to its former

status and hopefully beyond.
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4.2.1 Updating System Code

I k4 The first thing to be done was to rewrite the code so that it would run again.

Getting a system that would run and one that would run correctly turned out to be

two different things. To get the system running mostly entailed recompiling the system

and making some simple changes that included changing message names and other

system updates.

Much of the system's Spire interface had to be rewritten in order to run properly.

Since Aull had finished her work, Spire had changed a great deal. Both Spire dis-

plays and the representation of time-aligned data had changed incompatibly. In both

cases (operating system and Spire) there were also subtle changes that affected system

performance. These had to be corrected individually as they were found.

4.2.2 Improving System Efficiency

Improving system efficiency and run-time performance was a different issue from

updating the code. After the code had been updated, it was found that there were many

places that would benefit from being rewritten or modified. Some of the modifications

were for the sake of computation efficiency and others were done in order to make the

code more compact and smoothly flowing. The biggest change that were made had to

do with the way in which segments and their boundaries were accessed.

The major running-time improvement was contributed by Seneff who wrote a version

- . of the Gold-Rabiner pitch detection algorithm[11]. This algorithm was much faster than

the algorithm then being used. It seems that the system changes introduced by this

author have also improved the run-time performance of the system but it is difficult

to substantiate. The speed of the system was further improved by numerous hardware
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- modifications to the SymboUics machines. The system now runs at least three times

faster than it did before, or about 95 times real time.

4.2.3 Improvements in System Flexibility

The system as Aull left it was rather rigid in that parameters that went into com-

putations could not be modified or accessed easily. Modification of computational

parameters is a task that Spire makes easy. What was done was to make these pa-

rameters changeable from Spire so that it was not necessary to constantly recompile

S.. the system code when changing numbers or parameters. This change facilitated the

development stage, when thresholds were specified iteratively in order to minimize both

false insertions and deletions of segments.

4.3 Changes in Syllable Detection

- The syllable detection section was broken into two different parts for the purposes

of modification. They followed the natural division of this section, that is Leung's front

end and Aull's detectors for intervocalic events.

4.3.1 Improving Sonorant Detection

The first goal was to improve the sonorant detection in the acoustic front end. This

is an important step because if a sonorant region was not detected there, it would be

unavailable for of all subsequent processing. However, erroneously inserted segmentsr .. arising from making the system more sensitive to sonorant regions could be eradicated

in later system components.
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The front end was missing sonorant regions, but was also falsely breaking up valid

regions. That is, it would first label a region sonorant and then insert another label

in the middle of it. This had the result creating two invalid sonorant regions from one

good one.

The solution to resolving the missing sonorant problem was found in the K-Means

clustering algorithm used in the system. The initial step in that algorithm was to estab-

lish clipping values for each of the parameters investigated. The clipping values were

the extremes in the data-space that a given type of region was expected. These clip-

ping values were reevaluated iteratively so that bad regions were minimized, while low

amplitude sonorants were maximized. The effect was that many low energy sonorants

were found, while few false insertions resulted.

In order to decrease the number of false insertions into the middle of sonorant

regions, some of the processing done in the front end had to be eliminated. The system

would initially find and label sonorant, obstruent and silent regions. It would then

segment the regions further by looking for different acoustic cues within these regions.

It is in this later processing that the errors (the false insertions into the sonorant

regions) usually occurred. The key to solving this problem was to determine at what

point in the processing the most errors were inserted while not missing too many valid
regions. It was determined that some processing after the initial labeling was necessary

in order to keep the number of false insertions down to a minimum.

After changing the front end, more problems had to be dealt with. First, many of

the new sonorant segments were discarded by a module that tried to decide what was

really a sonorant and what wasn't. This part of the system looked at the duration,

energy and spectral change of the sonorant region, and if the region was too short
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and/or had too little energy, it was deleted from the syllable list.

The thresholds at which the system would cut off sonorant candidates was changed

iteratively. Once the levels were changed, it had to be ensured that the falsely labeled

regions were kept to a minimum while the truly sonorant regions detected were max-

imized. In the end, all the average energy thresholds needed to qualify a segment as

sonorant were lowered. At the same time it was determined that the average length

of the falsely detected segments was less than even the most reduced real sonorant re-

gions. Because of this, I lowered the durational threshold as well. This allowed the low

energy sonorants to be detected while still keeping the false indications to a minimum.

Spectral change is used as a parameter in this computation because Aull felt that if a

region exhibited a great deal of spectral change then it was less likely to be a sonorant

than a more spectrally static segment. This conclusion is not exactly obvious for

segments of such short duration, but the inclusion (or modification) of this parameter

has not caused any system deterioration. Because the spectral stability gives another

clue to the segment's identity, impostor sonorants of greater duration can be more

reliably removed from consideration.

4.3.2 Improving Detection of Intervocalic Consonants

This is the section that proved to be the most disappointing in terms of improving

system performance. While it seemed to make moderate performance gains in /1/

detection through changing some thresholds it had greater difficulty with /r/'s.

The problem was that if the system were made more sensitive to the spectral move-

ment that often occurs with intervocalic /r/'s (as in "interrupt"), it would then get

more false boundary insertions at /r/'s that were not intervocalic (as in "cohort").
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This trade-off between insertions and deletions was a problem that had always plagued

the system. Maybe a different parameter would have been better but time did not

permit an investigation of this possibility. One parameter, a spectral first difference,

was investigated but preliminary results indicated that it was not useful for intervocalic

/r/ detection.

Another difficult problem was that of vowel-voweltransitions. Detecting these trap-

sitions reliably is difficult because of the many different, often subtle changes they pro-

duce in the spectrum of the word. Sometimes the changes can be very obvious while at

other times, they can manifest themselves through slow formant changes. The difficulty

A" in finding and interpreting them is compounded by their variability from speaker to

speaker.

The previous two problems received much attention, mostly in the form of changing

parameters and thresholds, both in the acoustic front end and in Auli's intervocalic

detectors. Unfortunately both met with little success.

4.4 Changes in Stress Dotection

The biggest problem with the stress determination mechanism was that it was not

very flexible. In addition it sometimes failed to correctly find the stressed syllable all

the time. A large part of this second problem can be attributed to the variability

with which sonorant regions surrounding the vowel are included in the segment. All

other things being equal, the region that is longer will be considered stressed by the

system. This could be a problem when two regions are similar in the amount of stress

that can be attributed to them and one region is significantly longer than the other.

Different weighting functions for the parameters in the distance metric were tried but
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this provided no measurable change in the stress determination.

To improve the flexibility of the system, new methods to provide data for further

processing of the stress information were considered. Time did not permit proper

investigation of the usefulness of the results of these methods, but it is felt that they

could contribute to overall system performance. Also, it was felt that this section was

not as critical as others because this aspect of the system performed relatively well.

a way to obtain the actual measurements of the system (rather than just "stressed"

or "unstressed") was provided . This allows one to look at results of the Euclidean

distance measurement across the M dimensional feature vector. Another addition that

was made (and kept in the system because it both provided additional information and

,*-, was easily interpreted) was the inclusion of the ranking of the syllables rather than just

labeling them "stressed", "unstressed" or "reduced". This allows the user to see what

the output of the system is more clearly.

4.5 System Evaluation

The system was tested on 228 isolated words spoken by six speakers (3 male and 3

female). These words were taken from databases used by Aull. Her system returned

errors on all these words at some point. Some of the words were evaluated correctly

by her final system but were included to determine if changes to the system degraded

performance on data that was already valid.

In Table 4.1, the V-V, Cons, and Son columns all correspond to a miss in either

the vowel-vowel( like in "anxiety"), consonant (such as /r/ or /1/) or sonorant (as in

the last syllable of "action") contexts. The Insert column refers to false insertions of

sonorant regions and the Bad Stress refers to incorrect stress assignment. The numbers
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Table 4.1: Evaluation Results

System V-V Cons. Son. Insert Bad Stress

Original 24 46 37 63 7

Modified 24 47 22 56 5

are total number of that type of error resulting from evaluating the data base. This

was done because some words resulted in more than one error while others resulted in

none.

The number of missed vowel-vowel transitions did not change at all. This was

expected because nothing was done to the system that would directly affect performance

here. The important thing is that system performance did not degrade. The same can

be said for the missed sonorant regions. Although, an effort was made to improve

performance in this area, it was unsuccessful.

The number of missed sonorant regions dropped significantly. This was due mostly

to the changes in the initial processing of the acoustic front end. The remaining unde-

tected sonorant regions were very short and had low energy but still could be perceived

as syllables to human listeners.

The number of incorrect insertions also dropped. There were two effects going on

in this case. The sonorant detector defined more regions as sonorant than it did before

because of its increased sensitivity. That increased the number of false insertions. On

the other hand, fewer valid sonorant regions were being broken up, driving the number

of false insertions down. This was the dominating effect, bringing the total number of
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insertions down.

The number of words with incorrect stress assignment also dropped slightly. This

was due to the fact that sonorants had different boundaries than before, hence the

measurements for those regions were different. This was the only effect taking place

since there were no computing changes made to the system. It was found, however,

that in every case of bad stress assignment, the stressed syllable was always ranked

second, showing that the system was close.

In the course of investigating these results, it was found that most problems could

be corrected interactively. This indicates that system performance might be able to

benefit from some sort of time varying evaluations on a frame by frame basis.

4.6 Summary of System Improvements

The changes made to Aull's system led to several improvements. These improve-

ments are:

* Run Time Performance - The speed of the system through improvements in code

efficiency and hardware changes decreased running time three fold to about 95

- times real time.

o System Flexibility - Through code changes, the system was made easier to use

and change interactively.

e Syllable Detection - The system detected syllables more accurately through

changes that improved identification of sonorant regions. In addition, the in-

sertions of spurious regions into the middle of valid vowel regions is reduced. In
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these two areas, the number of errors was reduced from 37 to 22 and from 63 to 56

(40% and 11%) respectively.

System performance did not degrade in any way as a result of these changes.

38

.. . . . . . . ..°. .

*o. .. .... . . . .... . .* .... .... .



:.,

4o

Chapter 5

Conclusions

5.1 Summary

In this thesis, lexical stress was described and its potential utility in automatic

speech recognition was outlined. The stress is a perceived quality measure of a syllable.

Acoustically stress can be determined primarily through four parameters: spectral
"' energy, duration, fundamental frequency and spectral quality. The lexical stress pattern

of a word is useful to determine in an automatic recognition system because it reduces

the search space of possible candidates.

Next, the system that Aull developed for her Master's Thesis was investigated. The

system was made up of two main parts: A syllable detector and a stress determiner.

The syllable detector was composed of an acoustic front end and a series of intervocalic

consonant detectors. The stress determiner took an M-dimensional feature vector of

each sonorant region and compared it to a maximum feature vector and from that the

syllables were ranked.
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Then the problems that existed in Aull's system were explained. These included

poor performance on some intervocalic consonants, on Vowel-Voweltransitions and on

low amplitude sonorants.

Finally this author's changes to the system were described. These changes to Aull's

system did improve its performance. The system ran approximately three times faster,

had improved sonorant detection, had fewer false insertions and was more flexible. The

number of missed vowel regions decreased by 40% and the number of false insertions

into sonorants decreased by 11%. Other regions were not improved, as indicated by

the evaluation data, but in no case did system performance deteriorate.

5.2 Suggestions for Future Research

There are many ways to further improve on the work done so far on this system.

Many of the parameter values used in the system (that have been changed by this

author) can still be improved on using statistical tools and knowledge of speech signals

and production. A different method for detection of intervocalic effects, also utilizing

more speech knowledge, could also be incorporated. More improvements in code effi-

ciency could be made, to be sure. An algorithm for assigning probabilistic values to

stress rankings would be quite useful for making the system suitable for incorporation

to an isolated word recognizer.
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LEXICAL ACCESS AND VERIFICATION IN A
BROAD PHONETIC APPROACH TO CONTINUOUS DIGIT RECOGNITION*
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Cambridge, Massachusetts 02139 USA

ABSTRACT the results were encouraging, this initial implementation
suffered in one important respect: The implementation did

This paper describes an implementation of a robust not provide flexibility in accommodating similar but new
method of lexical access and a detailed phonetic verification acoustic realizations of a word. Instead, new pronunciations
component for recognizing continuous digits using a broad were accomodated by explicitly adding them to the lexicon.
phonetic approach. The lexical access component uses a In other words, a digit was considered a candidate only
scoring method which takes into account soft labeling errors if the input string was a pronunciation supplied by the
due to input signal variability. Verification is based on lexicon.
the use of a small set of detailed acoustic features which In the current study, two aspects of the broad phonetic
characterize phone hypotheses. Evaluation of the lexical recognition model were focused on. First, Chen and Zue's
access method on a database of 74 new random length work was extended in an effort to develop a more robust
digit strings, each spoken by 5 new speakers, shows the method of lexical access which could tolerate reasonable
method to be tolerant to front-end errors and variations errors" by the broad phonetic classifier. Second, a
in pronunciation. E'aluation of the verification component preliminary examination of verification of word hypotheses
indicates that use of a few detailed phonetic features is based on detailed phonetic features was performed.
adequate for verification of phones in the digit vocabulary.

LEXICAL ACCESS
Researchers (e.g. 13) and 14J) have developed systems

INTRODUCTION which perform lexical access and recognition directly from

In ICASSP-82, Shipman and Zue III showed that a a phonemic sequence. In contrast, this study is based

broad phonetic representation imposes strong sequential on the belief that a more robust recognition method is

constraints on words in the English language. They then to perform lexical access by scoring how well the broad
proposed an isolated word recognition model which uses the phonetic representation of an unknown utterance matches

constraints provided by a broad phonetic representation. In the phonetic representation of a word in the lexicon.

their model, the speech signal is segmented and classified Since less detailed distinctions are needed to produce a

into several broad categories which can be determined broad phonetic representation than a detailed phonetic
reliably. Next, indexing into the lexicon, only words which representation, one should be able to compute a broad

match the sequence of broad phonetic labels remain as phonetic representation with less error.
contending word candidates. Finally, the contenditig words In the broad phonetic recognition model (Figure 1),

are examined using detailed phonetic analysis to identify the broad phonetic classifier produces a broad class

the input utterance, segmentation string of the incoming signal. The

(hen and Zue 12] extended Shipman and Zue's isolated segmentation string may be composed of six possible labels:

word recognition model to continuous speech and showed weak fricative, strong fricative, short voiced obstruent,

that strong lexical constraints at the broad phonetic level vowel, sonorant, and silence. The lexical component
ran be exploited in a continuous digit recognition task. matches the phonetic representation of each word in the

To illustrate that the approach is viable, a broad phonetic lexicon against the broad class segmentation produced by

clas,-ifier and lexical access component were implemented. the system, yielding a lattice of word candidates.

Tes-ting on 1718 digits k' 5 speakers, the correct digit was Although a broad phonetic representation is nmore
not one of the lexicalcandidates only 1% of the time. While robust than a detailed representation, unanticipated

acoustic realizations do occur, resulting in classification

-ThNi r-sarh wAs sipport,d by the Syeem Development errors at the broad phonetic level. For example, the clowure

,-uhti,.ri. a Virtnn- Have Fellowship. and DARPA ,iner vontret. in a stop gap may be incomplete, resulting in a "noi,y
w,,rN 0t N2 K-o727 aq mrnittr,d thr-iigh the Offirp ofNaval PRsearrh. stop gap which is labeled as a weak fricative A lexical

.*R. Chen ii nw with 11,wlett-Pakard L abnatnris, 'alo Alto, access component was implemented which attempts to
handle these labeling errors using two types of knowledge:
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to the next phone label; this is represented by Path AC.
speech - broad phonetic lexical If an extra label is created by the front-end, an insertionclassfiercompnentoccurred; this is represented by Path AB. And if the

broad phonetic classifier labels two sequential phones as
the same broad phonetic class, a deletion occurred; this is

verifier__digitstringrepresented by Path AD.
r digit ering reference

Figure 1: Broad phonetic recognition A B
model

1) how often a phoneme is mislabeled as another class-
for example, how often a /k/ closure is labeled as a
"weak-fricative" instead of "silence" and 2) how often wo WC

an insertion or deletion occurs in mapping a word's
broad class representation to a phonetic representation- D C
for example, the frequency with which /s/ and /n/ in
the sequence /sn/ (as in "six nine") are both labeled as Figure 2: Paths used in the dynamic
"strong-fricative," due to the fact that the initial nasal programming algorithm
in that context may be deleted or extremely short. By
using these types of knowledge about the characteristics The total accumulated score to node C, dc, is:
of the segmentation strings produced by the front-end,
the lexical component allows for acoustic variations in = dA + logier(pc, ic)* WcI
a phone. Furthermore, many alternate broad phonetic where dA is the total accumulated score to node A.
representations of a word needed with the explicit matching Pr(pc, Ic) is the probability of labeling the phone at node
method become unnecessary. C p, as the broad class label 1(* WC is the probability of

The lexical component assigns a score reflecting how
well the phonetic representation of a word matches a making a transition from node A to C, given that node Awellthephonticreprsenatin ofa wrd mtchs a is the current state and nodes B,C, and D are states which
portion of the segmentation string, using knowledge about may be entered from node A. a' nD is computed ws:
the characteristics of the broad phonetic classifier's output.
For example, the broad phonetic classifier may label /0/ Pr(PAA - pC4)
as "weak fricative" 60% of the time and "strong fricative" , r(pA - PRWB - Pr(-pAI P. j i'r(pAA ptI
40% of the time. Knowing this, the lexical component does
not penalize the score much when matching /0/ to 'strong WB and Wn are computed similarly and represent.
fricative." In contrast, it'/0/ is never classified as "vowel" respectively, the probability of inserting and deleting a
during training, then the match of /0/ to "vowel" would be segment.
assigned a poor score. Insertions and deletions are handled The "best" alignment between the phonetic strin
by using transition probabilities. If the broad phonetic /zlrow/ and the broad phonetic representation "srong-
classifier consistently misses prevocalic nasals, as in the fricative vowel" is shown on the left of Figure 3; the
word "nine", then the system will know that very often associated match and transition probabilities are shown on
the /n/, as well as the /ay/, is labeled as "vowel". This is the right. A phonetic string is assigned the score of the bes
reflected by a high transition probability of matching /n/ path, normalized by the number of transitions in the path.
to -vowel" and then matching /aY/ to 'vowel".

A forwai dynamic programming algorithm finds the St-.,-,,c Vl
best match between the broad phonetic an.l phonetic I

* strings. Simple slope constraints require the path to be non- -efe,et test Stc% e'90tI , - S 0C-Fclic ti 0,77.5 1 . @t
decreasing in each direction. In contrast to the constraints VOEL 9,9 1 911 99P
used in dynamic time warping of the speech signal, many ,VOW, 5.4146 1.9@09
phonetic labels may map into a single broad phonetic o s, i.eeee
segment. For example, the /1/, /r/ and /ow/ in "zero" may C"
map into the label 'vowel" if the broad phonetic classifier
has no knowledge for differentiating among these sounds.

The allowed paths from a sample node are illustrated
in Figure 2. Each node represents the match between a Figure 3: Alignment of /zlro/ with
broad phonetic label and a phone. The sequence of broad "strong-fricative vowel"
phonetic labels (reference) aligns with the nodes from left, This method of lexical access was evaluated on a
to right: and the sequence of phones (test) aligns with the database of digit strings ranging in length from one to
nodes from top to bottom. Three paths, or transitions, exit, seven. The database was subdivided into training and new
from a typical node, here labeled "A". When no insertion speakers and into training and new sentences, resulting in
or deletion occurs, the next broad class segment is matched four mutually exclusive subsets as shown in Table .
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Table 1: Corpus Subsets J ,oo
Total # of Speakers T #.

Utterances of Digits 0-

262 training 3 male, 3 female: training 1365 0.0

152 training 3 male, 2 female: new 599 40.0

370 new 2 male, 3 female: training 1440 i 50.0

370 new 3 male, 2 female: new 1440 J00

0 10.0 20.0 S0.0 .0.0 o0.0 0.0 ?00 o 0 00.0 100.0
Each broad class segment produced by the broad P-. .. 4.e .........

phonetic classifier was wised as the beginning segment of . .. .... ... -'0 0,

each word hypothesis and the scores of all possible matches Figure 5: Pruning of all word hypotheses
were computed. The distributions of scores for correct versus correct word hypotheses
words and for all word hypotheses, evaluated on new
iutterances by new speakers, are shown in Figure 4 as characteristics of speech sounds and detailed differences

-dashed and solid lines, respectively. Note that the log between similar phones in the digits. The features are:

probability scores of the correct words are much closer to * Position of the first three formants and movement of
1. or a probability of 1. than the bulk of the scores of all the first two formants: In an effort to achieve a robust
possible words. The distributions indicate that a word score characterization of formant motion and position, a

threshold can be set such that all words with a score below gross characterization based on spectral weights was

the threshold can be ruled out as viable candidates, used, rather than a formant tracker which can exhibit
inconsistent behavior in nasalized regions. The spectral

so.0 weights emphasize energy in specific regions of the
spectrum.

-0.0 e Nasal possibility: To detect the presence of the low

110.0 frequency resonance characteristic of nasal murmurs,
this feature compares the energy in a passband of 100-

.1 2.0 F 350 Hz to energy in a passband of 350-850 Hz.

10.0 . Onset rate: This feature is the maximum change
in energy from 1000-7000 Hz %ithin 20 msec of the

0 , " . I beginning of a phone. To capture rapid transitions,
_-,0.0 -..0 -. 0 . - . - .0 -4. -a.0 -2.0 .-. 0 the energy is computed every msec from the short time

I ~ro.v.-' m. wSSCC 0.20)

Fourier transform using 2 msec Hamming window.
" Figure 4: Histograms of correct and * Spectral offset location: This feature represents the

incorrect word scores location of the first, spectral dip higher in frequency

Figure 5 illustrates the relationship between the amount than the first major concentration of energy in a
of pruning achieved compared to the percentage of correct smoothed spectrum.
,)srs pruned when evaluated on new utterances by new * High frequency energy change: This feature is the slope

speakers. Note that one can reduce the number of of the best linear fit to the energy in the 4500 -7800 Hz

hypothesized words by 50o without pruning any of the band over the duration of a phone. This feature is
-rnrect words. The curves for training and new speakers intended to help differentiate between fricatives (which
were found to be similar (51, indicating that the method is have relatively stable energy) and unvoiced plosive
potentially robust to speaker variabilities. releases (which generally have a strong onset followed

VERIFICATION by aspiration which weakens).
Hypotheses scoring can be viewed as a discrimination

In the broad phonetic recognition model, the input to or identification problem. A binary discrimination allows
the verifier is a lattice of word candidates produced by small differences between similar candidates to be weighed.

the lexical component, the most unlikely candidates having In contrast, identification indicates how well the measured

I en removed. The verifier selects the best word or string feature values match the expected values for a phone,
f worls from among the competing word candidates using independent of the values for the other phones. Because

a set of detailed acoustic features, lexical access based on a broad phonetic representation

Each word hypothesis is represented as a sequence results in similar sounding word candidates, the sounds to

f phones and each phone is characterized by a set of be scored should be similar; hence discrimination seems
-ljeailr(I acoustic features. This choice of representation the better approach. Preliminary results bear out this
o-,is motivated by linguistic reasons and by the desire for expectation, and a metric based on discrimination between
'xtntalility o other recognition tasks. competing phones was used in scoring [51.

" (tlerations of phone characteristics in spectrograms To identify errors due to the verification algorithm.
-o re 11 d to select a small set, of nine acoustic features. the inputs were idealized by mapping the phonetic

Thyme features were designed to capture salient acoustic transcription of each utterance into a broad phonetir
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transcription and then performing lexical access on these The rank of the score of each phone in the correct vk,,r,
'ideal' broad phonetic transcriptions. The verifier was is shown in Table 3. Note that for new utterances by I..oth
evaluated only on the subset of the lexical access database the training speakers and the new speakers, the correct

-which was phonetically transcribed phone is in the top position at leas 86' of the time ani
Table 2 shows the word error rates under various test within the top two candidates at least 99"i of the time. Ii,

conditions. Each insertion, deletion, or substitution was similarity in rank again indicates the potential speaker-
counted as an error. The error rates illustrate the power independence of using acoustic features in verification.

f.?- of using a few carefully selected acoustic features combined
with statistical measures to score each contending phone. Tale, 3: l'hlic Hdain (i,?i,, .1,

- On new utterances, the error rate for training speakers 1te"n1 1wr

is only slightly better than for new speakers, indicating ____2___

that an acoustic-phonetic approach is potentially speaker- training traininhg 'J i4 I ii "I
independent. training ,1(1%% I , I I aiii

Table 2: \\ord Error Rates oiw raining - , , ,"""~~ ft of ts of Word Dew I"" __ _
l~torancvs Speakers Speakers l)igits Error Rate SUMMARY

training tnrainig 6 1365 1.5q Two components of a broad phonetic based continu,
trai n ing 116 5W digit recognition system have been examined. A meth.d

new training 4 1126 5.0% for lexical access was implemented and shown to allw"n"c'.w se -I 893 5.3%
fie- tie%% a recognition system to tolerate reasonable front-end

variations in labeling. The use of a small set of fine phonetic
Detailed analysis of the errors in all corpora revealed.. features for word verification was investigated and found

that many of the errors were due to differences in to be adequate. Additionally, evaluation showed these
male/female speech. The most striking and consistent error components to be potentially robust to speaker variations.
was the confusion of "four" and "five". All 16 cases in
w f s r e e o cThese results are encouraging and indicalu at sht a broadwhich. "fv'wsicretyrconzda fu"ocre phonetic approach is viable, but evaluation should now be
in speech by males. Eighteen of the 19 cases in which
"four" was con-fused as "five" occurred in speech spoken

by females. ACKNOWLEDGEMENT
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P7rom, the 0Iroceedinos of ICASSP R6, the IEEE-IECEJ-ASJ International Conference on
Acoustics, Sneech, and Sianal Drocessing, held in Tokyo, Janan, Anril 8-11, 1936.

A BIROAD) PHONETIC CLASSIFIERl

f V~p l i-ritt ial F it gi fiv-e r img aid ( ',ioputter Sc ieice

MasaclisetsInst ituite of Iechriolog)
ainriduge. Miassachuset ts ()2139, V S A

d ABSTR A(T LEXICAL ACCESS

it ha, been lh,,iii that I road phomet; sequences part itiont a 'I'lle high ilegret' oif sarialuilN fi siechi itoans thlat a given

large lexsto ntoi stiall eqiisaletue classes of "aords sharing tile recugiied soitud sequlence.c :,(an corresponid to ruan i possible
samep seqiem e \\hile helis(- results illtist rate thle powser of broad sequences. !os(S), tit lie lexicon The size (if I'os(.4 ) diepetids

phu(-et ii itost raitits ft)r differetiating %(rds firti out, antirher, on bo(tit the( degree of \ariaiitN in tile spieechi. and, (lie emrror
he.N do rot suggest hoA to exploit sequtialc(ist raitits ;in recog- initritiled h), flit- acoustic classilier

rotitor This paper presents a mrethuod for decoupling sequetntial To find all the possille wourds giseti sequence S. either flit-

phonetic ciristraitits from~ a lexicon. h) representing allow able lexico n ruist ite purobed ontco for each sequience in los (.S) or each
- brad phonetic sequences iii tennis ofrn-th order Ia-kov models woird titust bie stored accorintg to all its possible realuzat otis

A suitole framne-blased broad phonetic classifier is used to evalu- Therefore. iii order to reduce thle ntitter of word candidates
ate the efferriveness of these tniodels fin recogniirion Tests (in 300 correspontditng tit S it s, tecesqar~t tio ritntie thle size itf l'os(S)

sentences from 3(0 niale speakers deironqirar e that the addition This cart be done fit tti Aa as (1) reduce the sensitict% tf the
of sequential constraints ilpnilses thle classifier's performiance lexical represenitattont tit %ariaitltt. atid (2) reduce thle %ariabilts

inttrte output if thle brttad phoinet ic classifier

The key'i observation if) tinak tig the lexical represetatiott le-s

variable is that t lie carialtilit 'Nin speech is it, uijfirmn I:,r fit
IN T RO( D IT C TI() N st ance. the st re-ssed sN Ilahles oif waords are- less \ariabler tha flip t

unstressed s~ Ilables T Ihis is illustrated !N fte fact that deletioni
WeP have been invest igatirig the use of broad phonetic se- ofpietc erertsccsarnttexuicliiistr-ds I

querices for hypothesizing words in speech recognitiuon I'. Ship- lables Thtus for two ident ical btroad c lass sequteices S, arid S,. .
froan and Zite 2 demonstrated that broad phonetic sequences. are r~ecutgn ized frcm tiSrressed arid unst ressed s itlables respect ivcl\

-. pow erful for discriminating amnong the words in a large lexicon. the first w ill have fewer possibile iuderl ing sequence, thart tie
They showed that a large lexicon can be partitioned into smrall Pcutin lo(S') Ios(.%)
eqiialence (lasses by representing the woirds in the lexicon in In order to evaluate a representtatiton bnaseid ott stressed s I-
rerrits of sequences of six manner of articulation labels. For the lables, we compared tlie relar ise itmitort ace of st resseid and Ii-20.000-wiord Webster's Pocket D~ictionary, there are an average of srse ~iate i a~i otn ag eitr i-rcs
approximnately 35 words miatching each broad phonetic sequence. tigation revealedth lat t ie( puiontemies fi stressed ii habits alotne
Tht- largest equivalence class has about 200 words, or li( of tire provide almrost as muichi contst rainit as rthe enitire word tile size

lexiconof tile lexical equiv~alence classes is altmitst tue( safte fir represi-l
A partitioned lexicon formts a table of words corresponding tations using otnly thle st ressed s~ liables as for thuse using rie

tc each bronad class sequence. In the case of ideal data, a sequence whole word For represetaritins rising on]lN inst ressed qsN llables.
recognized in the speech signal can he used tot lookunp the puissi. on the or her fraud, t he size (if t Iii' ptlimaletice classes us tss it order,

* ~~ble rmatchirig words in t he table This prestines; that the word of itagitt larger 'lTese ri-stilts st rtutglN Suggest that til le\c-
* ~boundary is knowni arid hence applies roost directly to isolated ical represent atitoi shouldi ic btased ttn thle photo rites ill St ressed

word recognition. The variability in real speech data comnplicates syllables;

fil-, lrpleaccssModlThe second way Ni oniiiiziitig thie sizeofif'os(S) is to reduce
Our previous research has; fticuised ttn developing a lexical the variabilit in tue cttpitt if the classifier Tlue rentatitder ttf

representat ion whlich is relat isclN intsentite tot variabtility. This this paper investigates how toutii-sequetial pitititic Const rairits
woirk is summriarized in rie next sectittn Tiue current paper to reduce the variaititN itt tile tut put if a broad phonuetic c~a'-
presents a mtet hod fttr tisitig seqiienttial phonitet ic contst raints to sifier Since sequential phouniet ic cuntutrairus are implicit fi thle

reduce the variability in a broad phonertic classifier To evaltiat e words cif a given lexicotir ie it utit( e ccui ld front ttle lcxi-

this mnet hod we irtplertent ed a sirtipe frarnie-baseti bromad pfto- colt beftore they cart lie tiredh ii a classifier

net ic classifier and tested it both awith arid withbout the sequentital

phounetic constraints
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DECOITPLING 'rilE CO[NSTRAINT'S cc 'I;ni od''rricl'k4,I'lItitr

(' )' 2f 1, iw r(Ic iiiII li-go andc 'I ic rndikt' :. iio ity r

T isi 'it'iritim iricesigtt' repirect'titg the ceijijetiial pho F Vgi I v'r~k afrt' cul (,n i ' I [it ni dt1 it( lia -iii. "I\

iic c'iti'trairirs (if Enrglisli explicit is in terins oif allietsallt t- ltatitir of .rtI W I', ~ii' it""''- I h, 'S ic tcII sicij I 1 . 1,

t tic of trail ;clicer ic segmtieis Toi t lie extetit I liart I li, repre- circl'r ticccii'I if Icl i( "'f i lc'xc'ciic (1to Ik rIc IPclit' l

'etitit aii is inidepenidertt if anN parTli Ilar lexicon, it cart he said oni'cr"n i '1ii'a.rIIx.i 'IcI liirArfl 'r Ii i. -I

Ii capitnrt' general seiquenitial properties of tnglih4 ecrtc' si cii: 'U ''4, cc i 1, 1 1,~ I ' r''c n0i% cc i

sequeitciial phclicirei coctstraitits are relarivels local For ex- tIle fair I' cat rIll rle'!" '0', ili Ic; 1 ti. tid III t . If Sic 1 i

atrcle., Etigli'li has rule xsccrcl i itiiil sequen'tces sill arid spr Ill aI lit 1 III tc '." ifs1 ill t% 0 1, l . ric T 'ieIl 'ic'!

tillnt I'tp At a lcroiadl jcitic level (uising the six fiatirier 'ej'ict' iie'a", tl l I J-1 I i. . I Il, Illi , A

-f arricilatioctilacst'c Niccl. tia'al, liqjuid or glide. stopi strong ccf ici'i'irrF't, i i'cr , :1 "e' - r it, ' I Ili 1, 1 1" I iiricriii

fric ati,'. atic Nicak fricaltve) rhiis rule can ble eliarareried as 111'rc ccf( II If tr. ,ill, t prii t dE11 ia im Ild

* STRONG-ERI] STOP] [LIQUIO] lvi'icct Nithi .kcrcl fit' ci tic -~ Illc IU i c lc i fi t-ic it ri ii 1itic'1

ic~~~~~-i- l IF tit Ici I o~';' rctzu tc ili irci, St fi- t' ,icl" ii. ,1 lii it c'i ir'.

ttiir It micct" all lizije FF'r I fr, cI,s f i icl .' t 1ii 'it fr iii I I li lrci % 1

[STROING-FRICI [STOP] [STOP] I'crlcixc lf %%ritte I , i li'-ll I \\'i i i , dil1 'ii cc' triai-iic Ti

i' icct 'Ifit' km alit.\ccf ci, rule, itiles thiat a first ocr st'ecoiil ocr- jcriealiilrt'', Ilit' ci iFFcr, flT r Il tic d cccr M-1k'' lcclil cc4

A-r -hi iral tn/mt-i cr1 4c legal ounirid st'jii'tic shldi lit Siufficietit thlit secjcic'tiis j'iicdiii'I iF it o r mWaii

A -th Oriler Mdls APPL NI 1E 0I ?AINT

( .iiithe lociahl icf cquenit'ial 13 ficnr'T a conrstraits, "Ic 't' gccal c-f ic, ri-r.t iiig t.il, i iml pIctitI icc' ,i~trai

tiit'j the T rit irder vt'ricet- (fcir ti- 2) in a larger' eiez'i Iinto a( la"'ir i" icr Ill t1 rC ca114- lt Ill, tIt ii-&ult TI it

t-i't. cci a Ttu'cr' if lt'giil Ihricm pihiitici seqiientce, '[li puit'ieaiaer-tfct tiei" irle rIjii'liv It' Icitc illi rlit.

':.'Ftf Iiii' Tni' l are t-t iilt' iif beroadl phoineitic si'gttetits prervious setio n Fe ittipletteti a si1Tnijie brcoad ['ollct' ii ila""i
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independence of the systern Table I shows the frarne-by-fratne as a schwa and otherwise was called stressed. For the unstressed

performance averaged across all thirty speakers for both four and words the deletion rate was 23 7c whereas for the stressed words
five broad phonetic classes. Three different sequential phonetic it was only 15 9(. This result adds further support to the earlier
models were evaluated. The first row shows the results for the observation that the stressed syllables are important in hypoth-

"0-th order" models, which incorporate durational information esizing words.

but no sequential phonetic constraints The second row shows

the results for the first order models Since the results for the SUMMARY
second order models are almost the same, they are not presented.

While lexicon studies demonstrate the power of broad pho-
r - .net ic const rairnt s for different at ing words from one anot her, t he'

tritr ('la.s. . 5 ( s do riot suggest how such constraints can be directly exploited

Zero 67 3% 67.1 I in recognition. This paper has presented a method for decou-

First 75, 1 71 '.8 pling sequential phonetic constraints from a given lexicon, b)
representing allowable broad phonetic sequences in terms of n-th

Table I Average (orrect frikrre-b,-franie classification for order Markov models. Tests of a simple frame-based broad pho-
thrt speahers. Sysfen was trained and tested separately netic classifier on 300 sentences from 30 speakers demnonstrate
for each speaker: the test speaker %as not used for training, that these models can be used to increase the performance of a

broad phonetic recognizer.

These results demonstrate that adding sequential phonetic
constraints increases the frarne-by-frarie recognition performance Acknowledgments
oxer thle iero-order moidel. Using more sophisticated segmtenit This work was done at the Speech Communications Group

n recogniers ti convert the segment-based to frame-based models and the Artificial Intelligence Laboratory at MIT. Support was

could further increase the frame-b-frame performance. received in part from the Office of Naval Research under contracts

Table 2 shos the egient-based perforrtance. 'rhe per- N0014-82-K-0727 to the Speech Group, and N0014-80-C-0505 to

centage of segments correctly classified is reported, along with the Al Lab. The VQ and network algorithms were implemented

the segment insertion rate in parentheses. The sequential pho- with Gary Kopec at Schlumberger Palo Alto Research.

netic coistraints have a substantial effect in reducing the segment

itisertion rate. without greatly decreasing the percentage of the REFERENCES

segments correctl recognized Recall that these results are rela- [1t D).P. tluttenlocher and VANV. Zue, "A model of lexical access
tisel*N cituervative because autotatic arid hand labeled segritents from partial phonetic information', Pror ICASSP, 1984
Must overlap in time in order to be considered a correct match. 2i D Shipman and V.W. Zue, "Properties of large exi-

....... cons: implications for advanced isolated word recognition
Order , Classes 5 ('lasses systems", Proc. ICASSP, 1982.

Zero 81 5% (63 7-) 83.0% (78.4%) 1 )3] lP. lutterilocher, "Sequential phonetic constraints in rec-
F0% I ---- ognizing spoken words", MIT Artificial Intelligence Labora-

tory, Memo No. 867, 1985.

Table 2 Average qegment-based correct classification for ,11 II. Kicera and W N. Francis, Conputational Analysis of
rhirt speakers. The segment insertion rate is in parenthe- Present-Day 4rntrican English, Brown Univ. Press, 1967.

151 S I,evinson, 1, Rabiner and M. Sondhi, "An introduction
to the applicat'n of the theory of probabilistic functions

The segment insertions for the first order models are highly of a Markor process to automatic speech recognition", Bell

regular For instance 66% of the insertions in the 5-class condi- System Technical Journal, 62(4), 1983.
tion are \CL in a FRC VOC context Thus additional process- [6j R. Gray "Vector quantization", IEEE ASSP Mag 1984

ing of the segments should be able to substantially reduce the
11- insertion rate Without the sequential constraints the er-

rors shciw no such regular patterns, and hence further processing

is riot likely to reduce the error rate.

Syllable Stress Affects Classifier Perforrsiance

The classifier's segment deletion rate is higher in the in-
stressed syllables than in the stressed syllables In making this
corniparison, onl. mono-syllabic wordg were considered (84 of

the Aorls in the itterances are trnon-syllabic) A viord was

called unst ressed if the nuclear voiwel was reduced transcribed
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VISUAL CHARACTERIZATION OF
SPEECH SPECTROGRAMS"

Hong C. Leung and Victor W. Zue
Department of Electrical Engineering and Computer Science, and

Research Laboratory of Electronics
Massachusetts Institute of Technology

Cambridge, Masachusetts 02139

ABSTRACT tic patterns if a spectrogram so that these abstracted pat-

This paper describes a system that applies vision techniques to terns may be uised to characterize and recognize different speech
extract acoustic patterns in the speech spectrogram. By processing sounds Traditional de'.cnltions of aconstic-phonetic events
a spectrographic image through a set of edge detectors and combin- based on formant fre,,incies are often inadequate because the
ing their outputs, the system obtains two-dimensional objects that f.rmants cannot always be resolved reliably Thus visual char-
characterize the formant patterns and general spectral properties for acterizations may provi'le an alternative, and perhaps more ef-
vowels and consonants. As a validation of the approach, a limited
vowel recognition experiment was performed on the "object" spec-

trograms. Preliminary results show that this processing technique Proces-ing the slectrogram as a three-dimensional image
retains relevant acoustic information necessary to identify the under- hasP a nuier tf impo,,rtant advanitages First, one can better

lying phonetic representation.haa iileofii-pi datrsF-tnecnbtr
li capture the time-freqi,'ncy dependency of the speech signal by

treating the time and fre'quency dimensions simltaneously Sec-
ond, we can liberally borrow from techniques developed through

INTRODUCTION many years of successful vision research Third, characterizing
a spectrogram is a highly conmtrained vision task The three

For the past four decades, the prevailing form for display- dimensions of the spectrogram correspond to physically mean-
ing speech has been the spectrogram, a three-dimensional time- ingfil quantities, namely, time, frequency, and amplitude The

frequtency-intensity representation of the signal. The spectro- patterns on the spectrogram are also limited by the nature of
gram provides a visual display of the relevant temporal and the speech production mechanism and the restricted sound pat-
spectral characteristics of the acoustic signal. It has been an terns of a langtage.

invaluable tool in the development of our understanding of the
acoustic properties of speech sounds.

Recently, the spectrographic display took on added signifi- SYSTEM DESCRIPTION
cance as it was demonstrated that the underlying phonetic rep- Our apprnach to visual characterization of speech spectro-
resentation of an unknown utterance can be extracted almost grams is to treat the acoustic patterns as visual objects These
cntirely from a visual examination of the speech spectrogram objects are obtained by applying edge detection to the spectro-

[21, [31, [9]. In these experiments, a trained spectrogram reader graphic image, producing an edge map" as output. The edge
correctly identified the phonetic segments with 80% to 90% ac- map includes explicit information about the position, the orien-

curacy, depending on the experimental conditions and the scor- tation, and the relative strength of edges. These edge elements
ing procedures. The reader's performance, measured in terms of are grouped into closed geometrical contours. The remainder of
accuracy and rank-order statistics, was considerably better than this section describes the system in greater detail, focitsing on
that of the phonetic front-ends of available speech recognition the vowel-like sounds. Obstritent sounds have visual patternis

systems. These experiments stirred renewed interest in acoustic- that are quite different from those of vowel-like sounds Their
phonetic approaches to speech recognition, and supported the treatment will be described near the end of this section.
speculation that better front-ends may be constructed if we can

learn the phonetic decoding procedure used by human experts. Edge Detection

Protocol analysis of spectrogram reading reveals that the The system obtains a narrow-band spectrographic repreoen-
decoding process calls for the recognition and integration of a tation by computing a short-time spectrum once every 5 ms withmyriad of acoustic patterns. In order to develop a system that a 25.6i ms window. The vowel-like regions of the image, deter-

utilizes such knowledge, one must first be able to extract these mined through a broad phonetic classifier [5J, are then processed
acoustic patterns. through two-dimensional directional edge detectors of different

scales. The cross-section in the frequency dimension is the see-
This paper is concerned with the visual characterization of ond derivative of a Gaussian, and the cross-section in the time

speech spectrograms. Our aim is to capture the essential acous- dimension is a Gaussian. The directional Gaussian edge detec-

"*Thiq research was supported by DARPA under contraxt N0014-82-K- tor has been shown by Canny III to have many useful properties
0727, monitored through the Office of Naval ReRearch. such as robustness against detection errors, good Iocali ation to

51.1.1

ItASSI' 96, TtIKY() (1122,13 .1 96 0000 2751 $1.00 1tI6 I1H.F 2751

.170

----



true edges, and dimensional separability. Thus this operator two formants because of the bandwidth. Thus after the coarse-

smooths the spectrogram in the time dimension and also de- to-fine tracking is performed, regions with significantly large

tects edges that are approximately orthogonal to the frequency bandwidths are suspected of having more than one formant. In

dimension. Zero-crossings of the filtered output correspond to these cases, edges from the smaller operator outputs can be in-

edges in the original spectrogram. Another advantage of using cluded if the bandwidths after the insertion of the additional

Gussian detectors is that the zero-crossings do not disappear edges are still reasonable. This heuristic is quite robust in the

as the scale'decreases [7J, [8]. This is an important property for vowel regions. To avoid including spurious edges, however, the
S-combining outputs from different scales, original bandwidth needs to he quite large so as to trigger in-

sertion of edges. This means that some of the good edges from
One potential problem of using a directional operator is that the smaller-scale detectors are inadvertently omitted. In order

its performance might degrade if the formants are not quite to locate these edges, more elaborate procedures are needed.
horizontal. Multiple directional operators oriented at different

- angles might, therefore, be needed. However, due to the slug-
gishness of articulatory movements, formant frequencies cannot For some vowels, the formants are quite close to each other

, change very quickly. Preliminary results show that if the Gans- for some duration, but gradually separate and finally split apart.

sian cross-section in the time dimension is made small enough After the formants split, edges can be detected quite reliably.
- (on the order of I pixel), the edge detector can pick up fast These edges can then be used as anchor points to find edges

formant movement, when the two formants approach each other. As we have seen
in Figxre 1(f), F1 and F2 begin to split apart at approximately

Combining Multiple Scales the midpoint of the vowel. This kind of split provides strong
Parts (a) and (e) of Figure 1 show the narrow-band and wide- evidence that more edges should lie to the left of this point.

band spectrograms, respectively, for the nonsense word, "boyt', These subtle edges are located by the following "digging" pro-
spoken by a female speaker. Parts (b), (c), and (d) show the cedure. Starting from this point, edges to the left are exam-
results of filtering the narrow-band spectrogram with the direc- ined. If these edges satisfy a coutinuity requirement, they are
tional edge detectors of different scales. The plots correspond considered 'good" edges. Building upon the extensions, edges
to a rr of 4, 3. and 2 pixels, with sigma decreasing from left to further to the left are then examined. This process repeats un-
right in the figure. The output with the largest scale is the most til no more edges are found or until the continuity constraint
robust but has the least resolution, whereas the one with the is violated, Figure l(g) shows the result after the "digging'
smallest scale has the best resolution but also has many extra- operation. In this example, the operation has dug through the
neonw edges. In order to achieve robustness and good resolution entire region and correctly located the first two formants of the
simultaneously, these outputs must be systematically combined, vowel. (Note also that objects with average frequency above

We have chosen to combine the outputs by performing a 3.5KHz have been discarded, since they do not contribute to

coarse-to-fine tracking in a way similar to scale-space filtering the phonetic identity of vowels.)

. proposed by Witkin [7]. This approach has the advantage of The scale-space filtering, augmented with the above two pro-
-- -- managing the ambiguity of scale in an organized and natural cedures, is quite robust in finding formant edges in the vowel

way. Since zero-crossings do not disappear as the scale de- regions. At relatively high frequencies, the detected edges usu-
creases, the coarse-to-fine tracking works properly. ally correspond to edges of the formant frequencies. However,

..-', t r a rthere is very often an energy concentration below 300 Hz due to
the differen(f)illustrates t he bresultafter cmbiningthe resultdgehas goodm FO. When F is low, this small energy concentration is masked
the•din al i t can by Fl. But when F1 is higher in frequency, this energy con-

centration becomes more and more noticeable. Trained spec-
trogram readers are very good at ignoring it. We are not yet

Applying Speech Knowledge sure how to deal with these shallow edges in the system. At this
While coarse-to-fine tracking solves the problem of localizing moment, we have chosen to ignore edge contours with average

large-scale events, it does not solve the multi-scale integration frequency less than 300 Hz if there is another edge contour with
problem. Which of the edges found by the small-scale operators average frequency below 800 Ilz. This condition ensures that
are robust, and which edges are due to noise? There are a num- the ignored contour does not correspond to Fl.
her of ways to determine which edges are valid. One measure
is to examine the amount of intensity change. The amplitude Processing of Obstruent Regions
of the output of the first derivative Gaussian, and the slope of Obstruents are characterized by their general spectral distri-
the rero-crossingm of the second derivative Gaussian, are good butions rather tham any specific formant patterns. As a result,
indicators of the amount of intensity change. However, some the processing for the obstruent regions is considerably different
form of thresholling is needed, which may lead to gross error, from that of sonorant regions. The obstruent regions are again

determined by the broad phonetic classifier. A very coarse edge
We have chosen, instead, to apply specific speech knowledge detector is applied to the wide-hand spectral slices, computed

to select the edges We first apply a bandwidth constraint. For with a 6.7 ms window. The objects are obtained from the edge
some vowels, formants can be quite close to each other. Some- map with no further processing.
times they are so cl'se together that it is impossible to separate
them by eye. Spectrogram readers are able to tell that there are Figure l(h) shows the final result for the word "boyt," in-

'The irAte jq a moasre n( the width nf an e4P detretnit Fnr a Gansiias cluding both the vowel-like and obstrurnt-like regions. Compar-

deterto. the cate .cnrr* nsd the tandrd deviatin, f. ing this figure with the original spectrogram, we see that rele-
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rant features in the original spectrogram have been captured in The results of our vowel recognition experiments, based on
the objects. As a more elaborate example, Figure 2(b) shows the 112 vowel tokens from eight speakers, show that the smoothed
the objects obtained from a continuous sentence spoken by a spectra can be used to identify the vowels with an 83% first-
male speaker. For comparison, the corresponding wide-band choice accuracy. The correct vowel is within the top two choices
spectrogram is shown in Figure 2(a). If the extracted objects 94% of the time. This result compares favorably to that us-
indeed capture the important information in the spectrogram, ing the LPC/Itakura-Distance method. While it is premature
then they can be used as a mask to filter out irrelevant acous- to base our conclusion on such a restricted corpus, we are nev-
tic information, as shown in Figure 2(c). We see that important ertheless encouraged by the results. It appears that, for this
acoustic information in this utterance, such as the formant tran- data set at least, our processing system did not remove acoustic
sitions in vowel regions and the shift in spectral energy distri- information that is necessary for vowel identification.
butions in obstruent regions, has been accurately retained after
processing.

SUMMARY
In summary, we developed an algorithm for the extraction of

visual objects from speech spectrograms. Results from a limited
RECOGNITION EXPERIMENTS vowel recognition experiment suggest that the processing tech-

The examples shown in Figures I and 2, and informal "object- nique retains acoustic information that is useful for phonetic

reading" experiments performed by spectrogram-reading experts, distinction.

suggest that the procedure described in the previous section In the future, we plan to evaluate this system more exten-
*s is potentially useful in extracting important acoustic features,¢.'.sively, and to investigate the feasibility of using the objects for

from the spectrograms. The extracted patterns can, for exam- phonetic recognition.
pie, provide the necessary information for the development of a
knowledge-based system for phonetic recognition [101. Alterna-
tively, one can build up an inventory of these patterns in order REFERENCES
to characterize and recognize speech sounds directly, using a va-
riety of vipual object recognition algorithms [6). Before we start [II Canny, JF., "Finding Edges and Lines in Images," NMIT-TR-

720. MIT.
tc utilize these objects in either of the two tasks, however, we
-.mst first make sure that these processed visual patterns in- 121 Cole, R.A.. Rudnicky, A., Zue, V.W., and Reddy, D.R, "Speech

as Patterns on Paper," in Perception and Production of Fiscal
deed retain the necessary information for the recognition of the Speech, R.A. Cole, ed., Hillsdale, NJ: Lawrence Erlbaum Assoc.,
underlying phonetic segments, 1980, pp. 3-50.

As a step in this direction, we performed a small vowel recog- 131 Cole, R.A. and Zue, V.W., "Speech as Eyes See It," in Atten-

nition experiment. The task involves the recognition of 14 vow- tion and Performance VIII, R.S. Nickerson, ed. Hillsdale, NJ:
-els, /i, , e, e, z. a, o, A, o, u, r, ay, oy, aw/, spoken in the /b/. Lawrence Erlbaum Assoc., 1980, pp. 475-494.

vowel-/t/ environment by 8 male speakers. Due to the limited [41 Itakura, F., "Minimum Prediction Residual Principle Applied
to Speech Recognition," IEEE Tras. Acoust., Speech, Signal

amount of available data, the recognition was performed using Process., vol. ASSP-23, no. 1, pp. 67-72, Feb. 1975.
2 a rotational procedure; in each trial the system was trained on [j Leung, H.C. and Zue, V.W., "A Procedure for Automatic Alig-

the data from seven speakers and tested on the remaining one. ment of Phonetic Transcriptions with Continuous Speech" IEEE
For each vowel, the recognizer chose from the seven training Conference Proceedings, ICASSP, San Diego, CA, 1984, paper

samples the one with the smallest intra-sample distance as the 2.9.

reference template. A dynamic time warping algorithm [4], with 161 Mart, D., Vision, W.H. Freeman & Co., San Francisco, 1982.

appropriate local path constraints, was used to compensate for (7] Witkin, A.P., "Scale-Space Filtering," Proceedings of the Inter-
i r b e t a f e enational Joint Conference on Artificial Intelligence, pp. 1019.-L "'differences in duration between the test and reference patterns.102183diffeences1022, 1983.

- No attempt was made for normalizing the frequency scale toi,'','accuntforintr-seakr dffeencs.181 Ynille, A.L. and Poggio, T., "Scaling Theorems for Zero--croisings,"
account for inter-peaker differences. Al Memo 722, MIT.

191 Zue, V.W. and Cole, RA., "Experiments on Spectrogram Read-

The objects determined by our processing system do not re- ing," IEEE Conference Proceedings, ICASSP, Washington D.C.,,. : Te ojecs dterine byour rocssig sste donotre-1979, pp. 116-110.
tain amplitude information which is often useful in character- 197, V.. 116-119 .

iigspeech sounds. Therefore, we created from the objects a 1101 Zule, V.W. and Lamel, L.F., "An Expert Spectrogram Reader
izing A Knowledge-Based Approach to Speech Recognition,' IEEE

cartoonized spectrtum for each time frame. Regions inside the Conference Proceedings, ICASSP, Tokyo, Japan, 1986. paper
objects were replaced by a constant value that is equal to the 23.2.
average value of the corr-sponding regions in the original spec-
trum, whereas regions outside were set to zero. The cartoonized
spectrum was then smoothed with a Gaussian window. Parts
(a), (b), and (c) of Figure 3 illustrate, respectively, a vowel
spectrum (superimposed ty an LPC spectrum), the cartoonized
spectrum derived from the edges, and the smoothed spectrum
used for recognition. A Eiiclidean distance was used to mea-
sure similarities between spectra. For comparison, we also im-
plemented an LPC-based system using the Italr ra's distance
metric 141.
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From the Proceedings of ICASSP 06, the IEEE-IECEJ-ASJ International Conference on
Acoustics, Speech, and Sional Processing, held in Tokyo, Japan, April 8-11, 1986.

AN EXPERT SPECTROGRAM READER:
A KNOWLEDGE-BASED

APPROACH TO SPEECH RECOGNITION-

Victor W. Zue and Lori F. Lamel
Department of Electrical Engineering and Computer Science, and

Research Laboratory of Electronics
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

ABSTRACT to identify, while others are not meaningful until the reltvant
Hcontext has been established. One must selectively attend to
Human experts can determine the phonetic identity of un- many different acoustic cues, interpret their significance in lightknown utterances from a visual examination of the spectrogram of other evidence, and make inferences based on information

with performance better than available computer systems. The from multiple sources. The discovery of the acoustic cues and,
spectrogram-reading process involves the use of multiple sources more importantly, of the control strategies for utilizing these
of knowledge, including articulatory movements, acoustic pho- cues are the keys to high-performance phonetic recognition. Fi-
netics. phonotactics, and linguistics. In addition, the experts' nally, protocol analysis of the process of spectrogram reading
performance can be attributed to their ability to deal with par- reveals that the decoding process often involves the use of ex-
tial and/or conflicting information, as well as multiple cues. plicit rules. Thus the knowledge used in spectrogram reading is

This paper investigates the feasibility of constructing a know- potentially transferable to others, both humans and machines.
ledge-based system that mimics the process of spectrogram read- Our experience with spectrogram reading suggests that the
ing by humans. In a task of identifying stop consonants ex- reasoning process can be naturally expressed as a series of pro-
tracted from continuous speech, the system' achieved perfor- duction (or if-then) rules, where the preconditions and conclu-
mance that is comparable to that of the experts. sions may be phonetic features or acoustic events. Since the

acoustic-phonetic encoding is highly context-dependent and re-
INTRODUCTION dundant, we must be able to entertain multiple hypotheses and

Over the past four decades the spectrogram, a three-dimen- to check for consistency. Acoustic features are often expressed

sional time-frequency-intensity representation of the signal, has in a qualitative manner and described as being present/absent,

been the single most widely used form of display for speech. Prt and having values such as high/mid/low, or weak/strong. Thus

of its popularity stems from the fact that it is relatively easy to in order to have the computer mimic the performance of spectro-

produce, and it provides a visual display of the relevant temporal gram readers, we need a system that can deal with qualitative

and spectral characteristics of the acoustic signal. It has been measures in a meaningful way.

an invaluable tool in the development of our understanding of In this paper, we report preliminary results of our attempt

the acoustic properties of speech sounds, to incorporate our knowledge about the spectrogram-reading

Recently, a series of experiments by Zue and his colleagues process in a knowledge-based system that mimics the process

demonstrated that the underlying phonetic representation of an of feature identification and logical deduction used by experts.

unknown utterance can be recovered almost entirely from a vi- The knowledge base explicitly represents the expert's knowledge

sual examination of the speech spectrogram [1], 12], 131 In their in a way that is easy to understand, modify, and update. Our

experiments, a trained spectrogram reader correctly identified research direction is very similar to the efforts by Johanssen et

the phonetic segments with 80% to 90% accuracy, depending on al. 141 and Johnson et al. [5I .

the experimental conditions and the scoring procedures.
While the spectrogram-reading experiments were intended

to illustrate the richness of phonetic information in the speech TASK DEFINITION
signal, the results are relevant to automatic speech recognition The process of spectrogram reading involves extracting rele-
in several respects. First, they demonstrate that a great deal vant acoustic features and combining these features uting rules
of phonetic information can be derived from the acoustic signal that relate the underlying phonetic forms to their acoustic man-
alone. The reader's performance, measured in terms of accuracy ifestations. Our task investigates the feasibility of developing a
and rank-order statistics, was considerably better than that of computer system that mimics such a process.
the phonetic front-ends of available speech recognition systems. In order to keep the project manageable, we made some im-
The experiments thus provide an "existence proof" that high- portant design restrictions. First, we decided to focus on the ac-

,. performance phonetic recognition is attainable. Second, spec- quisition and formalization of the knowledge base, rather than
trogram reading is based on the recognition and integration of a the development of an expert system itself. As a result, our ini-
myriad of acoustic cues. Some of these cues are relatively easy tial effort makes use of an available Mucin-based[6 , backward-

chaining'system. Our investigation thus far has revealed that• This research wso supported by DARPA under contrac t N00014-82-K- ti atclrepr ytmmyntb h otaporae
0727, monitored through the Office of Na%-al Research. this particulAr expert system may not he the most appropriate.
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Neertheless, it has provided us with a convenient mechanism - . .
to acquire and formalize our knowledge, while freeing u.s from .. . , N, .:Z '9" 'w:, I

the need to delve into a very difficult research area. .001 ,,

Second, we bypass the problem of automatic extraction of *J -

acoustic features. Many of the acoustic features used during 0----s,,o',l
system, but are very difficult to extract automatically by com-
petr.orameg areredilsnty t exte by teman val, .... M
puter. For example, there does not yet exist a formant tracker -1.1 ... s ....

* that can determine forinant frequencies reliably, especially in re-
gions where the direction and the extent of formant transitions
provide important information about the place of articulation Figure It A display of the interactive measurement system.

for consonants. Thus, while the measurements were made auto-
matically whenever possible, the acoustic features were verified acoustic features are made with no error, and as a result, system
by the experimenter before being entered into the database, performance can be assessed in relation to the adeqikacy of the
Recent work by Leung and Zue 171 attempts to locate two- acoustic features, the rules, and the control strategy.
diesoa acoustic features hesecrg-a. hirwrdimensiona objects directly from the spectrogram. Their work Some of the acoustic features can be measured reliably with-

..1. on visual object recognition may eventually play a role in the out human intervention. For example, the system can automat-
Finl.y feature extraction part of our system. ically determine whether the following vowel is rounded from
"Finally, we selected the task of identifying stop consonants the phonetic transcription. Some other measurements, such as

both as singletons and in clusters, since the cues for stop con- whether the stop release is pencil-thin, are qualitative in nature
sonants are complex, interrelated, and easily modified by pho- -d must be provided by the expert. Most of the measurements,
netic context. This paper reports on the identification of word- however, can be made automatically, subject to verification by
initial singleton stop consonants that appear between two vow- the expert. For example, although the time location of the
els. Stope have been extensively studied and recognition results tu rt s eame frthdeb the come vication

• .' ,burst is a measurement first made by the computer, verification
are available for comparison. is necessary partly because the measurement is inherently er-

@3 ror prone, and partly because other measurements depend on
SYSTEM DESCRIPTION accurate burst location.MTo facilitate the measurement of the acoustic features by

The development of our knowledge-based system ior spec- hand, we have developed a semi-automatic system that makes
trogram reading is divided into two parts. First we select a many of the measurements automatically based on a time-aligned
set of acoustic features that are important for phonetic decod- phonetic transcription [8. In making measurements, the expert
ing, and outline the procedures for their extraction. Then we has available displays of the spectrogram, the speech waveform,
develop rules that operate on these acoustic features to deduce the short-time spectra, and energies in selected frequency bands.
the underlying phonetic form. This latter t&k involves both the The system goes through a checklist of acoustic features, making

- ""formalization of our knowledge with respect to the terminology the measurements and querying the expert to verify or modify
".- and descriptions, and the actual statements of the acoustic-to- them. An example of the display used by the expert to make the

phonetic mapping. These two aspects of the system are de- measurements is shown in Figure 1. In this example, the system
scribed next. determined the first three formants at the onset of the following

a t e evowel without error. The formant frequencies are marked by
Making the Measurements a short vertical line, with associated numerical values, in the

. Feature Selection The acoustic features useful for spec- short-time spectrum window at the upper right-hand corner of
ifying a given phonetic contrast were initially determined by the display.
combing the acostic-phonetic literature and by observing spec- Each sample in the database has an associated list of feature
trogram reading sessions conducted by experts. Next, several values that are mostly numerical. These values are used to;"-'lue hthdae spctorem monttin numrial Tonhnset value arnno- t
hundred spectrograms containing stop consonants were anno- develop rules and to test the knowlelge-based system.
tated by experts and studied to verify the usefulness of these
rues ani to suggest supplementary measurements. For our cur- Formalizing the Knowledge
rent task of stop identification, we obtained acoustic features Not much is known about how experts approach the spectro-
that describe the release burst, the closure interval, and the gram-reading problem. The general strategy of expert spectro-
surroumding contexts These features include the voice onset gram readers is to make some preliminary proposal separating
time (VOT), the location and the strength of the burst, and the segments into broad phonetic clasqs. The candidate set
the formant transitions precedling closure and following release, is then refined by incorporating detailed acoustic cues to tle

Our system currently utilizes 26 acourtic features, out unlikely hypotheses. In our attempt to capture this com-

Feature Extraction As stated earlier, at this moment we plicated problem-solving procedure, we employ several general

are not concerned with the auitomatic extraction of the arots- principles. First, multiple hypotheses based on diverse arons-

tic features. Instead, we atsume that the measurements of the tic evidence msit be entertained. Second, the presence of a cue

may be useful, but its absence need not be harmful. Third, very
'.fany search problems ca t e treated u finding a path to a goal state strong evidence of one kind may preclude competing hypothe-
Fr fom some initial position. %%hen the earch proceeds from the initial s An example tilizing these principles issh'au in Figure
ortate toward the goal wtate, it iq said on he a fnrward chaining 'yqtem. In
eontraot. when the qer,h starti at the goal state and works bck towad 2. The place of articulation of the stop consonant in the right-
the initial state. then it is qaid to he backward chaining, hand panel ran be readily identified as VELAR by the compact,
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The last set of rules deduces the distinctive features from

Sthe acoustic descriptions. Two examples of rules that deduce

r ... . the feature VOICING are shown below:

- If the VOT is short,
and the following vowel is not a schwa,

" "then the stop is voiced.
e - -* -... E-

If there is prevoicing during closure,

7 then the stop is voiced.

.... _ _ " .~._ - The second example reflects the asymmetry of some of the

- acoustic cues; in this case the presence of prevoicing is a good in-
tupe keep coop dicator for a voiced stop whereas the absence of this cue does not

Figure 21 Spectrograms of /t/ and /k/ preceding different vowels, necessarily rule out a voiced stop. Note also that the strength

of a rile's conclusions depends upon the belief in the precon-
ditions. If one is uncertain about the acoustic measurements,

low-frequency burst. No other information is necessary. On the multiple rules can be fired, each with a lower confidence factor.
other hand, the bursts for the other two stops are very similar; Control Strategy Mycin uses a very simple goal-directed
both are rich in high-frequency energy. Only after the vowel con- control strategy. It sets off to determine the identity of the stop,

text is known can one infer that the first stop is ALVEOLAR and in the process needs to deduce its voicing and place charac-

(in a rounded environment) and the second stop is VELAR (in teristics. In each case, the system will exhaustively fire all the
a fronted environment). pertinent rules. We are able to affect the control strategy some-

In our system, phonemes are represented as a bundle of dis- what by including preconditions that inhibit certain rules from
tinctive features [9]. Thus, for example, the stop /t/, has the firing. For example, if the stop release is very weak, one should
features: STOP, VOICELESS, ALVEOLAR. A stop is identi- not pay attention to the frequency location of the burst, as it
fled when there is strong evidence for the presence of its distinc- will be unreliable. As another example, the formnt transitions
tive features. Our system uses three stages to identify stops. for voiced stops are measured after voicing onset. However, for
First, the phonemes are mapped into a set of distinctive fea- voiceless stops, the same measurements are made during aspi-
tures. Next, the numerical values of the acoustic features are ration, since the transitions are already completed by voicing
mapped into a set of qualitative descriptions, such as high/low onset.

and strong/weak. Finally, a set of relatively independent rules EXPERIMENTAL RESULTS
deduce each distinctive feature from the qualitative descriptions.

Structure of the Rules There are several types of rules in To test the effectiveness of our system we performed a stop

our system, each dealing with a particular transformation of the identification experiment in which the stops are known to be

data. First, there are rules that define the relationship between word-initial and to appear between two vowels. We greatly re-

a phoneme and its distinctive feature values. For example, the duced the complexity of the problem by restricting our infor-

stop /t/ is defined by the following nile: mation to the segment to be identified and its immediate neigh-
boars. In making the measurements, the system was provided
with knowledge of the vowel contexts and with time points that

If the voicing of the stop is voiceless, roughly correspond to the points of closure, release, and voic-
and the place of articulation of the stop is alveolar, ing onset. Refined time-points and other measurements were
then the identity of the stop is It/. determined using the interactive system described earlier.

All of the stops are defined in the same manner. Thus we Data Description
have converted the problem of deducing the identity of a stop Two hundred intervocalic stops were randomly selected from
to one of determining its voicing and place characteristics, a database of 1,000 sentences spoken by 100 speakers, 50 male

When experts read spectrograms they use their visual system and 50 female. One hundred tokens were used for system train-
to extract features in the image. Then, uising a wealth of knowl- ing, and 100 for system testing. The stops for the training and
edge, they combine these features to form phonetic hypotheses. test sets were obtained from 64 speakers; 45 appear in both data

Experts use qualitative descriptions, such as a second formant sets. There was no restriction on the vowels; in fact, some of the

that is low, mid, or high, but rarely specify numeric values. Al- stops preceded a schwa. In order to compare the system's per-

though they have an intuitive sense of what these terms mean, formance to human performance, spectrograms of the training
experts may have difficulty quantifying them reliably, and testing samples were read by five experts.

In order to simulate this process, a set of rules has been System training involves selecting the acoustic features, set-

developed to map the numerical values of the acomstic measure- ting the thresholds for the mapping functions, and formulating
-' ments into qualitative descriptions. The mapping ranges have the rules. Rule development is an iterative process; an initial set

all been hand-selected from histograms. Generally the qualita- of rules is proposed and tested on a suibset of training samples.
tive descriptions are associated with disjoint numerical regions. By examining the output of the system, the experimenter refines

Measurements that fall between regions are associated with both the rules and tests them on other training samples. The process
labels, each with a lower confidence factor, continues until the system behavior is judged to be satisfactory.
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first top 2 express our knowledge succinctly. As stated earlier, rde devel-

condition choice choice opment is an iterative and interactive process. Each iteration

accuracy accurac improves our knowledge and understanding, which is then re-

training human(2) 90 92 flected in the system design and performance. As more and

system 88 95 more data is used for training, statistical techniques can be em-

testing hmnan(3) 92 96 ployed to arrive at a more accurate measurement-to-description

system 84 92 mapping.

While the performance of the system can be improved, the

Tabe 1s Comparison of human d system identifcation perfor- current implementation does not accurately model the problem-
m _ _ _ _ _ _solving procedure used by human experts. This is partly due to

limitations imposed by the structure of the Mycin-based expert
Performance Evaluation and Discussion system that we are using. The goal-directed, backward-chaining

P bleo smma ize s tionad ofou nt. Finferencing of Mycin does not enable the system to evaluate mul-Table 1 summarizes the reslts of our experiments. For the

training data, the system's performance is comparable to that tiple hypothesis at any given time. As a practical matter this
makes the system harder to use and debug. In cont'ast, ex-

of the experts. The performance of the system degraded by 4% perts tend to do forward induction, and to keep a set of possible
when it was confthnted with new data, whereas the experts' candidates. In the future, we plan to implement our rules in
performance on the test data remains high. We attribute the a forward chaining system that better models expert behavior.degradation of performance from training to test data primarily We also intend to evaluate the system more extensively, and to
to the 'lack of experience" of the system; it has not yet learned
all the acoustic features and rules used by the experts. Most of increase the complexity of the task by extending the recognition

the errors are not due to new speakers, and there is no obvious to include impostors and stops in clusters
male/female bis.

Table 2 displays the confusion matrix on the system's first ACKNOWLEDGMENTS
' = . choice identification for the test data. All but one of the errors We would like to thank Caroline Huang, John Pitrelli, and

are in identifying the place of articulation. Ten of the 16 er- Stephanie Seneff for serving as expert spectrogram readers.
* rors involve the VELAR place of articulation. Examination of

the spectrograms reveals that most of the errors made by the
system are judged to be reasonable by experts. For example, REFERENCES
/t/-/k/ confusion usually occurs when the /t/ is rounded, /k/- 11] RA. Cole, A.I. Rdnicky, VW. Zue, and D.R. Reddy, "Speech
/t/ confusion when the /k/ is fronted, and /k/-/p/ confusion as Patterns on Paper," in Perception and Production of Fluent

Speec. R.A. Cole, ed., Hillsdale, NJ: Lawrence Erlbaum Assoc.,
-"when the/k/is back and has a weak release. 1980, pp. 3-50.

, We are encouraged by the initial performance results of our 121 R.A. Cole and V.W. Zue, "Speech as Eyes See It," in Allen.
system. Although the system did not perform as well as hu- tion and Performance VIII, R.S. Nickerson, ed. Hilsdale, NJ:
man experts, our results are comparable to stop recognition Lawrence Erlbaum Assoc., 1980, pp. 475-494.
results reported in the literature on similar tasks. While stops 131 V.W. Zue and R.A. Cole, 'Experiments on Spectrogram Read-
have been extensively studied, most recognition experiments re- ing,' IEEE Conference Proceedings, ICASSP, Washington D.C.,
ported have been on word-initial stops in isolated words and/or 1979, pp. 116-119.
pre-stressed position. The recognit on task closest to our own 14] J. Jobanns.n, J. MacAllister, T. Michalek, and S. Ross, 'ASpeech Spectrogram Expert," IEEE Conference Proceedsmgt,
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that were combined with fuzzy logic and rules, they achieved 151 S.R. Johnson, J.H. Connolly, and E.A. Edmonds, "Spectrogram
recognition rates of 90 92% for stops in continuous speech. Analysis: A Knowledge-Based Approach to Automatic Speech

Recognition," Leicester Polytechnic, Human Computer Inter-
face Research Unit, Report No. 1, 1984.
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Table 21 Stop identification matrix
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Paper presented at the 1985 IEEE-ASSPS Workshop on "Frontiers of Soeech Recoqnition,"
Arden House, Harriman, NY, December 3-6, 1985.

Utilizing Speech-Specific Knowledge in Automatic Speech Recognition 1

Victor W. Zue
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139 USA

In automatic speech recognition, the acoustic signal is the only tangible con-
nection between the talker and the machine. While the signal conveys linguistic
information, it also contains extralinguistic information about such matters as the
identity of the speaker, his or her physiological and psychological states, and the
acoustic environment. I believe that successful speech recognition is possible only
if we can determine ways to extract the linguistic information while discarding ir-
relevant information.

Over the past three decades, we have made slow but steady progress in research-
ing the complex relationship between the underlying linguistic representations of an
utterance and its various acoustic realizations. While decades may pass before we
reach a full understanding, we may still derive near-term benefits from the increased
utilization of speech knowledge in speech recognition algorithms. The benefits can
take the form of better algorithm performance or reduced sensitivity of systems to
variations in speaker and environment.

In my presentation, I will suggest the following:

* Signal representation based on human auditory system may be important in
enhancing phonetic contrasts.

* Performance of pattern recognition algorithms may be improved when aug-
mented with speech knowledge.

* New models of speech recognition utilizing constraints imposed by the lan-
guage may be effective.

9 Optimum utilization of incomplete acoustic-phonetic knowledge in the form
of ignorance modeling may be important.

'Research supported by DARPA contract N00014-82-K-0727, as monitored by the Office of Naval
Research.
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