
AD-AIS 179 APX TRADENAMf) COMPILEA U~LD # R D /

ut4CLA SSI FlED C 8IE NAAUL F/G 12/5 ML

END

I-

I A

11.2 I.I L ' =6

[

,,._ s. IFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Doaa Entered)

REPORT DOCUMENTATION PAGE EAINCTIONS

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: 23 APR 1986 to 23 APR 1987
New York University, NYU Ada/Ed-C, Version 1.7
VAX-11/780 S. PERFORMING ORG. REPORT NUMBER

I. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Wright-Patterson

19. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

11. CONTROLLING OFFICE NAME AND APORESS 12. REPORT DATE
Ada Joint Program Office 23 APR 1986
United States Department of Defense 13. NUM~UE Uf MiL
Washington, DC 20301-3081 30

14. MONITORING AGENCY NAME & AOORESS(lfdifferent from Controlling Office) 15. SECURITY CLASS (of this report)

Wright-Patterson UNCLASSIFIED
Ia. ?J8FICATION/OOWNGRADING

_N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.
0

17. DISTRIBUTION STATEMENT (of the abstract enteredin Block 20. If different from Repor.

i UNCLASSIFIED I C'

19. E YWORDS (Continue on re...side if necessary end iientify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Contitue onreverse de f necessary and identfify by block number)

See Attached.

O0 'U"M 1473 EDITION OF I NOV 55 IS OBSOLETE

.. .. [JN_3 s/N ooz-LF-o14-601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada Compiler Validation Summary Report:

Compiler Name: NYU Ada/Ed-C, Version 1.7

Host Computer: Target Computer:
VAX- 11/780 VAX- 11/780

under under
UNIX 4.2 BSD UNIX 4.2 BSD

Testing Completed 23 APR 1986 Using ACVC 1.7

This report has been reviewed and is approved.

Ada Valida ion Faoility 4IF
Georgeanne Chitwood
ASD/SIOL
Wright-Patterson AMB OH 415433-6503I

~~lidtionF'- r~i(Access ion For
... NTIS GiA&I

;a idation Office DTIC TAB
Dr. John F. Kramer Unannounoed 03
Institute for Defense Analyses Justifloatio-
. " ° -dria VA

Distribution/

AvailabilitY C-odes
F Avail and/or

Ada J6int Program Offioe Dist Special
Virginia L. Castor
Director
Department of Defense
Washington DC

*Ada is a registered trademark of the United States Government

(Ada Joint Program Offio).

8 f t- 19

AVF Control Number: AVF-VSR-34.0886

Ada® COMPILER
VALIDATION SUMMARY REPORT:

New York University
NYU Ada/Ed-C, Version 1.7

VAX-11/780

Completion of On-Site Validation:
23 APR 1986

Prepared By:
Ada Validation Facility

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

Prepared Fort
Ada Joint Program Office

United States Department of Defense
Washington, D.C.

OAda is a registered trademark of the United States Government
(Ada Joint Program Offioe).

4.

444-

4. 4.

* Plaoe NTIS form hore .
* +

e

EXECUTIVE SUM? ARY

This Validation Summary Report (VSR) summarizes the results and Conclusions
of validation testing performed on the NYU Ada/Ed-C, Version 1.7, using
Version 1.7 of the kda Ccmpiler Validation Capability (ACVC).-

'The validation process includes submitting a suite of standardized tests
(the ACVC) as inputs to an Ada compiler and evaluating the results. The
purpose is to ensure conformance of the compiler to ANSI/MIL-STD-1815A Ada
by testing that it properly implements legal language constructs and that
it identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
ANSI/MIL-STD-1815A. Six classes of tests .re used. These tests are
designed to perform checks at compile time, at link time, or during
axeoution.

On-site testing was performed 21 APR 1986 through 23 APR 1986 at New York
University, New York City KY, under the auspices of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures., The NTU Ada/Ed-C, Version 1.7, is hosted on a VAX-11/780
operating under UNIX 1.2 BSD.

The results of val tion are summarized in the following table:

MSULT TZST CLASS TOTAL

A B C D E L -

Passed 66 814 987 16 6 21 1910

Failed 0 0 0 0 0 0 0

Inapplicable 2 10 333 1 5 2 353

Vitbdrm 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

*Ada is a registered trademark of the United States Goverment(Ada Joint Program Office).

p

There were 16 withdrawn tests in ACVC Version 1.7 at the time of this
validation attempt. A list of these tests appears in Appendix D.

Same tests demonstrate that some language features are or are not supported
by an implementation. For this implementation, the tests determined the
following:

" SHORT INTEGER Is not supported.

" LONG INTEGER is not supported.

• SHORT-FLOAT is not supported.

" LONG-FLOAT is not supported.

" Representation specifications for noncontiguous enumeration
representations are not supported.

" The 'SIZE clause is not supported.

* The 'STORAGE ..SIE clause is not supported.

" The 'SMALL Clause is not supported.

" Generic unit specifications and bodies cannot be compiled in
separate compilations.

" Prapa INLINE is not supported for procedures nor for functions.

" The package SYSTEM is not used by package TEXT 10.

" Modes IN FILE and OUT FILE are supported for sequential I/O.

• Instantiation of the package SEQUENTIAL IO with unconstrained
array types is not supported.

" Instantiation of the package SEQUENTIAL 10 with unconstrained
record types with discriminants is not supported.

* RESET and DELETE are supported for sequential and direct 1I/.

M odes IN FILE* INOUT FILE, and OUT FILE are supported for direct
I/O.

• Instantiation of package DIRECT IO with unconstrained array types

and unconstrained types with di-sriminants is not supported.

* Dynamic creation and deletion of files are supported.

* No more than one internal file can be associated with the same
external file.

Illegal file names can exist.

ACVC Version 1.7 was taken on-site via magnetic tape to Now York
University, New York City MY. All tests, except the withdrawn tests and
any executable tests that make use of a floating-point precision greater
than SYSTE!.MAX DIGITS, were compiled on a VAX-11/780. Class A, C, D, and
2 tests were executed on a VAX-11/780.

On completion of testing, execution results for Class A, C, D, or E tests
were examined. Compilation results for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.

The AVF identified 1985 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the NYU Ada/Ed-C, Version 1.7.
Excluded were 278 tests requiring a floating-point precision greater than
that supported by the implementation and the 16 withdrawn tests. After the
1985 tests were processed, 75 tests were determined to be inapplicable.
The remaining 1910 tests were passed by the compiler.

The AVF concludes that these results demonstrate acceptable conformance to
ANSI/IL-STD- 1815A.

TABLE OF CONTENTS

CHAPTER I INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 RELATED DOCUMENTS 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 CERTIFICATE INFORMATION 2-2
2.3 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTSB CLASS 3-1
3.3 SUMMARY OF TEST ArSULTS BY CHAPTER 3-2
3.4 WITHDRWN TESTS . . o o 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3.7.3 Test Site 3-6

APPENDIX A COMPLIANCE STATEMENT,

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to ANSI/MIL-STD-1815A. This report explains
all technical terms used within it and thoroughly reports the results of
testing this compiler using the Ada Compiler Validation Capability (ACVC).
An Ada compiler must be taplemented according to the Ada Standard
(ANSI/MIL-STD-1815A). Any implementation-dependent features must conform
to the requirements of the Ada Standprd. The entire Ada Standard must be
implemented, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to ANSI/IL-STD-1815A, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, Lhe
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations imposed on a
compiler by the operating system and by the hardware. All of the
dependencies demonstrated during the process of testing this compiler are
given in this report.

VSRs are written accolding to a standardized format. The reports for
several different compilers may, therefore, be easily compared. The
information in this report is derived from the test results produced during
validation testing. Additional testing information as well as details
which are unique for this compiler are given in section 3.7. The format of
a validation report limits variance between reports, enhances readability
of the report, and minimizes the delay between the completion of validation
testing and the publication of the report.

1 .1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

1-1

INTRODUCTION

" To attempt to identify any unsupported language constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). Testing was conducted from 21 APR
1986 through 23 APR 1986 at New York University, New York City NY.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consintent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedoa of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The oe' nizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no noncon,^ormances
to ANSI/MIL-STD-1815A other than those presented. Copies of this report
are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139
1211 S. Fern, C-107
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SIOL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1.3 RELATED DOCUMENTS

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.1 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformance of a compiler to the Ada
language specification, ANSIfMIL-STD- 1815A.

Ada Standard ANSI/MTL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting policies and
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconfomance to the Ads Standard.

Host The computer on which the compiler resides.

1-3

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is

test not required to support or may legitimately support in a way

other than the one ex.pectpd by the test.

LMC The Language Maintenance Committee whose function is to

resolve issues concerrilng the Ada language.

Passed test A test for which a compiler generates the expected result.

"r!rget The computer for whtch a compiler generates code.

Test A program that evaluates the conformance of a compiler to a
language specification. In the context of this report, the
term is uised to designate a single ACVC test. The text of a
program may be the text of one or more compilations.

Withdrawn A test found to be inaccurate in checking conformance to the
test Ada language specification. A withdrawn test has an invalid

test objective, fails to meet its test objective, or contains
illegal or orroneous u a of the language.

1.5 ACVC TEST CY.ASSES

Co,ifurmance tv ANSI/MIL-S'f-i.315A is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. Thu first letter of a test name identifies
the class to which it belongs. Special program units are used to report
the results of the Class A, C, D, and E tests during execution. Class B
tests are expected to produce compilation errors, and Class L tests are
expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. (However, no checks are performed during execution to see if
the test objective has been met.) For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a message indicating that it has passed.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntactical
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT-APPLICABLE message indicating the result when it is
executed.

1-4

INTRODUCTION

Class D tests check the compilation and execution capacities of a compiler.
Since there are no requirements placed on a compiler by the Ada Standard
for some parameters (e.g., the number of Identifiers permitted in a
compilation, the number of units in a library, and the ninber of nested
loops in a subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the test
is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT-APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
teatures addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving

multiple, separately compiled units are detected and not allowed to
execute. Class L tests ara compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main piogram ,must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report results. It also
provides a set of identity functions used to defeat some compiler
optimization strategies and force computations to be made by the target

computer instead of by the compiler on the host computer. The procedure
CHECK FILE is used to check the contents of text files written by some of
the Class C tests for chapter 14 of the Ada Standard.

The operation of these units is checked by a set of executable tests.

These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation is not attempted.

Some of the conventions followed in the ACVC are intended to ensure that
the tests are reasonably portable without modification. For example, the
tests make use of only the basic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place
features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values. The values used
for this validation are listed in Appendix C.

A ompiler must correctly process each of the tests in the suite and
demonstrate conformance to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal

1-5

iNTrRODtJCTION

ldnguago construct or an erroneous language constrUCt is withdrawn from the
ACYC and, therefore, is not used in testing a copiler. The nonoontormant
tests are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2. 1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: NYU Ada/Ed-C, Version 1.7

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine(s): VAX-11/780

Operating System: UNIX 4.2 BSD

Memory Size: 4 megabytes

Target Computer:

Mahine(s): VAX-11/780

Operating System: UNIX 4.2 BSD

Memory Size: 4 megabytes

2-1

CON TGURATION INFORMATION

2.2 CERTIFICATE INFORMAION

Base Configuration:

Compiler: NYU Ada/Ed-C, Version 1.7

Test Suite: Ada Compiler Validation Capability, Version 1.7

Certificate Date: 16 JUN 1986

Host Computer:

Machine(s): VAX- 11/780

Operating System: UNIX 4.2 BSD

Target Computer:

tHachinc(s): VX-11/780

Operating System: UNIX 4.2 BSD

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of

a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation

differences. However, tests in other classes also characterize an

implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

Nongraphic characters.

Kongraphic characters are defined in the ASCII character set but

are not permitted in Ada programs, even within character strings.
The compiler correctly recognizes these characters as illegal in

Ada compilations. The characters are not printed in the output

listing. (See test B26005A.)

2-2

CONFIGURATION INFORMATION

" Capacities.

The compiler correctly processes compilations Containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures nested to 10 levels. It
correctly processes a compilation containing 723 variables in the
same declarative part. (See tests D55AO3A through D55A03H,
D56001B, D64005B through D640050, and D29002K.)

. Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTE4.MAX INT. This
implementation does not reject such calculations and processes
them eorrectly. (See tests D4AO02A, DA0M2B, D4AOO4A, and
MOM004.)

. Predefined types.

This implementation does not support any additional predefined
types in the package STANDARD. (See tests B86001CR, B86001CS,
B86001CP, B86001CQ, and B86001DT.)

* Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTE4.MA! INT during compilation, or it may raise
NUMERIC ERROR during execution. This implementation raises
NUMERIC ERROR during execution. (See test E2I101A.)

J Array types.

When an array type is declared with an index range exceeding the
INTEGER'LAST values and with a component that is a null BOOLEAN
array, this compiler raises CONSTRAINT ERROR when the length of
the array is computed (see page 3-3, rirst item). No exception is
raised when the array type is declared. (See tests E36202A and
E36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises CONSTRAINT ERROR when the array type is declared (see page
3-3, first item). (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT ERROR when the array type is declared
(see page 3-3, first item). (See te3t C5210#!.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises CONSTRAINT ERROR
when the array type is declared (see page 3-3, first item). (See

2-3

CONFIGURATION INFORMATION

test E52103Y.)

In assigning one-dimensional and two-dimensional array types, the
entire expression does not appear to be evaluated before
CONSTRAINT ERROR is raised wihen checking whether the expression's
subtype is oompatible with the target's subtype (see page 3-3,
first item). (See test C52013A.)

" Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications during
compilation. (See test E38104A.)

In assigning record types with disoriinants, the entire
expression appears to be evaluated before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype (see page 3-3, first item).
(See test C52013A.)

" Aggregates.

In the evaluation of a multi-dimensional aggregate, the order in
which -hotcos are evaluated and index subtype checks are made
appears to depend upon the aggregate itself. (See tests C43207A
and C43207B.)

in the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E3212B.)

All choices are not evaluated before CONSTRAINT ERROR is raised if
a bound in a nonnull range of a nonnull aggregite does not belong
to an index subtype (see page 3-3, first item). (See test
E43211B .)

" Functions.

The declaration of a parameterless function with the same profile
as an enumeration literal in the same immediate scope is rejected
by the implementation. (See test 966001D.)

" Representation clauses.

'SMALL length clauses are not supported. (See test C87B62C.)

Enumeration representation clauses are not supported. (See test
BC1002A.)

2-4

CON IGURATION INFORMATION

Pragmas.
The pragma INLINE is not supported for procedures nor is it

supported for functions. (See tests CA3004E and CA3004F.)

Input/output.

The package SEQUENTIAL 10 cannot be instantiated with
unconstrained array types and record types with discriminants.
The package DIRECT 10 cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests CE2201D, CZ2201E, and CE24O1D.)

Only one internal file can be associated with each external file
for sequential I/0 for both reading and writing. (See tests
CE2107A through CE2107F.)

Only one internal file can be associated with each external file
for direct I/O for both reading and writing. (See tests CE2107A
through CE2107.)

Only one internal file can be associated with each external file
for text I/O for both reading and wrtting. (See test CE3111A
through CE3111E.)

An existing text file can be opened in OUT FILE mode, and can be
created in both IN .FILE mode and OUTFILE mode. (See test
3E3102C.)"

Temporary sequential and direct files are given a name. Temporary
files given names are not deleted when they are closed. (See
tests CE2108A and CE2108C.)

2-5

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

The AVF Identified 1985 of the 2279 tests in Version 1.7 of the ACYC as
potentially applicable to the validation of the NYU Ada/Ed-C, Version 1.7.
Excluded were 278 tests requiring a floating-point precision greater than
that supported by the implementation and the 16 withdrawn tests. After
they were processed, 75 tests were determined to be inapplioablq. The
remaining 1910 tests were passed by the compiler.

The A'1F concludes that the testing results demonstrate ace)table
confoitzi&oe to the Ada Standard.

3.2 SUb4ARY OF TEST RESULTS BY CLASS

mULT T1ST CLASS TOTAL
A B C D E L-

Passed 66 814 987 16 6 21 1910

FauLed 0 0 0 0 0 0 0

Inapplioable 2 10 333 1 5 2 353

Iltbdumm 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

3-1

TEST INFORMATION

3.3 SUMARY OF TEST RESULTS BY CHAPTER

RESULT COAPTER

_ _ 2 _ 4 5 6 7 8 9 10 11 12 11 TOTAL

Passed 93 184 251 233 159 97 152 190 96 28 215 212 1910

rauled 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplioable 23 123 143 14 2 0 9 9 9 0 1 20 353

Withdraun 0 1 1 0 0 0 1 2 6 0 1 1 16

TOTAL 116 308 398 247 161 97 162 201 Ill 28 217 233 2279

3.4 WITHDRAWN TESTS

The following tests have been withdraw-n from the ACVC Version 1.7:

B4A010C CI1404A CAIO03B
B83A06B C48008A CA3005A through CA3005D (4 tests)
BA2001E C4AO1IA CE2107E
BC3204C C92005A
C35904A C940ACA

See Appendix D for the test descriptions.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all omupilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 353 tests were inapplicable for
the reasons Indicateds

. C31001D, B52004E, B55B09D, B86001CR, and C55BOT use SHORT INTEGER
which is not supported by this compiler.

. C34001I, B5200D, B55B09C, B86001CS, and C55BO7A use LONGINTEGER
which is not supported by this compiler.

. C34001F, C35702A, and B86001CP use SHORT FLOAT which is not
supported by this compiler.

* C340010, C35702B, and B86001CQ use LONGFLOAT which is not
supported by this compiler.

3-2

TEST INFORMATION

E36202A, E36202B, C4AOO5A, C4AOO5B, C4AO12A, C52012A, C52O12B,
C52103X, C52104X, C52104(, £52103!, C64103A, C86003A, C93005A,
C93005C, C93005D, C93005E, C93005F, C93005G, C93005H, and C96005C
all contain predefined operations designed to raise NUMERICERROR;
ADA/Ed-C follows the recommendation of AI-00387 that
CONSTRLINT ERROR be raised in preference to NUMERIC-ERROR for such
operations. Because most of these tests contain exception
handlers for only NUMERIC-ERROR and "others", it was not possible
to determine that in fact CONSTRAINT ERROR was the exception
raised. However, tests E36202A, E36202B, and C64013A do contain
handlers for CONSTRAINT-ERROR; test results showed that it was the
exception raised. The error messages generated by Ada/Ed-C for
tests C52012A and C52012B, which contain handlers only for
NUMERIC ERROR, also indicated that CONSTRAINTERROR was raised.
It is important to note that the objectives of the tests were met
in two ways: and exception was raised; and the exception was
raised at the appropriate place. For the series of tests checking
task activation, namely C93005C..H, test results shoved that the
behaviour of Ada/Ed-C was correct.

Although these tests are strictly inapplicable due to their
yielding a failed result for certain conforming behaviour (the
raising of CONSTRAINT ERROR instead of NUMERIC ERROR), the tests
should be considered to have been substantively passed.

C52008B declares a re ord type with four discriminants of type
integer. The type may be used in the declaration of unconstrained
objects, but the size of these objects ezceeds the maximum objeut
size of this implementation and CONSTRAINT EtROR is raised.

" C55B16A makes use of an enumeration representation clause
containing noncontiguous values which is not supported by this
compiler.

• D640050 is inapplicable because the compiler does not permit 17
levels of nested recursive procedures.

• B86001DT requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

" C87B62A through C87B62C use length clauses to specify the
collection size for an access type which is not supported by this
compiler.

" C96005D checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATIONS's base type. This is not the case for
this implementation.

" CA1012A compiles generic subroutine declarations and bodies in
separate compilation units. Separate compilation of generic
specifications and bodies is not supported by this compiler.

3-3

TEST INFORMATION

" CA2009C and CA2009F compile generic subunits in separate
compilation files. Separate compilation of generic specifications
and bodies is not supported by this compiler.

" CA3004E, EA30014C, and LA3004A use INLINE praaa for procedures
which is not supported by this compiler.

" CA3004F, EA3004D, and LA3004B use INLINE pragma for functions
which is not supported by this compiler.

" BC3205D compiles generic subunits in separate compilation files.
Separate compilation of generic specifications and bodies is not
supported by this compiler.

AE2101C, AE2101H, CE2201D, CE2201E, and CE24O1D use instantiation
of package SEQUENTIAL 10 with unconstrained array types which is
not supported by this compiler.

CE2107A through CE2107D, CE21077, CE2110B, CE2111D, CE2111H,
CE3111A through CE3111E, CE3114B, and CE3115A are inapplicable
because multiple internal files cannot be associated with the same
external file.

" 278 tests were not processed because STSTEM.MAX DIGITS was six.
These tests were:

C21113C ;hrough C24113! (23 tests)
C35705C through C35.,05r (23 tests)
C35706C through C35T056 (23 tests)
C35707C through C35706Y (23 tests)
C35708C through C35707Y (23 tests)
C35802C through C35802Y (23 tests)
C4521C through C3520Y (23 tests)
C45321C through C45321Y (23 tests)
C115321C through C45421Y (23 tests)
C45424C through C45424Y (23 tests)
C45521C through C5521Z (23 tests)

C45621C through C45621Z (24 tests)

3.6 SPLIT TESTS

If oe or more errors do not appear to have been detected in a Class B test
because of ompiler error recovery, then the test in split Into a set of
saller test that oontn the undetcted nteors. These splits are then
somplled and examined. The splittine proress continues until errors
are deteted by the compiler or until there is exaatly one error per split.
Any Cle A, Cl C, or Clor 2 test that annot be conpiled and esuted
Aeyuse o its size is splt into a set of smaller subtests that can be

prooesed.

-- 3-4

TEST INFORMATION

Splits were required for three Class B tests.

B97101E BE3001A BE3002A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.7 produced by
the NYU Ada/Ed-C, Version 1.7, was submitted to the AVF by the applicant
for prevalidation review. Analysis of these results demonstrated that the

compiler successfully passed all applicable tests.

3.7.2 Test Method

Testing of the NYU Ada/Ed-C using ACVC Version 1.7 was conducted on-site by
a validation team. The base configuration consisted of a VAX-11/780 host
and target operating under UNIX 4.2 BSD.

A wajnotic tape containing AWYC Version 1.7 was taken on-site by the
validation team. The magnetic tape contained all tests applicable to this

validation, as well as all tests inapplicable to this validation except for
any Class C tests that require floating-point precision exceeding the
maximum value supported by the implementation. Tests that make use of
values that are specific to an implementation were customized before being
written to the magnetic tape. Tests requiring splits during the
prevalidation testing were included in their split form on the magnetic
tape.

The contents of the magnetic tape were loaded onto the VA-11/780 operating
under UNIX 4.2 BSD. After the test files were loaded to disk, the full set
of tests was compiled, and all executable tests were run on the VAX-11/780.
Tests withdrawn from ACVC Version 1.7 were not run.

The compiler was tested using command scripts provided by New York
University. These scripts were reviewed by the validation team.

Tests were run in batch node using a single computer. Test output,
compilation listings, and job logs were captured on magnetic tape and
archived at the AVF. The listings examined on-site by the validation team
were also arohived.

3-5

TEST INFORMATION

3.7.3 Test Site

The validation team arrived at New York University, New York City MY on 21
APR 1986 and departed after testing was completed on 23 APR 1986.

3-6

APPENDIX A

COMPLIAN4CE STATEMENT

New York University has submitted the ftollowing
compliance statement concerning the NYU Ada/Ed-C.

A-i

Compliance Statement

Basic configuration:

Compiler: Ada/Ed, Version 1.7

Test Suite: Ada Compiler Validation Capability, Version 1.7

Hst Computer:

Machine: Digital Equipment VAX-I 1/780

Operating System: 1SD 4.2

Target Computer:

Machine: Digital Equipment VAX-I 1/780

Operating System: BSD 4.2

New York University has made no deliberate extensions to the Ada

language standard.-,

New York University agrees to the public disclosure of this report.

New York University agrees to comply with the Ada trademark policy,
as defined by the Ada Joint Program Office.

Edmond Schonberg, Ph. !

New York University

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent prapnas, to certain naohine-dependent conventions as mentioned in
chapter 13 of HIL-STD-1815A, and to certain allowed restrictions on
representation classes. The implementation-dependent characteristics of
the NYU Ada/Ed-C, Version 1.7, are described in the folloving sections
which discuss topics one through eight as stated in Appendix F of the Ada
Language Reference Manual (ANSI/HIL-STD-1815A). Two other sections,
package STANDARD and file naming oonventions, are also included in this
appendix.

F.1 The form, allowed places, and effect of every implementation-dependent
pragmas.

NYU Ada/Ed does not recognize any implementation pragmas. The language
defined pragmas are correctly recognized and their legality is checked, but, with the
exception of UST and PRIORITY, they have no effect on the execution of the
program. A warning message is generated to indicate that the pragma is ignored.

F.2 The name and the type of every implementation-dependent attribute.

There are no implementation-dependent attributes in NYU Ada/Ed.

F.3 The specification of the package SYSTEM (see 13.7).

package SYSTEM Is

typeSEGMENT TYPE Is new INTEGER range O.155.
type OFFSET TYPE Is new INTEGER range 0.32767;
type ADDRESr is record

SEGMENT: SEGMENT TYPE : a SEGMENT TYPE'LAST;
OFFSET: OFFSETTYPE: - OFFSETTYPETAST;

end record;
type NAME Is (ADA _ED);

SYSTEMNAME : constant NAME: a ADAED;

5-1

APENDIX F OF THE Ada STANDARD

STORAGE UNIT : constant: a 8;
MEMORY-SIZE : constant: = 2**16-1;

- System-Dependent Named Numbers:

MIN INT : constant: =-2*31;
MAX- INT : constant: - 2**31-1;
MAX-DIGITS : constant: = 6;
MAX-MANTISSA : constant: = 31;
FINE -DELTA : constant:- 2.0**(-30);
TICK- : constant: a 0.01;

- Other System-Dependent Declarations

subtype PRIORITY is integer range 1..4;
SYSTEM ERROR : exception;.

end SYSTEM;

F.4The list of all restrictions on representation clauses (see 13.1).

NYU Ada/Ed supports no representation clauses, and a program containing any
instance of any representation clause is considered to be illegal.

F.SThe conventions used for any implementation-generated name denoting
implementation-dependent components (see 13.4).

, NYU Ada/Ed does not provide any system generated names denoting system
dependent entities, since in any case, representation specifications are not
permitted.

F.6The interpretation of expressions that appear In address clauses, including
those for interrupts (see 13.5).

Addresses in NYU Ada/Ed are fully supported. The ADDRESS type defined in the
package SYSTEM is a record consisting of two fields. The first is an unsigned byte
which contains the segment number. The second is the offset within the segment,
ranging from 0 to 32767.

F.7 Any restriction on unchecked conversions (see 13.10.2).

NYU Ada/Ed will correctly recognize and check the validity of any use of unchecked
conversion. However, any program which executes an unchecked conversion is
considered to be erroneous, and the exception PROGRAM_ERROR will be raised.

F.&Any Implementation-dependent characteristics of the input-output packages
(see 14).

A) Temporary files are fully supported. The naming convention is as follows:

APPENDIX F OF THE Ada STANDARD

ADATEMP XXXXXL where XXXXX is the Unix current process identification and
I. is a uniqa'e letter.

B) ,Deletion of files is fully supported.

C) Only one internal file may be associated with the same external file (no multiple
accessing of files allowed).

D) File names used in the CREATE and OPEN procedures are standard UNIX file
names. The function FORM returns the string given as a FORM parameter when
a file is created. No system-dependent characteristics are associated with that
parameter.

E) A maximum of 20 files can be open at any given time during program execution.

F) The standard input file is stdin; the standard output file is stdout.

G) SEQUENTIAL 10 and DIRECT 10 support constrained array types, record types
without discn-minants and record types with discriminants with defaults.
SEQUENTIAL._10 and DIRECT__10 are not supported for unconstrained types.

H) I/O on access types is possible. but usage of access values read in another
program execution is erroneous.

1) Normal termination of the main program causes all open files to he closed, and
all temporary files to be deleted.

J) LOWLEVEL_10 ii not supported.

K) The form feed character (ASCII.FF) is used as the page terminator indicator. Its
usage as a data element of a file is therefore undefined.

Package STANDARD contains the following declarations:

type INTEGER is range -21 _783_618 .. 214_783_647;

type FLOAT is digits 6 range -(2.0o96) .. 2.0096;

type DURATION in delta 0.001 range -864100.0 .. 861400.0;

DURATION'SMALL - 9.765625 E-4 seconds

1-3

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length if an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its tile
name. Actual values to be substituted are identified by names that begin
with a dollar sign. A value is substituted for each of these names before
the test is run. The values used for this validation are given below.

Name and Meaning Value

$BIG .DI (1..120 => 'A')
Identifier of size MAX IN LEN
with varying last character.

$BIGID2 (1..119 => 'A', 120 > 'B')
Identifier of size MAXIN LEN
with #arying last character.

BIG.ID3 (1..59161..120 => 'A', 60 => '3')
Identifier of size MAX IN LEN
with varying middle character.

$BIG ID4 (1..59161..120 > 'A', 60 => '4')
Identifier of size MAX IN LEN
with varying middle character.

$BIG INT LIT (1..117 > '0',118..120 > '298')
An integer literal of value 298
with enough leading zeroes so
that it is MAX IN LEN characters
long.

C-1

TEST PARAMETERS

iiaa and Meaning Value

$BIG REAL LIT (1-.114 0> 101,115..120 => '69.0EV)
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
MAX IN LEM characters long.

MBANKS (1-.100 Z>
Blanks of length MAX IN LEN - 20

$COUNT LAST 4096
Value of COUNT'LAST in TEXT 10
package.

$EXTENDEDASCII CHARS "abcdefghijklunopqrstuvwxyzI $%?*(\J]^ H-"
A string literal containing all
the ASCII character3 with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD LAST 100
value of FIELD'LAST in TEXT-10
package.

$FILE NAME WITH-BAD-CHARS (1-.256 => 'A')
An illegal external rile name
that either contains invalid
characters or is too long.

$FILE NAME WITH WILD CARD CHAR (1. .256 z> 'A')
An eXernal tile na=e that
either contains a wild card
character or is too long.

$GREATER THAN DURATION 100000.0
A universal real value that lies
between DURATION' BASE' LAST and
DURATION'LAST or any value in
the range of DURATION.

$GREATER THUN DURATION BASE LAST 10000000.0
The uniersal real value' that is
greater than DURATION 'BASE' LAST.

$ILLEGAL EXTERNAL FILE NAME1 (l..256 *> 'A')
Illegal external fie name.

$ILLEGAL EXTERNAL FILE NAME2 (1..256 0> 'A')
Illegal external tile na~mes.

C-2

TEST PARAMETERS

Name and Meaning Value

$INTEGER FIRST -214783_648
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGER LAST 2147 83647
The universal integer literal
expression whose value is
INTEGER' LAST.

$LESS THAN DURATION -100000.0
A-universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

$ ESS THAN DURATION BASEFIRST -10000000.0
The universal real value that is
less than DURATION'BASE'FIRST.

,,A:x1)TGirs 6
Maximum digits supported for
floating-point types.

$MAX IN LEN 120
Raximum input line length
permitted by the implementation.

$KAME LONGLONGINTEGER

A name of a predefined numerio
type other than FLOAT, INTEGER,
SHORT FLOAT, -- SHORT INTEGER,
LONG FLOAT, or LONGINTEGER.

$NEG BASED INT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTD4.MAX iT.

$VON ASCII CHAR TYPE (NON-NULL)
An en-uerated type definition
for a character type whose

literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

C-3

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. When testing was performed, the following 16 tests had been
withdrawn at the time of validation testing for the reasons indicated:

. B4AO1OC: The object declaration in line 18 follows a subprogram
body of the same declarative part.

. B83AO6B: The Ada Standard 8.3(17) and AI-00330 permit the label
LAB ENUMERAL of line 80 to be considered a homograph of the
enumeration literal in line 25.

0 BA20013: The Ada Standard 10.2(5) states: "Simple names of all
subunits that have the same ancestor library unit must be distinct
identifiers." This test checks for the above condition when stubs
are declared. However, the Ada Standard does not preclude the
check being made when the subunit is compiled.

. BC3204C: The file BC320C4 should contain the body for BC3204C0
as indicated in line 25 of BC3204C34.

& C35901A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMRIC ERROR (instead of CONSTRAINTERROR).

0 C1l40As The values of 'LAST and 'LENGTH are incorrect in IF
statements from line 74 to the end of the test.

0C OA: This test requires that the evaluation of default
initial values not occur when an exception Is raised by an
allocator. However, the Language Maintenance Comittee (LMC) haS
ruled that such a requirement is incorrect (AI-00397/01).

D-1

WITHDRAWN TESTS

" CIIAO1IA: The number declarations in lines 19-22 are incorrect
because conversions are not static.

" C92005a: At line 40, "/z" for type PACK.BIOINT is not visible
vithout a USE clause for package PACK.

" C940ACA: This test assumes that allocated task TT1 will run prior
to the main program, and thus assign SPYNUHE the value checked for
by the main program; however, such an execution order is not
required by the Ada Standard, so the test is erroneous.

" CAIOO3Bz This test requires all of the legal compilation units of
a file containing some illegal units to be compiled and executed.
According to AI-00255, such a file may be rejected as a whole.

* CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

" CE2107Ss This test has a variable, TEM H&S NAME, that needs to
be given an initial value of TRUE.

D-2

