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R87-957333-1 

The Unsteady Flow in the Far Field of an Isolated Blade Row 

SUMMARY 

This report describes a theoretical investigation of the unsteady flow in the far field 
of an isolated two-dimensional blade row. In particular, analytic far-field solutions 
are derived for cascades operating at subsonic, transonic and supersonic inlet and exit 
Mach numbers. These solutions describe the velocity potential fluctuations associated 
with irrotational pressure (acoustic) disturbances, rotational velocity disturbances and 
the vorticity shed from blade trailing edges and convected along blade wakes. They 
thus provide the inlet and exit boundary-condition information needed for a proper 
numerical resolution of the unsteady flow through the cascade. As part of this investi- 
gation a convenient method for classifying unsteady excitations based on the acoustic 

response in the far field is developed and analytical results are presented to illustrate 
subsonic and supersonic far-field acoustic response behavior. Numerical calculations 
have also been carried out for unsteady flows through subsonic compressor-type cas- 
cades to demonstrate the results of matching analytic far-field to numerical near-field 
solutions and, to some extent, the impact of unsteady far-field behavior on the aero- 
dynamic response at a vibrating blade surface. 
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1. INTRODUCTION 

There is an ongoing need to develop more complete unsteady aerodynamic pre- 
diction methods for aeroelastic and aeroacoustic applications. Currently, linearized 
unsteady aerodynamic analyses in which unsteady fluctuations are regarded as small- 
amplitude perturbations of a nonuniform isentropic and irrotational mean or steady 
flow are receiving considerable attention (for recent reviews see Atassi 1987 and Ver- 
don 1987a,b), particularly for turbomachinery aeroelastic applications (Atassi &: Akai 
1980; Caruthers 1981; Whitehead 1982; Verdon & Caspar 1982, 1984). In this situation 
the unsteady flow is excited by prescribed small-amplitude temporally and spatially pe- 
riodic structural and external aerodynamic disturbances, and the complex amplitudes 
of the dependent linearized unsteady flow variables are governed by a system of lin- 
ear time-independent equations which contain variable coefficients that depend on the 
underlying mean flow. 

As a consequence of this linearization, boundary conditions at moving solid surfaces 
and jump conditions at moving wakes and shocks can be imposed at the mean positions 
of such surfaces. Also, for turbomachinery applications the required solution domain 
can be limited to a single extended blade-passage region. Moreover, analytical far-field 
solutions can be determined and matched to numerical near-field solutions; hence, this 
solution domain can be restricted further to a single blade passage region of finite extent 
in the axial direction. These features lead to economical and therefore technologically 
useful unsteady aerodynamic response predictions. 

In this report analytic solutions for the unsteady velocity potential response far up- 
stream and far downstream of an isolated two-dimensional blade row are determined. 
We consider the general unsteady cascade problem in which the unsteady flow is pro- 
duced by structural (i.e., blade motions) and/or external aerodynamic excitations (i.e., 
incident acoustic, entropic or vortical gusts) and provide solutions for compressor- and 
turbine-type cascades operating under subsonic, transonic and supersonic inlet and 
exit conditions. Fourier series solutions will be determined for the continuous velocity 

potential fluctuations associated with the acoustic response in the far upstream and far 
downstream regions as well as for the continuous potential fluctuations in the far down- 
stream region associated with the rotational velocity disturbances that are convected 
through the blade row. A closed form solution will be determined for the discontinuous 
potential fluctuation associated with the concentrated vorticity convected along blade 
wakes. The specific form of the solution for the potential due to acoustic response 
fluctuations depends upon whether the free-stream Mach number, M, is less than or 
greater than one, the free-stream flow angle, n, is positive or negative, the axial Mach 
number, Mcos 0, is less than or greater than one and the temporal frequency, oj, of the 
unsteady motion is positive or negative. A single solution holds for the potential fluctu- 



ation associated with rotational velocity fluctuations and concentrated wake vorticity 
regardless of the sign of M - 1, n, Mcos 0 - 1 or w. 

The complete solution for the velocity potential in the far field provides the inlet 
and exit information needed for the linearized unsteady aerodynamic analyses intended 
for blade aeroelastic and aeroacoustic design predictions. Moreover, a knowledge of the 
unsteady aerodynamic response in the far field is a prerequisite to guide the choice of 
computational grid spacings needed to resolve accurately the unsteady flow through 
the blade row, particularly for cascades operating at high subsonic or supersonic inlet 
and exit Mach numbers or subjected to high-frequency unsteady excitations. Such 
information should also be useful for constructing time-accurate numerical simulations 
(e.g., see Rai 1985; Fransson & Pandolfi 1986; Giles 1987) of nonlinear unsteady flows 

through turbomachine cascades. 
Once the complete far-field solution is given below, the far-field acoustic response is 

studied leading to a useful classification of unsteady excitations. In addition, the results 
of parametric studies are presented to illustrate the acoustic response behavior in the 
far field at various free-stream Mach numbers and flow angles. Finally, we present 
numerical solutions for unsteady flows through subsonic compressor-type cascades to 
demonstrate the results that can be achieved by matching analytic far-field solutions 
to numerical near-field solutions and to illustrate the effects of the far-field acoustic 
response on the aerodynamic response (i.e., surface pressures and unsteady airloads) 

at a vibrating blade surface. 



2. PHYSICAL PROBLEM AND GOVERNING EQUATIONS 

We consider the time-dependent two-dimensional adiabatic flow, with negligible 
body forces, of an inviscid non-heat-conducting perfect gas through a cascade of airfoils 
or blades such as the one shown in figure 1. All physical quantities are dimensionless. 
Lengths have been scaled with respect to blade chord, time with respect to the ratio 
of blade chord to the upstream free-stream speed, density and velocity with respect to 
the upstream free-stream density and velocity, respectively, and pressure with respect 

to the product of the upstream free-stream density and the square of the upstream 
free-stream speed. The mean or steady state positions of the blade chord lines coincide 
with the line segments rj = ^tan© + mG,0 < ^ < cos0, where ^ and r? are Carte- 
sian axes attached to the blade row and pointing in the axial-flow and the cascade 
"circumferential" directions, respectively, m = 0,1,2,... is a blade number index, © is 
the cascade stagger angle and G is the cascade gap vector which is directed along the 
77-axis with magnitude equal to the blade spacing. 

In the absence of unsteady excitation the flow beyond some finite distance upstream 
(say ^ < ^_) and downstream (^ > i^+) from the blade row is assumed to be at the most 
a small irrotational steady perturbation from a uniform free stream. In addition, the 
unsteady flow remains attached to the blade surfaces and therefore, thin vortex sheets 
or unsteady wakes emanate from the blade trailing edges and extend downstream. 
Finally, any shocks that might occur are assumed to be of weak to moderate strength 
and have small curvature. Thus, changes in the entropy and vorticity of a fluid particle 
as it passes through a shock are regarded as negligible. 

The time-dependent or unsteady fluctuations in the flow arise from one or more 
of the following sources: blade motions, upstream and/or downstream acoustic distur- 
bances which carry energy toward the blade row, and upstream entropic and vortical 
disturbances which are convected through the blade row. These excitations are assumed 
to be of small amplitude and periodic in time. The external aerodynamic excitations are 
also spatially periodic, while the blade motion is periodic in the cascade- or 77-direction. 
For example, we consider blade motions of the form 

1 {X+mG,t) = Re{7 {X)exp[i{u)t + ma)],    X on B . (2.1) 

In (2.1) R. measures the displacement of a point on a moving blade surface relative 
to its mean or steady-state position, X is a position vector, t is time, f is a complex 
displacement-amplitude vector, u is the frequency of the blade motion, a is the phase 
angle between the motions of adjacent blades, Re{ } denotes the real part of { } and 
B denotes the reference (m = 0) blade surface. Incident disturbances are of the form 

—* —► 

P/(X,0 = i?e{p;,:pooexp[t(/C:poo • ^ + wi)l,     6 > ^^ ' (2-2) 

where p/.i^oo and Kzpoo are the amplitude and wave number, respectively, of an incident 
pressure fluctuation, pi{X,t), coming from far upstream ( — 00) or far downstream (00) 
and carrying energy towards the blade row. 



Note that the interblade phase angle, a, of an incident disturbance is i?.:^^ ■ G. Also, 
the temporal frequency and wave number of an incident entropic or vortical disturbance 
are related by w = —/c_oo • V-^o where F_oo is the uniform relative inlet velocity, but 
a more complicated relationship exists between u) and ii^oo for an incident pressure 
disturbance as will become clear from the discussion below. 

For small-amplitude unsteady excitations, i.e., |r|, |p/,:poo|) etc. ~ 0(e) <C 1, the 
time-dependent flow can be regarded as a small perturbation about an underlying 
mean flow. In addition, because of our assumptions regarding shocks and the flow far 
upstream of the blade row, the underlying mean or steady flow, which is assumed to 
be known in the present study, will be isentropic and irrotational. Thus V = V* ^^^ 

\iY = [M.^Af -- = p(-i) = (7M^^P)(-'' 

2^-M^oo(V$r- 2 + (7 - 1)M2 
('^     ^} i^Ai    [/V7^\2     ,1 _    " '  V /      -;---oo ^2.3) 

where V^,$, p, M, P and A are the local steady-flow velocity, velocity potential, density, 
Mach number, pressure and speed of sound propagation, respectively, and 7 is the 
specific heat ratio of the fluid. Finally, because of the assumed form of the unsteady 
excitations, the first-order flow properties must be harmonic in time, e.g., p{X,t) = 
Re{p{X)e''^^}, and they must satisfy the blade-to-blade periodicity condition, i.e., 

p{X+mG)= p(X)e""'^ . ■ (2.4) 

Thus the complex amplitudes of the linearized unsteady flow variables can be deter- 
mined by solving a time-independent set of governing equations, and numerical solu- 
tions to these equations are required only over a single extended blade-passage region. 

The field equations governing the first-order unsteady flow can be written as (Gold- 

stein 1978, 1979) 

g=0, ,2.5) 

and 

-^(^''-sV$/2) + [(^"-sV$/2)-V]V$ = 0, (2.6) 

^(A-^|^)-r^V.(pV</,)=r^V.(p7^). (2.7) 

Here s, v^ and (j) are the complex amplitudes of the first-order entropy, rotational 
velocity and velocity potential, respectively, and D/Dt = ioj + V • sy is a mean flow 
convective derivative operator. The complex amplitude of the first-order velocity is 
given by V = \/(f> + v^. The rotational velocity is divergence free far upstream of the 
blade row, and the unsteady pressure fluctuation is related directly to the velocity 



potential by p = —pD(j)/Dt. In general we require a solution to the foregoing system of 
equations which is subject to the condition of flow tangency at blade surfaces (attached 
flow), appropriate jump conditions across shocks and blade wakes, and the requirement 
that acoustic response disturbances either attenuate or propagate away from or parallel 
to the blade row in the far field (Verdon 1987a,b). As a consequence of the small 
unsteady disturbance approximation, surface conditions can be imposed at the mean 
positions of the blade, shock and "wake", i.e., the downstream stagnation streamlines, 
surfaces with mean shock and wake locations being determined from the nonlinear 

steady solution. 
The system of linearized unsteady equations can be solved sequentially to deter- 

mine the fluctuations in entropy, rotational velocity and velocity potential throughout 
an extended blade passage solution domain. The entropic and rotational velocity fluc- 
tuations are convected by the mean flow and therefore can be determined in terms of 
prescribed upstream (i.e., on ^ = ^_) entropic and rotational velocity distributions. 
Information on the velocity potential fluctuation is required in both the far upstream 
and far downstream regions of the flow. Moreover, this information cannot be provided 
a priori as it depends on the response of the blading to an imposed unsteady excitation. 
However, analytic solutions for the potential in the far field can be determined. These 
can be matched to a (numerical) near-field solution and thereby serve to complete the 
specification of the linearized unsteady boundary-value problem. This feature also per- 
mits the numerical solution domain to be limited to a single extended blade passage 

region of finite extent (i.e., £- < C < ^+) in the axial-flow direction. 

2.1 Governing Equations in the Far Field 
In the far upstream and far downstream regions the steady background flow is at 

most a small perturbation (of 0(e)) from a uniform free stream. Therefore it follows 
from (2.7) that far from the blade row and to within first-order in e, the unsteady po- 
tential is governed by the constant-coefficient differential equation of classical linearized 
unsteady aerodynamic theory (see Miles 1959; Ashley & Landahl 1961); i.e., 

{'^'-A'^l^H = -v.v\ e>e.. (2.8) 

It also follows from (2.6) that the rotational velocity is governed by 

%f ^""^ ^'"'+ ^^°° '^^ ^""^ ^ • ^^-^^ 
Note that under our present assumptions V • ^^ = 0 in the far upstream region and 
therefore the far upstream velocity potential fluctuations are caused by acoustic dis- 

turbances only. 
We will require analytic solutions to (2.8) for periodic (in tj) but otherwise arbi- 

trary potential distributions at the axial locations ^ — ^zp and, as a consequence, to 



(2.9) for periodic but otherwise arbitrary rotational velocity distributions on ^ = ^^. 
These solutions must satisfy the blade-to-blade periodicity condition (2.4) and also the 
conditions of continuity of pressure and normal velocity across blade wakes; i.e., 

Dt 

and 

^°°M = 0    or    Uj = mj,,fexp{im{a^Trr./V^)],     X on VV^,  ^ > e+ ,      (2.10) 

[V<^I- n= -lv\ n,    X on t^^, ^ > ^^ , (2.11) 

respectively. In addition, the potential (j) must obey the condition that acoustic response 
waves either attenuate or propagate away from or parallel to the blade row in the far 
field. In (2.10) and (2.11) the symbol [[ | refers to the difference (upper — lower) in 
a flow quantity across a wake, [[ jn^f is the value of [ | at the point of intersection 
{^+,r)+) of the reference {m = 0) wake and the axial line ^ = i^+ and Tm is a coordinate 
measuring distance in the direction of V^ downstream from the line ^ = ^+. Note that 
to within first-order in e, the mean wake positions, W^, far downstream of the blade row 
can be regarded as an array of straight lines parallel to the free-stream flow direction. 

We require such solutions for subsonic [M^^o < 1) and supersonic {M^^o > 1) relative 
inlet and exit conditions. However in the supersonic case, we are interested primarily 
in flows having subsonic axial velocity component, i.e., Mipoo cos rJipoo < 1 since this is 
the situation of practical interest for axial-flow turbomachines. 

6 



3. UNSTEADY FAR-FIELD SOLUTIONS 

3.1 Preliminaries 
To determine solutions for the unsteady potential in the far field it is convenient to 

set 

<^(x) = <^^(x) + ,^^(x)c/(e-e+) fore>e^, (3.1) 

where 4'^{X) is a continuous function which accounts for the fluctuations in the ve- 
locity potential due to irrotational pressure or acoustic disturbances, (f)^{X) accounts 
for the fluctuations in the potential in the far downstream region due to rotational 
velocity disturbances (including those due to the vorticity shed at blade trailing edges 
and convected along the blade wakes) and U{x) is the unit step function. The latter 
disturbances are convected as vorticity waves by the underlying uniform flow and have 
no associated pressure or density fluctuations (Smith 1971). Therefore, 

■^"'-<^^=0 (3.2) 

and it follows from (2.8) that 

Dt 

VV^ = -V- u^   . (3.3) 

The potential component (f)^ is a homogeneous solution of (2.8) which is continuous in X 
and satisfies the cascade periodicity and acoustic wave propagation requirements stated 
above. The component (j)^ is a particular solution of (2.8) (or (3.2) and (3.3)) which 
satisfies the cascade periodicity requirement and the wake jump conditions (2.10) and 
(2.11). We seek first a solution for the component of the velocity potential describing 
the acoustic response in the far upstream and far downstream flow regions in Section 
(3.2) and then proceed to determine a solution for the component of the potential 
describing the response to vortical waves in Section (4.2). The potential component 
4> depends on the rotational velocity fluctuations in the far downstream region, and 
a solution describing these fluctuations will be given in Section (4.1). We will use the 
independent variables, {(, rj) and (T^, Nm), for determining the required solutions. 
The r^, A^^-Cartesian axes are parallel and normal, respectively, to the mth wake in 
the far downstream region and have their origins at the intersection of mth wake and 
the line ^ = ^+ (see figure 1). Therefore we can write 

Tm + iWm = [^ - ^+ + i{r] -T]+- mG)] exp{~in^) . (3.4) 

Unit vectors in a given coordinate direction, say the i^-direction, are indicated by e^. 



3.2 The Potential due to Acoustic Response Disturbances 
To simplify the discussion in this section we will determine (f>^{X) for acoustic 

response disturbances only. Once this solution is obtained, it becomes a simple matter 
to add to it the appropriate terms that account for incident acoustic excitations. Also, 
we will omit the subscripts ^oo when referring to free-stream flow properties, but it 
must be recalled that the symbols V, O M, etc. represent either inlet or exit free- 
stream flow properties. Finally, the following derivation applies to subsonic {M < 1), 
transonic (in the limit M -^ 1) and supersonic (M > 1) flows. However, it is restricted 
to flows with subsonic axial velocity component, i.e., McosU < 1. Thus if M > 1, 

I tann| > (M^ - l)^/^ where U is the free-stream flow angle and ±tan~'[(M^ - 1)^/^] 
are the angles between the flow Mach waves (or characteristic lines) and the free-stream 
flow direction. Once this derivation is completed, we will simply present for the sake 
of completeness the appropriate results for supersonic axial flows (McosJl > 1). 

The desired solution for the unsteady potential component cj)^ can be determined 
by Fourier methods. Thus we consider periodic fundamental solutions of the form 

</'ne,r?) = /„(e)exp(t7c„„77),     n = 0,±l,±2,... , (3.5) 

where we use the symbol k to denote the wave number of a response fluctuation and 
k.^n = [o + 2TTn)G~^ is a wave number in the cascade circumferential or rz-direction. 
After substituting (3.5) into the far-fleld differential equation (2.8) and solving the 
resulting ordinary differential equation for /„, we find that 

f (i) ^ i «i,nexp(xi,nO + a2,«exp(x2,nO    f^r   dl^^O ,     , 
^"^^^ - \  (ai,„ + a2,„e)exp(xi,nO    for ^^ = 0    ' ^  ' ' 

where 
Xj    = ±dn + iM^6nCOsn , 

6^ = (wF-1 + kr,,n sin n)/(l - M^ cos^ U] , (3.7) 

and dn is the principal root of d^^ ; i.e., 

f      \dn\, if c?2 >0 ,     . 
^"=^KI, ifrf^<o   • ^'-'^ 

If d'^ j^ 0, each fundamental solution describes two wave-like disturbances which, 
depending upon the sign of d^, either grow or decay exponentially in the axial direction 
{d^ > 0) or propagate carrying energy away from or toward the blade row (d^ < 0). The 
disturbance which shows growth with increasing axial distance from the blade row or 
propagation of energy toward the blade row must be eliminated. The condition d'^ — 0 
which divides these two types of behavior is called the acoustic resonance or "cut-off" 



condition. Here, the second term on the right-hand-side of (3.6) must be eliminated 
because the unsteady potential must remain bounded with increasing distance from 
the blade row. Thus in each case, d^ > 0, cf^ < 0 or d^ = 0, we can write 

</'n(C,'7) = anexp[(/i„d„ + iM^(5„cos H)^ + t7c^,„r/] , (3.9) 

and our task is to determine the correct value of /i„ (i.e., +1 or —1) for d^ 7^ 0. 
It follows from (3.7) and some algebra that the circumferential wave numbers at 

which resonance occurs, klj^\ are given by 

fcW = UJV-^M{1 - M^y^M Sinn ± Vl - M^ cos^ n),    M^l. (3.10) 

Note that |Msin n| > (1 - M^ cos^ fi)^/^ for M > 1. Also, the ranges of circumferential 
wave numbers for which disturbances vary exponentially in the axial direction (i.e., 
d'^ > 0) are given by 

fc^,„ < /cj^)    for M < 1    and w < 0 , (3.11a) 

A;^,„ > /cj^'    for M < 1    and w < 0 (3.11b) 

and 
/cj*) < A;^,„ < A;J^)    for M > 1    and w < 0 . (3.12) 

Those for which disturbances propagate in the axial direction (i.e., c?^ < 0) are given 
by 

fcj^' < fc^,„ < A:J*'    for M < 1    and w < 0 , (3.13) 

/Cf,,„ > /cj'f^'    for M > 1    and w < 0 (3.14a) 

and 

kn.n < kl^"^^    for M > 1    and w < 0 . (3.14b) 

In the transonic limit (M -^^ 1) we find that 

i 2ujV-'^M^smn/{l-M^)+ojV-'/{2smn) ,     n>0 

li^/n^^--] ! (3-15) 
[ -wF-V(2sinn) ,     n >0 ! 

and the results achieved using the present analysis will agree with those based on a sim- 
ilar analysis of the high-frequency transonic small-disturbance equation (i.e., (2.8) with 
^zpoo set equal to V^^). The high-frequency transonic equation (Landahl 1961) yields 
only a single resonant circumferential wave number, i.e., klj^"^^ = -u;V"^/(2sin n), 
and disturbances at circumferential wave numbers to one side of this resonant wave 
number are of propagating type while those at circumferential wave numbers to the 
other side are of decaying type. 

9 



It is a simple matter to determine the appropriate form of the fundamental solution 
for tangential wave numbers satisfying the inequalities in (3.11) and (3.12). Since 
physically admissible solutions must be bounded in the far field, /i„ must be positive 
in the far upstream region (^ < ^_) and negative in the far downstream region (^ > 
^+). For tangential wave numbers satisfying the inequalities in (3.13) and (3.14) the 
fundamental solution (3.9) describes a wave that propagates in the axial-flow direction 

at wave number 
k^^rt = hn\dr,\+MHnCOSn (3.16) 

and the determination of the correct value of /i„ is somewhat more difficult. Various 
methods have been proposed to dictate this choice. These involve adding an artificial 
damping term [cd^t) to the left-hand-side of the far-field differential equation (2.8) 
(Verdon, Adamczyk &: Caspar 1975; Adamczyk 1978), considering an unsteady excita- 
tion with slowly growing temporal amplitude, i.e., with w = w' — iX, where A is a small 
positive number (Ni 1979), or determining a far-field solution in terms of coordinates 
moving at the uniform inlet or exit velocity (Whitehead &: Davies 1983). In the first two 
methods the correct form of the fundamental solution is determined by requiring that 
the unsteady potential remains bounded as |^| ^ oo. Once this form is determined, e^ 
or A are allowed to approach zero. In the method of Whitehead & Davies (1983) the 
form of the fundamental solution in the moving coordinate frame which ensures that 
acoustic energy propagates away from the blade row is used to determine the correct 
value of hn in (3.9) or (3.16). This method seems to have the most physical appeal and 

is therefore the one adopted herein. 
Consider coordinate axes ^' and 77' parallel to the space-fixed (- and 77-axes, re- 

spectively, but moving at the velocity V. After replacing <f>{X) by (f){X,t) = (j){X)e"^^ 
and iu) by d/dt in the far-field equation (2.8) and applying the independent variable 
transformation 

^' = ^ - V^t,     r?' = 7? ~ Vrjt    and 

we fiind that 

Equation (3.18) has a fundamental solution of the form 

4>{X,t') = F{X ■ cp -At') + G{X ■ 

where X' is a position vector in the ^', ry'-coordinate frame and Cp is a unit vector 
pointing in the direction of wave propagation. Since only those waves which propagate 
away from the blade row are admissible, Cp • e^ must be less than zero for ^' ^ — 00 
and greater than zero for ^' ^ 00. Then, since the function G describes waves that 
propagate toward the blade row, it must be set equal to zero, and the nth term of the 

general solution to (3.18) can be written as 

MC',n',t') =b'^exp[iu',{t' ~ ecosen/A-v'smer,/A] . (3.20) 
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t'^t (3.17) 

(3.18) 

Cp +At') , (3.19) 



This solution describes a wave propagating at speed A and at angle On, measured 
counterclockwise from the ^'-axis, where 7r/2 < On < 37r/2 for ^' -^ —oo and \0n\ < 7r/2 
for ^' ^ oo. The temporal frequency of the nth disturbance wave as seen by an observer 
moving with the mean fluid velocity V is lo'^. 

A comparison of the result in (3.20) with the fundamental solution for d^ < 0 in 
(3.9) dictates the correct value of /i„ to be used in the latter equation. It follows from 
(3.7), (3.9), (3.16), and (3.20) that I 

Uj'^=U)+   kn • V=V{6n + hn\dn\cOSn)   , 

uj'^A~'^smOn = -A;^,„ 

and 
w;,^''cos^„ = -fc^c,„ , (3.21) 

where /c^^„ satisfies one of the inequalities in (3.13) and (3.14). Now, a disturbance 
carried by the nth wave travels in the axial direction with velocity C^ „, where 

C^_„ = V^ + AcosOn = -hnA^i - M^cos^n) I dn I /w^ . (3.22) 

The right-hand-side of (3.22) follows from (3.16) and (3.21). Note that in the limit 
as d"^ —^ 0 (i.e., as a resonance condition is approached), C{,„ -> 0 and there is no 
transfer of acoustic energy in the axial direction. Since the velocity C^ „ must be less 
than zero in the far upstream region and greater than zero in the far downstream 
region, the correct value of /i„ in (3.16), (3.21) and (3.22) depends on the sign of to'^. 

Some analysis of (3.7), (3.8), (3.13) and (3.14) shows that 6n < ±|rf„|cosn for w < 0 
if the free-stream flow is subsonic and fc^'''' < /c^„ < /c^'*'', or if the free-stream flow is 
supersonic with the product wH > 0 and /c^ „ > fc^"^' or with toQ < 0 and A;^ „ < k^j^^. 
Under these conditions UJ'^ and w have the same sign; therefore, /?,„ = sgn{uj) in the far 
upstream (^ < ^_) region and hn = —sgn{u)) in the far downstream (i^ > ^+) region, 

where sgn(w) = ±1 for to < 0. If the free-stream flow is supersonic with OJQ > 0 and 

^r7,n < l<^ii^^ or with Lofl < 0 and A:,,,„ > kl^'^\ then (5„ > T\dn\ cos n for u; < 0. In this case 

u)'n and w are of opposite sign and /i„ = ^sgn(u;) for ^ > ^:p. 
Thus, as a result of the foregoing analysis, we can write the solution for the unsteady 

potential in the far field due to the acoustic response fluctuations as 

—> °° 
<^''(^) =   E  °",Too exp[x„(e - CT) + ik„,n{ri - r]^)],     ^ > ^T • (3-23) 

n —— oo 

The constants 0^:^00 are determined by matching these analytic solutions to a near-field 
(numerical) solution, (^_,r/_) and {^+,rj+) are reference locations, i.e., the points of 
intersection of the reference blade (m = 0 ) stagnation streamline and the lines ^ = (^_ 

u 



and ( = C+, respectively, and 

[ ±\dn\+iM^Sr,cosn   ) {3.24a) 

Xn = 0n+iki,n = \   ^'( ±sgn(w) | d„ | +M2(5„ COS fi)   I     for e > CT .    (3.24b) 
[ i( Tsgn(w) I d„ I +M2(5„cosn)  J (3.24c) 

where dn and 5„ are defined in (3.7) and (3.8). At resonance (i.e., kr,^n = ki^'' (see 
(3.10))) \dn\ = 0. If \dn\ ^ 0, Xn is determined using (3.24a) if the inequalities in 
(3.11a), (3.11b) or (3.12) are satisfied; (3.24b) if the inequalities in (3.13), (3.14a) for 
wn > 0 or (3.14b) for wH < 0 are satisfied; and (3.24c) if the inequalities in (3.14b) 
for UJU > 0 or in (3.14a) for ujfl < 0 are satisfied. This information is summarized in 
figures 2 and 3. In the limit M ^^ 1 the subsonic (see figure 2) and supersonic (figure 3) 
results become identical, and therefore no disturbances of the type 3.24c can exist in a 
transonic free stream. It is also important to note that the expression for the potential 
due to prescribed far upstream and/or far downstream acoustic excitations must have 
the same form as (3.23) except that the Xn must be replaced by -Xn- 

An analysis similar to the above can be performed for supersonic relative flow with 
supersonic axial velocity component (see also Ni 1979; Whitehead 1987). In this case 
the fundamental solutions for (j)^ are also given by (3.5), (3.6) and (3.7), but c?^ is less 
than zero for all circumferential wave numbers. Therefore each fundamental solution 
describes two propagating acoustic response disturbances. It is easy to show that 
both of these disturbances carry energy in the downstream axial direction. Hence, 
for supersonic streams with McosU > 1 the potential (p^ due to acoustic response 
disturbances has the form 

[ 0        ,     e < e^ (3.25a) 
I oo 

<f>''{^) = J2  {ai,nexp[xi,„(^ - e+)] + a.2,„exp(x2,„(e " ^+)]} 
n—— OO 

' X exp[jA;^,„(r? - 77+)] ,     ^ > ^+ , (3.25b) 

where Xi,n and X2,n are defined by (3.7) and (3.8). 
In a supersonic stream with supersonic axial velocity component only far upstream 

acoustic excitations can affect the flow through the blade row. The potential due to such 
excitations has the same form as (3.25b), except that ^+ and 77+ must be replaced by ^_ 
and r/_, respectively. Because of the manner in which unsteady disturbances propagate 
in supersonic streams, an analytic solution for the velocity potential response in the 
far upstream or far downstream region is not required to determine the unsteady flow 
through a cascade operating at supersonic inlet or exit velocity. Thus, our concern 
here is primarily with cascades operating at subsonic axial inlet and exit velocities for 
which a knowledge of the far-field potential response is indeed required to predict near 
field unsteady flows. Hence, throughout the remainder of this report when we refer 
to supersonic inlet or exit conditions, it is assumed implicitly that the axial velocity 
component is subsonic. 

12 



4. THE UNSTEADY POTENTIAL DUE TO VORTICAL 
DISTURBANCES 

The unsteady potential component (f)^ is determined as a solution of the differential 
equations (3.2) and (3.3) which satisfies cascade periodicity (2.4) and the conditions of 
continuity of pressure (2.10) and normal velocity component (2.11) across blade wakes. 
In one sense it is a much simpler task to determine (f)^ than it is to determine the 
far-field potential 4>^ because a single expression holds for 4>^ regardless of the sign 
of M — 1, Mcosn — 1, n or cj. However, the potential component (j)^ depends upon 
the rotational velocity fluctuation and therefore, we must first determine a solution for 
'^^{i > i+iV) before proceeding to determine the corresponding solution for (j)^. 

4.1 The Rotational Velocity in the Far Downstream Region 
Tiie rotational velocity in the far downstream region is determined as a solution to 

the field equation (2.9) for a periodic (in ry) distribution of rotational velocity along ^ = 
^+ which can, in general, be discontinuous at blade wakes. To determine tiiis solution 
it is again convenient to decompose the dependent variable into two components. Thus 
we set 

V   =v^  + v^  , (4.1) 

where v^ is continuous and v^ possesses jump discontinuities at blade wakes, i.e., 

I^ri = I^''l/?e/exp[t(m(7-u;Fj^r^)]    on    W^^, m = 0, ±1, ±2,... . (4.2) 

We require that both t/f and v^ satisfy (2.9) and the periodicity condition (2.4) and 
that V i^f = 0. It then follows from (2.9) and (2.4) that 

.7?       °°    - 
V , J2   K expK /c„ -{X -X+)], e > e+ , (4.3) 

where the Fourier coefficients, 6„, are determined in terms of the rotational velocity 
distribution on i^ = 1^+ (see (4.24) below) and 

kn = -(cuV^^secfioo + A;^,ntannoo)ef + /c,,,„e^ 

= -WV^'CT -(- (wF^UanHoo + A;^.„sec noo)e;v , (4.4) 

where /i;^_„ = (a + 27rn)G~^ I 
A particular solution for the discontinuous component of the rotational velocity, 

uf, in the far downstream region of the mth passage (i.e., in the region T^, > 0, 0 < 
Nm < Gcos floo) can be determined conveniently in terms of the Cartesian coordinates 
Tm and A^^,- Once this result is obtained, it can be extended to provide a solution in 
terms of the independent variables ^ and ?; which holds over the entire downstream 
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region. It follows from (2.9) and (4.2) that the required solution for the mth passage 
can be written in the form 

-,R 
v,=F^{N^)exp{-iuV-'Tm) . (4-5) 

Since t/f is divergence free and has a jump discontinuity across blade wakes, 

-tojV^' Fm-~^T + F^ ■ e;v= 0 (4.6) 

and 

Fm (0+)- Fm (GCOS n-)exp[-t(a + wV^^^GSinn)] = |u   lR,/exp(ima) ,        (4.7) 

respectively. A solution for Fm which meets the requirements (4.6) and (4.7) can be 
constructed as a linear combination of the exponential functions exp{ujV^'^N^) and 
exp{-LjjV^^N„i). After making several trials and performing some algebra, we find 

that 

where the constants Cj and C^ are given by 

C, = l[l-exp{ujV^'Ge-'''°°-ia)]lv''UfCeT-teN) (4.9a) 

an d 
C2 = -[1 - exp(-wF^^Ge'"°° - io)lv''U,f ■ [IT +»eyv) • (4.9b) 

The solution for the rotational velocity over the entire far downstream region (^ > 
i^) is then determined by combining the results in (4.1), (4.3), (4.5), (4.8) and (4.9) 

to obtain 
_^fl   ^ °°    ^ ^      ^      ^ 
^    (^) =   Z!    6„ exp[i /c„-(X - X+)] 

n=-oo 

+   Ciexpl-t'wF^n^ - ^+) ■ C^i + ^■"^.)e"'"°°](^« +t e,)e-'"- 

00 

X    Y^   exp[tma-mu;F^^Ge-"-][tl(77-7?„,J-C/(r7-r7^^^J] 
Tn,= —00 

+    G2 exp[-twV^H^ - ^+) • C^i -' e,)e'"-l( e j -i e,)e'"- 

00 

X 
m= —00 
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Here 

T] -=r]^^.^^ =r]+ + mG+ {^- i+) tan rioo (4.11) 

defines the location of the straight-hne approximation to the mth wake, 

X - X+^ [C - ^+)7^ +{r] -ri+)7r, 

= (r„i + mGsin fioo) e'r+(iVm + ?7zG cos Hoc) e'iv (4-12) 

and 

"e^ ±1 "e^= ("er ±1 "eAr)exp(±jnoo) ■ (4-13) 

The divergence of the rotational velocity in the far downstream region is given by 

R °° -^ -^ — ^ _ 
V-u   =    ^   I kn- bnexp[i kr^■{X - X+)] . (4.14) 

4.2 The Potential due to Vortical Disturbances 
As in the case of the rotational velocity, we seek first a solution for the potential 

component 4>^ in the far downstream region of the mth passage (i.e., T^ > 0,0 < 
Nm < GcosH) and then extend this result to provide a solution over the entire far 
downstream region (^ > (+). It follows from the field equations (3.2) and (3.3), the 
cascade periodicity (2.4) and wake-jump conditions (2.10) and (2.11), and the foregoing 
results for the far downstream rotational velocity that the required solution must be 
of the form 

(l}''{Tm,Nr„)=H^{Nm)exp{-iuV-'Trn) , (4.15) 

where 

oo _, _, 

iCi^m) - uj^V^^H{NJi = -   Y.   ^ k„- b„ exp{^[/c;v,,^iVm + m{(7 + 27Tn)]} ,    (4.16) 
n= —oo 

Hm{0^) -exp\-i{a + ujV-'Gsmn^)]H{Gcosn;^) = [(^JA,/exp(ima) (4.17) 

and 

/f;„(0+)-exp[-z(a+a^r^iGsinnoo)l//'(Gcosn;,) = -f^'U^f 7 j, exp{tma) .  (4.18) 

The general solution of (4.16) is 

Hm[Nm) = I?iexp(tma)exp(wV^^A^^) + Dz exp(ima) exp(-wV^^A^^) 

^   i k   ■ b 
+   J2   —^ ~e^p{i[kN,nNm + m{a + 2nn)]} . (4.19) 

"=-00        \kn\^ 

U 



The constants Di and D2 are evaluated using the wake conditions (4.17) and (4.18) 
and are given by 

D, = ^[1 - exp{-ta + ujV-'Ge-'''-)]-\mn.f - 0J-'V^'lv''hef ^N)        (4.20a) 

and 

D2=^^[l-exp{-ta-uV-'Ge"'-)]-'{l<f>U,j + u-W^lv''h,f^r^) .        (4.20b) 

Therefore, the solution for the velocity potential fluctuations in the far downstream 
region of the mth passage due to rotational velocity disturbances and wake vorticity, 
is given by 

<i>''{Tm,N^) = e'^'^{Dyexp{-tojV-'{Tm + iN^)] + D2exp[-tuV^'{T^ - ziV^)]} 

+   Y.   —^  exp{t{kT,nTm + kN,nNm + rn{a + 2nn)\} 
n=-oo      I   kn   p 

Finally, the solution for <?i)^ over the entire downstream region ^ > (^+ is 

<^^(X) = A exp[-tW^i(X - X+) ■ (e^+^ e,)e-"-] 

00 

X    Y:   exp[^•ma-c.F^VGe-'•""]l[/(/?-77„,J-C/(;7-'7u•.„,J] 
771= —00 

+ D^expl-icoV-'iX -1+) • (7j -^ e,)e'"°°j 

00 

X    J2   ^M^rna + ujV^'mGe''''-][U{v-Vw„.)'-U{n-nn„,^J] 

(4.21) 

r?x—— 00 

+   E   -^-^ exp[j fc„ -{X - X+)] . (4.22) 
n=-oo       \knY 

4.3 The Complete Solution for the Unsteady Potential 
We have considered the flow through an isolated two-dimensional blade row in which 

unsteady fluctuations are produced by small-amplitude periodic (in ?y and t) structural 
(blade motions) and/or external aerodynamic excitations (incident entropic, vortical 
or acoustic disturbances). Far from the blade row the complex amplitude, (j)[X), of the 
linearized unsteady potential can be expressed as the sum of two components (3.1)— 
one, (f)^{X), associated with acoustic disturbances and the other, (f)^[X), associated 
with vortical disturbances. Analytic solutions for 4>^ and (f)^ due to acoustic and 
vortical response fluctuations are given in (3.23) for subsonic axial flow and (4.22), 
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respectively. The unsteady potential component <j}^ depends upon the far downstream 
rotational velocity field  which is described in (4.10). 

The physical variables that the potential component (j)^ depends on explicitly are 
the free-stream Mach number and flow angle, the cascade blade spacing, the frequency 
and interblade phase angle of the unsteady excitation and the complex amplitudes of 
the first-harmonic acoustic disturbances. In particular, the complex amplitudes, a„,:poo, 
of the acoustic response fluctuations are given by 

an,^oo = G^' r^'[cf>{^.,n) - 4>''[U,r))U[i - $+)] exp(-iA:,,„77)d7? . (4.23) 

Note that if a trailing-edge Kutta condition is imposed to determine the steady flow 
through the blade row, the exit free-stream conditions cannot be prescribed arbitrarily, 
but are determined by the conditions imposed at the cascade inlet. The physical 
variables that the potential component (f)^ depends on are the far downstream free- 
stream flow speed and angle, the blade spacing, the frequency and interblade phase 
angle of the unsteady excitation, the complex amplitudes of the rotational velocity 
fluctuations, 6„, where 

bn=G-^ [v    {^+,T])-v^ {C+,ri)]exp{-ikr,,nri)d7] , (4.24) 
»'T7-1- 

and the jumps in the potential [(^IR^/ and rotational velocity {v^JRef at the intersection 
of the reference wake and the axial line ^ = (+. Note that if the rotational velocity 
is continuous across blade wakes, the constants Cj and C2 in (4.10) are identically 
zero and the constants Di and D2 in (4.22) depend only on the jump in potential 
[<?^lRe/- In addition, if there are no prescribed incident rotational velocity disturbances, 
v^{X) = 0 throughout the field and the last term in (4.22) is identically zero. In this 
important special case (f)^ is driven only by the vorticity shed at the blade trailing 
edges and convected along the blade wakes, which is directly related to the fluctuating 
aerodynamic loads acting on the blades. 

4.4 Implementation of Far-Field Solutions in Numerical Computations 
The complex amplitudes a„,:poo and 6„, the potential and rotational velocity jumps 

Mnef and Iv^JRef, and hence, the far-field solutions for (f> and v^ are known in terms of 
the potential distributions along the lines ^ = ^zp and the rotational velocity distribu- 
tion along ^ = C+- This feature can be applied to construct a discrete approximation to 
the linearized unsteady boundary-value problem over an extended blade passage region 
bounded by the axial lines £ = ^zp. For example, if the computational mesh consists of 
one set of lines parallel to the blade row (see Verdon & Caspar 1982,1984), then the 

discrete approximation to the field equation (2.8) at mesh points on the boundary lines 
^ = ^^ will depend upon values of (j) and u^ upstream and downstream, respectively, 
of these axial mesh lines. However, because the potential upstream of ^ = ,^_ and the 
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potential and rotational velocity downstream of ^ = ^+ are known (see (3.23), (4.10) 
and (4.22)) in terms of the potential distribution on <^ = ^_ and the potential and 
rotational velocity distributions on ^ = ^+, the discrete approximations to the field 
equations on ^ = ^ip can be constructed entirely in terms of (f) and v^ values at points 
on the upstream and downstream boundaries and in the interior ((^_ < £ < ^+) of the 
computational domain. Thus, using the analytic far-field solutions, we can write a dis- 
crete equation for each unknown (j) value which depends only upon information within 
and on the boundaries of the computational domain. Hence, the system of discrete 
equations is completely specified. 

The foregoing approach has been used in the blade flutter calculations [s = v^ = 
PI = 0) (see Whitehead 1982; Verdon & Caspar 1982, 1984; Usab & Verdon 1986) and 
is a particularly convenient one for cascades operating under subsonic inlet and exit 
conditions because only a limited number of acoustic response waves persist in the far 
field. For supersonic flows with subsonic axial velocity component, the Fourier series 
representation for 0^ (3.23) may not be so useful because, in principle, many terms of 
this series will be needed to represent the abrupt changes in the velocity potential that 
occur at Mach waves. We should also note that, in addition to their use in constructing 
complete sets of finite-difference equations, the understanding of the unsteady fiow in 
the far field gained through an examination of the analytic far-field solutions is essential 
to an accurate resolution of the flow through the cascade. In particular, mesh spacings 
must be selected so that the important variations in the rotational velocity and the 
velocity potential, indicated by the unsteady flow behavior in the far field, can be 
resolved accurately. 
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5. UNSTEADY FLOW BEHAVIOR IN THE FAR FIELD 

We proceed to analyze the unsteady aerodynamic response in the far field of an 
isolated two-dimensional cascade operating at subsonic axial inlet and exit velocity by 
examining the parametric dependence of the wave numbers and attenuation constants, 
that control the spatial variation of far-field potential disturbances. This type of infor- 
mation is a prerequisite for prescribing the computational mesh needed for a numerical 
resolution of the unsteady flow through the blade row. Thus we will examine the be- 
havior of the velocity potential in the far upstream and downstream regions caused by 
acoustic response disturbances and the behavior of the potential in the far downstream 
region caused by continuous rotational velocity disturbances and concentrated vorticity 
convected along the blade wakes. But first we will provide a useful classification for 
unsteady excitations which is based upon the acoustic responses that they produce in 
the far field. 

5.1 Classification of Unsteady Excitations 
We consider a fundamental pressure response disturbance and using (3.10) define 

the constant C„ as 
\uj\M{l- M^cos^n)2 

" ^ 1(1 -M^)Vk,^^r^-(^M^ sinn\ '  ■ '* 

where the subscripts — oo or +oc must be applied to M, V and U and therefore C„ to 
refer to the far upstream or far downstream flow regions. We then classify the nth pres- 
sure response disturbance as subresonant, resonant or superresonant depending upon 
whether C„ is less than, equal to, or greater than one, respectively (see also Samoilovich 
1967; Verdon 1979; Bendiksen 1986). For a prescribed Mach number, flow angle and 
excitation frequency, resonance (C„ = 1) occurs at two different circumferential wave 
numbers, i.e., kl^^. The nth acoustic response disturbance is superresonant (C„ > 1) 
for circumferential wave numbers lying between these two resonant values (see (3.12) 
and (3.13)) and subresonant (C„ < l) for circumferential wave numbers less than the 
lower and greater than the higher of the two resonant circumferential wave numbers 
(see (3.11) and (3.14)). This information is also illustrated in figures 2 and 3. 

For subsonic (M < 1) relative flow /c^"' and fc^"*") have different signs. Thus one res- 

onance condition (i.e., /c'*^ for w < 0) corresponds to a response disturbance travelling 

in the positive ?7-direction and the other (i.e., M"^' for w < 0) to a wave traveling in 
the negative ry-direction. In a subsonic free stream subresonant disturbances attenuate 
with increasing distance from the blade row (i.e., Xn is determined using (3.24a)) while 
superresonant disturbances propagate away from the blade row (xn is determined using 
(3.24b)). It follows from (5.1) that C„ can be greater than one only for a limited num- 
ber of acoustic response fluctuations and hence, in subsonic flow, that such fluctuations 
must be either all or mostly all of decaying type. 

For supersonic flow with subsonic axial velocity component both resonant circum- 
ferential wave numbers describe waves traveling in the same direction, i.e., the negative 
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r/-direction if both w and U have the same sign and the positive r?-direction if w and Q 
differ in sign. In a supersonic free-stream superresonant disturbances attenuate with 
increasing axial distance from the blade row (i.e., Xn is determined using (3.24a)), while 
subresonant disturbances propagate and carry energy away from the blade row (xn is 
determined using (3.24b) or (3.24c)). Since C„ can be greater than one only for a 
limited number of acoustic response disturbances, the latter are either all or mostly all 
of propagating type. 

We can classify unsteady excitations based on the acoustic response that they pro- 

duce in the far field as follows. Recall that the far upstream and far downstream free- 
stream conditions will generally differ. Indeed, the flow may be subsonic in one far-field 
region and supersonic in the other. We refer to an unsteady excitation as subresonant 
if it produces only acoustic response disturbances which attenuate with increasing dis- 
tance from the blade row at subsonic free-stream Mach numbers or only disturbances 
which persist and carry energy away from the blade row at supersonic free-stream Mach 
numbers. A resonant excitation is one for which at least one response wave persists and 
carries energy parallel to the blade row in either the far upstream or far downstream 
region regardless of whether the free-stream Mach numbers are subsonic or supersonic. 
Finally, a superresonant (m,n) excitation is one for which m,n waves persist and carry 
energy away from the blade row at subsonic inlet, exit Mach numbers or attenuate with 
increasing distance from the blade row at supersonic inlet, exit Mach numbers. Note 
that if either m or n, but not both, is zero, the excitation is regarded as superresonant. 
Thus, if the inlet and exit Mach numbers are both subsonic, an excitation classified as 
superresonant (1,0) produces one wave which carries energy away from the blade row 
in the upstream axial direction, but all other acoustic response disturbances associated 
with this excitation attenuate with increasing axial distance from the blade row. 

5.2 The Acoustic Response in the Far Field 
To illustrate the acoustic response in the far field in more detail we introduce the 

scaled variables 
£^ = uj-'Vkr,,n = Vu-^G^^a + 2nn) , (5.2) 

i^ = u-Wlm{Xn} (5.3) 

and 
0 = u-'V \ Re{xn} \ (5.4) 

where Xn is defined in (3.24), n = 0,1,2,..., and we assume that the interblade phase 
angle of the unsteady excitation varies between -n and +n, i.e., (7e[-7r,7r]. The res- 
onant values (i.e., £|j*') of the scaled circumferential wave number depend upon the 
free-stream Mach number and fiow angle (see 3.10), while the axial wave number, 
£^, and the attenuation constant, 0, can be expressed as functions of the free-stream 
Mach number, the free-stream fiow angle and the tangential wave number (see (3.24) 
and (3.7)). Results illustrating the behavior of these parameters for selected subsonic 
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(M < 1) flows and supersonic (M > 1) flows with subsonic axial velocity compo- 
nent (Mcosfi < 1) are presented below. Although these results depict £^ and ^ as 
continuous functions of £^, it must be emphasized that a prescribed excitation at tem- 
poral frequency u> produces only a discrete set of acoustic response disturbances at 
£^ = {u!G)~'^V{o + 2Trn),n = 0,1,2,.... Also, although upstream and downstream 
acoustic response properties are depicted below for the same free-stream Mach number 
and flow angle, the far upstream and far downstream free-stream states will generally 

diff"er. 
The subsonic results and the supersonic resonance curves presented below hold for 

both positive and negative excitation frequencies (w < 0) and non-negative flow angles 
(n > 0); the supersonic results for l^ and 0 hold for u; > 0 and Vl > 0. Corresponding 
results for other combinations of w and U can be readily determined from those provided 
here. Thus, resonance curves for fi < 0 are obtained by changing U, £|j+', £|,^' and l^ 
in figures 4 and 7 to -fi, £|,~', £|,+^ and -£^, respectively. Predictions of £j and J3 for 
M < 1 and f] < 0 and for Af > l,w > 0 and 0 < 0 can be obtained from those given 

in figures 5, 6, 8 and 9 by changing £^ to -£^. Predictions of £j and /? for Af > l,u; < 0 
and n > 0 are obtained by changing £f,-oo and £j,oo to £j,oo and £^,-oo, respectively, 
in figures 8 and 9. Finally predictions of £j and ^ for Af > l,w < 0 and fl < 0 are 

obtained by changing £r,, £^-00 and £j,oo in figures 8 and 9 to -£^, £j,oo and £{,-co, 

respectively. 

5.2.1 Subsonic Flow 
The resonant values of £^ are plotted versus Mach number (as ordinate) for various 

free-stream flow angles in figure 4. The resonant circumferential wave number £jj+' varies 
substantially with Mach number and flow angle, particularly at high subsonic Mach 
number, but, except at low flow angles, the dependence of £jj~' on M and H is rather 
limited. Indeed, as A/ -* 1 from below, £|j+' -^ 00 and £',"') -^ -(2sinn)~^ As indicated 
in figure 4, the extent of the superresonant region or interval, i.e., (£*,"',£|,'^'), increases 
with increasing free-stream Mach number and to a lesser degree with increasing flow 

angle. 
For example, consider an unsteady flow driven by a unit frequency excitation (w = 

1) through a cascade with unit blade spacing (G = l) and operating in a free stream 
with V = 1 and fl = 45deg. These conditions are somewhat representative of those 
at which jet engine fan or compressor blades have experienced subsonic flutter. The 
calculations leading to the curve for U = 45deg in figure 4 indicate that for a free- 
stream Mach number of 0.7 and interblade phase angles lying in the range [-7r,7r] 
all acoustic waves attenuate in the far field if the interblade phase angle, o, of the 
unsteady excitation satisfies the conditions a < -0.513 or a > 1.872, but that one such 
wave (i.e., the n = 0 wave) will persist and carry energy away from the blade row if 
—0.513 < a < 1.872. At a Mach number of 0.8 the corresponding ranges are cr < -0.575 
or a > 3.09 and 0.575 < a < 3.09, respectively. The situation becomes more interesting 
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at M = 0.9 where propagating waves occur for all values of a. In particular, these waves 
occur at circumferential wave numbers /c^_„ — o + 27rn lying in the range (—0.639, 
6.668). Both the n = 0 and n = 1 acoustic response disturbances persist in the far 
field if —0.639 < a < 0.385, but only the n = 1 or the n = 0 disturbance persists if 
— TT < cr < —0.639 or 0.385 < o < n, respectively. As the Mach number is increased 
further for our example configuration, additional acoustic response disturbances will 
be of propagating type. Note that in addition to the dependence on Mach number and 
flow angle indicated in figure 4, the extent of the range of circumferential wave numbers 
(A:^~',/c^"*"') for which acoustic response disturbances carry energy away from the blade 
row is directly proportional to the excitation frequency and inversely proportional to 
free-stream speed. 

Curves illustrating the behavior of the axial wave number, Ic, and attenuation con- 
stant, /3, for various subsonic free-stream Mach numbers and a free-stream flow angle of 
45 deg are shown in figure 5. Curves for M = 0.8 and fiow angles of 15 deg, 45 deg and 
75 deg are shown in figure 6. The points on these curves at which {d /dt,j\M,n) are dis- 
continuous are the resonant values of £r,. For superresonant disturbances, £^e(^fj"', ^l^"*"^), 
the far upstream and far downstream axial wave numbers differ and ^ = 0. The differ- 

ence ^j,-oo~^e,oo increases with increasing Mach number. For subresonant disturbances, 
lne{ — (X),l\^~') or £^e(£[j"'"\ oo), the far upstream and far downstream wave numbers are 
identical and depend linearly on £^. The attenuation constant P increases with \l,j\ 
and depends linearly on \Er^\ as |£^| —> oc. Thus, except at Mach numbers close to 
one, acoustic response disturbances of high wave-number magnitude attenuate rapidly 
with increasing distance from the blade row. This is an important feature which allows 
the successful application of numerical field methods to resolve unsteady flows through 
cascades operating at subsonic inlet and exit conditions. 

To examine a typical situation in more detail we again consider the case w = 1, 
G = 1, V — 1, and H = 45 deg. In addition, we consider an unsteady excitation at 
a = 0.5. Such an excitation produces an (n = 0) acoustic response disturbance at 
M — 0.7, 0.8 and 0.9 which carries energy away from the blade row in both the far 
upstream and far downstream regions. The calculations used to determine the curves 
in figures 5 and 6 indicate that the axial wave numbers of the upstream propagating 
disturbance are 1.736, 2.373 and 3.245, respectively, and those for the downstream 
traveling disturbance are —0.494, —0.572 and —0.639, respectively. The n = ±1, ±2,... 
acoustic response fluctuations at £^ = cr + 2nn attenuate with distance from the blade 
row and, except for the n. = 1 disturbance at M = 0.9, they attenuate quite rapidly. 
The attenuation constant and axial wave number for the n = 1 disturbance (i.e., 
i^ = A;^,i = (T + 27r = 6.783) at M = 0.9 are (3 = 0.662 and k^^^^ = l^^^^ = 5.580, 
respectively. 

In numerical calculations of the unsteady flow through a cascade, propagating acous- 
tic disturbances and those which attenuate gradually with increasing distance from the 
blade row must be accurately represented.  Thus for our example configuration, with 

22 



M = 0.9, acoustic waves with /c^ = 6.783 and k^ = 5.580 must be resolved accu- 
rately. In this case, the computational mesh requirements are not stringent, but they 
can become so if either the Mach number or the excitation frequency is increased. In 
particular, in the foregoing example if M = 0.95 and a — Odeg, propagating [JS = 0) 
acoustic response disturbances with knfl ~ 0, /c^ i = 6.28 and /c^ 2 = 13.57 occur. The 
axial wave numbers of these propagating disturbances in the far upstream region, fcj _oo, 
are 2.89, 10.43 and 13.76, respectively. Consequently, small mesh spacings are required 
to capture the n = 1 and n = 2 acoustic response waves. 

5.2.2 Supersonic Flow 
Resonance curves for supersonic free-stream flows with subsonic axial velocity com- 

ponent are shown in figure 7. As M cosU —> 1 from below, both £■1^'^' and C\^~' approach 
the value -Af/(M^ - 1)^/^. The locus of such points is shown as a dashed curve in figure 
7. If M cos n > 1, the axial velocity is supersonic, resonance does not occur and acoustic 
response disturbances propagate only in the downstream axial direction. For super- 
sonic flows with subsonic axial velocity component, the resonant condition £,, = l^^' 
varies substantially with Mach number, particularly at low supersonic Mach numbers. 
Indeed, ^Ij"*"' -^ —00 as M ^- 1 from above but, as in subsonic flow, ll^"' —> —(2sin n)~*. 
The extent of the superresonant region, i.e., {(-Ij^K ^l;')' decreases with increasing Mach 
number and increases with increasing flow angle. 

As a speciflc example, consider the case u = l,G = l,V = l and H = 60deg. The 
calculations leading to the curve for n = 60 deg indicate that for a free-stream Mach 
number of 1.6 and interblade phase angles in the range [--7r,7r] all acoustic response 
disturbances persist in the far field and carry energy away from the blade row if a < 
— 2.037 or a > —0.806, but one such wave will attenuate with increasing distance from 
the blade row (the n = 0 wave) if —2.037 < a < —0.806. For a Mach number of 1.4 
the corresponding ranges are o < -2.810, a > -0.727 and -2.810 < o < -0.727. 
Finally, for a Mach number of 1.2 the n = 0 acoustic response disturbance will be of 
decaying type if —n < o < —0.652, the n = — 1 disturbance will be of decaying type 
if 1.267 < cr < 7r, but all disturbances are of propagating type if —0.652 < o < 1.267. 
As the Mach number is reduced further, additional acoustic disturbances will be of 
decaying type. 

Axial wave numbers and attenuation constants of the far-field acoustic response 
disturbances for Mach numbers of 1.1, 1.2, 1.3, 1.4 and 1.5 and a flow angle of 60 deg 
are shown in flgure 8, and those for a Mach number of 1.3 and flow angles of 45 deg, 
60 deg and 75 deg, in figure 9. Acoustic response disturbances at subresonant tangential 
wave numbers, i.e., i^e{ —00, (S^'^) or £^e(£|j~', 00), persist and carry energy away from 
the blade row. Thus acoustic response disturbances of high wave-number magnitude 
persist in the far field and, as such, they can impose serious limitations on the numerical 
field methods developed for predicting unsteady flows through cascades operating at 
supersonic inlet and/or exit conditions. 
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5.3 The Potential Response to Vortical Disturbances 
The axial and tangential wave numbers of the potential response in the far down- 

stream region caused by continuous rotational velocity fluctuations can also have high 
wave-number content(see (4.4)), but as indicated in (4.22), the amplitude of such po- 
tential disturbances varies inversely with wave-number magnitude. The potential re- 
sponse to shed (wake) vorticity has a wave-number vector of -UV^^CT] hence, axial 

and tangential wave numbers of k^ = -wV^^cosfioo and k^ = -wF^^sinfioo. The 
magnitude of this response fluctuation depends upon the discontinuities mnef and 

Iv^JRef at the reference wake location (^+,?7+)- The potential response due to this vor- 
ticity has a rather complicated behavior in the cascade circumferential direction that 
depends on the blade spacing, the downstream free-stream velocity and the temporal 
frequency and interblade phase angle of the unsteady excitation. For example, the 

function <^^(C+,'?)/I<;i'l/fe/ is plotted vs. 77 - r?+ in figure 10 for a cascade with G = 1, 
operating in a downstream free stream with V^oo = 1 and Ooo = 45 deg and subjected 
to non-vortical excitations, e.g., blade motions or incident acoustic waves, at a = Odeg 

and at various frequencies. 
At the temporal frequencies of interest for practical applications, the potential dis- 

tribution (l)^{^+,ri) in the cascade circumferential direction does not usually impose 
stringent requirements on the spacing of mesh lines parallel to the mean flow direction. 
However for certain parametric combinations, it can become necessary to pack such 
lines near the mean wake locations to resolve the potential fluctuation caused by wake 

vorticity. 
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6. NUMERICAL EXAMPLES: SUBSONIC FLOW 

Our purposes in this section are to demonstrate the results that can be achieved 
by matching finite-difference near-field and analytic far-field solutions for the linearized 
unsteady potential and to illustrate important effects associated with the unsteady flow 

behavior in the far field on the aerodynamic response at a moving blade surface. We will 
restrict our consideration to two simple subsonic cascade configurations—a flat-plate 
cascade and a cascade of 5% thick flat-bottomed double-circular-arc (DCA) airfoils. 
In each case the cascade stagger angle 0 is 45 deg, the blade spacing G is unity and 
the inlet free-stream Mach number is 0.8. Also,the blades undergo pitching oscillations 
about midchord, i.e., r = 5x^p(see (2.1)), where i^p = X-Q.he^. Such two dimensional 
blade motions model torsional vibrations of actual rotor blades. 

Theoretical results will be presented for the complex amplitudes of the first har- 
monic unsteady aerodynamic nioments, 

m 
TB' 

1^^PgRp-dT, (6.1) 

and pressure difference distributions, 

^P{x) = Pg{x,y^)-Pg{x,y+),   , (6.2) 

acting on the reference blade of each cascade. Here ps is the complex amplitude of 
the first-harmonic pressure acting at the moving reference blade surface, the subscripts 
refer to the upper (+) and lower ( —) surfaces of the blade and the integration is taken 
over the mean blade surface (B). Results will also be presented for the velocity potential 
distribution along the stagnation streamline that coincides with the upper surface of 

the reference blade. 
We consider pitching (torsional) motions with ct = 1 at four different frequencies, 

u) = 0.5, 1.0, 1.5, and 2.0, and at interblade phase angles lying in the range [ —7r,7r]. 
Since a is taken to be a real quantity, the real and imaginary components of a refer- 
ence blade complex response parameter represent components that are in- and out-of- 
phase, respectively, with the reference blade displacement. The stability of a torsional 
blade motion depends upon the sign of the out-of-phase moment. If Im{(x} = 0 and 

Im{m} > 0, the airstream supplies energy to the blade motion and that motion is 
unstable according to linearized theory. 

The steady flows through the flat plate and DCA cascades are assumied to satisfy a 
zero-load or Kutta condition, i.e., 

V ■ dT\B_ = -V ■ dT\B+ (6.3) 

at the leading and trailing edges of each blade. Therefore the inlet free-stream Mach 
number is the only far-field quantity needed to completely specify the mean potential 
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flow through the cascade. In particular, the steady flow through the example flat-plate 
cascade is simply a uniform stream with M — 0.8 and n = 45 deg. For the DCA 
cascade operating at M_oo = 0.8 the (calculated) inlet flow angle, exit Mach number 
and exit flow angle are 49.4 deg, 0.62 and 43 deg, respectively. This flow is entirely 
subsonic with a maximum Mach number of 0.941 occurring at a point on the suction 
surface which is 36.5% of blade chord downstream from the leading edge. The blade 
surface Mach number distribution is shown in figure 3 of Verdon & Caspar (1984). The 
wave-number behavior of the far-field acoustic response for the two example cascades 

is shown in figure 11. 
Although linearized unsteady flow solutions for the example flat-plate cascade can 

be determined using semi-analytic surface-integral methods (e.g., see Smith 1971), the 
results presented herein for both the flat-plate and DCA cascades have been determined 
using the finite-dilTerence numerical model described in Verdon k Caspar (1982, 1984). 
Those determined for the flat-plate cascade are in very good agreement with Smith's 
solutions. The finite-difference calculations were performed on a mesh composed of ax- 
ial lines {^ = constant) which are parallel to the blade row and tangential curves which 
are percentile averages of the upper and lower boundaries of the extended blade-passage 
solution domain. This mesh extended one axial chord upstream and downstream from 
the blade row (i.e., —1 < ^/cos 6 < 2). For the most part uniform mesh spacings were 
used with A^ = 0.03cos© and Arj = 3% of the distance between the upper and lower 
boundaries, but mesh lines were concentrated near blade edges and near the upper and 
lower boundaries (i.e., the blades and their wakes) of the solution domain. The uniform 
spacings given above were selected so that the unsteady flows at the highest frequency 
considered, oj = 2.0, could be resolved accurately over the entire interblade phase angle 
range [ —TT, TT]. 

6.1 Flat-Plate Cascade 
Unsteady response predictions for the flat plate cascade operating in a uniform 

stream with M — 0.8 and f) = 45 deg are shown in figures 12 through 15. The 
resonant circumferential wave numbers in both the far upstream and far downstream 
regions for this configuration are kS~^ = -0.575a; and k^^^ = 3.09u;. Acoustic response 

disturbances at circumferential wave numbers, /c^,„, lying between these values persist 
in both far-field regions and carry energy away from the blade row. Disturbances for 
which /cr,,n < kS^^ or /c^ „ > k\^^ attenuate with increasing distance from the blade row. 

Unsteady moments due to torsional vibrations about midchord at w = 0.5, 1.0, 1.5 
and 2.0 are shown in figure 12. The arrows above each curve indicate the resonant 

values of a i.e., o'<^^ = '^i'^'/G - 2n7r where n = 0 for \k^^'^jG\ < TT, n = 1 for 
TT < k'^^^IG < 37r, etc., and therefore the boundaries between the different types of 
unsteady excitation. Note the abrupt changes in the unsteady moment that occur near 
resonance and, more importantly, the different character of the moment response in the 
different regions of unsteady excitation.   For w = 0.5 and w = 1.0 the blade motions 
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are superresonant (1,1) with the n = 0 acoustic response disturbance persisting far 
upstream and far downstream of the blade row for values of a lying between the two 
resonant values. The blade motions at w = 0.5 and w = 1.0 are subresonant for 
cre[-7r,CT("') and oe{a'^'^\n]. At w = 1.5 the blade motions are superresonant (1,1) 
for cre[-7r,a(+)) and oe{a^~\TT], and subresonant for cTe(a(+',tr("^). In the first case 
the n = 1 acoustic response disturbance is of propagating type and in the second the 
n — 0 disturbance is of propagating type. The fiat-plate blade motions at cu = 2 are 
superresonant at all interblade phase angles. These motions are superresonant (1,1) 
for a€(-7r,a(-') and ae{o'^+\n) and superresonant (2,2) for ae(af-',a<+'). In the first 
case the n = 1 acoustic response disturbance is of propagating type, in the second the 
n = 0 disturbance is of propagating type and in the third both the n = 0 and the n = 1 
acoustic response disturbances are of propagating type. The foregoing information is 
summarized in Table 1. 

Table 1. Unsteady far-field behavior for the flat-plate cascade 
Excitation frequency      Interblade Type of Propagating Waves 
and phase angle blade motion upstream/downstream 
resonant phase angles    range 
w = 0.5 
a(-) = -0.288 
a(+) = 1.545 

CO = 1.0 

a(-) = -0.575 
a(+' = 3.090 

w = 1.5 
a(-) = -0.853 
a(+) = -1.647 

w = 2.0 
CT(-) = -1.150 

-f -0.103 

>,n 

A-)\ 

a(+),7rl 

-^,a(+') 
a(+),a(-)) 

subresonant 
superresonant (1,1) 
subresonant 

subresonant ,| 
superresonant 
subresonant 

superresonant (1,1) 
subresonant 
superresonant (1,1) 

none/none 
n=0/n=0 
none/none 

none/none 
n=0/n=0 
none/none 

n = l/n = l 
none/none 
n=o/n=0 

-7r,a(-)) 
a(-),aW) 

superresonant (1,1) n=l/n = l 

superresonant(2,2) n=0,l/n=0,l 
superresonant (1,1) n=0/n=0 

Unsteady pressure diff'erence distributions for the example flat-plate cascade with 
blades vibrating at u; = 0.5, 1.0, 1.5 and 2.0 are shown in figure 13 for a = -1 and 
in figure 14 for o = 2. The blade motions at cr = -1 are subresonant at the three 
lower frequencies and superresonant (2,2) at w = 2. In the latter case the propagating 

acoustic response waves have wave numbers (/Cf,A;^) of (1.778, -1) and (5.931, 5.283) 
in the far upstream region and (-0.577,-1) and (1.738, 5.283) in the far downstream 
region. The blade motion at CT = 2 and u = 0.5 is subresonant. The motions at 
(7 = 2 and w = 1.0, 1.5, and 2.0 are superresonant (1,1) with wave numbers of (3.085, 
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2), (4.362, 2) and (5.474, 2), respectively, in the far upstream region and (0.129, 2), 
(-0.483, 2) and (-0.930, 2), respectively, in the far downstream region. The pressure 
difference curves for a = -1 differ substantially for the four frequencies considered. One 
reason for this is that the motions at CT = -1 occur close to the resonance condition 
CT(-) = -0.575W, particularly those at the two higher frequencies. In contrast, the blade 
motions at cr = 2 lie well within the subresonant region for w = 0.5 and well within 
the superresonant region for to = 1.0, 1.5 and 2.0. Thus, although the magnitudes 
of the unsteady pressure differences (and the unsteady moments) tend to be much 
greater for the motion at w = 0.5 than for those at w = 1.0, 1.5 and 2.0, the pressure 
difference curves for a = 2 show a consistent trend with increasing frequency. Note 
that at both phase angles, a = -1 and a = 2, the pressure difference curves show 
higher wave-number content with increasing temporal frequency. 

Unsteady potential distributions on the first tangential line of the computational 
mesh used for the flat-plate calculations (i.e., on y = 0+) are shown in figure 15 for 
blade motions occurring at CT = -1 and w = 1, CT = 2 and w = 0.5, CT = 2 and u> = 1 and 
at CT = -1 and u; = 2. Tlie results for -1 < C/ cos 0 < 2 have been determined from the 
finite difference calculation, those for ^/ cos 0 < -1 and ^/ cos 0 > 2, from the analytic 
far-field solutions. The two solutions were matched at ^/ cos 0 = -1 and C/ cos 0 = 2. 
The potential in the far upstream region, 4> = (f)^,\s due solely to the acoustic response 
to the blade motion, while that in the far downstream region, 4> = (j)^ + (p", depends 
also upon the vorticity shed from the blades. The potential fluctuation (f)"^ has a wave 
number in the streamwise (in this case the x-) direction of -w. The blade motions 
at CT = -1 and w = 1 and at CT = 2 and u = 0.5 are subresonant, so (/)^ -» 0 as 
1^1 ^ GO. In both cases the potential fluctuation in the far downstream region is due 
essentially to wake vorticity. However, as seen from the potential distribution in the 
far upstream region, the n = 0 acoustic response wave for the blade motion at CT = 2 
and w = 0.5 attenuates only gradually with increasing distance from the blade row. 

The acoustic response to the superresonant (1,1) blade motion at CT = 2 and w = 1 has 
a streamwise wave number of k^, = 3.596 in the far upstream region and k:, = 1.505 
in the far downstream region. The potential fluctuation due to the acoustic response 

in the far downstream region occurs at a much smaller amplitude than the fluctuation 
due to wake vorticity. Finally, the acoustic response to the superresonant (2,2) blade 
motion at CT = -1 and w = 2 has streamwise wave numbers of 0.550 and 7.92 in the 
far upstream region and -1.115 and 4.965 in the far downstream region. The acoustic 
disturbances at the higher wave numbers occur at much smaller amplitude than those 

at the lower wave numbers. 

6.2 The DCA Cascade 
Unsteady response predictions for the example DCA cascade are presented in fig- 

ures 16 through 19. Since the inlet (M-co -= 0.8,n^oo = 49.4 deg) and exit (Moo = 
0.62, Ooo  = 43 deg) free-stream conditions diff'er for this configuration, the acoustic 
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response characteristics in the far upstream and far downstream regions also differ. 

In particular, the resonant circumferential wave numbers are /i;|,,Joo = -0.547u; and 

ifcW^ = 3.247w in the far upstream region and k'^'^l = -0.595w and /c(,+' = 1.669u; 
in the far downstream region. Acoustic response disturbances occurring at circumfer- 
ential wave numbers, /c^,„, lying between /c^7_'oo and /c^^-oo persist in the far upstream 
region, and those occurring at circumferential wave numbers lying between /c^"j, and 
fcW  persist in the far downstream region. 

The unsteady moments over the interblade phase angle range [-7r,7r] are shown in 
figure 16 for torsional blade vibrations at w = 0.5, 1.0, 1.5 and 2.0.  Again the arrows 
(now four) above each curve indicate the resonant interblade phase angles.   Because 
of the different acoustic environments in the two far-field regions, it is a more difficult 
task to classify the DCA blade motions.    For example, consider the blade motions 
at w = 1.   Those occurring in the range (aL'ti,,<7L') are subresonant, and therefore 
the acoustic response to the blade motion attenuates with increasing distance from 
the blade row.   Blade motions at the other non-resonant interblade phase angles are 
superresonant.   In particular, these motions are superresonant (1,0), (0,1), (1,1) and 

(1,0) for interblade phase angles lying in the ranges [-7r,crlto), {al^\a_^), (a_oo,a<^') 
and (cr(^',7r], respectively.   In the first case the n = 1 acoustic response disturbance 
persists in the far upstream region; in the second, the n = 0 disturbance persists far 
downstream; in the third, the n = 0 disturbances persist in both far-field regions; and, 
finally, in the fourth, the n = 0 disturbance persists far upstream. This information is 
summarized in Table 2 below along with the corresponding results for the DCA blade 
motions at w = 0.5, 1.5 and 2.0. There are significant differences between the unsteady 
moment responses to the flat-plate and DCA blade motions. These differences can be 
attributed to the effects of mean flow variations near the surfaces of the DCA blades 
and to the different far-field acoustic response environments seen by the two cascades. 

Unsteady pressure difference distributions for the DCA cascade are shown in figures 
17 and 18 for torsional blade motions at CT = -1 and a = 2, respectively. The motions 
at cr = -1 are subresonant for u = 0.5, 1.0 and 1.5 and superresonant (2,1) for w = 2.0. 
In the superresonant case the wave numbers {k^,kr,) of the propagating acoustic distur- 
bances are (1.403, -1) and (5.720, 5.283) in the far upstream region and (-0.245, -1) 
in the far downstream region.  For o — 2 the blade motion at w = 0.5 is subresonant 
and those at w = 1.0, 1.5 and 2.0 are superresonant. The superresonant (1,0) motion 
at a = 2 and u; = 1.0 produces an upstream propagating acoustic response disturbance 
at {k^,k,^) = (2.906,2). For the superresonant (1,1) motion at a = 2 and w = 1.5 the 
wave numbers of the acoustic response are (4.067, 2) far upstream and (-0.039,2) far 
downstream. Finally, for the superresonant (1,1) blade motion at a = 2 and w = 2 the 
propagating acoustic disturbances occur at (5.080, 2) far upstream and (-0.665,2) far 

downstream. 
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Table 2. Unsteady far-field behavior for the DCA cascade 
Excitation frequency      Interblade Type of Propagating Waves 
and phase angle       blade motion upstream/downstream 

resonant phase angles    range 

u = 0.5 [-^,^L-0 subresonant none/none 

oi-l = -0.274 (-L-U*-i) superresonant (0,1) none/n=0 

-^tl = 1.624 ioi-Lcrl:^) superresonant(l,l) n=:0/n=0 

-L-^ = -0.297 (aL^^a^"i) superresonant (1,0) n=0/n=0 

-w = 0.834 (^iti,^) subresonant none/none 

w = 1 [--,aS) superresonant(l ,0) n=]/none 

ai-l = -0.547 i-'^'Loij) subresonant none/none 

-iti = -3.037 i-Ll-^-l) superresonant(0,l) none/n=0 

-L-^ = -0.595 io^-lo^^^) super resonant (1,1) n=0/n=0 

-L^^ = 1.669 [oi^K^ superresonant (1,0) n=0/none 

w = 1.5   - -n,oi-l) superresonant(l,0) n = l/none 

oi-l = -0.821 io^-'l-U) subresonant none/none 

cri'l- -1.413 (-L-\-^"i) superresonant (0,1) none/n=0 

oV = -0.892 i-^-loM) su perresonant (1,1) n=0/n=0 

-L^' = 2.503 (^L^^^l superresonant(l,0) n=0/none 

u; = 2 [-^,^L+^) superresonant (1,1) n=l/n=l 

o':l- -1.095 (^L^^^L-^) superresonant (1,0) n=l/none 

o^-^l = 0.218 {-L\oi-l) superresonant(l,l) n = l/n=0 

-L-^ = -1.190 {o^--Lai^l) superresonant (2,1) n=0,l/n=0 

-L^) = -2.947 {oi'l- superresonant(l,l) n=0/n=0 

The pressure difference curves for the DCA and flat-plate blades vibrating at a = -1 

show similar behaviors for uj — 0.5 and, except near the blade leading edge, w = 1.0. 
Here, the differences between the DCA and flat-plate results are due primarily to the 
nonuniform mean flow over the DCA blade surfaces. The responses to the DCA and 
flat-plate blade motions at <7 = -1 differ considerably for w = 1.5 and w = 2. These 
motions occur near a resonance condition and, as we shall see more clearly below, the 
flat-plate and DCA blade motions produce very different acoustic responses in the far 
field. The pressure difference curves for the DCA and flat-plate blade motions at cr = 2 
are quite similar for the subresonant blade motions at w = 0.5 but differ considerably 
for the superresonant motions at w = 1.0, 1.5 and 2.0. Again, the differences can be 
attributed to the nonuniform mean flow over the surface of each DCA blade and to the 
different far downstream acoustic response environments seen by the two cascades. For 
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example, at a = 2 and w = 1 an acoustic response fluctuation persists far downstream 
of the flat-plate cascade, but all such disturbances attenuate with increasing distance 
downstream of the DCA cascade. 

Unsteady potential distributions on the lower boundary of the extended blade pas- 
sage solution domain (i.e., the stagnation streamline that coincides with the upper 
surface of the reference blade) are shown in figure 19 for DCA blade motions at CT = -1 
and tj = I, a = 2 and u = 0.5, cr = 2 and w = 1 and for CT = -1 and w = 1. Again, the 
results for —1 < ^/cos0 < 2 have been determined from the finite-diff'erence near-field 
solution and those for ^/cos 0 < ~1 and (^/cos 9 > 2 from the analytic far-field solu- 
tions. The far downstream potential for the first three of these motions is essentially 
due to wake vorticity and therefore has a wave number of —coV^^ = -1.26w in the 
streamwise direction. The DCA blade motions at a = -1 and a; = 1 and at a = 2 and 
u! = 0.5 are subresonant, and the far-field behavior associated with these motions is 
similar to that observed for the flat plate cascade. The far upstream acoustic response 
to the superresonant (1,0) blade motion at cr = 2 and to — 1 occurs at a streamwise wave 
number of 3.409 and at a much larger amplitude than the upstream propagating wave 
generated by the corresponding flat-plate blade motion. Finally, the acoustic response 
to the superresonant (2,1) motion at a = —1 and u = 2 has streamwise wave num- 
bers of 0.154 and 7.734 in the far upstream region and -0.861 in the far downstream 
region. As can be seen from the results in figures 15 and 19, the far-field response 
associated with this motion difl'ers considerably from that produced by the flat-plate 
blade vibrations at a = — 1 and w = 2. 
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7. CONCLUDING REMARKS 

Analytic solutions for the unsteady velocity potential response far upstream and 
far downstream of an isolated two-dimensional cascade and for the rotational velocity 
response far downstream have been provided. Fourier series representations account 
for the continuous response fluctuations associated with acoustic disturbances, which 
either attenuate with increasing axial distance from the blade row or persist and carry 
energy away from or parallel to the blade row, and the rotational velocity distur- 
bances which are convected through the blade row. Closed form expressions account 
for the discontinuous response fluctuations associated with the concentrated vorticity 
convected along blade wakes. The complete far-field solution provides the upstream 
and downstream information needed for formulating the boundary-value problem that 
describes the linearized unsteady perturbation of an irrotational and Isentropic mean 
flow through a cascade. In addition, this complete solution can be easily implemented 
into the numerical analyses and computer codes developed to predict the aerodynamic 
response of the blading to prescribed small-amplitude unsteady excitations, i.e., blade 
motions and incident entropic, vortical and acoustic disturbances. 

Special cases of the far-field solutions presented herein have been used for some 
time in unsteady aerodynamic analyses intended for blade flutter prediction in which 
prescribed blade motions are the only source of unsteady excitation. However, the 
solutions provided in this report apply more generally to forced vibration problems in 
which blade motions caused by incident external aerodynamic disturbances are also of 
concern. The Fourier series representation of the far-field acoustic response is particu- 
larly well-suited for cascades operating at subsonic inlet and exit Mach number since 
only a limited number of acoustic response disturbances can persist in the far field. 
However, as indicated by our numerical results for flat-plate and DCA cascades, there 
is a complex and interesting variety of far-field response phenomena even for subsonic 
flows. This phenomena must be represented accurately in order to predict correctly 
the aerodynamic response at a vibrating blade surface. At high subsonic inlet and exit 
Mach numbers and at the high excitation frequencies typical of forced blade vibrations, 

stringent mesh spacing requirements must be imposed in numerical calculations of un- 
steady flows through blade rows. For a supersonic free-stream flow with subsonic axial 
velocity component an infinite number of acoustic response disturbances will persist 
in the far field. Since only a finite number of these disturbances can be modeled on a 
computational grid, the usefulness of the Fourier series representation of the far-field 
acoustic response for such flows must still be carefully evaluated. 
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Figure 4. Resonance conditions for an isolated blade row operating in 
a subsonic free stream. 
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Figure 5. Effect of Mach number on the far-field acoustic response of an 
isolated blade row operating in a subsonic free stream; Q = 45 deg: 
(a) axial wave number vs. circumferential wave number; (b) attenuation 

constant vs. circumferential wave number. 
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Figure 6. Effect of flow angle on the far-field acoustic response of an 
isolated blade row operating in a subsonic free stream; M = 0.8: (a) and 

(b) as in figure 5. 
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Figure 7. Resonance conditions for an isolated blade row operating in 
a supersonic free stream. 
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Figure 8. Effect of Mach number on the far-field acoustic response of 
an isolated blade row operating In a supersonic free stream; Q = 60 deg: 
(a) axial wave number vs. circumferential wave number; (b) attenuation 

constant vs. circumferential wave number. 
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Figure 9. Effect of flow angle on the far-field acoustic response of 
an isolated blade row operating In a supersonic free stream; 

M = 1.3: (a) and (b) as in figure 8. 
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Figure 10. The potential response to concentrated walte vorticity; 
G = 1, Voo = 1, S2oo = 45 deg. 0 = 0. 
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Figure 11. Axial vs. circumferential wave number of the far-field 
acoustic response associated with the example cascades; G = 1, 
e = 45 deg: (a) flat-plate cascade; M = 0.8, Q = 45 deg; (b) DCA 
cascade; M_oo = 0.8, S2_oo = 49.4 deg, Mo© = 0.62, Qoo = 43 deg. 

87-3-27-12 



R87-957333-1 

1.0 
a) = 0.5                                    a'""^ , 

0.5 

m       0 

/ 
^^> 

-0.5 } 
-1 n ^—1—■^\            1            1 1 

^ 

m 

a(-) o( + ) 
0.5 

r T 
_,^ — — .^ 

a; = 1,0 

/ 
^ 

^^ ■>^ 

\ 
\ 

/ \ , 
0 

-0.5 ^^L, "^ *^ -^1 
1 

-1.0 

- Tt - 2 n/3 - Ti/3 Ti/3 2TI/3 

Figure 12. Unsteady moment vs interblade phase angle for torsional 
blade vibrations of the example flat-plate cascade: in-phase 
component (real part);  out-of-phase component (imaginary part). 
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Figure 12. (cont.) Unsteady moment vs Interblade phase angle for 
torsional blade vibrations of the example flat-plate cascade:  
in-phase component (real part); out-of-phase component 

(imaginary part). 
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Figure 13. Unsteady pressure difference distributions due to torsional 
blade vibrations at o= -1 for the example flat-plate cascade: (a) in-phase 

component; (b) out-of-phase component. 
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Figure 14. Unsteady pressure difference distributions due to torsional 
blade vibrations at o = 2 for the example flat-plate cascade: (a) in-phase 

component; (b) out-of-phase component. 
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Figure 15. Unsteady potential distributions on y=:0'*' for torsional 
blade vibrations of the example flat-plate cascade; numerical 
solution domain extends over -1 < |/cos 0 <2: in-phase 

component;  out-of-phase component. 
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Figure 15. (cont.) Unsteady potential distributions on 7 = 0"^ for 
torsional blade vibrations of the example flat-plate cascade; 
numerical solution domain extends over   -1 <|/cos 0 <2: 
 in-phase component;  out-of-phase component. 
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Figure 16. Unsteady moment vs interblade phase angle for torsional 
blade vibrations of the example DCA cascade: in-phase 
component (real part); out-of-phase component (imaginary part). 
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Figure 16. (cont.) Unsteady moment vs interblade phase angle for 
torsional blade vibrations of the example DCA cascade:  
in-phase component (real part);  out-of-phase component 

(imaginary part). 
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Figure 17. Unsteady pressure difference distributions due to torsional 
blade vibrations at 0= -1 for the example DCA cascade: (a) in-phase 

component; (b) out-of-phase component. 
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Figure 18. Unsteady pressure difference distributions due to torsional 
blade vibrations at o = 2 for the example DCA cascade: (a) in-phase 

component; (b) out-of-phase component. 
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Figure 19. Unsteady potential distributions along the reference 
stagnation streamline for torsional blade vibrations of the 
example DCA cascade; numerical solution domain extends 
over -1 < |/cos 0 < 2: in-phase component;  

out-of-phase component. 
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Figure 19. (cont.) Unsteady potential distributions along the 
reference stagnation streamline for torsional blade 
vibrations of the example DCA cascade; numerical solution 
domain extends over -1 < |/cos 0 < 2: in-phase 

compoent;  out-of-phase component. 
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