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1. INTRODUCTION

Window Rbndom-Access algorithms constitute an important class of Multiple-

Access algorithms; they are distributive and attain high throughputs and low delays by

controlling the number of simultaneously transmitting users. The throughput analysis of

algorithms in this class, is a relatively easy task. The delay analysis, however, presents

difficulties, due mainly to the presence of variable window sizes and the complicated

state space that some of these algorithms create. This restrictions prohibits the applica-

tion of results from standard queueing theory in the delay analysis.

Many attempts for the delay analysis have been made. In [1], the class of algorithms

with constant window size was considered, and upper bounds on the expected delays

were developed. In [2], [3], methods for the computation of bounds on the moments of

the delays were presented. A method for the computation of delay distribution for con-

stant window algorithms appears in [4]. The method in [4] relies on a clever decomposi-

tion of the delay process, which allows the application of results from standard queueing

theory. It is not possible, however, to extend the techniques in [4] to the case of variable

window size. The computation of the delay distribution for variable window size algo-

rithms remains an open problem. One possible approach is to compute bounds on the

moments of the delays as in [2] or [3], which can then be used for an approximate

evaluation of the delay distribution. This approach, however, is not computationally prac-

tical.

In this paper, we show that the methodology employed in [31, can be extended to

provide bounds on the distribution of the delays. The quantities of interest are related to

the solution of a denumerable system of linear equations. Methods for the computation
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of the constant terms and the coefficients of the unknowns of the system are developed. W

I'

The methodology is applied to the delay distribution analysis of both the Capetanakis

Window-Access algorithm with binary feedback and the Part-and-try algorithm with

binary feedback. It can also be applied directly to other Window Random-Access algo-

rithms with different feedback. An interesting result of the analysis is that as the arrival

rate increases, the tales of the distribution become longer, but the median grows much

slower than the expected delay.

2. MODEL SPECIFICATION

We consider a single slotted channel that is being accessed by a number of indepen-

dent packet transmitting users. The length of a packet is equal to the length of a slot, and

packet transmission may start only at the beginning of a slot. Simultaneous transmission

of more than one packets in the same slot, results in complete loss of the information

included in the involved packets. The latter event is referred to as a "collision" event. At

the end of each slot, all users receive a feedback that provides some information about

the chanell activity in that slot. Common types of feedback are the binary C-NC (colli-

sion versus noncoUision) feedback, and the ternary 0-1-C (empty versus success versus

collision) feedback. To resolve the collision, the users follow the rules of a Random-

Access algorithm. The algorithm is implemented by each user in a distributed fashion,

using only the available feedback. The cumulative packet generating process is assumed fN

to be Poisson with rate X packets per slot.

We assume that a Window Random-Access algorithm is employed, whose basic

operating characteristics are the following (see Figure 1): Suppose that at the beginning
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of slot v all packet that arrived before time t<v have been successfully transmitted, and

there is no information concerning the packets that may have arrived in the interval [tv,v),

(i.e., the distribution of the interarrival times of the packets in [tyv) is the same as the

one assumed originally). The beginning of such a slot v is called a Conflict Resolution

Point (CRP). The time difference dv = v-t v is referred to as the lag at v. In slot v, the

users that generated packets in the interval [tv, t +tv), where t, = min(d,,A), are allowed

to transmit; A is a parameter to be properly chosen for throughput maximization. After a

random number of slots and following the rules of the algorithm, another CRP, v, is

reached, with a corresponding tv,> tv. All the packets that have been generated in the

interval [tv, tv.), have been successfully transmitted in the interval [v,v). The intervals

[v,v), [tv, tv+'TV), [t, tv.) are called conflict resolution interval, transmitted interval, and

resolved interval, respectively. The length of t v, is called the window size at time v

Clearly, the window size varies with time, and its maximum size is A. Note also, that the

length of the conflict resolution interval is one, if and only if there are at most one pack-

ets in the transmitted interval.

Algorithms that operate as described above, are the Capetanakis Window Random-

Access algorithm [5] and the Part-and-Try algorithm, [5], [6], under either binary C-NC

feedback, or ternary 0-1-C feedback.

3. STEADY STATE DELAY DISTRIBUTION ANALYSIS

Let packets be labeled 1,2,3,... according to the order of their arrival instants. The

delay D n experienced by the n-th packet is defined as the time difference between its

arrival and the end of its successful transmission. We will be interested in evaluating the

4
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steady state distribution of D n, when it exists.

Let vi; i l be the sequence of successive CRPs and let di be the lag at vi. The

sequence di; i2l is a Markov chain with state space F. For most of the existing Window

Random-Access algorithms, F is a denumerable subset of the interval [1,oe). Let T1=I,

d1=1, and define Ti+1, as the first slot after Ti, at which dT1 = 1. From the description of

the algorithm it can be seen that the induced delay process probabilistically restarts itself

at the beginning of each slot Ti, i=1,2.... The interval [Ti,Ti+l) will be referred to as the i-

th session. Note that the sessions have lengths that are i.i.d. random variables.

Let Ri, i=1,2,..., denote the number of packets successfully transmitted in the inter-

val (0,Ti]; (note that R, also represents the number of packets arrived during the interval

[0, Ti-1), since Ti is a CRP at which the lag is unity). Then, Ci=Ri+l-Ri; i2!1, is the

number of packets successfully transmitted in the interval (TiTij+] - these are the packets

that arrived during the interval [Ti-1, Ti+ 1-1). The sequence Rj; i_>l, is a renewal process,

since Ci, i_>l, is a sequence of nonnegative i.i.d. random variables. Furthermore, the

delay process D n, n>_l, is regenerative with respect to the renewal process Ri, i2l, with

regeneration cycle C I.

Let

In(s)=I if n<S

0 otherwise

From the regenerative theorem [31, we conclude that if C=E(C1 ) <oo then



Cl

E(XIn(s))
1 N n(1)

lim - % Z I(s) = lrn -E( y I(s)) =-

-n=1 n=1

In addition, since P(C1 =I) > 0, the distribution of C 1 is aperiodic and there exists a 4

proper random variable D ., such that the sequence D ,; n=l ,2.... converges in distribu-

tion to D.. D. represents the steady state delay induced by the algorithm and its distri-

bution satisfies the equality

C,

E( Y I,(s))
n=1 (2)

P(D. -:s) -
C

From (2) we observe that the steady state distribution of the delays can be determined by

computing the quantities of the right hand side of the equality. In [31 it was shown that

the finiteness and the computation of C is related to the existence and the computation of

an appropriate solution to an infinite system of linear equations. In this section we will

C,

show that the same is true for the quantity E( I In(s)).
0=1

The following definitions will be used in the sequel.

:Length of a conflict resolution interval

8 :Length of a resolved interval

: Window size.

E(X/'t) Expected value of the random variable X, given that the window size is

6
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p(x,r/,c) The probability that the conflict resolution interval has length x and the

resolved interval has length r, given that the window size is t.

p(x/t) : The probability that the conflict resolution interval has length x, given

that the window length is t.

hd Number of slots needed to reach a CRP with lag 1 given that the current

lag is equal to d, de.F.

kd(s) Number of successfully transmitted packets with delay less than s, in the

interval hd.

rr,d(S) : Number of successfully transmitted packets with delay less than s during

a conflict resolution interval, given that the window size is 't and the lag is

d.

nt(s) n Number of successfully transmitted packets with delay less than s, dur-

ing a conflict resolution interval, given that the window size is t and the

lag is ". That is, n.t(s)=rrmt(s).

L e t u s a l s o d e f i n e , = E

Kd(S) = E(kd(s))

M't,d(S) = E(m.,d(S))

Nt(s) = E(n (s))
Hd E(hd)

Note that by definition,

C,

K (s) = E( 1,(s))
n=1

Also,

7
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Therefore, the determination of Kj(s) and H1, will permit the computation of the steady-

state distribution of the delays.

Consider the arrangement of Fig. 1. The delay D of the successfully transmitted

packet 1, can be decomposed as follows:

D = 01+d--T+0 2

Therefore,

D 5s iff 1+02 ! S-d+T (3)

But 01+0 2 is statistically identical to the delay that the successfully transmitted packet

experiences if the transmitted interval is t and the lag is t. The last observation shows

that m'rd(S) is identically distributed with n;(s-diT). Observe now that

kdS { n ,d(s) if ,=1(4
dk M ld(S)+kd'(S) if dv,= d I 4

and that

* fdA if dv, A

From (4) and (5) we conclude that

0Kd(S) = M dd(S) + lKdr+x(5)p(xr/d) if l:5d A, dEE 6a
r,x (a

Kd(S) = MAd(s) + XKd,,x(S)p(x,r/A) if d>A, dEE (6b)
r,x

Since M-cd(s) is identicaly distributed with n,,(s-d+t), equations (6a) and (6b) become,

Kd(S) =Nd(s) + XKdrx pxr/d) if I <d A, deF
r,x drx)P (7a) -

8
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Kd(s) = N,(s-d+A) + XKdr+x(S)p(x,r/A) if d>A, dF (7b)
r,x

Equations (7a), (7b) comprise a denumerable system of linear equati -ns. Of interest to us

is the element K,(s) of a particular solution of this system. The methodology developed

in [31 can be used for the study of system (7). Note that the coefficients of the unknowns

are independent of s. This observation represents a computational advantage when the

solution to (7) is approximated by the solution of appropriate finite linear system of equa-

* tions [3]. In this case, the approximate solution can be represented in the form,

K(s) = (I-A)-'N(s)

where A is a square matrix whose elements are independent of s. The matrix (I-A)- can

be computed once, and then used for the computation of the approximate solution for

various values of s.

We now proceed in the development of an initial upper bound on the solution of

system (7). Following the methodology in [3], such a bound will be the sequence

0K(s) = yj(s)d+ (s), if yu(s), (s), can be determined so that the following inequalities

* are satisfied

Kd (s) >- Nd(s) + XK° r+x(s)p(x,r/d) = Kd(s) if 1_<d<A, dEFr,x (Sa)

• K°(s) > N,(s-d+A) + YK° r+x(s)p(x,r/A) = K(s) if d>A, dEF 8bd , - d (S) (8b)
T,X w

Substituting K0(s) in the right hand side of inequalities (8), it can be easily seen that if
dJd

drF, ;

Kd(s) = K)(s) - Nd(S) +y (s)(E(l/d) - E(5/d) - (1+.d)e - A) - '(s)( l--.d)e -U if l<_d A (9a)

KI(s) = K (s) + Nj(s-d+A) - yu(s)(E(8/A)-E(1/A)) if d>A (9b)

9



Observe now that NA,(s) is an increasing function of s. Therefore, from (9b) we conclude

that,

d() ! KO~(s) + N,(s) - y,(s)(E(5/A)-E(l /A)) if d>A (10)

* From (10) we conclude that if E(1 /A) < E(5/A), the condition for stability of the system,

inequalities (9b) are satisfied if

0~~__ _ (us= N )G1)

E(8/A)-E(1 /A)

With this value of yu(s), it can be seen that inequalities (9a) are satisfied if

0 js) =max{-yu(s), sup ('xV(d))} (12)

where

Nd(S) + y (s)I[E (I /d) - E (8/d) - (13)e

* NJ(d) = (13)

From the above discussion we conclude that the solution to system (7) satisfies the ine-

* qualities

whee ~(), regienKd(s) 5 yu(s)d + njs), deEF (14a)]

whee y,(s, js) ar gienby equations (11), (12) respectively. The uniqueness of the

solution is guaranteed by the same techniques as in [3]. If we use a similar method for the

development of a lower bound, we find that 
1

y, (s)d + p1 (s) =Kd(S), dEF (I 4b) 31

where

y, (s)=-O and j(s) =inf {(Nd(S)/((l+XLd)e )}

10
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Bounds on H1 are given in [3], formulas (18), (19).

As is explained in [3], the bounds (14) can be used to further improve the bounds on

K,(s). To proceed further, however, the computation of the quantities

E(I/d), E(8/d), p(x,r/d), and Nd(s) is necessary. In section 3, we present a method for the

computation of Nd(s) for the Capetanakis dynamic algorithm, and then proceed in the

computation of tight upper and lower bounds on the quantities of interest. In section 4,

we present a method for the computation of the quantities Nd(S) and p(x,r/d) for the

Part-and-Try algorithm, and then we develop bounds on the distribution of the delays.

Due to the complicated state space of the latter algorithm, the development of tight

bounds for high input rates becomes computationally cumbersome.

3. THE CAPETANAKIS WINDOW RANDOM-ACCESS ALGORITFM WITH C-NC

FEEDBACK

A complete description of the algorithmic rules can be found in [5]. In this algo-

rithm, the resolved interval is always equal to the window size i.e., "r a 8. This results in

a significant simplification of the state space F, when the maximum window size A is a

rational number. The restriction of A to the rational numbers facilitates the development

of tight bounds for the delay distribution and does not represent any disadvantage in

practice. Moreover, if m packets are involved in a conflict, the conflict resolution process

depends only on m and not on the window length or the generation time of each of the

packets. The last property facilitates the development of efficient methods for the corn-

putation of the quantities of interest.

0Z S
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Since 'r -, we have that, E(8/d) = d and

p(x,r/d) p(x/d) if r=d
0 otherwise

Formulas for the computation of E(I/d), p(x/d), can be developed by following the rea-
soning in [5]. In the next section we develop a method by which the quantities Nd(s) can

be computed.

0

3.1 The Computation of Nd(S).

Let M be the number of packets in the window d (see Fig 2). Then,

Nd(s) = E(nd(s)) = E(E(nd(s) / M)) =** E(nd(s) / M (15)e-"' (X) m
m!M=l

Let

Ji'm~) = Iif the delay of the i-th packet in d is at most s (6
to(~ otherwise (6

40} The "i-th packet" in (16), is the i-th packet in a random enumeration of the m packets

(randomly chosen packet). Then

In

nd(S) = 'JiM ( s )  (17)
i=1

Given M, the generation time of each of the M packets is uniformly distributed in the

window d and independent of the generation time of the rest of the packets. From this

observation and the definition in (16) we conclude that the random variables

AI .m(s), li<.m, are identically distributed (although not independent). Therefore, from

(17) we conclude that

12



E(nd(s) / M = m) = m(Ji,m(s) / M = m) (18)

Let OP, (82), be the delay of the first randomly chosen packet before (after) the initializa-

tion of the collision resolution process i.e. until (after) time v (Fig. 2). Since 01 is uni-

formly distributed in [0, d), we have that

d

E(J1iM(s) / M = m)=±f E(Ji~m(s) / M = m,6 1 = 0) dO (19)

d0

Since the conflict resolution process is independent of the packet generation time in a

window, we conclude that given m, the random variables 0O, 02, are independent. There-

fore,

E(JI(s) /M =M, ()I=0)= P(0 1-4 2 S / M = M0 1 =0)= P(0 2 5S-0 /M M) (20)

and

E(JI'm(5) / M = M) = d~ f P( 0 2! S-0 / M = m) dO (21)
0

Observe now, that 02 takes only positive integer values. Let

qM =P(02 =q /M =m) ; q=1,2,3,...

then, 1,2

* p(02 - qMm=~pfI (22)
q=1

Substituting (22) in (21), we conclude that

4PE(Ji~s d MIm= -0 xP(m) dO (23)

[aj denotes the integer part of a.

2We adopt the notation i aq =0 if n~m

13



Let e=d-s+[sj. Then, since Pqr) is independent of 0, (23) can be written as follows:

1ISl [sI-1ll- l J- l-

E(Ji'm(S)/MrfM) = -d ((s-[sJ)-P qm) + Y, I(m .. . q* l P( m) + (e-Le I) q P 1)) (24)
dq=1 q-- I q=1 q=t .4

From (15), (18) and (24), we observe that for the computation of Nd(s), only the quanti-

ties P() are needed. In Appendix 1, we provide recursive formulas for the computation

of the quantities p ) It is worth noticing that formulas (15), (18) and (24), are valid for

any window Random-Access algorithm that has the properties described in the first para-

graph of section 3.

3.2 Development of bounds on K,(s), H,

For the development of bounds on the delays we chose A=2.5 As a result, the state

space F becomes simply,

F -(1, 1.5, 2., 2.5 .....}

For the algorithm considered in this section, the maximum throughput is achieved for

A=2.67 [5]. The reduction in throughput due to the choice A=2.5 is insignificant (less

than 1%).

Since -t, equations (7a), (7b), become:

Kd(s) = Nd(s) + IK(s)p(x/d) if d=1, 1.5, 2, 2.5 (25a)

iIt~

Kd(s) = Na(s-d+A) + EKdA+(s)p(x/A) if d=3, 3.5, 4.... (25b)

X
For the development of bounds on K,(s) we followed the method of truncation of the

infinite system (25) [3]. Specifically, in system (25), we replaced the unknowns

Kd(s), for d>40 with the upper bounds in (14a). The substitution results in a finite system

of equations whose solution is an upper bound to the solution of (25)for

14
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d=l, 1.5, 2,...,40.. For the development of lower bounds, we replaced the unknowns

Kd(s), d>40 with the lower bound in (14b). The same methodology is employed for the

development of bounds on H1. The resulting upper and lower bounds on the distribution

of the delays differ by .01 in the worst case. In figure 3, we provide the distribution of

the delays for various values of the arrival rate. An important observation is that as the

arrival rate increases, the tales of the distribution become longer, but the median grows

much slower than the expected delays.

4. THE PART-AND-TRY ALGORITHM WITH C-NC FEEDBACK

* A detailed description of the algorithm can be found in [6]. The algorithm has

throughput .45, operates under binary feedback and it is not blocked in the presence of

feedback errors. The techniques used in the present section, can be easily applied to the

analysis of the algorithm under ternary feedback.

0 4.1 The computation of Nd(s).

Let M be the number of packets in the window d (see Fig 4.). As in section 3.1, for-

mula (15) holds. Since not all the packets in a window are successfully transmitted, how-

ever, we need to modify the definition of Ji,m(S) in (16). Let

S"I 1 if the i-th randomly chosen packet in d is sucessfully
* Jim(S) transmitted and its delay is at most s. (26)

0 otherwise

then, as in (18),

E(nd(s) / M=m) = mE(J im(s) / M--m) (27)

and

15
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0d

E(Jim(s) / M--m) =-fo E(J 1,(s) / M--m, E)I=0)dO (28)

Again, 02 takes integer values. However, 01 and 02 are not independent. To proceed

further, we define the events

A i,m(s){j the i-th randomly chosen packet is successfully transmitted and 0,:5s.}

aj~m(q) = {the i-th randomly chosen packet is successfully transmitted and 0,=q, q=1,2,....

* Since 0 takes only integer values, we have that

ISi
A i'M(s) = iUa i,m(q) (29)

q= 1

* From (28) and (29) we conclude that

d

E(J im(s) / M=m) -- df p(A i,m(s4) /M--m, 0,=0)dO (30)

1 Is-0l
-f Z p(aj~m(q) /M=m, 0,=6)d0

Observe now that p(a Irn(q) / M--m, 01=()) depends on 0 through the ratio 0=6/d. Let us

define

f1(q,ni,0) =p(aj1 m(q) /M=m,6j=0d); 0=-erOI0) (31)
d

then, the following equations hold:

f, (O,msp) = 0, for m=l1,2,..., and Opc[O, 1) (32a)

f 1 l,m,o) = 0, for m=2,3,.., and OE[0,1) (32b)

f, (qI Iif q=1 Or-01(3c
Ootherwise .e01 3c
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I f,(q-lF+l,24._ ) - 2(-(-))

j- I_<0< I (32d)
f1 (q,m,4) ={ 3d

m 2 f(q-2'm'20)2-(-') + f(q-2,m - 1,20)(m - 1)2(- m-l ' ) 0<O<.5
0m

Formulas (32a), (32b), (32c), are obvious. Let us explain formula (32d). Assume that

.55o<1. Then, the packet under consideration (packet 1 in fig 4), lies in the left hand half

(l.h.h.) of the window. Let 02 be the delay of packet 1, after the -first collision. Then,

02 = 02+1 (33)

The location of packet I in the l.h.h. of the window, is,

01 = 01--d/2 (34)

Therefore, the new ratio becomes

00
o;- = 20-1 (35)

d/2
Let Gj'm_1 be the set

GjmI={j of the m-1 packets (other than packet 1), are located in the I.h.h. of the window.}

Note that p(G 1 -1) m Im-1] 2 From (33), (34) and (35), we derive formula (32d)

for .5 40<1 by conditioning on Gj'm_1. If 0<5<.5, packet 1 is located in the right hand half

(r.h.h.) of the window, In this case, we note that if in the l.h.h. of the window there are

*g more than one packets, then packet 1 is not transmitted during the collision resolution

process. By conditioning again on the Gj,m-i, and taking into account the last observa-

tion, we derive equation (32d) for 0€O<.5.

17



From equations (32) we conclude by induction the following property for the func-
tion f I 4M,m,)

Property 1. For fixed q and m, the function fl(q,m,o) is simple (i.e., it takes a finite

number of values), and left continuous. The jumps of the function occur at the points

0,2- (  - t  ..... k2 -( - , .. ... 1-2- ( - .

Taking into account Property 1, we can compute E(J 1,r(s)), using formula (30).

4.2 The Computation of p(xr/d).

The method of conditioning on the number of packets in a window (applied in sec-

tions 3.1 and 4.1), does not seem to lead to easily computable recursive formulas. In this

section, we present an alternative methodology that results in simple recursive formulas

for the computation of p(x,r/d), and provides insight into the structure of these probabili-

ties.

Observe first that p(x,r/d) depends on r through the ratio s=r/d. Let

f2(x,s,d) = p(I =x, 5=sd, M__2 / d)

Conditioning on the events {M=0}, {M=l} and {M_2}, and observing that if M=0,1 then

I=I and =d, we conclude that

p(x,r/d) = 8K(X- I)5K((s/d)- 1)e-(d) (l+Xd) + f2(x,s,d) (36)

where

-

8K(y) 0 otherwise

The function f1(x,s,d) satisfies the following recursive formulas ,

18 .



f2 (1,s,d) = f2(2,s,d) = 0, 0<s:51 (37a)

f,(x-1,2s,d12) 0:5s:5.5

f2(x,s,d) f2(x-2,2s-1,d/2)e_(X 2 )( 1+XdI2) .5 <s 5 I (37b)

+ 8K(x-3)5K(S-1 )e-~(XdI 2) 2

We derive equation (37a) for 0:5s5.5 The case .5<s!51 can be derived by a similar reason-

ing. Let M be the number of packets in the l.h.h of the window. Let I be the number of

slots during a collision resolution process after the first collision. Then,

p(L =x, &=sd, M >2 / d) = p(L + I=x, 8--sd, M>2, N62 / d) + p(I =x, &=sd, M 1>2, M l I /d)

But if M5 1, then s>.5. Therefore p(I=x, 8--sd, M>-2, M:51 / d) = 0 if 0.5s:5.5. It remains

to observe that p(1 +I1=x, 5=sd, M>2, M>22 / d) = p(I =x-1, 5=2(sdI2), M :2 / d), and that

if M -2, the collision resolution process after the first collision is statistically identical to

a collision resolution process that started with a window of size d/2.

From (37a), (37b) we conclude by induction that the function f2(x,s,d) has the fol-

lowing property:

* Prooerty 2 For fixed x>-3, and for any d, s takes a finite number rx of values. The

sequence rx satisfies the following recursions: r3=r4= 1, rx=rx..,1+r, 2; x !5. Let A~ be the

set of values of s for given x. Then, 3

* L01

A 3=01 , A4=1 I/21, A x=(5A _ 1 )U(.SA x-+5 x :5

The values of f2 (x,s,d) for various x and s, can be computed from (37b). The

'We use the noatiloni aA +b = {y: y=ax+b, xc-A * 1
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probabilities p(x,r/d), are easily computed from (36).

4.3 The Development of bounds on K,(s),H1.

The state space F for the Part-and-Try algorithm is a dense subset of [1, oo). This

property complicates the development of finite systems of linear equations whose solu-

tion will provide upper or lower bounds to the quantities K1(s), HI.Taking advantage of

the structure of the probabilities p(x,r/d) (see section 4.2), however, we can proceed as

follows: Let B be a finite subset ofF, that includes the state d=l. We develop the follow-

ing finite system of linear equations:

Yd= Nd(s) + 7 (y¥(s)(d-r+x) + (s))p(x,r/d) + I Yd-...p(x,r/d) if 1<d5A, dEB (38)
(d-r+x)ED' (d-r+x) B

.1

Yd= NA(s-d+A) + Y (y(s)(d-r+x) + (s))p(x,rd) + F, Yd_,+XP(x,r/A) if d>A, dEB (38b)
0 (d-r+x)cB' (d-r+x)B

Yu(S) and Qs(S) are determined from (11), (12). Due to property 2 of section 4.2, it is sim-

ple to find for a given dsB, the values of x and r such that (d-r+x) E B. The summation

0 over the infinite set Bc, can be computed in terms of E(l/d), E(8/d), Yu(s), "(s), and the

probabilities p(x,r/d); (d-r+x) c B. The solution Yd; deB of system (38), is an upper

bound to the solution Kd(S); d£B of system (7) [3]. Since lEB, we can determine a bound

on K,(s). Similarly, lower bounds on Kj(s), and upper and lower bounds on H, can be

developed. For the computations we used the set B =[I, 1.125,..., l+(k/8),..., 91.The

resulting bounds on the delay distribution are presented in Fig 5 for X = .1, .2, .3. For

higher arrival rates, the bounds are not tight (see Table 1) and although they can be

improved by enlarging the set B, the computations become cumbersome.

20
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5. CONCLUSIONS

We developed a method for the computation of bounds on the delay distribution of

Window Random-Access algorithms. The method has been applied to the delay distribu-

tion analysis of the Capetanakis Window Random-Access algorithm and the Part-and-

Try algorithm both under binary C-NC feedback. The bounds developed for the

Capetanakis algorithm, are tight for all arrival rates within the stability region of the

algorithm. For the Part-and-Try algorithm, however, the bounds are satisfactory for rela-

tively low arrival rates. The computational difficulty in obtaining tight bounds for the

latter algorithm, is due to its complicated state space. The techniques can be easily

m °applied to other Window Random-Access algorithms whose operating characteristics are

as described in Section 2.

21
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APPENDIX

Here, we provide recursive formulas for the computation of p(m). Clearly,

pm) ={0; q<O, pl)= Itherwis (A. 1)

q qO< 0 otherwise(Al

Let I0 be the number of slots needed for the resolution of multiplicity n>O conflict. Then,

from the operation of the algorithm we conclude that

P(n+1) with prob. 2 n-1
P(M) q-1 2 2m-1 (A.2)

-q [ p(m-n 1m- 1
,>2 q-1-1 with prob. 2 n )2_1( n

0O The upper part of (A.2) is derived by considering the event that the packet under con-

sideration, together with n of the rest m- 1 packets retransmit immediately after the initial

collision. The lower part of (A.2) is derived by considering the event that the packet

under consideration does not transmit immediately, while the n of the rest m- 1 packets

retransmit immediately after the initial collision and it takes I number of slots to resolve

* a collision of multiplicity n. The probabilities p(ln=/) can be computed by similar rea-

soning. Averaging in (A.2), we finally have the following recursive formulas for P(m) for

m>2.

4 0 tP ( M W 1 P (n + l ) [ m - l] m - 1 q - 2 I  -] p m n
pqr) -2 1 q-t1) 1 n +2-m E n -q-1-t P(ln = l) (A.3)

n--O D=O 1=1
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P (D K, s)

___U~p2r Bound Lower _Bound

1.5 .103 .105
2.0 .208 .305
2.5 .216 .360
3.0 .243 .434
3.5 .271 .547
4.0 .286 .616

4.5 .300 .672
5.0 .316 .708

6.0 .344 .815
7.0 .365 .875

Table 1
Bounds on the delay distribution for the Part-and-Try algorithm

with binary C-NC feedback, for X = 0.4.
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