OTH FILE COPY

USAAEFA PROJECT NO. 83-24

AIRWORTHINESS AND FLIGHT CHARACTERISTICS TEST OF A SIXTH YEAR PRODUCTION UH - 60A

ARTHUR R. MARSHALL, JR. MAJ, AV PROJECT PILOT

> ROBERT MACMULLIN MAJ, AV PROJECT PILOT

ROY A. LOCKWOOD MAJ, AV PROJECT PILOT

THOMAS L. REYNOLDS MAJ, AV PROJECT PILOT

EDWARD J. TAVARES MAJ, AV PROJECT PILOT ROBERT M. BUCKANIN PROJECT OFFICER

GARY L. SKINNER PROJECT ENGINEER

MICHAEL K. HERBST PROJECT ENGINEER

CHARLES F. CASSIL PROJECT ENGINEER

PATRICK J. SULLIVAN CW4, AV PROJECT PILOT

ROBERT A. WILLIAMS CW4, AV PROJECT PILOT

5

062

JUNE 1985

FINAL REPORT

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

UNITED STATES ARMY AVIATION ENGINEERING FLIGHT ACTIVITY -EDWARDS AIR FORCE BASE, CALIFORNIA 93523

A

20

DISCLAIMER NOTICE

The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

TRADE NAMES

The use of trade names in this report does not constitute an official endorsement or approval of the use of the commercial hardware and software.

DISCLAIMER NOTICE

t.

ł.

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION P	AGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMBER 2.	GOVT ACCESSION NO. S. P	RECIPIENT'S CATALOO NUMBER
USAAEFA PROJECT NO. 83-24	DA180181	
4. TITLE (and Subtitio)	5. 1	TYPE OF REPORT & PERIOD COVER
AIRWORTHINESS AND FLIGHT CHARACTERIS		IAL 3-20 OCTOBER 1983
OF A SIXTH YEAR PRODUCTION UH-60A	5	FEB & 18 SEP 1984
	6. 1	ERFORMING ORG. REPORT NUMBER
7. AUTHORIA		CONTRACT OR GRANT HUMBER(+)
ROBERT M. BUCKANIN GARY L. SKINNER		
MICHAEL K. HERBST PATRICK J. SULLI	VAN	
ROY A. LOCKWOOD et al		
. PERFORMING OROANIZATION NAME AND ADDRESS	10.	PROGNAM ELEMENT, PROJECT, TAS AREA & WORK UNIT NUMBERS
US ARMY AVN ENGINEERING FLIGHT ACTIV		20.000
EDWARDS AIR FORCE BASE, CA 93523-50	68	-3BE243-04-68-EC
11. CONTROLLING OFFICE HAME AND ADDRESS	12,	REPORT GATE
US ARMY AVIATION SYSTEMS COMMAND		NE 1985
4300 GOODFELLOW BOULEVARD		NUNDER OF PAGES
ST. LOUIS, MO 63120-1798	12	
14. MONITORING AGENCY NAME & AGGRESS(It dilfurent t	on Controlling Office) 15.	SECURITY CLASS. (of this report)
	UN	CLASSIFIED
	15e.	DECLASSIFICATION/DOWNGRAGING
		TCHEUVEE
15. DISTRIBUTION STATEMENT (of this Report)		
17. OISTRIBUTION STATEMENT (of the aberract entered in	ation unlimited. Block 20, 11 different from Reg	sart)
17. DISTRIBUTION STATEMENT (of the abetract entered in		sort)
17. DISTRIBUTION STATEMENT (of the abetract entered in 18. SUPPLEMENTARY NOTES		bort)
18. SUPPLENENTARY NOTES 18. KEY WORGS (Continue on severes eide if necessary and i	Bieck 20, if different from Reg	sort)
18. SUPPLEMENTARY NOTES 18. KEY WORGS (Continue on reverse eide if necessary and i Equivalent Flat Plate Area	Bieck 20, if different from Reg	bart)
18. SUPPLEMENTARY NOTES 18. KEY WORGS (Continue on reverse eide if necessary and i Equivalent Flat Plate Area Performance Data	Bieck 20, if different from Reg	bort)
 SUPPLEMENTARY NOTES KEY WORGS (Continue on reverse elde if necessary and i Equivalent Flat Plate Area Performance Data Sixth Year Production 	Bieck 20, if different from Reg	sort)
18. SUPPLENENTARY NOTES 18. KEY WORGS (Continue on severes eide if necessary and i	Bieck 20, if different from Reg	oort)
 18. SUPPLEMENTARY NOTES 18. KEY WORGS (Continue on reverse eide if necessary and it Equivalent Flat Plate Area Performance Data Sixth Year Production Stabilator Position UH-60A Helicopter 20. AUSTRACT (Continue on reverse eide H maccessary and it 	Bleak 20, if dilerent from Reg dentify by block number) featify by block number)	
 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 18. KEY WORGS (Continue on reverse eide if necessary and it Equivalent Flat Plate Area Performance Data Sixth Year Production Stabilator Position UH-60A Helicopter 10. AUSTRACT (Continue on reverse eide M mersenery and its Testing was conducted to obtain perfo year production UH-60A helicopter ope flight hours were flown at five different statement of the second statement of	Bieck 20, 11 dilerent from Rep dentify by block number) featify by block number) Tmance data for in rator's manual. A Fent test aitea be	nclusion in the sixth A total of 58 productive
 13. SUPPLEMENTARY NOTES 15. KEY WORGS (Continue on reverse side if necessary and it Equivalent Flat Plate Area Performance Data Sixth Year Production Stabilator Position UH-60A Helicopter 26. ABSTRACT (Continue on reverse side H messerery and its resting was conducted to obtain perfor year production UH-60A helicopter ope flight hours were flown at five diffe 1983 and 29 February and 18 September gross weight capability was 16,526 po minute limit) rated power available a 	Block 20, if different from Rey dentify by block number) featify by block number) fmance data for in rator's manual. A rent test aitea be 1984. The out-of unds for 95 percer t 4700 feet preasu	nclusion in the sixth A total of 58 productive etween 3 and 20 October -ground effect hover at intermediate (30 are altitude and 35 C
 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORGS (Continue on reverse elde if necessary and if Equivalent Flat Plate Area Performance Data Sixth Year Production Stabilator Position UH-60A Helicopter 20. ANSTRACT (Continue on reverse elde H messerery and if Testing was conducted to obtain perfo year production UH-60A helicopter ope flight hours were flown at five diffe 1983 and 29 February and 18 September gross weight capability was 16,526 po 	Block 20, 11 dillerent from Rey dentify by block number) featify by block number) fmance data for in rator's manual. A rent test aitea be 1984. The out-of unds for 95 percer t 4700 feet preasu ent flat plate are	nclusion in the sixth A total of 58 productive etween 3 and 20 October Seground effect hover at intermediate (30 are altitude and 35 C as (Fe) of the sixth

UNCLASSIFIED S ft. SECURITY CLASSIFICATION OF THIS PAGE Then Date Baters year production aircraft configuration over the first year configuration was 5 square feet $f(TE^{-1})$ in level flight at a referred rotor speed $(N_{\rm H}^{-1}/\theta)$ of 258 revolutions per minute. Of this increase, 2.5 ft was attributed to the External Stores Support System fixed provision fairings, 1.5 $M^2/$ to the external mounting brackets of the AN/ALQ-144(V) infrared countermeasures aet and M-130 chaff dispenser, and 1.0 ft^2 to numerous other minor external changea. However, throughout the NA/ θ range, the difference in power required between the first and aixth year production aircraft does not equate to a constant Fe. A limited investigation of the effect of atabilstor position on level flight power required did not completely account for the power differences noted when flying at different dimensional conditions that produce the same nondimensional thruat coefficient. 11 N sub R/Same root theta UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

PREFACE

Special recognition is given to Vera L. Gardner for her innovative computer programming support which aided during the data analysis phase of this project.

TABLE OF CONTENTS

Background..... Test Objectives..... Description..... Test Scope..... Test Methodology..... 3 RESULTS AND DISCUSSION General..... Hover Performance..... Level Flight Performance..... Airspeed Cslibrstion..... CONCLUSIONS RECOMMENDATIONS

APPENDIXES

INTRODUCTION

Α.	References	11
B.	Aircraft Description	12
	Instrumentation	23
D.	Test Techniques and Data Analysia Methods	27
Ε.	Test Data	38

DISTRIBUTION

Psge

1

1

1

2

4

4

5

7

9

10

INTRODUCTION

BACKGROUND

1. The US Army has contracted with Sikorsky Aircraft Division of United Technologies, for the sixth, seventh and eighth year UH-60A production lots. The US Army Aviation Engineering Flight Activity (USAAEFA) has conducted testing on earlier YUH-60A and UH-60A helicopters to include the Government Competitive Tests, Preliminary Airworthiness Evaluations, Climatic Laboratory Tests, Artificial and Nstural Icing Tests and an Airworthiness and Flight Characteristics (A&FC) evaluation. Further testing was needed to update previous test results of the first year production UH-60A for inclusion in the sixth year production UH-60A operator's manual.

2. In September 1983, USAAEFA was tasked by the US Army Aviation Systems Command (AVSCOM) (ref 1, app A) to conduct an A&FC evaluation of a UH-60A helicopter from the sixth year production lot.

TEST OBJECTIVES

3. The objectives of the A&FC evaluation were as follows:

a. To determine the performance change caused by the infrared countermeasures set AN/ALQ-144(V) and chaff dispenser N-130, and their external mounting brackets.

b. To obtain sufficient level flight performance data to update existing data for inclusion in the operator's manual.

c. To obtain sufficient hover performance data to update existing data for inclusion in the operator's manual.

DESCRIPTION

4. The UH-60A is a twin-turbine single-main rotor helicopter capable of transporting cargo, 11 combst troops, and weapons during day, night, visual meteorological conditions, and instrument meteorological conditions. The helicopter is powered by two General Electric T700-GE-700 turboshaft engines, each having an installed thermodynamic rating (30 minute limit) of 1553 shaft horsepower (SHP) (power turbine speed of 20,900 revolutions per minute (rpm)) at sea level, standard day static conditions. Installed dual engine power is transmission limited to 2828 SHP. The engines used during this evaluation were calibrated by the engine manufacturer. Two test aircraft were used during this evaluation: USA S/N 82-23748, a sixth year production Black Hawk in the normal utility External Storea Support System (ESSS) fixed provision fairings configuration (defined as normal utility (ESSS) configuration) deacribed in paragraph 5, and USA S/N 77-22716, a first year production aircraft incorporating airspeed and stabilator modifications aimilar to the sixth year aircraft in the normal utility configuration, the normal utility configuration with AN/ALQ-144(V) and M-130 external mounting brackets added, and the normal utility configuration with AN/ALQ-144(V) and M-130 sets installed.

5. Several modifications were incorporated to arrive at the normal utility (ESSS) configuration for the sixth, seventh and eighth year production lots. These include reorientation of the production airapeed pitot-atatic tubes, a modified stabilator schedule, and the addition of external mounting brackets for the AN/ALQ-144(V) infrared countermeasures set and M-130 chaff dispenser. Also included were the ESSS fixed provisiona and fairings along with numerous other minor external configuration changes. A more detailed description of the UH-60A with descriptive photographs is available in appendix B, and additional information can be found in the Prime Item Development Specification (ref 2, app A) and in the operator's manual (ref 3).

TEST SCOPE

6. Hover and level flight performance tests were conducted at Edwards AFB (elevation 2302 feet), Bakersfield (488 feet), Bishop (4120 feet) and Coyote Flats (9980 feet), California and at Duluth (1430 feet), Minneaota. Sixth year production aircraft test flight hours totaled 74 of which 51 were productive. These tests were conducted between 29 February and 18 September 1984. Level flight performance tests were also conducted on a first year production aircraft between 3 and 20 October 1983 and totaled 12 hours of which 7 were productive. Flight restrictions and operating limitations observed throughout the evaluation are contained in the operator's manual (ref 3, app A) and in the airworthiness release issued by AVSCOM (ref 4). Testing was conducted in accordance with the test plan (ref 5) st the conditious shown in tsble 1.

Table 1. 7	Test	Conditions1
------------	------	-------------

Туре	Groas Veight (1b)	Longitudinal Center of Gravity (FS)	Density Altitude (ft)	Referred Rotor Speed (rpm)	Trim Airspeed (KTAS)
Hover	13240 ² to 22680	354.0	3300 to 10720	244 to 265	0
Level ³ Flight		347.4	3430 to 14000	245 to 286	41 to 170

NOTES:

¹Tests were conducted at an approximate mid lateral center of gravity with the automatic flight control system on in the normal utility (ESSS) configuration, unless otherwise noted.

²Aircraft gross weight plus cable tension.

³Tests also conducted with the AN/ALQ-144(V) and M-130

mounting brackets added and with the complete AN/ALQ-144(V) and M-130 sets installed.

TEST METHODOLOGY

7. The flight test data were recorded by hand from test instrumentation displayed in the cockpit, by on-board magnetic tape recording equipment and via telemetry to the Real Time Data Acquisition and Processing System. A detailed listing of test instrumentation is contained in appendix C. Level flight performance tests were supplemented by test data from a first year production UH-60A adjusted for drag differences. Flight test techniques and data reduction procedures are described in appendix D.

RESULTS AND DISCUSSION

GENERAL

8. Testing was conducted to obtain performance data for inclusion in the UH-60A sixth year production heliconter operator's manual. At the hover performance guarantee conditions of 95 percent intermediate (30 minute limit) rated power available (IRP), 4700 feet pressure altitude (Hp) and 35°C, the out-of-ground effect (OGE) hover gross weight capability was 16,526 pounds. The difference in level flight power required does not equate to a constant equivalent flat plate area (Fp) between the first and sixth year production aircraft throughout the referred rotor speed $(N_R/\sqrt{\theta})$ range. The increase in Fe between the normal utility and normal utility (ESSS) configurations at $N_R/\sqrt{\theta}$ of 258 rpm was determined to be 5 square feet (ft²). Of the total 5.0 ft², 2.5 ft² can be attributed to the ESSS fixed provision fairings and 1.5 ft² can be attributed to the external mounting brackets of the AN/ALQ-144(V) infrared countermessures set and M-130 chaff dispenser. The remaining 1.0 ft² is attributable to numerous other minor external configuration changes. Installing the AN/ALQ-144(V) and M-130 sets increases F_e by an additional 0.5 ft². The effect of stabilator position does not completely account for the discrepancy in power required as a result of flying at dimensionally different conditions that produce the same nondimensional thrust coefficient (Cr).

HOVER PERFORMANCE

9. Hover performance tests were conducted on the sixth year production aircraft at the conditions in table 1 using the tethered and free flight techniques described in appendix D. The 2-foot main wheel height in-ground effect (IGE) and the 100-foot main wheel height OGE tests were conducted at the 2302, 4120, and 9980 foot test sites in the normal utility (ESSS) configuration. Tip Mach number for these tests varied from 0.61 to 0.67. The data from these tests were compared with first year production aircraft hover data presented in USAAEFA Report No. 77-17 (ref 6, app A). The previous data was reanalyzed and a different curve was faired through both the 2-foot IGE and the 100-foot OGE data sets. When compared with the reanalyzed fairings, current test data reveal an increase in power required to hover IGE of approximately 5 percent and sn increase of approximately 3 percent to hover OGE. Results are presented in figures 1 through 3, appendix E. These results compare favorably with previous OGE hover performance data with the ESSS fairings installed, USAAEFA Report No. 82-15-1 (ref 7, app A). No discernible compressibility trend was observed during this or any other previous testing. The hover performance results contained in this report should

be used to define the hover performance of a UH-60A in the normal utility (ESSS) configuration. The reanalyzed fairings for the first year production aircraft should be used to define the hover performance of a UH-60A in the normal utility configuration.

10. The standard day OGE hover ceiling at the primary miasion gross weight of 16,455 pounds (app B) was 11,224 feet Hp using IRP available from USAAEFA Report No. 77-17 (ref 6, app A). At 4000 feet Hp on a 35°C day, the OGE hover maximum gross weight was 17,593 pounds with IRP. At the hover performance guarantee conditions of 95 percent IRP, 4700 feet Hp and 35°C, the OGE hover capability was 16,526 pounds.

LEVEL FLIGHT PERFORMANCE

11. Level flight performance testa were conducted at the conditions listed in table 1 to determine power required and fuel flow for airspeeds, altitudes, gross weights, and rotor speeds throughout a portion of the operational envelope of the aixth year production aircraft. Test data from USAAEFA Report No. 81-16 (ref 8, app A) was used to supplement the 258 rpm $N_R/\sqrt{\theta}$ data base. Techniques used in obtaining and analyzing level flight performance data are described in detsil in appendix D. The data were obtained and analyzed in ball-centered flight and corrected for estimated drag of external test instrumentation and instrumentation electrical load.

12. Nondimensional test results are presented in figures 4 through 31, appendix E. The test data indicate power required generally increases with increasing $N_R/\sqrt{\theta}$. Trends at $N_R/\sqrt{\theta}$ above 258 rpm are not consistent with those of the first year production aircraft presented in USAAEFA Report No. 77-17 (ref 6, app A). The exponential increase in power required with increasing $N_R/\sqrt{\theta}$ as predicted by theory and as observed for the first year production aircraft (ref 6), was not evident for the sixth year production aircraft. Specific differences in power required between the first and sixth year aircraft throughout the $N_R/\sqrt{\theta}$ range teated did not produce a constant change in Fe (ΔF_e) between the two aircraft at all conditions. Comparing the normal utility and normal utility (ESSS) configurations at $N_R/\sqrt{\theta}$ of 258 rpm indicates a ΔF_e of approximately 5 ft². Thia difference was summarized as:

if the set of the

Additional testing should be conducted in forward flight to investigate the inconsistencies in power required as a function of $N_R/\sqrt{\theta}$ between the first and aixth year production aircraft. The AFe of the ESSS fairings was documented in USAAEFA Report No. 82-15-1 (ref 7), the M-130 and AN/ALQ-144(V) mounting brackets in paragraph 15, and the external configuration differences affecting drag between the two aircraft are depicted in the photographs in appendix B. Dimensional level flight test results are presented in figures 32 through 59, appendix E. Inherent sidealip, presented in figures 60 and 61, was developed from the resultant angle of sideslip associated with ball-centered flight during level flight performance testing (figs. 62 through 66). The data indicate that in ball-centered flight, sideslip increases to the right with increasing C_{T} . These results show the sixth year production UH-60A to fly with more inherent right sideslip when compared with previous test results (ref 6, app A) especially at higher CT's.

13. Tests were conducted to ascertain the ΔF_e with sideslip for a range of C_T 's and the data are presented in figure 67, appendix E, for both the normal utility and normal utility (ESSS) configurations. Results are independent of airspeed and $N_R/\sqrt{\theta}$, but vary with C_T . The data indicate that minimal F_e occurs between 4.5 and 7 degrees left sideslip depending upon C_T . Coordinated flight throughout the tested level flight airspeed envelope of the UH-60A results in a maximum left sideslip of approximately 1 degree.

14. Level flight performance testing on the UH-60A at different dimensional conditions that yield the same nondimensional condition have not produced consistent results. Stabilator poaition has been suspected to be a contributing factor to this discrepancy because the nondimensional parameters do not account for indicated airspeed which is the dimensional parameter that determines stabilator position in stabilized, ball-centered level flight at a given $C_{T}-\mu$ combination. Limited testing was conducted to determine the stabilator position effect on power required for level flight. Results are presented in figures 68 through 70, appendix E in the form of change in power coefficient as a function of deviation of stabilator from the programmed schedule position. Results vary with both C_T and μ The data show that stabilator trailing edge (TE) up movement produced an increase in power required and TE down movement produced a decrease. Sufficient data were gathered during the stabilator investigation to perform an analysis of the stabilator effect at a $C_{\rm T}$ of 0.009 at various values of $\mu_{\rm *}$ No stabilator corrections have been made to the level flight data presented in appendix E, however, a limited analysis was performed using the data available at a C_T of approximately 0.009, for

一日日本 一日日 二日 一日日日 二日日日日日日

example figures 40 and 42. The fairing on these two figures represents a normalization process based to a large extent on the two data sets because of their proximity, but is also influenced by cross fairing C_T , C_P , μ , and $N_R/\sqrt{\theta}$ of all the tests. The fairing can be made to better approximate the data by determining for a specific μ , the difference in indicated airspeed due to the different dimensional conditions representing the data and normalized fairing. This difference can then be converted into a change in stabilator position and consequently a change in power required. For example, the fairing in figure 42 represents an altitude greater than that represented by the data and denotes less power required than the data. Decreasing altitude increases indicated airspeed for the same μ , which positions the stabilator more TE up, thereby requiring a corresponding increase in power to maintain level flight raising the faired line. Applying the stabilator correction, however, accounts for less than half of the difference in power required between the two C_T data sets, after equating both to a nominal C_1 . Therefore, regardless of the limited amount of data accumulated on stabilator effects and their consequences on power required, it is assumed that other unexplained aerodynamic effects preclude accurate nondimensionalizing of level flight performance. If these differences are to be fully explained, further stabilator tests at a range of airspeeds throughout the CT envelope, and a study undertaken to identify remaining differences complemented with verification testing should be accomplished.

15. Testing was accomplished earlier on a first year production aircraft for inclusion in this report of the performance change associated with the installation of the AN/ALQ-144(V) infrared countermeasures set and M-130 chaff dispenser. Level flight performance test results are presented in figures 54 through 59, appendix E. The mounting brackets for the AN/ALQ-144(V) and M-130 sets produce 1.5 ft² of F_e . Installation of the AN/ALQ-144(V) and M-130 sets increases F_e by an additional 0.5 ft². The slightly high fairings at C_T of 0.009 could be lowered if the stabilator correction described in paragraph 14 was applied.

AIRSPEED CALIBRATION

16. The standard ship's airspeed system on the sixth year production aircraft was calibrated in level flight. A calibrated T-28 pace aircraft and a calibrated trailing bomb were used to determine the position error. The position error of the ship's airspeed system is presented in figure 71, appendix E. In level flight, airspeed position error varied from -8 knots at 35 knots indicated airspeed (KIAS) to +3 knots at 160 KIAS. This represents a decrease in position error of almost 2 knots from the position error determined with the prototype production airspeed system (ref 9, app A). Additional testing to determine the airspeed position error of the production airspeed system over a broader range of flight conditions should be conducted.

CONCLUSIONS

17. Based on this evaluation, the following conclusions can be drawn about the performance of the sixth year production UH-60A in the normal utility (ESSS) configuration:

a. Power required to hover was increased compared to the first year production normal utility configured UH-60A (para 9).

b. Increased requirement for power was measured generally as a result of increasing referred rotor speed $(N_R/\sqrt{\theta})$, although the exponential increase predicted by theory was not realized (para 12).

c. Drag in level flight increased by 5 square feet (ft^2) of equivalent flat plate area (F_e) compared to the normal utility configured UH-60A at a $N_R/\sqrt{\theta}$ of 258 rpm (para 12).

d. Drag of the mounting brackets for the AN/ALQ-144(V) and M-130 sets in level flight was 1.5 ft² of F_e , and installation of the sets increased total F_e by an additional 0.5 ft² (para 15).

e. The difference in stabilator position accounts for less than half the difference in level flight power required when different dimensional conditions produce the same nondimensional condition for a C_T of 0.009 (para 14).

RECOMMENDATIONS

18. The following recommendations are made:

a. Hover performance determined during this evaluation ahould be used for a UH-60A in the normal utility (ESSS) configuration (para 9).

b. Reanalyzed hover performance fairings of USAAEFA Project No. 77-17 produced during this evaluation should be used for a UH-60A in the normal utility configuration (para 9).

c. Additional teating should be conducted in forward flight to investigate the cause of the variationa in power required as a function of referred rotor speed between the first and aixth year production aircraft (para 12).

d. Further stabilator testing is necessary at a range of airapeeda throughout the thrust coefficient envelope of the UH-60A if it'a effect on level flight power required is to be fully documented (para 14).

e. A atudy, complemented by testing for verification, should be undertaken to identify unexplained aerodynamic effects that preclude accurate nondimenaionalizing of level flight performance of the UH-60A (para 14).

f. Additional testing throughout a range of flight conditions should be conducted to further evaluate the differences in airspeed position error between the prototype system preaented in USAAEFA Project No. 82-09 and the current airapeed aystem incorporated in the sixth year production aircraft (para 16).

さんなどのなど していたいしん うち

APPENDIX A. REFERENCES

1. Letter, AVRADCOM, DRDAV-DI, 30 September 1983, subject: Airworthiness and Flight Characteristics (A&FC) Test of a Sixth Year Production UH-60A, USAAEFA Project No. 83-24.

2. Prime Item Development Specification, Sikorsky Aircraft Division, DAHCOM-CP-2222-S1000F Part I, 15 December 1981.

3. Technical Manual, TM55-1520-237-10, Operator's Manual, UH-60A Helicopter, Headquartera Department of the Army, 21 May 1979 with change 22 dated 2 September 1983.

4. Letter, AVSCOM, DRSAV-E, 21 February 1984, subject: Airworthiness Release for the UH-60A Black Hawk Helicopter, S/N 82-23748, to Conduct an Airworthiness and Flight Characteristics (A&FC) Test of a Sixth Year Production UH-60A, USAAEFA Project No. 83-24.

5. Test Plan, USAAEFA Project No. 83-24, Airworthiness and Flight Characteristics Test of a Sixth Year Production UH-60A, December 1983.

6. Finsl Report, USAAEFA Project No. 77-17, Airworthiness and Flight Characteristics Evaluation UH-60A (Black Hawk) Helicopter, September 1981.

7. Final Report, USAAEFA Project No. 82-15-1, UH-60A Extarnal Stores Support System Fixed Provision Fairings Drag Determinations, May 1984.

8. Final Report, USAAEFA Project No. 81-16, UH-60A Expanded Gross Weight and Center of Gravity Evaluation, Unpublished.

9. Final Report, USAAEFA Project No. 82-09, Preliminary Airworthineaa Evaluation of UH-60A with an Improved Airspeed System, April 1983.

10. Technical Manual, TM55-1520-237-23-2, Aircraft General Information Manual, UH-60A Helicopter, Headquarters Department of the Army, 29 December 19/8.

11

APPENDIX B. AIRCRAFT DESCRIPTION

GENERAL

1. The Sikorsky UH-60A (Black Hawk) is a twin-turbine engine, single main rotor helicopter capable of transporting 11 combat troops plus a crew of three. It is equipped with three nonretractable conventional wheel-type landing gear. A movable horizontal stabilator is located on the lower portion of the tail rotor pylon. The main and tail rotors are both four-bladed with a capability of manual main rotor blade and tail pylon folding. The cross-beam tail rotor with composite blades is attached to the right side of the pylon and is canted 20 degrees upward from the horizontal. A complete description of the aircraft is contained in the operator's manual (ref 3, app A) and the aircraft general information manual (ref 10).

2. Two helicopters were used in this evaluation, first year (USA S/N 77-22716) and sixth year (USA S/N 82-23748) production aircraft. The following photographs 1 through 12 illustrate the configuration differences between the two aircraft in their respective normal utility configurations.

EXTERNAL STORES SUPPORT SYSTEM (ESSS) FIXED PROVISION FAIRINGS

3. The sixth year production aircraft is equipped with provisions for incorporating the ESSS. With the system removed, aerodynamic fairings are installed (photo 1). The weight of the integral airframe fixed provisions is 123 pounds, the removable provisions are 8 pounds, and the total is included in the aircraft basic weight. The first year production aircraft does not include provisions for the ESSS (photo 2).

COUNTERMEASURE PROVISIONS

4. The sixth year production aircraft is equipped with the AN/ALQ-144(V) Infrared (IR) countermeasures set and an M-130 chaff/flarc dispenser. These units were removed for testing, but the brackets supporting them remained (photos 3 and 4). The first year production aircraft does not incorporate these countermeasure devices. However, aircraft USA S/N 77-22716 (first year production aircraft) was tested with the brackets added and with the countermeasure devices installed to determine their effect on level flight performance.

ç.

マンシン

ちょうという

Ň

1.4

5

75

Photo 1. ESSS Fairing Installation, Left Side (Normal Utility (ESSS) Configuration, Sixth Year Production Aircraft)

Photo 2. Right Side (Normal Utility Configuration, First Year Production Aircraft)

13

Photo 3. AN/ALQ-144(V) IR Countermeasure Bracket (Sixth Year Production Aircraft)

Photo 4. M-130 General Purpose Dispenser Bracket (Sixth Year Production Aircraft) 14

AIRSPEED/STABILATOR MODIFICATIONS

5. The airspeed/stabilator system on both test aircraft incorporated the modifications developed during USAAEFA Report No. 82-09. The first year production aircraft incorporated the development, or prototype production system, while the sixth year aircraft included the contemporary production system. Three changes were incorporated in the pitot-static pressure systems and two changes in the electrical circuit to the stabilator amplifiers of the stabilator system. Major changes from the original production version incorporated in both aircraft were: reorienting the pitor-static tube 20 degrees outboard and 3 degrees down, venting the vertical speed indictor static source from the pitot-static tube to the cabin, damping the airspeed indicator 0.4 seconds, increasing the damping of the stabilator to 3.0 seconds, and reducing the collective bias of the stabilator schedule at high collective settings. The mount to reorient the pitot-static tube of the first year test aircraft varied from the production mount on the sixth year aircraft in height (photos 5 and 6).

MISCELLANEOUS

6. The bifilar absorbers of the sixth year production aircraft are redesigned in comparison to the first year production absorbers (photos 7 and 8).

7. Sixth year production aircraft are equipped with the rotor deicing system, while the first year production aircraft was not. The deice system incorporates main and tail rotor deicing capabilities. Photo 9 shows the main rotor slip ring and distributor assembly of the deice system. The main rotor hubs of both test aircraft were adapted with a slip ring assembly for instrumentation purposes (photo 10). Other drag producing components of the deice system are the ice detector probe located on the right engine nacelle (photo 11) and the outside air temperature sensor located on the nose of the aircraft in front of the center windshield (photo 12).

ENGINES

8. The primary power plants for the UH-60A helicopter are General Electric T700-GE-700 front drive turboshaft engines, rated at 1553 shaft horsepower (SHP) at a power turbine speed of 20,900 revolutions per minute (rpm) (sea level, standard day installed). The engines are mounted in nacelles on either side of the main transmission. Each engine has four modules: cold section, hot

Photo 5. Modified Production Pitot-Static System Mount (Normal Utility (ESSS) Configuration)

Photo 6. Development Mount for Modified Production Pitot-Static System Installed on Aircraft USA S/N 77-22716 During this Testing 16

Photo 7. Bifilar Absorber (Sixth Year Production Aircraft)

Photo 8. Bifilar Absorber (First Year Production Aircraft) 17

المراجع المراجع

Photo 9. Main Rotor Hub (Sixth Year Production Aircraft)

Photo 10. Instrumented Main Rotor Hub (Both Test Configurations)

ومراجع المراجع والمراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

Photo 11. Ice Detector Probe, Right Side (Sixth Year Preduction Aircraft)

Photo 12. Deice System Temperature Sensor (Sixth Year Production Aircraft)

section, power turbine section, and accessory section. Design features include an axialcentrifugal flow compressor, a throughflow combustor, a two-stage air-cooled high pressure gas generator turbine, a two-stage uncooled power turbine, and self contained lubrication and electrical systems. Pertinent engine data are shown below.

Mode1	T700-GE-700
Type	Turboshaft
Rated power	1553 SHP installed at sea level, standard-day static conditions at 20,900 rpm
Compressor	Five axial stages, 1 centrifugal stage
Combustion chamber	Single annular chamber with axial flow
Gas generator stages	2
Power turbine stages	2
Direction of engine	
rotation (aft looking fwd)	Clockwise
Weight (dry)	415 pounds max
Length	47 in.
Maximum diameter	25 in.
Fuel	MIL-T-5624 grade JP-4 or JP-5

BASIC AIRCRAFT INFORMATION

9. General data of the sixth year production UH-60A helicopter are as follows:

Gross Weight

Blade twist

Empty weight	Approximately 10,750 pounds
Primary Mission gross weight	16,455 pounds
Fuel capacity (measured)	359 gallons
Main Rotor	
Number of blades	4
Diameter	53 ft, 8 in.
Blade chord	1.73/1.75 It

-18 deg (equivalent)

Blade tip sweep	20 deg aft
Blade area (one blade)	46.7 sq ft
Airfoil section (root to tip designation) thickness (percent chord)	SC1095/SC1095R8 9.5 percent
Main rotor mast tilt (forward)	3 deg
Tail Rotor	
Number of blades	4
Diameter	11 ft
Blade chord	0.81 ft
Blade twist (equivalent linear)	-18 deg
Blade area (one blade)	4.46 sq ft
Airfoil section (root to tip designation) thickness (percent chord)	SC1095/SC1095R8 9.5 percent
Shaft cant angle (upward)	20 deg

Gear Ratios

e

Main Transmission	Input RPM	Output RPM	Ratio	(Teeth)
Input bevel	20,900.0	5747.5	3.6364	(80/22)
Main bevel	5747.5	1206.3	4.7647	(81/17)
Planetary	1206.3	257.9	4.6774	$(\frac{228+62}{62})$
Tail takeoff	1206.3	4115.5	0.2931	(34/116)
Accessory bevel				
(generator)	5747 5	11,805.7	0.4868	(37/76)
Accessory spur				
(hydraulics)	11,805.7	7186.1	1.6429	(92/56)
Intermediate				
Gearbox	4115.5	3318.9	1.2400	(31/25)
Tail Gearbox	3318.9	1189.8	2.7895	(53/19)

Overall

Engine to main rotor	20,900.0	257.9	81.0419
Engine to tail rotor	20,900.0	1189.8	17.5658
Tail rotor to main rotor	1189.8	257.9	4.6136

APPENDIX C. INSTRUMENTATION

GENERAL

1. The test instrumentation was installed, calibrated and main aimed by the US Army Aviation Engineering Flight Activity. A test boom, with a swiveling pitot-static tube and angle of attack and sideslip vanes, was installed at the nose of the aircraft. Equipment required for specific tests was installed when needed. Data was obtained from calibrated instrumentation and displayed or recorded as indicated below.

Pilot Panel

Airspeed (boom) Airspeed (ship)* Altitude (boom) Altitude (ship)* Altitude (rsdsr)* Rste of climb* Rotor speed (sensitive-digital) Engine torque* ** Turbine gas temperature* ** Power turbine speed (Np)* ** Gas producer speed (Ng)* ** Control position Longi tudinal Lateral Directional Collective Horizontal stabilator position* Center of gravity (cg) lateral acceleration (sensitive) Angle of sideslip Tether cable angles Longitudinal Lateral

Copilot Panel

Event switch Airspeed* Altitude* Rotor speed* Engine torque* ** Ballast csrt control Ballast csrt position Cable tension Fuel remaining* **

*Ship's system/not calibrated **Both engines

Engineer Panel

Preaaure altitude Ambient pressure Engine Fuel flow** Engine Fuel used** APU fuel used Total air temperature Instrumentation controls Time code display Run number Event awitch

2. Data parameters recorded on board the aircraft and via telemetry include the following:

Digital (PCM) Data Parameters

Airspeed (boom) Altitude (boom) Airspeed (ship's) Altitude (ship's) Total air temperature Rotor speed Gas generator speed** Power turbine speed** Engine fuel flow** Engine fuel used** Engine fuel temperature** Engine output shaft torque** Turbine gas temperature** APU fuel used Main rotor shaft torque CG latera' acceleration (aenaitive) Tether cable tension Tether cable angle Longitudinal Lateral Stabilator position Movable ballaat location Control position Longitudinal Lateral Directional Collective Attitude Pitch Roll Yaw

**Both engines

Angular Rate Pitch Roll Yaw Tail rotor shaft torque Tail rotor impressed pitch (Blade angle at 0.75 blade span) Angle of sideslip Angle of attack Time of day Run number Pilot event Engineer event

AIRSPEED CALIBRATION

3. The standard ship's airspeed system and test boom airspeed system were calibrated in level flight. The ground speed course, a calibrated T-28 pace aircraft and a calibrated trailing bomb (finned pitot-static system) were used to determine the position error. The position error of the boom airspeed system is presented in figure 1.

WEATHER STATION

4. A portable weather station was used during tethered hover tests. The weather station equipment included an anemometer to measure wind speed and direction at selected heights up to 100 feet above ground level. A sensitive temperature gage and barometer were utilized to measure ambient temperature and atmospheric pressure, respectively.

LOAD CELL

5. A calibrated load cell was incorporated with the ship's cargo hook to measure cable tension and accelerometers were used to measure longitudinal and lateral cable angles for tethered hover tests. Indicators were installed in the cockpit to display cable tension and cable angle measured with respect to the ground.

APPENDIX D. TEST TECHNIQUES AND DATA ANALYSIS METHODS

AIRCRAFT RIGGING

1. A flight controls engineering rigging check was performed on the main and tail rotors to insure compliance with established limits. The stabilator control system was adjuated to conform as close as possible to the modified production schedule to prevent improper drag characteristics effecting level flight performance.

AIRCRAFT WEIGHT AND BALANCE

2. The aircraft was weighed in the instrumented configuration . with all fuel drained and full oil prior to the start of the Airworthiness and Flight Characteristics program. The initial weight of the sixth year production aircraft was 12,000 pounds with the longitudinal center of gravity (cg) located at fuselage station (FS) 352.2 with the cg of the empty ballast cart located at FS 301. The fuel cells and an external sight gage were alao calibrated. The measured fuel capacity using the gravity fueling method was 359 gallons. The fuel weight for each test flight was determined prior to engine start and after engine shutdown by using the external sight gage to determine the volume and measuring the specific gravity of the fuel. The calibrated cockpit fuel totalizer indicator was used during the test and at the end of each test compared with the sight gage readinga. Aircraft cg was controlled by a movable ballast system which was manually positioned to maintain a constant cg whila fuel was burned. The movable ballast system was a cart (2000-pound capacity) attached to the cabin floor by rails and driven by an electric screw jack with a total longitudinal travel of 72.3 inches.

PERFORMANCE

General

3. Helicopter performance was generalized through the use of nondimensional coefficients as follows using the 1968 US Standard Atmosphere:

a. Coefficient of Power (Cp):

$$C_{\rm p} = \frac{{\rm SHP} (550)}{\rho A(\Omega R)}$$
 (1)

b.	Coefficient of Thrust (C _T):	
	GW + CABLE TENSION CT =	(2)
	ρ Α (ΩR) ²	
c.	Advance Ratio (µ):	
	ν ₁ (1.6878) μ =	(3)
	GR	

Where:

SHP = Engine output shaft horsepower (total for both engines) $\rho = \text{Ambient air density (lb-sec^2/ft^4)} = \rho_0 \begin{bmatrix} \frac{\delta}{-\frac{1}{9}} \\ \frac{\delta}{-\frac{1}{9}} \end{bmatrix}$ $\rho_0 = 0.0023769 (lb-sec^2/ft^4)$ $\delta = \text{Pressure ratio} = \frac{P_a}{-\frac{1}{P_{a0}}}$ $P_a = \text{Ambient air pressure (in.-Hg)}$ $P_{a0} = 29.92126 \text{ in.-Hg}$ $\theta = \text{Temperature ratio} = \frac{0\text{AT} + 273.15}{288.15}$ OAT = Ambient air temperature (°C) $A = \text{Main rotor disc area} = 2262 \text{ ft}^2$ $\Omega = \text{Main rotor angular velocity (radians/sec)}$ R = Main rotor radius = 26.833 ft GW = Gross weight (lb) $V_{T} = \text{True airspeed (kt)} = \frac{1.6878 \sqrt{\rho/\rho_{0}}}{1.6878 = \text{Conversion factor (ft/sec-kt)}}$ $V_{E} = \text{Equivalent airspeed (ft/sec)} = \left\{ \frac{7(70.7262 P_{a})}{\rho_{0}} \left(\left[\left(\frac{q_{c}}{P_{a}} + 1\right)^{2/7} - 1 \right) \right\}^{1/2} \right] \right\}$

VE

70.7262 = Conversion factor (1b/ft²-in.-Hg)

Q_c = Dynamic pressure (in.-Hg)

At the normal operating rotor speed of 257.9 revolutions per minute (rpm) (100%), the following constants may be used to calculate Cp and C_T :

 $\Re = 724.685$ $(\Re)^2 = 525,168.15$ $(\Re)^3 = 380,581,411.2$

4. The engine output shaft torque was determined by use of the engine torque sensor. The power turbine shaft contains a torque sensor tube that measures the total twist of the shaft. A concentric reference shaft is secured by a pin at the front end of the power turbine drive shaft and is free to rotate relative to the power turbine drive shaft at the rear end. The relative rotation is due to transmitted torque, and the resulting phase angle between the reference teeth on the two shafts is picked up by the torque sensor. This torque sensor for both engines was calibrated in a test cell by the engine manufacturer. The output from the engine torque sensor was recorded on the onboard data recording system. The output SHP was determined from the engine's output shaft torque and rotational speed by the following equation.

$$Q(Np)$$

SHP = _____ (4)
5252.113
Where:

Q = Engine output shaft torque (ft-1b)

Np = Engine output shaft rotational speed (rpm)

5252.113 = Conversion factor (ft-lb-rev/min-SHP)

The output SHP required was assumed to include 13 horsepower for daylight operations of the aircraft electrical system, but was corrected for the effects of test instrumentation installation. A power loss of 1.82 horsepower was determined for electrical operation of the instrumentation. Reductions in power required were made for the effect of external instrumentation drag. This was determined by the following equation.

$$F_{e} (\rho/\rho_{o})(V_{T})^{3}$$
SHPinstr drag = (5)

96254

Where:

 $F_e = 0.833 \text{ ft}^2 \text{ (estimated)}$ 96254 = Conversion factor (ft²-kt³/SHP)

The nominal fuel temperature of 50° C for the cold weather test site and 55° C for remaining test sites was used in the determination of engine fuel consumption.

Shaft Horsepower Available

AND IN THE COMPANY AND A DESCRIPTION OF

5. The SHP available for the T700-GE-700 engine installed in the UH-60A was obtained from data received from US Army Aviation Systems Command and preaented in USAAEFA Report No. 77-17 (ref 6, app A). This data was calculated using the General Electric engine deck number 80024, dated 26 February 1981 with a power turbine shaft speed of 20,900 rpm. The installation losses used were based on 0.25 degree C engine inlet temperature rise in a hover, exhaust losses as obtained from the Sikorsky Aircraft Document Number SER-70410, Reviaion 2, dated 8 March 1979, inlet ram pressure recovery as obtained from the Sikorsky Prime Item Development Specification, and an inlet temperature rise in forward flight assuming an adiabatic rise referenced to ambient.

Hover Performance

6. Hover performance was obtained by the tethered hover technique. Additional free flight hover data were accumulated to verify the tethered hover data. All hover tests were conducted in winds of less than 3 knots. Tethered hover consists of restraining the helicopter to the ground by a cable in series with a load cell. An increase in cable tension, measured by the load cell, is equivalent to an increase in gross weight. Free flight hover tests consisted of stabilizing the helicopter at a desired height using the radar altimeter as s height reference. All hovering data were reduced to nondimensional parameters of $C_{\rm F}$ and $C_{\rm T}$ using equations 1 and 2, respectively, and grouped according to wheel height. A two segment fairing was used to more accurately represent the out-of-ground effect hover performance. Fairings of the same form used in this analysis were used in a reanalysis of the data representing the normal utility configured UH-60A (ref 6, app A) to yield a more indicative comparison. Summary hovering performance was then calculated from these nondimensional plots using the power available from reference 6.

Level Flight Performance

Ceneral:

7. Each speed power was flown in ball-centered flight by reference to a sensitive lateral accelerometer at a predetermined C_T and referred rotor speed $(N_R/\sqrt{\theta})$. To maintain the ratio of gross weight to pressure ratio constant, altitude was increased as fuel was consumed. To maintain $N_R/\sqrt{\theta}$ constant, rotor speed was decreased as temperature decreased. Power corrections for rate-of-climb and acceleration were determined (when applicable) by the following equations.

$$SHP_{R/C} = -$$

$$(R/C_{TL})(GW)$$

$$(6)$$

$$33,000(K_{P})$$

Where:

$$R/C_{TL} = Tapeline rate of climb (ft/min) = \begin{pmatrix} \Delta Hp \\ \Delta t \end{pmatrix} \begin{pmatrix} 0AT + 273.15 \\ \\ 0AT_{B} + 273.15 \end{pmatrix}$$

$$\frac{\text{Mp}}{\text{Mp}} = \text{Change in pressure sltitude per unit time (ft/min)} \\ \Delta t \\ \text{OAT}_8 = \text{Standard ambient temperature at pressure altitude} \\ & \text{where } \frac{\Delta H_P}{\text{Mp}} \text{ was measured (°C)} \\ & \Delta t \\ \text{Kp} = 0.76 \\ 1.6098 \times 10^{-4} = \text{Conversion factor (SHP-sec/kt^2-1b)} \\ \frac{\Delta V}{\text{M}} = \text{Change in sirspeed per unit time (kt/sec)} \\ & \Delta t \\ \end{array}$$

A power correction to insure ball-centered test dsta complied with the inherent sideslip fsmily of curves depicting the UH-60A in figures 60 and 61, appendix E, was determined from ΔF_e as a function of sideslip angle (fig. 67) and equation 5 rewritten as follows.

$$SHP_{s/s} = (\Delta F_{e \text{ in } s/s} - \Delta F_{e B-C}) (\rho/\rho_0) (V_T^3)$$
(8)

96254

Where:

 $\Delta F_e^{*}in s/s = Change in equivalent flat plate area based on UH-60A inherent sideslip.$

 AFe^{*}B-C * Change in equivalent flat plate area based on the sideslip angle measured in ball-centered flight.

*Based on change in engine shaft horsepower.

vower required for level flight at the test day conditions was determined using the following equation.

$$SHP_t = SHP + SHP_{R/C} + SHP_{ACCEL} + SHP_{s/s} - SHP_{instr drag} - 1.82$$
 (9)

8. Test day level flight data was corrected to average test day conditions by the following equationa.

$$SHP_{g} = SHP_{t} \frac{\left(\delta_{g}\sqrt{\theta_{g}}\right)}{\left(\delta_{t}\sqrt{\theta_{t}}\right)} \frac{\left[\frac{N_{R}}{\sqrt{\theta}}\right]^{3}}{\left[\frac{N_{R}}{\sqrt{\theta}}\right]^{3}} t$$
(10)

$$V_{T_{g}} = V_{T_{t}} \frac{\left[\frac{N_{R}}{\sqrt{\theta}}\right]_{g}}{\left[\frac{N_{R}}{\sqrt{\theta}}\right]_{t}}$$
(11)

Where:

1

たかかいていてい

N_R = Main rotor speed (rev/min) subscript t = Test day subscript s = Average test day

Test data corrected for rate of climb, acceleration, instrumentation installation, and corrected to inherent aideslip, standard altitude, and ambient temperature are presented in figures 32 through 59, appendix E.

9. Level flight performance was determined by using equations 1 through 3, rewritten in the following form.

 $C_{P} = \frac{SHP(478935.3)}{\left(\frac{N_{R}}{\sqrt{\theta}}\right)^{3}} \rho_{0}AR^{3} \qquad (12)$ $C_{T} = \frac{GW(91.19)}{\delta \left[\frac{N_{R}}{\sqrt{\theta}}\right]^{2}} \rho_{0}AR^{2} \qquad (13)$

$$= \frac{V_{T}(16.12)}{(14)}$$

$$= \frac{N_{R}}{\sqrt{\theta}}$$

Where:

μ

 $478935.3 = \text{Conversion factor (ft-lb-sec^2-rev^3/min^3-SHP)}$

 $91.19 = \text{Conversion factor } (\sec^2 - \frac{\text{rev}^2}{\min^2})$

16.12 = Conversion factor (ft-rev/min-kt)

10. Data analysis was accomplished by plotting Cp versus μ for each test at the average C_T and $N_R/\sqrt{\theta}$. The curves through these data were then cross-faired as Cp versus C_T for lines of constant $N_P/\sqrt{\theta}$ at a given μ for an initial determination of what effect $N_R/\sqrt{\theta}$ had throughout the level flight envelope. These curves were subsequently faired into individual corpet plots (C_T versus Cp for lines of constant μ) at each $N_R/\sqrt{\theta}$ at the average test conditions (figs. 20 through 31, app E). The classification of these carpet plots into related families of curves (Cp versus $N_R/\sqrt{\theta}$ for lines of constant C_T at increments of μ) allows determination of power required as a function of airspeed for any value of C_T and $N_R/\sqrt{\theta}$ (figs. 4 through 19).

11. The specific range (SR) data were derived from the test level flight power required and fuel flow (W_F). Selected level flight

performance SHP snd fuel flow data for each engine were referred as follows.

$SHP_{REF} = \frac{SHP_{t}}{\delta \theta^{0.5}}$	(15)
W _{FREF} - WFt	(16)
δθ0.55	

A curve fit was subsequently spplied to this referred data and was used as the basis to correct W_F to standard day fuel flow t using the following equation.

$$W_{F_{s}} = W_{F_{t}} + \Delta W_{F}$$
(17)

Where:

 ΔW_F = Change in fuel flow between SHP_t and SHP_s

The following equation was used for determination of SR.

$$SR = \frac{v_{\rm T}}{w_{\rm F}}$$
(18)

Stabilator Position Effect:

12. Tests were flown in ball-centered level flight at a predetermined C_T and μ . Stabilator position was varied incrementally up and down from the trim schedule position to a predetermined limit based on the main rotor mast endurance limit. Change in power required for level flight due to change in stabilator position for a constant μ was obtained at each stabilized increment. Power corrections indentical to those used in the level flight performance analysis, equation 9, were also applied. Plotting atabilator movement and corresponding change in power required show they vary as a function of μ and C_T (figs. 69 and 70, app E). Direction of stabilator movement indicates if the change in power required is additive or subtractive.

13. Stabilator position is a function of collective position and indicated airspeed in stabilized ball-centered level flight. Different dimensional conditions, and correapondingly different stabilator positions, can produce the same nondimensional condition. Collective position analyzed on a nondimensional basis normalizes as a function of μ for the same C_T regardless of the dimensional circumstances. Indicated airspeed varies with dimensional conditions for the same μ . Level flight power required, therefore, can be adjusted for the effects of different stabilator positions caused by flying at different test conditions for the same C_T . The procedure is to determine the difference in indicated airspeed for the same μ and convert this difference into change of stabilator position and consequently ΔC_P . Data at the different test conditions allows solving equation 14 for V_T , and determining δ as follows.

$$\sigma = [1-6.8755856E-06 (H_D)]^{4.25584}$$
(19)

Where:

H_D = Density altitude (ft)

 $\delta = \sigma \theta \tag{20}$

Calibrated airspeed (V_{cal}) and consequently indicated airspeed (V_{ic}) at the different test conditions are determined as follows.

$$\begin{array}{ccc} v_{ca1} = 1479.12 & \left(\left\{ \begin{bmatrix} \delta \end{bmatrix} & \left\{ \begin{bmatrix} 1 \\ & & \\ +0.2 & \left(\frac{V_{T}}{38.97(0AT + 273.15)^{1/2}} \right)^{2} \right]^{7/2} -1 \right\} & +1 \right\}^{2/7} -1 \right)^{1/2} & (21) \\ v_{ic} = f & \left(v_{cs1}, \text{ Ship airspeed system position error, fig. 71, app E} \right) \end{array}$$

The difference in stabilator position between test conditions can be obtained from the slopes of the airspeed versus stabilator angle schedule.

$$\Delta \text{ STAB} = \Delta \text{V}_{ic} \begin{bmatrix} \Delta \text{ STAB} \\ ---- \\ \Delta \text{V}_{ic} \end{bmatrix} + \Delta \text{V}_{ic} \begin{bmatrix} \Delta \text{ STAB} \\ ---- \\ \Delta \text{V}_{ic} \end{bmatrix} + \dots$$

Where:

 Δ STAB = Difference in stabilator position (deg)

 $\Delta V_{ic} = \text{Difference in indicated airspeed within an airspeed} \\ \text{segment (kt)}$

Figure 1. Normalized Stabilator Schedule

The change in power required to correct for differences in stabilator position is obtained when curves from figure 68, appendix E, are cross-faired as Δ Cp versus Δ stabilator angle for a specific μ .

 $^{C}P(\text{test condition 2}) = ^{C}P(\text{test condition 1}) + ^{C}P(\text{test condition 1})$

Where:

+ or - is employed depending on direction of stabilator movement when transversing from test condition 1 to test condition 2.

+ ;TEUP movement - ;TEDN movement

TEUP = Stabilator trailing edge up TEDN = Stabilator trailing edge down

APPENDIX E. TEST DATA

INDEX

Figure

Figure Number

Hover Performance			
Hover Summary		1	
Nondimensional Hover Performance		2 and 3	
Level Flight Performance			
Nondimensional Level Flight Performance	4	through	31
Dimensional Level Flight Performance	32	through	59
Inherent Sideslip	60	through	66
Change in Equivalent Flat Plate Area			
with Sideslip		67	
Stabilstor Effects in Level Flight	68	through	70
Ship System Airspeed Calibration		71	

÷

CLASSING AND A DESCRIPTION OF TAXABASE AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A

A shall at the Ball at a ball at a ball

語のない

and the second

μ = 0.22

NOTES

5

è

Ι.

27

1 NORMAL UTILITY CONFIGURATION (ESSS FAIRINGS) 2 BALL CENTER TRIM CONDITION 3 AVERAGE LONGITUDINAL CENTER OF GRAVITY LOCATION AT FS 347.4 4 "RAGE LATERAL CENTER OF GRAVITY LOCATION AT BL 0.2 LEFT 5 CURVES OBTAINED FROM FIGURES 20 THRU 31 AND 53

なない

ļ

New States

間にない

THE COMPACT FOR A CONTACT IN A DRIVE OF A DRIVE OF A DRIVEN OF

A THE R. P. D. LEWIS CO. LANSING MICH.

ないただという

. .

.

лагулагылыгырын женталагарытырырырырырырыры

and the stand of the stand of the stand of the stand

The Best at he The The The " at a the " at a the

1877-1708-1700-1000-000-1700

a Carl Carl State of the Car

a Dir Dis VAR Seter⊂ins offer the state in the s

FIGURE 34 LEVEL FLIGHT PERFORMANCE UH-50A USA \$/N 82-23748

┪┪┫╗╗╗╝┙╡┙╡╱┩┙╖╔┥╅╄┙┑┙╕╸╗┙╖┙┑┑╝╝╬╬╗┧╺╷┙┙┑┑╌┩╌┩╌┩╌┩╌┩╌┩┝╝╝╇╠┝╗┝╝┢╝╆╝┢╝╝╝╝╝╝╝╝╝╝╝

1. 2.

FIGURE 38 LEVEL FLIGHT PERFORMANCE UH-60A USA S/N 82-23748

2

「いくない」

FLOURE 49 LEVEL FLIGHT PERFORMANCE UH-60A USA S/N 82-23748

والمحافظ والمحافظ والمراجع والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ وال

-

FIGURE 59 LEVEL FLIGHT PERFORMANCE UH-BOA USA S/N 77-22716

TATUER SHOW CATERS WORKS VIANA WAY 1.1

¢.

ľ

FIGLRE 64 SIDESLIP IN BALL CENTER LEVEL FLIGHT UH-60A USA S/N 82-23748

Sector Sector

ŔĮ

A STATE

											-				
		2	č.	2				e din Interne					n ti Dinusi		
	<u>ĝ</u>	NOLLINO	POSITION	NOLLIN					ļ	ļ		ß			
N H	FAIRINGS	8		8							2.13	0	1	5	
	EAI	ğ	LATOR	ATOR				-			1 1 1 1	1		-8	-
POSI	ESSS	BILA	STABL				. I		1		i ana	ø	1.52		
	N N			STABI								Ţ		-88	
ATOR	ATTA TTIC	d H		IRIM										10	2
17	22.	Fо	E C C	Ë								1	0		1
STABIL	840	SHE SHE		S DENOTE							1		100	42 M	1
[H S] -22716	Egg	OLS DENOTE T		0 S										8	
TN			χ Σ Η	SmB								10	9	N	T.
	MOREN UTI TTY CONFIL BALL CENTERED TRIDA C	WK SYNBOLS	CREASED SYMBOLS DENOTE TEDN	SHADED SMBO								0.235	t		40
CTENT CTENT A USA S	BALL C	3 3	89	3	N				273			1	1	16	
	+ ~ *	24	S,	¢	0.312				S #			4	10	Ľ	9.
DEFFI UH-60	DIES				1				a			1 Ve		12	1
	8								4				1d	Ĩ	
- C							1	7			\mathbb{N}	A	à		14.0
8										1	~	X			
A											*	×			
SU SU													-		
A A								5					-	4 .e	
- 0															
				2 Ø1 >				o IEB (nod 3		258A		- -	ф -Ю	The state
						107									

	2												
- 1977: I. 1973	Z	POSITION	Z							-			10.1 V -
8-8-8	VGS)	LISC	NOILISO				1						
Z	POS.	A A	S								68	Linevi	hana
Ĕ	ATION (ESSS FAIRINGS) DITION 258 3.0 STABILATOR POSITION URED)	ATOR	ø		i	1-7				-	FROM FIGURE		~
ISOA	CESSS ABTLA	TEDN STABIL	TRIM STABILATOR								E		18
	L CE	R.	TAB								No.		
TOR	TGURATION CONDITION D = 258 E TEUP S REGUIRED>	ZQ	δ) Σ				-		-		T		8
	NDITI NDITI = 258 TEUP	FA	Ĕ				-		-	-	ATA		9
ABI	LE CON	6W	DIES							1	8		-81
STA B	NEW OFFICE	S S S S S S S S S S S S S S S S S S S	DENDTES				-			a a a	CURVE OBTAINED		
31 31	N N	CROSSED SYMBOLS DENOTE COECREASE IN POWER RECO	đ	LQ.	-			+			g		
11 128 158 158	HERE	SH YH	ADED SYMBO	= 0.0105							0		814
EN	A C L C A	G S	â	0							0.0000		6 STARTI
544 ·	NORMAL UT BALL CENT REFERRED BLANK SYM	80 80	2	¢							0		
FICTE	- 0.04	цу п									5		Ë
		-	\$										2 ANO
- Ho	ES .				\searrow	<					Ą.		2
							\mathbf{i}				$ \rangle$		5
H H								7-0	K,			1	NANCE
8												$\left \right\rangle$	
- <u> </u>										R C	X	1	-4
Щ						-1- 						Z_{J}	
ANGE												$ \lambda $	
8													
			5				é				à		es .
		1.011120	01 X	TW	1.01	330	s a	эмоа	aru	IOSEV	NI .	- SIVAI	-D
	TAL STREET		1.000		104		32 ett.						

а да има та атматы кала каландыкта киралары каралары та та тактакта каралары каралары киралары киралары каралар

ገም ነቶ ፕደጋገብ ንዘጋንል ፕዲግዚ ^የዲግዳ አብረት እ

DISTRIBUTION

HQDA (DALO-AV, DALO-FDQ, DAMO-HRS, DAMA-PPM-T,	6
DAMA-RA, DAMA-WSA)	
US Army Materiel Command (AMCDE-SA, AMCDE-P, AMCQA-SA,	4
AMCQA-ST)	
US Army Training and Doctrine Command (ATCD-T, ATCD-B)	2
US Army Aviation Systems Command (AMSAV-8, AMSAV-ED,	15
AMSAV-Q, AMSAV-MC, AMSAV-ME, AMSAV-L, AMSAV-N,	
AMSAV-GTD)	
US Army Test and Evaluation Command (AMSTE-TE-V,	2
AMSTE-TE-O)	
US Army Logistics Evaluation Agency (DALO-LEI)	1
US Army Materiel Systems Analysis Agency (AMXSY-RV, AMXSY-M	P) 8
US Army Operational Test and Evaluation Agency (CSTE-AVSD-E) 2
US Army Armor School (ATSB-CD-TE)	1
US Army Aviation Center (ATZQ-D-T, ATZQ-CDC-C, ATZQ-TSM-A,	5
ATZQ-TSM-S, ATZQ-TSM-LH)	
US Army Combined Arms Center (ATZL-TIE)	1
US Army Safety Center (FESC-SPA, PESC-SE)	2
US Army Cost and Economic Analysis Center (CACC-AM)	1
US Army Aviation Research and Technology Activity (AVSCOM)	3
NASA/Ames Research Center (SAVRT-R, SAVRT-M (Library)	
US Army Aviation Research and Technology Activity (AVSCOM)	2
Aviation Applied Technology Directorate (SAVRT-TY-DRD	
SAVRT-TY-TSC (Tech Library)	

US Army Avistion Research and Technology Activity (AVSCOM)	1
Aeroflightdynamics Directorate (SAVRT-AF-D)	
US Army Aviation Reaearch and Technology Activity (AVSCOM)	1
Propulsion Directorate (SAVRT-PN-D)	
Defense Technical Information Center (FDAC)	2
US Military Academy, Department of Mechanics	1
(Aero Group Director)	
ASD/AFXT, ASD/ENF	2
US Army Aviation Development Teat Activity (STEBG-CT)	2
Assistant Technical Director for Projecta, Code: CT-24	
(Mr. Joseph Dunn)	2
6520 Test Group (ENML)	1
Commander, Naval Air Systems Command (AIR 5115B, AIR 5301)	3
Defense Intelligence Agency (DIA-DT-2D)	1
Project Manager Training Devices (LTC Cleland, AMCPM-AVD)	1
Singer/Link Division (DEPT 445, Tony Mazza)	1
PM, TRADE (AMCTM-AVD)	1
Singer Link	1
Singer Company, Link Division (Robert Martin)	1
US Army Aviation Systems Command (AMCPM-BH)	4
United Technologies Corporation, Sikorsky Aircraft	
Division (Rich Gallagher)	1