ADA (TRADENANE) COHPILER VALIDATION SUMMARY REPOIT
HARR1S CORPORATION MAR.. (U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER W-P HFB OH ADA VALIL. . UN 86

|0 B Kk
""E w bl oo
=3 122
1l R Te "" 20
|"|E__ MI.S
=

N
(3

i

==
=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1903 A

ST R MR AR e L.

ﬁb;CLAserltD u"c ﬂLE | COBy |

SECURITY CLASSIFICATION QF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETEING FORM
1. REPORT NUMBER l2. GOVT ACCESSION NO. [3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)]] 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 12 JUN 1986 to 12 JUN 1987
Harris Corporatiorn, Barris Ada Compiler,
Version ‘1.0, Harris HCX-7 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Wright-Patterson

9. PERFORMING ORGANIZATION AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK
Ada validation Facility : AREA & WORK UNIT NUMBERS
ASD/SIOL
Wright-Patterson AFB OH 45433-6503
11. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE
Ada Joint Program Office 12 JUN 1986
United States Department of Defense [T NUWBER UF PAGES
Washington, DC 20301-3081 - 3 |
14. MONITORING AGENCY NAME & AODRESS(/fdifferent from Controlling Office) 15. SECURITY CLASS (of this report)
Wright-Patterson UNCLASSIFIED

15a. gsﬁkéaféFICATION/OOWNGRADING

fxs. DISTRIBUTION STATEMENT (of this Report)

| Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED ELECTE
MAY O 6 1387

J"E

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

00 fORN 1473 ¢pIrTIoN OF t NOV 65 1S OBSOLETE
1 JAN 73 S/N 0102-LF-014-6801 UNCLASSIFIED

THIS PAGE (When Data Entered)
»‘1”?’% SECURITY CLASSIFICATION OF Is (

\

. ~ o Nt aenn
-‘f-\f - 1‘:‘ e S R NN NS n\i

Y

R A S I S N R NP L R P AR R G
o o . L ” .

AdaO Compiler Validation Summary Report:

Compiler Name: Harris Ada Compiler, Version 1.0

Host Computer: Target Computer:
Harris HCX-7 Harris HCX-7
under under
HCX/UX HCX/UX
Version 2.1 Version 2.1

Testing Completed 12 JUN 1386 Using ACVC 1.7

This report has been reviewed and is approved.

Ada Validdtion Facility

Georgeanne Chitwood

ASD/SIOL

Wright-Patterson AFB OH #45433-6503

Accession For

NTIS GRA&I g
% . 72 5FC DTIC TAB
& Unannounced O
/ﬁa ggtluild;ti:: ag::ice Justification__ _ |

Institute for Defense Analyses

By 1
1 dria Vv
Alexandr A Distribution/

Availabiiity Codes
"~ lavail and/'ox"

Z% L. z 2 Dist Special
Ada nt Program Office

Virginia L. Castor A.I

Director
Department of Defense
Washington DC

®ada 1s a registered trademark of the United States Government
(Ada Joint Program Office).

- LA L A ™ i N L T T S

A N . o o ol W S PPV PP L. A ST

AVF Control Number: AVF-VSR-35.0886 'G"\ \

Ada® COMPILER pose
VALIDATION SUMMARY REPORT:

-

Harris Corporation - 'f;
Harris Ada Compiler, Version 1.0 :-r_l_'_
Harris HCX-7 -
! s
hoad
Completion of On-Site Validation: :&\
12 JUN 1986 s
NN
N
Prepared By: .ﬁ;“‘
Ada Validation Facility '&"":Q
ASD/SIOL ‘ .
Wright-Patterson AFB OH 45433-6503 by "
. \ N
X 4
't
l“::':
»
Prepared For: o
Ada Joint Program Office -..?,._'
United States Department of Defense :"\‘.;b"
5:.\:»“
|Q"‘i:v‘
-
d ':::::
QAda is a registered trademark of the United States Government 4
(Ada Joint Program Office). NG
RO
.\'.'-
n‘\“
YR
l‘. X
T
. ~n -'

------------ -

TN R R A A A O P B A PR B PN A A P N AR N RGNS PR RN
O -‘Mﬁu}&.‘ .‘.J}.'A P.‘nm:L"..“.A\L‘A'_L..‘_n o .(n\.. _-\‘L)_;)_.‘n::\-\.\,\-i'&Ak.ﬁ_m

-

MAAARL AL LS AR S o s s s e sy

+: +
+ Place NTIS form here «+
+ +*

e m el e el et s e e s ol

¥ "=y
‘e
I{.(

P
R L
s
A

.

‘.II-

-

b AAAS

»
i

PO
L
:55,5

S R R L L A S L R U O I O R R T S L K A T N A L W TR L SRS LY
umm:.ﬂ:\. :.'. :.‘f:.*:'t:}n.}:. ‘.\.}:m._};_*..ﬂ?;ﬁ(‘b L*Lﬁ.{l’_'. AN s :“LK-A.'FL‘Q*_L'.A. L&f&&"‘_‘.\‘ R AL AR

T

EXECUTIVE SUMMARY

X

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Harris Ada Compiler, Version 1.0,
using Version 1.7 of the AdaQoCompiler Validation Capability (ACVC). -

The validation process includes submitting a suite of standardized tests
(the ACVC) as 1inputs to an Ada compiler and evaluating the results. The
purpose is to ensure conformance of the compiler to ANSI/MIL-STD-1815A Ada
by testing that it properly implements legal language constructs and that
it identifies and rejects illegal language constructs. The testing also
identifies behavior that 1s implementation dependent but permitted by

ANSI/MIL-STD-1815A. Six classes of tests are used. These tests are

designed to perform checks at compile time, at 1link time, or during
2s2cution.

On-site testing was performed 11 JUN 1986 through 12 JUN 1986 at Harris
Corporation, Ft. Lauderdale, FL, under the direction of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures. . The Harris Ada Compiler, Version 1.0, is hosted on a Harris
HCX-7 operating under HCX/UX Version 2.1.

The results of validation are summarized in the following table:

RESULT TEST CLASS TOTAL
A B C D E L

pPassed 68 820 1072 17 11 23 20m

Failed 0 0 0 0 0 0 0

Inapplicable 0 4y 248 0 0 0 252

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 1 23 2279

®pda is a registered trademark of the United States Government
(Ada Joint Program Office).

A R AP P BB R N R A A RN "Rt * e ey ety tav . N - . . “g s - w
O A A S A A L T R D Lt R A SR TN T O N 2 D I A A0

:
:

There were 16 withdrawn tests in ACVC Version 1.7 at the time of this
validation attempt. A list of these tests appears in Appendix D.

Some tests demonstrate that some language features are or are not supported
by an implementation. For this implementation, the tests determined the
following:

. LONG_INTEGER and LONG_FLOAT are not supported.

. The additional predefined types TINY INTEGER, SHORT_INTEGER, and
SHORT_FLOAT are supported.

. Representation specifications for noncontiguous enumeration
representations are supported.

. Generic unit sbecitications and bodies can be compiled in separate
compilations.

. Pragma INLINE is supported for procedures and functions.
. The package SYSTEM is used by package TEXT_IO.
. Mode IN FILE and OUT_FILE are supported for sequential I/0.

. Instantiation of the package SEQUENTIAL_IO with unconstrained
array types 1is supporicd.

. Instantiation of the package SEQUENTIAL IO with unconstrained
record types with discriminants is supported.

. RESET and DELETE are supported for sequential and direct I/0.

. Mode IN FILE, INOUT _FILE, and OUT_FILE are supported for direct
1/0.

. Instantiation of package DIRECT IO with unconstrained array types
and unconstrained types with discriminants is supported.

. Dynamic creation and deletion of files are supported.

. More than one internal file can be associated with the same
external file.

. An external file associated with more than one internal file can
be reset.

. Illegal file names can exist.
ACVC Version 1.7 was taken on-site via magnetic tape to Harris Corporation,

Ft. Lauderdale, FL. All tests, except the withdrawn tests and any
executable tests that make use of a floating-point precision greater than

BT T T T e T I T T AT P A A A A AR N S PO
R SO TR TN SRRSO LR, S AU COLDINA,

SYSTEM.MAX_DIGITS, were compiled on a Harris HCX-7. Class A, C, D, and E
tests were executed on a Harris HCX-7.

On completion of testing, execution results for Class A, C, D, or E tests
were examined. Compilation results for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and 1link
results of Class L tests were analyzed for correct detection of errors.

The AVF identified 2021 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the Harris Ada Compiler,
Version 1.0. Excluded were 242 tests requiring a floating-point precision
greater than that supported by the implementation and the 16 withdrawn
tests. After the 2021 tests were processed, 10 tests were determined to be
inapplicable. The remaining 2011 tests were passed by the compiler.

The AVF concludes that these results demonstrate acceptable conformance to
ANSI/MIL-STD-1815A.

2 e O o St L I A P O d S e .-;.r‘.-".-‘.-_'.-'. S e‘. N A AT RN N OO Y

IR S LSS S e %y "

F LA A S A I S I T T A T TS A
o, ._f.:ﬁ-(‘.{;-k-fj.hﬁf‘::d‘x.&(-_'fu A

TABLE OF CONTENTS
CHAPTER 1 INTRODUCTION

1

2 USE OF THIS VALIDATION SUMMARY
3 RELATED DOCUMENTS . . « . . &
4 DEFINITION OF TERMS
5 ACVC TEST CLASSES

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
2.2 CERTIFICATE INFORMATION . . .
2.3 IMPLEMENTATION CHARACTERISTICS

CHAPTER TEST INFORMATION

TEST RESULTS « « ¢ & ¢ & ¢ « &

WITHDRAWN TESTS . . « ¢« « « &
INAPPLICABLE TESTS . ¢ & & + &
SPLIT TESTS &« ¢ ¢ « « o ¢ &+ &
ADDITIONAL TESTING INFORMATION
.1 Prevalidation
.2 Test Method
3 Test Site . . . ¢« ¢« « ¢ o &

NN~ OV EWN =

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

SUMMARY F TEST RESULTS BY CLASS . .
SUMMARY OF TEST RESULTS BY CHAPTER .

REPORT

e o o o o

PURPOSE OF THIS VALIDATION SUMMARY REPORT

2-1
2-2
2-2

3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-4

v m o

Yy

€

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to ANSI/MIL-STD-1815A. This report explains
all technical terms used within it and thoroughly reports the results of
testing this compiler using the Ada Compiler Validation Capability (ACVC).
An Ada compiler must be implemented according to the Ada Standard
(ANSI/MIL-STD-1815A). Any implementatlon-dependent features must conform
to the requirements of the Ada Standard. The entire Ada Standard must be
implemented, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform o ANSI/MIL-STD-1815A, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations imposed on a
compiler by the operating system and by the hardware. All of the
dependencies demonstrated during the process of testing this compiler are
given in this report.

VSRs are written according to a standardized format. The reports for
several different compilers may, therefore, be easily compared. The
information in this report is derived from the test results produced during
validation testing. Additional testing information as well as details
which are unique for this compiler are given in section 3.7. The format of
a validation report limits variance between reports, enhances readability
of the report, and minimizes the delay between the completion of validation
testing and the publication of the report.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

1=-1

- LI TN I NP A SIS TN S T T T S Y)

WL A A B, N 8 A AT AT AL N A N vvvw&v:a¢vvuvvvmvv\vva(af
. L . . Ral , A R . o] e N . . N h N . . R

W 0% Wy, 8 070,V Wy

-~ A

s 8K

e -
SO N

INTRODUCTION

. To attempt to identify any unsupported language constructs
required by the Ada Standard

« To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inec., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). Testing was conducted from 11 JUN
1986 through 12 JUN 1986 at Harris Corporation, Ft. Lauderdale, FL.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
cepresent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformances
to ANSI/MIL-STD-1815A other than those presented. Copies of this report
are available to the public from:

Ada Information Clearinghouse
Ada Joint Program QOffice
OUSDRE

The Pentagon, Rm 3D-139

1211 S. Fern, C-107
Washington DC 20301-3081

or from:
Ada Validation Facility
ASD/SIOL
Wright-Patterson AFB OH 45433-6503
1=2
S L G A S R O S O Sl SO Y S R SR 8, 8 N X G T R LR N

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada vValidation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1.3 RELATED DOCUMENTS

1. Reference Manual for the Ada Programming Language,

ANSI/HIL-STD-1815A FEB 1983.

2. Ada Validation Organization: Policies and Procedures, MITRE

Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC

Ada Standard

Applicant

AVF

AVO

Compiler

Failed test

Host

The Ada Compiler Validation Capability. A set of programs
that evaluates the conformance of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

ANSI/MIL-STD-1815A, February 1983.

The agency requesting validation.

The Ada Validation Facility. In the context of this report,
the AVF 1is responsible for conducting compiler validations
according to established policies and procedures.

The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting policies and
procedures for compiler validations.

A processor for the Ada language. In the context of this
report, a compiler 1is any language processor, including
cross-compilers, translators, and interpreters.

A test for which the compiler generates a result that
demonstrates nonconformance to the Ada Standard.

The computer on which the compiler resides.

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way
other than the one expected by the test.

LMC The Language Maintenance Committee whose function 1is to
resolve issues concerning the Ada language.

Passed test A test for which a compiler generates the expected result.
Target The computer for which a compiler generates code.

Test A program that evaluates the conformance of a compiler to a
language specification. In the context of this report, the
term is used to designate a single ACVC test. The text of a
program may be the text of one or more compilations.

Withdrawn A test found to be inaccurate in checking conformance to the
A test Ada language specification. A withdrawn test has an invalid
‘ test objective, fails to meet its test objective, or contains
) illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformance to ANSI/MIL-STD-1815A is measured using the ACVC, The 4iCvC
contains both 1legal and 4{llegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Special program units are used to report
the results of the Class A, C, D, and E tests during execution. Class B
tests are expected to produce compilation errors, and Class L tests are
expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. (However, no checks are performed during execution to see if
the test objective has been met.) For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test 1s passed if no errors are detected at compile time and the
program executes to produce a message indicating that it has passed.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing 1s examined to verify that every syntactical
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler. ‘

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT-APPLICABLE message indicating the result when it is
executed.

e e
- e

(RN

INTRODUCTION

Class D tests check the compilation and execution capacities of a compiler.
Since there are no requirements placed on a compiler by the Ada Standard
for some parameters (e.g., the number of identifiers permitted in a
compilation, the number of units in a library, and the number of nested
loops in a subprogram body), a compiler may refuse to compile a (lass D
test and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the test
is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT-APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute, Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report results. It also
provides a set of identity functions used to defeat some compiler
optimization strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The procedure
CHECK_FILE is used to check the contents of text files written by some of
the Class C tests for chapter 14 of the Ada Standard.

The operation of these units is checked by a set of executable tests,
These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation is not attempted.

Some of the conventions followed in the ACVC are intended to ensure that
the tests are reasonably portable without modification. For example, the
tests make use of only the basic set of 55 characters, contain lines with a
maximum 1length of 72 characters, use small numeric values, and place
features that may not be supported by all 4implementations 1in separate
tests, However, some tests contain values that require the test to be
customized according to implementation-specific values. The values used
for this validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformance to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicadle to
the implementation. Any test that was determined to contain an illegal

; + 0 v P

k)

:v

' INTRODUCTION

@

¢

Y

: language construct or an erroneous language construct is withdrawn from the
N ACVC and, therefore, is not used in testing a compiler. The nonconformant
_ tests are given in Appendix D.

3

‘0

.

1]

L

N}

»

t

&

o

é

]

d

-
¥
L}
)
) 1-6

'.) '.'\".' n° \ (SCY '."5 S A AN A A AN s .','.' -.._'.;."...\._:."_.’".',-.‘.'.;;.:_-.:.-.v T A '_.‘:_._.

PTG

- o ay -

-

R ™ 0% 1 0 NVt N

“',lo ‘\ .

*

A

O

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED.
The candidate compilation Sysiem for this validation was tested under the
following configuration:
Compiler: Harris Ada Compiler, Version 1.0
Test Suite: Ada Compiler Validation Capability, Version 1.7
Host Computer:
Machine(s): Harris HCX-7

Operating System: HCX/UX
Version 2.1

Memory Size: 3_221_225_u69

Target Computer:

Machine(s): Harris HCX-7
Operating System: HCX/UX
Version 2.1
Memory Size: 3_221_225_u69
2=1

WATRA AR RIS Ly Ny NS N BT 0 BT A RV LY T T PRI G Yo e AT R P I T
" , (*4"*' W "'fr) o. A (‘. 0... 1 f-.“'“"'

5

™ e e w >

» s & 8 3N

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION
Base Configuration:
Compiler: Harris Ada Compiler, Version 1.0
Test Suite: Ada Compiler Validation Capability, Version 1.7
Certificate Date: 16 JUL 1986
Host Computer:
Machine(s): Harris HCX-7

Operating System: HCX/UX
: Version 2.1

Target Computer:
Machine(s): Harris HCX-7

Operating System: HCX/UX
Version 2.1

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler 1in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences, However, tests in other classes also characterize an
implementation. This compller 1is characterized by the following
interpretations of the Ada Standard:

. Nongraphie characters.

Nongraphic characters are defined in the ASCII character set but
are not permitted in Ada programs, even within character strings.
The compiler correctly recognizes these characters as illegal in
Ada compilations. The characters are printed in the output
listing. (See test B2600SA.)

. Capacities.

The compiler correctly processes compilations containing 1loop
statements nested to 65 1levels, block statements nested to 65
levels, and recursive procedures nested to 17 levels. It
correctly processes a compilation containing 723 variables in the
same declarative part. (See tests DS55A03A through DSS5A03H,
D56001B, D640OSE through D64005G, and D29002K.)

2-2

.........

g W 1 Y, 1 TR A G0 4 0 G, g G b A T G L L LTRSS

MLIRRAL A RS B, Sin Bl lhhe S a AT A ARa Al S5 Mhe MR R et AR el A0R SaR ol taf Saf Vel Sab Val tal Salorate-al \at ot 2% mwmmmmw

CONFIGURATION INFORMATION

. Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX_INT. This
implementation does not reject such calculations and processes
them correctly. (See tests DUAOO2A, D4AOO2B, DA4AOO4A, and
DUAOOYB.)

. Predefined types.

This implementation supports the additional predefined types
SHORT_INTEGER, SHORT_FLOAT, and TINY INTEGER in the package
STANDARD. (See tests BB6001CR, B86001CP, and B86001DT.)

. Based literals.

An implementation is allowed to reject a based 1literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC_ERROR during execution. This implementation raises
NUMERIC_ERROR during execution. (See test E24101A.)

. Array types.
When an array type is declared with an index range exceeding the
INTEGER'LAST values and with a component that is a null BOOLEAN
array, this compiler raises NUMERIC_ERROR when the type is
declared. (See tests E362028 and E36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC_ERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array objects are
declared. (See test C52104Y.)

A null array with one dimension of 1length greater than
INTEGER'LAST may raise NUMERIC_ERROR either when declared or
assigned. Alternatively, an implementation may accept the
declaration. However, lengths must match in array slice
assignments. This implementation raises NUMERIC_ERROR when the
array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the entire expression
appears to be evaluated before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype.

In assigning two-dimensional array types, the entire expression
does not appear to be evaluated before CONSTRAINT _ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. (See test C52013A.)

AT

(et "- *

BRI R T R Y Y > 2 igvi ol o¥a. pig ata’ LA TUN TR U A g4 4.0 * 'YL v g 3 Y ! 3 B k] L. at * §

CONFIGURATION INFORMATION

. Discriminated types.

o

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications during
compilation. (See test E38104A.)

In assigning record types with discriminants, the entire

expression appears to be evaluated before CONSTRAINT_ERROR 1is

{ raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

. Aggregates.

¥ In the evaluation of a multi-dimensional aggregate, all choices
\ appear to be evaluated before checking against the index type.
; (See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
¢ an index subtype. (Sc2 test E43211B.)

» . Functions.

! The declaration of a parameterless function with the same profile
) as an enumeration literal in the same immediate scope is rejected
: by the implementation. (See test E66001D.)

. Representation clauses.

Enumeration representation clauses are not supported. (See test
BC1002A.)

. Pragmas.

The pragma INLINE is supported for procedures or functions. (See
| tests CA30C £ and CA3004F.)

. Input/output.

The package SEQUENTIAL_IO can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT_IO can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests
CE2201D, CE2201E, and CE2401D.)

Ve PRYe ey R e 0 T S . s PN
fa) n"- s, ’ i) l. e .l.l W AL L " nio.lo *'ﬂﬁ&‘h\.ﬁ‘h\‘hﬂ_&.\‘

CONFIGURATION INFORMATION

More than one internal file can be associated with each external
file for sequential 1/0 for both reading and writing. (See tests
CE2107A through CE2107F.)

More than one internal file can be associated with each external
file for direct I1I/0 for both reading and writing. (See tests
CE2107A through CE2107F.)

An external file associated with more than one internal file can
be deleted. (See test CE2110B.)

More than one internal file can bte associated with each external
file for text I/0 for both reading and writing. (See tests
CE3111A through CE3111E.)

An existing text file can be opened in OUT_FILE mode, can be
created in OUT_FILE mode, and can be created in IN FILE mode.
(See test EE3102C.)

Temporary sequential files are given a name. Temporary direct

files are given a name, Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

2-5

.;'fs'f . .;'. '-‘"J’ a 'f‘:{.'.' N "'-'_',’ P e tAts :' ST At AR AL T L N I IR T '.',‘... ‘4)"\.)\}5}\.0\)\.-“.-\.!\‘

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

The AVF identified 2021 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the Harris Ada Compiler,
Version 1.0. Excluded were 242 tests requiring a floating-point precision
greater than that supported by the implementation and the 16 withdrawn
tests. After they were processed, 10 tosts were deteruined to be
inapplicable. The remaining 2011 tests were passed by the compiler,

The AVF concludes that the testing results demonstrate acceptabdble
conformance to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D E L
Passed 68 820 1072 17 1 23 20
Failed 0 0 0 0 0 0] 0
Inapplicable 0 § 248 0 0 0 252
Withdrawn 0 4 12 0 0 0 16
TOTAL 68 828 1332 17 11 23 2279
3-1

]

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 _3_4 5 _ 6 __T7_8_9 10 _ 11 12 34

Passed 96 204 272 244 161 97 158 198 105 28 216 232 2011

Failed 0o o o 0 0 O O O O O O O 0

Inapplicable 20 103 122 3 0 0 3 1 0 0 0 0 252
Withdrawn 0o 1 y 0 o0 0 1 2 6 0 1 1 16

TOTAL 116 308 398 247 161 9T 162 201 111 28 217 233 2279

3.4 WITHDRAWN TESTS

The following tests have been withdrawn from the ACVC Version 1.7:

B4AO10C C41404A CA1003B

B83A06B cu48008A CA3005A through CA3005D (4 tests)
BA2001E CUAO14A CE2107E

BC3204C C92005A

C35904a C940ACA

See Appendix D for the test descriptions.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 252 tests were inapplicable for
the reasons indicated:

. C34001E, B52004D, B55B09C, B86001CS, and C55BOTA use LONG_INTEGER
which is not supported by this compiler.

. C34001G, C35702B, and B86001CQ use LONG_FLOAT which is not
supported by this compiler.

. CB6001F redefines package SYSTEM, but TEXT_IO is made obsolete by
this new definition in this implementation.

. C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

L4

Wy TR ¥ & o W W W e, PR SR S
S OISR 05 G L AN B GRS

GG S

TEST INFORMATION

. 242 tests were not processed because SYSTEM.MAX DIGITS was 9.
These tests were:

C24113F through C24113Y (20 tests)
C35705F through C35705Y (20 tests)
C35706F through C35706Y (20 tests)
C35707F through C35707Y (20 tests)
C35708F through C35708Y (20 tests)
C35802F through C35802Y (20 tests)
CA45241F through CU5241Y (20 tests)
C45321F through C45321Y (20 tests)
CUsl21F through C4S421Y (20 tests)
CHSU24F through C45424Y (20 tests)
C45521F through C45521Z (21 tests)
C45621F through C45621Z (21 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 0 Class A tests, 19 Class B tests, 0 Class C
tests, and 0 Class E tests,

B24104A B24104B B24104C
B2A003A B2A003B B2A003C
B33004A B37201A B38008A
B44001A BU1202A B64001A
B67001A B67001B B67001C
B67001D B9 10ABA B95001A
B9T101E

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.7 produced by
the Harris Ada Compiler, Version 1.0, was submitted to the AVF by the
applicant for prevalidation review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests.

- -

! TEST INFORMATION

¥ 3.7.2 Test Method

. Testing of the Harris Ada Compiler using ACVC Version 1.7 was conducted
, on-site by a validation team. The base configuration consisted of a Harris
N HCX-7 host and target operating under HCX/UX.

A magnetic tape containing ACVC Version 1.7 was taken on-site by the

validation team. The magnetic tape contained all tests applicable to this

validation, as well as all tests inapplicable to this validation except for
) any Class C tests that require floating-point precision exceeding the
N maximum value supported by the implementation. Tests that make use of
) values that are specific to an implementation were customized before being

written to the magnetic tape. Tests requiring splits during the

prevalidation testing were included 1in their split form on the magnetic

tape. No editing of the test files was necessary when the validation team
\ arrived on-site. '

The contents of the magnetic tape were 1loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled on the Harris HCX-7, and all executable tests were run.

4

2 The compiler was tested using command s:ciripts provided by Harris

. Corporation. These scripts were reviewed by the validation team.

. Tests were run in batch mode wusing a single computer. Test output,
compilation 1listings, and Jjob 1logs were captured on magnetic tape and

- archived at the AVF. The listings examined on-site by the validation team

* were also archived.

X

) 3.7.3 Test Site

) The validation team arrived at Harris Corporation, Ft. Lauderdale, FL on

= 11 JUN 1986 and departed after testing was completed on 12 JUN 1986.

1}

]

1)

v

of

, 3-4

o

N P T S R T D D S I o D B B R S AN NN NS o T NI RN

APPENDIX A

COMPLIANCE STATEMENT

Harris Corporation has submitted the following
compliance statement concerning the Harris Ada
Compiler.

ad

LIPS S)

COMPLIANCE STATEMENT

Compliance Statement

Base Configuration:
Compiler: Harris Ada Compiler, Version 1.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine(s): Harris HCX-7
Operating System: HCX /UX
Version 2.1

Target Computer:

Machine(s): Harris HCX-7
Operating System: HCX/UX
Version 2.1

{zrris Corporation has made no deliberate extensions to the Ada language standard.
Harris Corporation agrees to the public disclosure of this report.

Harris Corporaton agrees to comply with the Ada trademark policy, as defined by the
Ada Joint Program Office.

W/va//ﬂ/ M&T’"« Date: _ ¢ ~ /2 -5

Harris Corporation
Wendell Norton
Director of Contracts

. ™ “'“\ ut ey 'c.,‘- - LI]
MLCHRL LA MG LHL LV LN, Gl SORE

P R R R LG U AN R L T A

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to
certain allowed restrictions on representation classes. The
implementation-dependent - characteri<®:: of the Harris Ada
Compiler, Version 1.0, are described in the following sections
which discuss topics one through eight as stated in Appendix F of
the Ada Language Reference Manual (ANSI/MIL-STD-i815A). Package
STANDARD is also included in this appendix.

T AT

Appendix F of the Reference Manual for the Ada
Programming Language

J. R. Hollensen

Harris Corporation
Computer Systems Division
Software Development

1. Program Structure and Compilation

A 'main’ program must be a non-generic subprogram that is either a procedure or a function
returning an Ads STANDARD.INTEGER (the predefined type). While a 'main’ program may
not be a generic subprogram, it may, however, be an instantiation of a generic subprogram.

2. Pragmas

Implementation-Dependent Pragmas
PRAGMA CONTROLLED is recognised by the implementation but has no effect in this
release.

PRAGMA INTERFACE is recognised by the implementation and supports calls to C and
FORTRAN language functions with an optional link name for the subprogram. The Ada
soecifications can be either functions or procedures. All parameters must have mode IN.

For C, the types of parameters and the result type for functions must be scalar, access, or
the predefined type ADDRESS defined in the package SYSTEM. Record and array objects
may be passed by reference using the ADDRESS attribute.

For FORTRAN, all parameters are passed by reference; the parameter types must have
the type ADDRESS defined in the package SYSTEM. The result type for a FORTRAN
function must be a scalar type. Care should be taken when using tasking and FORTRAN
functions. Since FORTRAN is not reentrsnt we suggest that an Ada controller task
should be used to accessFORTRAN funetions.

The optional link name enables calling a function whose name is defined in another
language, allowing characters in the name that are not allowed in an Ada identifier. Case
sensitivity can then be preserved. Without the optional link name, the Ada compiler con-
verts sll C interface names to lower case and all FORTRAN interface names to upper
case. For instance, the following example generates a reference for $Varl with no case or
other changes: pragma INTERFACE (language_name, Varl, "§Varl”) ;

PRAGMA MEMORY_SIZE is recognised by the implementation, but bas no effect. The
implementation does not allow the package SYSTEM to be modified by means of pragmas;
however, the same effect can be achieved by recompiling SYSTEM with altered values.

PRAGMA OPTIMIZE is recognised by the implementation but has no eflect in this
release.

PRAGMA PACK will cause the compiler to choose a non-aligned representation for com-
posite types. In the current release, it will not cause objects to be packed at the bit level.
PRAGMA SHARED is recognised by the implementation but has no effect in this release.

PRAGMA STORAGE_UNIT is recognised by the implementation but has no effect. The
implementation does not allow the package SYSTEM to be modified by means of pragmas;
however, the same effect can be achieved by recompiling SYSTEM with altered values.

“a A e " ¢ h » . «Ta"a -y . - - . B . . .

P AIRY ST SR R e T e R A R P R S T PRI Py B
A AN G R g s o e T i A I AT IR N TR Y WO

.......

AW PR

PRAGMA SUPPRESS is recognized by the implemention and applies from the point of
occurrence to the end of the innermost enclosing block. The double parameter form of the
pragma, with a name of an object, type, or subtype is recognized, but has no eflect.

PRAGMA SYSTEM_NAME is recognized by the implementation but has no eflect. The
implementation does not allow the package SYSTEM to be modified by means of pragmas;
however, the same effect can be achieved by recompiling SYSTEM with altered values.
Implementation-Defined Pragmas

PRAGMA SHARE_BODY is used to indicate a desire to share or not share an instantia-
tion. The pragma may reference the generic unit or the instantiated unit. When 1t refer-
ences a generic unit, it sets sharing on/off for sll instantiations of that generic, unless
ovarridden by speciic SHARE_BODY pragmas for individual instantiations. When it
references an instantiaied unit, sharing is on/off only for that unit. The default is to
share all generics that can be shared, uniess the unit uses PRAGMA IN_LINE.

PRAGMA SHARE_BODY is only allowed in the following places: immediately within a
declarative part, immediately within a package specification, or after a library unit in a
compilation, but before any aubsequeng compilation unit. The form of this pragma is:

pragms SHARE_BODY (generic_name, boolean_literal)

Note that a parent instantiation is independent of any individual instantiation, therefore
recompilation of a generic with different parameters has no effect on other compilations
that reference it. The unit that caused compilation of a parent instantiation need not be
referenced in any way by subsequent units that share the parent instantiation.

Sharing generics causes a slight execution time penalty because all type attributes must be
indirectly referenced (as if an extra calling argument were added). However, it substan-
tially reduces compilation time in most circumstances and reduces program size.

3. Implementation-Dependent Attributes
There are no implementation-dependent attributes in HAPSE.

4. Specification of the package SYSTEM

package SYSTEM l
is
type NAME is (hex_ux); ‘

SYSTEM_NAME : constant NAME := hex_ux;
‘ STORAGE_UNIT : constant := 8;
P MEMORY_SIZE : constant := 3_221_225_469;
2 -~ System-Dependent Named Numbers
E MIN_INT : constant ;= -2_147_483_647 - 1;
MAX_INT : constant = 2_]47_483_647;
» MAX_DIGITS : constant = §;
E MAX_MANTISSA : constant := 31;
4 FINE_DELTA : constant = 2.0**(-14);
> TICK : constant := 0.01;
F-:I B-3
\l
M
:
\
o R L I L S AN JP P NE SRS S L e T e e . . F S .
A S A S A G R LR s O g R L TN A N I N A N

— Other System-dependent Declarations
subtype PRIORITY is INTEGER range 0 .. 7;
MAX_REC_SIZE : integer ;= 64*1024;

type ADDRESS is private;

NO_ADDR : constant ADDRESS;

function ADDR_GT(A, B: ADDRESS) return BOOLEAN;

function ADDR_LT(A, B: ADDRESS) return BOOLEAN;

function ADDR_GE(A, B: ADDRESS) return BOOLEAN;

function ADDR_LE(A, B: ADDRESS) return BOOLEAN;

function ADDR_DIFF(A, B: ADDRESS) return INTEGER,;

function INCR_ADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS;
function DECR_ADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS;

fur: tion ">"(A, B: ADDRESS) return BOOLEAN renames ADDR_GT;

function "<"(A, B: ADDRESS) return BOOLEAN renames ADGR_LT;

function ">="(A, B: ADDRESS) return BOOLEAN renames ADDR_GE;

function "<="(A, B: ADDRESS) return BOOLEAN renames ADDR_LE;

function "-"(A, B: ADDRESS) return INTEGER renames ADDR_DIFF;

function "+"(A: ADDRESS; INCR: INTEGER) return ADDRESS renames INCR_ADDR;
function "-"(A: ADDRESS; DECR: INTEGER) return ADDRESS renames DECR_ADDR;

pragma inline(ADDR_GT);
pragma iuline(ADDR_LT);
pragma inline(ADDR_GE);
pragma inline(ADDR_LE);
pragma inline(ADDR_DIFF);
pragma inline(INCR_ADDRY);
pragma inline(DECR_ADDR);

private .
type ADDRESS is new integer;
NO_ADDR : constant ADDRESS := 0;
end SYSTEM;

8. Restrictions on Representation Clauses
Pragma PACK '

Bit packing is not supported. In the presence of pragma PACK, components of composite
types are packed to the nearest whole STORAGE_UNIT.

Length Clauses ,
The specification T'SIZE is not supported. The specification T'SMALL is not supported.
Record Representation Clauses

Component clauses must specify aligpment on STORAGE_UNIT boundaries.
Address Clauses

Address clauses and interrupts are not supported.

6. Other Representation Implementation-Dependencies
Change of representation is not supported for record types.

The ADDRESS attribute is not supported for the following entities: static constants; packages;
tasks; labels; and entries.

B-4

]
N T i RVt v S S e, T A A N g R A I R LG LR LR T LR TR ¢ oy "!}
g 4 . o g =" o W0 ' o ' of s . " AT SN AN G YRS L TR

N g0 g fog [T RN v gl uy L3]

8 Machine code insertions are not supported.

i

g 7. Conventions for Implementation-Generated Names

i There are no implementation generated names.

) 8. Interpretation of Expressions in Address Clauses

b Address clauses and interrupts are not supported.

N

9. Restrictions on Unchecked Conversions

) The predefined generic function UNCHECKED_CONVERSION cannot be instantiasted with a

i target type that is an unconstrained array type or an unconstrained record type with discrim-

3 inants.

k. 10. Implementation ChLaracteristics of I/O Packages

5 Interpretation of Strings as Applied to External Files

b Strings that contain names of external files are interpreted in the following manner:
External files: file names may be composed of up to 258 characters of the ASCII character
set except for "/, with a total path name of up to 1024 characters. Further, the first

B character of a file must be alpba-numeric, “." or "_". If the "/ character is encountered in
s string, it is interpreted as a separator between file names that specify directories.

: Implementation-Dependent Characteristies of DIRECT 10

: Instantistions of DIRECT_IO use the value MAX_REC_SIZE as the record size (expressed

Q in STORAGE_UNITs) when the sise of ELEMENT_TYPE exceeds that value. For exam-

o ple, for unconstrained arrays such as string where ELEMENT_TYPE'SIZE is very large,
MAX_REC_SIZE is used instead. MAX_REC_SIZE is defined in SYSTEM and can be

. changed by a program before instantiating DIRECT_IO to provide aa upper limit on the

» record sizse. In any case, the maximum size supported is 1024 * 1024 * STORAGE_UNIT
bits. DIRECT_IO will raise USE_ERROR if MAX_RECORD_SIZE exceeds this absolute

. limit.

A Implementatian-Dependent Characteristics of SEQUENTIAL IO

Instantiations of SEQUENTIAL_IO use the value MAX_REC_SIZE as the record size
K, (expressed in STORAGE_UNITs) when the sise of ELEMENT_TYPE exceeds that value.
" For example, for unconstrained arrays such as string where ELEMENT_TYPE'SIZE is
very large, MAX_REC_SIZE is used instead. MAX_REC_SIZE is defined in SYSTEM and

]
) can be changed before instantiating SEQUENTIAL_IO to provide an upper limit on the record
q sise. SEQUENTIAL_IO imposes no limit oo MAX_REC_SIZE.
9
‘s
s
2 j
‘ \
!
>
3 B-5
\

T U R T o A 1 T R D o A R T T A S A e R R R A R NS S S|

APPENDIX F OF THE Ada STANDARD

L am aae as

Description of package STANDARD for Harris HCX-7

package STANDARD is

type INTEGER is -2_147_u83_648 .. 2_147_483_647;
vype SHORT_INTEGER is -32768 .. 32767;
~ype TINY_INTEGER is -128 .. 127;
rype FLOAT is digits 9 range
240111111111 I T T T ITTTTITIT1111111111111#E12T7 ..
2#0.111111111111111111111]111111111111111111111111111111111#5127;

type SHORT_FLOAT is digits 6 range ‘
<240. 11111111111 1111 1111112E127 .. 240. 1111111111111 111111 14E12T 3

type DURATION is delta 2#1.0#E-14 range
-2#0.100000000000000000.0¢# ..
-l AR RRRRRRAR R R A RRRR IS ERRREARRARAREE H

end STANDARD;

STANDARD .DURATION'SMALL = 6.10351563E-05 seconds

B-6

..........

I I A IO IO IO I N AN AN s
I AOSRIR T QUOL A Gt AN LG IR0,

-

A

o

3
1‘:'

M N W P
Ut VAl Y,

|l'\~'n o

»
"

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent
values, such as the maximum length of an input line and invalid
file names. A test that makes use of such values 1is 1identified
by the extension .TST in 1its file name., Actual values to be
substituted are identified by names that begin with a dollar
sign. A value is substituted for each of these names before the

test is run. The values used for this validation are given
below.

Name and Meaning

Value

$BIG_ID1 (1..498 => 'A', 499 => '1
Identifier of size MAX_IN_LEN
with varying last character.

$BIG_ID2 (1..498 => 'A', 499 => '2
Identifier of size MAX_IN_LEN
with varying last character.

$BIG_ID3 (1..249 => 'A', 250 => '3
Identifier of size MAX_IN _LEN 251..499 => 'A')
with varying middle character.

$BIG_IDY (1..249 => 'A', 250 => '4
Identifier of size MAX IN_LEN 251..499 => 'A')

with varying middle character.

$BIG_INT_LIT
An integer 1literal of value 298
with enough 1leading 2zeroes so
that it is MAX_IN_LEN characters
long.

C-1

A
ly

")

")

LIPS

(1..496 => '0', 497..499 => "298")

‘k """{‘a";- ™ s..‘."*v-’-*-'.-..-’-{-'\‘..-..\'.\¢-‘.\...J,..'.-.,- .‘f‘-’;(.q' RATRTRLY X
DO LAY Wy « A F .. - 3 5 - A - h y

TEST PARAMETERS

Name and Meaning

Value

$BIG_REAL_LIT
A real 1literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough 1leading zeroes to be
MAX_IN_LEN characters long.

$BLANKS
Blanks of length MAX IN LEN -~ 20
$COUNT_LAST
Value of COUNT'LAST in TEXT_IO
package.

$EXTENDED_ASCII_CHARS
A string 1literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD_LAST
Value of FIELD'LAST in TEXT_IO
package.

$FILE_NAME_WITH_BAD_CHARS
An illegal external file name
that either contains invalid
characters or is too long.

$FILE_NAME WITH_WILD_CARD_CHAR
An external file name that
either contains a wild card
character or is too long.

$GREATER_THAN_DURATION
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION.

$GREATER_IHAN_pURATION_pASE_LAST
The universal real value that is
greater than DURATION'BASE'LAST.

$ILLEGAL_EXTERNAL_FILE_NAME1
Illegal external file name.

$ILLEGAL_EXTERNAL_FILE_NAME2
Illegal external file names.

(1..493 => '0', 494..499 => "69.0E1")

(1..“79 => ' ')

2147483647

nabedefghi jklmnopqrstuvwxyz!$$2€(\]"" {}-"

2147483647

"/illegal/file name/2{)$2102C.DAT"

"/illegal/file name/CE2102C® ,DAT"

100_000.0

10_000_000.0

"/no/such/directory/ILLEGAL_EXT_FILE_NAMEI"

"/no/such/directory/ILLEGAL_EXT_FILE_NAME2"

TEST PARAMETERS

Name and Meaning

Value

$ INTEGER_FIRST -2147483648
The universal integer literal
expression whose value is

INTEGER'FIRST.

$INTEGER_LAST 2147483647
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESS_THAN_DURATION -100_000.0

A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

$LESS_THAN_DURATION_BASE FIRST -10_000_000.0
The universal real value that is
less than DURATION'BASE'FIRST.

$MAX_DIGITS 9
Maximum digits supported for
floating-point types.

$MAX_IN LEN 499
Maximum input 1line length
permitted by the implementation.

$NAME TINY_INTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

$NEG_BASED_INT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_ INT.

$NON_ASCII_CHAR_TYPE (NON_NULL)
An enumerated type definition
for a character type whose
literals are the 1identifier
NON_ NULL and all non-ASCII
characters with printable
graphics,

c-3

APPENDIX D

WITHDRAWN TESTS

Q Some tests are withdrawn from the ACVC because they do not
o conform to the Ada Standard. When testing was performed, the

following 16 tests had been withdrawn at the time of validation
‘ - testing for the reasons indicated:

) . BU4AO10C: The object_declaration in line 18 follows a
- subprogram body of the same declarative part.

. BB83A06B: The Ada Standard 8.3(17) and AI-00330 permit
the label LAB ENUMERAL of 1line 80 to be considered a
homograph of the enumeration literal in line 25.

e ". BA2001E: The Ada Standard 10.2(5) states: "Simple
names of all subunits that have the same ancestor
library unit must be distinct 4identifiers.®™ This test
checks for the above condition when stubs are declared.
However, the Ada Standard does not preclude the check
being made when the subunit is compiled.

X . BC3204C: The file BC3204C4 should contain the body for
ot BC3204C0 as indicated in line 25 of BC3204C3M.

1 . C35904A: The elaboration of subtype declarations SFX3
and SFX4 may raise NUMERIC_ERROR (instead of
CONSTRAINT ERROR).

. CH1404A: The values of 'LAST and 'LENGTH are incorrect
in IF statements from line 74 to the end of the test.

Ve e W & W

P)

o
]
-

......

& 4 v gt asl vi® aalh] N & " g p .. "y B \) . . A e . N e @k L gl g- . B . . ‘. B e . 4

' WITHDRAWN TESTS

‘ . CUBOOBA: This test requires that the evaluation of
» default initial values not occur when an exception is
raised by an allocator. However, the Language
Maintenance Committee (LMC) has ruled that such a
requirement is incorrect (AI-00397/01).

. CUAOI4A: The number declarations in 1lines 19-22 are
incorrect because conversions are not static.
N
X . C92005A: At line 40, "/=" for type PACK.BIG_INT is not
2 visible without a USE clause for package PACK.
) . COUOACA: This test assumes that allocated task TT1 will

run prior to the main program, and thus assign SPYNUMB
the value checked for by the main program; however, such
an execution order is not required by the Ada Standard,
80 the test is erroneous.

. CA1003B: This test requires all of the 1legal
" compilation units of a file containing some illegal
y units to be compiled and executed. According to
AI-00255, such a file may be rejected as a whole.

: . CA3005A..D (4 tests): No valid elaboration order exists
3 for these tests.

N

o

‘ . CE2107E: This test has a variable, TEMP_HAS_NAME, that
: needs to be given an initial value of TRUE.

’

2

L]

X

)

D)

2

¥ D-2

Y

¥

- o -\ I . I \ o AT L e A AT N R T AT T AT G Tt A
‘,.".“.-"‘. Al MY .l‘.oc.o ‘_n.a Kl .o Al .'.0 '. .n \“‘\ % \" . ‘0, .o, X N o Y) \". . > { W R » \. lh-‘

)]

L AN N A N W 1 Ca Y a CaCa e Ta ta e e s S

B

DR SEPC IS |

