
VERDIX RDA DEVELOPMENT.. (U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER U-P RFl OH RDA YALI. 19 JUN 6

:: IFIEDI

F/ O 2/5 H

EhEEENCLhhSEEhEEEmhhmhhEEE
Eu'ommmms

III! 1 11.-- U 28

L2

1111111.1

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURtAU OT STANDARDS 1963 A
Il
iU

,.18

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) * M

REPORT DOCUMENTATION PAGE RECPRUCTIONS

1. REPORT NUMBER 1(. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 19 JUN 1986 to 19 JUN 1987
Verdix Ada Development System, 6.0, DEC
MicroVAX II Host and Microbar GPC68K Target 6. PERFORMING ORG. REPORT NUMBER

7 AUTH R(s 8. CONTRACT OR GRANT NUMBER(s)
Wright-Patterson

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SLOL
Wright-Patterson AFB, OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 19 JUN 1986
United States Department of Defense 13. NUMUEK Of PAGLS
Washington, DC 20301-3081 39

14. MONITORING AGENCY NAME & ADORESSf different from ControllingOffice) 15. SECURITY CLASS (of this report): Wright-Patterson UNCLASSIFIED
1Sa. Rj FICATION,'DOWNGRADING

___N/A

16. DISTRIBUTION STATEMENT (of this Report)

00 Approved for public release; distribution unlimited.
'-

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

18. SUPPLEMENTARY NOTES
MA. 70

I.F.

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

4 ' Ada Programming language, Ada Compiler Validation Summary Report, Ada

Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DD ',u, 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Oata Entered)

:2%

Adae Compiler Validation Summary Report:

Compiler Name: Verdix Ada Development System (VADS), 6.0

Host Computer: Target Computer:

DEC MicroVAX II Microbar GPC68K
under

Micro VMS 4.2 (No operating system)

Testing Completed 19 JUN 1986 Using ACVC 1.7

This report has been reviewed and is approved.

Ada Validation Facility
Georgeanne Chitwood
ASD/SLOL
Wright-Patter3)n AFB OH 45433-6503

Accession For

__________DTIC TAB ed
Ada Validation Office tiou

Dr. John F. Kramer justifica

Institute for Defense Analyses
Alexandria VA BY

Dist ?ibut ion/_

AvailabilitY Codes

Avail an~d/or

Dist specialAda Jolrt Program Office

Virginia L. Castor .PI
Director
Department of Defense
Washington DC

SAda is a registered trademark of the United States Government
(Ada Joint Program Office).

D %"%° - %. . . . ° • . , ,,. % "=

AVF Control Number: AVF-VSR-39.1086

Ada® COMPILER
VALIDATION SUMMARY REPORT:

Verdix Ada Development System, 6.0
DEC MicroVAX II Host

and
Microbar GPC68K Target

Completion of On-Site Validation:
19 JUN 1986

Prepared By:
Ada Validation Facility

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C.

A

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

-4

I

S - , .q, o" . ' ,, .% " o" ' , -% " ' %

r ,e -inr.7......f..........F........

+

+ Place NTIS form here +
.

EXECUTIVE SUMMARY

/

This Validation Summary Report (VSR) summarizes the results and conclusions
.)I' validation testing performed on the Verdix Ada Development System
iADS), 6.0, using Version 1.7 of the Ada® Compiler Validation Capability

'ACVC).

1b Y6lidation process includes submitting a suite of standardized tests

(the ICVC) as inputs to an Ada compiler and evaluating the results. The
purpose is to .nsure conformance of the compiler to ANSI/MIL-STD-1815A Ada
by testing that it properly implements legal language constructs and that
it identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
ANSI/MIL-STD-1815A. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, or during
execution.

On-site testing was performed 17 JUN 1986 through 19 JUN 1986 at Aloha,

Oregon, jcder the direction of the Ada Validation Facility (AVF), according
to Ada Validation Organization (AVO) policies and procedures. The VADS,
6.0, is hosted on a DEC MicroVAX II operating under Micro VMS, 4.-2.

The results of validation are summarized in the following table:

RESULT TEST CLASS TOTAL
A B C D E L

Passed 68 820 1144 17 11 23 2083

Failed 0 0 0 0 0 0 0

Inapplicable 0 4 176 0 0 0 180

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

(Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

There were 16 withdrawn tests in ACVC Version 1.7 at the time of this
validation attempt. A list of these tests appears in Appendix D.

Some tests demonstrate that some language features are or are not supported
by an lmplementatiun. For this implementation, the tests determined the
following:

The additional predefined types, TINYINTEGER, SHORT INTEGER, and
SHORT FLOAT, are supported. Types LONGINTEGER and LONG FLOAT are
not supported.

" Representation specifitations for noncontiguous enumeration
representations are supported.

" Generic unit specifications and bodies cannot be compiled in
separate compilations.

" Pragma INLINE is supported for procedures. Pragma INLINE is
supported for functions.

The package SYSTEM is used by package TEXT_10.

Mode IN FILE iJ supported for sequential I/O.
Mode OUT FILE is supported for sequential I/0.

Instantiation of the package SEQUENTIAL IO with unconstrained
array types is supported.

Instantiation of the package SEQUENTIAL 10 with unconstrained

record types with discriminants is supported.

RESET and DELETE are supported for sequential and direct I/O.

Mode IN FILE is supported for direct I/O.
Mode INOUT FILE is supported for direct I/O.
Mode OUTFILE is supported for direct I/O.

" Instantiation of package DIRECT 10 with unconstrained array types

and unconstrained types with discriminants is supported.

Dynamic creation and deletion of files are supported.

" More than one internal file can be associated with the same
external file.

" An external file associated with more than one internal file can
be deleted.

Illegal file names can exist.

".. ; " ,... . . . ' , t ,./ -. , .- .. *, '. -. ,.-

ACVC Version 1.7 was taken on-site via magnetic tape to Aloha, Oregon. All
tests, except the withdrawn tests and any executable tests that make use of
a floating-point precision greater than SYSTEM.MAX DIGITS, were compiled on
a oC MicroVAX II. Class A, C, D, and E tests were executed on a Microbar
GPC68K.

On completion of testing, execution results for Class A, C, D, or E tests
were examined. Compilation results for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.

The AVF identified 2093 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the VADS, 6.0. Excluded were
;70 tests requiring a floating-point precision greater than that supported
, the implementation and the 16 withdrawn tests. After the 2093 tests

were processed, 10 tests were determined to be inapplicable. The remaining
2083 tests were passed by the compiler.

The AVP concludes that these results demonstrate acceptable conformance to
ANSI/MIL-STD-1815A.

F b

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT • . • -I
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 RELATED DOCUMENTS 1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES 1-4

C'APTER 2 CONFIGURATION INFORMATION

2 CONFIGURATION TESTED -1
2.2 CERTIFICATE INFORMATION2-2
2.3 IMPLEMENTATION CHARACTERISTICS2-3

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMmARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS 3-3
J.7 ADDITIONAL TESTING INFORMATION 3-3
3.7.1 Prevalidation 3-3
3.7.2 Test Method3-4
3.7.3 Test Site3-5

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to ANSI/MIL-STD-1815A. This report explains
all technical terms used within it and thoroughly reports the results of
testing this compiler using the Ada Compiler Validation Capability (ACVC).
An Ada compiler must be implemented according to the Ada Standard
(ANSI/MIL-STD-1815A). Any implementation-dependent features must conform
to the requirements of the Ada Standard. The entire Ada Standard must be
implemented, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to ANSI/MIL-STD-1815A, it
must be understood that some differences do exist between implementations.

The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations imposed on a
compiler by the operating system and by the hardware. All of the
dependencies demonstrated during the process of testing this compiler are
given in this report.

VSRs are written according to a standardized format. The reports for
several different compilers may, therefore, be easily compared. The
information in this report is derived from the test results produced during
validation testing. Additional testing information as well as details
which are unique for this compiler are given in section 3.7. The format of
a validation report limits variance between reports, enhances readability
of the report, and minimizes the delay between the completion of validation
testing and the publication of the report.

1. 1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

1-1

l . -," 4-: j"• . "-." "-' .' -%~4~ *. - d L. U ,U. ." U: Z . ' "-, "%- _ ' "'; 2: "' ", - >' ".-."

wu WU:i~nWT 'WUW n- W"= xM wwwwI

INTRODUCTION

" To attempt to identify any unsupported language constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Stari< 'rd

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). Testing was conducted from 17 JUN
1986 through 19 JUN 1986 at Aloha, Oregon.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Cort .. nt with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,

operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate aid complete, or that the subject compiler has no nonconformances
to ANSI/MIL-STD-1815A other than t!'ase presented. Copies of this report
are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139
1211 S. Fern, C-107
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SIOL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1.3 RELATED DOCUMENTS

I. Reference Manual for the Ada jo_2 Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformance of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting policies and
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformance to the Ada Standard.

Host The computer on which the compiler resides.

1-3

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler J.s
test not required to support or may legitimately support in a way

other than the one expected by the test.

LMC The Language Maintenance Committee whose function is to

resolve issues concerning the Ada language.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that evaluates the conformance of a compiler to a
language specification. In the context of this repcpt, the
term is used to designate a single ACVC test. The t-'t of a
program may be the text of one or more compilations.

Wit"-aWL A test fowid to be inaccurate in checking conformance to the
test Ada language specification. A withdrawn test has an invalid

test objective, fails to meet its test objective, or contains
illegal or erroneous use of the language.

1.5 ACVC icST CLASSES

ConformatQa to ANSI/MIy.-STD-1815A is measured using the ACVC. The ACVC
contains both legal and illeg 1. :.da programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Special program units are used to report
the results of the Class n, C, D, and E tests during execution. Class B
tests are expected to produce compilation errors, and Class L tests are
expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. (However, no checks are performed during execution to see if
the test objective has been met.) For example, a Class A test checks that

reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a message indicating that it has passed.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the

resulting compilation listing is examined to verify that every syntactical
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Clans C test is self-checking and produces a PASSED,
FAILED, or NOT-APPLICABLE message indicating the result when it is
executed.

1-4

INTRODUCTION

Class D tests check the compilation and execution capacities of a compiler.
Since there are no requirements placed on a compiler by the Ada Standard
for some parameters (e.g., the number of identifiers permitted in a
compilation, the number of units in a library, and the number of nested
loops in a subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the test
is claqqified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT-APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject prograno containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it. is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled Units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main pro&ram must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK -FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report results. It also

* provides a set of identity functions used to defeat some compiler
* optimization strategies and force computations to be made by the target

computer instead of by the compiler on the host computer. The procedure
* CHECKFILE is used to check the contents of text files written by some of

the Class C tests for chapter 114 of the Ada Standard.

-* The operation of these units is checked by a set of executable tests.
* These tests produce messages that are examined to verify that the units are

operating correctly. If these units are not operating correctly, then the
validation is not attempted.

Some of the conventions followed in the ACVC are intended to ensure that
the tests are reasonably portable without modification. For example, the
tests make use of only the basic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place
features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values. The values used

* for this validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
lemonstrate conformance to the Ada Standard by either meeting the pass
,:riter-4a given for the test or by showing that the test is inapplicable to
the im.-ementation. Any test that was determined to contain an illegal

1-5

INTRODUCTION

language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The nonconformant
tests are given in Appendix D.

1-6

%~9 ~*,~~% ' ' '~'"~ 2~% ~ V %..~. *~ %<

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFTGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Verdix Ada Development System (VADS), 6.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine: DEC MicroVAX II

Operating System: Micro VMS 4.2

Memory Size: 11 Megabytes

Target Computer:

Machine: Microbar GPC68K

Operating System: None

Memory Size: 0.5 Megabyte

S

Comunications Network: Ethernet

Note: A SUN-2 operating under UNIX 4.2 BSD was used to transfer the
executable images from the host to the target. The SUN machine was also
used to execute the runtime support packages that were required to report
test results and to perform file operations.

2-1

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION

Base Configuration:

Compiler: Verdix Ada Development System (VADS), 6.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Certificate Date: 3 September 1986

Host Computer:

Machine(s): DEC MicroVAX II

Operating System: Micro VMS 4.2

Target Computer:

Machine(s): Microbar GPC68K

Operating System: None

Communications Network: Ethernet

2-2

CONFIGURATION, NFORMATION

IMPLEMENTATI ON CHARACTERISTICS

-ne of the purposes of validating compilers is to determine the behavior of
a capiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
Interpretations of the Ada Standard:

Nongraphic characters.

Nongraphic chAracters are defined in the ASCII character set but
are not petiitted in Ada programs, even within character strings.
The compile, correotly recognizes these characters as tilegal in

Ada compilations. The characters are printed in the ncitput
listing in R graphic representatior, for example "^A." (See test
B2bUU5A.)

Capacities.

The compiler correctly processes compilations containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures nested to 17 levels. It
correctly processes a compilation containing 723 variables in the
same declarative part. (See tests D55AO3A through D55A03H,
D56001B, D64005E through D64005G, and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAXINT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AOO2A, D4AOO2B, D4AOO4A, and
D4AOO4B.)

* Predefined types.

This implementation supports the additional predefined types
SHORT INTEGER, SHORTFLOAT, and TINY INTEGER in the package
STANDARD. (See tests B86001CR, B86001CS, B86001CP, B86001CQ, and
B86001DT.)

• Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERICERROR during execution. This implementation raises
NUMERICERROR during execution. (See test E2i4O1A.)

2-3

"'.~t.'..' t-'.. %'...............".-............. *-*--- :-,-',%L',-','.', , '5 ** '. -''.* ." -*.* " " .* .**'

CONFIGURATION INFORMATION

Array types.

When an array type is declared with an index range exceeding the
INTEGER'LAST values and with a component that is a null BOOLEAN
array, this compiler raises NUMERIC ERROR when the type is
declared. (See tests E36202A and E36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array type is declared.
(See test C52104Y.)

A ni)il array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR either when declared or
assigned. Alternately, an implementation may accept the
declaration. However, lengths must match in array slice
assignments. This implementation raises NUMERICERROR when the
array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the entire expression
appears to be evaluated before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype.

In assigning two-dimensional array types, the entire expression
does not appear to be evaluated before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. (See test C52013A.)

. Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications during
compilation. (See test E38104A.)

In assigning record types with discriminants, the entire
expression appears to e evaluated before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

" Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

2-4

~ ~ 3 I.II*'m ~ .~. *,... *.p ~ *-~N.1

CONFIGURATION INFORMATION

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.

(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See tebt E43211B.)

. Functions.

The declaration of a parameterless function with the same profile
as an enumeration literal in the same immediate scope is rejected
by the implementation. (See test E66001D.)

. Pragmas.

The pragma INLINE is supported for procedures and for functions.
(S:,e tests CA3004E and CA3004F.)

. Input/out put.

The package SEQUENTIAL 10 can be instantiated with unconstrained

array types and record types with discri.minants. The package
DIRECT 10 can be instantiated with unconj,.ained array types and
record types with discriminants. (See tests CE2201D, CE2201E, and
CE201D.)

More than one internal file can be associated with each external
file for sequential I/O for both reading and writing. (See tits
CE2107A through CE2107F.)

More than one internal file can be associated with each external
file for direct I/O for reading only. (See tests CE2107A through
CE2107D and CE2107F.)

An external file associated with more than one internal file can
be deleted. (See test CE2110B.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See test CE3111A
through CE3111E.)

An existing text file can be opened in OUT FILE mode, can be

created in OUT FILE mode, and can be created in IN FILE mode.
(See test EE3102C.)

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

2-5

ZI.

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

The AVF identified 2093 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the Verdix Ada Development
System (VADS), 6.0. Excluded were 170 tests requiring a floating-point
precision greater fhn that supported by the implementation and the 16
.4ithdrawn tests. After they were processed, 10 tests were determined to be
Inapplicable. The remaining 2083 tests were passed by the compiler.

The AVF concludes that the testing results demonstrate acceptable
confomr;ann to the Ada Standard.

0

3.2 SUMM ARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 68 820 1144 17 11 23 2083

Failed 0 0 0 0 0 0 0

Inapplicable 0 4 176 0 0 0 180

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

3-1

IW L W5W-TWT i
[

.-

TEST INFORMATION

3.3 SUY ARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER

_g ___ __j 6 7 8 9 10 11 12 14 TOTAL

Passed 102 234 308 244 161 97 158 198 105 28 216 232 2083

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 73 86 3 0 0 3 1 0 0 0 0 180

Withdrawn 0 1 4 0 0 0 1 2 6 0 1 1 16

TOTAL 116 308 398 247 161 97 162 201 111 28 217 233 2279

3.4 WITHDRAWN TESTS

The following tests have been withdrawn from the ACVC Version 1.7:

B4AO10C C41404A CA1003B
B83A06B C48008A CA3005A through C3O05D (4 tests)

BA2001E C4AO14A CE2107E
BC3204C C92005A
C35904A C94OACA

See Appendix D for the test descriptions.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 180 tests were inapplicable for
the reasons indicated:

. C34001E, B52004D, B55B09C, B86001CS, and C55B07A use LONGINTEGER
which is not supported by this compiler.

. C34001G, C35702B, and B86001CQ use LONG FLOAT wh'ch is not

supported by this compiler.

" C86001F redefines package SYSTEM, but TEXT IO is made obsolete by
this new definition in this implementation.

* C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

3-2

J<

TEST INFORMATION

170 tests were not processed because SYSTEM.MAXDIGITS was 15.
These tests were:

C24113L through C24113Y (14 tests)
C35705L thxough C35705Y (14 tests)
C35706L tlhrough C35706Y (14 tests)
C35707L through C35707Y (14 tests)
C35708L through C35708Y (14 tests)
C35802L through C35802Y (14 tests)
C45241L through C45241Y (14 tests)
C45321L through C45321Y (14 tests)
C45421L through C45421Y (14 tests)
C45424L through C45424Y (14 tests)
C45521L through C45521Z (15 tests)
C45621L through C45621Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 17 Class B tests.

B24104A B2AO03C B67001A B95001A
B24104B B33004A B67001B B97101E
B24104C B41202A B67001C
B2AO03A B44001A B67001D
B2AO03B B64001A B910ABA

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.7 produced by

the VADS, 6.0, was submitted to the AVF by the applicant for prevalidation
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests.

3-3

TEST INFORMATION

.7.2 Test Method

festing of the VADS using ACVC Version 1.7 was conducted on-site by a
validation team. The configuration consisted of a DEC MicroVAX II host
operating under Micro VMS and a Microbar GPC68K target. The host and
target computers were linked via a SUN-2. The host was connected to the
SUN-2 via Ethernet. The target was connected to the SUN-2 directly; the
GPC68K was connected to the SUN-2 Muitibus from which it also drew its
power:

MICROVAX
II

(VMS)

FTP

SUN-2 MULTIBUS MICROBAR
(UNIX) GPC 68K

RS-232

0

A magnetic tape containing ACVC Version 1.7 was taken on-site by the
validation team. The magnetic tape contained all tests to be run during
validation testing. Tests that make use of values that are specific to an

implementation were customized before being written to the magnetic tape.
Tests requiring splits during the prevalidation testing were included in
their split form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded, the full set of tests was
compiled on the DEC MicroVAX II, in chapter order. The resulting object

files were linked on the DEC MicroVAX II, and the executable images were
transferred using a file transfer program (FTP) and Ethernet to a SUN-2,

operating under UNIX 4.2 BSD. The target computer, a Microbar GPC68K, was
connected to the SUN-2 Multibus. The executable images were saved to disk
on the SUN-2 and loaded one by one into the GPC68K memory via the Multibus
and the on-board ROM Monitor of the target. Once an image was loaded, it
was executed and the results were sent to the SUN-2 via two RS-232 lines
which were controlled by one of two Ada runtime support packages, SIMPLEIO
or CROSSIO.

3-4

=% .'%.-,,.,', " . ,." .%,,".".' ' .% .- "". . "".,' . • ., .,, .""'"."'',..'""",". -. '. '%=,=,.."' ' " ' "-" ,%" .. %' . -

TEST INFORMATION

The SUN-2 file system was used for all input and output. The executatle
tests for all chapters except chapter 14 were run using a simplified part

of the runtime system, SIMPLE 10, that does not support file input and
output. The use of SIMPLE 10 reduced link time, file transfer time, and
execution time. The chapter 14 tests, which use file input-output, were
run using the runtime system package CROSS IO, executing on both the SUN-2
and the Microbar GPC68K. File operations were performed on the SUN-2 file
system. Results were transferred to the host computer via Ethernet and

FTP. Results were printed from the host computer.

The compiler was tested using command scripts provided by Verdix. These

scripts were reviewed by the validation team.

Te'-? ere run using one hot :oiiputer and one target computer. Test
outpt., compilation listings, and job logs were captured on magnetic tape
and archived at the AVF. The listings exmined on-site by the validation
team were also archived.

3.7.3 Test Site

The validation team arrived at Aloha, Oregon on 17 JUN 1986 and departed

after testing was completed on 19 JUN 1986.

4. 3-5

5- . - . A -A

APPENDIX A

COMPLIANCE STATEMENT

Verdix has submitted the following compliance statpmpnt
concerning Ltno VADS.

A-1

COMPLIANCE STATEMENT

Compliance Statement

Base Configuration:

Compiler: Verdix Ada Development System

Product ID: VAda-010-03105, Version: V6.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine(s): Digital Equipment Corporation

MICROVAX II

Operating System: MICROVMS
4.2

Target Compute,':

Machine(s): Microbar GPC68K

Operating System: (bare)

Communications Network: ETHERNET and FTP

VERDIX has made no deliberate extensions to the Ada language standard.

VERDIX agrees to the public disclosure of this report.

VERDIX agrees to comply with the Ada trademark policy, as defined by the

Ada Joint Program Office.

VERDIX
Greg Burns
Project Manager, Ada Systems

.A-

i A-2

1

4 p

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, *and to certain allowed restrictions on
representation classes. The implementation-dependent characteristics of
the VADS, 6.0, are described in the following sections which discuss topics
one through eight as stated in Appendix F of the Ada Language Reference
Manual (ANSI/MIL-STD-1815A). Package STANDARD is also included in this
appendix.

B-i

ATIACHMENT II

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation.Dependent PragmW

1.1. SHARE-BODY Pragma

The SHARE BODY pragma takes the name of a generic insntiation or a generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument. This pragma is only allowed
immediately at the place of a declarative item in a declarative pat or package specification, or after a
library unit in a compilation, but before any subsequent compilatim unit.

When the first argument is a generic unit the pragma applies to all instantauons of that generic. When
the first argument is the name of a generic instantiation the pragma applies only to the specified instan-
tiaton, or overloaded instanations.
If the second argument is TRUE the compiler will try to uhare code generated for a generic instunia-
tion with code generated for other instmnianons of the same generic. When the second argument is
FALSE each instantiaLion will get a unique copy of the generated code. The extent to which code is
shared between instantiations depends on this pragma and the kind of generic formal parameters
declared for the generic unit.

1.2. EXTERNAL-NAME Pragma
The EXTERNAL NAMNE pragmna takes the noe of a a subprogram or variaLle defined in Ada and
allows the user to specify a different exernal name that may be used to r-.ference the entity from other
languages. The pragma is allowed at the place of a declarative item in a package specification and
must apply to an object declared earlier in the same package specification.

1.3. i'TERFACEOBJECT Pragma

The INERFACE OBJECT pragma takes the name of a a variable defined in another language and
allows it to be referenced directly in Ada. The pragma will replace all occurrences of the variable
name with an external refervce to the second. link argument. The praga is allowed at the place of a
declarative item in a package specification and must apply to an object declared earlier in the same
package specification. The object must be declared as a scalar or an access type. The object canot be
any of the following:

a loop variable,
a constant.
an initialized variable,
an array, or
a record.

2. Implementation of Predefined Pragmas

2.1. CONTROLLED
This pragma is recognized by the implementation but has no effect.

2.2. ELABORATE
This pragma is implemented as described in Appendix B of the Ada RM.

B-2

• - - ,,• . . . " " " " t ",, • ,, " . --- "-- -- --"-" "' % ,% " I. ,% ,% ' ,, '-% % ' ., % ,,'" '%""%'

77"

2.3. INLNE

This pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE

This pragma supports calls to IC' and FORITAN functions. The Ada subprograms can be either func-
uons or procedures. The types of paramm ers and the result type for functions must be scalar, access or
the predefined type ADDRESS in SYSTEM. An optional third argmet overrides t_ default lik
name. All parameters must have mode IN. Record Ad array objects can be passed by reference using
the ADDRESS atibute.

2.5. LIST

This pragma is implemented as described in Anndix B of the Ada kM.

2.6. MEMORYSIZE

This pragma is recognized by the implementation. The implementation does not alow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.7. OPTIMIZE

This pragma is recognized by the implementaion but has no effect.

2.8. PACK
This pragma will cause the compiler to choose a non-aligned representation for composite tpes. Con-
ponents that we smaller than a STORAGEUNIT we packed into a number of bits that is a power of
two.

2.9. i.LGE
This prsqma is implemented as described in Appendix B of the Ada RM.

2.10. PRIORITY

This pragma is implemented as described in Appendix B of the Ada KM.

2.11. SHARED
This pragma is recognized by the implementatiom but has no effect.

2.12. STORAGE-UNIT

This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pagmas, the SYSTEM package must be recompiled.

2.13. SUPPRESS
,, This pragma is implemented as described, except that RANGE-CHECK and DIVISION-CHECK can-

not be supressed.

2.14. SYSTEM NAME
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.
3. Implementation-Dependent Attributes

* NONE.

N, B-3
N%

N

4. Specification Of Package SYSTEM

package SYSTEM
is

type NAME is (vmsm68k);

SYSTENAE : constant NANE :- vmsm68k

STORAGE UNIT : constant :- 8;
MEMDRYSIZE : constant :- 262144;

-- System-Dependent Named Numbers

NUN INT : constant :-2 147 483 647 1;
N _-INr : constant 2147483647;
MAX DIGITS : constant :- 15;
MAX MANTISSA : constant :- 31;
FINE LTA : constant :, 2.000(-14);
TICK : constant :- 0.01;

Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 7;

MAXRECSI2Z : integer :- 6401024;

type ADDRESS is private;

NOADIR : constant ADR.ESS;

function PHYSICAL ADRESS(I: INTEGER) return ADDRESS;
function AECRGT(A, B: ADDRESS) return BOO.EAN;
function ADDR LT(A, B: ADDRESS) return BOOLEAN;
function AEDRGE(A, B: ADDRESS) return BOOLEAN;
function AMRLE(A, B: ADD.ESS) return BOO.EAN;
function ADDRDIFF(A, B: ADESS) return INTEGER;
function INCRA -1DR(A: ADDESS; INCR: INTEGER) return ADDRESS;
function DECRA11(A: AIRESS; DECR: INTEGER) return ADDRESS;

function ">'(A, B: ADDESS) return BOOLEAN renames ADDR GT;
function "<"(A, B: ADDRESS) return BOOLEAN renames ADDR-LT;
function *>=*(A, B: ADMSS) return BOOLEAN renames ADDRGE;
function *<-"(A, B: ADDRESS) return BOOEAN renames ADDR LE;

. function "-'(A, B: ADDRESS) return INTEGER renames ADDR DIFF;
function "+"(A: ADDRESS; INCR: INTEGER) return ADDRESS renames INCR ADDR:

function "-'(A: ADDRESS; DECR: INTEGER) return ADDRESS renames DECRADD

pragma inline(ADDRGT);
pragma inline(ADDR_LT);
pragma inline(ADMGE);
pragma inline(ADDR_LE);
pragma inline(ADDR_DIFF);
pragma inline(INCRADDR);
pragma inline(DECRADDR);

private

B-4

.% ' , -% ' " % . % -" - % s . \ *'. " . .. ** * 5 5. - ' , " -%-%'
-Y -,

type AMRESS is new integer;

NO ADOR : constant ADEESS :- 0;

end SYSTEM;

5. Restrictions On Representation Ciases

5.I. Pragma PACK

Array and record components that am sma1er than a STORAGE UNIT ae packed into a number of
bits that is a power of two. Objects and larger components we packed to the narest whole
STORAGE UNIT.

$.2. Size Specification

The size specification TSMALL is not supported.

53. Record Representation Clauses

Components not aligned on even STORAGE-UNIT boundaries may not span more than four
STORAGE UNITs.

5.4. Address Clauses

Address clauses are not supported.

S.5. Interrupts

Interrupts are not supported.

5.6. Representation Attributes

The ADDRESS amibute is not supported for the following entities:

Packages
Tasks
Labels
Entries

5.7. Machine Code Insertions

Machine code insertions ae supported.

6. Conventions for Implementatioe-generated Names

There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address clauses are not supported.

8. Restrictions on Unchecked Conversions

The predefined generic function UNCHECKED CONVERSION cannot be instantiated with a target
type which is an unconstrained array type or an unconsatained record type with discriminants.

*. B-5

-...-.

9. Implementation Characteristics of 1/O Packages

Instantations of DIRECT 10 use the value MAX REC SIZE as tht secord size (expressed in
STORAGE _JNT7S,) when the size of ELE1.N'T TYTPE exceeds that value. For example for unzon-
su-aned arrays such as string where ELEME.NT TYPE'SIZE is very large, MAX RPC SUM is used
instead. MAX RECORD SIZE is defined in SYSTEM and can be changed by' a program before
insantiaung DIRECT10 to provide an upper limit on the record size. In any case the maximum sze
supported is 1024 x 1024 x STORAGE _ UNIT bim. DIRECI 1O will raise USE-ERROR if
MAX REC SIZE exceeds this absolute limit

Instatnauons of SEQUENTIAL 10 use the value MAX REC SUM as the record size (expressed in
STORAGE-UNITS) when the size of ELEMENT TYPE-exceds that value. For example fcr uncon-
stained arrays such as suing where ELEMENT TYPE'SIZE is very lare, MAXRECSIZE is used
instead. MAX RECORD SIZE is defined in SYSTEM and can be changed by a program before
instanuaung INTEGERI to provide an upper limit on the record size. SEQUENTIAL_10 impose no
limnt on M.AX REC SIZE.

10. Implementation Limits

The following limits are actually enforced by the implementation. It is not intended to imply that
resources up to or even near these limits ar available to every program.

10.1. Line Length

The implementation supports a maximum line length of 500 charactenrs including the end of line charac-
ter.

10.2. Record sod Array Sizes

The maximur' siz of a statcally sized array type is 4.000,00 x STORAGE UNITS. The rrn..um
size of a statically sized record type is 4,000,000 x STORAGE UNITS. A record type or array type
'eclaration that exceeds these limits will generate a warning message.

10.3. Default Stack Size for Tasks

In the absence of an explicit STORAGE SIZE length specification every task except the main program
is allocated a fixed size stack of 10.240 STORAGEUNITS. This is the value returned by
T'STORAGE SIZE for a task type T.

10.4. Default Collection Size

In the absence of an explicit STORAGE SIZE length attribute the default collection size for an access
type is 100,000 STORAGEUNITS. This is the value rrned by T'STORAGESIZE for an access
type T.

10.5. Limit on Declared Objects

There is an absolute limit of 6,000.000 x STORAGEUNITS for objects declared statically within a
*, compilation unit. If this value is exceeded the compiler will terminate the compilation of the unit with a
. FATAL error message.

B- 6

1%

=:<:a;e stan~ar:- is
type boo:ean is (false, true);
f7.7-:l n "-" ,ef:, right: bcclean) return bcolean;
fun,:on "/-" (left, right: boolean) return ocl:ean:function "<" (left, rlght: boolean) return boolean;
function "e-" (left, right: boolean) return boolean;
function ">" (left, right: boolean) return boolean:
function "an" (left, right: boolean) return boolean;

function "and" (left, right: boolean) return boolean;
function "or" (left, right: boolean) return boolean;
function "xor" (left, right: boolean return booleanfunction "not" (right: boolean) return boolean;

type tiny integer is range -128 .. 127;
function "-" (left, right: tiny_integer) return boolean:
function "/-" (left, right: tinyinteger) return boolean;
function "<" (left, right: tinyinteger) return boolean;
function "<-" (left, right: tinyinteger) return boolean;
function ">" (left, right: tiny integer) return boolean;
function ">-" (left, right: tiny integer) returr. "-olean;
function "+" (right: tiny-integer) return tiny integer;
function "-" (right: tiny integer) return tiny integer;
function "abs (right: tiny integer) return tiny-integer;
function "+" (left, right- tiny integer) return tiny integer;
function "-" (left, right: tiny integer) return tiny-integer;
function "*" (left, right: tiny integer) return tiny-integer:
function "/" (left, right: tiny integer) return tiny_integer;
function "remO (left, right: tiny integer) return tiny intoeger;
function "mod* (left, right: tiny integer) return tiny_integer;
function n*-" (left, right: tiny integor) return tiny integer;

type short integer is range -32768 .. 32767;
function "= (left, right: short integer) return boolean;
function "/-r (left, right: short-integer) return boolean:
function "< (left, right: short integer) return boolean;
function "<-* (left, right: short integer) return boolean;
function ">0 (left, right: short-integer) return boolean;
function ">-" (left, right: short~integer) return boolean:
function "+" (right: short integer) return short integer:
function 0-0 (right: short integer) return short-integer:
function "abs (right: short integer) return short-integer;
function 0+0 (left, right: shortinteger) return short integer;
function "-" (left, right: short integer) return short integer;
function *" (left, right: short integer) return short integer:
function "/" (left, right: short integer) return short integer;
function "ramO (left, right: short integer) return short integer;
function "mod" (left, right: short integer) return short integer;
function ("s (left, right: shortinteger) return shortinteger;

type integer is range -2147483648 2147483647;
function - (left, right: integer) return boolean;
function r/-r (left, right: integer) return boolean;
function w" (left, right: integer) return boolean;
function "<- (left, right: integer) return boolean;
function ">0 (left, right: integer) return boolean;
function ">-* (left, right: integer) return boolean;
function 0+0 (right: integer) return integer;
function a-" (right: integer) return integer;
function "abs (right: integer) return integer;
function "+" (left, right: integer) return integer;
function "-" (left, right: integer) return integer;
function "" (left, right: integer) return integer;
function 0/0 (left, right: integer) return integer;
function "rem" (left, right: integer) return integer;
function "mod" (left, right: integer) return integer;

Permit Tlly legible SPoduc~on

. , . . : in. e;e: .- z n- .ege-;

type shortfl:at is d1igts 6 range

function " (left, right: short_float) return boolean;
function "I" (left, right: short float) return boolean;
function (left, rignt: shortfloat) return boolean;
function 0 (left, right: short float) return boolan;
function "-" (left, right: short float) return boolean;
function "/-" (left, right: short-float) return boolean;
funct-on "<" (right: shortfloat) return short float;
function "- (right: short-float) return short float;
function "abs (right: short-float) return bhortofloat;
function "- (left, right: short-float) return shortfloat;
function "" (left, right: short float) return short float;
function - (left, right: short float) return short-float;
function " (lft, right: short float) return short- float;
function "+" (left, right: short float) return short-float;

* type float is digits 15 range

function 0-0 (left, right: float) return boolean;
function "/- (left, right: float) return boolean;
function "/< (left, right: float) return boolean:
function "<-" (left, right: float) return boolean;
function 0" (left, right: float) return boolean;
function ">-" (left, right: float) return boolean;
function "0" (right: float) return float;
function -0 (right: float) return float:
function "ab (right: float) return float;
function 0+- (left, right: float) return float;
function "-" (left, right: float) return float;
function " (lft, right: float) return float;
function "/ (left, right: float) return float:
function " " (left, right: float) return float;

function "-" (left: univ integer; right: univ real) return univ real;
function "' (left: uni real; right: univinteqr) return univreal;
function "1" (left: univ real; right: univ integer) return univ-real;

function " (left: any fixed; right: any fixed) return univ fixed;
function "/" (left: anyfixed: right: any fixed) return univ fixed;

type character is
(nul, soh, six, etx, eot, enq, eck, bel,
bs, ht, lf, vt, ff, cr, so, si,
dle, dcl, dc2, dc3, dc4, nak, syn, etb,
can, eM, sub, esC, f3, 9s, r3, us,

u I# #&, o,"

'8', IV', 121, ';', '<4', 51, 06 , .71IS', ~ ~ ~ 'E 'F' 1':G'0,10 ., >,11I@", WA, #so, PC#, 'Do, IE, F, *o
'H', '1', ' ', 'IM, 01', 'me, Om', '0',
'', '', 'R', 'SO, 'T', 'U', IV', IN',

"V I ' \ ' 0 "I'll, 11a' , 'b', 'C', Id', to", If', 'q'
Ph', 'i', ' ', 'k', 'i', 'm', In', to",
'P', 'q', 'r', Is', It', 'U , V , ' '
X , 'y', IV, ,'1),I- a)

for character use
(, ,2, 3, 4, 5, , 7, 8, 9, 10, 127);

package ascii is

' V.j1iimble to Tc

B-8

.. .. *, , ., .I , - .-,, .; / *** 1 .d. -.-... -*..%.t \.I;,% .'. %' .* -' -*: [. , .' . ..-a: %."

- >!a::.r: - -

stx: :: n3 t 3t :naracter 3 s-x; etx: :Star. .:a:::
eot: cc stant character :- eot; enq: ccnstant cnarae: t =
ack: constant character :- ack: bel: constant character e .

If constant character :- .f; vt constant charac:or
ff constant character :ff; cr constant ch-aracter :
so : constant character : so; constant character :s;:
dle: constant character :- dle: dcl: constant character : a:.:
dc2: constant charac:er :- dc2; dc3: constant character - --

dc4. constant character :- dc4; nak: constant character :- nak;
syn: constant character :- syn; etb: constant character -t;
sub: constant character : sub; esc: constant character : esc;
rs : constant character :- rs; us : constant character :- us;
del: constant character : del;

exclam : constant character :- '
quotation : constant character :-
sharp : constant character :- '':
dollar : constant character :- '5';
percent : constant character :- '%';
ampersand : cnstant character :- '&';
colon : constant character : '
semicolon : constant character :- ';;
query : constant character :- ':
at sign : constant character :- '0';
I bracket : constant character :- ';
back slash : constant character :-
r bracket : constant character :-
underline : constant character : '

grave : constant character :
1 brace : constant character IV;
b-ar : constant character :- 'I';
r brace : constant character :- ')';
tlde : constant character :- '-';

Ic a: constant character :- 'a';

lc z: constant character :- ;

end ascii;

subtype natural is integer range 0 integer'last;
subtype positive is integer range 1 integer'last;

type string is array(positive range <>) of character;
pragma pack(string);
function - (left, right: string) return boolean;
function /. (left, right: string) return boolean;
function " (left, right: string) return boolean;
function c-0 (left, right: string) return boolean;
function 0"> (left, right: string) return boolean;
function ">-O (left, right: string) return boolean;
function "& (left: string; right: string) return string;
function "& (left: character; right: string) return string;
function *&1 (left: string; right: character) return string;
function "& (left: character; right: character) return string;

type duration is delta 2#1.0#E-14 range
-2#1000000006e0000000.0#

function "-a (left, right: duration) return boolean;
function "/- (left, right: duration) return boclean;
function "c" (left, right: duration) return boolean;
function "<- (left, right: duration) return boolean:
function 0>0 (left, right: duration) return boolean;
function >- (left, right: duration) return boolean;

B-9

f..ur.ct..r. /" (left: durat:on; --ght: integer) re:..z- =

constraint Ierror exception;
numeri.c error exception;
programierror exception;
storage-error exception;
tasking-error exception;

en. stana-d4

STAN'DARD.DURATION'SMALL - 0.000061035

B1

B-tO

S - .' U i" *

APPENDIX C

TEST PARAMETERS

Cer'tain tests In the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are identified by names that begin
with a dollar sign. A value is substituted for each of these names before
the test is run. The values used for this validation are given below.

Name an eing Value

$Bi..j ID1 (I..498 => 'A', 499 => 'i')
Identifier of size MAX IN LEN
with varying last character.

$BIG !D2 (1-498 => 'A', 499 => '2')
Identifier of size MAX IN LEN
with varying last character.

$BIG ID3 (1-241 I 243.1499 => 'A', 241 => '3')
Identifier of size MAX IN LEN
with varying middle character.

$BIG ID4 (l..241 I 243..499 :> 'A', 241 => '4')
Identifier of size MAX IN LEN
with varying middle character.

$BIG INT LIT (1-496 => '0', 497..499 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is MAX IN LEN characters
long.

C-I

, '.' ,'%"z'/ ,,%"". "':'-''-'--'' " - " ". - ',';-' 'L'. -., .' ,J ,,' ,; ' J'J'L "'-'--''.-'" .-". .':- .-",". % "-'. ,'

STEST PARAMETERS
Name and Meaning Value

$BIGREAL LIT (l..493 :> '0', 494..499 => "69.OEl")
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
MAXINLEN characters long.

$BLANKS (1..479 => '
Blanks of length MAXINLEN - 20

$COUNT LAST 2_ 147_483_647
Value of COUNT'LAST in TEXTIO
package.

$EXTENDED ASCII ICHARS "abcdefghiJklmnopqrstuvwxyz!$%?@[]'{ -"
A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$F.r LD LAST " 2147_483_647
Value of FIELD'LAST in TEXTIO
package.

$FIL _JAME _WITHBAD CHARS "/illegal/filename/2]$%2102C .DAT"
An illegal external file name
that either contains invalid
characters or is too long.

$FILENAME WITH WILD CARD CHAR "/illegal/file name/CE2102C* .DAT"
An external file name that
either contains a wild card
character or is too long.

$GREATER_THANDURATION 100_000.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION.

$GREATER THANDURATION BASE_LAST 10_000_000.0
The urlversal real value that is
greater than DURATION'BASE'LAST.

$ILLEGAL EXTERNAL FILE NAMEI "/no/such/directory/&
Illegl external file name. ILLEGAL EXTERNAL FILENAMEl"

$ILLEGAL EXTERNAL FILE NAME2 "/no/such/directory/&
Illegal external file names. ILLEGAL EXTERNAL FILE NAME2"

C-2

TEST PARAMETERS

Name and Meaning Value

$INTEGER FIRST -2 147_483_648
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEGER LAST 2_147_483_647
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESS T:AAN DURATION -100_000.0

A -niversal real value that lies
between DURATION'BASE'FIRST and

DURATION'FIRST or any value in
the range of DURATION.

$LESS THAN DURATION BASE FIRST -10000000.0
The universal real value that is
less than DURATION'BASE'FIRST.

$MAXDIGITS 15
Maximum digits supported for
floating-point types.

$MAXINLEN 499 (plus line feed character)
Maximum input line leagth
permitted by the implementation.

$MAX INT
The value of MAXINT in package 2147_483_647
SYSTEM.

$NAME TINYINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG FLOAT, or LONG-INTEGER.

$NEG BASED INT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit

position of the representation
for SYSTEM.MAX-INT.

C-3

r,* .*.* ~*~. .. 5 ..- *s. **

TEST PARAMETERS

Name and Meaning Value

$NONASCI I_CHA R_TYPE (NON NULL)
An enumerated type definition
for a character type whose

literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

C

C- '4

I ' ._,.- ,--- -- ' * F- * F . ,,.2 ",. ' ' ' *, , %r.. . %.f . , . ' . '' '. "F. . - . ."% """"''''°-
- "

..- ' J ''

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the

Ada Standard. When testing was performed, the following 16 tests had been
withdrawn at the time of validation testing for the reasons indicated:

. B4AO10C: The object declaration in line 18 follows a subprogram
body of the same declarative part.

. B83A06B: The Ada Standard 8.3(17) and AI-00330 permit the label
LAB ENUMERAL of line 80 to be considered a homograph of the

enumeration literal in line 25.

. BA2001E: The Ada Standard 10.2(5) states: "Simple names of all
subunits that have the same ancestor library unit must be distinct
identifiers." This test checks for the above condition when stubs
are declared. However, the Ada Standard does not preclude the
check being made when the subunit is compiled.

. BC3204C: The file BC3204C4 should contain the body for BC3204C0
as indicated in line 25 of BC3204C3M.

. C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC-ERROR (instead of CONSTRAINT-ERROR).

. C41404A: The values of 'LAST and 'LENGTH are incorrect in IF
statements from line 74 to the end of the test.

. C48008A: This test requires that the evaluation of default
initial values not occur when an exception is raised by an
allocator. However, the Language Maintenance Committee (LMC) has

ruled that such a requirement is incorrect (AI-00397/01).

D-1

WITHDRAWN TESTS

becauseconvhersinse decl~arations in lines 192 are incorrect

. C92005A: At line 40, "/=" for type PACK.BIG-INT is not Visible
without a USE clause for package PACK.

. C940ACA: This test assumes that allocated task TTI will run prior
to the main program, and thus assign SPYNUMB the value checked for
by the main program; however, such an execution order is not
required by the Ada Standard, so the test is erroneous.

. CA1003B: This test requires all of the legal compilation units of
a file containing some illegal units to be compiled and executed.
According to AI-00255,.such a file may be rejected as a whole.

. CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

* * CE21O7E: This test has a variable, TEMe HAS NAHE, that needs to
be given an initial value of TRUE.

D-2

'9

