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COMPUTATIONAL METHODS FOR LOW VELOCITY

PERFORATION OF METALLIC PLATES

1. INITRODUCTION

The ability of a projectile to perforate a target can be assessed by
comparing its kinetic energy with the mechanical work required to produce a
hole of the appropriate size and shape In the target. Estimation of the
mechanical work to produce a Dole requires a knowledge of the deformation
mechanisms and depends in a complex way on1 such aspects as shape, size,
velocity and mass of the penetrator, and the Impact obliquity, as well as the
density, mechanical and thermodynamic properties of the target material. Two
basic approaches have been adopted towards the solution to this type of
problem, viz, analytical models and computer code techniques.

Analytical models of penetration are developed by limiting the scope
of the problem to narrow geometric conditions. An early example was the work
of Taylor (I] on the perforation of metallic plates by pointed projectiles,
followed notably by Thomson 121 who produced a solution for dishing failure of
thin plates. A number of models of other failure modes have been produced
(3-51, which all have simple analytical solutions with an equation relating
projectile critical velocity to target dimensions and material properties.
In an effort to better describe the sequence of events during penetration more
complex analytical approaches have developed out of the simpler solutions, in
.particular looking at plugging failures which are produced by flat ended
projectiles [6,7). A numtber of classifications ^f target failure have been
produced and these are presented, with discussion of concepts and models in a
number of reviews 15-10 1. The analytical approach suffers from a loss of
generality, however It has several advantages in allowing efficient parametric
studies, demonstrating the physics clearly and highlighting important aspects.
and the techniques generally allow sa solution to a problem within
reasonable time and cost constraints. Xome analytical solutions are
predictive because assumptions on hole size and deformation mod* built Into
the model allow a result to be obtained with limited impact configuration and
material property data. other approaches are descriptive as they allow the
progress of perf oration to be analyzed but only after some post perforation
measurements on hole geometry have been made.
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The second approach is to use computer code techniques, finite
element or finite difference, which divide both the target and the penetrator
into a large number of interconnecting elements and In each element the
equations of motion are solved, along with the equations of compatibility and
material constitutive relations, as the problem steps forward in time. A
large number of codes are available for both localized Impact response and
structural response, and there have been several review* of the technology
110, 11-131. The computer codes find their niche in combination with
experiments In the detailed design of structures, and aa an aid to
understanding the evolution of deformation features In Impact events. By
themselves codes do not guarantee a complete numerical solution to a specific
impact event.

There has been a keen interest in recent times in one particular
class of problem which Is characterized by low Velocity Impacts (below normal
ordnance velocities) of the order of a few hundred metres per second or less,
involving blunt or flat ended projectiles and relatively thin targets In
comparison to the projectile diameter. Such a situation generally results in
the formation and ejection of a plug from the target and a structural response
evidenced by a large permanent dishing displacement of the plate. The
problem Is one of Interest for safety in many civil and military
applications, in practice it is common for the conditions to be Ill-defined
in that only broad estimates of likely Impact situations are possible, thus
the methods for solution must be adaptable and efficient. A number of recent
papers (24-22J prevent experimental data and model solutions for cases
involving plugging of plates and both empirical approaches 1231 and problems
of scaling 1241 are considered.

In this report two methods of approaching low velocity perforation
problems are presented. The first involves assessment using a simple set of
analytic equations. The second approach uses a structural mtodel which
describes the sequence of dishing, stretching and plugging of the target and
requires a computer solution. Comparison with empirical data and an
examination Of the deformations occurring In Impact events enables a
constructive approach to considerations of how to handle such problems. it
is a prime objective of this work to provide a set of simple tools which can
easily be applied, as many of the techniques presented in the literature are
In outline only and require a computer program to be written by the user, or
they require some experimentation which is not always possible or desirable.

2. SIMPLE MODEL SOLUTIONS

If the discussion is limited to ductile metallic targets and
projectiles which are substantially non-deforming during the interaction, then
it is possible to derive simple equations for perf oration depending on the
deformation mode. For a pointed projectile material is generally pushed
radially to the side when the projectile impacts the target as in Fig.
I(&). This mode of failure is generally called ductile hole fozzitiofl.
Taylor [II developed an equation for the work done In expanding a hole from
zero diameter, out to the projectile diameter and this has been shown 131 to
give a reasonable estimate of the work dome in penetrating a target by the
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ductile hole formation mode. The work done CV is given in terms of
projectile diameter (D), target thickness Ch) and target strength (a 0 by

2 0

If the target Is thin (thicknes learn than the projectile diameter)
then there is a tendency for it to bend forward In the direction of
penetration and produce a dishing failure, Fig. 1(b). In this case work is
done in stretching elements of target out to the diameter of the projectile
and also in bending the plate. An equation for the work done is

W Dh CD + wh)a (2)a 0

For a flat ended penetrator, target material is constrained to move
ahead of the penetrator so that a plug is pushed out, Fig. (C). Under these
circumstances the acceleration of material ahead of the projectile must be
considered as well as the plug shearing stresses, and generally significant
thinning of the plug is observed. This process has been modelled in detail
(6,7,16-191; however for thick plates most of the work done Is involved with
shearing of the plug. Thus an underestimate can be made as the work done In
simply shearing a plug of diameter D from the plate of thickness h, namely

W .Dha (3)

For thin plates Impacted by flat ended projectiles dishing Of the plate will
also occur and this is not accounted for in equation (3).

The choice of strength or flow stress parameter (a ) to be used in
equations C(1) to (3) is determined by the fact that the processass are ones of
large strain deformation, and dynamic loading so that a high estimate of
strength of the material is generally better. As most stress/strain data Is
determined at comparatively low strain rates the preferred choices have been

Ca) to fit stress/strain data to a curve of the form

0- Go (4)

Where a and 1 are stress and strain respectively, and the
constants a and n are obtained using a log/log plot. The constant
owhich is0testress at a strain of 1.0 Is used for the strength.

(b) to use the ultimate tensile strength CUTs) of the material
if this is all that Is available.

Using the above methodology it is generally found that equation C1)
overestimates the work done in penetration, equation C3) vastly underestimates
It for thin targets where dishing is a major consideration, and equation (2)
Is In the correct range. Examples of such results are presented later f or



comparison with solutions using the structural model below. Equations (1) to
(3) have the advantage that being simple, the solution can be obtained rapidly
by hand.

3. STRUCTURAL MODEL

Because the problem of blunt projectile impact on a thin plate
involves localized damage as well as structural deformation, a model was
developed which takes both aspects into account, and is based on a rigid
plastic solution for the central impact on an infinite beam developed by
Symonds (25]. The basic geometry is shown In Fig. 2. impact of a
projectile Of Mass G at a sufficiently high velocity vo onto an infinite beam
causes shear sliding deformation at the impact site If the shear stress 0 pIn
the beam equals the shear yield stress of the beam material. The beam bends
around a plastic hinge a distance z from the Impact site. Solution of the
equations of conservation of linear and angular momentum allows the position
of the hinge and the velocity of rotation to be obtained as a function of
time. This geometric configuration can be transformed to that of a plate if
appropriate alterations are made for the moment of inertia and mass
distributions. Figure 3 Shows the geometry where a projectile of velocity
VO, diameter 2R0 , and mass G impacts a plate of thickness ho. The equations,
which have been derived elsewhere (26], are outlined below with the method of
solution.

Figure 3 divides the process into two stages. In stage I the plug
and projectile slide at a velocity Y', greater than the velocity of adjacent
plate movement, V. The plate rotates about a hinge at position z. Equating
the impulse of the force, Q%, to the change In momentum on either side of the
plug/plate interface gives

GV 0 - aV' - 020V' f 20 pdt (5a)

m z
0 -CR + IZ)v (5b)

2 0 3
where m0  - 2wph 0(6)

G is projectile mass,

V 0  is projectile Impact velocity,

VI is the plug velocity (projectile and plug assumed to move together)

V is the velocity of the plate adjacent to the plug,

h0is the plate initial thickness,

ROIs the projectile radius,

z is the hinge position, measured from the plug/target Interface,

P is the plate density, and

t Is time.
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similarly equating the change in angular momentum to the impulse of the torque
gives

GVz+ G + I moR 2V. + . moz2 V(R + I z)- -2f(M + M )dt (1)
0 2 00 3 0 0 4 J po pz

where Mpo and Mpz are the plastic moments at the projectile radius and the
hinge position respectively.

The equations differ from those of Symonds [251 in including the
mass of the plug, in using a mass distribution appropriate to a plate and
allowing the impact to operate over the full projectile diameter rather than
at a central point.

The shear force at the plug/target interface is given by

Op - -L-R 0h Y()

and the moments at the plug/target interface and at the hinge position z are
given respectively by

M - R 2y (ga)
po 4 0

M  - '(R O + Z)ho
2Y (b)Mpz 4 0 0

where Y is the material yield stress and

h is the reduced section contact area at the plug/target
interface due to shearing.

Equations (5) to (9) can be combined to give a quadratic equation
for z which can be solved at each time step. The Initial position of the
hinge z is found to be Ro/3 and this increases with time. Solution of the
equations shows that the velocity of the plate, V, increases with time until
it either shears out as a plug or it equals the plug/projectile velocity V1.
At this point shearing of the plug ceases as the relative plug/plate velocity
.is zero and the plate continues to stretch as a membrane with bending
continuing to occur at the hinge position z. This is referred to as stage II
and the conditions are shown in Fig. 3.

To simplify the calculations in stage II it was assumed that at the
projectile radius the yield stress in tension is exceeded across the full
section of the plate. The membrane force Fp is ther

F - wRhY (0)
p 5



and the bending moment at z - 0 is zero. At the hinge position, z, the full
plastic moment, MpZ is again given by equation (9b). However, because of the
membrane force F a reduced moment M acts (27,281, which is given in terms
of Kpz as pz

Rh
o ( 0 12

pz pz (P 0 + ZC h

The equations for angular and linear momentum, respectively, in
stage II are

1 1 oo2ZA 1 mo2 1IGzAV Cos I + I m R zAV Cos S + - M (R + I z) AV Cos e
2 400 6 0 0 4

- - (1' + F z Sin e) At (12)
p p

GAV + I m R 2AV + - M Z + - z) AV + M (R + - z) VAz - 0 (13)
2 00o 2 o 0 3 0 0 3

where e is the angle through which the plate is bent,

At Is the time step,

AV is the change in velocity and

Az the change In hinge position.

Terms of the type AzAV have been ignored. As z is known at the
start of stage II, equation (12) can be solved for AV and equation (13)
for Az at each time step. Thus at each time step the moments, change in
velocity, change in hinge position and the new angle a are calculated. As
the plate is deforming as a membrane in tension and as there is a reduced
section at the plug/plate interface, the expected failure is a tensile
fracture at that point. A suitable failure criterion is required to
calculate the amount of membrane stretching before f-acture.

Consider the simplification that in stretching as a membrane in
tension the plate behaves as a linearly tapered tensile sample and has linear
strain hardening of the form

o - a + (14)

where a is the flow stress and

( is engineering strain,

a and are constants.

The situation is depicted in Fig. 4, and considering the plate as stretching

radially from the plug diameter, the angle of taper is 2w. The strain at
any position, under these conditions, Is inversely proportional to radial
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position, and the mean strain, M, in the membrane can be related to the
strain t at the inside radius Ro and the maximum radius of yielding, RI, by

RI R R R1= [ o in - - (R- ) + I|1e (15)
m 1 2 InR -(R -R)

(R R -R) o 1

In the particular case of linear work hardening

R I + P (is)
R a 0
0

Thus the mean strain Is given in terms of the strain at Ro by

a(a + O) t a 4'o
I- In ( ) - -J (1,1)

m 2 a
O0e0

At fracture t equals ', the fracture strain in tension of the

material. Thus equation (17) gives a value for the mean membrane strain in
the dished material at fracture in terms of the material characteristics
-, P and i . ef can be obtained from a simple tension test and a and 0 by
fitting the material stress/strain characteristics to equation (14).

In carrying out the calculations of stage II, the change In angle
of dishing Ae in each step is converted into an Inc-iment of mean membrane
strain Ae . At each step the cumulative mean membrant strain within the
dished region, which extends to the hinge at position z, is summed till
equation (17) is satisfied with e equal to # for the material. At this
point the plate is considered perforated due to fracture at the periphery of
the plug. This approach to failure is very simplified in many aspects,
Inclualng the use of engineering strains, the assumption of a unlaxial stress
state In a tapered tensile geometry for the membrane stretching of the plate,
the incrementing of strains with changes in dishing angle, and the simplified
approach to the material properties. The method has however provided a
consistent picture when applied to a number of cases which have been examined
and is used at this stage for want of a more rigorous incremental procedure.

As the model is for ths consideration of impacts below conventional
ordnance velocities consideration must be given to the possible effects of
clamping of the target plate if this is close enough to the impact site to
influence the plate deformation. This is easily done computationally by
including an option for the maximum value of the hinge position z as the
position of the clamp.

The program listing of the structural model called DASH Is given in
the Appendix with a typical listing of input data. A variety of output



parameters are provided for, and a typical output listing is given for the
input data provided.

4. DISCUSSION AIDCOPRSNFMDLREUT

The simple analytical models presented restrict the deformation
considerations to one simplified mode in each case. The structural model on
the other hand allows for bending and stretching of the plate as well as
shearing of a plug. The mechanism of plug separation for thin plates
described in the model can be by a tensile failure or a shear fracture
depending on the material and Impact velocity, and this is In accord with
observations of plug separation in thin plates. For example, Fig. 5 taken
from Levy and Goldsmith [211 is one of many examples clearly illustrating the
tensile separation of a plug. Shear failures by sliding off the plug are
described In the model for thick targets and higher velocities of impact and
this occurs directly from stage I. Thus the structural model conforms
qualitatively with experience.

Shadbolt et al. [161 present a comparison of several models with
experimental data for perforation velocity as a function of thickness for mild
steel, aluminium alloy and stainless steel targets. The same data are
compared with the analytical solutions for ductile hole formation failure,
equation (1), dishing failure, equation (2), and plugging failure, equation
(3), as well as the structural model In Fig. 6. It Is noted that in each
case the simple plugging solution greatly underestimates the critical
velocity, whereas the experimental data generally lie between the ductile hole
formation and dishing solutions. The structural model gives similar results
to the dishing solution. Examination of the energy absorbed by different
deformation modes, membrane, shearing and bending work, in the structural
model gave very similar results to the approximate experimental estimates of
Corran et al. [15] for the mild steel shots. Whilst the use of the
structural model Is a better approach these comparisons indicate the degree to
which the simpler solutions can be used as useful approximations.

Scale up to larger size missiles can be assessed to some degree
using the results of Neilson [23] produced at the Atomic Energy Establishment,
Winfrith, UK, for impacts on mild steel plates from I to 25 mmn thick.
Missile diameters up to 85 mm and masses to 20 kg were used. Table I
compares computations using the structural model with the experimental
data. Given the need to estimate miaterial properties the agreement is
good. For the tests A and B using the lower strength steel the only
difference was the span width of the target which influenced the model
solution in the correct manner. For all other examples the span was
sufficient that it did not Influence the calculated critical perforation
velocity.

As the objective is to give a more general solution which can be
applied to estimate behavior with limited knowledge of material data and only
a broad appreciation of the likely Impact conditions the structural model was
also tested for the Impact of spheres on hollow steel tubes. Photographs of



typical failures observed by Xiaoqing and Stronge C221 showed that the basic
deformation modes Involve dishing and plugging, so that even though there is
curvature in the target it is worth examining the structural model to see if
It can be used to estimate ballistic limit velocities for various tube wall
thicknesses and ball diameters. The comparison of experimental data With the
calculated solutions in Fig. 7 again Shows a correct order of magnitude
estimate and correct trends with projectile diameter and tube thickness.

r The diverse cases examined show the areas of applicability of the
structural model and that it can be relied upon to give useful broad
predictions of behaviour within what is acceptably possible from the theory of
plasticity. The structural model and the simple analytical solutions are in
a form which can easily be applied by practising engineers. A particularly
valuable aspect is that rapid estimates of the influence on design variations
of factors such as projectile diameter and mass and target thickness and
material characteristics, can be obtained.

5. CONCLUSION

This report outlines two approaches to making estimates of the
resistance of thin plates to perforation by low velocity Impacts. One
technique uses a set of analytical equations arnd the alternative method uses a
structural model which requires a computer solution. The approaches are
compared with published experimental data for projectile Impacts to indicate
the level of certainty expected from predictions. The essential purpose of
the methods is to give guidance on the overall level of protection offered by
a plate where the material properties are not accurately known, impact
conditions are only broadly defined and experiments are not possible.
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TABLE I

Comparison of Neilson [231 Data with Structural Model Calculations

SPAN TLhE PR03ECTIEE WO3UE CCDESGNTICK wmTH 7CEESS DIAMM HmS UTS* EXE p CAICMAITU
(mv (fm (= (kg) (Hp) (VI-11 (m-1)

A 220 1.0 32 4.3 320 12.5 17.5

B 127 1.0 32 4.3 320 9.5 12.5

C 588 15 63 19.8 470 80 75

D 588 25 63 19.8 470 102 101

E 1500 6 85 9.72 473 79 65

F 1500 12 85 9.72 473 99 91

G 1500 6 43 1.22 473 98 91

H 280 1.0 40 1.0 420 43 42

I 280 3.0 40 1.0 420 83 67

Parameters used for structural model calculations (equation 14)

A and B Yield strength (Y) - a - 220 MPa, 0 - 360 MPa, ef - .37

C to I Yield strength (Y) - a - 340 MPa, 0 - 260 MPa, ef - .37



APPENDIX

The computer program for solution of the structural model is called
DASH. The input file is called DASI.DAT and there are three output files
DASP.DAT, DASA.DAT and DASO.DAT. The units for input data are indicated in
Table Ai and all calculations and output are in SI units. There are a
limited number of comment statements in the program to identify the major
steps and the output parameters. For problems where the width of span is
unimportant, 99999. will assume the plate Is of infinite span. In other
cases the maximum hinge position Is limited by the input width of span. Table
A2 gives a typical output listing for the data of Table Al.

TABLE Al

Typical Input - DASI.DAT (Mild steel target)

Parameter Value Units

Projectile diameter 12.7 mm

Target thickness 3.0 MM

Target density 7.8 g cm-3

Target yield strength 220. MPa

Projectile mass .0346 kg

Impact velocity 100. ma-1

a (equation 14) 220. MPa

o (equation 14) 360. MPa

Fracture strain e ) .37 dimensionless

span Width 99999. m

TABLE A2

Typical Output - DASO.DAT*

T H Z V X

0.000128 0.00202 0.0184 35.6 0.0067

PKE WS WD WT RIE TE

23.9 22.5 62.6 30.3 7.1 136.4

- : t* see program listing for identification of symbols
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LISTING OF PROGRM DASH

*C DASHFOR
C PROGRM FM~ PENETRATION OF THIN TARES
C WRITTEN BY RAYMND L IOMMM,DEPT OF DEFUICE,
C MkERIALS RESEACH LAOMTRAIrIES,

*C MAIBYNN 1986
OPEN(UNM1T1, FILE- IDASI .DATI, ,STATUS' IOWI)
OPEN(UIIT.2,7FILE-IDASF. DAT, ,STATUS- INEW')
OPEN(WIIT-3 ,FILE-'DASA.DAT' ,STMTUS-'NEI')
OPEN(UNIT-4, ,ILE-'AS.DAT', ,sTaus-'NW,)

21 FWAT?( 710.2/71.2/76.3/77.1/710.3/77.1/77.1/77.1/75.3/78.1)
23 FMT(71.8,4X,10.1,4X,10.1,4X,F1.1,4X,710.1,4X,78.5,4X,Fl2.3

1, 4X,F10.5,4X,F10.5)
22 FONAT(1.8,4x,1.5,4X,10.5,4X,F1.5,4X,F10.1,4X,Fl0.1,4X,76.1

1, 4X, 76. 1)
24 FOaMRT(3X,10.6/3X,F10.6/3X,8.1/3X,F12.0/710.5/3X,76.1,

1/3X, 712 .0/3X,712.0/3X, 76.3/3X,78 .1/3X,712 .1)
25 FEHT(2X,F1.6,2X,8.5,2X,8.4,2X,6.1,2X,2x,7.4,F10.1,2x,F10.1

1, 2X, 710. 1, 2X,F10. 1, 2X, F10. 1, 2X, F10. 1, 2X, 710. 1, 2X, F10. 1)
28 7OENT(71.8,4X,10.5,4X,71.5,4X,F6.2,4X,F10.1,4X,F10.1,4X,710.1

1, 4x, F10. 1, 4x, 710. 1, 4x, 76. 1)
26 FORMIT( T4, 'PROJECTILE TEUGI)
27 FMMIT(T4, 'PMXMCTILE STOPPm'I)
29 FORMAT(TWTIME EUMEUED')
64 7OKNAT(6X,'T'1OX,'H'1OX,'Z'10X,'V'1OX,'X'9X,'PKE'9X,'WS'9X,'
1WB'9X'WT'9X, 'RKE'9X, 'TE')

65 7ORMAT(6X,'T'12X,'Z'12X,'X'14X,'XP'12X,'PKE'10X,'TE'10X,'VI
iiOx, 'VP')

66 FOUNATC6X, 'T'14X, 'PKE'12X, 'WS'11X, 'NB'12X, 'RKE'9X, 'H'
114X,'BMI'11X,'Z1',11X,'Z2')

67 FORNT(6X, 'T'12X, 'Z'12X, 'X'12X, 'rDO'1.X, 'ws'12X, 'm'12X, 'WrI
iliX, 'PKE'12X, 'TE')
BEAD(l 121) DO, HO, RHO, SO,ASS ,VEL,ALPA, BETA, EF, SPAN

C
C DO PROO DIAM M
C HO) TARGET THICKNESS Mk
C RO TAGT DENSITY MIVCC
C SO TARGET YIELD STRENGTH 4PA
C ASS PROJ 1MASS KG
C VEL PROJ VEL "/
C PLPA STRAIN H RDEU1G REAnON TRGE
C BETA YSAP+EKSRI (1'WA)
C EF FRACTURE STRAIN IN TENSION TEST
C SPAN V'ThL WIDTH OF TEST PIECE M IF tUMP. USE 99999.

1K)-IK)000
RODO/20O0
RB~R3*1000
SOmSO*1000000.
ALPAMALPA1000000.
BE'R-SEA*1o0O00.
ZMAXj-(SPA-DO)/2000
DUF -W*(C(ALPA' (ALPA.4r=*HF)/( (BETA$E) **2) ) ALOOC 14SEM*3F/

1ALPA)-ALPA/(BZTA*EF))

SK~mM*(V7,**2 )4

T________0__



30.n6. 28318*NOI*80
C QI isS urm F INT~ahL

C U 1S 9=DG NaMrN INTZIAL

31-0
WT-c

FlqASS'VxL

r2-AS54.UID*(RD**2)/2
X-0
'P-C
z1-0
Z2-0

C TIM STEP FOR FIRST SU
DT-.008O19*ASS*V3.*NMO*ao/( (ASS+4.044*NI0*HD*(W**2) )*50)

C
c MITES OUT INPUTSSINITIAL KE

WRITEC 4,24 )DO,90,NIO, S0,ASS ,VEL,ALPA,DET, EF, SPAN, SE
UITE(4,64)
WITE(2,65)
tIRITE(3,66)

C
C INITIAL PHRSE Or 3fIWING AND SHERING TILL VEL BENDING PLAIE
C EQULS PLIZ,'PROJ VEL
C

DO 72 1-1,500
QP-1 .814*H*90*RO
01-01+2*QP*DT
VP- Fi-QI )/F2
IF(VP.LE.V)GO 70 73
Ak-3'QI
B-WO*QI-2*3NU
0.6*3MI*3O
Zl-(-S+SKT( (B**2)-.4*A*C) )/(2*A)

zZ2--=(*2-**)/2A

V..2*QI/( U4*Z* (RO*Z/3))
X-X+V*DT
'P-m'P+VP*DT
H-1K-(XP-X)
PKE..F2*(VP**2)/2
WS-WS+2*QP* (VP-V) *DE
IF(Z.GT.0)00 TO 32

0O TO 33
32 lM,.M+1.5708*SO*V*DT*(80*CH**2),(RO04)*(H0**2))/Z
33 RKM-1.0471*80*RUO*Z*(804.Z/4)*(V**2)

TE-PKE4S+RXE

DMMCe(80*(N**2)+(804.Z)*(NO**2) )*.7853*O*DT

C T-TINU, Z-HI1 POSITZCN,X-DIWPL. PZU,'-DISIL. IUW,
*C PEE,-PROj. KE,1B-1TML o w, v-VKL 1LA~g,Wp-vEL P1W.

WRITEC 2,22 )T,ZX,XP,PK,TEDV,WP
C



C OUTPUIT OF.BA.DhT
C T-TIM,PU-PRO. UE,WS4MWZ UIER,MB-4CK SENDNGW-MMMORL, KE,
C H-PW*/P!.ATZ c.UNTCT LXNMA,BI-ZD~ MT! INTEAL,
C Zi-INVALID GUDR.TIC R3lOT,Z2-VALID HOOT HINZE POSITION.

iSITEC 3,23 )T,PU,WS,W,KE,H,DM,Z1,Z2
Ir(H.LZ.0)00 70 75
Ir(VP.LT. .1)00 TO 76

72 CONTINUE

C SECON STAGE Or WDIfG AND STBETOW TILL FR&CTLJDZ
C CONITON ECEEE

73 V-VP
THR-ATAN2(X,)
om-Z/Ws( THR)
rT-6 .2832*U0*H*SO

zP-Z
DF(1/tVS(THR) )-1

C TINlE STEP SET FOR SCN PURSE

DT-H/( W*EL)
31-0
WRITE(2,67)
riD52 N-1,5000
SMP-1. 5708*9O* (O+Z) * (H**2)
SMPP-SP* (1- (R0*H/C (R.e.Z*HD) ) **2)
DV.(SMCPP-FT*Z*SIN(TW) )*DT*2/( (F2+EDV*Z*(RO.Z/4)/3)*Z*CO6(1IIE))

V-V+DV
X-X4V*DT
ITIE-A2!N2 (X,Z)

M4+ (SMP+FT*Z*SIN(1IE) ) (THE-TP)
Z-Z+DZ
IF(SPAN.GT.99998.)Q0 TO 109
IF(Z.LE.ZNRX)00 TO 109
Z-ZmRX

109 FUF-2*(V**2)/2
3K~in.0471*D*ND*Z*(R4.Z/4 )*(V**2 )/(C06(THE)**2)
WT.FT OS (THIE) * ( ZP,'VOS (THE) -ZP/,W6(THIP))

THv-ATN2(X,Z)

T-T+DT

TH-THLP57 .296
ir(DUw.LEc.(zm-aF))oD 70 75
IFCV.LT. .1)G0 TO 76
Do 63 1-1,200
XIC-1*25
!?(N-INC)52,53,83

83 C~fTfIN
C
C OUTPUT! M8.
C
C T-TIU, Z-M=E lOB ,X-D!SIL. FLAWl, I-BEN RNE PLATE DME
C wo-Im DSiN,-wwh. Uc,wT-IWuEIJ ww,



C PKE-POJ. RE, TE-2VTA ENERY.
53 NRXTE( 2,28 )T. Z ,X, T109 1,RKE,WT, PXE,TE
52 OONTiriw

NRITE( 4, 29)
00 TO 77

75 I.T(4,26)
0O TO 77

76 WRT(4,27)
C
C OUTIr I ASO.VAT
C MAJOR MryPUr PARAMETDB * T-TZIE, H-KAW M= MITRWCT LOOMH,
C Z-FIriL HIW POSITIORN, V-PLUG/PRDJ VEL, X-DIBHING ARIT,
C PI-PRO7 RE, WS-WORK SHEAR, MU-4M BEDnDG, Wr-TEMSION MMK,
C RRE-REARY IM OF PLATE, TE-TUL ENERGY

77 WRITE(4,25)T,H,Z,V,X,PRE,WS,W,WT,RKE,TE
STOP
EDD



(a) RADIAL FLOW

(b)

(C)

FIGURE 1 Mechanismsa of failure of ductile metal target.
(a) Ductile hole formation failure, (b) dishing failure and
(c) plugging failure.

FIGURE 2 impact of a mass a with velocity v 0 on an Infinite bem
shearing and beading occurs at the impact site and bonding
at a hinge, distance z from impact.
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FIGURE 5 Perforated plate showing the dishing and plug separation
associated with perforation by a blunt projectile. Tbe
failure mechanism Is a tensile fracture. From Levy and
Goldsmith 1211.
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FZGORZ 6 Comparison of solutions using the models for ductile hole
formation (DsR), equation (1). dishing, equation (2),
plugging, equation (3), and the Structural model With the
experimental data Of Corran et &1. (15,161. (a) mild steel
targets, (b) aluminium alloy targets and (c) stainless
steel targets.



STRUCTURAL MODEL *1-22 mm WALL THICKNESS

CALCULATIONS - a 2-1 om

A 3-3 mm-
E XPERIMENT
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FIGURE Comrisobe of dfempiricall thfrmknesqs and tffrnet2I

projectile diameters with predictions using the structural
model. Results are offset at each missile diameter to
distinguish the different tube size results more clearly.
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