

101000

State State State

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963-A

18 1.9 4.1 1

*49, 'at . 18 **? * *

175	OTIC FILE CUPY	
AD-A180	A Technical Report Contract No. N00014-86-K-0742 September 1, 1986 - August 31, 1988	
6	DELAY DISTRIBUTION ANALYSIS OF WINDOW RANDOM-ACCESS ALGORITHMS	
A	Submitted to:	
	Office of Naval Research 800 N. Quincy Street Arlington, Virginia 22217-5000	
	Attention: Dr. R. N. Madan Code 1114SE	
	Submitted by: DTIC	
	L. Georgiadis	
	M. Paterakis Graduate Research Assistant	stores
	P. Kazakos Professor	
	Report No. UVA/525415/EE87/105	
	April 1987	
	DISTRIBUTION STATEMENT A	
Ċ	Approved for public released Distribution Unlimited	
	SCHOOL OF ENGINEERING AND	
	APPLIED SCIENCE	
	DEPARTMENT OF ELECTRICAL ENGINEERING	
	UNIVERSITY OF VIRGINIA	
·.	CHARLOTTESVILLE, VIRGINIA 22901	
	87 5 6 218	

A Technical Report Contract No. N00014-86-K-0742 September 1, 1986 - August 31, 1988

DELAY DISTRIBUTION ANALYSIS OF WINDOW RANDOM-ACCESS ALGORITHMS

Submitted to:

Office of Naval Research 800 N. Quincy Street Arlington, Virginia 22217-5000

Attention: Dr. R. N. Madan Code 1114SE

Submitted by:

L. Georgiadis Research Assistant Professor

M. Paterakis Graduate Research Assistant

> P. Kazakos Professor

Department of Electrical Engineering SCHOOL OF ENGINEERING AND APPLIED SCIENCE UNIVERSITY OF VIRGINIA

Accesio	n For			-1
NTIS (٢	h	-1
DIC		Ē	Ī	
U. acros		0	כ	
Justinea	lion	••••••		
Ву				••
Dist ibet	io+.1			: :
Ave	ilability (Code	S	
Dit '	Avail and Specia			
A-1				
L .				

Report No. UVA/525415/EE87/105 April 1987

Copy No.

URITY CLASSIFICATION OF THIS PAGE				DA1801	75
	REPORT DOCU	MENTATION	PAGE		
REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE	MARKINGS		
UNCLASSIFIED				Y GE REFORT	
	\				DISTRIBUTION
D. DECLASSIFICATION / DOWNGRADING SCHED	ULE	UNLIMITED			
PERFORMING ORGANIZATION REPORT NUMB	SER(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)			
UVA/525415/EE87/105					
NAME OF PERFORMING ORGANIZATION	66 OFFICE SYMBOL	7a. NAME OF M	IONITORING O	RGANIZATION	
University of Virginia	(If applicable)	Office of	f Naval Re	esearch	
Dept. of Electrical Engr.	1		Represent		
ADDRESS (City, State, and ZIP Code) Thornton Hall		7b. ADDRESS (C Joseph H	•	ling, Room 6	523
Charlottesville, VA 22901		2100 Pen	nsylvania	Avenue, N.W	
A. NAME OF FUNDING/SPONSORING	186. OFFICE SYMBOL		on, DC 20	037	
ORGANIZATION Dept. of Navy	(If applicable)				- HAVINDER
Office of Naval Research	N00014		87-K-0742		
c. ADDRESS (City, State, and ZIP Code) 800 North Quincy Street		10. SOURCE OF	FUNDING NUM	TASK	WORK UNIT
Arlington, VA 22217-5000		ELEMENT NO.	NO.	NO.	ACCESSION NO.
L. Georgiadis, M. Paterakis a. TYPE OF REPORT Technical 13b. TIME FROM 9		14. OATE OF REP April 29		nth, Day) 15. Pi	age count 29
3a. TYPE OF REPORT 13b. TIME	COVERED	April 29	, 1987		29
L. Georgiadis, M. Paterakis 3a. TYPE OF REPORT Technical 5 SUPPLEMENTARY NOTATION 7 COSATI CODES	COVERED /1/86_ TO 8/31/88	April 29	, 1987		29
L. Georgiadis, M. Paterakis 3a. TYPE OF REPORT Technical 6 SUPPLEMENTARY NOTATION 7 COSATI CODES FIELD GROUP 9 ABSTPACT (Continue on reverse if necessa)	COVERED /1/86_TO 8/31/88 18. SUBJECT TERMS 18. SUBJECT TERMS ry and identify by block delay distributi ented. The windo gorithm. It is a of the delay of iate infinite sy coefficients of on the solution d methodologies. is of the Capeta	April 29 (Continue on rever number) on analysis ow size is all shown that the distribution vstems of lin of the unkn ion can be The method unakis Window	, 1987 of Windo llowed to he quantit , can be near equat nowns of develope d is appli w Random-A	w Random-Ac vary during ties of inte related to tions. Once a system ed by appl ted to the c access algor	29 block number) ccess the erest the e the are ying lelay
L. Georgiadis, M. Paterakis Ja. TYPE OF REPORT Technical 6 SUPPLEMENTARY NOTATION 7 COSATI CODES FIELD 9 A3STPACT (Continue on reverse if necessar A method for algorithms is prese operation of the alg in the computation solution of appropr constants and the determined, bounds previously develope distribution analys and the Part-and-Try 20 DSTP 30TOM/AVAILABILITY OF ABSTPAC 20 DSTP 30TOM/AVAILABILITY OF ABSTPAC 21 TACLASSFIEDMINIMITED GAME A	COVERED /1/86_TO8/31/88 18. SUBJECT TERMS and identify by block delay distributi inted. The windo gorithm. It is a of the delay of iate infinite sy coefficients of on the soluti d methodologies. is of the Capeta y algorithm, both	April 29 (Continue on rever number) Son analysis Sow size is all shown that the distribution rstems of line of the unknister ion can be The method anakis Window h under binat Solution (202) 61 UNCLASS	, 1987 of Windo llowed to he quantit , can be near equat nowns of develope d is appli w Random-A ry feedbac SECURITY CLAS IFIED E (Include Area 96-4217	w Random-Ac vary during ties of inter related to tions. Once a system ed by appl ted to the c Access algon tek.	29 block number) ccess the erest the e the are ying lelay oithm

1. INTRODUCTION

Window Råndom-Access algorithms constitute an important class of Multiple-Access algorithms; they are distributive and attain high throughputs and low delays by controlling the number of simultaneously transmitting users. The throughput analysis of algorithms in this class, is a relatively easy task. The delay analysis, however, presents difficulties, due mainly to the presence of variable window sizes and the complicated state space that some of these algorithms create. This restrictions prohibits the application of results from standard queueing theory in the delay analysis.

Many attempts for the delay analysis have been made. In [1], the class of algorithms with constant window size was considered, and upper bounds on the expected delays were developed. In [2], [3], methods for the computation of bounds on the moments of the delays were presented. A method for the computation of delay distribution for constant window algorithms appears in [4]. The method in [4] relies on a clever decomposition of the delay process, which allows the application of results from standard queueing theory. It is not possible, however, to extend the techniques in [4] to the case of variable window size. The computation of the delay distribution for variable window size algorithms remains an open problem. One possible approach is to compute bounds on the moments of the delays as in [2] or [3], which can then be used for an approximate evaluation of the delay distribution. This approach, however, is not computationally practical.

In this paper, we show that the methodology employed in [3], can be extended to provide bounds on the distribution of the delays. The quantities of interest are related to the solution of a denumerable system of <u>linear</u> equations. Methods for the computation

of the constant terms and the coefficients of the unknowns of the system are developed. The methodology is applied to the delay distribution analysis of both the Capetanakis Window-Access algorithm with binary feedback and the Part-and-try algorithm with binary feedback. It can also be applied directly to other Window Random-Access algorithms with different feedback. An interesting result of the analysis is that as the arrival rate increases, the tales of the distribution become longer, but the median grows much slower than the expected delay.

2. MODEL SPECIFICATION

We consider a single slotted channel that is being accessed by a number of independent packet transmitting users. The length of a packet is equal to the length of a slot, and packet transmission may start only at the beginning of a slot. Simultaneous transmission of more than one packets in the same slot, results in complete loss of the information included in the involved packets. The latter event is referred to as a "collision" event. At the end of each slot, all users receive a feedback that provides some information about the chanell activity in that slot. Common types of feedback are the binary C-NC (collision versus noncollision) feedback, and the ternary 0-1-C (empty versus success versus collision) feedback. To resolve the collision, the users follow the rules of a Random-Access algorithm. The algorithm is implemented by each user in a distributed fashion, using only the available feedback. The cumulative packet generating process is assumed to be Poisson with rate λ packets per slot.

We assume that a Window Random-Access algorithm is employed, whose basic operating characteristics are the following (see Figure 1): Suppose that at the beginning of slot v all packet that arrived before time $t_v < v$ have been successfully transmitted, and there is no information concerning the packets that may have arrived in the interval $[t_v,v)$, (i.e., the distribution of the interarrival times of the packets in $[t_v,v)$ is the same as the one assumed originally). The beginning of such a slot v is called a *Conflict Resolution Point (CRP)*. The time difference $d_v = v - t_v$ is referred to as the *lag at v*. In slot v, the users that generated packets in the interval $[t_v, t_v + \tau_v)$, where $\tau_v = \min(d_v, \Delta)$, are allowed to transmit; Δ is a parameter to be properly chosen for throughput maximization. After a random number of slots and following the rules of the algorithm, another CRP, v', is reached, with a corresponding $t_v' > t_v$. All the packets that have been generated in the interval $[t_v, t_v')$, have been successfully transmitted in the interval [v,v'). The intervals [v,v'), $[t_v, t_v + \tau_v)$, $[t_v, t_v]$ are called *conflict resolution interval*, *transmitted interval*, and *resolved interval*, respectively. The length of τ_v , is called the *window size at time v*. Clearly, the window size varies with time, and its maximum size is Δ . Note also, that the length of the conflict resolution interval is one, if and only if there are at most one packets in the transmitted interval.

Algorithms that operate as described above, are the Capetanakis Window Random-Access algorithm [5] and the Part-and-Try algorithm, [5], [6], under either binary C-NC feedback, or ternary 0-1-C feedback.

3. STEADY STATE DELAY DISTRIBUTION ANALYSIS

Let packets be labeled 1,2,3,... according to the order of their arrival instants. The delay D_n experienced by the n-th packet is defined as the time difference between its arrival and the end of its successful transmission. We will be interested in evaluating the

steady state distribution of D_n , when it exists.

Let v_i ; $i \ge 1$ be the sequence of successive CRPs and let d_i be the lag at v_i . The sequence d_i ; $i \ge 1$ is a Markov chain with state space F. For most of the existing Window Random-Access algorithms, F is a denumerable subset of the interval $[1,\infty)$. Let $T_1=1$, $d_1=1$, and define T_{i+1} , as the first slot after T_i , at which $d_{T_{i+1}} = 1$. From the description of the algorithm it can be seen that the induced delay process probabilistically restarts itself at the beginning of each slot T_i , i=1,2,... The interval $[T_i,T_{i+1})$ will be referred to as the *i*-th session. Note that the sessions have lengths that are i.i.d. random variables.

Let R_i , i=1,2,..., denote the number of packets successfully transmitted in the interval $(0,T_i]$; (note that R_i also represents the number of packets arrived during the interval $[0, T_i-1)$, since T_i is a CRP at which the lag is unity). Then, $C_i = R_{i+1} - R_i$; i≥1, is the number of packets successfully transmitted in the interval $(T_i, T_{i+1}]$ - these are the packets that arrived during the interval $[T_i-1, T_{i+1}-1)$. The sequence R_i ; i≥1, is a renewal process, since C_i , i≥1, is a sequence of nonnegative i.i.d. random variables. Furthermore, the delay process D_n , n≥1, is regenerative with respect to the renewal process R_i , i≥1, with regeneration cycle C_1 .

Let

$$I_n(s) = \begin{cases} 1 & \text{if } D_n \leq s \\ 0 & \text{otherwise} \end{cases}$$

From the regenerative theorem [3], we conclude that if $C=E(C_1) < \infty$, then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} I_n(s) = \lim_{N \to \infty} \frac{1}{N} E(\sum_{n=1}^{N} I_n(s)) = \frac{\sum_{n=1}^{C_1} E(\sum_{n=1}^{N} I_n(s))}{C}$$
(1)

In addition, since $P(C_1=1) > 0$, the distribution of C_1 is aperiodic and there exists a proper random variable D_{∞} , such that the sequence D_n ; n=1,2,... converges in distribution to D_{∞} . D_{∞} represents the steady state delay induced by the algorithm and its distribution satisfies the equality

$$P(D_{\infty} \le s) = \frac{\frac{C_1}{E(\sum I_n(s))}}{C}$$
(2)

From (2) we observe that the steady state distribution of the delays can be determined by computing the quantities of the right hand side of the equality. In [3] it was shown that the finiteness and the computation of C is related to the existence and the computation of an appropriate solution to an infinite system of linear equations. In this section we will show that the same is true for the quantity $E(\sum_{n=1}^{C_1} I_n(s))$.

The following definitions will be used in the sequel.

- *l* : Length of a conflict resolution interval
- δ : Length of a resolved interval
- τ : Window size.

 $E(X/\tau)$: Expected value of the random variable X, given that the window size is τ .

is than s, durets with ing a conflict resolution interval, given that the window size is τ and the lag is τ . That is, $n_{\tau}(s)=m_{\tau,\tau}(s)$.

Let us also define,

 τ/τ

 $\mathbf{K}_{\mathbf{d}}(\mathbf{s}) = \mathbf{E}(\mathbf{k}_{\mathbf{d}}(\mathbf{s}))$ $M_{\tau,d}(s) = E(m_{\tau,d}(s))$ $N_{\tau}(s) = E(n_{\tau}(s))$ $H_d = E(h_d)$

Note that by definition,

$$K_1(s) = E(\sum_{n=1}^{C_1} I_n(s))$$

Also,

Therefore, the determination of $K_1(s)$ and H_1 , will permit the computation of the steadystate distribution of the delays.

Consider the arrangement of Fig. 1. The delay D of the successfully transmitted packet 1, can be decomposed as follows:

$$D = \theta_1 + d - \tau + \theta_2$$

Therefore,

$$D \le s \text{ iff } \theta_1 + \theta_2 \le s - d + \tau$$
 (3)

But $\theta_1 + \theta_2$ is statistically identical to the delay that the successfully transmitted packet experiences if the transmitted interval is τ and the lag is τ . The last observation shows that $m_{\tau,d}(s)$ is identically distributed with $n_{\tau}(s-d+\tau)$. Observe now that

$$k_{d}(s) = \begin{cases} m_{\tau,d}(s) & \text{if } d_{v} = 1\\ m_{\tau,d}(s) + k_{d}'(s) & \text{if } d_{v} = d \neq 1 \end{cases}$$
(4)

and that

$$\mathbf{d}_{\mathbf{v}} = \mathbf{d}_{\mathbf{v}} - \delta + l, \quad \tau = \begin{cases} \mathbf{d}_{\mathbf{v}} & \text{if } \mathbf{d}_{\mathbf{v}} \leq \Delta \\ \Delta & \text{if } \mathbf{d}_{\mathbf{v}} > \Delta \end{cases}$$
(5)

From (4) and (5) we conclude that

$$K_{d}(s) = M_{d,d}(s) + \sum_{\substack{r,x \\ s \neq l}} K_{d-r+x}(s)p(x,r/d) \quad \text{if } 1 \le d \le \Delta, \ d\varepsilon F$$
(6a)

$$K_{d}(s) = M_{\Delta,d}(s) + \sum_{r,x} K_{d-r+x}(s)p(x,r/\Delta) \quad \text{if } d > \Delta, d\varepsilon F$$
(6b)

Since $m_{\tau,d}(s)$ is identically distributed with $n_{\tau}(s-d+\tau)$, equations (6a) and (6b) become,

$$K_{d}(s) = N_{d}(s) + \sum_{\substack{r,x \\ x \neq 1}} K_{d-r+x}(s)p(x,r/d) \quad \text{if } 1 \le d \le \Delta, \ d\varepsilon F$$
(7a)

$$K_{d}(s) = N_{\Delta}(s-d+\Delta) + \sum_{r,x} K_{d-r+x}(s)p(x,r/\Delta) \quad \text{if } d > \Delta, \ d\varepsilon F$$
(7b)

Equations (7a), (7b) comprise a denumerable system of linear equations. Of interest to us is the element $K_1(s)$ of a particular solution of this system. The methodology developed in [3] can be used for the study of system (7). Note that the coefficients of the unknowns are independent of s. This observation represents a computational advantage when the solution to (7) is approximated by the solution of appropriate finite linear system of equations [3]. In this case, the approximate solution can be represented in the form,

out a survey of the state of the second second

$$\mathbf{K}(\mathbf{s}) = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{N}(\mathbf{s})$$

where A is a square matrix whose elements are independent of s. The matrix $(I-A)^{-1}$ can be computed once, and then used for the computation of the approximate solution for various values of s.

We now proceed in the development of an initial upper bound on the solution of system (7). Following the methodology in [3], such a bound will be the sequence $K_d^0(s) = \gamma_u(s)d + \zeta_u(s)$, if $\gamma_u(s)$, $\zeta_u(s)$, can be determined so that the following inequalities are satisfied

$$K_{d}^{0}(s) \ge N_{d}(s) + \sum_{\substack{r,x \\ r \neq 1}} K_{d-r+x}^{0}(s)p(x,r/d) = K_{d}^{1}(s) \quad \text{if } 1 \le d \le \Delta, \quad d\varepsilon F$$
(8a)

$$K_{d}^{0}(s) \ge N_{\Delta}(s-d+\Delta) + \sum_{r,x} K_{d-r+x}^{0}(s)p(x,r/\Delta) = K_{d}^{1}(s) \text{ if } d > \Delta, \quad d\varepsilon F$$
(8b)

Substituting $K_d^0(s)$ in the right hand side of inequalities (8), it can be easily seen that if $d\epsilon F$,

$$K_{d}^{1}(s) = K_{d}^{0}(s) + N_{d}(s) + \gamma_{u}(s)(E(l/d) - E(\delta/d) - (1+\lambda d)e^{-\lambda d}) - \zeta_{u}(s)(1+\lambda d)e^{-\lambda d} \quad \text{if } 1 \le d \le \Delta$$
(9a)

$$K_{d}^{1}(s) = K_{d}^{0}(s) + N_{\Delta}(s - d + \Delta) - \gamma_{u}(s)(E(\delta/\Delta) - E(l/\Delta)) \text{ if } d > \Delta$$
(9b)

Observe now that $N_{\Delta}(s)$ is an increasing function of s. Therefore, from (9b) we conclude that,

$$K_{d}^{1}(s) \le K_{d}^{0}(s) + N_{\Delta}(s) - \gamma_{u}(s)(E(\delta/\Delta) - E(l/\Delta)) \text{ if } d > \Delta$$

$$\tag{10}$$

From (10) we conclude that if $E(l/\Delta) < E(\delta/\Delta)$, the condition for stability of the system, inequalities (9b) are satisfied if

$$\gamma_{\rm u}(s) = \frac{N_{\Delta}(s)}{E(\delta/\Delta) - E(l/\Delta)}$$
(11)

With this value of $\gamma_u(s)$, it can be seen that inequalities (9a) are satisfied if

$$\zeta_{u}(s) = \max\{-\gamma_{u}(s), \sup_{1 \le d \le \Delta} (\psi(d))\}$$
(12)

where

$$\psi(d) = \frac{N_{d}(s) + \gamma_{u}(s)[E(l/d) - E(\delta/d) - (1+\lambda d)e^{-\lambda d}]}{(1+\lambda d)e^{-\lambda d}}$$
(13)

From the above discussion we conclude that the solution to system (7) satisfies the inequalities

$$\mathbf{K}_{\mathbf{d}}(\mathbf{s}) \le \gamma_{\mathbf{u}}(\mathbf{s})\mathbf{d} + \zeta_{\mathbf{u}}(\mathbf{s}), \quad \mathbf{d} \varepsilon F$$
(14a)

where $\gamma_u(s)$, $\zeta_u(s)$, are given by equations (11), (12) respectively. The uniqueness of the solution is guaranteed by the same techniques as in [3]. If we use a similar method for the development of a lower bound, we find that

$$\gamma_l(s)d + \zeta_l(s) = K_d(s), d\varepsilon F$$
(14b)

where

$$\gamma_l(s)=0 \text{ and } \zeta_l(s) = \inf_{1 \le d \le \Delta} \{ (N_d(s)/((1+\lambda d)e^{-\lambda d})) \}$$

Bounds on H_1 are given in [3], formulas (18), (19).

As is explained in [3], the bounds (14) can be used to further improve the bounds on $K_1(s)$. To proceed further, however, the computation of the quantities E(l/d), $E(\delta/d)$, p(x,r/d), and $N_d(s)$ is necessary. In section 3, we present a method for the computation of $N_d(s)$ for the Capetanakis dynamic algorithm, and then proceed in the computation of tight upper and lower bounds on the quantities of interest. In section 4, we present a method for the computation of the computation of the computation of the quantities $N_d(s)$ and p(x,r/d) for the Part-and-Try algorithm, and then we develop bounds on the distribution of the delays. Due to the complicated state space of the latter algorithm, the development of tight bounds for high input rates becomes computationally cumbersome.

3. THE CAPETANAKIS WINDOW RANDOM-ACCESS ALGORITHM WITH C-NC FEEDBACK

A complete description of the algorithmic rules can be found in [5]. In this algorithm, the resolved interval is always equal to the window size i.e., $\tau \equiv \delta$. This results in a significant simplification of the state space F, when the maximum window size Δ is a rational number. The restriction of Δ to the rational numbers facilitates the development of tight bounds for the delay distribution and does not represent any disadvantage in practice. Moreover, if m packets are involved in a conflict, the conflict resolution process depends only on m and not on the window length or the generation time of each of the packets. The last property facilitates the development of efficient methods for the computation of the quantities of interest. Since $\tau \equiv \delta$, we have that, $E(\delta/d) = d$ and

$$p(x,r/d) = \begin{cases} p(x/d) & \text{if } r=d \\ 0 & \text{otherwise} \end{cases}$$

Formulas for the computation of E(l/d), p(x/d), can be developed by following the reasoning in [5]. In the next section we develop a method by which the quantities $N_d(s)$ can be computed.

3.1 The Computation of $N_d(s)$.

Let M be the number of packets in the window d (see Fig 2). Then,

$$N_{d}(s) = E(n_{d}(s)) = E(E(n_{d}(s) / M)) = \sum_{m=1}^{\infty} E(n_{d}(s) / M = m)e^{-\lambda d} \frac{(\lambda d)^{m}}{m!}$$
(15)

Let

のないでは、「「「「「」」というないです。

$$J_{i,m}(s) = \begin{cases} 1 & \text{if the delay of the } i-\text{th packet in d is at most s} \\ 0 & \text{otherwise} \end{cases}$$
(16)

The "i-th packet" in (16), is the i-th packet in a random enumeration of the m packets (randomly chosen packet). Then

$$n_{d}(s) = \sum_{i=1}^{m} J_{i,m}(s)$$
 (17)

Given M, the generation time of each of the M packets is uniformly distributed in the window d and independent of the generation time of the rest of the packets. From this observation and the definition in (16) we conclude that the random variables $J_{1,m}(s)$, $1 \le i \le m$, are identically distributed (although not independent). Therefore, from (17) we conclude that

JAC WORKS STADE & DANE W

$$E(n_{d}(s) / M = m) = mE(J_{1,m}(s) / M = m)$$
(18)

S. 100

A STRATT A STRATT

North Control In

Let θ_1 , (θ_2) , be the delay of the first randomly chosen packet before (after) the initialization of the collision resolution process i.e. until (after) time v (Fig. 2). Since θ_1 is uniformly distributed in [0, d), we have that

$$E(J_{1,m}(s) / M = m) = \frac{1}{d} \int_{0}^{d} E(J_{1,m}(s) / M = m, \theta_{1} = \theta) d\theta$$
(19)

Since the conflict resolution process is independent of the packet generation time in a window, we conclude that given m, the random variables θ_1, θ_2 , are independent. Therefore,

$$E(J_1(s) / M = m, \theta_1 = \theta) = p(\theta_1 + \theta_2 \le s / M = m, \theta_1 = \theta) = p(\theta_2 \le s - \theta / M = m)$$
(20) and

ar

$$E(J_{1,m}(s) / M = m) = \frac{1}{d} \int_{0}^{d} p(\theta_{2} \le s - \theta / M = m) d\theta$$
(21)

Observe now, that $\boldsymbol{\theta}_2$ takes only positive integer values. Let

$$P_q^{(m)} = p(\theta_2 = q / M = m); q=1,2,3,...$$

then, 1,2

$$p(\theta_2 \le s - \theta / M = m) = \sum_{q=1}^{\lfloor s - \theta \rfloor} P_q^{(m)}$$
 (22)

Substituting (22) in (21), we conclude that

$$E(J_{1,m}(s) / M=m) = \frac{1}{d} \int_{0}^{d} \sum_{q=1}^{(s-\theta)} P_{q}^{(m)} d\theta$$
(23)

¹ [a] denotes the integer part of a. ² We adopt the notation $\sum a_q = 0$ if n>m Let e=d-s+[s]. Then, since $P_q^{(m)}$ is independent of θ , (23) can be written as follows:

$$E(J_{1,m}(s)/M=m) = \frac{1}{d} ((s-[s])\sum_{q=1}^{[s]} P_q^{(m)} + \sum_{q=1}^{[s]-1} P_q^{(m)} + \dots + \sum_{q=1}^{[s]-[e]} P_q^{(m)} + (e-[e])\sum_{q=1}^{[s]-[e]-1} P_q^{(m)})$$
(24)

From (15), (18) and (24), we observe that for the computation of $N_d(s)$, only the quantities $P_q^{(m)}$ are needed. In Appendix 1, we provide recursive formulas for the computation of the quantities $P_q^{(m)}$. It is worth noticing that formulas (15), (18) and (24), are valid for any window Random-Access algorithm that has the properties described in the first paragraph of section 3.

3.2 Development of bounds on K₁(s), H₁

For the development of bounds on the delays we chose $\Delta=2.5$ As a result, the state space F becomes simply,

$$F = \{1, 1.5, 2., 2.5,\}$$

For the algorithm considered in this section, the maximum throughput is achieved for $\Delta=2.67$ [5]. The reduction in throughput due to the choice $\Delta=2.5$ is insignificant (less than .1%).

Since $\delta \equiv \tau$, equations (7a), (7b), become:

$$K_d(s) = N_d(s) + \sum_{x \in I} K_x(s)p(x/d)$$
 if d=1, 1.5, 2, 2.5
x

$$K_{d}(s) = N_{\Delta}(s-d+\Delta) + \sum_{x} K_{d-\Delta+x}(s)p(x/\Delta)$$
 if d=3, 3.5, 4,... (25b)

For the development of bounds on $K_1(s)$ we followed the method of truncation of the infinite system (25) [3]. Specifically, in system (25), we replaced the unknowns $K_d(s)$, for d>40 with the upper bounds in (14a). The substitution results in a finite system of equations whose solution is an upper bound to the solution of (25) for

d=1, 1.5, 2,...,40.. For the development of lower bounds, we replaced the unknowns $K_d(s)$, d>40 with the lower bound in (14b). The same methodology is employed for the development of bounds on H₁. The resulting upper and lower bounds on the distribution of the delays differ by .01 in the worst case. In figure 3, we provide the distribution of the delays for various values of the arrival rate. An important observation is that as the arrival rate increases, the tales of the distribution become longer, but the median grows much slower than the expected delays.

4. THE PART-AND-TRY ALGORITHM WITH C-NC FEEDBACK

A detailed description of the algorithm can be found in [6]. The algorithm has throughput .45, operates under binary feedback and it is not blocked in the presence of feedback errors. The techniques used in the present section, can be easily applied to the analysis of the algorithm under ternary feedback.

4.1 <u>The computation of $N_d(s)$.</u>

Let M be the number of packets in the window d (see Fig 4.). As in section 3.1, formula (15) holds. Since not all the packets in a window are successfully transmitted, however, we need to modify the definition of $J_{i,m}(s)$ in (16). Let

$$J_{i,m}(s) = \begin{cases} 1 & \text{if the } i-\text{th randomly chosen packet in d is successfully} \\ & \text{transmitted and its delay is at most s.} \\ 0 & \text{otherwise} \end{cases}$$
(26)

then, as in (18),

$$E(n_{d}(s) / M=m) = mE(J_{1,m}(s) / M=m)$$
(27)

and

$$E(J_{1,m}(s) / M=m) = \frac{1}{d} \int_{0}^{d} E(J_{1,m}(s) / M=m, \theta_{1}=\theta)d\theta$$
(28)

Again, θ_2 takes integer values. However, θ_1 and θ_2 are not independent. To proceed further, we define the events

 $A_{i,m}(s) = \{$ the i-th randomly chosen packet is successfully transmitted and $\theta_2 \le s.\}$ $a_{i,m}(q) = \{$ the i-th randomly chosen packet is successfully transmitted and $\theta_2 = q, q = 1, 2, ...\}$

Since θ takes only integer values, we have that

$$A_{i,\mathbf{m}}(\mathbf{s}) = \bigcup_{q=1}^{\lfloor \mathbf{s} \rfloor} a_{i,\mathbf{m}}(q)$$
(29)

From (28) and (29) we conclude that

5 x 4 x 4 x

State of the second second

2. C. C. C. C. C.

$$E(J_{1,m}(s) / M=m) = \frac{1}{d} \int_{0}^{d} p(A_{1,m}(s-\theta) / M=m, \theta_1=\theta) d\theta$$

$$= \frac{1}{d} \int_{0}^{d} \sum_{q=1}^{(s-\theta)} p(a_{i,m}(q) / M=m, \theta_1=\theta) d\theta$$
(30)

Observe now that $p(a_{1,m}(q) / M=m, \theta_1=\theta)$ depends on θ through the ratio $\phi=\theta/d$. Let us define

$$f_1(q,m,\phi) = p(a_{i,m}(q) / M=m, \theta_1=\phi d); \phi = \frac{\theta}{d} \varepsilon [0,1)$$
(31)

then, the following equations hold:

 $f_1(0,m,\phi) = 0$, for m=1,2,..., and $\phi \varepsilon[0,1)$ (32a)

$$f_1(1,m,\phi) = 0$$
, for m=2,3,.., and $\phi \in [0,1)$ (32b)

$$f_1(q,1,\phi) = \begin{cases} 1 & \text{if } q=1 \\ 0 & \text{otherwise} \end{cases}; \quad \phi \in [0,1)$$
(32c)

$$f_{1}(q,m,\phi) = \begin{cases} \sum_{j=0}^{m-1} f_{1}(q-1,j+1,2\phi-1) \begin{pmatrix} m-1 \\ j \end{pmatrix} 2^{(-(m-1))} & .5 \le \phi < 1 \\ f_{1}(q-2,m,2\phi)2^{-(m-1)} + f_{1}(q-2,m-1,2\phi)(m-1)2^{(-(m-1))} & 0 \le \phi < .5 \end{cases}$$
(32d)

Formulas (32a), (32b), (32c), are obvious. Let us explain formula (32d). Assume that $.5 \le \varphi < 1$. Then, the packet under consideration (packet 1 in fig 4), lies in the left hand half (1.h.h.) of the window. Let θ_2 be the delay of packet 1, after the first collision. Then,

$$\theta_2 = \theta_2 + 1 \tag{33}$$

The location of packet 1 in the l.h.h. of the window, is,

$$\theta_1 = \theta_1 - d/2 \tag{34}$$

Therefore, the new ratio becomes

$$\phi' = \frac{\theta_1}{d/2} = 2\phi - 1 \tag{35}$$

Let $G_{i,m-1}$ be the set

 $G_{j,m-1}=\{j \text{ of the } m-1 \text{ packets (other than packet 1), are located in the l.h.h. of the window.}\}$ Note that $p(G_{j,m-1}) = {m-1 \choose j} 2^{-(m-1)}$. From (33), (34) and (35), we derive formula (32d) for $.5 \le \phi \le 1$ by conditioning on $G_{j,m-1}$. If $0 \le \phi < .5$, packet 1 is located in the right hand half (r.h.h.) of the window, In this case, we note that if in the l.h.h. of the window there are more than one packets, then packet 1 *is not transmitted* during the collision resolution process. By conditioning again on the $G_{j,m-1}$, and taking into account the last observation, we derive equation (32d) for $0 \le \phi < .5$. From equations (32) we conclude by induction the following property for the function $f_1(q,m,\phi)$:

<u>Property 1.</u> For fixed q and m, the function $f_1(q,m,\phi)$ is simple (i.e., it takes a finite number of values), and left continuous. The jumps of the function occur at the points $0,2^{-(q-1)},\ldots, k2^{-(q-1)},\ldots, 1-2^{-(q-1)}$.

Taking into account Property 1, we can compute $E(J_{1,m}(s))$, using formula (30).

4.2 The Computation of p(x,r/d).

The method of conditioning on the number of packets in a window (applied in sections 3.1 and 4.1), does not seem to lead to easily computable recursive formulas. In this section, we present an alternative methodology that results in simple recursive formulas for the computation of p(x,r/d), and provides insight into the structure of these probabilities.

Observe first that p(x,r/d) depends on r through the ratio s=r/d. Let

$$f_2(x,s,d) = p(l=x, \delta=sd, M \ge 2/d)$$

Conditioning on the events $\{M=0\}$, $\{M=1\}$ and $\{M\geq 2\}$, and observing that if M=0,1 then l=1 and $\delta=d$, we conclude that

$$p(x,r/d) = \delta_{K}(x-1)\delta_{K}((s/d)-1)e^{-(\lambda d)}(1+\lambda d) + f_{2}(x,s,d)$$
(36)

where

 $\delta_{\mathbf{K}}(\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{y} = 0\\ 0 & \text{otherwise} \end{cases}$

The function $f_2(x,s,d)$ satisfies the following recursive formulas

$$f_2(1,s,d) = f_2(2,s,d) = 0, \quad 0 < s \le 1$$
 (37a)

$$f_{2}(x,s,d) = \begin{cases} f_{2}(x-1,2s,d/2) & 0 \le s \le .5 \\ f_{2}(x-2,2s-1,d/2)e^{-(\lambda d/2)}(1+\lambda d/2) & .5 < s \le 1 \\ + \delta_{K}(x-3)\delta_{K}(s-1)e^{-(\lambda d)}(\lambda d/2)^{2} \end{cases}$$
(37b)

We derive equation (37a) for $0 \le \le 5$ The case $.5 \le \le 1$ can be derived by a similar reasoning. Let M be the number of packets in the l.h.h of the window. Let l be the number of slots during a collision resolution process *after* the first collision. Then,

$$p(l=x, \delta=sd, M\geq 2/d) = p(l+1=x, \delta=sd, M\geq 2, M\geq 2/d) + p(l=x, \delta=sd, M\geq 2, M\leq 1/d)$$

But if $M \le 1$, then s>.5. Therefore $p(l=x, \delta=sd, M\ge 2, M \le 1/d) = 0$ if $0.\le s\le .5$. It remains to observe that $p(l + 1=x, \delta=sd, M\ge 2, M \ge 2/d) = p(l = x-1, \delta=2(sd/2), M \ge 2/d)$, and that if $M \ge 2$, the collision resolution process after the first collision is statistically identical to a collision resolution process that started with a window of size d/2.

From (37a), (37b) we conclude by induction that the function $f_2(x,s,d)$ has the following property:

<u>Property 2</u> For fixed x≥3, and for any d, s takes a finite number r_x of values. The sequence r_x satisfies the following recursions: $r_3=r_4=1$, $r_x=r_{x-1}+r_{x-2}$; x≥5. Let A_x be the set of values of s for given x. Then,³

$$A_3 = \{1\}, A_4 = \{1/2\}, A_x = (.5A_{x-1}) \cup (.5A_{x-2} + .5); x \ge 5$$

The values of $f_2(x,s,d)$ for various x and s, can be computed from (37b). The

³ We use the notation $aA + b = \{y : y = ax + b, x \in A\}$.

probabilities p(x,r/d), are easily computed from (36).

4.3 The Development of bounds on K₁(s),H₁.

The state space F for the Part-and-Try algorithm is a dense subset of $[1, \infty)$. This property complicates the development of finite systems of linear equations whose solution will provide upper or lower bounds to the quantities $K_1(s)$, H_1 . Taking advantage of the structure of the probabilities p(x,r/d) (see section 4.2), however, we can proceed as follows: Let B be a finite subset of F, that includes the state d=1. We develop the following finite system of linear equations:

127777772 Store 1077777

$$Y_{d} = N_{d}(s) + \sum_{\substack{(d-r+x)\in B^{*}}} (\gamma_{u}(s)(d-r+x) + \zeta_{u}(s))p(x,r/d) + \sum_{\substack{(d-r+x)\in B\\\mu i}} Y_{d-r+x}p(x,r/d) \text{ if } 1 \le d \le \Delta, d \in B$$
(38a)

$$Y_{d} = N_{\Delta}(s-d+\Delta) + \sum_{(d-r+x)\in\mathcal{B}^{*}} (\gamma_{u}(s)(d-r+x) + \zeta_{u}(s))p(x,r/d) + \sum_{(d-r+x)\in\mathcal{B}} Y_{d-r+x}p(x,r/\Delta) \text{ if } d > \Delta, d \in \mathcal{B}$$
(38b)

 $\gamma_u(s)$ and $\zeta_u(s)$ are determined from (11), (12). Due to property 2 of section 4.2, it is simple to find for a given d εB , the values of x and r such that (d-r+x) εB . The summation over the infinite set B^c , can be computed in terms of E(I/d), $E(\delta/d)$, $\gamma_u(s)$, $\zeta_u(s)$, and the probabilities p(x,r/d); (d-r+x) εB . The solution Y_d ; d εB of system (38), is an upper bound to the solution $K_d(s)$; d εB of system (7) [3]. Since $1\varepsilon B$, we can determine a bound on $K_1(s)$. Similarly, lower bounds on $K_1(s)$, and upper and lower bounds on H_1 can be developed. For the computations we used the set $B = \{1, 1.125, ..., 1+(k/8), ..., 9\}$. The resulting bounds on the delay distribution are presented in Fig 5 for $\lambda = .1, .2, .3$. For higher arrival rates, the bounds are not tight (see Table 1) and although they can be improved by enlarging the set B, the computations become cumbersome.

5. <u>CONCLUSIONS</u>

Salara Versions Salara

We developed a method for the computation of bounds on the delay distribution of Window Random-Access algorithms. The method has been applied to the delay distribution analysis of the Capetanakis Window Random-Access algorithm and the Part-and-Try algorithm both under binary C-NC feedback. The bounds developed for the Capetanakis algorithm, are tight for all arrival rates within the stability region of the algorithm. For the Part-and-Try algorithm, however, the bounds are satisfactory for relatively low arrival rates. The computational difficulty in obtaining tight bounds for the latter algorithm, is due to its complicated state space. The techniques can be easily applied to other Window Random-Access algorithms whose operating characteristics are as described in Section 2. APPENDIX

Here, we provide recursive formulas for the computation of $P_q^{(m)}$. Clearly,

$$P_q^{(m)} = 0; q \le 0, \quad P_q^{(1)} = \begin{cases} 1 & \text{if } q = 1 \\ 0 & \text{otherwise} \end{cases}$$
 (A.1)

Let l_n be the number of slots needed for the resolution of multiplicity n ≥ 0 conflict. Then, from the operation of the algorithm we conclude that

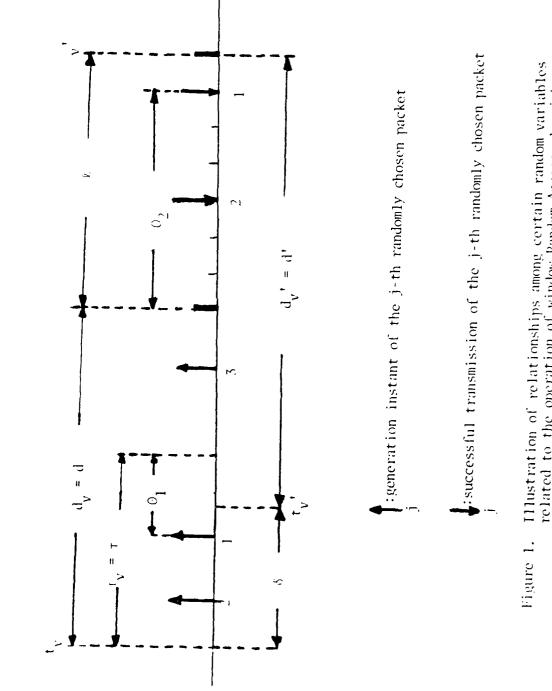
$$P_{q}^{(m)} = \begin{cases} P_{q-1}^{(n+1)} & \text{with prob. } \frac{1}{2} {m-1 \choose n} \frac{1}{2^{m-1}} \\ P_{q-1-l}^{(m-n)} & \text{with prob. } \frac{1}{2} {m-1 \choose n} \frac{1}{2^{m-1}} p(l_{n} = l) \end{cases}$$
(A.2)

The upper part of (A.2) is derived by considering the event that the packet under consideration, together with n of the rest m-1 packets retransmit immediately after the initial collision. The lower part of (A.2) is derived by considering the event that the packet under consideration does not transmit immediately, while the n of the rest m-1 packets retransmit immediately after the initial collision and it takes *l* number of slots to resolve a collision of multiplicity n. The probabilities $p(l_n=l)$ can be computed by similar reasoning. Averaging in (A.2), we finally have the following recursive formulas for $P_q^{(m)}$ for m≥2.

$$P_{q}^{(m)} = 2^{-m} \sum_{n=0}^{m-1} P_{q-1}^{(n+1)} {m-1 \choose n} + 2^{-m} \sum_{n=0}^{m-1} \sum_{l=1}^{q-2} {m-l \choose n} P_{q-l-l}^{(m-n)} p(l_{n}=l)$$
(A.3)

REFERENCES

[1] B. S. Tsybakov and N. B. Likhanov, "Upper Bound for the Delay in a Random-Access System with a Splitting Algorithm," Problemy Peredachi Informatsii, Vol. 18, No.4, pp. 76-84, October-December, 1982


[2] J. C. Huang and Berger " Delay Analysis of Interval Searching Contention Resolution Algorithms," IEEE Trans. on Information Theory, March 1985, Vol. 1T-31, No. 2.

[3] L. Georgiadis, L. Merakos, and P. Papantoni-Kazakos, " A Method for Delay Analysis of Random Access Algorithms whose Delay Process is Regenerative," To be published in the IEEE Journal on Selected Areas in Communications.

[4] G. Polyzos, M. Molle, and A. Venetsanopoulos, "Performance Analysis of Finite Non-Homogeneous Population Tree Conflict Resolution Algorithms Using Constant Size Window Access, "submitted for publication to the IEEE Trans. on Communications.

[5] J. L. Massey, "Collision- Resolution Algorithms and Random Access Communications," in Multi- User Communication, Ed. G. Longo, Springer- Verlag, CISM.

[6] P. Studer, and H. Pletcher, "Q- ary Part- and- Try Algorithm for Packet Conflict Resolution," IEEE Trans. Inform. Theory, to be published.

ECSLOSE

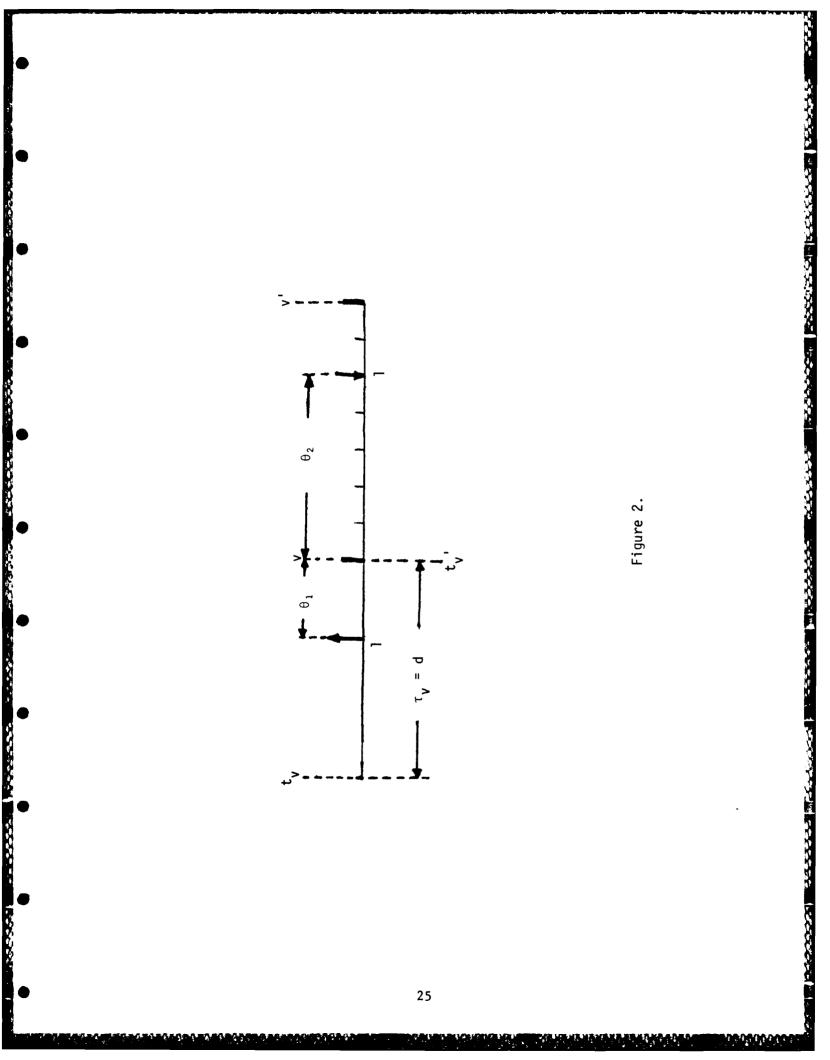
erectedes

100000

ANNESS - CARGERS

N. N. N. N. N.

A CONTRACT A CONTRACT A CONTRACT A


and the second second

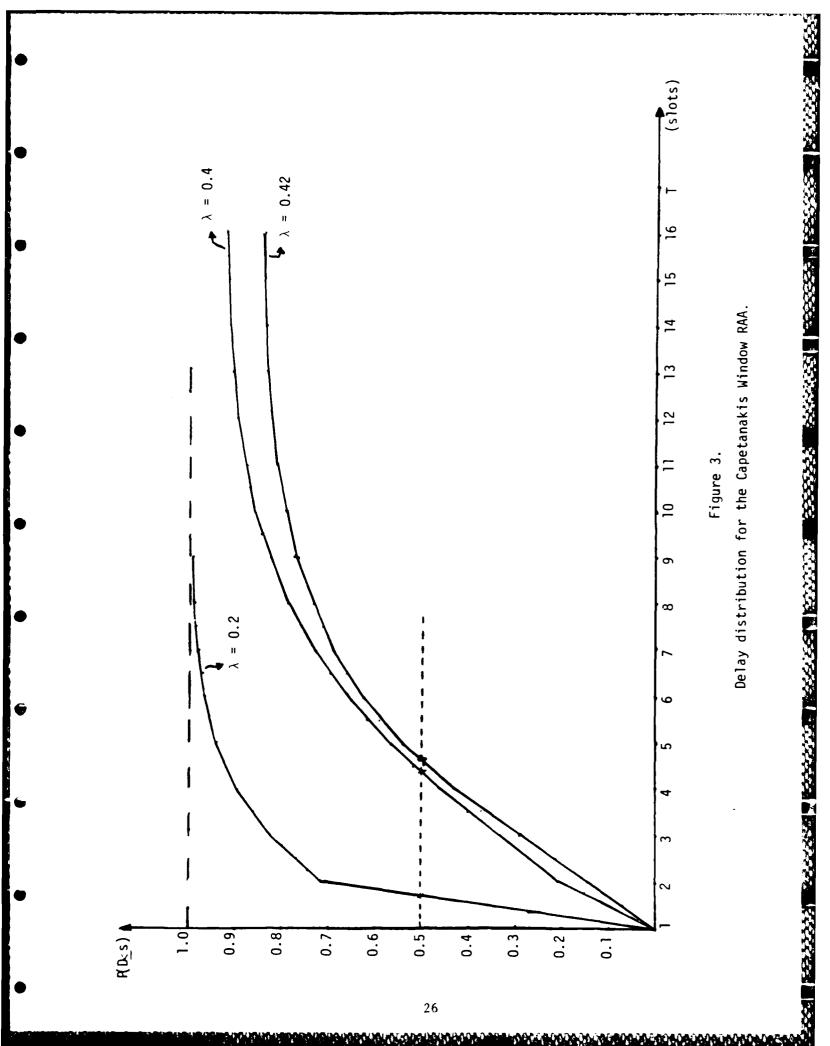
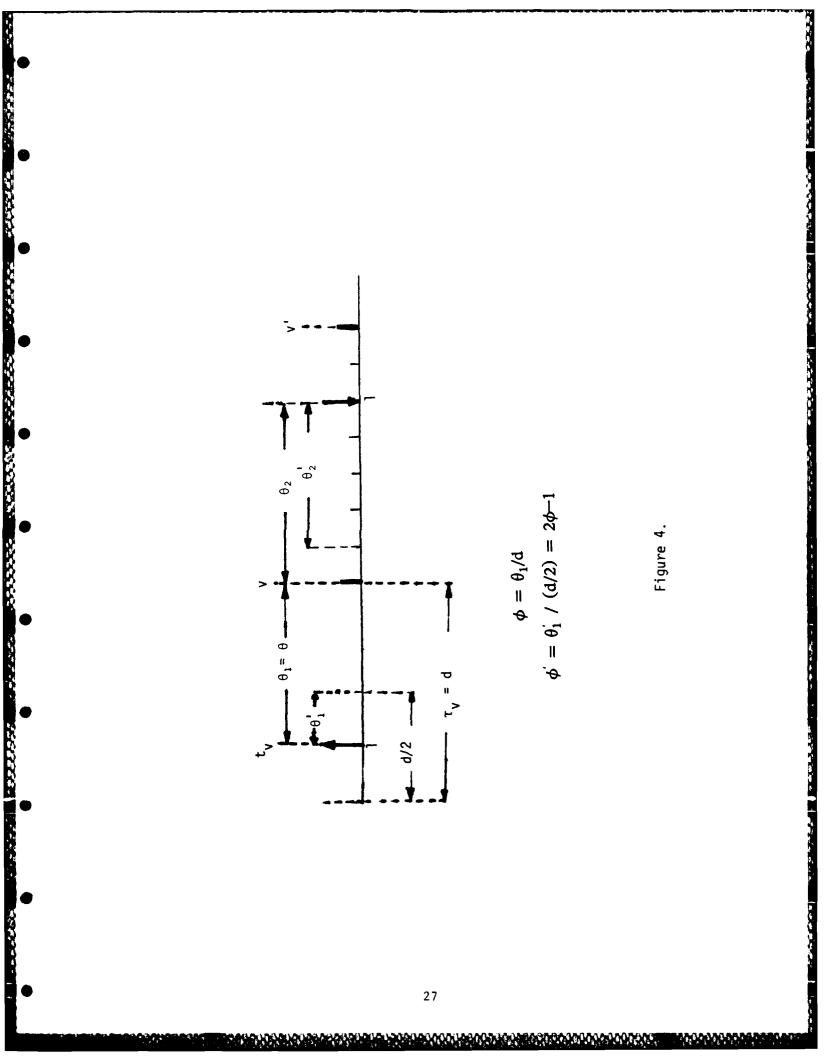
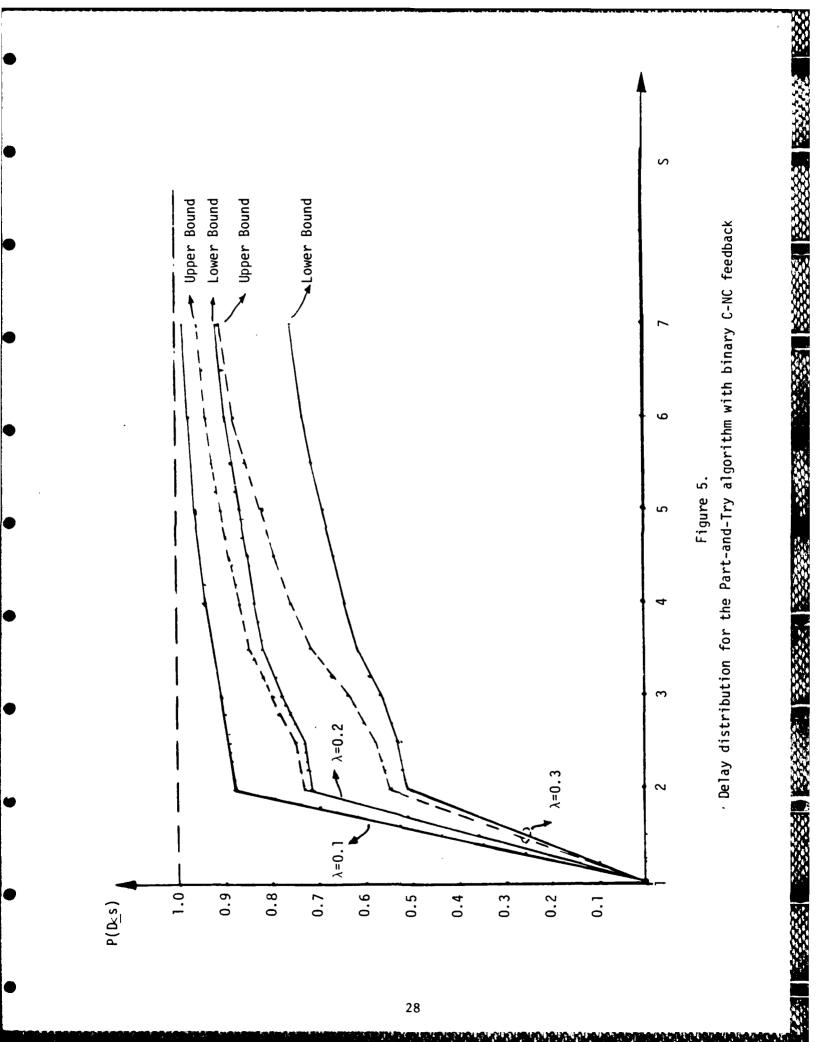

000000

Illustration of relationships among certain random variables related to the operation of window Random-Access algorithm.


なっていたのです


CONTRACTOR AND A CONTRACT OF CONTRACT OF

15 UD

DOLIGUO

	$P(D \leq s)$		
s	Upper Bound	Lower Bound	
1.5	.103	.105	
2.0	.208	.305	
2.5	.216	.360	
3.0	.243	.434	
3.5	.271	.547	
4.0	.286	.616	
4.5	.300	.672	
5.0	.316	.708	
6.0	.344	.815	
7.0	.365	.875	

Table 1 Bounds on the delay distribution for the Part-and-Try algorithm with binary C-NC feedback, for $\lambda = 0.4$.

DISTRIBUTION LIST

<u>Copy No.</u>	
1 - 6	Director National Research Laboratory Washington, D.C. 20375
	Attention: Code 2627
7	Dr. R. N. Madan Code 1114SE Office of Naval Research 800 N. Quincy Street Arlington, VA 22217-5000
8	Mr. James G. Smith Office of Naval Research Code 1241 800 N. Quincy Street Arlington, VA 22217-5000
9	Professor Mike Athans MIT, Bldg. 35 Cambridge, MA 02139
10	Professor A. Makowski Electrical Engineering Dept. University of Maryland College Park, MD 20742
11	Dr. Dave Castanon ALPHATECH, Inc. 2 Burlington Executive Center 111 Middlesex Turnpike Burlington, MA 01803-4901
12	Dr. John P. Lehoczky Dept. of Statistics Carnegie Mellon University Schenley Park Pittsburgh, PA 15213-3890
13	Professor Alex Levis MIT, Bldg. 35 Cambridge, MA 02139
14 - 25	Defense Technical Information Center, 547031 Bldg. 5, Cameron Station Alexandria, VA 22314

<u>،</u> د

(Continued on Next Page)

12.2000

26 - 27	L. Georgiadis, EE
28 - 29	M. Paterakis, EE
30 - 31	P. Kazakos, EE
32	R. J. Mattauch, EE
33 - 34	E. H. Pancake, Clark Hall
35	SEAS Publications Files
36*	Office of Naval Research Resident Representative Joseph Henry Building, Room 623 2100 Pennsylvania Avenue, N.W. Washington, D.C. 20037 Attention: Mr. Michael McCracken Administrative Contracting Officer

OM

1

U BU

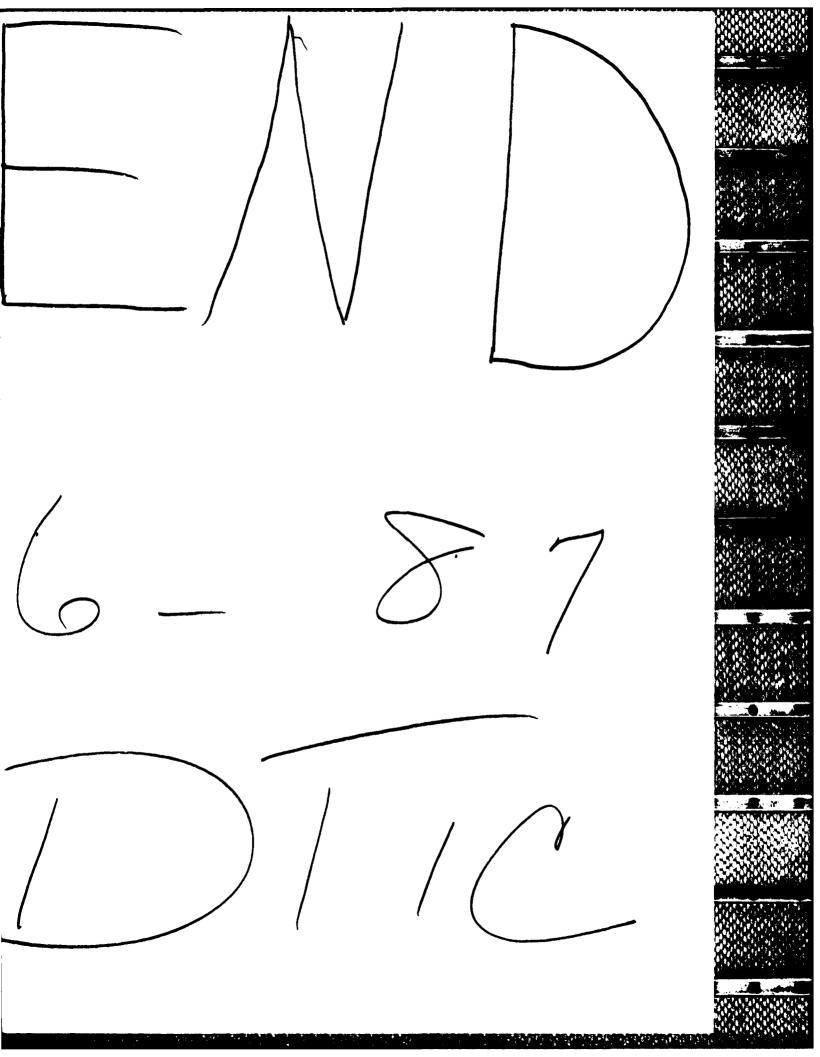
0.00

*Send cover letter only

時時代に

6.20000

and the second of


8971/ald/270R

UNIVERSITY OF VIRGINIA School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate enrollment of approximately 1,500 students with a graduate enrollment of approximately 560. There are 150 faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties. These range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical and Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering, Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer Science. Within these disciplines there are well equipped laboratories for conducting highly specialized research. All departments offer the doctorate; Biomedical and Materials Science grant only graduate degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2,000 faculty and a total of full-time student enrollment of about 16,400), also offers professional degrees under the schools of Architecture, Law, Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant to the engineering research program. The School of Engineering and Applied Science is an integral part of this University community which provides opportunities for interdisciplinary work in pursuit of the basic goals of education, research, and public service.

