(nnoim>cwuu VALIDATION SUNNARY REPORT
RDIX ADA DEVELOPMENT. . (U) mrommou SYSTENS AND
NOLOGY CENTER W-P AFB OH ADA V 19 JUN 86

LM e e o o

e e

e -

s e

P A

- -

PP,

-

:l’FFEFEEEE

EEEE
EEF

22 s

=N
ll=

o
==
=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963 A

T R AR R K LK

Z et hol At Melgh it gl e g0

St A BN s L e B e Sha Bte W ia Wi el gh. aby, gi,'ah

mnﬂmrxmr’

™
X UNCLASSIFIED n m'T\?Tr,
' SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) *) Al . 1S v
s READ INSTRUCTIONS
'y REPORT DOCUMENTATION PAGE BEFORE COMPLETEING FORM
1. REPORT NUMBER [2. GOVT ACCESSION NO. [3. RECIPIENT'S CATALOG NUMBER
¢
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 19 JUN 1986 to 19 JUN 1987
F Verdix Ada Development System, 6.0, DEC
15 MicroVAX II Host and Microbar GPC68K Target 6. PERFORMING ORG. REPORT NUMBER
ooy
. AUTHOR(s - 8. CONTRACT OR GRANT NUMBER(s)
. an t-Patterson
¥
4 9. PERFORMING ORGANIZATION AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK
: Ada Validation Facility AREA & WORK UNIT NUMBERS
7 ASD/SIOL
? Wright-Patterson AFB, OH 45433-6503
3
' 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada ngnt Program Office . ¢ 19 JUN 1986
Unlte States De artment (@) De ense mER OF PAGES
" Washington, DC 20301-3081 39
y 14. MONITORING AGENCY NAME & ADDRESS(/fdifferent from Controlling Office) 15. SECURITY CLASS (of this report)
- LU wright-Patterson UNCLASSIFIED
N 15a. QECLASSIFICATION/DOWNGRADING
] o
N :
K 16. DISTRIBUTION STATEMENT (of this Report)
c Q
- 00 Approved for public release; distribution unlimited.
.‘ P
o] i)
A Q 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)
)
< | UNCLASSIFIED ELECTE
[}
AY O 71987
18. SUPPLEMENTARY NOTES
X E
n, e e L
J) 19. KEYWORDS (Continue on reverse side if necessary and identify by block number)
]
) ' Ada Programming language, Ada Compiler Validation Summary Report, Ada
3 Compiler Validation Capability, ACVC, Validation Testing, Ada
N Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO
: 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
X See Attached.
W8
¢ DD FUR — 1473 €0ITION OF 1 NOV 65 IS OBSOLETE
1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION Of THIS PAGE (When Data Entered)

-

-" f-' 'J 'f-.‘.i' -., n‘.p¢-*-’-’~*a}~"-"|{".t -'.\J‘\ .*\..\-.\-_\.\\.‘\‘.“.

red TR T R I ey - ¥ B aus g itan aatania i 2taala a? % 2 5 B i 2% 8 ' Ak a¥2 %2 ath'add sla’ afa”ads' Bat 8nt dat Bit 4h" -) ogta b N ~ & L sl gt
I

Ada® Compiler Validation Summary Report:

o k=

Compiler Name: Verdix Ada Development System (VADS), 6.0

i
t Host Computer: Target Computer:
y <
3 DEC MicroVAX II Microbar GPC68K
g under
Micro VMS 4.2 (No operating system)
;!
L]
h Testing Completed 19 JUN 1986 Using ACVC 1.7

This report has been reviewed and is approved.

Ada Validation Facility
Georgeanne Chitwood

o ASD/SIOL

a Wright-Patterson AFB OH 45433-6503
Accegslon For __
NTIS GRAXL g

Gdw L e A
’ Ada Validation Office Unannoune st m
¥ Dr. John F. Kramer Justifica —
Institute for Defense Analyses —

: Alexandria VA By

‘ pistrivution/ |

: Aveilability Codes

] " JAvail and/or

y Z Z(. - Z Z pist Special

& Ada Jof#nt Program Office

A Virginia L. Castor 4, l

N Director

P Department of Defense

{ . Washington DC

&

Q

)

®©Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

AVF Control Number: AVF-VSR-39.1086

L A, T B TR S

b e e

Ada® COMPILER
VALIDATION SUMMARY REPORT:
Verdix Ada Development System, 6.0
4 DEC MicroVAX II Host
and
Microbar GPC68K Target

. Completion of On-Site Validation:
3 19 JUN 1986

4

)

3

Prepared By:

£ g

Ada Validation Facility
ASD/SIOL
Wright-Patterson AFB OH U45433-6503
N
13
A
' Prepared For:
- Ada Joint Program Office
‘ United States Department of Defense
K Washington, D.C.
)
l
®pda 1s a registered trademark of the United States Gevernment
(Ada Joint Program Office).

N
LY

------- -

ol al el ot eLola ot Ll el s st ot O R S A e e
L R A A B A o) . 5

Wt

B S T T

+ +
+ Place NTIS form here +
+ +

B s o o 2 T AT

W TR,

- - - - » - - - ~ - - : -~ ‘1'1 N - 'I-'n‘l. - 1‘1-‘!.\ -.'n-
R D I A SN N AT O T T N A O A T A

AT MU TR o4 2pth 9, {a:” \J LS € Bak N M 4, - » * M V LU L) s LA N [y B B - 1

£ o~ o -

EXECUTIVE SUMMARY

/

This Validation Summary Report (VSR) summarizes the results and conclusions
oI validation testing performed on the Verdix Ada Development System

vADS), 6.0, using Version 1.7 of the Ada® Compiler Validation Capability
CACVC). 2

The vallidation process includes submitting a suite of standardized tests
o~ {the ACVC) as 1inputs to an Ada compiler and evaluating the results. The
P purpose is to ~nsure conformance of the compiler to ANSI/MIL-STD-1815A Ada

; by testing that it properly implements legal language constructs and that

it identifies and rejects illegal language constructs. The testing also
N identifies behavior that is implementation dependent but permitted by
ANSI/MIL-STD-1815A. Six classes of tests are used. These tests are
designed to perform checks at compile time, at 1link time, or during

L

a execution.

W On-site testing was performed 17 JUN 1986 through 19 JUN 1986 at Aloha,
: Oregon, .ider the direction of the Ada Validation Facility (AVF), according
- to Ada Validation Organization (AVO) policies and procedures. The VADS,
. 6.0, is hosted on a DEC MicroVAX 1l operating under Micro VMS, 4.2.

X :

2 The results of validation are summarized in the following table:

o

v

RESULT TEST CLASS TOTAL
Y, A B C D E L

? Passed 68 820 1144 17 " 23 2083
Failed o 0 o0 ©0 o0 o0 0
. Inapplicable 0 4 176 0 0 0 180
. Withdrawn 0 4 12 0 0 0 16
- TOTAL 68 828 1332 17 11 23 2279

— . — —

} ®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

)

“a _“w _“w

s

‘-’\'\'*‘-

™ '\a‘-'
L M o]

»
AN Pal P BT RN TS 1% % v " h T e LW e T e e e e e ". hp J a '.'.\". S \)'\ .\"\f‘-' I-..’\J..I.-
‘.’ A\ A » Sl e J-_a_%) G A A A AR M -~ v oo N

There were 16 withdrawn tests in ACVC Version 1.7 at ¢the time of this
validation attempt. A list of these tests appears in Appendix D.

£
’
!
)
L
'
'

Some tests demonstrate that some language features are or are not supported

by an implementation. For this implementation, the tests determined the
following:

. The additional predefined types, TINY_ INTEGER, SHORT_INTEGER, and
SHORT_FLOAT, are supported. Types LONG_INTEGER and LONG_FLOAT are
not supported.

N
. Representation specifications for noncontiguous enumeration
representations are supported.
. Generic unit specifications and bodies cannot be compiled in
separate compilations.
4
Y . Pragma INLINE is supported for procedures. Pragma INLINE is
2 supported for functions.
. The package SYSTEM is used by package TEXT_IO.
o . Mode IN FILE is supported for sequential 1/0.
Mode OUT_FILE is supported for sequential 1/0.
Instantiation of the package SEQUENTIAL_IO with unconstrained
array types is supported.
{' . Instantiation of the package SEQUENTIAL_IO with unconstrained
. record types with discriminants is supported.
L,
; . RESET and DELETE are supported for sequential and direct I/0.
. Mode IN FILE is supported for direct I/O.
Mode INOUT_FILE is supported for direct I1/0.
Mode OUT_FILE is supported for direct I1/0.
. Instantiation of package DIRECT_IO with unconstrained array types
and unconstrained types with discriminants is supported.
)
' . Dynamic creation and deletion of files are supported.
y

. More than one internal file can be associated with the same
external file. :

. An external file associated with more than one internal file can
A be celeted. '

. Illegal file names can exist.

O M A e

- . PR P ' FCR] - e . L ¢ Cy vyt Mt A 8 AT AT LTt T At T AT T
T TRI TN L L At S R S A N NPT R Ty e A .

e

e S

Ya¥ale L

P al hl by

¢
4
g

DY AT N A
o) X » [A

ACVC Version 1.7 was taken on-site via magnetic tape to Aloha, Oregon. All
tests, except the withdrawn tests and any executable tests that make use of
a floating-point precision greater than SYSTEM.MAX DIGITS, were compiled on
a veC MicroVAX II. Class A, C, D, and E tests were executed on a Microbar

GPC68K .

On completion of testing, execution results for Class A, C, D, or E tests
were examined. Compilation results for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.

The AVF identified 2093 of the 2279 tests in Version 1.7 of the ACVC as
potentialily applicable to the validation of the VADS, 6.0. Excluded were
‘70 tests requiring a floating-point precision greater than that supported
"« the implementation and the 16 withdrawn tests. After the 2093 tests
Were processed, 10 tests were determined to be inapplicable. The remaining
2083 tests were passed by the compiler,

The AVF concludes that these results demonstrate acceptable conformance to
ANSI/MIL-STD-1815A.

« PP U
y el A

N -

AR N T R Wt
oo o » 4

BRI 0 N e S o
. ﬁ\.

v A)

»
«

Tt S L A N AR L S O

- -

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
. 1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-1
' 1.2 USE OF THIS VALIDATION SUMMARY REPORT 1=2
! 1.3 RELATED DOCUMENTS . . ¢ ¢ ¢ ¢« &t ¢ o ¢ o« o o « o » 1=-3
. 1.4 DEFINITION OF TERMS « ¢ « ¢ ¢ ¢ « o o o o« + o« « « 1-3
1.5 ACVC TEST CLASSES & ¢ ¢ ¢ ¢ 4 ¢ « ¢ ¢ o o ¢ o « « 1=4
. CHAPTER 2 CONFIGURATION INFORMATION
2. CONFIGURATION TESTED ¢ &« ¢ v ¢ ¢ v o o o o o o » . 24
2.2 CERTIFICATE INFORMATION ¢ ¢ ¢ o « o« o o 2=2
. 2.3 IMPLEMENTATION CHARACTERISTICS ¢« « « & + . 2-3
CHAPTER 3 TEST INFORMATION
3.1 TEST RESULTS & & ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o e ¢ ¢ » « o« o 3=1
3.2 SUMMARY OF TEST RESULTS BY CLASS « + « « « 3=1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3=2
3.4 WITHDRAWN TESTS . ¢ ¢ ¢ ¢ o o ¢ o o o o o o o o o« 3=2
3.5 INAPPLICABLE TESTS «¢ ¢ ¢ o o ¢ ¢ o « o o s o o o o« 3=2
3.6 SPLIT TESTS & ¢ ¢ ¢ ¢ o o ¢ o ¢ o o o o o« o « o « 3=3
3.7 ADDITIONAL TESTING INFORMATION +. « . . . 3-3
¥ 3.7.1 Prevalidation . . . & ¢ ¢ ¢ ¢« ¢« ¢ ¢ o o o « « « 3=3
3.7.2 Test Method . . . ¢ & ¢ & ¢ ¢ ¢ ¢ o o« ¢ o o« o » 3=4
3.7.3 Test Site . & ¢ ¢ ¢ & ¢ o o o o 4 o o o o o« o o« 3=5
APPENDIX A COMPLIANCE STATEMENT
Y APPEND.X B APPENDIX F OF THE Ada STANDARD
i APPENDIX C TEST PARAMETERS
¥
' APPENDIX D WITHDRAWN TESTS
1)
)
" - ‘.'h Y . N> ' % ‘ x}-.'- "-. DR T -, - \'\‘ LTS VR TR AR AN -. R A *."\"\". Yol e ~. \ \ ATy '.‘\‘ N '*.'

3 aty So\g g aup-ata a8p V- $a- aip ba gte org geg geg gt UWo U NGy W

- - » -

- -
e

. =

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a

specific Ada compiler conforms to ANSI/MIL-STD-1815A. This report explains
: all technical terms used within it and thoroughly reports the results of
testing this compiler using the Ada Compiler Validation Capability (ACVC).
An Ada compiler must be implemented according to the Ada Standard
(ANSI/MIL-STD-1815A). Any implementation-dependent features must conform
to the requirerents of the Ada Standard. The entire Ada Standard must be
implemented, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to ANSI/MIL-STD-18154, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations imposed on a
compiler by the operating system and by the hardware. All of the
dependencies demonstrated during the process of testing this compiler are
given in this report.

Lot bl b ol %

A 8 a2 A

VSRs are written according to a standardized format. The reports for
several different compilers may, therefore, be easily compared. The
information in this report is derived from the test results produced during
validation testing. Additional testing information as well as details
which are unique for this compiler are given in section 3.7. The format of
a validation report limits variance between reports, enhances readability
of the report, and minimizes the delay between the completion of validation
testing and the publication of the report.

’
-

«e m W

f e

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

CPPLsll

-

T

Lo Te * ., L I Y R o - N N - P, RN A I IR T T IR S I S AL -t L T Y T T e N ST
K .(ﬁ{‘ PN .. ;_4, N}_'t‘\-.‘l._ a A, .‘ Tl .’_..-_. - \.r‘a".-_ \d'._ ,f,.-’%f\o'\.-_-f,_ Y OO R N A AN X

INTRODUCTION

. To. attempt
required by the Ada Standard

to identify any unsupported language

Lt et A A A % 4) ot

constructs

. To determine that the implementation-dependent behavior is allowed

by the Ada Stand-rd

Testing of this

direction of the
the Ada Validation Organization (AVO).
. 1986 through 19 JUN 1986 at Aloha, Oregon.

compiler was

- e -

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Cor..ovent with the national laws of the originating
‘ make full and free public disclosure of this report.
d this is provided in accordance with the "Freedom of

conducted by SofTech,
AVF according to policies and procedures established by
Testing was conducted from

Ine., under the

17 JUN

country, the AVO may

In the United States,
Information Act" (5

Y U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
) accurate and complete, or that the subject compiler has no nonconformances
¢ to ANSI/MIL-STD-1815A other than tiinse presented. Copies of this report

4 are available to the pubdlic from:

v Ada Information Clearinghouse

! Ada Joint Program Office
OUSDRE

The Pentagon, Rm 3D-139
. 1211 S. Fern, C-107
Washington DC 20201-3081

-

J or from:
4
X Ada Validation Facility
3 ASD/SIOL
Wright-Patterson AFB OH 45433-6503

)
')

1-2
}, A A B N G A, A N O A G G B A R L R R

INTRODPUCTION

Questions regarding this report or the validation test results should be
' : directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Reauregard
Alexandria VA 22311

.-

e

1.3 RELATED DOCUMENTS

o oK

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

Ada Validation Organization- Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

S e PR,
n
.

3. Ada Compiler Validation Capability lmplementers' Guide, SofTech,
Inc., DEC 1984,

5
¢
<
w
j 1.4 DEFINITION OF TERMS
iy ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformance of a compiler to the Ada

) language specification, ANSI/MIL-STD-1815A.
k)

Ada Standard ANSI/MIL-STD-1815A, February 1983.
K.
¥
" Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
! the AVF 1is responsible for conducting compiler validations

according to established policies and procedures.

r. AVO The Ada Validation Organization. In the context of this
’ report, the AVO 1s responsidble for setting policies and
' procedures for compiler validations,
¥

Compiler A processor for the Ada language. In the context of this
3 report, a compiler is any language processor, including
» cross-compilers, translators, and interpreters.
: Failed test A test for which the compiler generates a result that
3 demonstrates nonconformance to the Ada Standard.
8 Host The computer on which the compiler resides.
o
y 1-3

o R e e e T AR L Rt o~ P T AT P I e RS
\.\'.\f..f.h..\f.-f\a\\f-f\\\ -"._'.', _\\-",_'\._.,_‘a' T TN A '__\ - T Oty ST

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
[test not required to support or may legitimately support in a way
) other than the one expected by the test.

. LMC The Language Maintenance Committee whose function is to
resolve issues concerning the Ada language.

Passed test A test for which a compiler generates the expected result.
Target The computer for which a compiler generates code.

Y Test A prograum that evaluates the conformance of a compiler to a
. language specification. In the context of this report, the
term is used to designate a single ACVC test. The %te-% of a
program may be the text of one or more compilations.

Withurawn A test fouud to be 1inaccurate in checking conformance to the

test Ada language specification. A withdrawn test has an invalid
test objective, fails to meet its tesat objective, or contains
illegal or erroneous use of the language.

1.5 ACVC 7TesT CLASSES

4 Conformauce to ANSI/MI.-STD-1815A is measured using the ACVC. The ACVC
th contains ©oboth 1legal and illegal ida programs structured into six test
- classes: A, B, C, D, E, and L. The first letter of a test name identifies
- the class to w«which it belongs. Special program units are used to report
the results of the Class a, C, D, and E tests during execution. Class B
tests are expected to produce compilation errors, and Class L tests are
. expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
. and executed. (However, no checks are performed during execution to see if
: the test objective has been met.) For example, a Class A test checks that
. reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test 1is passed if no errors are detected at compile time and the
program executes to produce a message indicating that it has passed.

, Class B tests check that a compiler detects illegal language usage. Class
) B tests are not executable. Each test in this class is compiled and the
0 resulting compilation listing is examined to verify that every syntactical
or semantic error in the test is detected. A Class B test is passed if

every illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executec. Each Clazes C test is self-checking and produces a PASSED,
FAILED, or NOT-APPLICABLE message 4indicating the result when it |is
executed. '

1-4

i T e T
’, o !

e te e T e

INTRODUCTION

Class D tests check the compilation and execution capacities of a compiler.
Since there are no requirements placed on a compiler by the Ada Standard
for some parameters (e.g., the number of 1identifiers permitted in a
compilation, the number of wunits in a library, and the numder of nested
loops in a subprogram body), 5 compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the test
is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT-APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it (3 compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or 1llegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at 1link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report results. It also
provides a set of identity functions used to defeat some compiler
optimization strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The procedure
CHECK FILE is used to check the contents of text files written by some of
the Class C tests for chapter 14 of the Ada Standard.

The operation of these units is checked by a set of executable tests.
These tests produce messages that are examined to verify that the units are
operating correctly. If these uniits are not operating correctly, then the
validation is not attempted.

Some of the conventions followed in the ACVC are intended to ensure that
the tests are reasonably portable without modification. For example, the
tests make use of only the basic set of 55 characters, contain lines with a
maximum 1length of 72 characters, use small numeric values, and place
features that may not be supported by all implementations in separate
tests, However, some tests contain values that require the test to be
customized according to implementation-specific values. The values used
for this validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
1emonstrate conformance to the Ada Standard by either meeting the pass
eriteria given for the test or by showing that the test is inapplicadle to
the izxrlementation. Any test that was determined to contain an illegal

1-5

R R S S AT B N LA T A
= o «f » - . o L4 . > M N

" "'-"_J‘ “va‘\f
O il o 8 »

.

A

L e e el = =

i g, g

AT
» X0

o

INTRODUCTION

language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The nonconformant
tests are given in Appendix D.

1-6

L T P ST IS Y L N R A S R YOS TR \.'n."\ \‘\'\.‘.\' q‘~‘c..-_.'_-\-‘..‘- "-.’-\'-\."\"\.""'.
' .‘.n (s v, AN RN N o W AN AN R WA, Lad) '\' N’ Y AT

.
-
¥

-

CHAPTER 2

D CONFIGURATION INFORMATION

2.1 CONFTGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Verdix Ada Development System (VADS), 6.0

Test Suite: Ada Compiler Validation Capability, Version 1.7
3 Host Computer:
&
; Machine: DEC MicroVAX I1I
4
’ Operating Svstem: Micro VMS 4.2
Memory Size: 11 Megabytes
-
“»
N
N Target Computer:
A Y
Machine: Microbar GPC68K

N Operating System: None
N
N Memory Size: 0.5 Megabyte
v
A Communications Network: Ethernet
X

Note: A SUN-2 operating under UNIX 4,2 BSD was used to transfer the

executable images from the host to the target. The SUN machine was also

used to execute the runtime support packages that were required to report
,; test results and to perform file operations.

2-1

’
4
I A R A A A S A AN TR Y

[UL LI TR TURPY S0P SLVS SL S PORLSPILPY BT ST WOV I ULIC M LIV LN W WA W W P BPN WP\ BPA) BPU BPLT W) K N STTON) PO

CONFIGURATION INFORMATION

- — -

b e "o

2.2 CERTIFICATE INFORMATION
Base Configuration:
- Compiler: Verdix Ada Development System (VADS), 6.0
i Test Suite: Ada Compiler Validation Capability, Version 1.7
Certificate Date: 3 September 1986
Host Computer:
Machine(s): DEC MicroVAX II
t Operating System: Mici'o VMS 4.2
Target Computer:

Machine(s):’ ' Microbar GPC68K

Operating System: None
Communications Network: Ethernet
4
e
J
N
¥
U
2-2

AT A

S,

y “\f’l AN O OA PO PR N N

CONFIGURATION .NFORMATION

- 3 [MPLEMENTATION CHAPRACTERISTICS

Cne of the purposes of validating compilers is to determine the behavior of
a campiler in those areas of the Ada Standard that permit implementations
to d.lfer. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
isplementation. This compiler s characterized by the following
interpretations of the Ada Standard:

VeTeTe &

Nongraphic characters.

Nongraphic characters are defined in the ASCII character set but
are not permitted in Ada programs, even within character strings.
The compiler corrently recognizes these characters as 1llegal in
Ada compilations. The characters are printed in the mutput
listing in a graphic representatior, for example ""A." (See test
B2GUUSA.)

. Capacities.

: The compiler correctly processes compilations containing 1loop

statements nested to 65 levels, block statements nested to 65
_ levels, and recursive procedures nested to 17 levels. It
) correctly processes a compilation containing 723 variables in the
sare declarative part. (See tests DSSA03A through D55A03H,
D56001B, D64OOSE through D6U00SG, and D2900X.)

Universal integer calculations.

& An implementation is allowed to reject universal integer

- calculations having values that exceed SYSTEM.MAX INT. This

. implementation does not reject such calculations and processes

{ them correctly. (See tests DUAOO2A, DUAOO2B, DUAOOHA, and
D4AQO4B.)

X . Predefined types.

N This implementation supports the additional predefined types

SHORT_INTEGER, SHORT_FLOAT, and TINY INTEGER in the package
STANDARD. (See tests B86001CR, B86001CS, B86001CP, B86001CQ, and
i B86001DT.)

4 . Based literals.

+ An implementation is allowed to reject a based literal with a

value exceeding SYSTEM.MAX_INT during compilation, or it may raise

& NUMERIC_ERROR during execution. This implementation raises
: NUMERIC_ERROR during execution. (See test E24101A.)

[NI T U A T T T P N o R S SR S S S S S Nl SR SR SN ’\"n"-_‘\'.\'\' (S RTYES AR URERTS --'-_‘-
X s L4 . 1K ol ar Ca 2 f B R p " ,

FCRTORN PR L U

.

B AT YN Y] (VKRR W LW DWW W LN v

CONFIGURATION INFORMATION

Array types.

When an array type is declared with an index range exceeding the
INTEGER'LAST values and with a component that is a null BOOLEAN
array, this compiler raises NUMERIC_ERROR when the type 1is
declared. (See tests E36202A and E36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC_ERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array type is declared.
(See test C52104Y.)

A nuvil array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ ERROR either when declared or
assigned. Alternately, an implementation may accept the
declaration. However, lengths must match 4in array slice
assignments. This implementation raises NUMERIC_ERROR when the
array type is declared. (See test £52103Y.)

In assigning one-dimensional array types, the entire expression
appears to be evaluated before CONSTRAINT ERROR is raised when
checking whether t{he expression's subtype is compatible with the
target's subtype.

In assigning two-dimensional array types, the entire expression
does not appear to be evaluated before CONSTRAINT_ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. (See test C520134.)

Diseriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications during
compilation. (See test E381044.)

In assigning record types with discriminants, the entire
expression appears to .e evaluated before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test CS2013A.)

Aggregates.
In the evaluation of a multi-dimensional aggregate, all choices

appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

2-4

SEALIGR LIRS W UL A S A A SN APSERE h R SRy
Al 8 s Iy X . X

e
4

N

.|

CONFIGURATION INFORMATION

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
‘ (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to

: an index subtype. (See test E43211B.)
k)
" . Functions.
X The declaration of A parameterless function with the same profile
5 as an enumeration literal in the same immediate scope is rejected
; by the implementation. (See test E66001D.)
. Pragmns,
v The pragma INLINE is supported for procedures and for functions.
1 (See tests CA3004E and CA3004F.)
. Input/output.
[}
: The package SEQUENTIAL IO can be instantiated with unconstrained
' array types and record types with discriminants. The package
- DIRECT_IO can be instantiated with unconsiirained array types and
'; record types with discriminants. (See tests CE2201D, CE2201E, and
. CE2401D.)
More than one internal file can be associated with each external
file for sequential I/0 for both reading and writing. (See tests
CE2107A through CE2107F.)
More than one internal file can be associated with each external
] file for direct 1/0 for reading only. (See tests CE2107A through
CE2107D and CE2107F.)
Cal
§ An external file associated with more than one internal file can
7, be deleted. (See test CE2110B.)
C4

More than one internal file can be associated with each external
file for text 1/0 for both reading and writing. (See test CE3111A
through CE3111E.)

An existing text file can be opened in OUT_FILE mode, can be
created in OUT_FILE mode, and can be created in IN FILE mode.
! (See test EE3102C.)

Temporary sequential files are given a name, Temporary direct

files are given a name. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

2-5

e p s em e meammsn s .
AR LA i AN A

2.;'_'-‘\1‘4' .-\f.;.r,; P

[P0 P R AL P I WA 1 Y T S6 SRS N RS Y
‘v‘\" ",\' f'vf‘ \"'. (' {7 N RO \v

ot

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

'\ The AVF identified 2093 of the 2279 tests in Version 1.7 of the ACVC as
. potentially applicable to the validation of the Verdix Ada Development
X System (VADS), 6.0. Excluded were 170 tests requiring a floating-point

precision greater than that supported by the implementation and the 16
<ithdrawn tests. After they were processed, 10 tests were determined to be
‘napplicable. The remaining 2083 tests were passed by the compiler.

(4
: The AVF concludes that ¢the testing results demonstrate acceptable
) conformmance to the Ada Standard.
: 3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B € D E L ____

Passed 68 820 1144 17 1 23 2083
N Failed 0 0 0 0 0 0 0
r Inapplicable 0 4 176 0 0 0 180
: Withdrawn o} y 12 0 0 0 16
p TOTAL 68 828 1332 17 1 23 2279
4
¢
l
" 3-1
A}
L
>4 NI OO AL AN NN N N A N, S A R GG ARG A I NP AN ‘.r. Y .r.;(.~ s 'c“.\'-r.:-r o
» », RN » 4 .. B N A 3 R A » " p

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER
_2_3_4_5_6_17_8_9 10 11 12 _14 TOTAL

——— — — S G— pp——— — E—

Passed 102 234 308 244 161 97 158 198 105 28 216 232 2083
Failed o o o o o o0 o0 O O O o0 O 0
Inapplicable 14 73 86 3 0 0 3 1 0O 0 o0 o 180
Withdrawn o0 1 4 o o0 0 1 2 6 0 1 1 16

TOTAL 116 308 398 247 161 97 162 201 111 28 217 233 2279

3.4 WITHDRAWN TESTS

The following tests have been withdrawn from the ACVC Version 1.7:

B4A010C cuai140ua CA1003B

B83A06B C48008A CA3005A through C22005D (4 tests)
BA2001E CHAO14A CE2107E

BC3204C 920054

C35904A C940ACA

See Appendix D for the test descriptions.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either 4inapplicable or
withdrawn. For this validation attempt, 180 tests were inapplicable for
the reasons indicated:

. C34001E, B52004D, B55B09C, B86001CS, and C55BOTA use LONG_INTEGER
which is not supported by this compiler.

. C34001G, C35702B, and B86001CQ wuse LONG_FLOAT which is not
supported by this compiler.

. CB86001F redefines package SYSTEM, but TEXT_IO is made obsolete by
this new definition in this implementation.

. (96005B checks implementations for which the smallest and 1largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

Py

4O

..

rd

- f‘{\'\{‘JHI*:\{"i”(\f“'\“\fﬁf\{*i\"f\f\{‘i%"“:\

TEST INFORMATION

. 170 tests were not processed because SYSTEM.MAX DIGITS was 15.
These tests were:

C24113L through C24113Y (14 tests)
C35705L through C35705Y (14 tests)
C35706L thirough C3STO6Y (14 tests)
C35707L through C35707Y (14 tests)
C35708L through C35708Y (14 tests)
€35802L through C35802Y (14 tests)
Cus5241L through C4S5241Y (14 tests)
C45321L through CU5321Y (14 tests)
CUsy21L through CUsy21Y (14 tests)
Cus424L through C45424Y (14 tests)
C45521L through CU5521Z (15 tests)
C45621L through C45621Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 17 Class B tests.

B24104A B2A003C B67001A B95001A

B24104B B33004A B67001B B97T101E
B24104C B41202A B67001C
B2A003A BU44001A B67001D
B2A003B B6UOO1A B910ABA

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.7 produced by
the VADS, 6.0, was submitted to the AVF by the applicant for prevalidation
review, Analysis of these results demonstrated that the compiler
successfully passed all applicable tests.

F

.- 'l -. - - .' -- . . ‘.‘ - .'I v .~ - -.
SN TR N T T e Y

ol Gl ‘ol

TEST INFORMATION

7.2 Test Method

- A -

festing of the VADS using ACVC Version 1.7 was conducted on-site by a
validation team. The configuration consisted of a DEC MicroVAX II host
operating under Micro VMS and a Microbar GPC68K target. The host and
target computers were 1linked via a SUN-2. The host was connected to the
SUN-2 via Ethernet. The target was connected to the SUN-2 directly; the
GPC6BK was connected to the SUN-2 Muitibus from which it also drew its

- - -

X power:
. MICROVAX
: I
. (VMS)
FTP
4
q
4
<
) SUN-2 MULTIBUS | MICROBAR
(UNIX) GPC 68K

5 1 RS-232 t

—

Pt D)

a2,

A magnetic tape containing ACVC Version 1.7 was taken on-site by the
validation team. The magnetic tape contained all tests to be run during
- validation testing. Tests that make use of values that are specific to an
implementation were customized before being written to the magnetic tape.
Tests requiring splits during the prevalidation testing were included 1in
their split form on the magnetic tape.

@ e e W 4.

The contents of the magnetic tape were 1loaded directly onto the host
computer. After the test files were loaded, the full set of tests was
compiled on the DEC MicroVAX 1I, in chapter order. The resulting object
files were 1linked on the DEC MicroVAX II, and the executable images were
4 transferred using a file transfer program (FTP) and Ethernet to a SUN-2,

: operating under UNIX 4.2 BSD. The target computer, a Microbar GPC68K, was
connected to the SUN-2 Multibus. The executable images were saved to disk
on the SUN-2 and loaded one by one into the GPCH8K memory via the Multibus
and the on-board ROM Monitor of the target. Once an image was 1loaded, it
was executed and the results were sent to the SUN-2 via two RS-232 lines

which were controlled by one of two Ada runtime support packages, SIMPLE_IO
or CROSS_IO.

.

PLES B M N

3-4

TR

- IR S er .. B T T T o T S I S e T SN U o
N AN N N A N RN ISR ST R S A SR A A A S A A ALY A

g .vl sl

,,‘
o m s &

-
-

T2

|

Ps"s 20 024

BN

X

Al By A

-

TEST INFORMATION

The SUN-2 file system was used for all input and output. The executable
tests for all chapters except chapter 14 were run using a simplified part
of the runtime system, SIMPLE 10, that does not support file input and
output . The wuse of SIMPLE IO reduced link time, file transfer time, and
execution time. The chapter 14 tests, which use file input-output, were
run using the runtime system package CROSS_IO, executing on both the SUN-2
and the Microbar GPC68K. File operations were performed on the SUN-2 file
system, Results were transferred to the host computer via Ethernet and
FTP. Results were printed from the host camputer.

The compiler was tested using command scripts provided by Verdix. These
scripts were reviewed by the validation team.

Tevt2 Jere run using one host computer and one target computer. Test
outpu’., compilation 1listings, and job logs were captured on magnetic tape

and archived at the AVF. The 1istings examined on-site by the wvalidation
team were also archived.

3.7.3 Test Site

The validation team arrived at Aloha, Oregon on 17 JUN 1985 and departed
after testing was completed on 19 JUN 1986.

3-5

PR SR SR BF S AR AL R AL AR RN GG L YL AL

TSI

o

APPENDIX A

COMPLIANCE STATEMENT

Verdix has submitted the following compl lance statement
concerning tne VADS.

>S5 N S L R S R TR SRR R DAYy IR
K

e e
- . . S . A
2! I AU L) Il) * ‘ ! PEPRINY almnta
A ud, A A A A i ! S

[A
AP

.« . = :
.t . -
. ‘. -. -

COMPLIANCE STATEMENT

F Compliance Statement

]

‘

AN Base Configuration:

-

-: Compiler: Verdix Ada Development System

¥ Product ID: VAda-010-03105, Version: V6.0
-8

Test Suite: Ada Compiler Validation Capability, Version 1.7

r
? Host Computer:
E Machine(s): Digital Equipment Corporation
¢ MICROVAX II
- Operating System: MICROVMS
o 4.2
»E Target Compute::
:_ Machine(s): Microbar GPC68K
.; Operating System: (bare)
| Communications Network: ETHERNET and FTP
i VERDIX has made no deliberate exfensions to the Ada language standard.

VERDIX agrees to the public disclosure of this report.

VERDIX agrees to comply with the Ada trademark policy, as defined by the
Ada Joint Program Office.

Q,ﬁ"\ %\&Dam 0 /%
ANAN)

. VERDIX
N Greg Burns
Project Manager, Ada Systems

Pt et AR It W]

A-2

[l N N R G N Y

. N

.’ffff—a-ff-/.

'\\\'\'N"N\'

Ol e SuC

Wy -

T

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815a, and to certain allowed restrictions on
representation classes. The implementation-dependent characteristics of
the VADS, 6.0, are described in the following sections which discuss topics
one through eight as stated in Appendix F of the Ada Language Reference

Manual (ANSI/MIL-STD-1815A). Package STANDARD is also included in this
appendix.

L L T N A S O S L S N S S T I I T e R I

T R L O T O O S L Ot SRR O R A G L G L S 7, S GO RS S LR SRS

e -

-

ATTACHMENT II

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas
1.1. SHARE_BODY Pragma

The SHARE_BODY pragma takes the name of & generic instantiation ar a generic unit 2 the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument This pragma is only allowed
immediately at the place of a declarative item in a declaratve pant or package specification, or after a
library unit in a compilation, but before any subsequent compilation unit.

When the first argument is a generic unit the pragma applies to all instantations of that generic. When
the first argument is the name of a generic instantiation the pragma applies only to the specified instan-
tiagon, or overloaded instantiations.

If the second argument is TRUE the compiler will ry o share code generated for a generic instantia-
tion with code generated for other instantadons of the same generic. When the second argument is
FALSE each insantation will get 2 unique copy of the generated code. The extent to which code is
shared between instantiations depends on this pragma and the kind of generic formal parameters
declared for the generic unit.

1.2. EXTERNAL NAME Pragma

The EXTERNAL NAME pragma takes the name of a s subprogram or varisile defined in Ada and
allows the user to specify a different external name that may be used to reference the entity from other
languages. The pragma is allowed at the place of a declarative item in a package specificanion and
must apply to an object declared earlier in the same package specificanon.

13. INTERFACE_OBJECT Pragma

The INTERFACE_OBJECT pragma takes the name of a a variable defined in another language and
allows it o be referenced directly in Ada. The pragma will replace all occurrences of the variable
name with an external reference to the second, link_argumnent. The pragma is allowed at the place of a
declarative item in a package specificaton and must apply t0 an object declared earlier in the same
package specification. The object must be declared as a scalar or an access rype. The object cannot be
any of the following:

a loop variable,

a constant,

an initialized variable,

an array, or

a record.

2. Implementation of Predefined Pragmas
2.1. CONTROLLED
This pragma is recognized by the implementation but has no effect

2.2. ELABORATE
This pragma is implemented as described in Appendix B of the Ada RM.

R TR T TR FS TR TR 0 TS PO PR T TR -f AT AN

KRS

Ly

s

y o

s PlPe

:_‘. ‘I_ /\f\f\r.‘. o

23. INLINE
This pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE

This pragma supports calls 1o 'C' and FORTRAN functions. The Ada subprograms can be either func-
tons or procedures. The types of parameters and the result type for functions must be scalar, access or
the predefined type ADDRESS in SYSTEM. An optional third argument overrides th. default link
name. All parameters must have mode IN. Record and array objects can be passed by reference using
the ADDRESS atrribute.

25, LIST
This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMORY_SIZE

This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled

2.7. OPTIMIZE
This pragma is recognized by the implementation but has no effect.

28. PACK
This pragma will cause the compiler to choose a non-aligned representation far composite types. Com-

ponents that are smaller than a STORAGE_UNIT are packed into a number of bits that is a power of
two.

29. PAGE
This pragma is implemented as described in Appendix B of the Ada RM.

2.10. PRIORITY
This pragma is implemented as described in Appendix B of the Ada RM.

2.11. SHARED
This pragma is recognized by the implementation but has no effect.

2.12. STORAGE_UNIT

This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.13. SUPPRESS

This pragma is implemented as described, except that RANGE_CHECK and DIVISION_CHECK can-
not be supressed.

2.14. SYSTEM_NAME

This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes
NONE.

B-3

ISR d - -
g ol .

-

Y

- B0 M

o

» & A 2

2ab 8.6 paf Lg% 4T gay

WS " '-_", 8N
o A A

4. Specification Of Package SYSTEM
package SYSTEM

is
type NAME is (vms_mb68k);
SYSTEM_NAME : constant NAME := vms_m68k ;
STORAGE _UNIT : constant := B;
MEMORY_S1ZE i constant := 262 _144;
-- System-Dependent Named Numbers
MIN_INT : constant := -2 147_483_647 - 1;
MAX_INT : constant := 2_147_483_647;
MAX DIGITS : constant := 15;
MAX MANTISSA : constant := 31;
FINE_DELTA : constant = 2.0°%(-14);
TICK : constant := 0.01;
-- Other System-dependent Declarations
subtype PRIORITY is INTEGER range 0 .. 7;
MAX REC SIZE : integer := 64°1024;
type ACDRESS is private;
NO_ADDR : constant ADDRESS;
function PHYSICAL_ADDRESS(I: INTEGER) return ADDRESS;
function ALDR GT(A B: ADDRESS) return BOOLEAN;
function ADDR_ _LT(A, B: ADDRESS) return BOOLEAN;
function ACDR CE(A B: ADDRESS) return BOOLEAN;
function ADDR LE(A B: ADDRESS) return BOOLEAN;
function ADDR_DIFF(A, B: ADDRESS) return INTEGER;
function INCR_ADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS;
function DECR_ADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS;
function ">" (A, B: AIIRESS) return BOOLEAN renames ADDR_GT;
function "<" (A B: ADDRESS) return BOOLEAN renames ADDR_ “LT;
function ">="(A, B: ACDRESS) return BOOLEAN renames ADDR_GE
function "<="(A, B: ADDDRESS) return BOOLEAN renames ADDR _LE;
function "-"(A, B: ADDRESS) return INTEGER renames ADDR_DIFF;
function "+" (A: ADDRESS: INCR: INTEGER) return ADDRESS renames INCR_ADDR:
function "-"(A: ADDRESS; DECR: INTEGER) return ADDRESS renames DECR_ADB
pragma inline(ADDR_GT):
pragma inline(ADDR_LT):
pragma inline(ADDR GE);
pragma inline(ADDR_LE);
pragma inline(ADDR_DIFF);
pragma inline(INCR AIDR).
pragma lnlnne(DECR ADDR) ;
private
B-4
AL S AL LN L e el e e e st e

AT

f-

PN

Nt S e S

SASEWTS A

9]

T >

A

3

e T

SIS IR

D Yot i g

NS RN BT TIAY Y
8 Y A A

et ek ast (o€ met it o oaee e i el av. ala ab RS ‘at. st et al .t atotal t Sl et Yal Vad ‘e tae Bag 4.a %

type ADDRESS is new integer;
NO_ADDR : constant ADDRESS := 0;
end SYSTEM;

§. Restrictions On Representation Clauses

S.1. Pragma PACK

Armay and record components that are smaller than a STORAGE_UNIT are packed into 3 number of

bits that is a power of two. Objects and larger components are packed 10 the nzarest whole
STORAGE_UNIT.

£.2. Size Specification
The size specification T'SMALL is not supported.

£3. Record Representation Clauses

Components not aligned on even STORAGE_UNIT boundaries may not span more than four
STORAGE_UNTITs.

5.4. Address Clauses
Address clauses are not supported.

5.5. Interrupts
Interrupts are not supported.

5.6. Representation Attributes
The ADDRESS atrribute is not supported for the following entities:

§.7. Machine Code Insertions
Machine code insertions are supported.

6. Conventions for Implementation-generated Names
There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses
Address clauses are not supported.

8. Restrictions on Unchecked Conversions

The predefined generic function UNCHECKED CONVERSION cannot be instantiated with a target
type which is an unconstrained array type or an unconstrained record fype with discriminants.

B-5

- - . . CREE
v - L™ LT T o TR R g e) R S SR e e] e N] \,;v\'\ -'-’\'\ \¢\’ ’\‘.\¢ PR NP
< 5 et Lo o L ™ ’ - ' v o.ao el “ ;

Y o) o . Wy B Wy A% Wy

o ofel e ol el

L

=T

R, 2y A4

'-.l“"

P atat s

Al A

i

0
2

B2ty G

rATA A

R

e

¢ Y, gt incgha gYa At Aia dte Bl pda- gt - . e d o,

9. Implementation Characteristics of VO Packages

Instangatons of DIRECT_ 1O use the value MAX REC_SIZE as the .ecord size (expressed in
STORAGE_UNTTS) when the size of ELEMENT_TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT TYPE'SIZE is very large, MAX_RT.C_SIZE is used
instead. MAX_RECORD _SIZE is defined in SYSTEM and can be changed by a program before
instantaung DIRECT_IO w0 provide an upper limit on the record size. In any case the maximum size
supported is 1024 x 1024 x STORAGE UNIT bia. DIRECT_IO will raise USE_ERROR
MAX_REC_SIZE exceeds this absolute limit.

Instanvauons of SEQUENTIAL_IO use the value MAX _REC _SIZE as the record size (expressed in
STORAGE_UNITS) when the size of ELEMENT TYPE exceeds that value. For example for uncon-
swained arrays such as string where ELEMENT TYPE'SIZE is very large, MAX_REC_SIZE is used
instead. MAX RECORD _SIZE is defined in SYSTEM and can be changed by a program before

instantaung INTEGFER 10 to provide an upper limit on the record size. SEQUENTIAL_IO imposes no
lumut on M AX_REC_SIZE.

10. Implementation Limits

The following limits are actually enforced by the implementaton. It is not intended w0 imply that
resources up to ar even near these limits are available to every program.

10.1. Line Length

The impiementation supports a maximum line length of 500 characters including the end of line charac-
ter.

10.2. Record and Arrsy Sizes

The maximum sizz of a statically sized array type is 4,000,000 x STORAGE_UNITS. The m._<imum
size of a statcally sized record type is 4,000,000 x STORAGE_UNITS. A record type or array type
Jeclaration that exceeds these limits will generate a warning message.

10.3. Default Stack Size for Tasks

In the absence of an explicit STORAGE_SIZE length specification every task except the main program
is allocated a fixed size stack of 10,240 STORAGE_UNITS. This is the value remmed by
T'STORAGE_SIZE for a task type T.

10.4. Default Collection Size

In the absence of an explicit STORAGE_SIZE length atribute the default collection size for an access
type is 100,000 STORAGE_UNTTS. This is the value reeurned by T'STORAGE_SIZE for an access
type T.

10.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE_UNTTS for objects declared statically within a
compilation unit If this value is exceeded the compiler will terminate the compilation of the unit with a
FATAL error message.

B-6

tad Wab o ab 3

.........

¢
.
»

<a

¥

e stanzars .S

Type toclean ls (false,
£.or-wugn =" (.efc,
fanczieon t/m" (lefe,
function "«" (lefz,
function "<a® (left,
function ">" (left,
fonction ">=mn (lefe,
function "and"™ (left,
function "or” (left,
function "xor" (left,
function "not™ (right:
type tiny integer is
function "e" (left,
function "/=" (left,
function "<" (left,
function "<w® (left,
£inction ">" (left,
function ">m~ (left,
function "+" (right:
function "-* (right:
function "abs (right:
function "+" (left,
function "-* (left,
function "**™ (left,
function "/™ (left,
function "rem” (left,
Sunction "mod™ (left,
function "ww» (left,
type short_integer is
function "=* (left,
function /=" (left,
function "<" (left,
function "<w=® (left,
function ">* {left,
function *">=" (left,
function "+ (right:
function "-" (right:
function “abs (zight:
function "+" (left,
function *-* (left,
function "=** (left,
function /" (left,
function "rem™ (left,
function "mod" (left,
function "wer*® (left,
type integer is
function "= (left,
function "/e" (left,
function "«<* (left,
function "<=" (left,
function ">* (left,
function ">ev (left,
function "+* (right:
function "-" (zight:
function "abs (right:
function "+* (lefe,
function "-" {left,
function "** (left,
function “/* (left,
function "rem” (left,
function "mod® (left,

tIue);
right:
rignt:
right:
raght:
right:

rigns:

right:
right:
right:

boolean)

range
right:
right:
right:
right:
right:
right:

bcclearn) cezucn

boolean) rezurs zo:lean:

bcolean)
boclean)
boclean)
boc.ean)

boclean)
boolean)
boolean)

-128 127;
tiny_integer)
tiny_integer)
tiny_integer)
tiny_integer)
tiny_integer)
tiny_integer)

return
return
return

return

return
return
return
return boolean;

return
return

pco.ean;
boolearn:
boc.ear:
boc.ean;

boolean:
booiean:
boolean:;

booclean:
boolean:

return boolean:

return

boolean:

return boolean:

returr

“molean;

tiny_integer) return tiny_integer:;
tiny_integer) return tiny integer:
tiny_integer) return tiny integer;

right:
right:
right:
right:
right:
right:
right:

range
right:
right:
right:
right:
right:
right:

short_

tiny_integer)
tiny_integer)
tiny_integer)
tiny_integer)
tiny_integer)
tiny_integer)
tiny_integer)

-327¢68 ..
short_integer)
short_integer)
short_integer)
short_integer)
short_integer)
short_integer)

return
return
return
return
retuzrn
return
return

32767;

return
retuzrn
return
return
return
return

integer) return short_

tiny_integer:
tiny integer:
tiny_ integer:
tiny integer:
tiny integer:
tiny_ integer:
tiny integer:

boolean:
boolean:
boolean:
boolean:
boolean:
boolean:
integer:

short_integer) return short_integer:
short_integer) return short_integer:

right:
right:
right:
right:
right:
right:
right:

right:
right:
right:
right:
right:
right:

short_integer)
short_integer)
short_integer)
short_integer)
short_integer)
short_integer)
short_integer)

return
return
return
return
return
return
return

range ~2147483648

integer)
integer)
integer)
integer)
integer)
integer)

integer) return integer:
integer) return integer:;

integer)

right:
right:
right:
right:
right:
right:

integer)
integer)
integer)
integer)
integer)
integer)

B-7

> WO ? e $)\f*\¢\’? né\l?’\}?}ykngsfksbﬁJ.J?.?*SJg:\:\x\;“:\:' .o

return integer:
return
return
return
return
return
return

d'bY'E;H!HHh'

short_integer;
short_integer:
short_integer:
short_integer:
short_integer;
short_integer:
short_integer:;

2147483647;

return boolean:
return boolean:
return boolean:
return boolean:
return boolean:
return boolean:;

integer:
integer:;
integer:;
integer;
integer:
integer;

T TP I

. .'.'I:‘If. Py '_a ..-‘. ’-.-

D P e -)

ble reproduction

et
e

MRS BY W7 T T T W

T e " g ower

type shorz_flcat 1s digits 6 range
-2%0. 1.-11111‘11:11111:;.11 14227 .
240.1121311212220212222213331eE2277;

function "=" {left, raght: short_£loat) return boolean;
function /=" (lefz, right: short_float) return boolean:
function "<” (left, raght: short_£loat) return boolean:
function "<e" (lef=, right: short_<£loat) return boclean:;
function ">" {laft, right: short_<flcat) return boolean:
function ">=" {left, right: short_float) return boolean:
functicn "e" (right: short_float) return short_float:
function =" {right: short_float) return short_float:
function "abs (right: short_float) return short_float:
function "+" (left, right: short_float) return short_float:
function "-" (left, right: short_float) return short_float:
function *** (left, right: short_float) return short_floact:
function "/" (left, right: short_float) return short_float:
function "**" (left, right: short_float) return short_float:

type flcat is digits 15 range
~2#0.11111111110Y 0111122220000 002 3200021202000 01120031202 1#EL024
2401111100000 00000 B 3 2R 0 R LILAL000000000Y4EL0LS;

function "=" (left, right: float) return boolean:

function "/=" (left, right: float) return boolean:

function "<” (left, right: float) return boolean:

function "<=" (left, right: float) return boolean:

function ">* (left, right: float) return boolean:

function ">=" (left, right: float) return boolean:

function "+ (right: float) return float:;

function "=-" (right: float) return float:

function "abs (right: float) return float:

function "+" (left, right: float) return float:

function *-" (left, right: float) return float:

function "** (left, right: float) return float:

function */" (left, right: float) return float:

function "*a" (left, right: float) return float:

funetion "*” (left: univ_integer: right: univ_real) return univ_real;
function "** (left: univ_ “real; right: univ_integer) return univ_real;
function */* {left: univ_ _real; right: univ intho:) retuzrn unzv real:
function "*" (left: any_fixed:; right: any_fixzxed) return univ_fixed:
function /" (left: any_ fixed; right: any_fixed) return univ_fixed;

type character is '

(nul, soh, stx, etx, eot, enq, eck, bel,
bs, ht, 1lf, v, ££, cr, so, si,

dl.' dclc ch, dc3, dc" n.k' syn, .tb'
can, em, sub, esc, fs, gs, rs, us,

r l' '!I' IIO' 0." 'sl '." l" Oll'
'(" I)I’ l"' '*l, I'l’ ’-" I.I' '/I'
lol' '10' Izl '3" l‘l' Isl' lsl' 170'
'el' 09" '.l l,.l' '<" '-I' I>I' '?l'
le" IAI’ 'B' 'cl' lbl' 'z'l IFI' OG"
IHI' IIU' 'J' lxl' 'LI' IHI' INI' Io"
IP" IQ" IRI' 's" OT" lU" Ivi' I"'
'xl' 'YU’ lzl’ 0[0' l\l' !)I' IA" [4 "
AL l.l’ Ibl' lcl' 'd', ‘e’, Itl' Ial'
'hl' li" 'jl' lkl' Ill' 'ﬂ" Inl’ I°I'
Ipl' 'ql’ ':'l I’l' ltl’ lul' lv" l'l'
lx" Iy" lzl' '(" "l’ ')l’ I-I’ d.l):

for character use
(0, 1, 2, 3, 4, 5, ¢, 7, 8, 9, 10, 127):

package ascii is

oﬂlcm"

- Cv Ax\nble t ..

)h ~.
. PR P ah o hd
RS I G

3

B-8

b TITZTANT CTrarztter = ... S&2.-o TInET27T frazaczne:
STX: CIneTaAnNT charaster s sTX, @IX: SINnS$TANT crhazacoEr s a-
eot: cCInstant character := eot. eng: CCRSTART cnarzazie:r .= =z
ack: ccnstant character := ack: bel: ccnstant charazter := c2_.
1€ . constant character := 1£; vt constant characoer := ==
f£ : censtant character := ££; cr ccnstant character .= or;
$0 : constant character := s¢; 81 ccnstant character = s.
dle: constant character := dle: dcl: constant character := c:z.
dcl: constant character := dc2: dcld: constant character := =::;
dcd. constant character := dcd; rak: constant character := nax

\ syn: constant character := syn; etb: constant character .= e:Z:

n sub: constant character := sub; esc: constant character := esc;

S IS : constant character := rs.; us constant character := iUs;
del: constant character := del;
exclam : constant character := ’!’;
quotation : constant character := '"’;
sharp : constant character := '¢':

W dollar : constant character := ’S$‘;

\J percent : constant character := ‘§‘;

3 ampersand : cnnstant character := ‘§&°;

) colon : constant character := ‘':’;

s semicolen : constant character := ';’;
query : constant character := ’?’;
at_sign : constant character := ‘@’';

' 1l _bracket : constant character := ‘[’

2 back_slash : cdnstant character := ‘\’;

) r_bracket : constant character := ‘)’;

) underline : constant character := ’ ’;
grave : constant character := ‘¥’
1l _brace : constant character := ’(’;
bar : constant character := ’|’;

: r*b:aco : constant character := '}’;

- tilde : constant character := ’'~';

N lc_a: constant character := ‘a’;

- lc_z: constant character := ’'z’';

end ascii;

=

subtype natural is integer range 0 .. integer’last:
subtype positive is integer range 1 .. integer’last;

\ type string is array(positive range <>) of character:
Ky pragma pack(string):
N function "=" (left, right: string) return boclean:
. function %/=" (left, right: string) return boolean;
& function "< (left, right: string) return boolean:
- function "<=" (left, right: string) return boolean:
j function ">" (left, right: string) return boolean:
function ">a® (left, right: string) return boolean;
function "¢" (left: string:; right: string) return string;
function "¢" {(left: character:; right: string) return string:
function "&¢" (left: string; right: character) return string:
d function "&" (left: character: right: character) return string:
W
type duration is delta 241.04E-14 range
M) -24100000000000000000.0¢ ..
A 2111111111112131311.3212112122221111¢4;
- function "=" (left, right: duration) return boolean:
P~ function "/=" (left, right: duration) return boclean:
' function "«<” (left, right: duration) return boolean:
) function "<=*" (lefz, right: duration) return boclean:
3 furction *>" (left, right: duration) return boolean:
function ">e" (left, right: duration) return boolean;
O Queyy
N p‘lnu y“f!e
A egib), “. Sy,
L B-~9 kk'O\
M A A N O R T AR Y LS G ARSI AN

o eIt

' —lecn 2.Ta%lTn TLgnT. LnlsgeI. IeT.zt z.zztocic
‘ f.nzstin vt (-ef: .nteger; right: <Suratlcn) retuznm s.zatLit:
funczicn /" (.eft: duration: right: integer) return duraz:ozrn
e
€ . .
‘ constraint_error : exception;
numeric_error : exception:
X program_error ¢ exception;
. storage_error : exception:
Tasking_error : exception;
erd stancard;
STANDARD .DURATION'SMALL = 0.000061035
By criaie o TR seee ol
pemmit iy legihle meproswycts,
L)
o
4
d
»
Ad
L]
»
K}
4
G
<&
"
4
L]
»
D
X d
‘r
"
'y
L}
1)
)

P

A e

¥4’ o3, g AR VR otk abe als - S5 2t ath (YR a'A abi 21p" ‘okg ate SR8 o4 a¥a ata 2'2 & 2 2’ a bt il

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in 1its file
name. Actual values to be substituted are identified by names that begin
with a dollar sign. A value is substituted for each of these names before
the test is run. The values used for this validation are given below.

Name and Meaning Value

$Big_ID1 (1..498 => 'a', 49y => ')
Identifier of size MAX_IN_LEN
with varying last character.

$BIG__IDZ (1..498 => 'A', 499 => '2')
Identifier of size MAX_IN_LEN
with varying last character.

$BIG_ID3 (1..247 | 243..499 => 'A', 241 => '3')
Identifier of size MAX_IN LEN
with varying middle character.

$BIG_ID4 (1..241 | 243..499 => 'A', 241 => '4')
Identifier of size MAX_ IN_LEN
with varying middle character.

$BIG_INT_LIT (1..496 => '0', 497..499 => m298")

An integer 1literal of value 298
with enough 1leading 2zeroes so
that it is MAX_IN_LEN characters
long.

C-1

’° \"w ’.- T 3T ;. _n'--;f 'J,;J,"I_.-'sc'.'-'\,‘ LN I.‘-‘ L 'J\-‘ﬁf_".‘_.r.&.‘*f‘l‘()_'f\f g _‘.f".r rd f-"...-\ > :"\; EAC)
». A A & » ~ R L

-, v _w N

LD

- \‘..\.. .

"'"""J'v'l-f‘ ‘.r“".rf-r.r.rffv.f.r

TEST PARAMETERS

Name and Mearing

Value

$BIG_REAL_LIT
A real

(1..493 => '0', 494,.499 => "6£9.0E1")
literal that can be

either of floating- or fixed-
point type, has value 69%90.0, and
has enough 1leading zeroes to be

MAX_IN_LEN characters long.

$BLANKS

(1..479 => ' ')

Blanks of length MAX_IN_LEN - 20

$COUNT_LAST

2_147_483_647

Value of COUNT'LAST in TEXT_IO

package.

$EXTENDED_ASCII_CHARS

rabedefghi jKlmnopqrstuvwxyz!$%26[]r{}-"

A string 1literal containing all

the ASCII characters

with

printable graphics that are not
in the basic 55 Ada character

set.

$¥1ZLD_LAST °

2_147_483_647

Value of FIELD'LAST in TEXT IO

package.

$FILe_JAME_WITH_BAD_CHARS

"/illegal/file_name/2{]$%2102C .DAT"

An illegal external file name

that either contains
characters or is too long.

$FILE_NAME WITH_WILD CARD_CHAR
An external file name
either
character or is too long.

$GREATER_THAN_DURATION

invalid

"/illegal/file name/CE2102C® .DAT"
that
contains a wild card

100_000.0

A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in

the range of DURATION.

$GREATER_THAN_DURATION_BASE LAST

10_000_000.0

The urdversal real value that is
greater than DURATION'BASE'LAST.

$ILLEGAL_EXTERNAL_FILE_NAME1
Illegal external file name.

$ILLEGAL_EXTERNAL_FILE_ NAME2
Illegal external file names.

"/no/such/directory/&
ILLEGAL_EXTERNAL_FILE_NAME"

"/no/such/directory/&
ILLEGAL_EXTERNAL_FILE NAME2"

C-2

2 T BELEEEE T R

NG A AN AN A A A AN S0 g SRR . .- "o
B R) A B R g B A

-‘J’d"(‘

{
{

.-\

i

TEST PARAMETERS

Name and Meaning Value

W I

$ INTEGER_FIRST -2_147_4B3_648
The universal integer literal
expression whose value is
INTEGER'FIRST.

- $INTEGER_LAST 2_147_483_647
" The universal integer literal

expression whose value is

INTEGER'LAST.

A indversal real value that lies

between DURATION'BASE'FIRST and

DURATION'FIRST or any value in
. the range of DURATION.

4

: $LESS_T4AN_DURATION -100_000.0
.

3

i $LESS_THAN_DURATION BASE FIRST -10_000_000.0
W\ The universal real value that is
less than DURATION'BASE'FIRST.

$MAX_DIGITS 15

Maximum digits supported for
floating-point types.

MY

. $MAX_IN_LEN 499 (plus line feed character)
Maximum input line leagth

' permitted by the implementation.

$MAX_INT

The value of MAX INT in package 2 147 U483 647
g SYSTEM.

$NAME TINY_INTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

AN

$NEG_BASED_INT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
b falls in the sign bit
X position of the representation
for SYSTEM.MAX_INT.

f W o8 ptl

. .A.
Va"a"a"a 0 2 2

R4
‘
»

X PP R 2 R P L A AL A AT S I T i . R T R I T -.‘.-'.-".-'. '."q'.‘.-'.-"q““-
! 4ilbf$ﬂ?f:;¥;!$~f\(xf G T N A RS L O R I SO R s PO A -, xR o

o

TEST PARAMETERS

Name and Meaning Value

$NON ASCII_CHAR_TYPE (NON_NULL)
An enumerated type definition
for a character type whose
literals are the identifier
NON_NULL and all non-ASCII
characters with printable
graphiecs.

i D B 4

8 4 LA

ol e

CaCe e e

28 8 8

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. When testing was performed, the following 16 tests had been
withdrawn at the time of validation testing for the reasons indicated:

. B4AO1I0C: The object declaration in line 18 follows a subprogram
body of the same declarative part.

. BB3A06B: The Ada Standard 8.3(17) and AI-00330 permit the label
LAB_ENUMERAL of 1line 80 to be considered a homograph of the
enumeration literal in line 25.

. BA2001E: The Ada Standard 10.2(5) states: "Simple names of all
subunits that have the same ancestor library unit must be distinct
identifiers.” This test checks for the above condition when stubs
are declared. However, the Ada Standard does not preclude the
check being made when the subunit is compiled.

. BC3204C: The file BC3204C4 should contain the body for BC3204CO
as indicated in line 25 of BC3204C3M.

. C359048: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC ERROR (instead of CONSTRAINT_ERROR).

. C41404A: The values of 'LAST and 'LENGTH are incorrect in 1IF
statements from line 74 to the end of the test.

. CuB00BA: This test requires that the evaluation of default
initial wvalues not occur when an exception is raised by an
allocator. However, the Language Maintenance Committee (LMC) has
ruled that such a requirement is incorrect (AI-00397/01).

D-1

i . P I S LR TP S TR R TS LS AT R RS RN P |
R A A B A SRR S

t ‘et et ala’ fate gy iat t gta*alyJhe he e gle’ Yol tade iy - abatmts gt utonat aabe gbot 19,90 o gk a2k e pha A’ 5 1a- o

i "

WITHDRAWN TESTS

) . CU4AO14A: The number declarations in 1lines 19-22 are incorrect
N because conversions are not static.

K . C92005A: At line 40, "/=" for type PACK.BIG_INT 4is not visible
W without a USE clause for package PACK.

* . COUOACA: This test assumes that allocated task TT!1 will run prior

" to the main program, and thus assign SPYNUMB the value checked for
’ by the main program; however, such an execution order is not
. required by the Ada Standard, so the test is erroneous.

f

. CA1003B: This test requires all of the legal compilation units of
. a file containing some illegal units to be compiled and executed.

3" According to AI-00255, such a file may be rejected as a whole.
?
. CA3005A..D (4 tests): No valid elaboration order exists for these

b tests.

Y,

; . CE2107E: This test has a variable, TEMP_HAS_NAME, that needs to
N be given an initial value of TRUE.

-

hn 3

\

-~

-

-

'

<
)

'

(]

l

]

o,

LT

' O
©
]
N

qf-)

Y

T N A R R o S O N A D T

N A O I A A I N L W DR IR I T RIUK) < S T Y Y Y T I L

P
)
N

\\
™

’

"-’\.A’L-l.! 'OT PO P I . SR T T P AL BT R Ry N -p-p e LT R R R Ry Y R T S -, - TRy

