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scale missile impact or a very small fragment, are characterized by the

introduction of both intense localized deformations and low

strain structural

deformations of the target. This report describes techniques which can be

used to obtain estimates of the response of a thin plate to

such an impact.
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COMPUTATIONAL METHODS FOR LOW VELOCITY

PERFORATION OF METALLIC PLATES

1. INTRODUCTION

The ability of a projectile to perforate a target can be assessed by
comparing its kinetic energy with the mechanical work required to produce a
hole of the appropriate size and shape in the target. Estimation of the
mechanical work to produce a hole requires a knowledge of the deformation
mechanisms and depends in a complex way on such aspects as shape, size,
velocity and mass of the penetrator, and the impact obliquity, as well as the
density, mechanical and thermodynamic properties of the target material. Two
basic approaches have been adopted towards the solution to this type of
problem, viz. analytical models and computer code techniques.

Analytical models of penetration are developed by limiting the scope
of the problem to narrow geometric conditions. An early example was the work
of Taylor [1) on the perforation of metallic plates by pointed projectiles,
followed notably by Thomson [2] who produced a solution for dishing failure of
thin plates. A number of models of other failure modes have been produced
[3-51, which all have simple analytical solutions with an equation relating
projectile critical velocity to target dimensions and material properties.

In an effort to better describe the sequence of events during penetration more
complex analytical approaches have developed out of the simpler solutions, in

_particular looking at plugging failures which are produced by flat ended

projectiles [6,7). A number of classifications ~f target failure have been
produced and these are presented, with discussion of concepts and models in a
number of reviews [8-101]. The analytical approach suffers from a loss of
generality, however it has several advantages in allowing efficient parametric
studies, demonstrating the physics clearly and highlighting important aspects,
and the techniques generally allow some solution to a problem within
reasonable time and cost constraints. some analytical solutions are
predictive because assumptions on hole size and deformation mode built into
the model allow a result to be obtained with limited impact configuration and
material property data. Other approaches are descriptive as they allow the
progress of perforation to be analyzed but only after some post perforation
measurements on hole geometry have been made.




The second approach is to use computer code techniques, finite
element or finite difference, which divide both the target and the penetrator
into a large number of interconnecting elements and in each element the
equations of motion are solved, along with the equations of compatibility and
material constitutive relations, as the problem steps forward in time. A
large number of codes are availzble for both localized impact response and
structural response, and there have been several reviews of the technology
10, 11-13]. The computer codes find their niche in combination with
experiments in the detalled design of structures, and as an aid to
understanding the evolution of deformation features in impact events. By
themselves codes do not guarantee a complete numerical solution to a specific
impact event.

There has been a keen interest in recent times in one particular
class of problem which is characterized by low velocity impacts (below normal
ordnance velocities) of the order of a few hundred metres per second or less,
involving blunt or flat ended projectiles and relatively thin targets in
comparison to the projectile diameter. such a situation generally results in
the formation and ejection of a plug from the target and a structural response
evidenced by a large permanent dishing displacement of the plate. The
problem is one of interest for safety in many civil and military
applications. In practice it 1s common for the conditions to be ill-defined
in that only broad estimates of likely impact situations are possible, thus
the methods for solution must be adaptable and efficient. A number of recent
papers [14-22] present experimental data and model solutions for cases
involving plugging of plates and both empirical approaches [23) and problems
of scaling (24] are considered.

In this report two methods of approaching low velocity perforation
problems are presented. The first involves assessment using a simple set of
analytic equations. The second approach uses a structural model which
describes the sequence of dishing, stretching and plugging of the target and
requires a computer solution. Comparison with empirical data and an
examination of the deformations occurring in impact events enables a
constructive approach to considerations of how to handle such problems. It
is a prime objective of this work to provide a set of simple tools which can
easily be applied, as many of the techniques presented in the literature are
in outline only and require a computer program to be written by the user, or
they require some experimentation which is not always possible or desirable.

2. SIMPLE MODEL SOLUTIONS

If the discussion is limited to ductile metallic targets and
projectiles which are substantially non-deforming during the interaction, then
it is possible to derive simple equations for perforation depending on the
deformation mode. For a pointed projectile material is generally pushed
radially to the side when the projectile impacts the target as in Fig.

1(a). This mode of failure is generally called ductile hole formation.
Taylor (1] developed an equation for the work done in expanding a hole from
zerc diameter, out to the projectile diameter and this has been shown [3] to
give a reasonable estimate of the work done in penetrating a target by the




P

ductile hole formation mode. The work done (W) is given in terms of
projectile diameter (D), target thickness (h) and target strength (oo) by

® 2
W = 2 D°n o, (1)

If the target is thin (thickness less than the projectile diameter)
then there is a tendency for it to bend forward in the direction of
penetration and produce a dishing failure, Fig. 1(b). In this case work is
done in stretching elements of target out to the diameter of the projectile
and also in bending the plate. An equation for the work done is

W = i—nn (D + *hdo, {2)

For a flat ended penetrator, target material is constrained to move
ahead of the penetrator so that a plug is pushed out, Fig. 1{¢). under these
circumstances the acceleration of material ahead of the projectile must be
considered as well as the plug shearing stresses, and generally significant
thinning of the plug is observed. This process has been modelled in detail
[6,7,16~-19]1; however for thick plates most of the work done is involved with
shearing of the plug. Thus an underestimate can be made as the work done in
simply shearing a plug of diameter D from the plate of thickness h, namely

w = - pn% (3)

2J3

For thin plates impacted by flat ended projectiles dishing of the plate will
also occur and this is not accounted for in equation (3).

The choice of strength or flow stress parameter (o ) to be used in
equations (1) to (3) is determined by the fact that the procgssel are ones of
large strain deformation and dynamic loading o that a high estimate of
strength of the material is generally better. As most stress/strain data is
determined at comparatively low strain rates the preferred choices have been

(a) to fit stress/strain data to a curve of the form

o = ootn (a)
where o and ¢ are stress and strain respectively, and the
constants ¢ and n are obtained using a log/log plot. The constant
S, which is the stress at a strain of 1.0 is used for the strength.

(b)  to use the ultimate tensile strength (UTS) of the material
if this is all that is available.

Using the above methodology it is generally found that equation (1)
overestimates the work done in penetration, equation (3) vastly underestimates
it for thin targets where dishing is a major consideration, and equation (2) i
is in the correct range. Examples of such results are presented later for




comparison with solutions using the structural model below. Equations (1) to
(3) have the advantage that being simple, the solution can be obtained rapidly
by hand.

3. STRUCTURAL MODEL

Because the problem of blunt projectile impact on a thin plate
involves localized damage as well as structural deformation, a model was
developed which takes both aspects into account, and is based on a rigid
plastic solution for the central impact on an infinite beam developed by
symonds [251]. The basic geometry is shown in Fig. 2. Impact of a
projectile of mass G at a sufficiently high velocity Vo onto an infinite beam
causes shear sliding deformation at the impact site if the shear stress Q. in
the beam equals the shear yield stress of the beam material. The beam bends
around a plastic hinge a distance z from the impact site. Solution of the
equations of conservation of linear and angular momentum allows the position
of the hinge and the velocity of rotation to be obtained as a function of
time. This geometric configuration can be transformed to that of a plate if
appropriate alterations are made for the moment of inertia and mass
distributions. Figure 3 shows the geometry where a projectile of velocity
Vor diameter 2R, and mass G impacts a plate of thickness ho' The equations,
which have been derived elsewhere (26), are outlined below with the method of
solution.

Figure 3 divides the process into two stages. In stage I the plug
and projectile slide at a velocity V’, greater than the velocity of adjacent
plate movement, V. The plate rotates about a hinge at position 2. Equating
the impulse of the force, Qp, to the change 1n momentum on either side of the
plug/plate interface gives

m°R°2
GV, -GV - —5— V' = jzopdt (s5a)
m 2z
° 1
- (Ro +3 2)Vv {(5b)
where m, = 2:ph° (¢)

G is projectile mass,

is projectile impact velocity,

V' 1is the plug velocity (projectile and plug assumed to move together)

v is the velocity of the plate adjacent to the plug,

h is the plate initjal thickness,

R is the projectile radius,

4 is the hinge position, measured from the plug/target interface,

p is the plate density, and g
is time.




Similarly equating the change in angular momentum to the impulse of the torque
gives

2

. l . -1— 2 -1- S
—Gvoz+GVz+2m°R°Vz+3mon(R°+‘z) 2I(up°+nz)dt (7

p

where “po and “pz are the plastic moments at the projectile radius and the
hinge position respectively.

The equations differ from those of Symonds [25] in including the
mass of the plug, in using a mass distribution appropriate to a plate and
allowing the impact to operate over the full projectile diameter rather than
at a central point.

The shear force at the plug/target interface is given by

Q = '—_Rony (8)
P )

and the moments at the plug/target interface and at the hinge position z are
given respectively by

M - Roth (9a)

po

FeEY

M -

(R_+ 2)n %y (sb)
pz ° °

-

where Y 1is the material yield stress and

h is the reduced section contact area at the plug/target
interface due to shearing.

Equations (5) to (9) can be combined to give a quadratic equation
for z which can be solved at each time step. The initial position of the
hinge 2 is found to be R°/3 and this increases with time. Solution of the
equations shows that the velocity of the plate, V, increases with time until
it either shears out as a pluy or it equals the plug/projectile velocity V',
At this point shearing of the plug ceases as the relative plug/plate velocity

. is zero and the plate continues to stretch as a membrane with bending
continuing to occur at the hinge position 2. This is referred to as stage II
and the conditions are shown in Fig. 3.

To simplify the calculations in stage II it was assumed that at the
projectile radius the yield stress in tension is exceeded across the full

section of the plate. The membrane force Fp is ther

rp - tRth (10)




and the bending moment at z = 0 is zero. At the hinge position, 2z, the full
plastic moment, z is again given by equation (9b). However, because of the
membrane force F_ a reduced moment Mﬁz acts (27,281, which is given in terms

of sz as P

R h

M = M_ {2 2 2

- lg——) (11)
p2 P2 (Ro + z)ho

The equations for angular and linear momentum, respectively, in
stage II are

1 1 2 1 2 1
2 GzaV Cos o + o mR 2AV Cos ¢ + ¢ Mo? (Ro + 1 z) AV Cos ¢
= - (M’ + F 2z sin 8) At (12)
) P
GAV + *mR %av+imz (R + 3 2) AVa+m (R + 2 z) VA2 = 0 (13)
2 oo 2 o o 3 o o 13

where ¢ is the angle through which the plate is bent,
At is the time step,
AV is the change in velocity and
Az the change in hinge position.

Terms of the type 4zZAV have been ignored. As z 1s known at the
start of stage II, equation {(12) can be solved for AV and equation (13)
for Az at each time step. Thus at each time step the moments, change in
velocity, change in hinge position and the new angle & are calculated. As
the plate is deforming as a membrane in tension and as there is a reduced
section at the plug/plate interface, the expected fajlure is a tensile
fracture at that point. A suitable failure criterion is required to
calculate the amount of membrane stretching before f -acture.

Consider the simplification that in stretching as a membrane in
tension the plate behaves as a linearly tapered tensile sample and has linear
strain hardening of the form

o = a+ fe {14)

where o is8 the flow stress and
¢ 1s engineering strain,
s and # are constants.
The situation is depicted in Fig. 4, and considering the plate as stretching

radially from the plug diameter, the angle of taper is 2«. The strain at
any position, under these conditions, is inversely proportional to radial




position, and the mean strain, ¢ , in the membrane can be related to the
strain ‘o at the inside radius R, and the maximum radius of yielding, Ry by

Rl Ro Rl R1
] - [———————1ln = « 77— + 1] ¢ (1s5)
m (R - R )2 R, (R1 - Ro) °
1 o
In the particular case of linear work hardening
R
1. £
Ro 1+, (1%)

Thus the mean strain is given in terms of the strain at Ry by

ala + 8 ¢ ) a + B¢

[ 0 a
‘h = { 2 in { . ) - ,) (1)
[ eo

At fracture ¢ _ equals ¢_, the fracture strain in tension of the
material. Thus equation (17) gives a value for the mean membrane strain in
the dished material at fracture in terms of the material characteristics
a, B and ¢ _. ¢, can be obtained from a simple tension test and « and # by
fitting thé material stress/strain characteristics to equation (14).

In carrying out the calculations of stage II, the change in angle
of dishing Ae¢ in each step is converted into an inc~ement of mean membrane
strain Ae¢_. At each step the cumulative mean membran+ strain within the
dished region, which extends to the hinge at position 2z, is summed till
equation (17) is satisfied with ¢_ equal to ¢, for the material. At this
point the plate is considered pergorated due Eo fracture at the periphery of
the plug. This approach to failure is very simplified in many aspects,
inclualng the use of engineering strains, the assumption of a uniaxial stress
state in a tapered tensile geometry for the membrane stretching of the plate,
the incrementing of strains with changes in dishing angle, and the simplified
approach to the material properties. The method has however provided a
consistent picture when applied to a number of cases which have been examined
and is used at this stage for want of a more rigorous incremental procedure.

As the model is for th2 consideration of impacts below conventional
ordnance velocities consideration must be given to the possible effects of
clamping of the target plate if this is close enough to the impact site to
influence the plate deformation. This is easily done computationally by
including an option for the maximum value of the hinge position z as the
position of the clamp.

The program listing of the structural model called DASR is given in
the Appendix with a typical listing of input data. A variety of output




parameters are provided for, and a typical output listing is given for the
input data provided.

4. DISCUSSION AND COMPARISON OF MODEL RESULTS

The simple analytical models presented restrict the deformation
considerations to one simplified mode in each case. The structural model on
the other hand allows for bending and stretching of the plate as well as
shearing of a plug. The mechanism of plug separation for thin plates
described in the model can be by a tensile failure or a shear fracture
depending on the material and impact velocity, and this is in accord with
observations of plug separation in thin plates. For example, Fig. S taken
from Levy and Goldsmith [21) 1s one of many examples clearly illustrating the
tensile separation of a plug. Shear fallures by sliding off the plug are
described in the model for thick targets and higher velocities of impact and
this occurs directly from stage I. Thus the structural model conforms
qualitatively with experience.

Shadbolt et al. [16]) present a comparison of several models with
experimental data for perforation velocity as a function of thickness for mild
steel, aluminium alloy and stainless steel targets. The same data are
compared with the analytical solutions for ductile hole formation fallure,
equation (1}, dishing failure, equation (2), and plugging failure, equation
(3), as well as the structural model in Fig. 6. It is noted that in each
case the simple plugging solution greatly underestimates the critical
velocity, whereas the experimental data generally lie between the ductile hole
formation and dishing solutions. The structural model gives similar results
to the dishing solution. Examination of the energy absorbed by different
deformation modes, membrane, shearing and bending work, in the structural
model gave very similar results to the approximate experimental estimates of
Corran et al. [15]) for the mild steel shots. Whilst the use of the
structural model is a better approach these comparisons indicate the degree to
which the simpler solutions can be used as useful approximations.

Scale up to larger size missiles can be assessed to some degree
using the results of Neilson [23) produced at the Atomic Energy Establishment,
Winfrith, UK, for impacts on mild steel plates from 1 to 25 mm thick.
Missile diameters up to 85 mm and masses to 20 kg were used. Table I
compares computations using the structural model with the experimental
data. Given the need to estimate material properties the agreement 1is
good. For the tests A and B using the lower strength steel the only
difference was the span width of the target which influenced the model
solution in the correct manner. For all other examples the span was
sufficient that it did not influence the calculated critical perforation
velocity.

As the objective is to give a more general solution which can be
applied to estimate behavior with limited knowledge of material data and only
a broad appreciation of the likely impact conditions the structural model was
also tested for the impact of spheres on hollow steel tubes. Photographs of
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typical failures observed by Xiaoqing and Stronge [(22) showed that the basic
deformation modes involve dishing and plugging, so that even though there is
curvature in the target it is worth examining the structural model to see if
it can be used to estimate ballistic limit velocities for various tube wall
thicknesses and ball diameters. The comparison of experimental data with the
calculated solutions in Fig. 7 again shows a correct order of magnitude
estimate and correct trends with projectile diameter and tube thickness.

The diverse cases examined show the areas of applicability of the
structural model and that it can be relied upon to give useful broad
predictions of behaviour within what is acceptably possible from the theory of
plasticity. The structural model and the simple analytical solutions are in
a form which can easily be applied by practising engineers. A particularly
valuable aspect is that rapid estimates of the influence on design variations
of factors such as projectile diameter and mass and target thickness and
material characteristics, can be obtained. .

5. CONCLUSION

This report outlines two approaches to making estimates of the
resistance of thin plates to perforation by low velocity impacts. One
technique uses a set of analytical equations and the alternative method uses a
structural model which requires a computer solution. The approaches are
compared with published experimental data for projectile impacts to indicate
the level of certainty expected from predictions. The essential purpose of
the methods is to give guidance on the overall level of protection offered by
a plate where the material properties are not accurately known, impact
conditions are only broadly defined and experiments are not possible.
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TABLE 1

Comparison of Neilson [23] Data with Structural Model Calculations

SPAN TARGET PROJECTIIE PROJECTIIE Vc vc
DESIGNATION WIDTH THICKNESS DINETER MASS UTS* EXPERIMENT

(mm) (nm) {mm) (xg) {Mpa) (ms ™) (ms™)
A 220 1.0 32 4.3 320 12.5 17.5
B 127 1.0 32 4.3 320 9.5 12.5
c 588 15 63 19.8 470 80 5
D 588 25 63 19.8 470 102 101
E 1500 6 85 - 9.72 473 i €5
F 1500 12 35 9.72 473 99 91
G 1500 6 43 1.22 473 a8 91
H 280 1.0 40 1.0 420 43 42
I 280 3.0 40 1.0 420 83 67

*

Parameters used for structural model calculations (equation 14)

A and B

Ctol

Yield strength (Y) = a = 220 MPa, § = 360 MPa, ¢

Yield strength (Y) = a = 340 MPa, # = 260 MPa, ¢

£

£

.31

.37

P

m—




APPENDIX

The computer program for solution of the structural model is called
DASH. The input file is called DASI.DAT and there are three output files
DASF.DAT, DASA.DAT and DASO.DAT. The units for input data are indicated in
Table Al and all calculations and output are in SI units. There are a
limited number of comment statements in the program to identify the major
steps and the output parameters. For problems where the width of span is
unimportant, 99999. will assume the plate is of infinite span. In other
cases the maximum hinge position is limited by the input width of span. Table
A2 gives a typical output listing for the data of Table Al,

TABLE Al

Typical Input - DASI.DAT (Mild steel target)

Parameter Value Units
Projectile diameter 12.7 mm
4 Target thickness 3.0 mm
Target density 7.8 g em™?
Target yield strength 220. MPa
Projectile mass .0346 kg
Impact velocity 100. ms~1
h a« (equation 14) 220. MPa
3 8 (equation 14) 360. MPa
Fracture strain (ef) .37 dimensionless
Span width 99999. men
: TABLE A2
Typical Output ~ DASO.DAT*
’ T H z v x
i 0.000118 0.00202 0.0184 35.6 0.0067
PKE WS WB wT RKE TE
23.9 12.5 62.6 30.3 7.1 136.4

* see program listing for identification of symbols
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LISTING OF PROGRAM DASH

DASH.FOR
PROGRAM FOR PENETRATION OF THIN TARGETS
WRITTEN BY RAYMOND L WOODWARD,DEPT OF DEFENCE,

OPEN(UNIT=1,FILE=’DASI.DAT’ ,STATUS='OLD’ )
OPEN(UNIT=2,FILE='DASF.DAT’ , STATUS='NEW’ )
OPEN(UNIT=3,FILE="DASA .DAT’ , STATUS='NEW' )
OPEN(UNIT=4,FILE='DASO.DAT’ ,STATUS='NEW’)

21 FORMAT(F10.2,/F10.2,/F6.3/F7.1/P10.3/¥7.1/F1.1/71.1/F5.3/¥8.1)

23 PORMAT(F10.8,4X,F10.1,4X,F10.1,4X, #10.1,4X, F10.1, 4, F8.5, 4X, F12.3
1,4x,F10.5,4%,F10.5)

22 FORMAT(F10.8, 4X,F10.5, 4X,F10.5, 4X, F10.5, 4X, F10.1, 4X, F10.1, 4X, F6.1
1,4%,76.1)

24 FORMAT( 3X,F10.6,/3X,F10.6,/3X,F8.1/3X, F12.0,/F10.5/3X,F6.1,
1/3%,F12.0,/3X, F12.0,/3X, F6. 3/3X, F8.1/3X, F12.1)

25 FORMAT(2X,F10.6,2X,F8.5,2X,F8.4,2X,F6.1,2X, 2X, F8.4,F10.1, 2%, F10.1
1,2%,F10.1,2%,F10.1,2X,F10.1,2X,F10.1, 2X, F10.1, 2%, F10.1)

28 FORMAT(F10.8,4X,F10.5, 4X,F10.5, 4X, F6.2, 4X, F10.1, 4X, F10.1, 4%, F10.1

26 FORRAT (T4 PROJBCTILE, THRGUGH' )

27 m'r('rd:'moa!:cnm STOPPED’ )

29 FORMAT(T4,’TIME EXCEEDED')

64 FORMAT(6X,’'T’'10X,’H’10X,’2'10X,’'V’10X,’X’9X, 'PKE’9X, 'WS'9X,’
1IWB’9X'WT’9X, 'RKE’9X, 'TE’)

65 FORMAT(6X, 'T'12X,’Z*12X, 'X’14X, 'XP’' 12X, ' PKE’ 10X, * TE’ 10X, 'V’
110%, VP’ )

66 FORMAT(6X,’T’14X,’PKE’12X, 'WS'11X, 'WB'12X, 'RKE’9X, ‘H’
114X, 'BMI’11X, 217 ,11X, 22" )

67 FORMAT(6X, ’T’12X,’2’12X, 'X’12X, ' THO’ 12X, "WB’ 12X, ' RKE’ 12X, 'WT"
111%, ' PKE’ 12X, 'TE' )
Rﬂé(l,Zl)w:m,m,SO,ASS,m,ALPA,Bm,EF,SPAN

DO PROJ DIAM MM

HO TARGET THICKNESS MM

RHO TARGET DENSITY GM/CC

SO TARGET YIELD STRENGTH MPA

ASS PROJ MASS KG

VEL PROJ VEL M/S

ALPA STRAIN HARDENING RELATION TARGET

BETA YS=ALPA+BETA*STRAIN (MPA)

EF FRACTURE STRAIN IN TENSION TEST

SPAN TOTAL WIDTH OF TEST PIECE MM IF UNIMP. USE 99999.

HO=HO/1000
RO=DO/2000
RHO=RHO*1000 :
S0=80%1000000. \
ALPA=ALPA*1000000.

BETA=BETA*1000000.

ZMAX=( SPAN-DO) /2000

EMP=EP# ( (ALPA* (ALPA+BETAMEY ) /( (BETAYEF ) #+2) ) *ALOG( 1+BETA*EF/
1ALPA)-ALPA/(BETA*EF) )

;”6-&88* (VEL**2) /2

i




e e

e L T IRV,

il

00

anonn

n 000n

H=HO

EMO=6 . 28318*RHOYHO

QI IS SHEAR FORCE INTEGRAL
Q1=0

BMI IS BENDING MOMENT INTEGRAL
BMI=0

WB=0

WS=0

WT=0

Fl=ASS*VEL

RO2=NO**2

RO3=RO**3
“mm'(m“z)ﬂ

XP=(
Zl=0
22=0
TIME STEP FOR FIRST STAGE

DT=. 00801 9*ASS*VEL*RHO*RO/( (ASS+4 . 044 *RHO*HO* (RO*#2) ) *S0)

WRITES OUT INPUT,SKE=INITIAL KE
WRITE(4,24)D0,H0, RHO, S0,ASS, VEL,ALPA,BETA, EF, SPAN, SKE
WRITE(4,64)

WRITE(2,65)

WRITE(3,66)

INITIAL PHASE OF BENDING AND SHEARING TILL VEL BENDING PLATE

EQUALS PLUG/PROJ VEL

Do 72 I=1,500

QP=1.814*H*SO*RO

QI=Ql+2+QP+DT

VP=(ri-QI)/r2

IF(VP.LE.V)GO TO 73

Am=3%0Y

B=RO*QI-2+*BMI

Ce6+BMI*RO

Z1=(-B+SQRT( (B**2)~4*AnC) ) /(2*A)
22=(-B-SQRT( (B**2)-4*A*C) ) /(2*A)
Z=72

Va2#*QL/( EMO*2* (RO+Z/3) )
X=X+V+DT

XPaXP+VP*DT

Be=HO~( XP-X)

PKE=F2#(VP*+2)/2
WS=S+24#QP* (VP-V ) *DT
IF(2.GT.0)GO TO 32

WBeWB+0

GO TO 33

32 WBaWB+1,5708%SO*WHDT* (RO* (H*+2)+(RO+Z) % (HO**2) ) /Z
33 RKE=1.0471+*HO*RHO*Z*(RO+Z/4 )% (V**2)

TE=PKE+WS+WB+RKE
T=T+DT
BMI=BMI+(RO* (H**2)+(RO+2)* (HO**2) ) *,7853+80*DT

OUTPUT DASF.DAT

T-TIME, 2-HINGE POSITION,X-DISPL. PLATE, XP-DISPL. PLUG,
PKE-PROJ. KE,TE-TOTAL ENERGY,V-VEL PLATE,VP-VEL PLUG.
WRITE(Z,22)T,Z,X,XP,PRE,TE,V,VP
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72

73

109

83

OUTPUT DASA.DAT

T-TIME, PKE-PROJ. KE,WS-WORK SHEAR,WB-WORK BENDING,RKE-ROTATIONAL KE,
H-PLUG/PLATE CONTACT LENGTH,BMI-BEND MMT INTEGRAL,

Z1-INVALID QUADRATIC ROOT,Z2-VALID ROOT HINGE POSITION.
WRITE(3,23)T,PKE,WS,WB,RKE, H,BMI, 21,22

IF(H.LE.0)GO TO 75

IF(VP.LT..1)G0 TO 76

CONTINUE

SECOND STAGE OF BENDING AND STRETCHING TILL FRACTURE
CONDITION EXCEEDED

V=VP

THR=ATAN2(X,Z)
ENTR=Z /COS( THR)
FT=6 . 2832*RO*H*SO
THE=THR

THP=THR

ZP=l
EREFe(1/C0S(THR) )-1

TIME STEP SET FOR SECOND PHASE
DT=HO/(25*VEL)
EM=0

WRITE(2,67)

D052 N=1,5000

SMP=1.5708+*S0*(RO+Z ) *(HO**2)

SMPP=SMP* ( 1 (RO*H/( (RO+Z) *HO) ) #*2)

V= (-SMPP-FT*Z*SIN(THE) ) *DT*2/( ( F2+EMO*Z* (RO+Z/4) /3 ) *Z*COS (THE) )
DZ=(-F2*DV-EMO*DV*Z* (RO+2,/3 ) *DV/2) /(6. 283% ( RO+, 6667%Z ) "HO*RHO"V)
VaVeDV

XuX+\V*DT

THE=ATAN2(X,Z)

DEM=]1 /0C0S ( THE ) -1,/COS ( THP)

WBaWB+ ( SMPP+FT*Z*SIN( THE) ) * ( THE-THP)

Z=Z2+D2

IF(SPAN.GT.99998.)G0 TO 109

IF(2.LE.ZMAX)GO TO 109

Z=ZMAX

PRE=F2#(V¥#2) /2
RKE=1,0471*HO*RHO*Z* (RO+Z/4 ) * (V**2) /(COS(THE) **2)
WTsWT4FT*O0S ( THE ) * { ZP/C0S ( THE ) -ZF /COS ( THP) )

THO=THE*57 . 296

IF(EMF.LE. (EM-EREF) )GO TO 75
IP(V.LT..1)G0 TO 76

DO 83 1=1,200

INC=]#25

IFP(N-INC)S2,53,83

CONTINUE

OUTPUT DASF.DAT

T-TIME,2-HINGE POS,X-DISPL. PLATE, THO-BEND ANGLE PLATE DEGREES
WB-NORK BENDING,RKE~-NOTAT. KE,WI-MEMBRANE WORK,

—n e -



G e e m

anoaoaan

’rr

PKE-PROJ. KE,TE-TOTAL ENERGY.
53 WRITE(2,28)T,2,X,THO,WB,RKE,WT, PKE, TE

75 WRITE(4,26)
GO TO 77
76 WRITE(4,27)

OUTPUT DASO.DAT

MAJOR OUTPUT PARAMETERS,T-TIME, H-PLUG/TARGET CONTACT LENGTH,
Z-FINAL HINGE POSITION, V-PLUG/PROJ VEL, X-DISHING AMT,
PKE-PROJ KE, WS~WORK SHEAR, WB-WORK BENDING, WT-TENSION WORK,
RKE-ROTARY KE OF PLATE, TE-TOTAL ENERGY

77 WRITE(4,25)T,H,2,V,X,PKE,WS,WB,WT,RKE, TE
STOP
END

S
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(a)
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FIGURE 1

FIGURE 2

= RADIAL FLOW
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Mechanisms of failure of ductile metal targets.
(a) Ductile hole formation failure, (b) dishing failure and
(¢) plugging fatlure.

2w
By

Impact of a masg G with velocity Vo on an infinite beam.
Shearing and bending occurs at the impact site and bending
at a hinge, distance z from impact.
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FIGURE 3

FIGURE 4

Impact of a projectile on an infinite plate.

(a) schematic section, (b) Stage I in which shearing of the
pPlug occurs, and (c) Stage II in which membrane stretching
of the plate occurs.

Ape 2TT RN

For, (mept)

Treatment of the plate in Stage II as a tapered tensile
sample with material properties characterised as
rigid/linear work hardening. The arrows indicate the
application of the tensile force and, as the radial
stretching of a plate is being considered, the angle of
taper is 2v.
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FIGURE 5
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Perforated plate showing the dishing and plug separation
associated with perforation by a blunt projectile. The
failure mechanism is a tensile fracture. From Levy and
Goldsmith [211).
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FIGURE € Comparison of Solutions using the models for ductile hole
formation (DEF), equation (1), dishing, equation (2),
plugging, equation (3), and the structural model with the
experimental data of Corran et al. (15,161. (a) Mild steel
targets, (b) aluminium alloy targets and (c) stainless
steel targets.
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FIGURE 7
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STRUCTURAL MODEL ¢ 1-22mm
CALCULATIONS s 21 mm
a 33 mm

EXPERIMENT

XIAOQING & STRONGE -

WALL THICKNESS

model.

635 oS 12-7

MISSILE DIAMETER (mm)

Comparison of empirical data from Xiaoqing and Stronge [22]
for tubes of different wall thickness and for different
projectile diameters with predictions using the structural
Results are offset at each missile diameter to
distinguish the different tube size results more clearly.







