
owp-fts 677 RDA (TRRDENE) COMPILER VALIDATION SUMAY REPORT III
HARRIS CORPORATION MAR.. (U) INFORMATION SYSTEMS AM
TECHNOLOGY CENTER N-P AFI OM ADA YALI. 12 JUN 6

UNCLASSIFIED FIGl 12/3 NL

mEmhhEEohmhmhE'

Il II 322

71

MIRCPYR OUTO ES HR

UNCLASSIFIED Ot FIL Cop.
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE EREDOINSTRTOS

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 12 .UN 1986 to 12 JUN1 1987
Harris Corporation, Harris Ada Compiler,
Version 1.0, Harris HCX-7 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBERs)
Wright-Patterson

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

it. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 12 JUN 1986
United States Department of Defense ". NUMBER U PAULi

4 Washington, DC 20301-3081 33
14. MONITORING AGENCY NAME & ADORESS(If different from ControllingOffice) 15. SECURITY CLASS (of this report)

"- Wright-Patterson UNCLASSIFIED
15a. R I iFICATIONIOOWNGRAOING

O 18. DISTRIBUTION STATEMENT (of this Repor)

_0 Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Re ort)

UNCLASSIFIED ELECTE
MAY 06 1987

18. SUPPLEMENTARY NOTES

.. .'.,- ..,

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

I .20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

0D tok 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAN 73 S/N 0102-LF-014-88OI UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

-,.' .\

Ada Compiler Validation Summary Report:

Compiler Name: Harris Ada Compiler, Version 1.0

Host Computer: Target Computer:
Harris HCX-7 Harris HCX-7

under under
HCX/UX HCX/UX

Version 2.1 Version 2.1

Testing Completed 12 JUN 1986 Using ACVC 1.7

This report has been reviewed and is approved.

Ada Validition Facility
Georgeanne Chitwood
ASD/SIOLWright-Patterson AFB OH '45433-6503

Accession For

DTIC TAB

Validation Unannounced El
Office Justificatio-

Dr. John F. Kramer
Institute for Defense Analyses By
Alexandria VA

Distribution/

Availability Codes

Avail and/or
Ar Dist Special

Ada J4nt Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC

Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

AVF Control Number: AVF-VSR-35.0886

w

Ada* COMPILER
VALIDATION SUMMARY REPORT:

Harris Corporation,.4
Harris Ada Compiler, Version 1.0

Harris HCX-7

Completion of On-Site Validation:
12 JUN 1986

Prepared By:

Ada Validation Facility
ASD/SIOL

Wright-Patterson AFB OH 45433-6503

Prepared For:

Ada Joint Program Office
United States Department of Defense

Washington, D.C.

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

N

V-<.

...............

+ Place NTIS form here +~

+P 1

~.0.
V

%

EXECUTIVE SUMKARY

This Validation Summary Report (VSR) sumarizes the results and conclusions
of validation testing performed on the Harris Ada Compiler, Version 1.0,
using Version 1.7 of the Ada1,Compiler Validation Capability (ACVC).

The validation process includes submitting a suite of standardized tests
(the ACVC) as inputs to an Ada compiler and evaluating the results. The
purpose is to ensure conformance of the compiler to ANSI/MIL-STD-1815A Ada
by testing that it properly implements legal language constructs and that
it identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
ANSI/MIL-STD-1815A. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, or during
e.ecution.

On-site testing was performed 11 JUN 1986 through 12 JUN 1986 at Harris
Corporation, Ft. Lauderdale, FL, under the direction of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The Harris Ada Compiler, Version 1.0, is hosted on a Harris
HCX-7 operating under HCX/UX Version 2.1.

The results of validation are sumarized in the following table:

RESULT TEST CLASS TOTAL
A B C D E L

Passed 68 820 1072 17 11 23 2011

Failed 0 0 0 0 0 0 0

Inapplicable 0 4 248 0 0 0 252

Withdrawn 0 1 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

I . - *. .". e. ' , " *t* *. I e .. .A -

. ;, . r.- -

..-

There were 16 withdrawn tests in ACVC Version 1.7 at the time of this
validation attempt. A list of these tests appears in Appendix D.

Some tests demonstrate that some language features are or are not supported
by an implementation. For this implementation, the tests determined the
following:

" LONGINTEGER and LONG FLOAT are not supported.

" The additional predefined types TINYINTEGER, SHORTINTEGER, and
SHORT FLOAT are supported.

Representation specifications for noncontiguous enumeration

representations are supported.

" Generic unit specifications and bodies can be compiled in separate
compilations.

" Pragma INLINE is supported for procedures and functions.

" The package SYSTEM is used by package TEXT IO.

• Mode IN-FILE and OUT-FILE are supported for sequential I/O.

" Instantiation of the package SEQUENTIALIO with unconstrained
array types is supporLtd.

• Instantiation of the package SEQUENTIAL 10 with unconstrained

record types with discriminants is supported.

• RESET and DELETE are supported for sequential and direct I/O.

• Mode IN FILE, INOUTFILE, and OUT FILE are supported for direct
II0.

" Instantiation of package DIRECT 10 with unconstrained array types

and unconstrained types with discriminants is supported.

• Dynamic creation and deletion of files are supported.

" More than one internal file can be associated with the same
external file.

• An external file associated with more than one internal file can
be reset.

o Illegal file names can exist.

ACVC Version 1.7 was taken on-site via magnetic tape to Harris Corporation,
Ft. Lauderdale, FL. All tests, except the withdrawn tests and any
executable tests that make use of a floating-point precision greater than

Ze

SYSTEM.MAXDIGITS, were compiled on a Harris HCX-7. Class A, C, D, and E
tests were executed on a Harris HCX-7.

On completion of testing, execution results for Class A, C, D, or E tests
were examined. Compilation results for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.

The AVF identified 2021 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the Harris Ada Compiler,
Version 1.0. Excluded were 242 tests requiring a floating-point precision
greater than that supported by the implementation and the 16 withdrawn
tests. After the 2021 tests were processed, 10 tests were determined to be
inapplicable. The remaining 2011 tests were passed by the compiler.

The AVF concludes that these results demonstrate acceptable conformance to
ANSI/MIL-STD-1815A.

"OL

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 USE OF IHIS VALIDATION SUMMARY REPORT 1-2
1.3 RELATED DOCUMENTS 1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 CERTIFICATE INFORMATION 2-2
2.3 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-
3.2 SUMMARY '.-F TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS 3-3
3.7 ADDITIONAL TESTING INFORMATION 3-3
3.7.1 Prevalidation 3-3
3.7.2 Test Method 3-4
3.7.3 Test Site 3-4

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

q

a'
"4",a . - - '; '. '.. -'.. ' €" . ."'.2 -"-'. .4¢ ;'-

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada cospiler conforms to ANSI/MIL-STD-1815A. This report explains
all technical terms used within it and thoroughly reports the results of
testing this compiler using the Ada Compiler Validation Capability (ACVC).
An Ada compiler must be implemented according to the Ada Standard
(ANSI/MIL-STD-1815A). Any implementation-dependent features must conform
to the requirements of the Ada Standard. The entire Ada Standard must be
implemented, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to ANSI/MIL-STD-1815A, it
must be tuderstood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations imposed on a
compiler by the operating system and by the hardware. All of the
dependencies demonstrated during the process of testing this compiler are
given in this report.

VSRs are written according to a standardized format. The reports for
several different compilers may, therefore, be easily compared. The
information in this report is derived from the test results produced during
validation testing. Additional testing information as well as details
which are unique for this compiler are given in section 3.7. The format of

a validation report limits variance between reports, enhances readability
of the report, and minimizes the delay between the completion of validation
testing and the publication of the report.

1.1 PURPOSE OF THIS VALIDATION S MMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

1-1

,- ," . " "," *ie ' ," *. - ... ". . e'/., ," . .;..".:. " '.'e.... r, -'.:. 'r. - . . -' . , ".i&'

INTRODUCTION

" To attempt to identify any unsupported language constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SotTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). Testing was conducted from 11 JUN
1986 through 12 JUN 1986 at Harris Corporation, Ft. Lauderdale, FL.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented 'on the signature page of this report do not
.,epresent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformances
to ANSI/MIL-STD-1815A other than those presented. Copies of this report
are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139
1211 S. Fern, C-107
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SIOL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1.3 RELATED DOCUMENTS

1. Reference Manual for the Ada Programming Language,
ANSI/HIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformance of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting policies and
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformance to the Ada Standard.

Host The computer on which the compiler resides.

1-3

% ,.** *

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

LMC The Language Maintenance Committee whose function is to

resolve issues concerning the Ada language.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that evaluates the conformance of a compiler to a
language specification. In the context of this report, the
term is used to designate a single ACVC test. The text of a
program may be the text of one or more compilations.

Withdrawn A test found to be inaccurate in checking conformance to the
test Ada language specification. A withdrawn test has an invalid

test objective, fails to meet its test objective, or contains
illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformance to tA!iSI/MIL-STD-1815A is measured using the ACVC. The CVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Special program units are used to report
the results of the Class A, C, D, and E tests during execution. Class B
tests are expected to produce compilation errors, and Class L tests are
expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. (However, no checks are performed during execution to see if
the test objective has been met.) For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a message indicating that it has passed.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntactical
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT-APPLICABLE message indicating the result when it is
executed.

1-4

INTRODUCTION

Class D tests check the compilation and execution capacities of a compiler.
Since there are no requirements placed on a compiler by the Ada Standard
for some parameters (e.g., the number of identifiers permitted in a
compilation, the number of units in a library, and the number of nested
loops in a subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the test
is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT-APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report results. It also
provides a set of identity functions used to defeat some compiler
optimization strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The procedure
CHECK FILE is used to check the contents of text files written by some of
the Class C tests for chapter 14 of the Ada Standard.

The operation of these units is checked by a set of executable tests.
These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation is not attempted.

Some of the conventions followed in the ACVC are intended to ensure that
the tests are reasonably portable without modification. For example, the
tests make use of only the basic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place
features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values. The values used
for this validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformance to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal

1-5

INTRODUCTION

language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The nonconformant

tests are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Harris Ada Compiler, Version 1.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine(s): Harris HCX-7

Operating System: HCX/UX
Version 2.1

Memory Size: 3_221_2254i69

Target Computer:

Machine(s): Harris HCX-7

Operating System: HCX/UX
Version 2.1

Memory Size: 3221225_469

2-1

4.)* - mD*.

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION

Base Configuration:

Compiler: Harris Ada Compiler, Version 1.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Certificate Date: 16 JUL 1986

Host Computer:

Machine(s): Harris HCX-7

Operating System: HCX/UX
Version 2.1

Target Computer:

Machine(s): Harris HCX-7

Operating System: HCX/UX
Version 2.1

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

. Nongraphic characters.

Nongraphic characters are defined in the ASCII character set but
are not permitted in Ada programs, even within character strings.
The compiler correctly recognizes these characters as illegal in
Ada compilations. The characters are printed in the output
listing. (See test B26005A.)

. Capacities.

The compiler correctly processes compilations containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures nested to 17 levels. It
correctly processes a compilation containing 723 variables in the
same declarative part. (See tests D55AO3A through D55AO3H,
D56001B, D64005E through D64005G, and D29002K.)

2-2

CONFIGURATION INFORMATION

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AO02A, D4AO02B, D4AO04A, and
D4AOO4B.)

. Predefined types.

This implementation supports the additional predefined types
SHORT INTEGER, SHORT FLOAT, and TINY INTEGER in the package
STANDARD. (See tests B86001CR, B86001CP, and B86001DT.)

• Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERICERROR during execution. This implementation raises
NUMERIC ERROR during execution. (See test E24101A.)

" Array types.

When an array type is declared with an index range exceeding the
INTEGER'LAST values and with a component that is a null BOOLEAN
array, this compilar raises NUMERIC ERROR when the type is
declared. (See tests E36202A and E36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array objects are
declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR either when declared or
assigned. Alternatively, an implementation may accept the
declaration. However, lengths must match in array slice
assignments. This implementation raises NUMERICERROR when the
array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the entire expression
appears to be evaluated before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is 3ompatible with the
target's subtype.

In assigning two-dimensional array types, the entire expression
does not appear to be evaluated before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. (See test C52013A.)

2-3

~~~~~ N j.. %% ~ **.~ ,



CONFIGURATION INFORMATION

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications during
compilation. (See test E38104A.)

In assigning record types with discriminants, the entire
expression appears to be evaluated before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

• Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C3207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (Sea test E43211B.)

• Functions.

The declaration of a parameterless function with the same profile
as an enumeration literal in the same immediate scope is rejected
by the implementation. (See test E66001D.)

• Representation clauses.

Enumeration representation clauses are not supported. (See test

BC1002A.)

• Pragmas.

The pragma INLINE is supported for procedures or functions. (See

tests CA3orE and CA3004F.)

Input/output.

The package SEQUENTIAL 10 can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT 10 can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests
CE2201D, CE2201E, and CE2401D.)

2-4



- ... oc - t , . Ta.. .7 t, .L .u i t L,~~U& .Sw W U L6-.' %'I

CONFIGURATION INFORMATION

More than one internal file can be associated with each external
file for sequential I/O for both reading and writing. (See tests
CE2107A through CE2107F.)

More than one internal file can be associated with each external
file for direct I/O for both reading and writing. (See tests
CE2107A through CE2107F.)

An external file associated with more than one internal file can
be deleted. (See test CE2110B.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests
CE3111A through CE3111E.)

An existing text file can be opened in OUT FILE mode, can be
created in OUTFILE mode, and can be created in IN FILE mode.
(See test EE3102C..)

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

2-5

| a 4.' .. *. ** P *~ $:~'* U



CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

The AVF identified 2021 of the 2279 tests in Version 1.7 of the ACVC as

potentially applicable to the validation of the Harris Ada Compiler,
Version 1.0. Excluded were 2112 tests requiring a floating-point precision
greater than that supported by the implementation and the 16 withdrawn
tests. After they were processed, 10 tests were deterwined to be

inapplicablu. The remaining 2011 tests were passed by the compiler.

The AVF concludes that the testing results demonstrate acceptable

conformance to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BT CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 68 820 1072 17 11 23 2011

Failed 0 0 0 0 0 0 0

Inapplicable 0 4 248 0 0 0 252

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

3-1

................................................



TEST INFORMATION

3.3 SUMMIARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
___ __ 2 _3 4 5 6 7 8 _ 0 11 12 14

Passed 96 204 272 244 161 97 158 198 105 28 216 232 2011

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 103 122 3 0 0 3 1 0 0 0 0 252

Withdrawn 0 1 4 0 0 0 1 2 6 0 1 1 16

TOTAL 116 308 398 247 161 97 162 201 111 28 217 233 2279

3.14 WITHDRAWN TESTS

The following tests have been withdrawn from the ACVC Version 1.7:

B4A01OC C41404A CA1003B
B83A06B C48008A CA3005A through CA3005D (4 test3)
BA2001E C4AO14A CE2107E
BC3204C C92005A
C35904A C94OACA

See Appendix D for the test descriptions.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 252 tests were inapplicable for
the reasons indicated:

" C34001E, B52004D, B55B09C, B86001CS, and C55B07A use LONG INTEGER
which is not supported by this compiler.

" C34001G, C35702B, and B86001CQ use LONG-FLOAT which is not
supported by this compiler.

*C86001F redefines package SYSTEM, but TEXT I0 is made obsolete by

this new definition in this implementation.

" C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

3-2



TEST INFORMATION

242 tests were not processed because SYSTEM.MAX DIGITS was 9.
These tests were:

C24113F through C24113Y (20 tests)

C35705F through C35705Y (20 tests)
C35706F through C35706Y (20 tests)
C35707F through C35707Y (20 tests)
C35708F through C35708Y (20 tests)
C35802F through C35802Y (20 tests)
C45241F through C45241Y (20 tests)
C45321F through C45321Y (20 tests)
C4I5421F through C45421Y (20 tests)
C45424F through C45424Y (20 tests)
C45521F through C45521Z (21 tests)
C45621F through C45621Z (21 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a 3et of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 0 Class A tests, 19 Class B tests, 0 Class C
tests, and 0 Class E tests.

B24104A B24104B B24104C
B2AOO3A B2AO03B B2AO03C
B33004A B37201A B38008A
B44001A B41202A B64001A
B67001A B67001B B67001C
B67001D B910ABA B95001A
B97101E

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.7 produced by
the Harris Ada Compiler, Version 1.0, was submitted to the AVF by the
applicant for prevalidation review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests.

3-3



TEST INFORMATION

3.7.2 Test Method

Testing of the Harris Ada Compiler using ACVC Version 1.7 was conducted
on-site by a validation team. The base configuration consisted of a Harris
HCX-7 host and target operating under HCX/UX.

A magnetic tape containing ACVC Version 1.7 was taken on-site by the
validation team. The magnetic tape contained all tests applicable to this
validation, as well as all tests inapplicable to this validation except for
any Class C tests that require floating-point precision exceeding the
maximum value supported by the implementation. Tests that make use of
values that are specific to an implementation were customized before being
written to the magnetic tape. Tests requiring splits during the
prevalidation testing were included in their split form on the magnetic
tape. No editing of the test files was necessary when the validation team
arrived on-site.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled on the HRr 1is HCX-7, and all executable tests were run.

The compiler was tested using command ,5i.ripts provided by Harris
Corporation. These scripts were reviewed by the validation team.

Tests were run in batch mode using a single computer. Test output,
compilation listings, and job logs were captured on magnetic tape and
archived at the AVF. The listings examined on-site by the validation team
were also archived.

3.7.3 Test Site

The validation team arrived at Harris Corporation, Ft. Lauderdale, FL on
11 JUN 1986 and departed after testing was completed on 12 JUN 1986.

3-4

% %, . • . , -. .-.- % . *% .°. .% ,' . " . . - ",.-. ,• . -% .' . %q - , %* .. -% % .*J*'' ","" . ". ,, o * *,"



APPENDIX A

COMPLIANCE STATEMENT

Harris Corporation has submitted the following
compliance statement concerning the Harris Ada
Compiler.

p

d

J

C

A-I



COMPLIANCE STATEMENT

Compliance Statement

Base Configuration:

Compiler: Harris Ada Compiler, Version 1.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine(s): Harris HCX-7

Operating System: HCX/UX
Version 2.1

Target Computer:

Machine(s): Harris HCX-7

Operating System: HCX/UX
Version 2.1

51arris Corporation has made no deliberate extensions to the Ada language standard.

Harris Corporation agrees to the public disclosure of this report.

Harris Corporaton agrees to comply with the Ada trademark policy, as defined by the
Ada Joint Program Office.

'/K\~-J/t 12~-Date: '/

Harris Corporation
Wendell Norton
Director of Contracts

A-2



APPENDIX 0

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to

certain allowed restrictions on representation classes. The
implementation-dependent .characterit _:a of the Harris Ada

Compiler, Version 1.0, are described in the following sections
which discuss topics one through eight as stated in Appendix F of
the Ada Language Reference Manual (ANSI/MIL-STD-1815A). Package
STANDARD is also included in this appendix.

' 3-1



Appendix F of the Reference Manual for the Ada
Programming Language

J. R. Hoelensen

Harris Corporation
Computer Systems Division

Software Development

. Program Structure and Compilation
A 'main' program must be a non-generic subprogram that is either a procedure or a function
retlirning an Ada STANDARD.INTEGER (the predefined type). While a 'main' program may
not be a generic subprogram, it may, however, be an instantiation of a generic subprogram.

2. Pragma
Trnipm-iYYttnnnl-pe-nteont Prag&aa

PRAGMA CONTROLLED is recognized by the implementation but has no effect in this
release.
PRAGMA INTERFACE is recognized by the implementation and supports calls to C and
FORTRAN language functions with an optional link name for the subprogram. The Ada
.eciflcations can be either functions or procedures. All parameters must have mode IN.
For C, the types of parameters and the result type for functions must be scalar, access, or
the predefined type ADDRESS defined in the package SYSTEM. Record and array objects
may be passed by reference using the ADDRESS attribute.
For FORTRAN, all parameters are paswed by reference; the parameter types must have
the type ADDRESS defined in the package SYSTEM. The result type for a FORTRAN
function must be a scalar type. Care should be taken when using tasking and FORTRAN
functions. Since FORTRAN is not reentrant we suggest that an Ada controller task
should be used to acceaFORTRAN functions.

The optional link name enables calling a function whose name is defined in another
language, allowing characters in the name that are not allowed in an Ada identifier. Case
sensitivity can then be preserved. Without the optional link name, the Ada compiler con-
verts all C interface names to lower case and all FORTRAN interface names to upper
case. For instance, the following example generates a reference for $Varl with no case or
other changes: pragma INTERFACE (language-name, Varl, S Varl") ;
PRAGMA MEMORY-SIZE is recognized by the implementation, but has no effect. The
implementation does not allow the package SYSTEM to be modified by means of pragmas;
however, the same effect can be achieved by recompiling SYSTEM with altered values.
PRAGMA OPTIMIZE is recognized by the implementation but has no effect in this
release.
PRAGMA PACK will cause the compiler to choose a non-sligned representation for com-

posite types. In the current release, it will not cause objects to be packed at the bit level.

PRAGMA SHARED is recognized by the implementation but has no effect in this release.

PRAGMA STORAGE-UNIT is recognized by the implementation but has no effect. The
implementation does not allow the package SYSTEM to be modified by means of pragmas;
however, the same effect can be achieved by recompiling SYSTEM with altered values.

B-2

, .. , , ,%. ,.;.-... ., , .,-. -.-.. ;...-.-....- ,..-,-..: .. ;.'... .... +..;.... -.- .-.....-%-F.. .-.P.-,



i . r . . W ' . ,, '' r ,r _,. . r -. r . r . r ,, . j: . . . -~ . . j rr y - w- rv, , r r t .

PRAGMA SUPPRESS is recognized by the implemention and applies from the point of
occurrence to the end of the innermost enclosing block. The double parameter form of the
pragma, with a name of an object, type, or subtype is recognized, but has no effect.

PRAGMA SYSTEMNAME is recognized by the implementation but has no effect. The
implementation does not allow the package SYSTEM to be modified by means of pragmas;
however, the same effect can be achieved by recompiling SYSTEM with altered values.

mploe mPntnt nn.-lPfiner Ezagmn/a
PRAGMA SHARE-BODY is used to indicate a desire to share or not share an instantia-
tion. The pragma may reference the generic unit or the instantiated unit. When it refer-
ences a generic unit, it sets sharing on/off for all instantiations of that generic, unless
overridden by specific SHARE-.BODY pragmas for individual instantiations. When it
references an instantiated unit, sharing is on/off only for that unit. The default is to
share all generics that can be shared, unless the unit uses PRAGMA LN-LINE.

PRAGMA SHARE-BODY is only allowed in the following places: immediately within a
declarative part, immediately within a package specification, or after a library unit in a
compilation, but before any subsequent compilation unit. The form of this pragma is:

pragma SHARE.BODY (generic-name, booleanjiteral)

Note that a parent instantiation is independent of any individual instantiation, therefore
recompilation of a generic with different parameters has no effect on other compilations
that reference it. The unit that caused compilation of a parent instantiation need not be
referenced in any way by subsequent units that share the parent instantiation.

Sharing generics causes a slight execution time penalty because all type attributes must be
indirectly referenced (as if an extra calling argument were added). However, it substan-
tially reduces enmpilation time in most circumstances and reduces program size.

3. Implementation-Dependent Attributes

There are no implementation-dependent attributes in HAPSE.

* 4. Speclflcatlon of th, packse SYSTEM

package SYSTEM
is

type NAME is ( hcx._ux);

SYSTEMNAME : constant NAME :- hcx.ux;

STORAGE-UNIT constant :- 8;
MEMORYSIZE : constant :- 3-221-225-469;

- System-Dependent Named Numbers

MINJNT constant :--2-147-483-647. 1;
MAX-INT constant :- 2-147-483-647;
MAX-DIGITS : constant : 9;
MAX.MANTISSA : constant :- 31;
FINE-DELTA : constant :- 2.0"'(-14);
TICK : constant :- 0.01;

B-3

.I ,;. . .. ... .. . ., . . _ -,. . .- , ,% . .", -.. ,. ...-- ,. .. .-.. .. . ,,



- Other System-dependent Deckarations

subtype PRIORITY is INTEGER range 0 .. 7;

MAX..REC.SIZE : integer := 64*1024;

type ADDRESS is private;

NO..ADDR : constant ADDRESS;

function ADDRGT(A, B: ADDRESS) return BOOLEAN;
function ADDRLT(A, B: ADDRESS) return BOOLEAN;
function ADDRGE(A, B: ADDRESS) return BOOLEAN;
function ADDRLE(A, B: ADDRESS) return BOOLEAN;
function ADDR.DIFF(A, B: ADDRESS) return LNTEGER;
function INCRADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS;
function DECR..ADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS;

fjr; t.,n ">"(A, B: ADDRESS) return BOOLEAN renames ADDRGT;
function "<"(A, B: ADDRESS) return BOOLEAN renamcs ADDRJLT;
function ">-"(A, B: ADDRESS) return BOOLEAN renames ADDRGE;
function "<-"(A, B: ADDRESS) return BOOLEAN renames ADDRLE;
function "-"(A, B: ADDRESS) return INTEGER renames ADDR..DFF;
function "+"(A: ADDRESS; INCR: INTEGER) return ADDRESS renames INCRADDR;
function "-"(A- ADDRESS; DECR: INTEGER) return ADDRESS renames DECRADDR;

pragma inline(ADDRGT);
pragma iuline(ADDR.LT);
pragma inline(ADDR..GE);
pragma inline(ADDR.LE);
pragma inline(ADDR..DIFF);
pragma inline(INCR..ADDR);
pragma inline(DECR._ADDR);

private
type ADDRESS is new integer;
NOADDR : constant ADDRESS :- 0;

end SYSTEM;

S. Rstictions on Reprsentation Clauses ,

Pragma PACK
Bit packing is not supported. In the presence of pragma PACK, components of composite
types are packed to the nearest whole STORAGE.UNIT.

Length Clauses

The specilcation T'SIZE is not supported. The specification T'SMALL is not supported.

Record Representation Clauses
Component clauses must specify alignment on STORAGE.UNIT boundaries.

Addres Clauses
Addres clauses and interrupts are not supported.

6. Other Reprmintation Implementation-Dependeneiei

Change of representation is not supported for record types.

The ADDRESS attribute is not supported for the following entities: static constants; packages;
tasks; labels; and entries.

B-4

i 4 -V W - C ' .



Machine code insertions are not supported.

7. Conventions for Implementatlon-Generated Names

There are no implementation generated names.

S. Interpretation of Expressions in Address Clauses
Address clauses and interrupts are not supported.

9. Restrictions on Unchecked Conversions
The predefined generic function UNCHECKEDCONVERSION cannot be instantiated with a
target type that is an unconstrained array type or an unconstrained record type with discrim-
inants.

10. Implementation Claiwacteristlcs of I/O Packages
Iaw.rpraLtin of Stinp as Applipe ta Extprnsl Eila

Strings that contain names of external files are interpreted in the following manner:
External files: file names may be composed of up to 256 characters of the ASCII character
set except for f", with a total path name of up to 1024 characters. Further, the first
character of a file must be alpha-numeric, ".s or *'. If the "/" character is encountered in
a string, it is interpreted as a separator between file names that specify directories.

Instantiations of DIRECTJO use the value MAXREC.SIZE as the record size (expressed
in STORAGE-UNITs) when the size of ELEMENT-TYPE exceeds that value. For exam-
pie, for unconstrained arrays such as string where ELEMENTTYPE'SIZE is very large,
MAX.EC...SIZE is used instead. MAX.REC-SIZE is defined in SYSTEM and can be
changed by a program before instantiating DIRECTJO to provide an upper limit on the
record size. In any case, the maximum size supported is 1024 * 1024 0 STORAGE-UNIT
bits. DIRECT-O will raise USE..ERROR if MAX.RECORD.SIZE exceeds this absolute
limit.

Tnplomontignne-ponelont Chz~z~nof SrTFN1AL. T

Instantiations of SEQUENTIAL-1O use the value MAXRECSIZE an the record size
(expressed in STORAGEUNITs) when the size of ELEMENT-TYPE exceeds that value.
For example, for unconstrained arrays such as string where ELEMENTTYPE'SIZE is
very large,.MAX.REC-SIZE is used instead. MAXREC..SIZE is defined in SYSTEM and
can be changed before instantiating SEQUENTIALJO to provide an upper limit on the record
size. SEQUENTIAL.O imposes no limit on MAX.RECSIZE.

B-5



APPENDIX F OF THE Ada STANDARD

Description of package STANDARD for Harris HCX-7

package STANDARD is

type INTEGER is -2_147_483648 .. 2_147_483_647;

type SHORTINTEGER is -32768 .. 32767;

; .ype TINY INTEGER is -128 .. 127;

v.ype FLOAT is digits 9 range
-2#0.111111111111111111111111111111111111111111111111111111 #E127.
2#0.1111111111111111111111111111111111111111111111111111111#E127;

type SHORT FLOAT is digits 6 range
-2#0.1T1111111111111111111#E127 .. 240.111111111111111111111#E127;

type DURATION is delta 2#1.0#E-14 range
-2#0.100000000000000000.0#
2#111111111!11111111.1111111;1111111#;

end STANDARD;

STANDARD.DURATION'SMALL z 6.10351563E-05 seconds

B-6



APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent
values, such as the maximum length of an input line and invalid
file names. A test that makes use of such values is identified
by the extension .TST in its file name. Actual values to be
substituted are identified by names that begin with a dollar
sign. A value is substituted for each of these names before the
test is run. The values used for this validation are given
below.

Name and Meaning
Value

$BIGIDI (i..1498 => 'A', 499 => 'i')
Identifier of size MAX IN LEN
with varying last character.

$BIGID2 (1..-498 => 'A', 499 => '2')
Identifier of size MAX IN LEN
with varying last character.

$BIGID3 (1..249 > 'A', 250 => '3',
Identifier of size MAX IN LEN 251..499 > 'A')
with varying middle character.

$BIGID4 (1..249 => 'A', 250 > '4',
Identifier of size MAX IN LEN 251..499 => 'A')
with varying middle character.

$BIG INT LIT (1..-496 => '0', 497..499 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is MAX IN LEN characters
long.

C-1



TEST PARAMETERS

Name and Meaning
Value

$BIG REAL LIT (1..493 => '0', 494..499 => "69.0E1")
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
MAXINLEN characters long.

$BLANKS (1..-479 > '

Blanks of length MAX IN LEN - 20

$COUNTLAST 21 47483647
Value of COUNT'LAST in TEXTIO
package.

$EXTENDED ASCII CHARS "abcdefghiJklmnopqrstuvwxyz!$%?@[\] )-"

A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELDLAST 2147483647
Value of FIELD'LAST in TEXT IO
package.

$FILE NAME WITH BAD CHARS "I illegal/file name/2 {]$2102C .DAT"
An illegal- external file name
that either contains invalid
characters or is too long.

$FILE NAME WITH WILD CARD CHAR "/illegal/file name/CE2102C*.DAT"
An external f7ile name that
either contains a wild card
character or is too long.

$GREATER THAN DURATION 100_000.0
A universal real value that lies
between DURATION' BASE'LST and
DURATION'LAST or any value in
the range of DURATION.

$GREATER -THAN DURATION BASE LAST 10 000_000.0
The unive'sal real-value that is
greater than DURATION'BASE'LAST.

$ILLEGAL EXTERNAL FILE NAME1 "/no/such/directory/ILLEGALEXTFILENAMEI"
Illegal external file name.

$ILLEGAL EXTERNAL FILENAME2 "/no/such/directory/ILLEGALEXTFILENAME2"
Illegal external file names.

C-2



TEST PARAMETERS

Name and Meaning
Value

$ INTEGER- FIRST -21147483648
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEGER LAST 2147483647
The universal integer literal
expression whose value is
INTEGER' LASTo

$LESS THAN DURATION -100 000.0
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any. value in
the range of DURATION.

$LESS THAN DURATION BASE FIRST -10000000.0
The universal real value that is
less than DURATION'BASE'FIRST.

$MAX DIGITS 9
Maximum digits supported for
floating-point types.

$MAX IN LEN 499
Maximum input line length

-. permitted by the implementation.

$NAME TINY INTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT-FLOAT, SHORT-INTEGER,
LONG FLOAT, or LONGINTEGER.

$NEG BASED INT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

$NON ASCII CHAR TYPE (NON NULL)
An enumerated type definition
for a character type whose
literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

C-3



APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not
conform to the Ada Standard. When testing was performed, the
following 16 tests had been withdrawn at the time of validation
testing for the reasons indicated:

. B4AO10C: The object declaration in line 18 follows a
subprogram body of the same declarative part.

• B83AO6B: The Ada Standard 8.3(17) and AI-00330 permit
the label LAB ENUMERAL of line 80 to be considered a
homograph of the enumeration literal in line 25.

. BA2001E: The Ada Standard 10.2(5) states: "Simple
names of all subunits that have the same ancestor
library unit must be distinct identifiers." This test

checks for the above condition when stubs are declared.
However, the Ada Standard does not preclude the check
being made when the subunit is compiled.

BC3204C: The file BC3204C4 should contain the body for
BC3204C0 as indicated in line 25 of BC3204C3M.

C35904A: The elaboration of subtype declarations SFX3
and SFX4 may raise NUMERIC ERROR (instead of
CONSTRAINT ERROR).

C41404A: The values of 'LAST and 'LENGTH are incorrect
in IF statements from line 74 to the end of the test.

D-1



WITHDRAWN TESTS

• C48008A: This test requires that the evaluation of
default initial values not occur when an exception is
raised by an allocator. However, the Language
Maintenance Committee (LMC) has ruled that such a
requirement is incorrect (AI-00397/01).

" C4AO14A: The number declarations in lines 19-22 are
incorrect because conversions are not static.

• C92005A: At line 40, "/=" for type PACK.BIG INT is not
visible without a USE clause for package PACK.

• C90OACA: This test assumes that allocated task TT will
run prior to the main program, and thus assign SPYNUMB
the value checked for by the main program; however, such
an execution order is not required by the Ada Standard,
so the test is erroneous.

CAI003B: This test requires all of the legal
compilation units of a file containing some illegal
units to be compiled and executed. According to
AI-00255, such a file may be rejected as a whole.

• CA3005A..D (4 tests): No valid elaboration order exists
for these tests.

• CE2107E: This test has a variable, TEMP HASNAME, that
needs to be given an initial value of TRUE.

D-2



1

S

4


