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MIN-MAX BIAS ROBUST M-ESTIMATES OF SCALE

R. Douglas Martin*
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ABSTRACT Lp l, (, prO, .

S Min-max bias robust M-estimates of scale are obtained /r positive random

variables which have C-contaminated distributions. Any such.'estimate is a scaled

order statistic, with the order statistic determined by f. As 0.5 the min-max

bias robust estimate becomes a scaled sample median, which thereby enjoys both

high breakdown point of 0.5 and min-max bias robustness. Furthermore, for a

wide range of g, min-max estimate is quite close to the scaled median in terms of

both structure and min-max bias behavior. Results are also obtained for random

variables whose distribution is F = (1-!)F +OH with F6 symmetric about an

unknown location parameter. In particular we show that when Fj is normal and

0 C 5 .35, the min-max bias M-estimate of scale is a scaled order statistic applied

to the absolute value of centered data, with the median as the centering estimate.

This estimate is extremely close to a scaled median absolute deviation about the

median, in terms of both structure and bias behavior. .. F-- 
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1. INTRODUCTION

In a somewhat neglected section of his by now classic paper, Huber (1964) considered

the problem of minimizing the maximum asymptotic bias of translation equivariant location

estimates over e-contaminated models with asymmetric contamination. Huber showed that

the sample median solves this problem. He also downplayed the significance of the result

and concentrated on the "deeper theory" of min-max variance robustness over symmetric

neighborhoods (see Section 4.3, 4.4 of Huber, 1981).

In spite of substantial awareness of the importance of controlling bias due to

contamination, and other deviations from the nominal model, the literature is relatively

devoid of global results on this robustness problem. Hampel's optimal bounded influence

estimates (see Hampel et al., 1986, and references therein) control bias only for vanishingly

small fractions of contamination, and the shrinking -i-neighborhood approach (see Jaeckel,

1971, Bickel, 1984 and references in the latter) is also local in nature. The main global

approach to robustness has been the construction of high breakdown point estimates for

multi-dimensional problems. Interesting recent results along these lines may be found in

Donoho (1982), Donoho and Huber (1983), Rousseeuw (1984), Rousseeuw and Yohai

(1984), Yohai (1986), Hampel et al. (1986), Yohai and Zamar (1986).

It should be noted that the problem of bias robustness and the desirability of optimal

bias robust estimators, namely min-max bias estimates, is clearly recognized in Hampel et

al., (1986, Table 2A, p.176) where the term "most B -robust" is used. We are also aware of

very recent work on bias robustness by Donoho and Liu (1986), who demonstrate attractive

properties of minimum distance estimators in this regard.

In the present paper we take a small step beyond Huber's (1964) early results by

constructing min-max bias robust estimates of scale using M-estimates and e-contaminated

distributions. An M-estimate f. of scale for positive random variables Xi , is defined as

if - *~.=*E~*. t IL'
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in f = n s X5L} b

for an appropriate function X. We shall work with monotone X which satisfy Al-A3

stated in Section 2.1. The general definition (1.1) is needed to handle X which are

discontinuous. If X is continuous, then in will satisfy

iX - b (1.1')

and in will be unique when X is strictly increasing on { t : X(t) < b }.

The positive random variables X i are assumed to be independent and identically

distributed, with common distribution F belonging to the e-contaminated family

F = {F: F =(1-e)F0 +eH} (1.2)

where H is any distribution function and 0 < E < 1, e fixed. In a later section of the paper,

this setup is modified somewhat to deal with the case of random variables Xi which have a

nominal distribution which is symmetric about an unknown location parameter.

Estimation of scale is an asymmetric problem with regard to bias. Outliers give rise to

asymptotic positive bias whose maximum positive value is denoted by B+(X), whereas

inliers result in a negative bias whose maximum absolute value is denoted by B-(X).

These biases are related to the minimum and maximum asymptotic values of the scale

estimate, s+(X) and s-(X), by s+(X)=l+B (X) and s-(X)=I-B-(X),

respectively.

In general B (x )+( B -( X) and this asymmetry leads one to introduce a loss function

I (s-(X),s +(X)) =  (B-(X), B+ (X)) to be minimized with respect to the choice of X,

thereby resulting in a min-max bias estimate. We shall call any such estimate a bias-robust

estimate.

itd.1,1 11'
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It came as a pleasant surprise to find that the maximal biases B +(X ) and B-( X), or

equivalently, the minimal and maximal scales s +(X) = 1 + B +(X), s- (X) = I - B (X),

can be obtained in a manageable analytic forms. It is this manageability which allowed us to

minimize I (s- ( X), s + ( X)), and thereby obtain bias robust estimates for certain classes of

loss functions.

Section 2 of the paper presents the basic theory for the contamination model (1.2) for

positive random variables. In Section 2.1 we show that it suffices to work with point mass

contaminations. In Section 2.2 we establish the maximal and minimal scale expressions

(2.10)-(2.11) for s+(X), s-(X), which are of value in their own right for calculating the

maximal biases of any scale M-estimate. Section 2.3 proves the pleasant result that s +(X )

is minimized and s-(x) is simultaneously maximized by a X of 0-1 jump function type,

X., with jump location a. The resulting estimate is a scaled order statistic. This result is

then used in Section 2.4 to establish the optimal choice of a for loss functions 1 of a fairly

general form. In Section 2.5, the breakdown point of the bias robust estimates is exhibited.

It is shown that as e - 0.5, the min-max bias robust estimate is a scaled median, which has

breakdown point 0.5. Thus the scaled median enjoys two global robustness properties

simultaneously.

Section 3 provides some explicit bias, breakdown point and efficiency calculations for

the cases of exponential and positive normal F0 . It turns out that for a wide range of

contamination fractions, the bias robust estimate is quite close to the scaled median, both in

form and with regard to actual bias!

Section 4 briefly treats maximal bias curves, and also the issue of the finite-sample size

relevance of our asymptotic theory.

Finally, Section 5 treats the case of estimating the scale of distributions which are

symmetric about an unknown location parameter. The problem is now considerably more

' 1- %N" - %N^ )
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complicated, but we nonetheless show that jump-function type M-estimates are again

optimal under certain conditions. For the case of normal F0 we are able to establish bias

optimality for the range 0 -5e<5.35. The bias optimal estimate uses the median for

centering, and is very close to the well-known scaled (for Fisher consistency) median-

absolute deviation about the median (MADM) estimate, both in form and with regard to bias

performance. Thus the scaled MADM is very nearly optimal with regard to both breakdown

point and bias.

Proofs are provided in the body of the paper for the key results, whereas proofs of lesser

results are relegated to Section 6.

M

.-
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2. THE GENERAL SCALE PROBLEM

2.1 M-estimate Scale Functionals for Contamination Models

The asymptotic value of f. , defined by (1.1), is

s(XF) =inf{s: f X !)dF(x)<b}, FrF. (2.1)

The constant b will always be determined by F0 and X as

b =EFX(X) . (2.2)

which insures Fisher consistency: s (F0 , X) = 1.

We shall work with the class C of X functions which satisfy the following conditions:

(Al) X is nondecreasing and bounded on [0,**), with at most a finite number of

discontinuities, and X (0) = 0.

(A2) X is such that b = b (X) satisfies the inequalities e < b < 1 - e

In view of (Al) and (2.1)-(2.2), there is no loss of generality in making the assumption

(A3) supx X (x)=1.

Lemma2.1: Under (A1)-(A3) the asymptotic equation (2.1) has a unique solution

s s (, F) e (0,*-) for any F e F, including the case where H is a point mass 8*. at

+* or 80 at 0.

REMARK 2.1: It is easy to see that for any unbounded X, s(X,F)= **, when H = 8.

Thus, boundedness of X is a necessary (but not sufficient) condition to obtain a bounded

bias over F.

Nm
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REMARK 2.2: The proof of Lemma 2.1 shows that if b = 1 -e, then (2.1) will have only

the solution s = 0 when H is concentrated at the origin. This constitutes (implosive)

breakdown of the estimate due to inliers. The proof also reveals that if b = e and H is a

point mass at infinity, then s = *c is the only solution and we have (explosive) breakdown

due to outliers. See Hampel (1971), Huber (1981) and Donoho and Huber (1983) for various

definitions of breakdown point.

Consider the family of point-mass contaminations

F1 = {F: F=(1-)Fo+eSY, y-R }

were 8y is a point mass at y and R + is the set of extended nonnegative real numbers.

The following lemma shows that the maximum and minimum biases over F are achieved

over the smaller subfamily F1 .

Lemma 2.2: Suppose (AI) and (A2) hold. Then

infFe Fs(,F) = inf FEFs(X,F)

and

supFeF, s (X,F) = Sup eFs (X,F)

2.2 Minimum and Maximum Scale Functionals

Since it suffices to work with F in F1 , it is convenient to replace s (X, F) by either

s (X, y), or more simply sy , where y is the location of the contamination point mass By

Let

s = supY>Os(%,y) (2.3)

sA \ iji
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denote the maximal scale, and let

s-(X) = infy2s(X,y). (2.4)

denote the minimal scale. Then the maximum positive bias of s (X, F) over F is

B + = s+(X)-l (2.5)

and the maximum of the absolute values of the negative bias is

B- = l-s-(X) (2.6)

Let

hX(s) = fx(X!)dFO(x) , O<s <oo (2.7)
0 S

and note that for F E F, , and any s > s (X, y) we have

(1-e)hX(s)+eX(Y)-b < 0. (2.8)
s

where b =hx(l). It is easy to see that h X is continuous, non-negative and strictly

decreasing, with lims.., 0 h.(s) = 1, lims,,. h.(s ) = 0. When X is continuous, so that sy

solves (2.8) with equality, the following result is almost immediate.

Theorem 2.1: Suppose that (A1) and (A2) hold. Then

s ) b (2.9)

and

s-(X ) = hx(_b)(2.10)

with s+(X) achieved by point mass contamination 8,Y with y -4 oo, and s -(X) achieved

by point mass contamination So at the origin.
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2.3 Optimality of Jump Function X's

We now suppose that Fo has a density fo. Consider the jump function type X given

by

I Ixl >a

Xa (x) = 0 IxI5a (2.11)

When X in (1.1) is a jump function X , the estimate s,, is a scaled order statistic:
a

I
sn =-X(n_[nb ) •a

Fix b r ( -, 1 -e), and let

Cb = {X:X eC and f X(x)fo(x)dx=bl (2.12)
0

The following lemma shows that if a is appropriately chosen, then for a large class of

densities fo, X minimizes the maximal scale s' = s +( X) over Cb, and simultaneously
a

maximizes the minimal scale s =s-(X)!

Lemma 23: Let a satisfy

1-Fo(a) = b (2.13)

and suppose that Fo has a positive density fo with the property that f (S X) isfo (x)

decreasing in x for s > 1 and increasing in x for s < 1. Then for every s 1

hx (s) < hX(s) -V X6 Cb. (2.14)
a

and for every s < 1

hX (s) > hX(s) -V X r Cb. (2.15)
a
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Proof: X is a member of Cb by virtue of (2.13). Forevery Xr Cb wehave
a

a

fX(x)fo(x)dx = f[ [I-X(x)]fo(x)dx
0 a

Then for s _> 1 we have

a a
SfX(x) fo(sx)dx = s fx (x)fox) fo(SX) dx
0 0 fo(X)

>sfo(sa) i

fo(sa) a

fo(sa) 0

fo(a) [1-x(x)]fo(x)dx

> s f [1-X(x)]fo(sx)dx
a

Then for every X e Cb and for every s 'a 1 we have

hr(s) = s f X(x)fo(xs)dx s fX (x)fo(sx)dx. = h x (s).
0 0 a a

For s < 1 , the above inequalities are reversed. [

Lemma 2.4: Suppose that fo(x) is non-increasing, differentiable, and that - log f 0 (x) is

convex. Then the hypotheses of Lemma 2.3 are satisfied.

REMARK 2.3: The exponential and positive normal distributions treated in Section 3 satisfy

Lemma 2.4.

REMARK 2.4: The M-estimate of scale based on X is a maximum-likelihood estimate
a

(M.L.E.) of scale based on a density having the form
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• 0<x5 <a

f *(x ) = 0<x3

xi x>a

where r>0 satisfies r 3 +T 2 a 2 -a =0. Of course bounded X's can only arise from

M.L.E.'s for densities having tails at least as heavy as the Cauchy tails of f *. While the

distribution F * corresponding to f * is not a member of F, there is no particular reason

that it should be for the problem we are treating.

Set

a = F0"1 (e) (2.16)

and

a = F " 1 (1-e) . (2.17)

Then in view of (2.13) and (A2), the jump point a of the jump function X must satisfy
a

a < a < a. (2.18)

For X = X , let s+(a)=s+(X ) and s-(a)=s-( ), and note that
a a a

h. (s) = 1 -Fo(sa). Thus (2.9) and (2.10) give
a

~(a) =1F6- LJoa (2.19)

s(a) = IF 0
1  {F°(a)-e j (2.19)

Note that as a T i, s +(a) -+ - and breakdown due to outliers occurs. On the other

hand, when a I a , s -(a) - 0 and breakdown due to inliers occurs. For a r (a, a) we

clearly have 0 <s-(a) < 1 and 1 < s+(a) < *
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For some distributions F0 , it may turn out that s +(a) and s-( a) are both monotone

increasing functions of a (this is the case for example when F0 is the exponential

distribution treated in Section 3). In such cases we wish to choose a small in order to make

the maximal scale s+(a) and the maximum positive bias s+(a) -1 small. At the same

time one wishes to choose a large to make the minimal scale s -(a) large, thereby making

maximum negative bias 1 -s-(a) small. The precise choice of a will depend upon the

loss function used to assess bias.

2.4 Min-Max Bias Results for Certain Loss Functions

Bias in scale estimation is a fundamentally asymmetric problem, and one may wish to

consider any of a variety of loss functions I = I (s -, s +). Most loss functions of interest will

assign infinite loss to s + = - or s= 0. Some possibilities are, for 0 < s-:5 1 < s + <e

(i) l(s-,s+) = (s--'+s+-2

(ii) I(s-,s+) = log s + -logs-

(ili) I(s-,s +) = max{(s-)-,s +}

(iv) I(s-,s+) = max {-logs-, logs+}

Since several considerations lead one to the logarithmic transformation when estimating

scale, the choices (ii) and (iv) may be particularly appealing.

The above possibilities suggest consideration of two distinct classes of loss functions.

.4 Lj: All continuous functions 1 (u 1,u 2) on (0, 1] x [ 1, -) which are decreasing in

4 u 1, increasing in u 2 , and such that lim u -+0 1 (u 1, u 2 ) = ** for each real u 2 ,

and lim l ( u 1 ,u 2)=- foreach real u1.

L2 All functions on (0, 11x [l1,,) of the form

I(U 1 ,U 2) -max{g1 (U 1 ), g 2(u 2)} where g 1 and g 2 are continuous with
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g 1 strictly monotone decreasing, g 2 strictly monotone increasing, and

.-rn 90g (u 1) = limu2-.- g 2(u 2)= - .

While L2 is a special case of L 1, L2 has enough additional structure to warrant

separate treatment. Note that for 1 in L, or L2 , l(s-(X),s+( X)) represents the

maximum loss, accounting for both positive and negative bias, due to use of a particular X.

Let

L(a) = l(s-(a),s+(a)) = l(s-(X ), s+(X ))
a a

denote the value of the loss for a jump function X
a

Theorem 2.2: Suppose that 1 e Li , i = 1, or i = 2. Then under the assumptions of

Lemma 2.3, for i = 1, 2

ao = argmin L(a)
a e (a,a)

exists, and

L(ao) = min l(s-X),s+(X))
XEC

Proof: Since F 0 is not only absolutely continuous, but also strictly increasing, F " 1

exists and is continuous. Thus s-(a) and s+(a) are continuous functions of a.

Furthermore, s-(a) -0 as a ,la =F"1 (e) and s+(a) -4- as a T" = F 1(1-E).

Thus L (a)--00 as a I a or a T 2i and since L(a) is continuous, its minimum a 0 is

attained on a closed subset of (a, E). It follows from Lemma 2.3 and the properties of L

that for each b e (C, 1-E), and correspondingly each a e (a,a"), L(s-(X),s+(X)) is

minimized by the jump function X , with a determined by (2.13). 0
a
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Corollary 2.2: Let I e L 2 , and let a 0 be the optimal a of the theorem.

(i) Either a 0 .satisfies the equation

g l(s-(ao)) = g 2(s+(ao)) . (2.20)

or a 0 is a local minimum of at least one of the functions s-( a ), s ( a).

(ii) If s-(a) and s+(a) are both strictly monotone increasing, then a0 uniquely

satisfies (2.20).

Proof. (i) Suppose that a 0 does not satisfy (2.20). Then there is a neighborhood

(a 0-8,a 0 +8) such that either 1(a)=g 1(s-(a)) or l(a)=g 2(s+(a)) on

(a 0- 8, a 0+ 8). Then by definition of a 0 it must be a local minimum of either s-(a) or

s+(a).

(ii) g 1 (s -(a)) is a strictly decreasing function of a , which tends to +0- as a ,4.a,

while g 2 (s +(a)) is a monotone increasing function of a strictly tends to + - as a " a.

Thus the equation g 1(s-(a )) = g 2(s +(a )) has a unique solution a 0 e (a, E). C

2.5 Breakdown and Bias Optimality of the Median

For discussions of the breakdown point of scale estimates, including M-estimates, see

Hampel et al (1986) and Huber (1981). Here we comment only on an M-estimate of scale

based on jump functions X with a e (a, F).
a

Let e+ denote the supremum of all e for which s (X, y ), given by (2.1) with f e F1

is finite when y = -, and let E7 denote the supremum of all e for which this s (X, y ) is

positive when y = 0. Then take the breakdown point (BP) of the estimate to be

BP = min {Je-, et}. For the case of a jump function X , it follows from (2.19)-(2.19') that
a
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= Fo(a) (2.21)

E+ = 1-F 0 (a) (2.21')

and so

BP = min{F(a), 1-Fo(a).

Clearly BP - 0.5 and BP = 0.5 only if F 0 (a) = 0.5. In this case a =a,d is the

median of F0 , (2.2) gives b = b ,ned = 0.5, and the solution of (2.1) is

F 1

s(a,,d,F) = (2.23)
F0

1 (1 -)

assuming F 1(2) exists. In words: the only jump function type M-estimate of scale with
2

breakdown point I- is the median functional, standardized by the median of F0 to insure

Fisher consistency.

Now a bias optimal estimate of the type given by Theorem 2.2 or Corollary 2.2 is of

jump function type, with jump location a o in (a, E ). For e < I we will seldom, if ever,
2

11
have BP =1 for the optimal a 0 . Note however that as e 1

2 2'
a=Fo-'(e)---Fo-(2) and 5=F(l(1-)--ao=FC-(1). Thus any bias

2 2

optimal estimate given by Theorem 2.2 or Corollary 2.2 tends to the median estimate (2.23)
1

as e -- 1. Thus the median, as an estimate of scale of a positive random variable with a

contamination distribution, simultaneously enjoys two global robustness properties: a

maximal breakdown point of one-half and min-max bias optimality.
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3. THE EXPONENTIAL AND POSITIVE NORMAL DISTRIBUTIONS

In this section the loss function l (s-,s) = max { log s-, log s +} is used.

3.1 Exponential Distribution

Suppose that our target distribution is exponential with scale parameter s, that is

f (x,s) = lfo(X), fo(x)=e - x  (3.1)
S S

In this particular case s +(a) and s-(a) (See Section 2) reduce to

1 _______

s+(a) = -- log (3.2)a

s-(a) 1+ log (1 -e) (3.3)
a

for a (i, a).

We notice immediately that s-(a) is strictly increasing with lim s-(a) = 1
a -+N

lim s-(a)= 0. It is also easy to check that the derivative of s+(a) is positive (see
a -+a

Section 5 for details), so that s +(a) is strictly increasing, with lim s+(a) and
a --+o"

lim s-(a) = log (1 -2e)/log (1 -e). Therefore Corollary 2.2 is in force.
a -+a

In Table la we show values of the optimal a 0 , along with log s+(a0 ) = -log -(a0),

1 -s(a 0 ), and s +(a 0 ) - 1 for several values of e. Breakdown points and efficiences at

the nominal model are also given. We note that the breakdown points of the optimal

estimators are fairly high (at least 0.46), even when they are designed for contamination

models with small fractions of contamination!

For the sake of comparison with the optimal estimator, Table Ib displays corresponding

values of -logs-, logs', l-s- and s+-1 for the scaled median estimator
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Table 1 Min-Max and Median Estimates for Exponential Distribution

(a) Min-Max Estimate

Breakdown
S a 0  log s+(a 0 ) 1 -s-(a 0 ) s+(a 0) - 1 Point Efficiency

0.10 0.716 0.159 0.147 0.173 0.49 0.49

0.20 0.739 0.359 0.302 0.432 0.48 0.50
0.30 0.761 0.632 0.469 0.882 0.47 0.51
0.40 0.773 1.080 0.661 1.946 0.46 0.51

0.45 0.763 1.530 0.783 3.618 0.47 0.48

(b) Scaled Median Estimate (a = .693)

Breakdown
e -log s log s 1-s - s-1 Point Efficiency

0.10 0.165 0.157 0.152 0.170 0.50 0.48
0.20 0.389 0.347 0.322 0.415 0.50 0.48

0.30 0.723 0.592 0.515 0.807 0.50 0.48

0.40 1.335 0.950 0.737 1.585 0.50 0.48

0.45 1.984 1.241 0.862 2.459 0.50 0.48

s= med/.693. While the scaled median is actually less sensitive to outliers than the

optimal estimate, it is sufficiently more sensitive to inliers that it is somewhat dominated by

the optimal estimate using the loss max { - log s-, logs + }. As one might expect, both

estimates are more sensitive to outliers than inliers on the raw scale. Note also that the

asymptotic efficiency of .48 for the scaled median at the nominal model is only slightly

smaller than that of the min-max bias estimates displayed in Table 1 a. In summary we can

state: the scaled median is a nearly optimal estimate of scale in terms of asymptotic bias.

Table 2 displays similar results for the positive normal distribution, whose density is

fpN(x) = 2€(x), x > 0, where *(x) is the standard normal density. The results are rather

similar to those for the exponential distribution. Again: the scaled median (in this case
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med /.6751 ) is a rather good approximation to the optimal bias-robust estimate.

Table 2 Min-Max and Median Estimates for Positive Normal Distribution

(a) Min-Max Estimate

Breakdown
E a 0  log s +a ) 1 -s-(a 0 ) s +(a 0 )-1I Point Efficiency

0.10 0.700 0.127 0.120 0.136 0.48 0.38
0.20 0.726 0.284 0.247 0.329 0.47 0.40

0.30 0.750 0.494 0.390 0.639 0.45 0.41

0.40 0.762 0.844 0.570 1.325 0.45 0.42
0.45 0.746 1.236 0.710 2.441 0.46 0.41

(b) Scaled Median Estimate (a = .675)

Breakdown
E -logs- log S+ 1-s- s+-1 Point Efficiency

0.10 0.135 0.126 0.126 0.134 0.50 0.37
0.20 0.322 0.274 0.276 0.3 15 0.50 0.37
0.30 0.612 0.459 0.458 0.583 0.50 0.37
0.40 1.166 0.718 0.688 1.050 0.50 0.37
0.45 1.780 0.918 0.831 1.505 0.50 0.37
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4. MAXIMAL BIAS CURVES AND FINITE SAMPLE SIZE RELEVANCE

It should be noted that, rin-max bias optimality results aside, the calculation of

maximal bias curves (i.e., plots of maximal bias of a given estimate for each fraction e of

contamination, versus e) for contamination models for any proposed robust estimate is a

very worthwhile goal (see Sec. 2.7 of Hampel et al, 1986). It was a pleasant surprise to

discover that for a wide range of estimation problems (in addition to estimation of scale), and

types of estimate, one can usually obtain an analytic expression from which one can

calculate the maximal bias curves.

For example, (2.9) and (2.10) of Theorem 2.1 lead to the maximal biases (2.5) and

(2.6), for outliers and inliers, respectively. It is not always possible to express the inverse

h z 1 in explicit analytic form (e.g., it is possible for the case of exponential F0 , but not for

the positive normal F0 in Section 3). Nonetheless, the expression (2.7) for hr (s) is nice

enough (as are analogous expressions for other problems such as location, regression, etc.),

that one can always solve numerically for s+(X) and s-(X) by computing hX(s) for a

b -e b
grid of s values, and interpolating to match with and 1 , respectively.1 -e 1 -e

We have done this for the following two estimators in the case of the positive normal

F0 : (i) The median; and (ii) Huber's M-estimate of scale based on

2 t 2,O~gt<!g

X(t) = N'r() = { 2  t

The results are shown in Figure 1 for z = 1.5, which results in approximately 50% efficiency

for the Huber estimate, at the nominal positive normal distribution (where the scaled median

has 37% efficiency). The Huber estimate is much more sensitive to the outliers than the

median, as reflected in the fact that B, > B' for all e. Furthermore, the Huber

estimate has a breakdown point toward outliers of only .29, (whereas that of the scaled

median is .5 ). On the other hand the Huber estimate is less sensitive than the median to
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inliers, and accordingly B, < B_, for all e. Also, the breakdown point of the Huber

estimate to inliers is .71 (as compared with .5 for the scaled median).

Finally, one should be concerned about the relevance of an asymptotic min-max bias

theory for finite sample situations. Here one is naturally interested in the sample size n (E)

at which squared bias is equal to the variance. One can get a rough idea of what n (e) will

be by acting as if the asymptotic bias and variance projects well back to finite sample sizes.

For example, consider the positive bias B +(e) = s +(e) - 1 of the mix-max scale

estimate for the exponential F0 (see Secticn 3). This bias is achieved by point mass

contamination 8.. at infinity. The corresponding asymptotic variance is easily shown to be

- b (ao) [ 1-b (ao)]
( .-1)2a 2 E-sa

where s+=s+(C), ao=ao(e). Some values of n+(e)= [V+()] 2 /B+(e) are shown in

Table 3.

Table 3: Sample Size n (e) = [V+(e)] 2/B +(C)

for Matching Variance and Squared Bias

(Min-Max Scale Estimate for Exponential F0 )

C .02 .05 .1 .15 .2

n+(e) 50 20 10 7 6

Evidently, the asymptotic theory is relevant down to quite small sample sizes unless the

fraction of contamination is exceedingly small. More precise finite-sample size calculations

should be carried out to confirm this.
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5. SCALE FOR SYMMETRIC DISTRIBUTIONS WITH NUISANCE LOCATION

PARAMETER

Suppose now that our observations Xi are not restricted to being positive, and have a

location-scale family distribution F ,s(x) = F [ ILJ-.] . We now assume that

F={F:F=(1-e)F0 +EH,F0 symmetric } (5.0)

and H is again any distribution function. One now has to estimate the nuisance location

parameter g, and so let p, be any location and scale equivariant estimate of location.

Then the M-estimate of scale s, is given by

.fn = inf s: x[< b (5.1)
1 J

where X is as in Section 2. The corresponding asymptotic functional is

s-,)= inf {S: X ()I dF (x) 5 b .}(5.2)

Here g. is assumed to have an asymptotic functional representation g (F), and b is

given by (2.2). Existence of a unique solution s (x, F) e (0, -) follows under (Al)-(A3)

and finiteness of g (F), just as in Lemma 2.1. Without loss of generality we take g(F0 ) = 0

and s(X,Fo) = 1. Then g (F) is the bias in estimating g and s(X,F)- 1 is the bias in

estimating s.

Let X be a random variable with distribution FX, and let Fx denote the

distribution of -X. Then most g (F) of interest will satisfy the symmetry property

(L1) g.(F-x) = -p.(Fx).
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Suppose that s (X, Fx) is given by (5.2), with x - Fx resulting in g (Fx) < 0. Then in

view of (5.0) and (Li), there exists Fx in F with t(F_x)=-i(F)>O and

s (X, Fx ) = s (X, Fx). Thus, it suffices under Li to restrict attention to the sub-family

F+ = {Fr F: p(F)_ 01.

In addition we will use the assumption

(L2) Forall Fe F', ji (F) t< -c where i I= p.((1--)F0 +E&*).

REMARK 5.1: Any location functional . (F) with breakdown point greater than e, such

that p. (8,) = suPFe F-9 (F) will satisfy (L2). For example location M-estimates based on

bounded, monotone psi-functions will satisfy (L2).

Let

h(s,t) = Ex * Ix-t ]fo(x)dx (5.3)

By change of variable we have

h(st) = sfoX(x) {fo(xs-t)+fo(xs+t)}dx . (5.4)

Lemma 5.1: Let X satisfy (Al). In addition suppose that the density f0 is not only

symmetric, but also decreasing on [0,*). Then for each fixed s > 0, h (s,t) is

increasing in t on [ 0,*c).

Let

X,(s,F) = (- E)h(st(F)) + efx X[L t ] dH (x) (5.5)

and let s'(X) and s-(X) denote the largest and smallest values of s(X,F), as F
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ranges over F + . Here the subscript g denotes dependence on the form of the location

functional j-=i( ). %,,(s, F) is a decreasing function of s, and so s '(X) is achieved

by a possibly substochastic contamination distribution H which makes . (s, F) as large

as possible for s > 1, and s. (X) is achieved by an H which makes X. f(s, F) as small

as possible for s < 1. Even though g (F) is now involved, it follows from Lemma 5.1 that

point mass contamination at infinity achieves s (X), and point mass contamination at the

origin achieves s + (X).

-I
Let h- (t) denote the inverse of h (s, .) with respect to the first argument, with

the second argument fixed at g = p ((1 - e) F0 + ),and define h 0 1 (t) similarly in

terms of h (s, 0).

Theorem 5.1: Suppose that (Al)-(A3) and (L1)-(L2) hold. Then

s +(X) = h - [b (5.7)

+

REMARK 5.2: The maximal scale s + (X) depends on the location functional =

through g. On the other hand the minimal scale s -(X ) is independent of the choice of the

location functional p. (F) which is why we denote it simply s -(X).

Since the median minimizes the maximum bias p. of any equivariant location estimate

over F+ (Huber, 1964), Lemma 5.1 gives the following important corollary.

Corollary 5.1: The median minimizes s ' (X) over all location functionals I =

which satisfy LI and L2.
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The results of Section 2.4 hinge on the key Lemma 2.3, the proof of which relies on the

hypothesis that k. (x)= fo (sx )/fo (x) is decreasing for s > 1, and increasing for

s < 1. In the present context we still have k(x)=fo (sx)1fo(x) for s < 1, but for s > I

ks(x) is replaced by

ks, - (x) = fo(SX-Imed)+fo(SX+ d) (59)

where tmed is now the maximal bias of the median. Unfortunately, k - (x) is not

decreasing for all s and all values of ,, a, and this complicates matters somewhat.

However, we can proceed as follows.
*Ay.

First, note that the same type of argument used in the proof of Theorem 2.2 shows that

. there is an optimal jump function X among the class of all jump functions X That is,
a* a

for I E Li, i = 1 ori =2,thereisan a.E (0,,,) such that

5."5L (a*) < I (s-(X ), s*(X ) a E (0,0* (5,10)
a a

Let s.+=s (a), s-=s-(a.), and set

f o~ (X *s - t ,dg ) + f o (X xs + t ,d

kc(x) fo (X (5.11)~f0 (x)_

where the subscript now indicates the dependence on e through s and l d,, eeach of

which depend on E. Note that the conclusion of Lemma 2.3 holds when kE(x) is

decreasing (just replace fo(sx )/fo(x) by k,(x) in the proof). In applications there will

always be an interval [0,EO) for which k,(x) is decreasing for £ r [O,£o). The normal

distribution provides a concrete example of this, as we see shortly.

The next theorem gives conditions under which the optimality X over the class of~a.

all jump functions extends to C.

.. I:
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Theorem 5.2: Let a * be as in (5.10), so that X is optimal over all jump functions.

Suppose that kc £(x) is decreasing and let 1 r= L2 . If s 4 (a), s-(a) are both strictly

increasing, or if the derivatives of s 4 ( a) , s -(a ) are non-vanishing at a then

L (a*) = min I (s-(x),s4 (X))
Xe C

Proof. Choose any X e C , and fix b corresponding to this X, namely b = EF, X (X)

Let X be the unique jump function which corresponds to this particular b . Let
a

b -chX~ + =h (s+9.d for the given X. If hx(s+~) t ~ then from (5.7) for both

X and X and the monotonicity of h (-, ,,,d ), X is not better than X i.e.,

s 4 (X) t s4 (X ) So, suppose that h,(s+) < bE, i.e., suppose X is strictly better
a1  1-e

than X a for s+, i.e., s4 (x) < s+= s4 (a*). We will show that then X must be worse

than X for s-, and hence worse than X for s-. Since k..(x) is decreasing, the
a a

conclusion of Lemnma 2.3 applies at the point s = s * . Thus, the jump function X is
a

optimal at the point s = s + , and so s+(a) - s 4 (X) < s . In view of Corollary 2.2, and

the optimality of X we have

g 1 (s) 9 2 (s+) 5 maxfg1(s-(a)),g2 (s 4 (a))}, a r= (0,eo

and it follows that s-(a) : s. For the particular b in question the jump function X is
a

optimal for all s < 1, and so we have

s-(X) 5 s-(a) :5s

Thus X is as good as any X e C.0

a *
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The Normal Distribution

We now apply this general result to the case of the normal distribution and the loss

function l(s-,s +)= max{-logs-,logs+}.

The optimal value of a * is obtained for each e by minimizing

max{-logs-(a),logs+(a)} for a e (a,i), where s+(a) is given by (5.7) with

x=X and 2=12,,,ed, and s-(a) is given by (5.8). This cannot be done analytically,
a

since h (, t) given by (5.4) does not admit a closed form inverse when fo is normal. We

determined a* = a .(e) by numerical search for e = .05, .5(.05), evaluated the

corresponding values s +(a* ), s-(a *) and 12 d = j,,d (e). These are displayed in

Table 5. la for e = .05, .35(.05). With the help of Lemma 6.1 (see end of Section 6) we

have numerically verified that the conditions of Theorem 5.2 hold, and therefore X isia.
optimal for these value of e.

Based on further numerical checks, we conjecture that X is optimal for all
a*

£ r (0, .35). On the other hand a calculation showed that kr,(x) is not monotone for

e= .4, and thus we cannot conclude that X is optimal for all values of e E (0, .5), at
a .

least not by the current method of proof. The question of optimality of X for the full
a

range of E is (0, .5) remains an open problem.

The min-max bias values log s+(a *) = -log s-(a *) are shown in Table 4a, as are the

negative and positive biases I-s-(a,) and s+(a,)-I on the raw scale. Breakdown

points and efficiences are also displayed.

As in the case of the solutions for exponential and positive normal distributions in

Section 3, we find that a * is quite insensitive to the value of E, and not too different from

those for the positive normal distribution. However, the actual min-max biases log s ( a )

(and also the corresponding row biases) are substantially higher, as one might expect, due to

En" P
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the nontrivial bias of the median as centering functional.

Table 4b displays similar quantities for the scaled median-absolute deviation about the

median (MADM) estimate. The comparison of Tables 4a and 4b shows that even though the

scaled MADM is not optimal for the given loss function and values of e, it is strikingly

close to optimal for the range of e values considered (the performance of the scaled MADM

is much nearer to that of the optimal estimate than was that of the scaled median for the

positive normal distribution treated in Section 3.2). Except for F = .35, the common entries

of Tables 4a and 4b agree to at least two decimal places, and at e = .35 the differences are

only about .01. The breakdown point of the min-max estimates round to .500 for all F

values shown. In effect a single Table would suffice, and we are led to assert: For all

practical purposes the scaled MADM is the min-max bias estimate for e = .05, .35 (.05),

(and probablyfor all e e (0, .35)).

I. I n
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Table 4 Normal Distribution with Location Unknown

(a) Min-Max Estimate

Breakdown
e A n a. log s+(a) 1-s-(a) s+(a.)-1 Point EFF

0.05 0.066 0.674 0.063 0.061 0.065 0.50 0.37
0.10 0.139 0.673 0.135 0.126 0.145 0.50 0.37

0.15 0.223 0.673 0.221 0.198 0.247 0.50 0.37
0.20 0.318 0.673 0.324 0.276 0.382 0.50 0.37
0.25 0.430 0.673 0.450 0.362 0.568 0.50 0.37

0.30 0.566 0.676 0.609 0.456 0.839 0.50 0.37

0.35 0.736 0.682 0.812 0.556 1.252 0.50 0.37

(b) Scaled MADM Estimate (a = .675)

Breakdown
e -log S og s +  1-s- s + -1 Point Efficiency

0.05 0.063 0.063 0.061 0.065 0.50 0.37
0.10 0.135 0.135 0.126 0.145 0.50 0.37

0.15 0.220 0.221 0.197 0.247 0.50 0.37

0.20 0.322 0.324 0.276 0.383 0.50 0.37

0.25 0.449 0.450 0.362 0.569 0.50 0.37
0.30 0.612 0.608 0.458 0.838 0.50 0.37
0.35 0.833 0.808 0.565 1.243 0.50 0.37
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6. PROOFS OF RESULTS

Proof of Lemma 2.1

Proof: For F e F, we have

X(s) f X( 1) dF (x) 1 (- e)f X( )dF0 (x)+ e X( -) dH (x)

Since for any distribution function H , including the point mass at infinity, we have

lim, X( s) e < b , it suffices to show that lims- G X(s) > b . Since

X(S) t ( 1-E) 7 X( -)dF0 (x) for any H , with equality when H is concentrated at the
o S

origin,

1ims -'), rX (s) 1-) lims ... X( -:1~) dFo (x) = (1-e) >b
0 S

Thus s (F, X) e (0,o-) for all H.

Proof of Lemma 2.2

Proof. We'll show that for all F rE F there exist F, , F2 , e F, such that

s (X, Fi) ,s(X,F)gs (X, F2 ). Let X e C and s =s (X,F) be defined as in (2.1), with

F =(1-E)F0 +eH.

If EH IX (X/If )}I=1 for some f <s then X (x/Is)I a.s. [H] and there exists y eR

such that X(y/s ) = 1. Let F2 =(lI-G )FO +e8y; forall f~s we have

EF1 {X(X/.f)} = (1-e),hX(f)+e =EFjX(X/s)} > b

therefore s (F 2 , X) >s. If EHfX (XIf )}I <1I for some 0O<f <s (and then for all

1: s':5s ), let y re R be such that X (y/Is ) > EH {X (X/ If and let F2 be as defined

111 00 0
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above;

for some .f <s : s , by continuity of h.we have

EF2 {X(Xls)} = (1-e)hx(s) + eX(y/s) > (1-e)hx(s') + eEHjX(X~s')} > b

Therefore s (x ,F2) t s .

On the other hand, let F, = (1 - e)F 0 + E 0 For all f >s we have

EF IX(XIf )}I = (1 -e) h X(S) 5 (1 -e) h (S) + e EH IX(X /S-)I = EF Ix(XI/j)} b,

hence s (x , F)=inf{. : EF, {X(Xf)}} <- S* 0

Proof of Theorem 2.1

For any y we have, by definition ofs,

s<s7 y (1-e)h(s )+e-b 2t (1-e)h(s )+eX(Y-)-b t 0

Thus, by continuity of h (s) we have

h (sy) : b -e (6.1)
1-C

On the other hand, again by definition of sy , we have

(1-c)h(sy) (1-c)h(s,)+EX(2 -) :5 b (6.2)

from (6. 1) and (6.2) follows

b-c :h s) 5 b

or
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h ~ s,:
1-E

For y = 0, the left-hand inequality becomes an equality. Now note that sysatisfies the

monotonicity property sy, : sy when Y I ' Y 2. Thus if y, is a sequence of values tending

to infinity, the limit S-= im,-,s a~ exists. We claim that for s =?T, the right hand

inequality in (2.11) becomes an equality. For suppose

F <

Then

b -e
1 -E

and we can choose 5 > 0 and yo0 sufficiently large that

1-E) h (S-)+ EX [ -_ b 1-e) h (F)+e1-8) -b > 0 .

Contradicting sy 5 T. 0

Proof of Lemma 2.4

Let s >1. ForalI xZ 0 wehave

d [fo(sx) 1 0

if and only if I fox J
ff (Sx) 1 _f(x)

Afo(SX) J fO(x)

The last inequality follows since -f (x )/fo (x) is non-negative and increasing. For s < 1.
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all the reverse inequalities hold.0

Proof thag -±s(a) O0
da

ds+(a). eae +1ogIl

if and only if

log (a-F-) y(a) - + log (e-a~

The last inequality follows because 'y(O) =log (1I - e) and

d -a rea
-y(a) = a e-1] 2ta~ 0

Proof of Lemma 5.1

Proof. It suffices to consider the case s = 1. Extend the domain of X to R by setting

X(-t)=X(t),t:5O. Set A- 12 0,O t 1 5t 2 < Then

i: [X(X -t2)-X(X -tl)]fo(x)dx

= Jjx(X -t2)-X(X -tl)]f 0 (x)dx + f, X(x -t2)-X(X -tl)]f 0 (x)dx

= j X(ti-Y)-X(t 2 -Y)1fO(t1+t2-Y)dY + j7 [X(y -t 2 )-X(Y t 1 )Ifo(Y)dyV

Z: 0. 0

% M1- 11
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Proof of Theorem 5.1

Proof: By (LI) and the Lemma 5.1 we have for all s > 0

h (s, p (F)) :5 h (s,pg) Vl Fe F*

and so

X(s, F) :5 (1I-C) h (s,pg) + e

with the right-hand side achieved when H = 8.., the point mass at infinity. Equating the

right-hand side to b yields 5.7. On the other hand for all s > 0 we also have

X (s, F) 2t (I- e) h(s, 0) + F e F+

with the right-hand side achieved when H = 50, the point mass at the origin. Now, equating

the right-hand side to b gives (5.8). 0

Statement and Proof of Lemma 6.1

The following notation is needed for Lemma 6. 1, below:

Let t su and set

A (s,t, b 1 , b 2 ) =(S 2 _ I[1+e-b ~ 2 t b 2 0e-b,] 2t2 e -tbl

Let

A I(s, t) =A (s, t,0 ~84

A 2 (s,t) =A (st 4

A3(S,t) =A(s,t,J 21)
2' 4'
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4

Lemma 6. 1: Suppose that

s (s-u) >1

and

min A(s,t) > 0

Then~ h (x, s, u) = (sx+u)+ (SX-U)

is a decreasing function of x.

Proof:

h (x, s, u) = e 2 )Z+Z(esx+e-x1)

and

a-.h (x, s,u) = e 2[-x (S 2 _1) (e-"+e") - sue + su e'"]

Then

T (, , ): 0<- su 5x (s 2  1)( 1+e 2 s+ueSX (6.1)
ax

The last inequality holds for x 2t 1 since, by hypothesis

x (s2 1) ( 1+e-2sux) + sue - s x ( s2 - 2t su

If x = 0 then equality holds. Therefore, we only need to prove that right-hand side of (6.1)

holdswhen O<x < 1. Set S(x)=x(s 2 1)(+e- 2 ,x)+ t e-2L
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S'() ( 2 _ 1)[ 1+ e- 2 txx 2:e-2 u] -2t
2 e-2 t

8'(x)I min Ai > 0
:5j:54

and the lemma follows. El

MO R%-.I'
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