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INFLUENCE OF ELECTROMAGNETIC EFFECTS ON THE TwWO STREAM f.
INSTABILITY IN A RELATIVISTIC ELECTRON BEAM iy
%

Han S. Uhm -

Naval Surface Weapons Center :
White Oak, Silver Spring, Maryland 20910 {t
This paper investigates the influence of electromagnetic effects on the é%
N
two stream instability in a relativistic electron beam propagating throuygh a ﬁ@

collisionless plasma channel. The analysis is carried out within the
framework of a macroscopic cold fluid model in which beam and plasma fluid
element is in a laminar flow. Axisymmetric electromagnetic stability 2
properties are calculated for the case in which the equilibrium beam and )
plasma density profiles are rectangular. Consistent with the two stream E
instability, the perturbed fields are assumed to be the transverse magnetic b

mode. The resylting eigenvalue equation for the perturbed axial electric

‘ , )
field 6EZ is solved to give a closed algebraic dispersion relation for the :}
N R “~
2
complex eigenfrequency . This dispersion relation is solved and it is shown ot
'f,.‘
that the electromagnetic effects have a strong stabilizing influence for a 4
Kl
relativistic electron beam with Yb > > 1, where Y, s the relativistic mass ¢5
GG g 54 - 7 Q‘
ratio of beam electrons., For examﬁfé, the critical beam current for instability :;
K
s
is proportional to the electromagnetic current enhancement factor £ = (yb +1)/2. \%
¥ 3
Thus, the critical current from the electromagnetic calculation increases more A
{
drastically with the beam energy than that from the electrostatic - c “”?5
approximation, ot -ﬂ// .
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I. _INTRODUCTION

In recent years, there have been intense research activities of the
equilibrium! *2 and stability3~® properties of relativistic electron beam
propagating through a background plasma channel or a gaseous medium. Perhaps
one of the most basic instabilities that characterizes a relativistic electron
beam propayating through a collisionless plasma is the two stream

=% which results from the relative drift motion between the beam

instability,®
electrons and the background plasma particles. Although the two stream
instability is very familiar in the plasma physics community, most of the
previous studies’”® on this instability have been limited to one dimensional
calculations, In recent literature,® Bogdankevich and Rukhadze investigated
the two stream instability of a relativistic electron beam, including the
finite radial geometry effects on stability behavior. Therefore, they were
able to determine the limiting beam current due to the two stream

instability. In addition, we recently developed a theory of the two stream
instability in a self-pinched relativistic electron beam,’ finding out the
critical beam current for instability. However, both previous calculations®:?
have been based on the electrostatic approximation, Although this is a
reasonable approximation for a mildly relativistic electron beam, we expect
significant modifications to the stability behavior when the beam energy is
ultrarelativistic. For a relativistic beam, the electromaynetic effects on
the beam dynamics are often very important. In this regard, in this paper, we
investigate the influence of electromagnetic effects on the two stream

instability in a relativistic electron beam propayating through a

collisionless plasma channel,




The analysis in this article is carried out within the framework of a %
macroscopic cold fluid model, assuming either that the beam-plasma fluids are
immersed in a uniform axial magnetic field or that the beam is self-pinched.
Theoretical model and the equilibrium properties of the beam-plasma
configuration will be briefly discussed in Sec. II for rectangular density
profiles of the beam and plasma particles. The stability analysis presented
in Sec. IIl assume axisymmetric electromagnetic perturbations (3/36 = V).
Moreover, since the unstable mechanism of the two stream instability is mostly
due to fluctuations of the axial electron field, the stability analysis in_
this article is restricted to perturbations of the transverse magnetic (TM)
mode polarization. The dispersion relation of the axisymmetric transverse
maynetic mode is derived in Sec. IIl for rectangular density profiles of the

beam and plasma particles.

Assuming long axial wavelength perturbations in Sec. IV, we apply this
dispersion relation to two specific cases: (a) highly magnetized bounded
plasma, and (b) a unmagnetized self-pinched electron beam. In case (a), the
dominant two stream instability results from the relative drift motion between
the beam electrons and plasma electrons., One of the most important features
of the analysis in Sec. [V is that the critical beam current for instability
is proportional to the electromagnetic current enhancement factor., After some
analytical algebraic manipulation, this current enhancement factor &¢h is

approximately given by [Eq. (67)]

Sth 3




for the equidensity case where the beam and plasma electrons have the same

2 is the characteristic beam electron energy, m is

number density. Here Ypme
the electron rest mass and c is the speed of light in vacuum. In the limiting
case when Ty = 1, this enhancement factor recovers the electrostatic
approximation €en = 1. Obviously, the critical beam current for instability
increases drastically with the beam energy (YD), clearly demonstrating that
the electromagnetic effects play a major role in the two stream stability
behavior for a relativistic beam with Yp > > 1. In Sec. IV, a numerical
investigation of the dispersion relation is also carried out and it is shown
that the analytical expression of the current enhancement factor in Eq. (67)
underestimates the true electromagnetic current enhancement, Finally, two

stream stability properties in a self-pinched electron beam are also briefly

discussed in Sec, IV.
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II. THEORETICAL MODEL AND EQUILIBRIUM PROPERTIES

IT.A Theoretical Model

In the present analysis, the beam and plasma particles are treated as a
cold fluid immersed in a uniform axial magnetic field Boéz' In the limiting
case when the applied axial magnetic field vanishes, the~bean electrons are in
a self-pinched equilibrium where the self magnetic force counterbalances the
centrifugal force resulted from the beam rotation. Within the context of the
macroscopic cold fluid description, the equation of motion and the continuity

equation for the beam and plasma fluid element can be expressed as

V. x 8
P +v-vp=e(E+“J =) (1)
ot 3 J " J "o c ’
9 =
TN (nJVJ) = 0, (2)

where the subscript j = b, i, e denotes beams, ions, plasma electrons,

respectively, PJ is the mean mechanical momentum, VJ

is the charge, and nj is the density. In Eq. (1), E(x,t) and B(x,t) are the

~ o~ ~ o~

is the mean velocity, e;

electric and magnetic fields which are self-consistently determined from the

Maxwell equations, that is,

13
TrEs-z3E s 3
4n - 4n 123
vxBEd ejnJVJ ¥ E—'iext YT E’ (4)




2

|‘::

Ly

Wi

%f' where ®axt and ﬂext are externally provided charye and current densities.

8

'-".‘;

“5; I1.8 General Equilibrium Properties

. ¢
1.

p . An equilibrium analysis of Eqs. (1) - (5) is carried out by setting 3/3t = 0.
2

:;{ Thus, the equilibrium properties are readily obtained from
Al

o 0,0

: vV e in: =

) (n3v)) =0, (6)

-

k. v? x 80

- . o VP = e. f —_—],

o Vit Tt (E =) (7)

.-

-‘_’:

kE: v x g0 =47 §oe.ndv0 + 4 5 (x) (8)

AN -~ . c j JJ J c _ext' '’

& 0 0

! I

S v E é 4""jej + 4"°ext(:)’ (9)

g

13. where nQ(x), V?(x), Po(x), Eo(x) and Bo(x) are the macroscopic equilibrium

B~ o s o -

:_',’. quantities.

"".

,;k We introduce cylindrical polar coordinates (r, 8, z) with z-axis

s: corresponding to the axis of symmetry; r is the radial distance from the ¢
b z-axis, and 9 is the polar angle in a plane perpendicular to the z-axis. For

- [
ég azimuthally symmetric particle equilibrium (3/36 = 0 and 3/3z = Q) characterized
k) 0 o_,0 - 0 O .

f: by nj(r) and !J = Vje(r)fe + VJZ(r)Sz, it is straightforward to show from

a Eq. (6) that the functional form of particle density profile ng(r) can be

ﬁ; ~ specified arbitrarily. Moreover, the deviation from equilibrium charge and
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R
S@f current neutrality produces a radial electric and azimuthal magnetic field
DA
that influences the azimuthal motion of particle fluid. It follows from
RN
?cﬁ Eq. (7) that equilibrium force balance in the radial direction can pe
)
iy expressed as
7§\‘*i
g“. v?g(r) 0 ng 0 Vge
' M, S = - Nl 2
g$§ mj r ej[Er(r) C Be(r) * = OJ’ (10)

RS
-
-

where m; for beam and plasma electrons are expressed as my = y,m and m, = m,

L
]
-

respectively, and the equilibriumn axial velocity profile of the beam electrons

e

é%; is independent]of r, i.e., ng(r) = Bbc = const., which relates to Yy, by

{;? YS = (1 - SEJ- . We also assume that the axial velocity of ions and plasma

7%% electrons is zero, although this restriction can be easily eliminated.

riEA However, this restriction does not effect on the electromagnetic influence of
" the two stream instability. In Eq. (10), we neglect the self axial magnetic

E;; field, assuming that the azimuthal motion of particle fluid element is

12: nonrelativistic.

2

;g& With Paxt = 0» the equilibrium radial electric field is determined from

:?r Eq. (9) and is given by

-

:EE EO(r) .. ) e, frdr‘r‘nQ(r'). (11)
) r r j J 79 J

X

Similarly, it can be shown that the equilibrium magnetic field is expressed as

%

r
N 0 ] 4'0 -
) Be(r) = - 4mg e - fO dr’r nb(r ). (12)
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!§ Substituting Eqs. (11) and (12) into Eq. (10), we can obtain the radial force

equation explicitly.

g
i
h:ﬁ II.C Sharp-Boundary Equilibrium
Ss
¥
?&; Although the formalism outlined in Sec. II.B can be useful to investigate
iy e . . .
;gﬁ equilibrium properties for a broad class of density profiles, for purposes of
e analytic simplification in the stability analysis, we specialize to the case
2:4 of a sharp-boundary equilibrium in which the particle density profiles can be
{.:-.
s expressed as
e
it ~
{» . nj = const., 0 <r <R,
23 ny(r) = (13)
\:' e 0’ Rb < r < R .
e ¢
B
L

P

In Eq. (13), Ry denotes the radius of the beam and plasma column., As a
R general description, we also assume that the beam-plasma system is bounded by
an outer conductor with radius R.. However, in a special occasion when

5 ‘ Re > =, the system becomes unbounded. For convenience in the subsequent

.......

RS analysis, we introduce
AN
NS
fLe”,
‘-." _ - A _ PN -~
" f, = "i/nb’ fe = ne/nb, (14)
S
-2

) where f; and f, are positive constants.
el ,
:ﬁf The equilibrium radial electric field in Eq. (11) is expressed as

Wod r, 0<r« Ry »

i EQ(r) = amen (f, - f = 1) ol (15)
,' Rb/r, Rb <r < Rc.
ﬁ;:
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:2; Substituting Eq. (13) into Eq. (12) gives the azimuthal maynetic field

oy

o r, 0<r« Rb’

NS O(r) = - 2n8 en (16)
P Bglr) = - 2nByen, {5

I. L]

Y Laminar rotational frequencies of the beam and plasma fluid elements are

N

":j . determined from Eq. (10) by substituting Egs. (15) and (16) into Eq. (10) and
by

::::, carrying out a straightforward algebra. Defining the laminar rotational

L

- frequency of the beam electron by w, = Vge(r)/r, we obtain |
P |
Y 2 2

K w w w 17’2

! _ * cb cb _ “pb 1

Chi wp Tup Tt g - S fe - FL (17)

" Yb

:‘E 2 -~

.:‘;'_'. where w . = eBO/ybmc is the beam electron cyclotron frfquenCy, “’pb = 4re nb/ybm
C is the beam plasma frequency-squared and yg = (1 - Bg] . In Eq. (17), the
upper sign (mb = w;) corresponds to a “fast" rotational equilibrium, and the
R

et lower sign (wb = w;) corresponds to a “slow" rotational eguilibrium.

f ::

_ Similarly, we also obtain the rotational frequency of the plasma ions and
h >

0~ electrons

.'-‘::

P 2 y

: w w

y ot i %12 2

.’:: w1-w1--T+[T+?—nmpb(]+f f)J, (]8)
s

ﬁ + _ Yce “ce 1 2 ]/2

ﬁ . we=mé=2t[4-2bwpb(]+f f)], (]9)
[~

b respectively. In Eqs. (18) and (19), w_; and w_, are the cyclotron
:' frequencies of the plasma ions and electrons, respectively, and n = Yb‘"/mi'
"'" From Egs. (17) - (19), we require
w

o

.."

N

5 )
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2 2 2.1 2
wpb (1 + fe - fi) < wpbﬁb + 3 Weps (20) i

S and
' 2 2 2
: -wci/Z < wpb (1 + fe - fi) < mce/ZYD, (21)

by
tods for radial confinement of the equilibrium. The inequalities in Eqs. (20) and
(21) assures that the repulsive space-charye force on the beam and plasma

S fluid element is weaker than the magnetic focussing force,
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1.

ELECTROMAGNETIC STABILITY ANALYSIS

In this section, we linearize Egs. (1) - (5) assuming electromagnetic

perturbations about the axisymmetric equilibria described in Sec. Il. As

indicated in the introduction, the present analysis is concentrated on the two

stream instability which has dominant electric field polarization along the

z-axis. In this regard, we assume that all perturbations have spatial

dependence only on the z coordinate, according to

-~

~

~

d

and

sy(x,t) = sy(r)exp{i{kz - wt)},

and w is the complex eigenfrequency.

electric field polarization of the two stream instability.

1d w
(? Fra "t :? -k

iKGE (r) = = SE (1)

-
"
o

T S e A
VS N ST BTN
mefm;.{;m‘}-ﬂfiﬁﬁ.&ﬁ

(22)

where 6y(x,t) represents a perturbed quantity, k is the axial wavenumber
The assumption of the axisymmetric
perturbation in Eq. (22) simplifies the subsequent stability analysis
considerably. In addition, the stability analysis in this article is

restricted to the transverse maynetic mode polarization consistent with the

Therefore, the

perturbed field equations linearized from Eqs. (3) and (4) are expressed as

8,(r) 1, (23)

(24)

(25)

~

K -
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where GE and 8B are the perturbed electric and magnetic fields, respectively,

~ ~

and dp(r) and 8J(r) are perturbed charye and current densities, which are

~

explicitly defined by

sa(r) = Lejony. (26)
s3(r) = Je.(Vsn. + dev.) (27)
~ j J*J J J ’

respectively.

The linearized equation of motion and the linearized continuity equation

for the beam and plasma fluid element are expressed as

v? 8B 6V, g0

3 0 0 ~ ~ ~

- 8P, + V. ¢ VP, + 8V, » VP, = e. +

3T 0Py * Vv APy b 8Vy - TPy = eg(eE Tt —< ) (@)
and

3 0 0y _

TN+ (nJ'G!J' + G"J‘Yj) =0, (29)
from Eqs. (1) and (2). Before proceeding further stability analysis, we
restrict the subsequent stability study to the following cases: (a) in the
presence of an applied axial magnetic field (BO # 0), the beam density is
Timited to satisfy

A
v “pb .2
377 8% << (30)
cb
ks
Ea where v is Budker's parameter of the beam defined by v = esz/mcz, and Nb is
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the number of beam electrons per unit axial length, or (b) in case Bo = 0,
| self-pinched electron beam propagating through a pure ion channel with fi <1
where the plasma electrons are not allowed (fe = 0) in order to satisfy the
equilibrium condition in Eq. (21). Within the context of this restriction, we
neglect the terms proportional to Bg(r) in Eq. (28), substantially simplifyiny

the subsequent stability analysis.

After a straightforward algebra with Eqs. (28) and (29), the linearized

fluid calculation gives

e. - -
“ifw - k) eV, - (o s+ 20,) Vg = =L (E, - VO sBsc),  (31)
J

J Jr J <J Je r JZz
, 0y -
-i{w - kvjz) 8V5g (erCJ. + ZwJ) &5 = 0, (32)
. 0y < ®i .o
-Tlw - kVJZ) GVJZ = > 5EZ, (33)
yom,
JJ
. 0 - 139 0 )y cvnley o
“i(w - kvjz) 6N + T 37 (rnjsvjr) + knjev,, = 0, (34)

where the relativistic mass ratio Y; for ions and plasma electrons is unity,

mb = Ym and ej = sgneJ.

From Eqs. (24) and (25), it is straightforward to show that the

combination 6Er - VO

szﬁe/c in the right-hand side of Eq. (31) is expressed as

R e L S R "o a Cuff o W o L T o (P (™
B R T e e R R M T e S
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where the parameter p is defined by
p? = k2 - Ww2c2, (36)

After a tedious algebraic manipulation which makes use of Eqs. (31), (32) and

(35), we obtain the coupled equations

N

€

2 2 .
+1) (w - k8yc) - (“’cb - 2,) ] 8V

(52

pcc
2
© b 2 - -
¥ -5-2 (o - keyc) (fesver - fiV;,)
pcc

_ k d .2
= - ?;"T (u) - kaC) (] - T(C—) ? ar GEZ’ (37)
. mzb 2 2 .
[(vy e ;%f* 1) 0 = (o = 20,) ] 6V,
wZ
b 2 (.5 ’ . eked 2
+ ‘{b ;g-(—:? w (GVbr - f16V1r) = - ﬁ -p7 a'F GEZ, (38)
wzb 2 2 .
.(nfi +1) 0 - (wc1 + Zmi) ] Vs
pce
. 2 k
b y " e kmd 2
-n o2 w (Gvbr feaver) E?d—r- OEZ, (39)

Py v N w

T . ™ Y LR -
s h Dy ~ 4 Jo!
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for the perturbed radial mean fluid velocities ijr(r) which has solutions of

the form
0
. e. (w = kVy_ )k .
d
“§ (k) 8V, = S dE Lo (). (40)

J P

The parameter V§(w,k) in Eq. (40) can be found by solving Eqs. (37) - (39)
simultaneously. Note from Eq. (40) that the perturbed mean radial fluid

velocity Ger is expressed only in terms of (d/dr)GEz(r).

For the present purposes of the article which evaluates the influence of
electromagnetic effects on the two stream stability behavior, we restrict
present stability calculation to the long wavelength perturbations
characterized by

kR, < < 1. (41)
According to the traditional one dimensional two stream theory, the unstable
k-values in a typical present experiment of a relativistic electron beam
propagation can easily satisfy Eq. (41). In the context of Eq. (41), it is
not necessary to explicitly find the parameter vg(w,k) in Eq. (40). From

J
Eq. (33), the perturbed mean axial fluid velocity is also ygiven by

~ e H ‘l A
i 6E . (42)

V] F4

Yim, (w - kaZ)

The perturbation in density in Eq. (34) can also be eliminated in favor of

A

GEZ. Then, after a straightforward algebra, it is shown that the eigenvalue

equation in Eq. (23) can be expressed in the form




e
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™
0
:: qu wz k2

R LE -1 0 - BL L6k )

=0 rdr dr "z

J ¢k \aJp
ney
1l
& 2 ,.2
o, LW/ -
43 St - B ) et =0, (43)
2 j 0 z
(w - kVJZ) \

‘. 2 - '
P where i = 4ne nJ./mJ- is the plasma frequency-squared for particles of
[ A

LY
‘ component j and p2 = k2 - mz/c2 is defined in Eq. (36). Note “’gi = nfiwgb and
LX)

* 2 2
v “pe = Ybfe“pbe
g
o
f.':} Inside the beam-plasma column (0 < r < Rb), Eq. (43) can be expressed in
S
’Z the form
22
::: :
g 1d d_<f s
:. +ar (r gr 8E,) + TE, = 0, (44)
o o
phe where
,z;ﬁ' w? /v

o 1-7 2 J
hro, . 2
¥ 2 ;  Jle-wd) (45)
Y T"=a=p J .
¢ 0 2 2
S . wV.Z w_.k

¥ 110 -8 B

J ck vip

1.¢ J
," Qutside the beam-plasma column (Rb <rc« RC), Eq. (43) reduces to Poisson

>
+O) equation in free space, that is,
R
i 1 (r§6E) - o%E, = 0, Ry < ™ <R.. (46)
L

f.'

F,p_"‘
.’; Choosing a riyht solution which has a finite value at r = 0 and properly
[0 matching the boundary conditions of the beam-plasma surface (r = Rb)' we
Eé eventually obtain the dispersion relation®*?
‘(ﬁ
:\. 16
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0 2 2 ‘
wVr . wo.k J.(TR.)
[] - 2. (] - ZJZ) ng J TRb JO(TRD) = g(p)
J ¢k va b

Ko(PR.) To(PRy) = K (pRy) Io(pR.)

* PRy RGTARLT ToTR,) = K (R,) T(iR,)

(47)

where Jg(x) is the Bessel function of the first kind of order zero, and Ig(x)
and Ky(x) are modified Bessel functions of the first and second kinds,
respectively, of order zero, and the geometrical function g(p) represents the
right-hand side of Eq. (47). The “prime" notation in Eq. (47) denotes
derivatives with respect to the complete argument of the Besse! function,
e.g., Ié(x) = (d/dx) Io(x). The dispersion relation in Eq. (47) is one of the
main results of this article, which can be used to investigate the two stream EE‘
stability properties for a broad range of physical parameters. Particularly,
the influence of electromagnetic effects are incorporated into Eq. (47)

through the parameter p2 = k2

- mz/cz. Although the dispersion relation in

Eq. (47) is very similar to that of the electrostatic approximation,®’?® the

apparently minor modification p instead of k makes a considerable difference
in determining the critical limiting beam current due to the two stream

instability, as will be seen in the next secticn.




[V. TWO STREAM STABILITY PROPERTIES

In this section, making use of the dispersion relation in Ey. (47), we
investiyate two stream stability properties for lony wavelength perturbations
characterized by Eq. (41). The dispersion relation in Eq. (47) also
represents fluctuations of the transverse field components Gér and 6§e, which
may drive the transverse oscillation of the peam and plasma column. For
example, it is more involving but straightforward to obtain the dispersion
relation of non-axisymmetric electromaygnetic perturbations. From this
dispersion relation, we can identify typical transverse oscillations such as
the ion resonance instabilityl? resulted from the transverse oscillation of
the beam electrons and plasma ions, and the electron-electron two-rotating
stream instability!! raised from the relative rotational difference between
the beam electrons and plasma electrons which is unavoidably introduced by the
virtual laminar flow assumption in the cold fluid model. The instabilities
associated with the transverse oscillations are other important issues in the
electron beam propagation experiments and they must be separately investiyated
with wnore attention. For the present purposes, we therefore concentrate on
the two stream instability, which is a characteristic feature of fluctuations
of the axial electric field. However, lony wavelength stability analysis
somehow eliminates interference of the transverse oscillation, thereby leaviny
behind dispersion relation of the two stream instability, which will be used
in this section for further study. For the long wavelength perturbations

satisfying Eq. (41), the left-hand side of Eq. (47) can be approximated by

2.2 2.2 “pi’] . |
bRy = PRy L Bt = 29(0), (48)

ot~
—
€
'
x N
<
-
~
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where use has been made of |T|2R§ < 1. Within the context of the assumption
szg < < |T|2Rb2 < 1, we can neglect the first term in the left-hand side of
Eq. (48). However, for clarity in the subsequent stability discussion, we
keep this term without effecting final results in this article. Before
proceeding stability analysis of Eq. (47), we investiyate general properties

of the two stream dispersion function,

IV.A Analysis of Two Stream Dispersion Function

Here, we briefly investigate properties of a typical dispersion function

of the two stream instability, which is expressed as

62 b2
f(x) = + =1, (49)
(-0 <2
where a, b and ¢ are positive constants, and x represents complex
eigenfrequency. In the (f,x) parameter space, f(x) nas its local minimum
at7’9
2/3
N L) (50)
P (b/a)<’> + 1
The condition for instability is obtained from f(xp) > 1 and is yiven by
3/2
g<b 1+ (ar0)?37, (51)
In the limiting case when b2 > > az, the minimum point X, oceurs at

xp- ;. After a careful examination of the dispersion relation, we can also

show that the maximum growth rate occurs at the axial wavelength satisfying

RS Ate e Ae Bla Als A

-

'xl.-

T r
5

o

R L L

d
O

f. -:‘5' j-“"?' ..




; = b,

with its corresponding solution

x*b[1¢i (53)

NP
A

2 2

. On the other hand, in the limiting case b2 < <a
1/3
solution x = (1/2) (1 ¢+ i /3 ) (ab2/2) of Eq. (49) for the maximum growth

for b2 >>a » the

rate occurs at the wavenumber ¢ = a,

IV.B Two Stream Instability in a Magnetized Beam-Plasma System

Two stream stability properties of a relativistic electron beam
propagating through a magnetized plasma channel are investigated in this
subsection, assuming that the beam-plasma system is bounded by an outer
conductor with radius R.. Since the plasma in the channel is strongly
magnetized (BO # 0), not only ions but also high density plasma electrons are
allowed in the channel, still satisfying the equilibrium condition in
€Eq. (21). Further assuming that the axial wavelenyth of the perturbation is

sufficiently long that

it is straightforward to show that the rignt-hand side of Eq. (47) can bpe

approximated by



= T e T e T M i AR ad aa s ol AR oEAt L ad iAo fge ol Ba. Bt Ao v LA ot i allh A Lid Al Sas asd &' ) vwv'\.
= - TR (55)
c¢’b
S
assuming that the conducting radius R. is reasonably larger than the beam :_)Z.'x
radius R,. Otherwise, the approximation in Eq. (58) is failing. Therefore, \:
- ‘
the dispersion relation in Eq. (48) is approximately written by =~
agli
2 +[k2-£2-)R2 :\"j
LN Rc7Rb C2 b !'
2 ,.2 2 j
2 f. + vy f Y
el w0 b/ Y \ (nf, + v, e)wmj (56) 2
. 27 b 2 2 > b
c (w - k8yc) w %,r,\
*
£
.Z
which can be numerically solved for the complex eigenfrequency w. ”'
‘.»N ]
In order to analytically track stability properties of Eq. (56), we I:’_:'
.
define “
k2 = 2/RZ an(R_/R,). (57) Y
e
>
=
Substituting Eq. (57) into Eq. (56) and rearranging the terms, we can express o
S
Eq. (56) as N
1,0
3 3
2 ,.2 d
2 w /Y Y f L .,
k2 (w - k8 C)z m2 ’ 5t
0 b &
&
2, 2
where kg = k‘L + p°, the term proportional to nfi is simply dropped since
. . . o2 2 2,22 S8
nfy < < Ybfe in a typical experiment. Identifying a"~ = “’pbp /YDkO, 2
2 _ 2 2,2 = - . . . R -:_:.
" = Ybfempbp /kO, ¢ = kByc and x = w, Eq. (58) is identical in structure to N
Eq. (49). n
,,\
~\'-
¥
.\:
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N

N

o

ﬂ From Eq. (51), the axial wavenumber k of the instability borderline is

-

) approximately given by ”
¢

A

e 2 .

. 3

: 2 “pb 2 1 5
;:‘ (kaC) = Ybfe _g_ P [] + ——[7'3'J ’ (59) i
r k Y f R 'y

0 b'e -
at )
"

‘ in which the function f(x) [defined in Eq. (49)] has a local minimum value of o
5 unity at '
) Ybfe1/3 é
“ w = k8, C . (60)

- by f 3
v b'e N
R\ N
r
t‘ In obtaining Egs. (59) and (60), we have assumed that p2 is independent of the
'} eiyenfrequency w. However, it is a function of w in reality. Therefore, :
- r
" these calculations are approximations. For better understanding, Eq. (56) “
% must be numerically solved. Substituting Eq. (60) into Eq. (36), it is
_3 straiyhtforward to show
Od
q‘

2 _ 2 |
- :
j at the axial wavenumber k satisfying the stability boundary in Eq. (99). 1In N
:g Eq. (61), the electromagnetic enhancement factor Een is defined by ;
~ {
- 2 L
: ol (62) :
= . 62 ¥
th /3 2/3 -
= 2Ybf(-:‘ * fe +1 £
Strictly speaking, the theoretically obtained enhancement factor Sth in
t '
Eq. (62) is an approximation, The meaning of "enhancement" will be apparent '
W: in the following discussion. However, we emphasize that in the electrostatic
: approximation, the factor Sth in Eq. (62) is unity for arbitrary value of
\ ..
b

\ 22
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Yhe Any value of the enhancement factor Eth which is laryer than unity is the

outcome of electromagnetic effects.

Ay
%

b
.l"

Replacing p2 in Eq. (59) by kZ/Eth and rearranging terms, we have the

1y
)

&
:. ~.
-

relation

3
2 _ 2 1 2 2.2
(k8pc)™ = vpTaupy [T+ —q73] - KEenfc” (63)
b'e

for the stability criterion. In obtaining Eq. (63), use has been made of
kg = p2 + kf. It is apparent from Eq. (63) that the electromagnetic influence

represented by Eeh increases the effective transverse wavenumber from kl to

klsté@ . In other words, rewriting the second term in the right-hand side of
Eq. (63) by

2.2
2, 2.2 . 28pc/an (R./R)
L>th"b

k

2
Rp/E¢n

we observe that the effective beam radius reduces from Rb to Rb/Et;VZ.

thereby enhancing the stabilizing influence®’? of finite radial geometry

effects on stability behavior. It is also evident from Eq. (63) that for
instability, the beam plasma frequency Whh must satisfy
2.2,52
2 ZEtthc /Rbln(Rc/Rb)

“pb 7 733 (64)
Ybfe(] + l/ybfe )

which is necessary condition for instability. For fixed values of s Yy and fe,
the instability condition in Eq. (64) cannot be satisfied if Ry is
sufficiently small, that is, finite radial geometry effects have a stabiliziny

influence on the two stream instability.
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In terms of the magnitude of the beam current Ib = nbeBanRg, it is straight-
forward to show that the instability condition in Eq. (64) can be expressed in

the equivalent form,

Ip > Tepiee (65)
where the critical current I..;, for instapility is ygiven by
L. A fenfy/ Te (66)
crit aaiR /Ry 1/3 3
(\ + \/Ybfe )

In Eq. (66) XA = mc3/e = 17000 amperes is the Alfven critical current. The
electron beam with current below the critical current is stable whereas the
beam with current above the critical current is unstable. The critical
current in Eq. (66) is proportional to the current enhancement factor Eth
which is defined in Eq. (62). In the limiting case when Yy = 1, the
enhancement factor Sth
approximation Een = | for arbitrary value of f,. In order to dramatically

in Eq. (62) recovers the electrostatic

demonstrate dependence of Etn on the beam eneryy Yy We simplify Eq. (62) by

A +
o T (67)

for the equidensity case characterized by f, = 1. Obviously from Eqs. (66)

and (67), the critical beam current for instability increases drastically with

the beam energy v, .

¢

Rx

.-*‘

In order to complete the stability analysis in this subsection, we Q
numerically solve the dispersion relation in Eq. (56). For references in the o
L%

, 3
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subsequent stability analysis, we define normalized values of the critical 'ﬁ,i
beam plasma frequency-squared : :
gty

2 .2 2,0 (s T

2% i 28,/2n(R /R ) | i

S = ( ) = Y (66) N .)‘

e 2 . 3 -

bet D e T

for the electrostatic approximation, L
e

2¢. 82/en(R /R ) o

_ th"b ¢/ "o’ Iy

S = ’ (69) )

m 3

SRR RAL

b'e b e f:*:

1b .:;-'..{"

badct
from £g. (64) for the approximated electromagnetic calculation, Note that an Sf%_
g\ 8

electron beam with plasma frequency below the critical plasma frequency is #

R

stable whereas tne beam with frequency above the critical plasma frequency is :ﬁ:
iy

unstable. We also remind the reader that the critical frequency in Eq. (69) ML“:
ooy

is also an approximation. From a numerical calculation of Eq. (56), we have .
e

obtained correct value of normalized critical plasma frequency - squared S :j:;
*.":\'

which represents the stability boundary in (“gbRg/cz’Yb) parameter space, :}}l
Pty

Shown in Fig, 1 is plot of S versus y, obtained from Eq. (50) for R./Ry = 7.4 L
and fo = 1. As references, we also present S, and Sy in Fig. 1. fﬁ}i
je;f
oW

The current enhancement factor £.. in Eq. (62) has been derived from the P L
approximation in Eq. (60). Note Een = Sm/Se from Egs. (68) and (69). ;:ﬁ;
Similarly, we numerically determine the electromagnetic current enhancement iﬁ;
factor £ from i !
§ = 5/Sgs (70)

N

o

o

:::_:.n
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where no approximation has been made. Figure 2 presents plot of & versus Y

obtained from E£q. (56) for parameters identical to Fig. 1. The theoretically

obtained gth is also presented in fig. 2 as a reference. Obviously from

Figy. 2, we note that the theoretical enhancement factor gth in Eq. (62) is
underestimating the true electromaynetic current enhancement., In this reyard, N

the true critical current I..;. for instability is given by Eq. (66) where the

theoretical value of E¢h is replaced by the numerical evaluation of £, As a
comparison with Fig. 2, we also present plot of £ versus Yp in Fig. 3 for

fe = 10 and R./Ry = 7.4 where the plasma electron density is ten times higher
than that in Fig. 2. As expected from Eq. (62), the electromagnetic current

enhancement increases with the plasma density.

IV.C Two Stream Stability Properties in a
Self-Pinched Electron Beam

As a second example, we investigate two stream stability properties in a
self-pinched relativistic electron beam propagating through a pure ion
channel. Because of By = 0, there is no externally provided radial
confinement force for plasma electrons, thereby not allowing the plasma
electrons in the channel, Moreover, the ion density in the channel must
satisfy f; < 1 in order for a radially confined equilibrium for ions [see
Egs. (18) and (19)]. We, therefore, concentrate on the two stream analysis
resulted from the relative drift motion between the beam electrons and channel
ions., In addition, we also assume that the beam channel system is unbounded
with R. » =. Taylor expanding the right-hand side of Eq. (47) for lony

wavelength perturbations [Eqs. (41)] and making use of Eq. (48), the

dispersion relation can be expressed in the approximate form




N

“ N

1! .l

. *

k] Y

"

2,2 2 R

h _ wo /Y nf.w )

. e roreer AU A CEUIL Y (1)

8 Rbln(]/pr) (w - kaC) w

o

% where p2 is defined in Eq. (36).

Ki

"‘

o Numerical calculation of the dispersion relation in Eq. (71) is similar

3

; to that of Eq. (56). Therefore, instead of carryiny out a numerical exercise

*

of £q. (71), we briefly investigate properties of Eq. (71) analytically,
s,
)

| although the analytical approximation underestimate the influence of

. electromagnetic effects on stability behavior as snown in the previous

. t
a subsection. Making use of the approximation of p2 in Eq. (61), Eq. (71) is
s -3
:’ simplified to {
- 2,2 2 :
[ - >
a k2 wpb/Yb nfiwpn l
7 | 7t —7 = L, (72) L,
3 2 !
. where kT is defined by ¢
. 2¢ o
: 2 = th . (73) »
K Ry [2n{1/kR,) + » 4N, | -
3 &
. Obviously, accurate instability boundaries for the axial wavelength must be .
e ‘
s numerically found from Eq. (72). However, for the present purposes, we make :
4 )
& the assumption that if the perturbations of the axial wave number 5
’
i N
; kR, = 1077, (74)
|' .
X '
R (]
s 3
. 0
o .:
(]
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are stable, the beam ion two stream instability is stable in a practical
sense.? Substituting Eq. (74) into Eq. (73) and paralleling the derivation of

Eq. (66), we obtain the critical beam current

3.3

I

5 (kA), (75) ‘
2 V73
[V + (enegp)/a0](1 + (nfivy) ]

for instability. Here, the critical current has been expressed in units of

crit

kiloampere. In obtaining Eq. (75), use has been made of the approximation

9 ¢n 10 »~ 20. Note from Eq. (71) that the critical current I ..y is
proportional to the enhancement factor Etne Once again we therefore conclude
that the electromagnetic effects strongly enhance the critical beam current
for the two stream instability resulted from the relative motion between the

beam electrons and ions.
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V. CONCLUSIONS

In this paper, we have investigated the influence of electromagnetic uﬁ{
oty
effects on the two stream instability in a relativistic electron beam :;5

propagating through a collisionless plasma channel. The equilibrium and
stability analysis (Secs. II-IV) was carried out within the framework of a
macroscopic cold fluid model in which the beam and plasma fluid element is in
a laminar flow. Moreover, axisymmetric electromagnetic stability properties
were calculated for the case in which the equilibrium beam and plasma density
profiles are rectangular. Consistent with the two stream instability, the
perturbations are polarized with the transverse maynetic modes. A yeneral
dispersion relation of the transverse maynetic modes has been obtained in
Sec. III. This dispersion relation has been applied to two specific cases.
One of the striking features of the stability analysis is that the critical
beam current for instability is proportional to the electromagnetic current
enhancement factor &, which increases drastically with the beam energy (Yb).
For example, the equidensity case, the current enhancement factor & is
approximately given by § = (yb + 1)/2 for the beam electron - plasma electron

two stream instability. Thus, for a relativistic electron beam with

Yy > > 1, the critical beam current obtained from the electromagnetic
calculation can be several times larger than that from the electrostatic
approximation. We, therefore, conclude that the influence of electromaynetic
effects on the two stream stability behavior plays a major role in determininy
various physical parameters for a long distance propagation of relativistic

electron beams.
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g Figure 1 Stability boundary in (wgbRg/cz,yb) parameter space for
\' .
I
- R/Ry = 7.4 and f = 1, S is numerically obtained from \
D
: Eq. (56). Se and S, are approximations obtained from
2 Eqs. (68) and (69), respectively.
5
, L.

Figure 2 Plot of £ versus Y, obtained from Eq. (56) for the

parameters identical to Fiyure 1, As a reference, gth

Pl L
AN G L 4

is also presented.
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Figure 3 Plot of £ versus Y, obtained from Eq. (56) for R./R, =

- o

7.4 and f, = 10.
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