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Han S. Uhm
Naval Surface Weapons Center

White Oak, Silver Spring, Maryland 20910

This paper investigates the influence of electromagnetic effects on the

two stream instability in a relativistic electron beam propagating through a

collisionless plasma channel. The analysis is carried out within the

framework of a macroscopic cold fluid model in which beam and plasma fluid

element is in a laminar flow. Axisymmetric electromagnetic stability

properties are calculated for the case in which the equilibrium beam and

plasma density profiles are rectangular. Consistent with the two stream

instability, the perturbed fields are assumed to be the transverse magnetic

mode. The resulting eigenvalue equation for the perturbed axial electric

field 6Ez is solved to give a closed algebraic dispersion relation for the

croplex eigenfrequency w. This dispersion relation is solved and it is shown

that the electromagnetic effects have a strong stabilizing influence for a

relativistic electron beam with Yb > > 1, where yb-is the relativistic mass. .. , --j-

ratio of beam electrons. For example, the critical beam current for instability

is proportional to the electromagnetic current enhancement factor S - (yb + 1)/2.

Thus, the critical current from the electromagnetic calculation increases more

drastically with the beam energy than that from the electrostatic

approximation. - 1 -i'
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I. INTRODUCTION

In recent years, there have been intense research activities of the

equilibrium1 '2 and stability3 "6 properties of relativistic electron beam

propagating through a background plasma channel or a gaseous medium. Perhaps

one of the most basic instabilities that characterizes a relativistic electron

beam propagating through a collisionless plasma is the two stream

instability, 6 "9 which results from the relative drift motion between the beam

electrons and the background plasma particles. Although the two stream

instability is very familiar in the plasma physics community, most of the

previous studies7 "8  on this instability have been limited to one dimensional

calculations. In recent literature, 6 Bogdankevich and Rukhadze investigated

the two stream instability of a relativistic electron beam, including the

finite radial geometry effects on stability behavior. Therefore, they were

able to determine the limiting beam current due to the two stream

instability. In addition, we recently developed a theory of the two stream

instability in a self-pinched relativistic electron beam, 9 finding out the

critical beam current for instability. However, both previous calculations 6'9

have been based on the electrostatic approximation. Although this is a

reasonable approximation for a mildly relativistic electron beam, we expect

significant modifications to the stability behavior when the beam energy is

ultrarelativistic. For a relativistic beam, the electromagnetic effects on

the beam dynamics are often very important. In this regard, in this paper, we

investigate the influence of electromagnetic effects on the two stream

instability in a relativistic electron beam propagating through a

collisionless plasma channel.
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The analysis in this article is carried out within the framework of a

macroscopic cold fluid model, assuming either that the beam-plasma fluids are

immersed in a uniform axial magnetic field or that the beam is self-pinched.

Theoretical model and the equilibrium properties of the beam-plasma

configuration will be briefly discussed in Sec. II for rectangular density

profiles of the beam and plasma particles. The stability analysis presented

in Sec. IlI assume axisymmetric electromagnetic perturbations (a/ae = U).

Moreover, since the unstable mechanism of the two stream instability is mostly

due to fluctuations of the axial electron field, the stability analysis in

this article is restricted to perturbations of the transverse magnetic (TM)

mode polarization. The dispersion relation of the axisymmetric transverse

maynetic mode is derived in Sec. III for rectangular density profiles of the

beam and plasma particles.

Assuming long axial wavelength perturbations in Sec. IV, we apply this

dispersion relation to two specific cases: (a) highly magnetized bounded

plasma, and (b) a unmagnetized self-pinched electron beam. In case (a), the

dominant two stream instability results from the relative drift motion between

the beam electrons and plasma electrons. One of the most important features

of the analysis in Sec. IV is that the critical beam current for instability

is proportional to the electromagnetic current enhancement factor. After some

analytical algebraic manipulation, this current enhancement factor &th is

approximately given by [Eq. (67)]

&+ 1
th 2
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for the equidensity case where the beam and plasma electrons have the same

number density. Here Ybmc 2 is the characteristic beam electron energy, m is

the electron rest mass and c is the speed of light in vacuum. In the limiting

case when Yb 1 1, this enhancement factor recovers the electrostatic

approximation 'th = 1. Obviously, the critical beam current for instability

increases drastically with the beam energy (yb) , clearly demonstrating that

the electromagnetic effects play a major role in the two stream stability

behavior for a relativistic beam with Yb > > . In Sec. IV, a numerical

investigation of the dispersion relation is also carried out and it is shown

that the analytical expression of the current enhancement factor in Eq. (67)

underestimates the true electromagnetic current enhancement. Finally, two

stream stability properties in a self-pinched electron beam are also briefly

discussed in Sec. IV.
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II. THEORETICAL MODEL AND EQUILIBRIUM PROPERTIES

I II.A Theoretical Model

In the present analysis, the beam and plasma particles are treated as a

cold fluid immersed in a uniform axial magnetic field B0ez . In the limiting

case when the applied axial magnetic field vanishes, the beam electrons are in

a self-pinched equilibrium where the self magnetic force counterbdlances the

centrifugal force resulted from the beam rotation. Within the context of the

A macroscopic cold fluid description, the equation of motion and the continuity

* equation for the beam and plasma fluid element can be expressed as
4-.

V. x B
P. V. VP. = ej (E + ) (1)

at
a n + * (nV.) = 0, (2)

where the subscript j = b, i, e denotes beams, ions, plasma electrons,

respectively, P is the mean mechanical momentum, V is the mean velocity, ej

is the charge, and nj is the density. In Eq. (1), E(x,t) and B(x,t) are the

electric nd magnetic fields which are self-consistently determined from the

Maxwell equations, that is,

Vx E - B, (3)

7 x n V - ex, + E (4)

," J 4 ext
'47n ej + xt (5)

J..J

• W.
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where Pext and J ext are externally provided charge and current densities.

II.B General Equilibrium Properties

An equilibrium analysis of Eqs. (1) - (5) is carried out by setting a/at = 0.

Thus, the equilibrium properties are readily obtained from

v (nov0 ) = 0, (6)
J-J

V0 x B0

V0 • VP0 = e (E 0 + ~ ' (7)
j ,.J C

0 47 0 0 47rV x B c ejn.V. +- (x), (8)cj J JJ c Jext

- EO = . 4wnoej + 47Pet(x), (9)

where no(x), V.(x), P°(x), EO(x) and BO(x) are the macroscopic equilibrium
3 -

quantities.

We introduce cylindrical polar coordinates (r, e, z) with z-axis

corresponding to the axis of symmetry; r is the radial distance from the

z-axis, and 0 is the polar angle in a plane perpendicular to the z-axis. For

azimuthally symmetric particle equilibrium (a/a8 = 0 and a/az = 0) characterized

by n0 (r) and V0  Vje(r)e + V jz(r)ez, it is straightforward to show from

Eq. (6) that the functional form of particle density profile n.(r) can be

specified arbitrarily. Moreover, the deviation from equilibrium charge and

6



current neutrality produces a radial electric and azimuthal magnetic field

that influences the azimuthal motion of particle fluid. It follows from

Eq. (7) that equilibrium force balance in the radial direction can De

expressed as

-m r - [E(r) -j1zBO(r) + BO]. (10)
c r0 cr B0],

where mj for beam and plasma electrons are expressed as mb = Ybm and me =m,

respectively, and the equilibrium axial velocity profile of the beam electrons

is independent of r, i.e., Vbz(r) = BbC = const., which relates to Yb by

.b I - 3 b). We also assume that the axial velocity of ions and plasma

electrons is zero, although this restriction can be easily eliminated.

However, this restriction does not effect on the electromagnetic influence of

the two stream instability. In Eq. (10), we neglect the self axial magnetic

field, assuming that the azimuthal motion of particle fluid element is

nonrelativistic.

With Pext = 0, the equilibrium radial electric field is determined from

Eq. (9) and is given by

* '0 4i r
Er(r) r ej f dr'r'n(r'). (1

r r 0

Similarly, it can be shown that the equilibrium magnetic field is expressed as

B 0 (r) - 4wbe 1 f dr'r'n (r-). (12)
0

S.. "7



Substituting Eqs. (11) and (12) into Eq. (10), we can obtain the radial force

equation explicitly.

II.C Sharp-Boundary Equilibrium

Although the formalism outlined in Sec. II.B can be useful to investigate

equilibrium properties for a broad class of density profiles, for purposes of

analytic simplification in the stability analysis, we specialize to the case

of a sharp-boundary equilibrium in which the particle density profiles can be

expressed as

( j = const., 0 r 4 Rb,
Sn.(r) = (13)

c t 0, R b < r < Rc.

In Eq. (13), Rb denotes the radius of the beam and plasma column. As a

. general description, we also assume that the beam-plasma system is bounded by

an outer conductor with radius Rc. However, in a special occasion when

Rc ++*, the system becomes unbounded. For convenience in the subsequent

analysis, we introduce

f i n i' f e ne/nb, (14)

Z.p where fi and fe are positive constants.

?. The equilibrium radial electric field in Eq. (11) is expressed as
.- .*

r 0 r < R
EK Er (r ) =2irenbJfi "fe 1 ) R (15)

8
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Substituting Eq. (13) into Eq. (12) gives the azimuthal magnetic field

r, 0 4 r < Rb,

B (r) 27 en 2 (16)r b b R2/r, Rb < r < Rb b 6

Laminar rotational frequencies of the beam and plasma fluid elements are

determined from Eq. (10) by substituting Eqs. (15) and (16) into Eq. (10) and

carrying out a straightforward algebra. Defining the laminar rotational

frequency of the beam electron by wb = V0 e(r)/r' we obtain

b cb b 2

b :- + cb pb (1 + f (17)b Wb -- [r - 7 e (7
Yb

where Wcb = eBo/Ybmc is the beam electron cyclotron frequency, 2 = 4wen/Y m
-~ cb- pb nbYbm

is the beam plasma frequency-squared and y= ( - b) . In Eq. (17), the

upper sign (wb = +) corresponds to a "tast" rotational equilibrium, and the

lower sign (wb = wb) corresponds to a "slow" rotational equilibrium.

Similarly, we also obtain the rotational frequency of the plasma ions and

electrons

2
+ W ci ( + fi V2

We W7 [ -: Fe 2 + f- fi)] (19)

,. 

2

W + = e . [we2(1; 4 Ybwpb e 01(9

respectively. In Eqs. (18) and (19), wci and Wce are the cyclotron

frequencies of the plasma ions and electrons, respectively, and n = Ybn/mi.

From Eqs. (17) - (19), we require

'*WI

w,



2 cI + f - fi<2 2+ 1 2 (20)W pb ( e i wpbb cb

and

,%. ,.'

' 2 2 + f fi) < w '/2y, (21)"ci/< pb I+fe ce2Y

for radial confinement of the equilibrium. The inequalities in Eqs. (20) and

(21) assures that the repulsive space-charge force on the beam and plasma

fluid element is weaker than the magnetic focussing force.

%*. ";
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Iii. ELECTROMAGNETIC STABILITY ANALYSIS

In this section, we linearize Eqs. (1) - (5) assuming electromagnetic

perturbations about the axisymmetric equilibria described in Sec. II. As

indicated in the introduction, the present analysis is concentrated on the two

stream instability which has dominant electric field polarization along the

z-axis. In this regard, we assume that all perturbations have spatial

dependence only on the z coordinate, according to t

6w(x,t ) = 6(r)exp{i(kz - wt)}, (22)

where Si(x,t) represents a perturbed quantity, k is the axial wavenumber

and w is the complex eigenfrequency. The assumption of the axisymmetric

perturbation in Eq. (22) simplifies the subsequent stability analysis

considerably. In addition, the stability analysis in this article is

restricted to the transverse maynetic mode polarization consistent with the

electric field polarization of the two stream instability. Therefore, the

perturbed field equations linearized from Eqs. (3) and (4) are expressed as

-d r d- 2) 6- (r) =47rik [(r(23)r r dr 4 k z -7 k(3

ikdE (r) -d6i (r) = ~6B (r), (24)%%
r z c e(  '

and

-ik6B 3 (r) =- 6 J(r) " i.c SEr(r)' (25)

**. - *. N -,C -".W %,.' ."-..'-.. ,. r. c... .. . ..--



where 6E and 6B are the perturbed eiectric and magnetic fields, respectively,

and 6p(r) and (r) are perturbed charge and current densities, which are

explicitly defined by

6p(r) = le.6n., (26)
i J

6J(r) = je.(V t n. + nQ5V.), (27)
S J~J _j

A, respectively.

The linearized equation of motion and the linearized continuity equation

for the beam and plasma fluid element are expressed as

V0 x 6B 6V x B
a + v + 0 = + e (, (28)

-6P. V. * V6P. CP cat ~]j~ j ~ c c

and

a 0 n~v + o.V
6n + V (n6V +6n = 0, (29)

from Eqs. (1) and (2). Before proceeding further stability analysis, we

restrict the subsequent stability study to the following cases: (a) in the

presence of an applied axial magnetic field (B0 # 0), the beam density is

limited to satisfy

w2
T 2 < < I,(30)

Wcb

where v is Budker's parameter of the beam defined by v = e2 Nb/mc 2 , dnd Nb is

12
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the number of beam electrons per unit axial length, or (b) in case B0 = 0,

self-pinched electron beam propagating through a pure ion channel with fi < 1

where the plasma electrons are not allowed (f = 0) in order to satisfy the"'

equilibrium condition in Eq. (21). Within the context of this restriction, we

neglect the terms proportional to B(r) in Eq. (28), substantially simplifying

the subsequent stability analysis.

After a straightforward algebra with Eqs. (28) and (29), the linearized

fluid calculation gives

-.i(w- kV 'Z) 6V. -r .e + 2w) 6j m eI (5Er - iz 6Be/c), (31)jr J c j e mj~

I.A
0

-i~w - V z V. + (ej cj + 2w.) 6V jr 0, (32)

0 e. A

-i( w kV. ) dV. j E (33)

nji(w kV 6n. ar rnO6' r + ikn96 jz , (34)
iz j r r -rij

where the relativistic mass ratio yj for ions and plasma electrons is unity,

mb ybm and E = sgnej.

From Eqs. (24) and (25), it is straightforward to show that the

combination r" V z B8 /c in the right-hand side of Eq. (31) is expressed as

13 3
'
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iz -1 w 0 )k dVo

6E C - ec p6

k; Jp
-w kV0  je n04 (35)

j jr
NPC

where the parameter p is defined by

p2 = k2  _ - 2/c2" (36)

After a tedious algebraic manipulation which makes use of Eqs. (31), (32) and

(35), we obtain the coupled equations

. 2
2 2 2

I:." ( + 1) (w - kabc) -(wcb - 2wb) ] dVbr

2 2

f7 (w - kO bc) (fe'Ver - fi6Vir)
J..c e ( a c 1 _web) I d 6jz (37)

- e ( - b (1 k ) 7 '

b p

2

[ b + 1) w
2 ] 6Ve

p c er

CA)2

pb

S'b 2 6^ ewb 2 (d br. fidkir) d e 6Ez, (38)

2

2

- r + er - k0 dV r

Lni _ l~ 2  (ci + 2wi)]6i

p i

W2 D 2 - e } r e- kw d 9
- p w (6Vbr + 'nier = g -iEz

14



for the perturbed radial mean fluid velocities SV. (r) which has solutions ofjr
the form

2 ej(w- kVOz)k

v. (.,k) SV. 6 _E (r). (40)j r m p2 r "

The parameter v?(w,k) in Eq. (40) can be found by solving Eqs. (37) - (39)

simultaneously. Note from Eq. (40) that the perturbed mean radial fluid

velocity 6Vj is expressed only in terms of (d/dr)6E (r).jr z

For the present purposes of the article which evaluates the influence of

electromagnetic effects on the two stream stability behavior, we restrict

present stability calculation to the long wavelength perturbations

characterized by

kRb << 1. (41)

According to the traditional one dimensional two stream theory, the unstable

k-values in a typical present experiment of a relativistic electron beam

propagation can easily satisfy Eq. (41). In the context of Eq. (41), it is

not necessary to explicitly find the parameter v2(w,k) in Eq. (40). From

Eq. (33), the perturbed mean axial fluid velocity is also given by

e 1

6Vjz kVi )j i 6EZ (42)

V J iz

The perturbation in density in Eq. (34) can also be eliminated in favor of

6E z  Then, after a straightforward algebra, it is shown that the eigenvalue

equation in Eq. (23) can be expressed in the form

15
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W_ I V z 2 .k 2

rldr {r,- (I ) pj d
T 5-Fk V.P Ur "

2 2

-p W -E z 
= 0, (43)

J~- kV~z)

where w 2p = 4we 2nj/mj is the plasma frequency-squared for particles of
component j and p2 = k2 .2/c2 is defined in Eq. (36) Note 2 = nfi2 and

" p i pb
2 f W2pe = b e pb"

Inside the beam-plasma column (0 <" r 4 Rb), Eq. (43) can be expressed in

the form

T d (r d + T26Ez = 0, (44)

where 2 2

1 - pi P

P"2 (w kV z) (45)

Outside the beam-plasma column (Rb < r < Rc) , Eq. (43) reduces to Poisson

equation in free space, that is,

1 p2  U, Rb < r <Rc (46)T UF r ' E Z PEz b

Choosing a riyht solution which has a finite value at r = 0 and properly

matching the boundary conditions of the beam-plasma surface (r = Rb), we

eventually obtain the dispersion relation8 '9

V.



U 22 
- 1 0 -k_" =gTR b)

2 2 2 TRb Jo(TRb) g(p)

Ko(PRc) Io(pRb) - Ko(pRb) Io(PRc )
= pRb Ko(PRc) Io(pRb) - KO(PRb) lo(PRc (47)

where Jo(x) is the Bessel function of the first kind of order zero, and Io(x)

and Ko(x) are modified Bessel functions of the first and second kinds,

respectively, of order zero, and the geometrical function g(p) represents the

right-hand side of Eq. (47). The "prime" notation in Eq. (47) denotes

derivatives with respect to the complete argument of the Bessel function,

e.g., Io(x) = (d/dx) Io(x). The dispersion relation in Eq. (47) is one of the

main results of this article, which can be used to investigate the two stream

stability properties for a broad range of physical parameters. Particularly,

the influence of electromagnetic effects are incorporated into Eq. (47)

through the parameter p2 = k2 . 2/C2. Although the dispersion relation in

Eq. (47) is very similar to that of the electrostatic approximation,"' 9 the

apparently minor modification p instead of k makes a considerable difference

in determining the critical limiting beam current due to the two stream

instability, as will be seen in the next section.
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IV. TWO STREAM STABILITY PROPERTIES

In this section, making use of the dispersion relation in Eq. (47), we

investigate two stream stability properties for long wavelength perturbations

characterized by Eq. (41). The dispersion relation in Eq. (47) also

represents fluctuations of the transverse field components 6Er and di , which

may drive the transverse oscillation of the beam and plasma column. For

example, it is more involving but straightforward to obtain the dispersion

relation of non-axisymmetric electromagnetic perturbations. From this

dispersion relation, we can identify typical transverse oscillations Such as

the ion resonance instability l° resulted from the transverse oscillation of

the beam electrons and plasma ions, and the electron-electron two-rotating

stream instability11 raised from the relative rotational difference between

the beam electrons and plasma electrons which is unavoidably introduced by the

virtual laminar flow assumption in the cold fluid model. The instabilities

associated with the transverse oscillations are other important issues in the

electron beam propagation experiments and they must be separately investigated

with more attention. For the present purposes, we therefore concentrate on

the two stream instability, which is a characteristic feature of fluctuations

of the axial electric field. However, long wavelength stability analysis

somehow eliminates interference of the transverse oscillation, thereby leaving

behind dispersion relation of the two stream instability, which will be used

in this section for further study. For the long wavelength perturbations

satisfying Eq. (41), the left-hand side of Eq. (47) can be approximated by

2 2
P2R2. _ p 2 WP 2g(p) , (48)~ b Rb

J(w -

Id



where use nas Deen made of TI2Rb 2 1. Within the context of the assumption

p2R2b < < T12Rb2 4 1, we can neglect the first term in the left-hand side of

Eq. (48). However, for clarity in the subsequent stability discussion, we

keep this term without effecting final results in this article. Before

proceeding stability analysis of Eq. (47), we investigate general properties

of the two stream dispersion function.

IV.A Analysis of Two Stream Dispersion Function

Here, we briefly investigate properties of a typical dispersion function

of the two stream instability, which is expressed as

_ 2  b2

f(x) x. )2 + 7- 1, (49)

(x- ~ x

where a, b and are positive constants, and x represents complex

eigenfrequency. In the (f,x) parameter space, f(x) has its local minimum

at7 ,9

(b/a) 2/3
x = ; (50)

P (b/a)" + l'

The condition for instability is obtained from f(xp) > I and is yiven by

3/2

< b [I + (a/b) 2/3  . (51) 3

In the limiting case when b2 > > a2 the minimum point xp occurs at

x - ;. After a careful examination of the dispersion relation, we can alsop

show that the maximum growth rate occurs at the axial wavelength satisfying

C,

19
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- b, (52)

with its corresponding solution

x - b [l i a 2 , (53)

for b > > a2 . On the other hand, in the limiting case b < < a2 , the
2 /3

solution x - (1/2) (1 ± i v'" ) (ab /2) of Eq. (49) for the maximum growth

rate occurs at the wavenumber = a.

IV.B Two Stream Instability in a Magnetized Beam-Plasma System

Two stream stability properties of a relativistic electron beam

propagating through a magnetized plasma channel are investigated in this

subsection, assuming that the beam-plasma system is bounded by an outer

conductor with radius Rc. Since the plasma in the channel is strongly

magnetized (B0 * 0), not only ions but also high density plasma electrons are

allowed in the channel, still satisfying the equilibrium condition in

Eq. (21). Further assuming that the axial wavelength of the perturbation is

sufficiently long that

22
p Rc < < 1, (54)

it is straightforward to show that the riyht-hand side of Eq. (47) can be

approximated by

20



g 1 (55)

assuming that the conducting radius Rc is reasonably larger than the beam

radius Rb. Otherwise, the approximation in Eq. (55) is failing. Therefore,

the dispersion relation in Eq. (48) is approximately written by

2 . 2 -2
zn(Rc/RbJ C2) R

2 (nfi + Ybfe)b

=k2 . ) R p [2,,, .b/b + (56)
c - k~bCJ2  '

which can be numerically solved for the complex eigenfrequency w.

In order to analytically track stability properties of Eq. (56), we

define

k = 2/R2 zn(Rc/Rb. (57)
i. b c b)

Substituting Eq. (57) into Eq. (56) and rearranging the terms, we can express

Eq. (56) as

2 Wpb/Yb Ybf e b

k 2 w - kbc 2 2 b (58)

where k2 = k2 + p2 , the term proportional to nfi is simply dropped since

nfi < < Ybfe in a typical experiment. Identifying a2 = 22/Ybko ,2 2 2 , 2

b= Ybf e pbP /k O' kb c and x = w, Eq. (58) is identical in structure to

Eq. (49).

21



From Eq. (51), the axial wavenumber k of the instability borderline is

approximately given by

W23

(kabC) 2 = Yb of p2 [1 + 1 (59)b bferl/3] (9
e k0  Ytbfe

in which the function f(x) [defined in Eq. (49)] has a local minimum value of

unity at

b 1/3
-k b e •(60)

Ybfe/3 + I

In obtaining Eqs. (59) and (60), we have assumed that p2 is independent of the

eiyenfrequency w. However, it is a function of w in reality. Therefore,

these calculations are approximations. For better understanding, Eq. (56)

must be numerically solved. Substituting Eq. (60) into Eq. (36), it is

straiyhtforward to show

p2 = k2/Eth '  (61)

at the axial wavenumber k satisfying the stability boundary in Eq. (59). In

Eq. (61), the electromagnetic enhancement factor Et. is defined by

1/3 2 

4.

E(b fe + 1) (2
{th 1 /3 2/3 (62)

bee+e

Strictly speaking, the theoretically obtained enhancement factor in

Eq. (62) is an approximation. The meaning of "enhancement" will be apparent

in the following discussion. However, we emphasize that in the electrostatic

approximation, the factor th in Eq. (62) is unity for arbitrary value of

22
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Yb" Any value of the enhancement factor %h which is larger than unity is the

outcome of electromagnetic effects.

Replacing p2 in Eq. (59) by k2/th and rearranging terms, we have the

relation

2 _2 2 22 (-3)
b = Yb e pb [1 + 1/3] - k±th bc

Yb fe :
~b ~e

for the stability criterion. In obtaining Eq. (63), use has been made of

2. It is apparent from Eq. (63) that the electromagnetic influence

represented by &th increases the effective transverse wavenumber from k to

k th 2 . In other words, rewriting the second term in the right-hand side of

"i'th

Eq. (63) by

22 a2 2bc 2/tf (Rc/Rb
k1 2hb 2 R 2 c b

we observe that the effective beam radius reduces from Rb to Rb/ V1 2

thereby enhancing the stabilizing influence8 '9 of finite radial geometry

effects on stability behavior. It is also evident from Eq. (63) that for

instability, the beam plasma frequency wpb must satisfy

S th c n( R c/Rb)
b >/ (64)

Ybfe(l + 1/Ybfe1/3)

which is necessary condition for instability. For fixed values of and f

nbYb e'

the instability condition in Eq. (64) cannot be satisfied if Rb is

sufficiently small, that is, finite radial geometry effects have a Stdbilizin.

influence on the two stream instability. -
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In terms of the magnitude of the beam current Ib  neobC R2, it is straight-

forward to show that the instability condition in Eq. (64) can be expressed in

the equivalent form,

Ib > Icrit' (65)

where the critical current Icrit for instability is given by

I A  tnb3/f e

Icrit = 1An tc'I3 3e (66)
* ~-1/3' If + lfb f e

In Eq. (66) IA mc3/e - 17000 amperes is the Alfven critical current. The

electron beam with current below the critical current is stable whereas the

beam with current above the critical current is unstable. The critical

current in Eq. (66) is proportional to the current enhancement factor th

which is defined in Eq. (62). In the limiting case when yb = I, the

enhancement factor th in Eq. (62) recovers the electrostatic

approximation %tn z I for arbitrary value of fe" In order to dramatically

demonstrate dependence of E on the beam energy Yb' we simplify Eq. (62) by

tn b

b+ 1 (67)
'th =

for the equidensity case characterized by fe = 1. Obviously from Eqs. (66)

and (67), the critical beam current for instability increases drastically with

the beam energy yb
b3-

In order to complete the stability analysis in tnis subsection, we

numerically solve the dispersion relation in Eq. (56). For references in the
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subsequent stability analysis, we define normalized values of the critical

beam plasma frequency-squared

2 R bcR2 "
2 Zn /Rpb b 0 bdSe = _PT- ) :3 '(68).-..c crit Ybfrl + I/Ybfe1/3

for the electrostatic approximation,
2

2t h /2*n (Rc/R"'
Sm : b ' (69)

/, 13
Ybfe(l + l/Ybe 3 )

from Eq. (64) for the approximated electromagnetic calculation. Note that an

electron beam with plasma frequency below the critical plasma frequency is

stable whereas tne beam with frequency above the critical plasma frequency is

unstable. We also remind the reader that the critical frequency in Eq. (69) ,- S

is also an approximation. From a numerical calculation of Eq. (56), we have

obtained correct value of normalized critical plasma frequency - squared S

which represents the stability boundary in (u)2R 2c 2,Yb) Parameter space.pb b" y)prmtrsae--

Shown in Fig. 1 is plot of S versus Yb obtained from Eq. (56) for Rc/Rb 7.4.Z

and fe 1 1. As references, we also present Se and Sm in Fig. 1.
e e m

The current enhancement factor Eh in Eq. (62) has been derived from the

approximation in Eq. (60). Note Eh S m/Se from Eqs. (68) and (69).

Similarly, we numerically determine the electromagnetic current enhancement

factor from

/Se ( )-'70)

eg~
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where no approximation has been made. Figure 2 presents plot of versus Yb

obtained from Eq. (56) for parameters identical to Fig. 1. The theoretically

obtained th is also presented in Fig. 2 as a reference. Obviously from

Fig. 2, we note that the theoretical enhancement factor th in Eq. (62) is

underestimating the true electromagnetic current enhancement. In this regard,

the true critical current Icrit for instability is given by Eq. (66) where the

theoretical value of Eth is replaced by the numerical evaluation of . As a

comparison with Fig. 2, we also present plot of versus Yb in Fig. 3 for

fe = 10 and Rc/Rb = 7.4 where the plasma electron density is ten times higher

than that in Fig. 2. As expected from Eq. (62), the electromagnetic current

enhancement increases with the plasma density.

IV.C Two Stream Stability Properties in a
Self-Pinched Electron Beam

As a second example, we investigate two stream stability properties in a

self-pinched relativistic electron beam propagating through a pure ion

channel. Because of B0 = 0, there is no externally provided radial

confinement force for plasma electrons, thereby not allowing the plasma

electrons in the channel. Moreover, the ion density in the channel must

satisfy fi < I in order for a radially confined equilibrium for ions [see

Eqs. (18) and (19)]. We, therefore, concentrate on the two stream analysis

resulted from the relative drift motion between the beam electrons and channel

ions. In addition, we also assume that the beam channel system is unbounded

with Rc +Co. Taylor expanding the right-hand side of Eq. (47) for long

wavelength perturbations [Eqs. (41)] and making use of Eq. (48), the

dispersion relation can be expressed in the approximate form
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W2 / 2 nf W2

2 + p2 [1 - b - pb 0, (71)

R2Zn(i/pRb (C kbC)2  2

where p2 is defined in Eq. (36).

Numerical calculation of the dispersion relation in Eq. (71) is similar

to that of Eq. (56). Therefore, instead of carrying out a numerical exercise

of Eq. (71), we briefly investigate properties of Eq. (71) analytically,

although the analytical approximation underestimate the influence of

electromagnetic effects on stability behavior as shown in the previous

subsection. Making use of the approximation of p2 in Eq. (61), Eq. (71) is

simplified to

2 2 2
k2 _ Pb/Yb + -f - I (72)

k2 + k' (w-kc)

where k is defined by

2 2th
kt 1 (73)

R [ nC1/kRb) + ' th]  "

Obviously, accurate instability boundaries for the axial wavelength must be

numerically found from Eq. (72). However, for the present purposes, we make

the assumption that if the perturbations of the axial wave number

kRb = 10"9, (74)
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are stable, the beam ion two stream instability is stable in a practical

sense.9 Substituting Eq. (74) into Eq. (73) and paralleling the derivation of

Eq. (66), we obtain the critical beam current

0.425 3 3

Icrit = th b b (kA), (75)c r/ 3 231 /

[1 (LCth)i[ b)

'V for instability. Here, the critical current has been expressed in units of

kiloampere. In obtaining Eq. (75), use has been made of the approximation

4 9 in 10 - 20. Note from Eq. (71) that the critical current Icrit is

proportional to the enhancement factor %th* Once again we therefore conclude

that the electromagnetic effects strongly enhance the critical beam current

for the two stream instability resulted from the relative motion between the

beam electrons and ions.
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V. CONCLUSIONS

In this paper, we have investigated the influence of electromagnetic

effects on the two stream instability in a relativistic electron beam

propagating through a collisionless plasma channel. The equilibrium and

stability analysis (Secs. II-IV) was carried out within the framework of a

macroscopic cold fluid model in which the beam and plasma fluid element is in

a laminar flow. Moreover, axisymmetric electromagnetic stability properties

were calculated for the case in which the equilibrium beam and plasma density

profiles are rectangular. Consistent with the two stream instability, the

perturbations are polarized with the transverse maynetic modes. A general

dispersion relation of the transverse magnetic modes has been obtained in

Sec. III. This dispersion relation has been applied to two specific cases.

One of the striking features of the stability analysis is that the critical

beam current for instability is proportional to the electromagnetic current

enhancement factor F, which increases drastically with the beam energy (yb).

For example, the equidensity case, the current enhancement factor & is

approximately given by Y = yb + 1)/2 for the beam electron - plasma electron

two stream instability. Thus, for a relativistic electron beam with

Yb > > 1, the critical beam current obtained from the electromagnetic

calculation can be several times larger than that from the electrostatic

approximation. We, therefore, conclude that the influence of electromagnetic

effects on the two stream stability behavior plays a major role in cetermininy .A

various physical parameters for a long distance propagation of relativistic

electron beams.
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FIGURE CAPTIONS

Figure 1 Stability boundary in (W2 R2/c2 yb) parameter space forpb b"

R c/Rb = 7.4 and fe = 1. S is numerically obtained from

Eq. (56). Se and Sm are approximations obtained from

Eqs. (68) and (69), respectively.

A Figure 2 Plot of & versus Yb obtained from Eq. (56) for the

parameters identical to Fiyure 1. As a reference, &th

is also presented.

,-,

Figure 3 Plot of & versus Yb obtained from Eq. (56) for Rc/Rb =

7.4 and fe a 10.
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