
-A189 240 METHODOLOGY INVESTIGATION: AUTOMATION OF THE in1
MULTILINGUAL STATIC ANALYSIS TOOL (MSAT)(U) ARMY

AlaJDELECTRONIC PROVING GROUND FORT HUACHUCA AZ
7UCAiIIDKEVAN KARSEN ET AL MR 87 F/G 12/5SN

EhhEEEhhhEhhhEEmhhhhhhE
EhEEohEEEmhhhE
'l.lomomn

1.0.0
IN 111.2

- 11L4 1111

MICROCOPY RESOLUTION TEST CHART

NA' INAL BURAA NAF

.. % 1% %

Olt FILLE O~

oAD NUMBER

qIt TECOM PROJECT NO. 7-CO-R86-EPO-007
N

METHODOLOGY INVESTIGATION

FINAL REPORT

AUTOMATION OF THE

MULTILINGUAL STATIC ANALYSIS TOOL D T IC
(MSAT) ELECTE

MAY 1 9 W7

BY
" D

K. E. VAN KARSEN

Software and Automation Division
Electronic Surveillance and Security Test Directorate

US ARMY ELECTRONIC PROVING GROUND
FORT HUACHUCA, ARIZONA

MARCH 1987

Prepared for:

US Army Test & Evaluation Command
Aberdeen Proving Ground, MD 21005-5055

Approved for Public Release;
distribution unlimited.

87 5 18 14

DISPOSITION INSTRUCTIONS

Destroy this report in accordance with appropriate regulations when no
longer needed. Do not return it to the originator.

DISCLAIMER

Information and data contained in this document are based on input
available at the time of preparation. Because the results may be subject to
change, this document should not be construed to represent the official
position of the U.S. Army Materiel Command unless so stated.

The use of trade names in this report does not constitute an official
indorsement or approval of the use of such commercial hardware or software.
This report may not be cited for purposes of advertisement.

4

Ii
4i

DEPARTMENT OF THE ARMY
HEADQUARTERS, U.S. ARMY TEST AND EVALUATION COMMAND

ABERDEEN PROVING GROUND, MARYLAND 2190 - -

REPLY TO
AT T rNTION OF

AMSTE-TC-M

SUBJECT: Final Report RDTE Methodology Improvement Program, Multilingual Static

Analysis Tool (MSAT) Automation, TECOM Project No. 7-CO-P86-EP3-002

Commander
U.S. Electronic Proving Ground
ATTN: STEEP-MT-DA
Fort Huachuca, Arizona 85613-7110

1. Subject report is approved.

2. TECOM - Providing Soldiers the Decisive Edge.

FOR THE COMMANDER:

2X'

GROVER 1. SHELTON
Chief, Methodology Improvement Division
Directorate for Technology

AccBsio[I For

NTIS CRA&gDTIC TAB ElI

U:'df)noJnced E

Just l .Cd ..riB!
Avjilaty'ity Codes

:,,-.

.-'

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ($Men Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

TRMS No. 7-CO-P86-EP3-O02 A D I k z 41 o
4. TITLE (and Subtitle) 5. TYPE OF REPQRT & PERIOD COVERED

METHODOLOGY INVESTIGATION FINAL REPORT-AUTOMATION
OF MULTI-LINGUAL STATIC ANALYSIS TOOL (MSAT) Final Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) a. CONTRACT OR GRANT NUMBER(*)

Edward L. Anderson

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

US Army Electronic Proving Ground
AREA & WORK UNJ NUMBERS

Fort Huachuca, AZ 85613-7110 1Y678011DE51

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Test and Evaluation Command ,rp,.h..- tno . F7
Attn: AMSTE-TC-M 13. N'UMBER OF PAGES

Aberdeen Proving Ground, MD 21005-5055 46
14. MONITORING AGENCY NAME A ADDRESS(lf different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified
ISa. DECL ASSI FICATION/DOWN GRADING

SCHEDULE

I6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree @#de if necessary and identify by block number)

Software Measurement Software Static Analysis Tool
Software Metrics Software Testing
Software Quality Software Assessment

2M. ABST'RACT (C t am reverse .at It ne esea, mad Idenwtfy by block number)

The Multilingual Static Analysis Tool (MSAT) automates the collection and
reporting of software design and quality characteristics in a multilingual
milieu. The goal of MSAT is to minimize the manual effort associated with the
static software assessment of a target software system's design, structure,
maintainability, modifications, and conformance with documented design and
development standards. This report documents an investigation to enhance the
basic capabilities of MSAT. The development of a prototype prologue processor
which analyzes target software prologues, and the addition of a multiple level

DD IJM3 1473 EDooN OF I NOV6S IS OSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION' OF THIS PAGE (11e Date Entered)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(fWen Dala Enter.o

embedded language capability for MSAT are described.

UNCLASSIF IED
SE-CURITY CLASSIFICATION OF THIS PAGE(Whten Date Enter@d)

TABLE OF CONTENTS

Page

FOREWORD .. v

Paragraph

Number Page

SECTION 1. SUMMARY

1.1 Background ... 1
1.2 Objective .. 1
1.3 Summary of Procedures .. 2
1.4 Summary of Results ... 2
1.5 Analysis ... 3
1.6 Conclusions .. 3
1.7 Recommendations .. 3

SECTION 2. DETAILS OF INVESTIGATION

2.1 Prologue Processor .. 4

2.1.1 Prologue Processing Requirement 4
2.1.2 Prologue Processor Program Development 6
2.1.3 Operational Lessons Learned 7
2.1.4 MSAT Prologue Processor 9

2.2 MSAT Embedded Language Capability 9
2.2.1 Embedded Language Requirement 9
2.2.2 Implementation of Embedded Language Capability 10

SECTION 3. APPENDIXES

A Methodology Investigation Proposal 11
B References ... 19
C Acronyms and Abbreviations 23
D Sample Prologues/Prologue Requirements 27
E Distribution ... 39

4-!
4.I

-. 4.4

'.

(BLANK PAGE)

4
A

ii

~' -a..~, ~*

LIST OF FIGURES

Figure Page

1 Prologue from the Prologue Processor Source 5
2 Summary Report ... 8
3 Sample C31 System Prologue 31
4 TIS Prologue Skeleton .. 32
5 Sample TIS Prologue .. 33
6 MSAT Prologue Template ... 34
7 Proposed TECOM Standard Prologue 35
8 Extract from DoD-STD-2167 36
9 Extract from DoD-STD-1679A 37

10 Prologue (Header) Template per MIL-STD-1644B 38
11 Sample Prologue (Header) from MIL-STD-1644B 39

.?

iii

.4

(BLANK PAGE)

A
A

'A

.pI

A.

A.

-A,

iv

A. A A r - A A ~A AA.A, ./~ ~ *... A A A

FOREWORD

Ultrasystems Defense and Space Systems, Incorporated,

Sierra Vista, Arizona assisted in the preparation of this document
under Contract Number DAEA18-83-C-0003.

. .,;MN

Vr

_ I " . ..-... -. --~ -_ . . _-. , -, -
l

. ", -, : . Y." L, ' w ,,.L

(BLANK PAGE)

• .

' "-'."vi

'WV .

9'

dl. -,, W ,,
"

,€ " ,' " , , - v " ." . ,. " ° - - - .. ,' - . - ' ' ' ,, . . . - - • " % .. ,

'.5. 1. SUMMARY

1.1 Background

MSAT is a software static analysis tool which processes target system
software source code written in a variety of computer languages. The ration-
ale for the development of MSAT and design information were documented in a
previous methodology investigation report [reference 1, appendix B].

The U.S. Army Electronic Proving Ground (USAEPG) and other Installa-
tion/Field Operating Activities (I/FOAs) have been tasked by the U.S. Army
Test and Evaluation Command (TECOM) to perform software testing of systems
containing embedded computer resources. Comprehensive software testing

.5-. includes the dynamic testing of performance and reliability (using instrumen-
tation such as the Test Item Stimulator and Hybrid (hardware/software) Moni-
tor developed by USAEPG). It also includes the static testing of software
quality (using tools like MSAT). Because complex system functionality in
command, control, communications, and intelligence (C31) systems is increas-
ingly provided by software, the task of assessing performance and quality
features of software is becoming a critical factor in the acquisition process.

Static analysis tools are used to examine the actual target system source
code, provide greater visibility of the software design and quantitative
measures of software quality as actually implemented. A key by-product is the
ability to analyze the correctness of documentation with respect to the
implementation. Use of static analysis techniques to support testing of
maintainability issues is potentially highly cost-effective since up to 80
percent of software costs are a-,ociated with maintenance.

. The initial MSAT development produced a software tool to automate the
- . collection and reporting of software design and quality characteristics in a
. multilingual environment. The goal of MSAT is to minimize the manual effort

associated with the static software assessment of a target software system's
design, structure, maintainability, modifications, and conformance with
documented design and development standards. MSAT consists of: (1) a flexi-
ble, language-independent data collection component which extracts and stores
items of interest in a data base management system (DBMS); (2) static analy-
sis (SA)/report generation (RG) components for calculating and presenting
software metrics and reports; and (3) an executive control component which
provides a user-friendly interface.

The current investigation, Automation of the MSAT, was conducted to
improve the methods for automating static software analysis and to augment
MSAT capabilities where feasible. The investigation included examination of

*methods to automatically process prologues (commentary at the beginning of
software modules) ard the demonstration of a prototype prologue processor.
The other major area addressed was the provision of multiple levels of comput-
er languages in the development of MSAT.

1.2 Objective

The objective of this investigation was to improve the automation of
MSAT. Specific goals were:

o Addition of a prologue processor to automatically identify prologues
and provide them to the software analyst.

o Enhancement of the capability to detect and process multiple levels of
embedded computer languages.

1.3 Summary of Procedures

Partial funding of the investigation limited the scope of effort, partic-
ularly the integration of a prologue processor into MSAT. The level of effort
did allow for determining the requirements for a prologue processor and
developing a stand-alone prototype version. The Prologue Processor Program
(PPP) was then used to demonstrate the capabilities by applying the PPP to
several software systems. The results of this work were incorporated into the
future design requirements of MSAT. A technique for automatically identifying
a specific systems' prologues was then demonstrated by developing a special
preprocessor for MSAT prologues.

Remaining effort was used to define and implement the capability for MSAT
to detect and process multiple levels of embedded computer languages. Re-
quirements were developed and incorporated into the MSAT specifications.
These capabilities were then implemented in the initial version of the soft-
ware.

1.4 Summary of Results

The automation of MSAT investigation resulted in the development of a
table-driven prologue processor tool, the PPP. This tool automatically
identifies prologue commentary in software source code, and collects
statistical data on the prologue contents. The PPP was applied to software
from both inhouse tools and tactical systems. Application of the PPP
typically required 2-4 days for experienced personnel to set up the necessary
tables and process target software. Performed manually, up to two months have
been required to extract similar statistics, with less detail obtained.

The MSAT design provides for the eventual inclusion of a prologue proces-
sor. Since funding constraints did not allow integration of the prototype PPP
into MSAT, a minimal capability for processing prologues was provided. When
identified by the analyst, MSAT will examine and extract the size of pro-
logues, store the collected information in the data base, and report the

'information on software quality metrics, standards compliance, and change
analysis reports. Automatic identification of prologues was demonstrated by
developing a special preprocessor which recognized prologues embedded in MSAT

Ssoftware source code.

The effort to provide MSAT with embedded computer language capability
resulted in requirement specifications for high order language (HOL), very HOL
(VHOL), and assembly language processing. These requirements were satisfied
by designing and implementing the capability to process up to three different
source languages for each Computer Software Configuration Item (CSCI) compo-
nent of a target system. Furthermore, each unit of software may contain a
mixture of VHOL, HOL, and assembly source code. (In actuality, three differ-
ent languages can be accommodated regardless of language level. Thus software
composed of two different HOLs and a VHOL or assembly language could be
processed.)

2

1.5 Analysis

Application of the PPP demonstrated the feasibility of automatically
extracting quantitative metrics from software prologues. Automation of
prologue analysis offers a considerable savings in labor compared to manual
analysis methods with cost-effectiveness further improved by the more detailed
statistics collected by the PPP. Additionally, the extensive effort required
for manual analysis is prohibitively expensive for most system tests.

A minimal capability to process prologues was implemented for MSAT.
Extraction and reporting functions provide size information. These capabili-

ties would be greatly improved by incorporating a full-scale prologue proces-
sor as demonstrated by the prototype PPP. Automatic detection of prologues
may be accomplished by system dependent preprocessors, although this requires
a high degree of consistency in the format of the target software prologues.

The multiple level embedded language capability of MSAT allows for three
levels of any combination of three languages. Usually, embedded languages
would be encountered as a combination of VHOL (e.g., DBMS query language) with
HOL or HOL with assembly. Since MSAT would allow both of these situations
within a single unit, all foreseeable embedded language requirements have been
adequately addressed.

1.6 Conclusions

The automation of MSAT effort achieved the objective of the methodology
investigation. Development and use of the PPP demonstrated the feasibility of
adding such a capability to MSAT. Furthermore, the automatic extraction of
prologues was demonstrated by the use of a special purpose preprocessor for
MSAT. The multiple level embedded language capability of MSAT meets the re-
quirements anticipated for future test needs. This capability will allow the
analysis of software which consists of a variety of languages at various
,evels.

1.7 Recommendations

The following are recommended for continuing the course of investigation
outlined in the methedology proposal.

a. Conduct an investigation to develop a prologue processor capability
for MSAT. This would result in an integrated tool which would fully utilize
the user-friendly interface, data base storage and retrieval, and report
generation features of MSAT. The addition of quantitative metrics for soft-
ware prologue analysis would make MSAT a more powerful tool.

b. Initiate the remaining tasks, identified in the proposal for this
investigation, for enhancement of the basic MSAT capability.

4I 3

{m #> [, ,-'. -~~~~~~~~~~~~~ .'''-.-.- '-.- ". ., ..-,-. - . .-. <. .- .->,,<,-1 i..-.>-.- '<

2. DETAILS OF INVESTIGATION

The previous MSAT investigation accomplished the development of a soft-
ware static analysis tool suited to multilingual test environment. This
investigation, the automation of MSAT, showed the feasibility of automating
the analysis of software prologues and resulted in a multiple level embedded
language analysis capability for MSAT. Complete operational and design
features of the PPP and MSAT are contained in the references [references 2 and
3, appendix B].

2.1 Prologue Processor

Software prologues, sometimes referred to as abstracts, consist of
commentary usually preceding a software unit. These comments describe various
features (e.g., purpose, variables used, inputs, outputs) of the software to

assist the maintainer in modifications resulting from enhancements or repairs
of defects. Figure 1 is an example of a typical prologue for a small routine.

The quality of prologue commentary directly affects software maintain-
ability. Static analysis of software prologues attempts to ascertain whether
a target system's software contains sufficient, accurate, and understandable
comments. This analysis includes the measurement of qualitative factors
(e.g., understandability) as well as quantitative metrics (e.g., the presence
of required items). Performed manually, a thorough analysis of prologue
quality may entail a significant amount of effort. For this reason, manual
assessment is seldom performed on other than a small subset of the software
being tested. Teampack's 457 software routines were subjected to a thorough
manual analysis, requiring apprc-imately two months of effort.

2.1.1 Prologue Processing Requirements.

Experience with software development reveals that no standard format
exists for software prologues. Even software written in the same computer
language may exhibit diverse formats with the extreme case being no prologue
at all. This situation is a result of prologues being implemented with

.N. essentially free format comment statements, with no formal syntax (beyond the
delimiters and rules for comments of a particular language), and consequently

'4 no enforcement of standards by compilers. (One could argue that COBOL is an
exception to this statement since some leading commentary is provided for in
the language description. Although rarely, if ever, employed in mission
critical software, this facet of COBOL is mentioned to stimulate thought on
establishing required prologue constructs for other languages.)

Although stringent formats for prologues do not exist, (again with one
known exception, MIL-STD-1644B, which is, however, now obsolete) an examina-
tion of various software development standards and actual software revealed a

considerable amount of commonality of required content, if not format.
Extracts from software development standards and actual prologues and prologue
skeletons are provided in appendix D. An analysis of this information provid-

ed a basis for characterizing the types of elements encountered and determin-
ing the metrics to be collected.

The model developed to describe prologue requirements for automatic
analysis assumes that a target software system contains a set of prologues.

94l 4

- -I-I ---I I- -I-I-I- -I- -

#BEGIN
BEGIN PROLOGUE 1.0 ======= ===== ====

* NAME: SCAN

SSTRUCTURE MID 0: SP.1

PURPOSE: ADVANCE POINTER TO IST DELIMITER CHAR AT OR PAST CURR POSITION

* VER 0 DATE PROGRAMMER ACTION/SDRO

1 FEB 85 S.LEWIS CREATED

* CALLED BY: SCANPROC

* INPUT.
* Name: Source: Description:

* DELSET ARG INDEX TO DELIM
• DELIM COM SPTABLES DELIMITER SETS (BOOLEAN ARRAY)

• BuFFER.PTR COM SPDATA BUFFER,CURRENT POSITION

* OUTPUT:
* Name: Destination: Description:

* PTR COM SPOATA PTR TO 1ST DELIMITER

C (IN SPECIFIED DELSCT)
* CALLS TO: NONE

* INITIAL/ENTRY CONDITIONS: PTR POSITIONED AT OR BEFORE EOL IN BUFFER

DESIGN/ALGORITHM:

* IF DELSET > 0 THEN !OTHERWISE NO SCAN
* DO wHILE PTR NOT AT DELIMITER
* PTR=PTR+T

SEND DO D eLSET XND ASCII VXLUE OF CHARACTER

• ENDIF POINTED TO IN BUFFER ARE USED TO

RTR INDEX CHAR TYPE (DELIMITER=.TRUE.)
* RETURN

* RETURN CONDITION: PTR POSITIONED AT 1ST DELIMITER CHAR AT OR PAST

* INITIAL POSITION

* ERRORS: NONE

, SPECIAL CHARACTERISTICS: EOL MUST ALLWAYS BE A DELIMITER.

* ZERO OR NEGATIVE DELSET RESULTS IN NO SCANNING.
• SCAN WILL NOT ADVANCE PTR IF IT INITIALLY POINTS TO A DELIMITER.
------------------------------ END PROLOGUE

aEND

Figure 1. Prologue from the Prologue Processor Source

5

N~'"~ 5 *,*.~f ,'

Each prologue contains consistently formatted items used to describe certain
features of the software source. Associated with each item (e.g., the
"purpose" section) is one or more lines of text composed of symbols. It is
common practice to identify the text of a particular item by keyword or
position with respect to other items. It is equally apparent that extensive
use is made of symbols which improve the style and appearance, but which do
not contribute otherwise to an understanding of the comments. This material
was termed trim; an example is the use of asterisks to box in related text.
Other prologue elements which must be considered are non-comment source code
embedded within prologues (e.g., data declarations) and material which is best
ignored when analyzing prologues (e.g., text which occurs outside the
established boundary of a prologue).

A hierarchical list of these prologue elements which influenced the
design of the automated prologue processor is as follows:

System (or file). A collection of software source code containing one or
more units with prologues and related statements. Software units may be
grouped by files, representing higher level components which form the software
system.

Prologues. Prologues are contiguous sequences of elements delimited by a
prologue beginning/ending pair. Prologues contain items and other symbols.

Items. Items are categories of required or optional information. A
particular item may occur any number of times within a given prologue. A

* prologue is considered to contain a sequence of items delimited by ITEM
STARTs.

Lines. A line consists of embedded source code or a comment containing
any number of symbols (TEXT, TRIM, or ITEM START) followed by an end-of-line
symbol.

SYzbols. Symbols are associated with TEXT, TRIM, or ITEM START informa-
tion. Other symbols delimit lines, consist of special characters (e.g.,
punctuation), etc.

2.1.2 Prologue Processor Program Development.

The PPP was produced to demonstrate the feasibility of developing an
automated static software analysis tool capability for prologues. The main
focus of the design was to develop a technique to process prologues and
identify the required prologue items. Less emphasis was placed on software to
extract prologues, enter syntax tables, and to store or print the output
because these areas would change considerably when the tool was integrated
with MSAT.

Design of the PPP had to take into consideration the lack of a formal
grammar to describe prologues. Successful automatic processing is dependent
on the developer of the target software having followed a fairly consistent
format in generating prologues. Most static analysis tools have the advantage
of processing syntactically correct source code; a prologue processor on the
other had is likely to encounter considerable inconsistencies compared to the
stringent rules enforced by language compilers.

6

The result of these considerations was a table-driven tool which can be
modified to process a wide range of prologue formats and tolerate the incon-
sistencies introduced by different programmers. The PPP is essentially a
context-sensitive parser with a flexible scanner. It recognizes string
patterns (tokens or symbols) based on user defined rules and invokes action
routines that accumulate metrics and produce reports. The actions to be taken
on encountering a given token can be varied according to the specific user
defined state which is active.

To facilitate the application of the PPP, a trace feature was incorporat-
ed to provide a detailed history of a run. Information about the input,
decision table row, action routine, and token matching is available as an aid
to developing new tables. Another feature controlled by the decision table is
a reduced output which is essentially a translation of the original prologue
symbols into the metasymbols defined by the prologue model (i.e., TEXT, TRIM,
etc.).

An example of the statistics which may be collected with the PPP is shown
in figure 2. Statistics from processing a group of prologues are summarized
by the quantity (lines and symbols) of text found: within items (item-text),
outside of recognized items (unassociated text), and total text symbols
(prologue-total). Deviations among these metrics can alert the analyst to
potential problems in processing or in prologue quality. Of greater impor-
tance is the number of items with text (missing items usually are representa-
tive of a defect) and items without text (usually caused by a prologue tem-
plate which is incompletely filled out). Other reports produced by the PPP
and detailed explanations of sample processing are provided in the PPP docu-
mentation [reference 2, appendix B].

2.1.3 Operational Lessons Learned.

This investigation revealed that automation of the qualitative features
of prologues is not practical with current technology, however it is feasible
to automate the collection of quantitative metrics. This approach provides
statistics on all of the software units of a system. Summary results can be
used directly in test reporting; individual unit metrics can be used to
identify a sample of units to be examined for qualitative features. Examining
the metrics provided by an automated tool also offers the potential of detect-
ing patterns in the implementation. This could lead to the discovery of
defects without having to perform an extensive manual analysis.

The PPP was successfully applied to various software systems. The source
analyzed included: the PPP itself, Test Item Stimulator, portions of MSAT,
Trailblazer, and FORTRAN code analysis tool. Definition and debugging of the
decision tables typically required 2-4 days effort. Although additional
effort is required to assess qualitative aspects of the target prologues, a
considerable improvement in cost-effectiveness is realized over manual meth-
ods. The ease in handling idiosyncrasies among the prologues analyzed depends
upon the characteristics of the differences and the skill of the user in
recognizing common features. This factor should be considered when developing
a prologue processor for MSAT. An interactive design should be provided to
allow the analyst to compensate for anomalous prologue structures.

7

9

A

9-

lnIn

Iu -
9--z

-3P.

00
-~ km

I.- - (-i
-94

2.1.4 MSAT Prologue Processor.

Funding constraints prevented the integration of a prologue processor
with MSAT. Provision was made for the eventual inclusion of a prologue
processor function and a minimal capability was included in the MSAT develop-
ment. The current MSAT tool will pass manually identified prologue text to a
skeleton prologue processor routine. This routine counts the quantity of
prologue commentary (excluding blank lines). This information is then stored
in a data base for later retrieval and report processing. Prologue text is
also stored, and the advanced analyst has the capability to retrieve and
review the original material.

Due to variations in the construction of prologues, a general purpose
routine to automatically identify and extract prologue text was not developed.
Further investigation may result in an algorithm that would be successful in
identifying the most common forms of prologues. For special cases, at least,
it is feasible to automatically identify prologues. This ability was demon-
strated by modifying an MSAT preprocessor to recognize the unique start and
end symbols contained in the MSAT source code itself. Although this technique
could be used on other target software, a more desirable method would be to
develop a general purpose recognizer with externalized rules.

2.2 MSAT Embedded Language Capability

The purpose of MSAT is to automate the collection of software design andquality characteristics from the software source code of a target system.

MSAT utilizes a syntax-directed data collection (DC) function to extract
information of interest for storage in the MSAT data base (MSDB). Prior to DC
processing, a source instrumentation (SI) function preprocesses the target
source code to automatically (where possible) identify items such as the
beginning and ending of units and internal procedures, and language context
switches. Following collection of the data, various SA and RG functions are
available for analyzing and reporting or the target system software.

* MSAT was developed with multilingual capabilities; the variety of comput-
er languages employed by the systems tested by the USAEPG required a tool with
flexible language processing capability. The modular SI design and table-
driven DC satisfied this requirement by providing a tool which could be con-figured for the variation in computer languages among the target systems.

2.2.1 Embedded Language Requirement.

While the original multilingual requirement provided the flexibility to
handle different software languages from one application to the next, the
proliferation of computers in target systems imposed additional language
flexibility requirements. Instead of a single computer with software imple-
mented in one language, multiprocessor systems were being designed, sometimes
with a different language used for each processor. Furthermore, with the
trend toward use of HOLs, many systems which formerly would have been imple-
mented entirely in assembly language were being developed with a mixture of
HOL and assembly.

None of these factors would seriously affect the ability of MSAT to
analyze a given system since, as a workaround, each language could be proces-
sed as a separate system by MSAT. However, this workaround precludes the

*9

% N % .A

generation of summary reports with consolidated information on all of the
software in a system. Additional complications would arise from the use of
multiple languages within a single software unit. Here the only alternative
would be for the analyst to instruct MSAT to "skip" processing of the lines of
source code of the secondary language.

Besides assembly language embedded within a HOL, another trend is toward
the use of embedded VHOL (e.g., DBMS query language statements). Assuming
that HOL is the primary language of implementation, the following combinations

of embedded languages are most likely:

1. HOL with separate assembly language units.

2. HOL units with embedded assembly statements.

3. HOL units with embedded VHOL statements.

2.2.2 Implementation of Embedded Language Capability.

The embedded language requirements were identified early enough in the
MSAT development to allow changes to incorporate the necessary flexibility in
the initial version of the tool. Specifying a multiple language capability
within a target system satisfied the first case above, where different lan-
guages may appear in separate units of a software component. The second andthird cases involved an extension of this capability to allow language context

switches wthin a unit. Fortunately, this capability was allowed for early in
the development since the changes required affected every major component to a
degree.

The multiple level, multiple language requirements were addressed by
arbitrarily assigning a language level (VHOL, HOL, Assembly) for each of up to
three languages. The language level associated with each language is arbi-
trary in the sense that no special processing is performed which is unique to
the assigned level. This permits language combinations other than those
described above; for example, two HOLs could be accommodated by designating
one as a HOL and the other as VHOL (or assembly). Thus any combination of
three languages may be analyzed.

The situation of target systems employing multiple processors with
multiple languages was provided for by defining target system software as
consisting of one or more CSCIs, each of which may use up to three different
languages, independent of the languages in other CSCIs. This capability was
extended down the software hierarchy to allow single units to contain any
mixture of the three languages specified for the CSCI.

10

on

APPENDIX A

METHODOLOGY INVESTIGATION PROPOSAL

I,.

II-.

- j 11

.dJ

- - - - - - - -

(BLANK PAGE)

12

EXHIBIT P-16 (PART I) Date: December 1984

Production Engineering Measures (PEM) Project

RCS DRCMT-835

I. Project Number: 216 2035 (TECOM) 2. Fiscal Code: 5197 3. Cost:

$350k

4. Project Title: Automation of the Multilingual Static Analysis Tool

(MSAT).

5. Name and location of facility/contractor: US Army Electronic Proving

Ground, STEEP-MT-DA, Fort Huachuca, AZ 85613-7110.

6. General Objective: Improvement of manufacturing processes, techniques and

equipment.

7. Problem: The Army and DOD are continuing to develop, procure and field

automated command, control, communications, and intelligence (C31) systems.

These automated systems utilize different processors and software languages.

MSAT has been developed to perform a static analysis of production software.

Additional capabilities are required in MSAT to reduce the time and manpower

required to add additional software metrics which are currently determined

manually.

8. Proposed Solution: This task will imprcve the necessary methods for auto-

mating static software analysis. Additional MSAT capabilities will be spec-

ified, designed, tested, and documented to reduce the time and effort to

prepare for and perform static software analysis of production system

software.

9. Justification: Two key issues in the production of software are software

maintainability and configuration management. Both of these tasks are handled

most efficiently through the use of automated tools such as MSAT. Preparation

to use the MSAT on production software requires up to 3 man-months. The goal

of this investigation is to reduce this time by a factor of 2.

10. Benefits:

U 13

a. Quantifiable benefits (S/I): Basis: This task will reduce

the number of man-hours required to prepare MSAT for use by a factor of two,

thus improving production testing capability.

b. Non-quantifiable benefits: This effort facilitates the evaluation of

performance test results by exposing the significance of software changes to

evaluators with the effect of reducing decision risks.

11. Deliverables:

a. Reports identifying additional automated capabilities required in

MSAT.

b. MSAT software in both hardcopy and machine readable form.

c. Updated maintenance and user's manuals.

d. Report of methods and tool verification.

12. Funding Profile and Scheduled Technical Completion Dates:

Fiscal Year $Costs, (XK) Month-Year

FY 86 $130K Sep 86

FY 87 $120K Sep 87

FY 88 $100K Sep 88

TOTAL $350K

13. End Items Supported:

a. Primary - Effort will support the production testing of software on

all automated systems.

b. Secondary - The quality of the software directly affects the perfor-

mance, maintainability and supportability of all automated system.

14. Key Milestone Dates:

9 14

cz~~z &_

a. PEP Completion for primary end items - N/A

b. MMT Completion - Sep 89

c. Primary End Item TC - N/A

d. Start of Full Scale Production - N/A

e. Preliminary Design Criteria for Facility - N/A

15. Related MMT and Feasibility Demonstration Efforts:

a. Project Nos. 0855071, subtask 113

b. Initiation Date Feb 84

c. Completion Date Sep 85

A'.'

16. Plan for Implementation of Efforts' Results:

a. When - Limited capability FY 86/87; complete capability FY 88.

b. Where USAEPG

c. How - Further automation of the MSAT will be used to decrease

manpower and time requirements.

d. Who - TECOM field activities responsible for testing and evaluating

software and software support centers responsible for software development and

maintenance.

e. Cost - No additional costs are anticipated.

17. Energy Resource impact Statement: This investigation does not involve

resources beyond those for study, analysis and computer program generation.

Therefore, no impact is expected on energy resources.

- 18. Project Engineer:

a. Name - Richard G. Jacques.

b. Organization - US Army Electronic Proving Ground, STEEP-MT-DA, Fort

Huachuca, AZ 85613-7110.

c. Phone Numbers, AUTOVON 879-1870 Commercial (602)-538-1870

5.15

EXHIBIT P-16 (PART II) Date: December 1984

Engineering Measures (PEM) Project

RCS DRCMT-835

Project Number: 216 3035 Fiscal Code: 5197

Project Title: Automation of the Multilingual Static Analysis Tool (MSAT)

19. Project Cost Update:

a. Requested at Budget: $350K, Requested at Apportionment: $350k.

20. Scope of Work:

a. FY 86. Add a prologue processor so that prologues are automatically

identified and provided to the analyst. Enhance analysis capabilities to

detect and process multiple levels of embedded computer language. Update

documentation.

b. FY 87. Provide a library of language "table entries" for MSAT so

that the definition of table entries for a language/computer application does

not have to be made during the preparation of MSAT for usage. Update

documentation.

c. FY 88. Automate the remaining software quality metrics and

statistical analysis of the resulting data. Update documentation.

21. Time Phasing:

Initiation Completion

FY Milestones (Month-Year) (Month-Year)

86 Add prologue processor Oct 85 Sep 86

and embedded language

capability.

16

87 Library of language Oct 86 Sep 87
capabilities.

88 Automation of final Oct 87 Sep 88

software quality metrics.

22. Detailed Cost Summary:

a. Project Costs (use constant dollars)

Government Contractor

Cost Type GOCO Industry Total

Direct Material

Engineering Labor $50K $225K $275K

Equipment

Test & Evaluation

(MACI Projects Only)

Overhead

Other Factors 20K 40K 60K

Profit or Fee 15K 15K

TOTAL $70K $280K $350K

TOTAL (Inflated Cost) $70K $280K S350K

Percent of total cost 20% 80 100

01

~17

b. Fiscal Plan:

Prior Totals Budget Future

Mfg RDTE FY 84 FY 85 FY __ FY _

Authorized $11OK $239K____ ____

* Project Number 7-CO-R85-EPO-007

PA ,A

Authorized None____ ____ ____

Obligated _____ ___ ___ ___

Expended___________ _____ _ ___

Additional implementation costs:

Costs for pollution abatement or OSHA:

18

APPENDIX B

REFERENCES

19

(BLANK PAGE)

20

MIN~

REFERENCES

1. Methodology Investigation Final Report Multilingual Static Analysis Tool
(MSAT), dated November 1985. TECOM Project No. 7-CO-R85-EPO-007. U.S.
Army Electronic Proving Ground, Fort Huachuca, Arizona 85613-7110.

2. Technical User's Manual for Prologue Processor Program (PPP), I August
1986. Document no. TUM-01-01. U.S. Army Electronic Proving Ground, Fort

N, Huachuca, Arizona 85613-7110.

3. Software Product Specification Multilingual Static Analysis Tool (MSAT),
dated 24 April 1986. Document no. SPS-02-00. U.S. Army Electronic
Proving Ground, Fort Huachuca, Arizona 85613-7110.

"21

N6 P
'4j.

'p

i

(BLANK PAGE)

pe..2
N.:

.1

APPENDIX C

ACRONYMS AND ABBREVIATIONS

1 2

Wl 23

(BLANK PAGE)

24

ize- . .- ~ . .'*~.* -'

ACRONYMS AND ABBREVIATIONS
ALP i. Automated Language Processing
AMC U.S. Army Materiel Command
ASM Assembly
C31 Command, Control, Communications, and intelligence
COBOL Common Business Oriented LanguageI. CSCI Computer Software Configuration Item
DARCOM U.S. Army Materiel Development and Readiness Command (now AMC)
DBMS Data Base Management System
DC Data Collection
DoD Department of Defense
FORTRAN Formula Translation
HOL High-Order Language
I/FOA........ Installation/Field Operating Activity
MSAT Multilingual Static Analysis Tool
MSDB MSAT Data Base
PPP Prologue Processor Program
RG Report Generation
SA Static Analysis
SI Source Instrumentation
TECOM U.S. Army Test and Evaluation Command
USAEPG U.S. Army Electronic Proving Ground
VHOL Very High Order Language

425

-4N

-4z

(BLNKPAGE)

.'. .

5.

;QIW 26

.

APPENDIX D

SAMPLE PROLOGUES/PROLOGUE REQUIREMENTS

'12

"A,.

.N.

.4.-

r 27

• -:-.

* (BLANK PAGE)

, Y

94l 28

1.0 Scope. Following (figures 3-7) are examples of prologues from test
tools, C31 systems, and prologue templates from various sources. Extracts
from software development standards are included to illustrate the items
typically required (see figures 8-11).

04 29

(BLANK PAGE)

30i ' ' ' " " ','' " ' " ' - "- - 4 .'- -~eC .,': -: .. 'C -, '- ''4 , " ""'' " " ' "

PROGRAM NAME : CALCULATE ANGLE CPM
MODULE NAME : DANGLE
MODULE TAG : ED0201

PROGRAMER'S NAME : JEFFREY VINSON
DATE(FIRST CODED) : 1 AUG 83
DATE(LAST REVISION)

* PROGRAMER
ii.. REASON FOR CHANGE:

MODULE FUNCTION: THIS MODULE CALCULATES AN ANGLE FROM THE SIGNAL STRENGTHS
OF THE NIR BEACON. A TWO'S COMPLEMENT IS PERFORMED IF THE ANGLE IS
NEGATIVE. IF THE SHUTTER IS CLOSED, A SHUTTER FACTOR (1/4 OF THE ANGLE)
IS SUBTRACTED DUE TO NON-LINEARARITIES IN THE HARDWARE.

INPUT TO MODULE : CAMERA (CALLING PARAMETER),
CLOSED,
SHUTTER,
PEAKI (CALLING PARAMETER),
PEAK2 (CALLING PARAMETER)

OUTPUT FROM MODULE : ANGLE (RETURNED TO CALLING MODULE)
MODULES CALLED : DIVIDE CPM (UDIVID)
CALLING MODULES : READ ANGLE CPM (DREADA)
CRITICAL TIMING PATH : N/A
MISCELLANEOUS : N/A
ACCURACY REQUIREMENTS : N/A
ERROR RECOVERY : N/A
LOCAL VARIABLES

--- I
DATA ITEM FORMAT DESCRIPTION

--- I

DF-TA ADDRESS DIFFERENC' OF PEAK VALUES
SWJUTER FACTOR ADDRESS 1/4 OF THE RESULTANT ANGLE
SUM ADDRESS SUM OF PEAK VALUES

Figure 3. Sample C31 System Prologue

31 **,***3]

C.-C

CD-

L)

>< < - - C-)
uj C - u-

C-) C-)

CD-

CD' C-wC C-)
CD C-)

C-3J C-cm
D 2- C.3 C)

C...) - CC C.-.j < CL V C

C-)

C-)= C - D

L- - JC jUL L-LU ciuC- i U u C-)u

Fign) TI P-J Z .. eto

C...)C ~ ~ C 32

C-) N -

LiL

LLLi

LiL

LLLi

Li L)

L) Li
>< LUiL LL)

Li > c
C-) Lei <0L (C

*01 - C:)
Wi LaJLL

tj CDLi L j L
Li < =iJ A

(j Li V)C) an- L*O >- Leti CD >< >-<W n
Ui CD 0 LiJ cf liCV XL) =i -j -- j =I A' -

V) -j c(0 CI m Li ~
>C cc CD Li

Lij W~i Cd L L e
LiJ =: Li L

Li 0~- Li.Li*~C- wi i iLLi~~ 0) L

Loi 0 Cj CC X -- -i -j
Ui = C) cc ccI L

Li I-J LL 0 I 0 -i L X~-
L i 0> (> ~ . c ~ > - - 0 0L i i i I A Lij

Li ~ ~ ~ ~ ~ ~ ~ c Li < 0 .i e c c izJj L ~ L
C-) (c/ .J ~ 0 - c o ~ 0 i~c

Li LiJ~i Li (t C U i UL U U0 (j LLi Li ii ~ 0 LiL.)

Fiur Li Sapl Li' Prologue

Li * Li Lii~33

STANDARD PROLOGUE

* * * * * * ** ** ** *PROLOGUE******************

** NAME: Mneumonic - Long Descriptive Title •
- 4 * .

* *.

** STRUCTURE ID #: Number which shows hierarchical position *

** PURPOSE: Single SENTENCE functional overview *
* * .

** CALLING SEQUENCE: Call Mneumonic (Par 1, Par 2..., ParN) *

•* CALLS TO: List of units (subroutines, etc.) called *
* and 1 line description of their function *

• SUBA READ INPUT VARIABLES *

** INPUTS: VARIABLE NAME - BRIEF DESCRIPTION *

Iv * .

•* OUTPUTS: VARIABLE NAME - BRIEF DESCRIPTION *S* *

** FILES: FILE NAME - BRIEF DESCRIPTION & USE *_ * *

•* ALGORITHM: Description of unit's Function *
* (could be PDL for unit -) *

** ERRORS: Description of error conditions which may occur *
* in this unit, error flags, their values and *
*- significance. ** .

SPECIAL CHARACTERISTICS: Any abnormal or special functions *
* of this program; warnings, notes. *

•* HISTORY: *

• DATE PROGRAMMER ACTION VERSION # SDR *
• NAME GENERATED *

* 14 June 84 E. Anderson Created 1.0 --- *

•* * * ** * * * * * * * * ** ** * ** ** * * *** * ** .* ***...

Figure 6. MSAT Prologue Template

34

* TECOM 'ROLOGUF

* TITLE

* PURPOSE

* INPUTS *

* OUTPUTS'

* USAGE *

* REOUIRED EXTERNALS/FILES"

* DESCRIPTION

LIMITATIONS

AUTHOR(q)

•DATE

HISTORY/MODIFICATIONS

Figure 7.Proposed TECM Standard Prologue

35

* -... .. - - -. . -" "--.

30.3.11 Comments. Comments shall be set off from the executable source code
in a uniform manner. Before each Unit's executable section, a prologue
section shall describe the following details:

a. The Unit's purpose and how it works.

. b. Functions, performance requirements, and external interfaces of the
CSCI that the Unit helps implement.

c. Other Units (subroutines, procedures, functions) called and the
calling sequence.

d. Inputs and outputs, including data files referenced during Unit entry
or execution. For each referenced file, the name ot the file, usage
(input, output, or both), and brief summary of the purpose for
referencing the tile.

e. Use of global and local variables and, if applicable, registers and
memory locations.

f. The identification of special tasks that are internally defined, and
the size/structure of which are based on external requirements.

g. The programming department or section responsible for the Unit.

h. Date of creation of the Unit.

i. Date of latest revision, revision number, problem report number and
title associated with revision.

Figure 8. Extract from DoD-STD-2167.

36

,

5.4.8 Abstracts. Each hierarchical component (i.e., program, subprogram,
module, and unit) shall include at the beginning of the executable code a
textual description of its inputs, outputs, and function or task; and a list
of other components called. In addition to general explanations, to assist
understanding, precise references to the appropriate statement labels and
data-names shall be included in each module and unit descriptive abstract.
The descriptive abstract shall define the allowed and expected range of values
for all inputs and shall define the allowed and expected range of values for
all outputs. A history of the original and updating programmer names, dates,
and reasons for all changes, the activity or commercial company name, and the
activity or company division code or billet identifier shall be included.
Additionally, the abstract shall include a description of any transportability
constraints.

.q

Figure 9. Extract from DoD-STD-1679A

4 .- 17

2 .
" . ~~~~~~~~ ~ ~ f n7- ' •.,.•° .,... .

*Mfl: MANAGEMENT INFORMATION
DEVICE'fn XX~XXXXXX RID: XX..XX.XX.Xx.)c(-XxA

" FILENAME: KKXXXXXXXXXX LANGUAGE: XXXXXOXX
" LOAD MODUL:XKK.XXXXXXXX SYSTEM: X~xxxxx A

A COMPTL.ER: Xxxxxxxxxxxx ASSEMBLER:

TRNR CPU: 7XJ.OOOC CPU TYPE: DLX AX

* ITRTN RATE:XMCX MODE: x(xxxxxxKX Ax

A LINK EDITR:.

*PUO2 PURPOSE
TA x 3()x x XXXXX XXXXXXXXXX3 f XXCXXXXX XXXXX~(J~J ~ YTXY A

A xxxxxxxxxx Axxxxxx

-ax x x x x ------ - -

*TIO2 TECHNICAL INFORMATION

*XX XXXXXXXXXXXCXX XXXX)XXXXX CcLICccXXXX)O CCXXXXXXX)OLXXXXXXXXX A

* PAO02 PROGRAM ATTRIBUTESA
A LOGICAL RECORDS: mXXXX GENERAL COMMENTS: X)D=X

*A FORTRAN LINES: XXXXXX NON-FORTRAN T.TNES: XXXD
A EXECUTABLE FTN SThTS: =V=XX NON-EXEC FORTRAN STMTS: 77XJX=

*SU01 SUBPROGRAM~ USAGEA
A NAME NAME NAME NAME NAME NAME A

A XXXxx XXXX = IC XXKXXXX xXXXXX XTXXXX KXXXX XXXXXXXX *

A XOY- XXXXXXXX XXXXXXX lxx(Jx x flJXJJQ xm2c7J(xJ A

*H2CHANGE HISTORYA
A REV DATE SOF"TWARE ANALYST EMPLOYERA

A DESCRIPTION OF CHANGEA

A nX=X~J XXCXXXXXXXXXUCUULOCUOUUUUGDLOUU(C A

A ~~ xr '.XXXXX~oxx xx xxxxxmmxcjc jc lux xKx ~ xx x A

:(Xx) XXXXXXXXX ~XXXXXXXXX XXXXXXXX XXXXXXX A

* A xxx COxxYxYxxxxxxXXXXXXXXXXXXXXXrXXXX xxx2OO(x A

XX CMMYYXXXXXXXXXXXXXXXX xXXX(XXXX XXJ XXXXXXXXxxxxxJ(xxxxx A

X XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX)CXXXX XXXXXXXXXXXXXXC A

)(Dc xXXXXXXXXCXXXXYCaXXJXXXXtXA CX xxXXXXXXxXXXXXXXXXXXXX A

XXXOXXXXXX)X XXXXXX-YXXXXXXXXXLUXXXXYLXXXXXXYXXXO A

Kx o a Xy XXXX XXXXXXL XXC(XX XXXXXXO)CXXXXXOLXXXXXXX A

ULU-XMXXfXXXXYXXXXXXXXXXXXXXXXXx"rxxx LXXXXXXX(*

Figure 10. Prologue Template per MIL-STD-1644B

I

*MI03 MANAGEMENT INFORMATION *TVEL0010
* DEVICE ID:99X999D HID: EM.02.01.BA-O1 *TVELOO20

* FILENAME: TVELBA.FA1 LANGUAGE: FORTRAN *TVEL0030
* LOAD MODUL:FLT IND SYSTEM: EOM *TVEL0040I * COMPILER: VIIO R04-O0 ASSEMBLER: N/A *TVELOO5O

TRNR CPU: FLIGHT CPU TYPE: P/E 3240 *TVELOO60
ITRTN RATE:30 IPS MODE: OP/DE/DY *TVFLOO70

* LINK RDTR:LINK ROO-00 *TVELOO8O
* *TVELO090

*PU02 PURPOSE *TVELOI10

* THIS ROUTINE COMPUTES THE ANGLE OF ATTACK AND SIDESLIP ANGLE *TVEL0120
STOGETHER WITH THE RATE OF CHANGE OF BOTH AOA AND SIDESLIP *TVELO13O
* *T7ELO14O

*T102 TECHNICAL INFORMATION *TVEL0160

* FILE FLTEXC.FA3 REQUIRED FOR INCLUDE *TVELO170
* COMPILER OPTIONS: H X *TVELOI8O
t *TVELO19O

*PAO2 PROGRAM ATTRIBUTES *TVEL0210

*_ LOGICAL RECORDS: 250 GENERAL COMMENTS: 60 *TVEL0220
* FORTRAN LINES: 120 NON-FORTRAN LINES: 0 *TVEL0230

* EXECUTABLE FTN STMTS: -30 NON-EXEC FORTRAN STMTS: 90 *TVEL0240
*TVEL0250

*SUOI SUBPROGRAM USAGE *TVEL0270

NAME NAME NAME NAME NAME NAME *TVEL0280

" * AEROANG TVELIA *TVFL0290
* *TWEL0300

p% * *************R************************** *** ****************~*******AT*ELO**10

*CH02 CHANGE HISTORY *TVEL0320

* REV DATE SOFTWARE ANALYST EMPLOYER *TVEL0330
DESCRIPTION OF CHANGE *Tr;FL0340

* 00 06NOV80 HARRY D. CODER MIRACLE TRAINERS, INC. *T'VELO350
INITIAL IMPLEMENTATION OF SOURCE MODULE *Ar1'1L03bO

* 01 14FEB81 M. Y. VALENTINE MIRACLE TRAINERS, INC. *TVEL037O
INCORPORATE LIMIT CHECKING ON EXCURSIONS OF INPUT *TVEL038O
VARTABLES. *T;EL0390

*TVELO400

Figure 11. Sample Prologue (Header) from MIL-STD-1644B

39

(BLANK PAGE)

* A 40

APPENDIX L

DISTRIBUTION

44
_,.

p

~p. ~*

'A

.~

~ '~-.

A,.-

A,.

(BLANK PAGE)

N.,.

a...
a.--.

a-i.-,.,

-I,.-

*a A-.

An

* -a.
.J.

- -a.

N..',
-a

a",...
a.-a.

A-

-p.-.

a',

-a

N-

-a

42

A ~ a
4 ~

a'aV~~''~ -, 'ta*;.~~~>* .,.,-aa r~.,. :~..Af*.t.*A ,.~"

'a..

"a DISTRIBUTION LIST

Number
Addressee of Copies

N Commander
U.S. Army Test and Evaluation Command

* ATTN: AMSTE-TC-M 3
AMSTE-TO 2
AMSTE-EV-S I
AMSTE-TE 6

Aberdeen Proving Ground, MD 2100b-5055

Commander
Defense Technical Information Center
ATTN: DTIC-DDR 2

,' Cameron Station
Alexandria, VA 22314-5000

Commander
U.S. Army Combat Systems Test Activity
ATTN: STECS-DA-M 2
Aberdeen Proving Ground, MD 21005-5000

Commander
U.S. Army Yuma Proving Ground
ATTN: STEYP-MSA 2
Yuma, AZ 85634-5000

Commander
U.S. Army Jefferson Proving Ground
ATTN: STEJP-TD-E 1
Madison, IN 47250-5000

Commander
U.S. Army Dugway Proving Ground
ATTN: STEDP-PO-P 1
Dugway, UT 84022-5000

Commander

U.S. Army Cold Regions Test Center

ATTN: STECR-TM 1
APO Seattle, WA 98733-5000

Commander
U.S. Army Electronic Proving Ground
ATTN: STEEP-TM-AC 4
Fort Huachuca, AZ 85613-7110

Commander
U.S. Army Tropic Test Center
ATTN: STETC-TD-AB 1
APO Miami, FL 34004-5000

43

Number
Addressee of copies

Commander
U.S. Army White Sands Missile Range
ATTN: STEWS-TE-PY 4

STEWS-TE-O1
STEWS-TE-M 1
STEWS-TE-A 1

White Sands Missile Range, NM 88002-5000

44

(BLANK PAGE)

44

Vfl

fl'TWWU mnrnwrrrrrrrrry-rrrTr...Trr.~ - -
80

.4

.4.

* (BLANK PAGE)

4'

*8

.4

4'
4'

~8

46

C.~ .4 ~ .9

R

.v.

**

S.

S~.

4,'

- q w 'w u~ v~- 'v * :v ~q
Vs.
VV ~A~W- ~' '

