# OTIC FILE COPY

084

| THE REAL COST OF CORROSION:         |
|-------------------------------------|
| ACCOUNTING FOR DOWNTIME,            |
| <b>IMPLICATIONS AND METHODOLOGY</b> |

**EVE HARRIS** TECHNOLOGY FORECASTING DIVISION

February 1987

Approved for public release; distribution unlimited.





87

MAY 0 5 1987

5

U.S. ARMY MATERIALS TECHNOLOGY LABORATORY Watertown, Massachusetts 02172-0001

AD

2.01 | N.2.2.2.2.2.3 | J.2.2.2.2.2.2.3

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an official indorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

| UNC | LASS | IFI | ED |  |
|-----|------|-----|----|--|
|     |      |     |    |  |
|     |      |     |    |  |

A SAME A SAME

| REPORT DOC                                              | UMENTATION                    | PAGE                                           | READ INSTRUCTIONS<br>BEFORE COMPLETING FORM                    |
|---------------------------------------------------------|-------------------------------|------------------------------------------------|----------------------------------------------------------------|
| REPORT NUMBER                                           |                               | 2. GOVT ACCESSION NO.                          | 3. RECIPIENT'S CATALOG NUMBER                                  |
| MTL TR 87-8                                             |                               |                                                |                                                                |
| TITLE (and Subtitle)                                    |                               | 1                                              | 5. TYPE OF REPORT & PERIOD COVERED                             |
| THE REAL COST OF COR<br>DOWNTIME, IMPLICATIO            |                               |                                                | Final Report                                                   |
| bowning, in bionito                                     |                               | 01001                                          | 6. PERFORMING ORG. REPORT NUMBER                               |
| AUTHOR(s)                                               |                               |                                                | 8. CONTRACT OR GRANT NUMBER(s)                                 |
| Eve Harris                                              |                               |                                                |                                                                |
| PERFORMING ORGANIZATION N                               | AME AND ADDRESS               |                                                | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |
| U.S. Army Materials<br>Watertown, Massachue<br>SLCMT-TP | Technology La<br>tts 02172-00 | bortory<br>01                                  |                                                                |
| . CONTROLLING OFFICE NAME                               | AND ADDRESS                   |                                                | 12. REPORT DATE<br>February 1987                               |
| U.S. Army Laboratory                                    |                               |                                                |                                                                |
| 2800 Powder Mill Roa                                    |                               |                                                | 13. NUMBER OF PAGES                                            |
| Adelphi, Maryland 2<br>MONITORING AGENCY NAME &         | 0783-1145                     |                                                | 17                                                             |
| 4 MONITORING AGENCY NAME &                              | ADDRESS(il dilleren           | it from Controlling Office)                    | 15. SECURITY CLASS. (of this report)                           |
|                                                         |                               |                                                | Unclassified                                                   |
|                                                         |                               |                                                | 154. DECLASSIFICATION 'DOWNGRADING<br>SCHEDULE                 |
| 7. DISTRIBUTION STATEMENT (0<br>9. SUPPLEMENTARY NOTES  | f the abstract entered        | In Block 20, il different tra                  | om Report)                                                     |
| KEY WORDS (Continue on revers                           |                               |                                                | 1                                                              |
| Tactical vehicles                                       | Cost analys                   |                                                |                                                                |
| Corrosion                                               | Pilot study                   |                                                |                                                                |
| Degradation                                             | Data acquis                   | 511101                                         |                                                                |
| ABSTRACT (Continue on reverse                           |                               | d Identify by block number)<br>E REVERSE SIDE) |                                                                |
| D 1 (AN 73 1473 EDITION O                               | F 1 NOV 65 IS 08501           |                                                |                                                                |

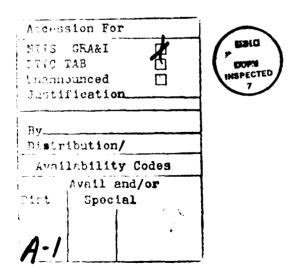
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

115 requests

Block No. 20

#### ABSTRACT

The cost of corrosion uses the five-ton truck, Series 800, as the sample product in this pilot study because of its availability of historical maintenance data. It is the first study that attempts to account for the cost of downtime, due to corrosion, of an Army end item. Costing included parts, components, the three levels of maintenance labor, and supply and administrative time. The latter are the basic dollars spent for a system or end item that is out of commision due to some form of degradation. The methodology used to account for downtime is flexible enough to enable its use in estimating the monies spent on a variety of systems or end items where material degradation is a critical factor. The estimated results can be included in total life cycle support calculations. While corrosion is a multimillion dollar expense, material degradation is also a pervasive problem that can seriously undermine the Army's readiness posture.


> UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Envernd)

### CONTENTS

1000 (J. 1000)

2

|                                                   | Page |
|---------------------------------------------------|------|
| INTRODUCTION                                      | 1    |
| METHODOLOGY                                       |      |
| The Data Collection                               | 1    |
| Data Calculation                                  | 1    |
| IMPLICATIONS                                      | 3    |
| SUMMARY                                           | 3    |
| APPENDIX A. PRIMARY INFORMATION SOURCES           | 1,1  |
| APPENDIX B. FIVE-TON TRUCK 800 SERIES DESCRIPTION | 12   |
| APPENDIX C. RATIONALE FOR DOWNTIME DEFINITION AND | _    |
| METHODOLOGY                                       | 13   |
| BIBLIOGRAPHY                                      | 15   |



#### INTRODUCTION

In late 1985, Commanding General, Richard T. Thompson, Army Materiel Command (AMC), issued Guidance Statement Number 94 which established the Center of Excellence (CTX) for the Prevention of Corrosion/Degradation at the Army Materials Technology Laboratory (MTL), Watertown, Massachusetts.

In an effort to support the work of CTX, a study of the cost of corrosion was begun January, 1986, by MTL's Directorate for Technology, Planning and Management (DTP&M). Five-ton trucks in the 800 Series were used to establish a methodology for the pilot cost study on corrosion; the availability of data determined the use of this particular system for the cost study. During the period 4 April 1986 to 6 August 1986, in a cooperative effort with CTX, the study was continued and completed by DTP&M at CTX, housed in the Metals and Ceramics Laboratory at MTL. Without the cooperation and expertise of key personnel at the Tank-Automotive Command (TACOM, Warren, Michigan), Headquarters, AMC (Alexandria, Virginia), Materiel Readiness Support Activity (MRSA, Lexington, Kentucky), and several Army Field Support Groups (e.g., 43rd, 83rd, and 183rd), this study would not have been possible nor the implications regarding readiness mission capability been realized (see Appendix A for list of personnel).

#### METHODOLOGY

#### The Data Collection

Historical maintenance data on the five-ton truck, 800 Series, was collected for 1983 through 1985, a two-and-one-half-year period. Among other data requested for inclusion in the study were, though scarce, early procurement and maintenance plans; procurement and replacement truck costs; parts, labor costs, and hours for both military and civilians for the three levels of maintenance (organizational, intermediate, and depot); operation and maintenance Army, and Operation and Procurement Army indexes (OMA and OPA, respectively); and, downtime hours and readiness mission capable factors. Scheduled or normal maintenance was reviewed and disregarded for inclusion in the study where no obvious correlation to corrosion existed. Whereever possible, information for all three levels of maintenance was sought for all costing categories. Where no data existed or was available, extrapolation from existing or comparitive material was made (see Appendix B for truck descriptions).

#### Data Calculation

Using sample data collection (SDC) of truck repairs for the 800 Series trucks (1983-1985), it was determined that of 243 trucks reported, 147 trucks related to corrosion; that is, 60 percent of all trucks in the SDC had a part or related operational problem involving corrosion. Total procurement for the 800 Series trucks is \$17,396. The first procurement occurred in 1970 and the last known contract for procurement was 1985. A ten percent incident ratio for corrosion part replacement is calculated for the entire fleet, overtime, based on mission capability downtime factors.

Costs of parts both directly and indirectly related to incidents of corrosion were calculated from the two-and-one-half-year SDC into a one-year base (1985). OPA inflation indexes were applied to determine historical data from the first year of procurement through 1986. Five-year incremental indexes were then applied to calculate outyears, 1986 through 2001. Both OPA and OMA (used for labor calculations) use the same inflation rates for outyears (see Table 1).

Labor was calculated from the SDC in a similar manner as parts and further broken down into the three levels of maintenance. Labor cost indexes for military specialities and skill for organization and intermediate levels of maintenance were multiplied by maintenance level hours. For expediency, the total cost of military labor for each of the two levels were individually averaged. Labor costs were then inflated for outyears, 1986 through 2001.

After determining a one-year base, OMA inflation indexes were then applied to calculate the depot maintenance labor of civilians for the same years as military labor. Both military and civilian rates were multiplied by the average number of hours for the base year 1985 and, subsequently, calculated for historical cost data through 1970, and for five-year increments, 1986 through 2001, for the entire fleet (see Table 1).

Replacement costs for the 800 Series five-ton trucks were gained from three sources: contractual costs (TACOM), those cited in the Army Master Data File (AMDF), and the extrapolation made from OPA indexes. Four basic models were used to calculate and correlate an average base cost for 1985 (see Table 2).

Two alternative five-ton truck models were used for comparison to the 800 Series truck and to provide hypothetical historical cost data, which are not specifically cited in this study. The models used were the 900 Series five-ton truck and the medium tactical vehicle (MTV). The cost for the MTV was quoted by TACOM (see Table 2). The same methodology was used for these models as in the 800 Series, as described above, for parts, labor, and replacement costs. Exceptions were the reduction of the OPA 1985 index by 0.0500 for parts in the 900 Series; the assumption was that a new generation of truck exhibits a degree of improvement in either commonly known corrodable parts (i.e., battery casings) or in protective outer frame coating.

The MTV model was costed and, as with the 900 Series, hypothetical historical data calculated. Parts inflation index for 1985 was reduced by 0.1000. Rationale used for this reduction assumed planned corrosion prevention of extra coatings applied to the frame and undercarriage of the MTV. Also, cost savings should be gained due to new corrosion policy, coding and procedure, improved maintenance and inspection, and materials improvements planned to be in place over the next two-to-five years.

Downtime is the time a system is out of service due to supply or administrative delays. It is the time counted from when supplies are ordered to when actual maintenance begins, or that time after maintenance has been completed and before actual shipment to its point of origin. Little or no labor, per se, is involved (see Appendix C for rationale and methodology). Table 3 details the hours, and Table 4 details the costs for downtime due to corrosion.

Methodology application is represented in the following manner:

 $C_2 = \Sigma$  parts + labor + replacement costs + downtime

where  $C_2 = cost$  of corrosion. The cost of corrosion is made up of the cost of some portion of parts, labor, replacement costs and downtime.

#### IMPLICATIONS

While downtime has not traditionally been accounted for within the Army, or for that matter DoD-wide, it is a very high cost when coupled with corrosion. In these days of budget reductions and our current emphasis on the use of state-of-theart technology, the reduction of corrosion and its attendant cost makes sense. "Business sense" makes it imperative that this be counted as a cost to Government; private industry could not survive the cost of having primary machinery and related equipment out of commision for reasons of productivity. Even if the cost of replacement is excluded, the price tag for the two-year period, 1985 through 1986, is significant for the estimated total of current!y fielded tactical wheeled vehicles (\$35.2 million dollars, see Table 5c). As a further example, for the period 1983 through 1986, the cost of a minimum amount of corrosion for the one fleet studied was \$17.2 million dollars (see Table 6).

Further, readiness mission capability is a critical issue and one that can be countered by emphatic support of materials' improvement. Not only would more aggressive action in materials' improvement reduce the factors of failure of systems and components vulnerable to corrosion, but failures that cause loss of life and injury to the men and women dependent upon those systems are an expense we cannot afford or easily replace. Safety is a direct recipient of reliability and maintainability, without which jeopardy of the primary mission is further undermined.

It is argued that a rotted door does not stop a truck performing its mission. There are other similar examples that support this claim. However, when even small or inexpensive components such as battery cables corrode and necessary fluids as lubricants and the like leak out of engines, the entire system is unusable (the "weakest link"). Projected corrosion improvements, such as the corrosion prevention coatings planned for the MTV will only protect the frame and undercarriage of the truck. It will not protect leakage, dry rot, moisture accumulation, and a myriad of geographic and environmental damage to the "innards" of the system. Materials' improvement through research would seem to be the least expensive means of combating corrosion in both the short and long term. For example, only one fleet of trucks has been the focal point of this pilot cost of corrosion study and the cost of corrosion, including replacements, for a four-year period (1983-1986) amounted to \$31.55 million dollars (see Table 6). When these costs are applied as a measure for all ground vehicles, including tanks, motorcycles, and other items such as missile carriers, bridges, marine and signal systems, and personnel equipment, the cost of corrosion to the Army can be estimated to be a far greater percentage of the \$2 billion dollars cited by the National Bureau of Standards Report to Congress (May, 1978). If one considers the Army's fleet of helicopters and fixed wing aircraft in addition to ground vehicles, overtime, the cost of corrosion is beyond any dollar conceived in any previous study.

#### SUMMARY

In conclusion, the pilot study on the cost of corrosion may be conservative in its calculation. The reasons for considering the cost conservative are as follows: only one fleet of trucks was calculated for the cost of corrosion; and, availability of detailed data on all maintenance incidents are either incomplete or are not recorded. Related to the latter are problems such as wear of materials, tensile strength or cracking, and the use of incorrect or incompatible coatings and metals that hasten corrosion. These problems are unsolvable until such time cognizance of corrosion factors occur through training, which is now being instituted through MTL efforts. Therefore, due to these considered stipulations and, in particular, the latter problems of maintenance records, downtime hours and the attendant costs would tend to be far greater in magnitude. Downtime, itself, as it is presented in this pilot study, is a new cost concept. Because of the initial findings for the costs of downtime due to corrosion, downtime needs to be seriously considered as an outset cost in acquisition planning and in logistical support. Table 1. COST SUMMARY: PARTS AND LABOR

SOUTH PRESSES SUCCESS

1633633335

a. Cost Summary, 1986-2001:

ALCORE ALCORE TO MARKE ALCORE

|         | (         | )rg  |          | 1  | 1         | Int |          | ¶ | Dep     | ot  |         |
|---------|-----------|------|----------|----|-----------|-----|----------|---|---------|-----|---------|
| Year:   | Parts     | :    | Labor    | 1  | Parts     | :   | Labor    | 1 | Parts   | :   | Labor   |
| :       |           | :    |          | 1  |           | :   |          | ſ |         | :   |         |
| 1986:   | 347,486   | :    | 695,834  | 1  | 234,554   | :   | 531,249  | 1 | 54,555  | :   | 191,203 |
| 1991:   | 393,588   | :    | 819,205  | 1  | 276,140   | :   | 625,439  | 1 | 64,228  | :   | 225,104 |
| 1996:   | 440,960   | :    | 917,805  | -  | 309,377   | :   | 700,717  | 1 | 71,958  | :   | 252,197 |
| 2001:   | 494,083   | :1   | ,028,373 | ¶  | 346,647   | :   | 785,133  | ¶ | 80,627  | :   | 282,580 |
|         |           | :    |          | ¶  |           | :   |          | ¶ |         | : " |         |
| Total:1 | ,676,117  | :3   | ,461,217 | ¶] | 1,166,718 | :2  | ,642,538 | ¶ | 271,368 | :   | 951,084 |
| Total   | Cost: \$  | \$10 | ,169,042 |    |           |     |          |   |         |     |         |
| Total   | Parts: \$ | 53   | ,114,203 |    |           |     |          |   |         |     |         |
| Total   | Labor: \$ | 57   | ,054,839 |    |           |     |          |   |         |     |         |

b. Cost Summary, 1983-1985:

| :     | Org                       | 1                                                                                   | 1                                        | Int | t <b>1</b>                                 | l Dep            | ot          |                                          |
|-------|---------------------------|-------------------------------------------------------------------------------------|------------------------------------------|-----|--------------------------------------------|------------------|-------------|------------------------------------------|
| Year: | Parts :                   | Labor ¶                                                                             | Parts                                    | :   | Labor                                      | Parts            | :           | Labor                                    |
| Total | Cost: \$5,<br>Parts: \$1, | 645,656 ¶<br>664,791 ¶<br>668,628 ¶<br>1,979,075 ¶<br>769,715<br>745,583<br>024,132 | 200,727<br>216,772<br>225,663<br>643,162 |     | 493,267<br>507,886<br>512,103<br>1,513,256 | 50,419<br>52,487 | :<br>:<br>: | 170,846<br>177,228<br>183,727<br>531,801 |

| с. | Historical | Cost | Summary, | 1970-1982: |
|----|------------|------|----------|------------|
|    |            |      |          |            |

| :                                                                                                                      | (                                                                                                                                           | Org                                                                                            | 1                                                                             | Int                                                                                                                                                                          | t                                                                                               | 9                                                        | Dep                                                                                                                            | ot                                      |                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Year:                                                                                                                  | Parts                                                                                                                                       | : La                                                                                           | ibor ¶                                                                        | Parts :                                                                                                                                                                      | Labor                                                                                           |                                                          | Parts                                                                                                                          | :                                       | Labor                                                                                                                                |
| :<br>1982:<br>1981:<br>1980:<br>1979:<br>1978:<br>1977:<br>1976:<br>1975:<br>1974:<br>1973:<br>1972:<br>1971:<br>1970: | 272,800<br>238,700<br>213,894<br>191,328<br>175,582<br>163,881<br>154,654<br>139,476<br>125,234<br>115,472<br>110,156<br>105,667<br>100,996 | : 620,<br>551,<br>471,<br>439,<br>413,<br>387,<br>366,<br>348,<br>327,<br>305,<br>274,<br>240, | 552 ¶<br>911 ¶<br>609 ¶<br>756 ¶<br>732 ¶<br>387 ¶<br>926 ¶<br>566 ¶<br>198 ¶ | 184,141 :<br>161,123 :<br>144,379 :<br>129,147 :<br>129,147 :<br>118,518 :<br>110,620 :<br>104,392 :<br>94,147 :<br>84,533 :<br>77,944 :<br>74,356 :<br>71,332 :<br>70,429 : | 473,906<br>420,957<br>359,924<br>335,807<br>316,219<br>296,125<br>280,194<br>266,423<br>250,716 | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | 42,829<br>37,476<br>33,581<br>30,038<br>27,566<br>25,729<br>24,280<br>21,898<br>19,662<br>18,129<br>17,294<br>16,591<br>15,856 | ••••••••••••••••••••••••••••••••••••••• | 162,884<br>151,350<br>136,858<br>123,714<br>113,410<br>105,915<br>99,709<br>92,039<br>76,114<br>67,624<br>66,043<br>63,467<br>61,008 |
| Total:2<br>Tota<br>Tota<br>Total                                                                                       | ,107,541<br>1 Cost:<br>Parts:<br>Labor:                                                                                                     | : 4,970,<br>\$13,951,<br>\$ 3,863,<br>\$10,088,                                                | 882 ¶<br>566<br>531                                                           |                                                                                                                                                                              | 3,797,047                                                                                       | " –<br>¶                                                 | ( <u></u>                                                                                                                      | ;                                       | 1,320,106                                                                                                                            |

|                                                                                                 |               |              |                 | the second se |            |  |  |  |  |
|-------------------------------------------------------------------------------------------------|---------------|--------------|-----------------|-----------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| a. Average                                                                                      | Cost by Model | and Year, an | d Four-Year Ave | rage Per Mode                                                                                                   | <u>1</u> : |  |  |  |  |
| Model Year                                                                                      |               |              |                 |                                                                                                                 |            |  |  |  |  |
|                                                                                                 | 1983          | 1984         | 1985            | 1986                                                                                                            | 1983-1986  |  |  |  |  |
| M813                                                                                            | 58,696,00     | 65,987,00    | 68,694,00       | 71,401.00 :                                                                                                     | 66,195,00  |  |  |  |  |
| M813A1                                                                                          | 60,013.00     | 67,468.00    | 70,236.00       | 73,003.00 :                                                                                                     |            |  |  |  |  |
| M817                                                                                            | 80,706,00     | 84,016.00    | 87,462.00       | 90,908.00 :                                                                                                     | •          |  |  |  |  |
| M818                                                                                            | 66,981.00     | 69,728.00    | 72,588.00       | 75,448.00 :                                                                                                     |            |  |  |  |  |
| b. Average                                                                                      | Dollar Total  | by Year:     |                 |                                                                                                                 |            |  |  |  |  |
|                                                                                                 | 1983          | 1984         | 1985            | 1986                                                                                                            | 1983-1986  |  |  |  |  |
|                                                                                                 | 66.981.00     | 71,800.00    | 74,745.00       | 77,690.00 :                                                                                                     | 72,709.00  |  |  |  |  |
| *Four models calculated for representation of average replacement costs; constant dollars used. |               |              |                 |                                                                                                                 |            |  |  |  |  |
|                                                                                                 |               |              |                 |                                                                                                                 | (          |  |  |  |  |

# Table 2. REPLACEMENT COST BY MODEL AND YEAR\*

c. Procurement Cost Comparison: 900 and medium tactical vehicle (MTV) Series:

| Year | Model      | Replacement Cost       |
|------|------------|------------------------|
| 1986 | 800 Series | 77,690.00              |
| 1986 | 900 Series | 76,101.00†             |
| 1986 | MTV Series | 67,908.00 <sup>†</sup> |

tCosts have been indexed based on year of planned procurement.

#### Table 3. DOWNTIME HOURS\*

Supply

Supply

#### a. Downtime Hours, 1970-1982, 1983-1985, and 1986-2001:

Administration

| Year                                | <u>:</u> | Org     | Int                                 | Depot   | : | Org       | Int                                 | Depot                             |
|-------------------------------------|----------|---------|-------------------------------------|---------|---|-----------|-------------------------------------|-----------------------------------|
| 1970-1982<br>1983-1985<br>1986-2001 | :        | 450,000 | 5,915,844<br>1,568,904<br>2,091,872 | 672,966 | : | 1,140,000 | 4,823,595<br>1,279,494<br>1,705,992 | 3,041,874<br>806,499<br>1,075,332 |

b. Historical Downtime Hours, 1970-1986:

THE CONTRACT OF THE CONTRACT. THE CONTRACT OF THE CONTRACT. THE CONTRACT OF THE CONTRACT. THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT. THE CONTRACT OF THE CONTRACT OF THE CONTRACT. THE CONTRACT OF THE CONT

States and

and the second

|--|

| Year  | :  | Org        | Int        | Depot     | : | Org        | Int         | Depot     |
|-------|----|------------|------------|-----------|---|------------|-------------|-----------|
| 1986  | :  | 150,000    | 522,968    | 224,322   | : | 380,000    | 426,498     | 268,833   |
| 1985  | :  | 150,000    | 522,968    | 224,322   | : | 380,000    | 426,498     | 268,833   |
| 1984  | :  | 150,000    | 522,968    | 224, 322  | : | 380,000    | 426,498     | 268,833   |
| 1983  | :  | 150,000    | 522,968    | 224,322   | : | 380,000    | 426,498     | 268,833   |
| 1982  | :  | 147,000    | 512,244    | 219,836   | : | 372,400    | 417,668     | 263,456   |
| 1981  | :  | 144,060    | 501,999    | 215,439   | : | 364,952    | 409,315     | 258,187   |
| 1980  | :  | 141,179    | 491,959    | 211,130   | : | 357,653    | 401,129     | 253,023   |
| 1979  | :  | 138,355    | 482,120    | 206,907   | : | 350,500    | 393,106     | 247,963   |
| 1978  | :  | 135,588    | 472,478    | 202,769   | : | 343,490    | 385,244     | 242,004   |
| 1977  | :  | 132,876    | 463,028    | 198,714   | : | 336,620    | 337,539     | 238,144   |
| 1976  | :  | 130,219    | 453,767    | 194,740   | : | 329,888    | 369,988     | 233, 381  |
| 1975  | :  | 127,614    | 444,692    | 190,845   | : | 323,290    | 362,588     | 228,713   |
| 1974  | :  | 125,062    | 435,798    | 187,028   | : | 316,824    | 355,336     | 224,139   |
| 1973  | :  | 122,561    | 427,082    | 183,287   | : | 310,448    | 348,229     | 219,565   |
| 1972  | :  | 120,110    | 418,541    | 179,621   | : | 304,278    | 341,264     | 215,174   |
| 1971  | :  | 117,708    | 410,170    | 176,029   | : | 298,192    | 334,439     | 210,871   |
| 1970  | :  | 115,353    | 401,966    | 172,508   | : | 292,228    | 327,750     | 206,254   |
| Total | :  | 2,297,685  | 8,007,716  | 3,436,141 | : | 5,820,763  | 6,529,587   | 4,117,206 |
| Tot   | al | Administra | tion: 13,7 | 41,542    |   | Total Supp | ly: 16,467, | ,556      |

\*Two percent reduction per year, 1982 back through 1970. The percent reduction is based on a rationale that the closer to original production, the newer and less number of trucks fielded, the fewer the incidents of corrosion there should be. Hours maintained steady from 1983-2001. Calculation based upon readiness factor.

#### DOWNTIME COST SUMMARY Table 4.

Supply

Supply

Supply

Cost, 1986-2001: a.

#### Administration

| Year :   | Org                                   | Int                         | Depot        | : | Org        | Int         | Depot     |
|----------|---------------------------------------|-----------------------------|--------------|---|------------|-------------|-----------|
| 1986 :   | 322,734                               | 1,125,195                   | 486,800      | : | 940,033    | 1,055,059   | 665,032   |
| 1991 :   | 379,955                               | 1,274,478                   | 551,385      | : | 1,064,750  | 1,192,036   | 753,264   |
| 1996 :   | 425,686                               | 1,427,874                   | 617,750      | : | 1,192,904  | 1,338,871   | 843,927   |
| 2001 :   | 476,969                               | 1,599,890                   | 692,170      | : | 1,336,613  | 1,500,165   | 945,823   |
| Total: 1 | 1,605,344                             | 5,427,437                   | 2,348,105    | : | 4,534,300  | 5,089,131   | 3,208,046 |
|          | lministrat <sup>.</sup><br>1986-2001: | ion: \$9,380<br>\$22,212,36 | ,886.00<br>3 | : | Total Supp | ly: \$12,83 | 31,477    |

Downtime Costs, 1983-1985: b.

Administration

| Year :                                                                | Org     | Int       | Depot     | : | Org         | Int         | Depot     |
|-----------------------------------------------------------------------|---------|-----------|-----------|---|-------------|-------------|-----------|
| 1983 :                                                                | 276,190 | 962,922   | 400,181   | : | 804,464     | 902,900     | 569,123   |
| 1984 :                                                                | 298,266 | 1,039,891 | 449,894   | : | 868,767     | 975,071     | 614,614   |
| 1985 :                                                                | 310,500 | 1,082,543 | 468,347   | : | 904,400     | 1,015,065   | 639,823   |
| Total:                                                                | 884,956 | 3,085,356 | 1,318,422 | : | 2,577,631   | 2,893,036   | 1,823,560 |
| Total Administration: \$5,288,734<br>Total, 1983 - 1985: \$12,582,961 |         |           |           |   | Total Suppl | y: \$7,294, | 227       |

Downtime Costs, 1970-1982: с.

| Admin | i | str | at | i | on |  |
|-------|---|-----|----|---|----|--|
|-------|---|-----|----|---|----|--|

| Year:   | Org           | Int          | Depot :     | Org         | Int         | Depot     |
|---------|---------------|--------------|-------------|-------------|-------------|-----------|
| 1982:   | 253,368       | 883,355      | 382,171 :   | 737,990     | 828,293     | 522,096   |
| 1981:   | 221,697       | 772,936      | 334,400 :   | 645,742     | 724,756     | 456,834   |
| 1980:   | 198,658       | 692,611      | 299,648 :   | 578,635     | 649,439     | 409,359   |
| 1979:   | 177,699       | 619,539      | 268,035 :   | 517,588     | 580,922     | 366,171   |
| 1978:   | 163,075       | 568,552      | 245,976 :   | 474,991     | 533,112     | 336,035   |
| 1977:   | 152,207       | 530,663      | 229,584 :   | 443,337     | 497,585     | 313,641   |
| 1976:   | 143,637       | 500,784      | 216,257 :   | 418,375     | 469,570     | 295,982   |
| 1975:   | 129,541       | 451,637      | 195,394 :   | 377,316     | 423,485     | 266,934   |
| 1974:   | 116,313       | 405,521      | 175,443 :   | 338,788     | 380,243     | 239,823   |
| 1973:   | 107,247       | 373,910      | 161,767 :   | 312,380     | 350,603     | 220,995   |
| 1972:   | 102,310       | 356,698      | 154,320 :   | 298,000     | 334,464     | 210,822   |
| 1971:   | 98,149        | 342,192      | 148,044 :   | 285,881     | 320,862     | 202,248   |
| 1970:   | 93,802        | 327,036      | 141,488 :   | 273,219     | 306,651     | 193,291   |
|         |               |              | :           |             |             |           |
| Total:  | 1,957,703     | 6,825,434    | 2,952,527 : | 5,702,242   | 6,065,382   | 4,034,231 |
| Total A | dministration | n: \$11,735, | 664 :       | Total Suppl | y: \$15,801 | ,855      |
| Total,  | 1970 - 1982:  | \$27,537,519 | 6.          |             |             |           |

| Table 5. | ONE | FIVE-TON | TRUCK | COST* |
|----------|-----|----------|-------|-------|
|          |     |          |       |       |

| Year:               | Truck Cost       | Parts          | Labor          | Downtime | : Total                    |
|---------------------|------------------|----------------|----------------|----------|----------------------------|
| :<br>1986:<br>1985: | 77,690<br>74,745 | 36.65<br>35.21 | 81.53<br>78.44 |          | : 78,072.31<br>: 74,972.05 |

| Year:               | Truck Cost       | Parts          | Labor          | Downtime        | : | Total                  |
|---------------------|------------------|----------------|----------------|-----------------|---|------------------------|
| :<br>1978:<br>1970: | 39,256<br>22,580 | 18.49<br>10.77 | 55.01<br>26.20 | 133.46<br>76.77 |   | 39,432.00<br>22,705.59 |

c. Total Corrosion Cost: One Truck Multiplied by All Models of Five-Ton Trucks Estimated as Currently Fielded, Excluding Replacement:

KWAREAN SALA

| Year | Parts/Labor/<br>Downtime | <u>Estimated # Fielded</u><br><u>Five-Ton Truck</u> | <u>Total</u>  |
|------|--------------------------|-----------------------------------------------------|---------------|
| 1986 | 382.31                   | 47,000                                              | 17,968,570.00 |
| 1985 | 367.77                   | 47,000                                              | 17,285,190.00 |

\*Annual averaged costs for one truck. Annual averaged cost for parts, labor, and downtime are derived from totals of maintenance levels divided into number of trucks produced.

### Table 6. COST OF CORROSION SUMMARY

1222224 1202224 1222225

a. 1983-1986:\*

| Year                         | Partst                                               | Labor                                                        | <u>Replacement</u> ‡                                         | <pre>Downtime**</pre>                                        |
|------------------------------|------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| 1983<br>1984<br>1985<br>1986 | 544,786.00<br>588,333.00<br>612,464.00<br>636,595.00 | 1,309,769.00<br>1,349,905.00<br>1,364,458.00<br>1,418,286.00 | 1,498,474.00<br>1,615,498.00<br>1,681,763.00<br>1,748,021.00 | 3,915,780.00<br>4,246,503.00<br>4,420,678.00<br>4,594,853.00 |
| Total:                       | 2,382,178.00                                         | 5,442,418.00                                                 | 6,543,756.00                                                 | 17,177,814.00                                                |

b. Cost of Corrosion Averaged Over Four Years (Constant Dollars):

| Item                          | Total                                      |
|-------------------------------|--------------------------------------------|
| Parts:<br>Labor:<br>Downtime: | 595,545.00<br>1,360,605.00<br>4,294,454.00 |
| Total:                        | 6,250,604.00                               |

\*For three levels of maintenance: organization, intermediate, and depot. In constant dollars.

tDifference in 1986 total from those in Table 1 and 6, above, reflects the result of three levels rather than individual maintenance levels inflation process.

\*Based on 22.5 trucks per year at averaged procurement cost. Since only four (4) models (two [2] variations each) were calculated, replacement costs may be somewhat conservative. Averaged four-year cost of replacement is \$1,635,939.00.

\*\*For three levels of maintenance, as above, and combines both Administrative and Supply costs.

#### APPENDIX A. PRIMARY INFORMATION SOURCES

The people and organizations cited below are thanked for their close cooperation, support, and patience in providing the information necessary to undertake the pilot cost of corrosion study. They are deserving of special mention.

Tank Automotive Command, Warren, Michigan: Mike Merlo, AMSTA-VCW Chuck Atkinson, AMSTA-KA Timothy Payne, AMSTA-KA Joe Avesian, AMSTA-CH Ann Bos, AMSTA-CH Russell Feury, AMSTA-VC Elliot Plant, AMSTA-VCW David Carter, AMSTA-MS

Materiel Readiness Support Agency, Lexington, Kentucky: Paul Powell, AMXMD-MS Tom Ress, AMXMD-MS Fred Londone, AMXMD-MS Gayle Reese, AMXMD-M

Training and Doctrine Command, Virginia: Mike Rathman, ATRM-MR

Headquarters, Army Materiel Command, Alexandria, Virginia: Frank DeSantis, AMCRM-ER

Tooele Army Depot, Tooele, Utah: Tom Eckrodt, SDSTE-MA Jeff Gillette, SDSTE-MA Malcom Walden, SDSTE-P

Fort Carson, Colorado Springs, Colorado: SGT Weber, 73rd Support Group LT Hill, 73rd Support Group SGT O'Leary, 43rd Support Group CPT Watts, 43rd Support Group SGT Markwell, 183rd Support Group

Army Materials Technology Laboratory, Watertown, Massachuetts: Appreciation for contribution editorial comments go to the following people: Bart Wong. SLCMT-MCC-S T. Hynes, SLCMT-TP J. Plumer, SLCMT-DAC-M S. Doherty, SLCMT-TPP

- A. Tarpinian, SLCMT-TPT
- R. Fitzpatrick, SLCMT-TP

#### APPENDIX B. FIVE-TON TRUCK 800 SERIES DESCRIPTION

1. Number procured, 1970-1985: 17,396

2. Description:

| <u>Model*</u>        | End Item Number | Nomenclature                                      |
|----------------------|-----------------|---------------------------------------------------|
| M813*<br>Winch (W/O) | 2320000508902   | Cargo Truck, Fixed Long Wheel Base (LWB), Without |
| M813WW*              | 2320000508890   | Cargo Truck, Fixed LWB, With Winch (W/W) M813A1*  |
| M813A1*              | 2320000508913   | Cargo Truck, Fixed Dropside, LWB, W/O             |
| M813A1WW*            | 2320000508905   | Cargo Truck, Fixed Dropside, LWB, W/W             |
| M814                 | 2320000508988   | Cargo Truck, Extra Long Wheel Base (XLWB), W/O    |
| M814WW               | 2320000508987   | Cargo Truck, Fixed XLWB, W/W                      |
| M817*                | 2320000508970   | Dump Truck, W/O                                   |
| M817WW*              | 2320000510589   | Dump Truck, W/W                                   |
| M81 <b>8</b> *       | 2320000508984   | Tractor Truck, W/O                                |
| M818WW*              | 2320000508978   | Tractor Truck, W/W                                |
| Other: †             |                 |                                                   |
| -                    | 2320000508927   | Bolster Truck                                     |
| -                    | 2320000509006   | Van                                               |
| -                    | 2320000509010   | Van                                               |
| -                    | 2320000510489   | Wrecker Truck                                     |
| M816WW               | -               | -                                                 |
| M819WW               | -               | -                                                 |
| M8120                | -               | -                                                 |

\*The four models costed for procurement/replacement purposes in study. These same models provided the most detailed data.

tA dash signifies that information was unavailable. Some models/end numbers may, therefore, be repeated inadvertantly in "Others".

#### APPENDIX C. RATIONALE FOR DOWNTIME DEFINITION AND METHODOLOGY

SDC for the 800 Series Truck only cited supply and administration hours for organization and direct support levels. No other maintenance level hours were clarified. Inquiries into the specifics of downtime resulted in the following methodology.

From a comparable fleet of Five-Ton Trucks, mission capability was quoted at 81 percent and 19 percent down. Of the 19 percent down, eight percent was due to administrative delay and 11 percent was due to supply delay [mission capable administration (MCA) and mission capable supply (MCS), respectively]. These statistics were for active and reserve Army, CONUS and OCONUS, as was the 800 Series.

Statistically, the percentage of downtime due to administration and supply closely corresponded to the number of hours cited in SDC for administration and supply downtime for the 800 Series trucks. This ratio/percent was applied to the 800 Series total fleet and a total of 3305 trucks were calculated to have been down at any one time. When calculated by the percent known to be down due to corrosion, we estimated that an addition of 337 trucks were necessary to make the fleet mission capable over the life of the fleet. Fleet life, or life expectancy, had been estimated at 20 years in 1970; from the calculations, a 15-year life tended to be more realistic. Using a 15-year life expectancy, this calculated into 22.5 trucks per year needed to maintain readiness capability (337 divided by 15). This number was then multiplied by the average cost of the truck, the result of which is the cost of downtime due to corrosion for administration and supply.

Hours for downtime were extrapolated for the three levels of maintenance based upon the total hours expressed in SDC. These hours were then multiplied for the total fleet according to the number of maintenance incidents and, then, calculated for the percentage down due to corrosion (ten percent).

Further note is necessary at this point on how downtime hours were determined. Within SDC, organization and direct support contained like number of hours in downtime as was found for parts and labor -- that is, a two-to-one ratio. Therefore, the assumption was made that downtime was similar in trend for all maintenance levels in downtime as it had been for parts and labor. Differences in either supply of administration downtime at the general and depot levels were not supported by any concrete evidence; it was, therefore, reasonably assumed a like ratio of hours could exist at all levels. Further logic dictates that delays for supplies at one level can be countered by delays in administration at another level.

Thus, the methodology for calculating hours was as follows: 50 percent of the total for organization and direct support was assigned as general support. Next, direct support and general support were summed and the result assigned as intermediate level hours. General support hours were then assigned as depot level hours. The underlying assumption, too, is that the least amount of hours is at the organizational level, the most at the intermediate level, and the depot level having more than organization, but less then intermediate hours in downtime. This is a reality of current maintenance level disbursement; intermediate level maintenance has steadily increased the complexity of the work once reserved exclusively for the depot. Total costs for administration and supply downtime were divided by their respective total hours. An average per-hour cost for both supply and administration was calculated in this manner. Level hours were then calculated by this average cost per hour for 1985 and, using OPA indexes, inflated from 1970 through 1986, and for the outyears, 1986 through 2001, for the total fleet.

However, further assumptions were made. Assuming improvements in policy procedure, maintenance practices, and materials, the downtime hours from 1983 to 2001 were held steady. Likewise, a reduction of two percent per year was applied for 1982 back to 1970, assuming a lesser degree of corrosion incidents the closer to first fielding; this reduction of two percent still accounts for geographic and environmental variations that would have encouraged corrosion.

#### **BIBLIOGRAPHY**

- 1. Sample Data Collection, TACOM (AMSTA-VCW), Warren, MI, June 1983 December 1985.
- 2. Army Master Data File (AMDF), 1985.

- 3. Revised Inflation Indices, Headquarters, Army Materiel Command (AMCRM-ER), Alexandria, VA, March 1986.
- 4. Economic Effects of Metallic Corrosion in the United States, National Bureau of Standards, Special Publication #511-1, May 1978, U.S. Department of Commerce, Washington, D.C.

# DISTRIBUTION LIST

1. 6. 4

| No. (<br>Copie |                                                                                                                              |
|----------------|------------------------------------------------------------------------------------------------------------------------------|
| 1              | Office of the Under Secretary of Defense for Research and Engineering,<br>The Pentagon, Washington, DC 20301                 |
| _              | Commander, U.S. Army Laboratory Command, 2800 Powder Mill Road, Adelphi, MD 20783-1145                                       |
| 1              | ATTN: SLCIS-IM-TL                                                                                                            |
| 2              | Commander, Defense Technical Information Center, Cameron Station, Building 5,<br>5010 Duke Street, Alexandria, VA 22304-6145 |
| 2              | ATTN: DTIC-FDAC                                                                                                              |
| 1              | Metals and Ceramics Information Center, Battelle Columbus Laboratories,<br>505 King Avenue, Columbus, OH 43201               |
|                | Commander, Army Research Office, P.O. Box 12211, Research Triangle Park, NC 27709-2211                                       |
| 1              | ATTN: Information Processing Office                                                                                          |
|                | Commander, U.S. Army Materiel Command, 5001 Eisenhower Avenue,<br>Alexandria, VA 22333                                       |
| 1<br>1         | ATTN: AMCLD<br>Frank DeSantis, AMCRM-ER                                                                                      |
| 1              | Commander, U.S. Army Materiel Systems Analysis Activity,<br>Aberdeen Proving Ground, MD 21005<br>ATTN: AMXSY-MP, H. Cohen    |
| 1<br>1         | Commander, U.S. Army Electronics Research and Development Command,<br>Fort Monmouth, NJ 07703<br>ATTN: AMDSD-L<br>AMDSD-E    |
| 1              | Commander, U.S. Army Missile Command, Redstone Arsenal, AL 35898<br>ATTN: AMSMI-RKP, J. Wright, Bldg. 7574                   |
| 1              | AMSMI-TB, Redstone Scientific Information Center<br>AMSMI-RLM                                                                |
| 1              | Technical Library                                                                                                            |
|                | Commander, U.S. Army Armament, Munitions and Chemical Command, Dover, NJ 07801                                               |
| 2              | ATTN: Technical Library                                                                                                      |
| 1<br>1         | AMDAR-QAC-E<br>AMDAR-LCA, Mr. Harry E. Pebly, Jr., PLASTEC, Director                                                         |
| 1              | Commander, U.S. Army Natick Research, Development, and Engineering Center,<br>Natick, MA 01760<br>ATTN: Technical Library    |

<u></u>

N

No. of Copies To Commander, U.S. Army Satellite Communications Agency, Fort Monmouth, NJ 07703 1 ATTN: Technical Document Center Commander, U.S. Army Tank-Automotive Command, Warren, MI 48090 ATTN: AMSTA-ZSK 1 2 AMSTA-TSL, Technical Library Mike Merlo, AMSTA-VCW 1 1 Chuck Atkinson, AMSTA-KA 1 Timothy Payne, AMSTA-KA 1 Joe Avesian, AMSTA-CH 1 Ann Bos, AMSTA-CH Russell Feury, AMSTA-VC 1 1 Elliot Plant, AMSTA-VCW 1 David Carter, AMSTA-MS Commander, White Sands Missile Range, NM 88002 ATTN: STEWS-WS-VT 1 President, Airborne, Electronics and Special Warfare Board, Fort Bragg, NC 28307 1 ATTN: Library Director, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD 21005 ATTN: AMDAR-TSB-S (STINFO) 1 Commander, Dugway Proving Ground, Dugway, UT 84022 1 ATTN: Technical Library, Technical Information Division Commander, Harry Diamond Laboratories, 2800 Powder Mill Road, Adelphi, MD 20783 ATTN: Technical Information Office 1 Director, Benet Weapons Laboratory, LCWSL, USA AMCCOM, Watervliet, NY 12189 ATTN: AMSMC-LCB-TL 1 1 AMSMC-LCB-R 1 AMSMC-LCB-RM 1 AMSMC-LCB-RP Commander, U.S. Army Foreign Science and Technology Center, 220 7th Street, N.E., Charlottesville, VA 22901 1 ATTN: Military Tech Commander, U.S. Army Aeromedical Research Unit, P.O. Box 577, Fort Rucker, AL 36360 l ATTN: Technical Library Director, Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, VA 23604-5577 ATTN: SAVDL-E-MOS (AVSCOM) 1 U.S. Army Aviation Training Library, Fort Rucker, AL 36360 1 ATTN: Building 5906-5907

DISTRIBUTION LIST

| o. c<br>opie |                                                                                                                                                 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1            | Office of the Under Secretary of Defense for Research and Engineering,<br>The Pentagon, Washington, DC 20301                                    |
|              | Commander, U.S. Army Laboratory Command, 2800 Powder Mill Road, Adelphi,<br>MD 20783-1145                                                       |
| 1            | ATTN: SLCIS-IM-TL                                                                                                                               |
| 2            | Commander, Defense Technical Information Center, Cameron Station, Building 5,<br>5010 Duke Street, Alexandria, VA 22304-6145<br>ATTN: DTIC-FDAC |
| 1            | Metals and Ceramics Information Center, Battelle Columbus Laboratories,<br>505 King Avenue, Columbus, OH 43201                                  |
|              | Commander, Army Research Office, P.O. Box 12211, Research Triangle Park,<br>NC 27709-2211                                                       |
| 1            | ATTN: Information Processing Office                                                                                                             |
|              | Commander, U.S. Army Materiel Command, 5001 Eisenhower Avenue,<br>Alexandria, VA 22333                                                          |
|              | ATTN: AMCLD                                                                                                                                     |
| 1            | Frank DeSantis, AMCRM-ER                                                                                                                        |
|              | Commander, U.S. Army Materiel Systems Analysis Activity,<br>Aberdeen Proving Ground, MD 21005<br>ATTN: AMXSY-MP, H. Cohen                       |
|              | Commander, U.S. Army Electronics Research and Development Command,<br>Fort Monmouth, NJ 07703                                                   |
| 1            | ATTN: AMDSD-L                                                                                                                                   |
| 1            | AMD SD-E                                                                                                                                        |
|              | Commander, U.S. Army Missile Command, Redstone Arsenal, AL 35898                                                                                |
|              | ATTN: AMSMI-RKP, J. Wright, Bldg. 7574                                                                                                          |
| 1            | AMSMI-TB, Redstone Scientific Information Center                                                                                                |
| 1            | AMSMI-RLM                                                                                                                                       |
| 1            | Technical Library                                                                                                                               |
|              | Commander, U.S. Army Armament, Munitions and Chemical Command, Dover, NJ 0780                                                                   |
| 2            | ATTN: Technical Library                                                                                                                         |
| 1            | AMDAR-QAC-E                                                                                                                                     |
| 1            | AMDAR-LCA, Mr. Harry E. Pebly, Jr., PLASTEC, Director                                                                                           |
|              | Commander, U.S. Army Natick Research, Development, and Engineering Center,<br>Natick, MA 01760                                                  |
|              | ATTN: Technical Library                                                                                                                         |

The cost of corrosion uses the five-ton truck, Series 800, as the sample product in this pilot study because of its availability of historical maintenance data. It is the first study that attempts to account for the cost of downtime, due to corrosion, of an Amy end item. Costing included parts, components, the three levels of maintenance labor, and supply and administrative time. The latter are the basic dollar spent for a system or end item that is out of commision due to some form of degradation. The methodology used to account for downtime is flexible enough to enable its use in estimating the monies spent on a variety of systems or end items where material degradation is a critical factor. The estimated results can be included in total life cycle support calculations. While corrosion that can seriously undermine the Army's readiness posture. the basic dollar spent for a system or end item that is out of commission due to some form of degradation. The methodology used to account for downtime is flexible enough to enable its use in estimating the monies spent on a variety of systems is a multimillion dollar expense, material degradation is also a pervasive problem that can seriously undermine the Army's readiness posture. or end items where material degradation is a critical factor. The estimated results can be included in total life cycle support calculations. While corrosion UNLIMITED DISTRIBUTION UNLIMITED DISTRIBUTION The cost of corrosion uses the five-ton truck, Series 800, as the sample product in this pilot study because of its availability of historical maintenance data. It is the first study that attempts to account for the cost of downtime, due to corrosion, of an Array end item. Costing included parts, components, the three levels of maintenance labor, and supply and administrative time. The latter are **Factical vehicles** Tactical vehicles Key Words Key Words Degradation Degradation Corrosion Corrosion B ð Technical Report MTL TR 87-8, February 1987, Technical Report MTL TR 87-8, February 1987, ACCOUNTING FOR DOWNTIME, IMPLICATIONS U.S. Army Materials Technology Laboratory, username Massachusetts 02172-0001 ACCOUNTING FOR DOWNTIME, IMPLICATIONS U.S. Army Materials Technology Laboratory, Watertown. Massachusetts 02172-0001 THE REAL COST OF CORROSION: OF CORROSION: I 1 AND METHODOLOGY AND METHODOLOGY tables, 17 pp tables, 17 pp I COST Eve Harris Eve Harris 1 THE REAL I corrosion, of an Army end term. Costing included parts, components, the three levels of maintenance labor, and supply and administrative time. The latter are the basic dollar spent for a system or end item that is out of commision due to some form of degradation. The methodology used to account for downtime is flexible enough to enable its use in estimating the monies spent on a variety of systems or end items where material degradation is a critical factor. The estimated results can be included in total life cycle support calculations. While corrosion is a multimillion dollar expense, material degradation is also a pervasive problem that can seriously undermine the Army's readiness posture. The cost of corrosion uses the five-ton truck, Series 800, as the sample product in this pilot study because of its availability of historical maintenance data. It is the first study that attempts to account for the cost of downtime, due to corrosion, of an Army end item. Costing included parts, components, the three levels of maintenance labor, and supply and administrative time. The latter are the basic dollar spent for a system or end item that is out of commision due to some form of degradation. The methodology used to account for downtime is flexible enough to enable its use in estimating the monies spent on a variety of systems results can be included in total life cycle support calculations. While corrosion is a multimillion dollar expense, material degradation is also a pervasive problem UNLIMITED DISTRIBUTION UNL IMITED DISTRIBUTION The cost of corrosion uses the five-ton truck. Series 800, as the sample product in this pilot study because of its availability of historical maintenance data. It is the first study that attempts to account for the cost of downtime, due to Tactical vehicles Tactical vehicles Key Words Key Words Degradation **Degradation** Corrosion Corrosion ð ð that can seriously undermine the Army's readiness posture. Technical Report MTL TR 87-8, February 1987, tables, 17 pp fechnical Report MTL TR 87-8. February 1987. ACCOUNTING FOR DOWNTIME, IMFLICATIONS AND METHODOLOGY -Army Materials Technology Laboratory. Watertown, Massachusetts 02172-0001 THE REAL COST OF CORROSION: Army Materials Technology Laboratory, Watertown, Massachusetts 02172-0001 THE REAL COST OF CORROSIOM: ACCOUNTING FOR DOWNTIME, IMPLICATIONS I ١ I ł AND METHODOLOGY tables, 17 pp Eve Harris Eve Harris I U.S. U.S.

1-2-200000 1-2-200000000