
MISS 374 ODR (TEROEAE) COMPILER VAL7IONO SINARY REPORT 1/1
VEADIX RDA DEVELOPMENT.. (U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER Id-P NFB OH RDA YRLI. 19 JUN Of

ICLRSSSFIEO F/O12/5 L

EhhEhh:hhEEEhhhhhhhhhhhl
sEl

11111 1.0 E28

IIII2 l5 l
11111.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURtAU OF STANDARDS 1963 A

UNCLASSIFIED FILE
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE RE S'UCTIONSBEFORE COKPLETErN FORM
1. REPORT NUMBER 1Z. GOVT ACCESSION NO. 3. RECZPiENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 19 JUN 1986 to 19 JUN 1987
Verdix Ada Development System, 6.0
DEC VAX-11/750 Host and Microbar GPC68K Target 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR($) 8. CONTRACT OR GRANT NUMBER(s)Wright-Patterson

g. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Ada Validation Facility AREA & WORKUNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 19 JUN 1986
United States Department of Defense 13, NUMBER OF PAGES
Washington, DC 20301-3081 40

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)

Wright-Patterson UNCLASSIFIED
15a. R g FICATION/DOWNGRADING

I N/A

. 16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.0
0

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED %ELECTEMA °0 6II87
S 18. SUPPLEMENTARY NOTES S 0

b E

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DO "om 1473 EDITION OF 1 NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada® Compiler Validation Summary Report:

Compiler Name: Verdix Ada Development System (VADS), 6.0

Host Computer: Target Computer:

DEC VAX-11/750 Microbar GPC68K
under

UNIX 4.2 BSD (No operating system)

Testing Completed 19 JUN 1986 Using ACVC 1.7
-4

This report has been reviewed and is approved.

Ada Valida ion Facility
Georgeanne Chitwood
ASD/SIOL-
Wright-Patterson AFB OH 45433-6503 Accession For

NTIS GRA&I
DTrC TAB
Unannounced Q

Justification

7 datioa!_ _ _ _
Ada naidi office By

Dr. John F. Kramer Distribution/
Institute for Defense Analyses Availability Codes
Alexandria VA jAval /

Dist Special

Ada Jo nt Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

AVF Control Number: AVF-VSR-40.1086

Ada® COMPILER
VALIDATION SUMMARY REPORT:

Verdix Ada Development System, 6.0
DEC VAX-11/750 Host

and
Microbar GPC68K Target

Completion of On-Site Validation:
19 JUN 1986

Prepared By:
Ada Validation Facility

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

. ' " 'L '% '/ '/ " " ' """ '" ;" ", ': ,' .' :'''' .'_ .',' " ". :." "

+ +

+ Place NTIS form here +

........................

I1

'I

.!

"I'.

",.'".'. ' % - ' " " '' ' ''''o . N % . - "- - " " .'- %','. ' - -'," '- " " " ', "' S"

/

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Verdix Ada Development System
(VADS), 6.0, using Version 1.7 of the Ada® Compiler Validation Capability
(ACVC).

The validation process includes submitting a suite of standardized tests
(the ACVC) as inputs to an Ada compiler and evaluating the results. The
purpose is to ensure conformance of the compiler to ANSI/MIL-STD-1815A Ada
by testing that it properly implements legal language constructs and that
it identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
ANSI/MIL-STD-1815A. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, or during
execution.

On-site testing was performed 17 JUN 1986 through 19 JUN 1986 at Aloha,
Oregon, under the direction of the Ada Validation Facility (AVF), according
to Ada Validation Organization (AVO) policies and procedures. The VADS,
6.0, is hosted on a DEC VAX-11/750 operating under UNIX, 4.2 BSb.

The results of validation are summarized in the following table:

RESULT TEST CLASS TOTAL
A B C D E L

Passed 68 820 1144 17 11 23 2083

Failed 0 0 0 0 0 0 0

Inapplicable 0 4 176 0 0 0 180

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

fAda is a registered trademark of the United States Government
(Ada Joint Program Office).

There were 16 withdrawn tests in ACVC Version 1.7 at the time of this
validation attempt. A list of these tests appears in Appendix D.

Some tests demonstrate that some language features are or are not supported
by an implementation. For this implementation, the tests determined the
following:

. The additional predefined types, TINYINTEGER, SHORTINTEGER, and
SHORT FLOAT, are supported. Types LONG INTEGER and LONG FLOAT are
not supported.

. Representation specifications for noncontiguous enumeration
representations are supported.

* Generic unit specifications and bodies cannot be compiled in

separate compilations.

• Pragma INLINE is supported for procedures. Pragma INLINE is
supported for functions.

. The package SYSTEM is used by package TEXT IO.

. Mode IN-FILE is supported for sequential I/O.
Mode OUT FILE is supported for sequential I/O.

• Instantiation of the package SEQUENTIAL_10 with unconstrained
array types is supported.

• Instantiation of the package SEQUENTIAL 10 with unconstrained
record types with discriminants is supported.

. RESET and DELETE are supported for sequential and direct I/O.

• Mode IN FILE is supported for direct I/O.
Mode INOUT FILE is supported for direct I/O.

Mode OUT FILE is supported for direct I/O.

. Instantiation of package DIRECT 10 with unconstrained array types

and unconstrained types with discriminants is supported.

. Dynamic creation and deletion of files are supported.

. More than one internal file can be associated with the same
external file.

. An external file associated with more than one internal file can

be deleted.

. Illegal file names can exist.

ACVC Version 1.7 was taken on-site via magnetic tape to Aloha, Oregon. All
tests, except the withdrawn tests and any executable tests that make use of
a floating-point precision greater than SYSTEM.MAX DIGITS, were compiled on
a DEC VAX-11/750. Class A, C, D, and E tests were executed on a Microbar
GPC68K.

On completion of testing, execution results for Class A, C, D, or E tests
were examined. Compilation results for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.

The AVF identified 2093 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation-of the VADS, 6.0. Excluded were
170 tests requiring a floating-point precision greater than that supported
by the implementation and the 16 withdrawn tests. After the 2093 tests
were processed, 10 tests were determined to be inapplicable. The remaining
2083 tests were passed by the compiler.

The AVF concludes that these results demonstrate acceptable conformance to
ANSI/MIL-STD-1815A.

'I

'

'

I' • o .- . .• -- , . -,. . % - %. % %, %a"- % % %-"
%

'% ''.",-. - "% "'"%

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . . . 1-1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 RELATED DOCUMENTS 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION.TESTED 2-1

2.2 CERTIFICATE INFORMATION2-2
2.3 IMPLEMENTATION CHARACTERISTICS2-3

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS3-2
3.6 SPLIT TESTS 3-3
3.7 ADDITIONAL TESTING INFORMATION. 3-3
3.7.1 Prevalidation3-3
3.7.2 Test Method3-4
3.7.3 Test Site 3-5

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to ANSI/MIL.-STD-1815A. This report explains
all technical terms used within it and thoroughly reports the results of
testing this compiler using the Ada Compiler Validation Capability (ACVC).
An Ada compiler must be implemented according to the Ada Standard
(ANSI/MIL-STD-1815A). Any implementation-dependent features Must conform
to the requirements of the Ada Standard. The entire Ada Standard must be

* implemented, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to ANSI/MIL-STD-1815A, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations imposed on a
compiler by the operating system and by the hardware. All of the
dependencies demonstrated during the process Of testing this compiler are
given in this report.

VSRs are written according to a standardized format. The reports for
several different compilers may, therefore, I- easily compared. The
information in this report is derived from the test results produced during
validation testing. Additional testing information as well as details
which are unique for this compiler are given in section 3.7. The format of
a validation report limits variance between reports, enhances readability
of the report, and minimizes the delay between the completion of validation
testing and the publication of the report.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

J.-1

INTRODUCTION

. To attempt to identify any unsupported language constructs
required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). Testing was conducted from 17 JUN
1986 through 19 JUN 1986 at Aloha, Oregon.

1.2 USE OF THIS VALIDATION SUMMARI REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformances
to ANSI/MIL-STD-1815A other than those presented. Copies of this report
are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139
1211 S. Fern, C-107
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SIOL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1.3 RELATED DOCUMENTS

1. Reference Manual for the Ada Programmin9 Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Qrpnization: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformance of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada St-dard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requssting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting policies and
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformance to the Ada Standard.

Host The computer on which the compiler resides.

1-3

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

LMC The Language Maintenance Committee whose function is to
resolve issues concerning the Ada language.

?assed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that evaluates the conformance of a compiler to a
language specification. In the context of this report, the
term is used to designate a single ACVC test. The text of a
program may be the text of one or more compilations.

Withdrawn A test found to be inaccurate in checking conformance to the
test Ada language specification. A withdrawn test has an invalid

test objective, fails to meet its test objective, or contains
illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformance to ANSI/MIL-STD-1815A is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Special program units are used to report
the results of the Class A, C, D, and E tests during execution. Class B
tests are expected to produce compilation errors, and Class L tests are
expected to"produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. (However, no checks are performed during execution to see if
the test objective has been met.) For example, a Class A test checks that

' reserved words of another language (other than those already reserved in
" the Ada language) are not treated as reserved words by an Ada compiler. A

Class A test is passed if no errors are detected at compile time and the
program executes to produce a message indicating that it has passed.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntactical
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT-APPLICABLE message indicating the result when it is
executed.

1-4

INTRODUCTION

Class D tests check the compilation and execution capacities of a compiler.
Since there are no requirements placed on a compiler by the Ada Standard
for some parameters (e.g., the number of identifiers permitted in a
compilation, the number of units in a library, and the number of nested
loops in a subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the test
is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT-APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving

multiple, separately compiled units are detected and not allowed to
execite. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
*the self-checking features of the executable tests. The package REPORT

provides the mechanism by which executable tests report results. It also
provides a set of identity functions used to defeat some compiler
optimization strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The procedure
CHECK FILE is used to check the contents of text files written by some of
the Class C tests for chapter 14 of the Ada Standard.

The operation of these units is checked by a set of executable tests.
These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation is not attempted.

Some of the conventions followed in the ACVC are intended to ensure that

the tests are reasonably portable without modification. For example, the
tests make use of only the basic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place
features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values. The values used
for this validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformance to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal

z 1-5

INTRODUCTION

language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The nonconformant
tests are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGUdATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Verdix Ada Development System (VADS), 6.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine: DEC VAX-11/750

Operating System: UNIX 4.2 BSD

Memory Size: 6 Megabytes

Target Computer:

Machine: Microbar GPC68K

Operating System: None

Memory Size: 0.5 Megabyte

Communications Network: Ethernet / Multibus

Note: A SUN-2 operating under UNIX 4.2 BSD was used to transfer the
executable images from the host to the target. The SUN machine was also
used to execute the runtime support packages that were required to report
test results and to perform file operations.

2-1

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION

Configuration:

Compiler: Verdix Ada Development System (VADS), 6.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Certificate Date: 3 September 1986

Host Computer:

Machine(s): DEC VAX-11/750

Operating System: UNIX 4.2 BSD

Target Computer:

Mahine(s): Microbar GPC68K

Operating System: None

Communications Network: Ethernet

2-2

C.," , , . ,..?-"-.7.,;' ',.;' ":;:; .;" r.: , ./.": .. .,2'2: " .,. . . ".-" :. ' o " "

CONFIGURATION INFORMATION

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

" Nongraphic characters.

Nongraphic characters are defined in the ASCII character set but
are not permitted in Ada programs, even within character strings.
The compiler correctly recognizes these characters as illegal in
Ada compilations. The characters are printed in the output
listing in a graphic representation, for example "^A." (See test
B26005A.)

" Capacities.

The compiler correctly processes compilations containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures nested to 17 levels. It
correctly processes a compilation containing 723 variables in the
same declarative part. (See tests D55A03A through D55AO3H,
D56001B, D64005E through D64005G, and D2900K.)

" Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AOO2A, D4A002B, D4AO04A, and
D4AOO4B.)

" Predefined types.

This implementation supports the additional predefined types
SHORT INTEGER, SHORT FLOAT, and TINY INTEGER in the package
STANDARD. (See tests B86001CR, B86001CS, B86001CP, B86001CQ, and
B86001DT.)

• Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.AX INT during compilation, or it may raise
NUMERIC ERROR during execution. This implementation raises
NUMERICERROR during execution. (See test E24101A.)

2-3

CONFIGURATION INFORMATION

Array types.

When an array type is declared with an index range exceeding the
INTEGER'LAST values and with a component that is a null BOOLEAN
array, this compiler raises NUMERIC ERROR when the type is
declared. (See tests E36202A and E36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERICERROR when the array type is declared.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR either when declared or
assigned. Alternately, an implementation may accept the
declaration. However, lengths must match in array slice
assignments. This implementation raises NUMERIC ERROR when the
array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the entire expression
appears to be evaluated before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compatible with the
target' s subtype.

In assigning two-dimensional array types, the entire expression
does not appear to be evaluated before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications during
compilation. (See test E38104A.)

In assigning record types with discriminants, the entire
expression appears to be evaluated before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

" Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

2-4

' - % -. %** . .%. ."

CONFIGURATION INFORMATION

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Functions.

The declaration of a parameterless function with the same profile
as an enumeration literal in the same immediate scope is rejected
by the implementation. (See test E66001D.)

Pragmas.

The pragma INLINE is supported for procedures and for functions.
(See tests CA3004E and CA3004F.)

Input/output.

The package SEQUENTIAL 10 can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT 10 can be instantiated with unconstrained array types and
record types with discriminants. (See tests CE2201D, CE2201E, and
CE2401D.)

More than one internal file can be associated with each external
file for sequential I/O for both reading and writing. (See tests
CE2107A through CE2107F.)

More than one internal file can be associated with each external
file for direct I/O for reading only. (See tests CE2107A through
CE2107D and CE2107F.)

An external file associated with more than one internal file can
be deleted. (See test CE2110B.)

More than one internal file can be associated with each external
file for text I/O for both reae4ng and writing. (See test CE3111A
through CE311lE.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT FILE mode, and can be created in IN FILE mode.
(See test EE3102C.)

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

2-5

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

The AVF identified 2093 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the Verdix Ada Development
System (VADS), 6.0. Excluded were 170 tests requiring a floating-point

precision greater than that supported by the implementation and the 16
withdrawn tests. After they were processed, 10 tests were determined to be
inapplicable. The remaining 2083 tests were passed by the compiler.

The AVF concludes that the testing results demonstrate acceptable

conformance to the Ada Standard.

3.2 SUMKARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
_ A B C D E L

Passed 68 820 11414 17 11 23 2083

Failed 0 0 0 0 0 0 0

Inapplicable 0 4 176 0 0 0 180

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

3-1

e~ 05

TEST INFORMATION

3.3 SUIMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER
3 _ _ _4 5 6 7 8 9 10 11 12 14 TOTAL

Passed 102 234 308 244 161 97 158 198 105 28 216 232 2083

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 73 86 3 0 0 3 1 0 0 0 0 180

Withdrawn 0 1 4 0 0 0 1 2 6 0 1 1 16

TOTAL 116 308 398 247 161 97 162 201 111 28 217 233 2279

3.4 WITHDRAWN TESTS

The following tests have been withdrawn from the ACVC Version 1.7:

B4AO10C C41404A CA1003B
B83AO6B C48008A CA3005A through CA3005D (4 tests)
BA2001E C4AO14A CE2107E
BC3204C C92005A
C35904A C940ACA

See Appendix D for the test descriptions.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 180 tests were inapplicable for
the reasons indicated:

" C34001E, B52004D, B55B09C, B86001CS, and C55BO7A use LONGINTEGER
which is not supported by this compiler.

" C34001G, C35702B, and B86001CQ use LONG FLOAT which is not
supported by this compiler.

" C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation.

C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

3-2

% %%% %.**'******v~.

TEST INFORMATION

170 tests were not processed because SYSTEM.MAX DIGITS was 15.
These tests were:

C24113L through C24113Y (14 tests)

C35705L through C35705Y (14 tests)
C35706L through C35706Y (14 tests)
C35707L through C35707Y (14 tests)
C35708L through C35708Y (14 tests)
C35802L through C35802Y (14 tests)
C4524I1L through C45241Y (14 tests)
C45321L through C45321Y (14 tests)
C45421L through C45421Y (14 tests)
C45424L through C45424Y (14 tests)
C45521L through C45521Z (15 tests)
C45621L through C45621Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 17 Class B tests.

B2410o4A B2AO03C B67001A B95001A
B24104B B33004A B67001B B95101E
B24104C B41202A B67001C
B2AOO3A B44001A B67001D
B2AO03B B64001A B91OABA

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.7 produced by
the VADS, 6.0, was submitted to the AVF by the applicant for prevalidation
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests.

3-3

• .,- -, ... , ,..'p.:j-. . ' .,..,_......'... ,., %,' ?;'.'F .. , -'-2.';

ZJVWVLW Ts ,s-rrrN F lF b- I.- uy.W" u rn- '~V "1' F- MY ft- r itn~u 'RY, I WWWrW" rW ras- u*y - 2 - -

TEST INFORMATION

3.7.2 Test Method

Testing of the VADS using ACVC Version 1.7 was conducted on-site by a
validation team. The configuration consisted of a DEC VAX-11/750 host
operating under UNIX 4.2 BSD and a Microbar GPC68K target. The host and
target computers were linked via a SUN-2. The host was connected to the
SUN-2 via Ethernet. The target was connected to the SUN-2 directly; the
GPC68K was connected to the SUN-2 Multibus from which it also drew its
power:

VAX-11/750
(UNIX)

* RCP

SUN-2 MULTIBUS MICROBAR
(UNIX) GPC 68K

A magnetic tape containing ACVC Version 1.7 was taken on-site by the
validation team. The magnetic tape contained all tests to be run during
validation testing. Tests that make use of values that are specific to an
implementation were customized before being written to the magnetic tape.
Tests requiring splits during the prevalidation testing were included in
their split form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded, the full set of tests was
compiled on the DEC VAX-11/750. The resulting object files were linked on

.3-

TEST INFORMATION

the DEC VAX-11/750 and the executable images were transferred using the
UNIX remote copy facility (rcp) and Ethernet to a SUN-2 operating under
UNIX 4.2 BSD. The target computer, a Microbar GPC68K, was connected to the
SUN-2 Multibus. The executable images were saved to disk on the SUN-2 and
loaded one by one into the GPC68K memory via the Multibus and the on-board
ROM Monitor of the target. Once an image was loaded, it was executed and
the results were sent to the SUN-2 via two RS-232 lines which were
controlled by one of two Ada runtime support packages, SIMPLEIO or
CROSS IO.

The SUN-2 file system was used for all input and output. The executable
tests for all chapters except chapter 14 were run using a simplified part
of the runtime system, SIMPLE 10, that does not support file input and
output. The use of SIMPLE 10 reduced link time, file transfer time, and
execution time. The chapter 14 tests, which use file input-output, were
run using the ,runtime system package CROSS IO, executing on both the SUN-2
and the Microbar GPC68K. File operations were performed on the SUN-2 file
system. Results were transferred to the host computer via Ethernet and the
UNIX remote copy facility. Results were printed from the host computer.

The compiler was tested using comand scripts provided by Verdix. These
scripts were reviewed by the validation team.

Tests were run using one host computer and one target computer. Test
output, compilation listings, and job logs were captured on magnetic tape
and archived at the AVF. The listings examined on-site by the validation
team were also archived.

3.7.3 Test Site

The validation team arrived at Aloha, Oregon on 17 JUN 1986 and departed
after testing was completed on 19 JUN 1986.

3-5

" - - ," " " - " " " -"""" " '""" -+ " " " -" - """" - -"- -" A--' "," " " , ."-/ ..
- %p *p " -, p *p. PA, W" - "" - "% % • ' " " - •% * "" - "" " " - - " " "

APPENDIX A

COMPLIANCE STATEMENT

Verdix has submitted the following compliance statement
* concerning the VADS.

A-1

COMPLIANCE STATEMENT

Compliance Statement

Base Configuration:

Compiler: Verdix Ada Development System
Product ID: VAda-010-01105, Version: V6.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine(s): Digital Equipment Corporation
VAX-11/750

Operating System: UNIX
4.2 BSD

Target Computer:

Machine(s): Microbar GPC68K

Operating System: (bare)

Communications Network: ETHERNET and FTP

VERDIX has made no deliberate extensions to the Ada language standard.

VERDIX agrees to the public disclosure of this report.

VERDIX agrees to comply with the Ada trademark policy, as defined by the
Ada Joint Program Office.

/Q~~e,./ ~/§2~~-~ Date:6 !

VERDIX
Dave Nomura
Manager, Ada Products Division

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-

dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation classes. The implementation-dependent characteristics of
the VADS, 6.0, are described in the following sections which discuss topics

one through eight as stated in Appendix F of the Ada Language Reference
Manual (ANSI/MIL-STD-1815A). Package STANDARD is also included in this
appendix.

B-1

ATTACHMENT II

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas
1.1. SHARE-BODY Pragma
The SHARE BODY pragma takes the name of a generic instantiation or a generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the scond argument. This ptagma is only allowed
immediately at the place of a declarative item in a declarative part or package specificaton, or after a
library unit in a compilation, but bcfore any subsequent compilation unit.
When the first argument is a generic unit the pragma appli" L all instantions of that generic. When
the first argument is the name of a generic instaniation the pragma applies only to the specified instan-
tianon, or overloaded instaniations.

If the second argument is TRUE the compiler will try to share code geiemmed for a generic instantia-
tion with code generated for other insuanttios of the same generic. When the second argument isFALSE each instantiation will get a unique copy of the generuted code. The extn to which code is
shared between instanations depends on this pragma uid the kind of generic formal parameters
declared for the generic unit.

1.2. EXTERNAL NAME Pragma
The EXTERNAL NAME pragna takes the name of a a subpvvr- or variable defined in Ada and
allows the user t specify a different exmna name that may be used so reference the arity from other
languages. The pragima 4sal lowed at do place of a decli ve item in a package specification and
must apply to an object declared earlier in the same package specification.

1.3. INTERFACE-OBJECT Pragma
The INTERFACE OBJECT pragma takes the name of a a variable defined in mxher language and
allows it to be referenced directly in Ada. The pragma will place all occurrences of the variable
name with an external reference to the second. link argument. The pragma is allowed at the place of a
declarative item in a package specificaton and must apply to an object declared earlier in the same
package specification. The object must be declared as a scalar or an access type. The object cannot be
any of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

2. Implementation of Predeflned Pragma.
2.1. CONTROLLED

This pragma is recognized by the implementation but has no effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the Ada RM.

B-2

. .-. .* ' , . -* . - . .- . .-- a. ." -* .*.

* - V U~~ lW"VJ.' ' VV F ?rlj .r' -W - " -r'-'- WT - WWI W~ 6-. T Vw1MW~,-WVWVWwWV WVW WI"M wwww" v7w

2.3. INLINE

This pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE
This pragma supports calls to 'C' and FORTRAN functions. The Ada subprograms can be either func-
tions or procedures. The types of parameters and the result type for functions must be scalar, access or
the predefined type ADDRESS in SYSTEM. An optional third argument overrides the default link
name. All parameters must have mode IN. Record and array objects can be passed by reference using
the ADDRESS attbute.

2.5. LIST
This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMORY-SIZE

This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.7. OPTIMIZE
This pragma is recognized by the implementation but has no effect.

28. PACK
This pragma will cause the compiler to choose a non-aligned representation for composite types. Corn-
ponents that are smaller than a STORAGEUNIT ae packed into a number of bits that is a power of
two.

2.9. PAGE

This pragma is implemented a described in Appendix B of the Ada RM.

2.10. PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM.

2.11. SHARED

This pragma is recognized by the implementation but has no effect.

2.12. STORAGEUNIT
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.13. SUPPRESS

This pragma is implemented as described, except that RANGE CHECK and DIVISION CHECK can-
not be supressed.

2.14. SYSTEM-NAME
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.
3. Implementation-Dependent Attributes

NONE.

B-3

s . -. ,_ . .-.-.-...- . -. .. .,-- ; ...-. . , S... -. -.. ,.. . -. ," '.' '.'.'..

4. Specification Of Package SYSTEM

package SYSTEM

type NAME is (vaxunixm68k);

SYSTEMNANE : constant NANE :- vaxunixm68k

STORAGE UNIT : constant :- 8;MBMfRYSIZE : constant :- 262144;

- System-Dependent Named Numbers

MININT : constant :- -2147 483_647 1;

MAX INT : constant :- 2 147_483_647;
MAX -DIGITS : constant :- 15;
MAX-MANTISSA : constant :- 31;
FINE DELTA : constant :- 2.0*(-14);
TICK : constant :- 0.01;

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 7;

MAX REC SIZE : integer :. 64*1024;

type ADDRESS is private;

NO ADDR : constant AD ESS;

function PHYSICAL ADDRESS(I: INTEGER) return AEMSS;
function ADM GT(A. B: ADDRESS) return BOOLEAN;
function ADDRLT(A, B: ADDRESS) return BOOLEAN;
function ADDRGE(A, B: AIMESS) return BOOLEAN;
function ADDR-LE(A, B: ADDRESS) return BOOLEAN;
function AMR DIFF(A, B: ADDRESS) return INTEGER;
function INCRAI DR(A: AD.ESS; INCR: INTEGER) return ADDRESS;
function DECRADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS;

function ">(A, B: AiMSS) return BOOLEAN renames ADDR GT;
function "<O(A. B: ADJESS) return BOOLEAN renames ADDR LT;
function ">-"(A, B: ADDRESS) return BOOLEAN renames ADDR GE;
function "<'(A, B: ADDRESS) return BOOLEAN renames AI)DR LE;
function "-"(A, B: ADDRESS) return INTEGER renames ADDRDIFF;

function "+O(A: ADDRESS; INCR: INTEGER) return ADDRESS renames INCR ADOR.
function *-'(A: ADDRESS; DECR: INTEGER) return ADDRESS renames DEER-AD

pragma inline(ADDRGT);
pragma inline(ADDRLT);
pragma inline(ADDR GE);
pragma in ine(AMCR.LE);
pragma inline(ADDR DIFF);
pragma inline(INCRADCR);
pragma inIine(DECRADR);

private

B-4

-..+ *.

* % % w .%m4 .

type AD DRESS is new integer;

NO ADDR : constant ADDRESS :. 0;

end SYSTEM;

5. Restrictions On Representation Clauses

$.1. Pragma PACK

Array and record components that am smaller than a STORAGEUNIT mae packed into a number of
bits that is a power of two. Objects and larger componentd. are Pcked to the nearest whole
STORAGE-UNIT.

5.1. Size Specfication

The size pecifictson "ISMAL is not supported.

5.6 Rcord Representation Clauses

Compo ents not aigned on even STORAGEuUNT boundaries may not Span more than fourSTORAGE-UNITs. -

. Address Clauses
Address clauses =aro ot suppoted.

5.7. Interrupts

Interrupts are not supported.

7.6. Representation Atributes

The ADDRESS attribute i not supported for the following entiies:
Packages
Tasks
Labels
Entries

8.7. Machine Code Uncertions

Machine code insertions an supported.

6. Conventions for Implemetatioa-generated Names

There are no implementationtienerated nms

7. Interpretaion of Expressions In Address Clowne

Address clausesaremnom supported.

8. Restrictions on Unchecked Conversions
The predefined generic function UNC-HECKED CONVERSION camot be instatiated with a target

type which is an unconstrained array type or m unconsnained record type with discriminants.

B-5

9. Implementation Chmlcteristics of 1/0 Packages
Instantations of DIRECT 10 use the value MAX REC SIZE as the record size (expressed in

STORAGE UNITS) when the size of ELEMENTJYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT TYPE'SEZE is very large, MAX REC_ SIZ is used
instead. MAX RECORD SIZE is defined in SYSTEM and can be changed by a program before
instantiating DIR-ECT 106 provide an upper limit on the record size. In any case the maximum size
supported is 1024 x 1024 x STORAGEUNIT bits. DIRECT 10 will raise USE-ERROR if
MAX REC SIZE exceeds this absolute limit.

Instandations of SEQUENTIAL 10 use the value MAX REC SIZE as the record size (expressed in
STORAGE UNITS) when the size of ELEMENTTYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT TYPE'SZE is very large, MAX REC SIZE is used
instead. MAX RECORD SIZE is defined in SYSTEM and can be changed by a program before
instantiating 11 TEGERIO to provide an upper limit on the record size. SEQUENTIAL 1O imposes no
limit on MAXRECSIZE.

10. Implementation Limits

The following limits are actually enforced by the implementation. It is not intended to imply that
resources up to or even new these limits are available to every progran.

10.1. Line Length

The implementation supports a maximum line length of 500 characten including the end of line charac-
ter.

10.2. Record and Array Sizes
The maximum size of a statically sized army type is 4,000.000 x STORAGE UNITS. The maximum
size of a statically sized record type is 4,000,000 x STORAGE UNITS. A record type or array type
declaration that exceeds these limits will generate a warning message.

103. Default Stack Size for Tasks

In the absence of an explicit STORAGE SIZE length specifcation every task except the main program
is allocated a fixed size stack of 10,240 STORAGEUNITS. This is the value returned by
T'STORAGE SIZE for a task type T.

10.4. Default Collection Sie

In the absence of an explicit STORAGESIZE length atribute the default collection size for an access
type is 100,000 STORAGEUNITS. This is the value nnued by T'STORAGE SIZE for an access
type T.

10.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE-UNITS for objects declared statically within a
compilation unit. If this value is exceeded tie compiler will terminate the compilation of the unk with a
FATAL error message.

B-6

pa:kage standard is
type boolean is (false, true);
function -" (left, right: boolean) return boolean;
function "-" (left, right: boolean) return boolean;
function "I" (left, right: boolean) return boolean;
function "<" (left, right: boolean) return boolean:
function ">" (left, right: boolean) return boolean;
function ">-" (left, right: boolean) return boolean;

function "and" (left, right: boolean) return boolean;
function "or" (left, right: boolean) return boolean;
function "xor" (left, right: boolean) return boolean;
function "not" (right: boolean) return boolean;

type tinyinteger is range -128 .. 127;
function "-" (left, right: tiny integer) return boolean;
function "/-" (left, right: tiny integer) return boolean;
function "<" (left, right: tiny integer) return boolean;
function "<-" (left, right: tiny integer) return boolean;
function ">" (left, right: tiny integer) return boolean;
function ">-" (left, right: tiny integer) return boolean;
function "+" (right: tiny integer) return tiny integer;
function "-" (right: tiny integer) return tiny-integer;
function "abs fright: tiny integer) return tiny-integer;
function "+" (left, right: tiny integer) return tinyinteger;
function "-" (left, right: tiny integer) return tiny-integer;
function "'" (left, right: tiny integer) return tinyinteger;
function "/" (left, right: tiny integer) return tinyinteger;
function "rem" (left, right: tiny integer) return tiny integer;
function "mod" (left, right: tinyjinteger) return tiny integer;
function "**" (left, right: tinyinteger) return tinyinteger;

type shortinteger is range -32768 .. 32767;
function "-" (left, right: shortinteger) return boolean;
function "/-a (left, right: short integer) return boolean;
function n<" (left, right: short-integer) return boolean;
function "<-" (left, right: short integer) return boolean;
function ">" (left, right: short_integer) return boolean;
function ">-" (left, right: shortinteger) return boolean;
function P+n (right: short integer) return short integer;
function "-" (right: short integer) return short integer;
function "abs (right: short integer) return short integer;
function "+" (left, right: short_integer) return short integer;
function "-" (left, right: short integer) return short integer;
function "' (left, right: short-integer) return short integer;
function "/" (left, right: short integer) return short integer;
function "rem" (left, right: short--integer) return short-integer;
function "mod" (left, right: short integer) return short integer;
function "**" (left, right: short integer) return short integer;

type integer is range -2147483648 2147483647;
function "- (left, right: integer) return boolean;
function "1-" (left, right: integer) return boolean;
function 0<0 (left, right: integer) return boolean;
function "- (left, right: integer) return boolean;
function ">0 (left, right: integer) return boolean;
function ">-" (left, right: integer) return boolean:
function "+w (right: integer) return integer;
function "-w (right: integer) return integer;
function "abs (right: integer) return integer;
function "+" (left, right: integer) return integer;
function "-" (left, right: integer) return integer;
function "'" (left, right: integer) return integer;
function "" (left, right: integer) return integer;
function "rem" (left, right: integer) return integer;
function "mod" (left, right: integer) return integer;

B-7

function "''" (left, right: integer) return integer;

ty-: short float is digits 6 range-2#0.IIIIIIIIIIIIIIIllIIIIIII#E127.

2#0.fuItinIIlefIight:I horl#E127a ;
function "-" (left, right: shortfloat) return boolean;
function "/" (left, right: short float) return boolean;
function "<" (left, right: short-float) return boolean;
function "<" (left, right: short-float) return boolean;
function ">- (left, right: short_float) return boolean;
function "" (left, right: short float return boolean;
function "+" (right: short float return shortfloat;
function "ab (right: short-float) return short float;
function "abs (right: short-float) return short-float;
function "- (left, right: short float) return short float;
function "- (left, right: short-float) return short-float;

0 function "1" (left, right: short float) return short-float;
1 function "/" (left, right: short float) return short-float;'.function "*" (left, right: short-float) return short-float;

type float is digits 15 range

function "-" (left, right; float) return boolean;
function U/-U (left, right: float) return boolean;
function "< (left, right: float) return boolean;function "<0" (left, right: float) return boolean;
function ">" (left, right: float) return boolean;
function ">- (left, right: float) return boolean;
function "+ (right: float) return float;
function "-" (right: float) return float;
function "abs (right: float) return float;
function "+" (left, right: float) return float:
function "-" (left, right: float) return float;
function "'" (left, right: float) return float;
function U/U (left, right: float) return float;
function """ (left, right: float) return float;

function "*" (left: univ integer; right: univ real) return univ real;
function "'" (left: univ-real; right: univ integer) return univ-real;
function "I" (left: univ4real; right: univ-integer) return univ-real;

function "*" (left: any fixed; right: any_fixed) return univ fixed;
function "I" (left: anyfixed; right: any fixed) return univ-fixed;

type character is
(nul, soh, stx, etx, eot, enq, eck, bel,
bs, ht, lf, vt, ff, Cr, so, si,
dle, dcl, dc2, dc3, dc4, nak, syn, etb,
can, em, sub, eC, fs, gs, rs, Us,
, ,, f" lot, "#', 1$', f"', " , fee,

' 0 ', '11 , '2', 131, '40, 151, '6', 171,Is,, "9', ":1, ';', 8<1' " *, ">', I"'
'0', 'A', 'B', 'CO, 'D', 'E', 'F', 'G','H', '1', IV', 'K', 'L', IM', PH', 'O',
'P', '0', #R#, IS', 'T', 'U', 'V', 'W',
'X', lye, 'z', IV', "\', "]', 0" 1', " ",
'%', 'a', "b', Ice, 'd', Opel, "I ', 'g',"h', 'if, " ', "k', flee "ml In , "
epee "q', Or', Ise, "t', 'U', 'V', 'W',
" XI, "y", 0"' V[, "I', "]', "", del);

for character use(0, 1, 2, 3, 4, 5, 6, 7 8, 9, 0.... 127);

package ascii is

B-8

nul: constant character : nul; sob: constant charac:er :-
stx: constant character :- sx: etx: constant character : e:m;
eot: constant character : eot; enq: constant character : en=:
ack: constant character : ack; bel: constant character :bel;
If : constant character : if; vt : constant character : vt;
ff : constant character : ff; cr : constant character : cr;
so : constant character : so si : constant character : si;
die: constant character U die; dcl: constant character :dcl;
dc2: constant character : dc2; dc3: constant character : dc3;
dc4: constant character : dc4; nak: constant character :- nak;
syn: constant character :- syn; etb: constant character :- etb;
sub: constant character :- sub; esc: constant character : esc:
rs : constant character :- r3; us : constant character :- us;
del: constant character :- del;

exclam : constant character :-!;
quotation : constant character :-"'
sharp : constant character :-0;
dollar : constant character :- '';
percent : constant character :1,;
ampersand : constant character :-&'
colon : constant character :- ';'
semicolon : constant character :-
query : constant character :- '?';
at sign : constant character :- '6';
1 _racket : constant character :-I'
back slash : constant character :-I
r bracket : constant character :- '';
underline : constant character :- ';
grave : constant character :- "
1 brace : constant character :- '(';
bar : constant character :- '';
r brace : constant character IV;
tTlde : constant character :-';

ic_a: constant character :- 'a';

ic'z: constant character :- 'z';

end ascii;

subtype natural is integer range 0 integer'last;
subtype positive is integer range 1 integer'last;

type string is array(positive range <>) of character;
pragma pack(string);
function "-" (left, right: string) return boolean;
function U/-" (left, right: string) return boolean;
function w<" (left, right: string) return boolean;
function "<- (left, right: string) return boolean;
function >u (left, right: string) return boolean;
function >- (left, right: string) return boolean;
function 0&" (left: string; right: string) return string;
function 0&" (left: character; right: string) return string;
function 0&" (left: string; right: character) return string;
function I&' (left: character; right: character) return string;

type duration is delta 2#l.0*E-14 range
-20IOCO0000000000000.0# ..
2011111111111111111.11111111111111#;

function w-" (left, right: duration) return boolean;
function "/-" (left, right: duration) return boolean;
function < (left, right: duration) return boolean;
function - (left, right: duration) return boolean;
function 0>0 (left, right: duration) return boolean;function ">" (left, right: duration) return boolean;

B-9

"WAM ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ UU FW ."I Mw.vf -- IVxmnrj wwr fwn Wr-l w w v P uWW RI M M Wn OWU

function "" (left: duration; right: integer) return durat.z:
function '" (left: integer; right: duration) return duratcn;.
function " (left: duration; right: integer) return duration;

constraint error : exception;
numieric error : exception;
program error : exception;
storage error : exception:
tasking~error : exception;

en~d standard;

STANDARD.DURATION'SMALL -0.000061035

B- 10

V.U

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such

as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are identified by names that begin
with a dollar sign. A value is substituted for each of these names before
the test is run. The values used for this validation are given below.

Name and Meaning Value

$BIGIDI (i..498 => 'A', 499 => '1')
Identifier of size MAX IN LEN
with varying last character.

$BIG ID2 (1..498 => 'A', 499 => '2')
Identifier of size MAX IN LEN
with varying last character.

$BIGID3 (1..241 I 243..499 => 'A', 241 => '3')
Identifier of size MAX IN LEN
with varying middle character.

$BIG ID4 (1..241 I 243..499 => 'A', 241 => '4')
Identifier of size MAX IN LEN
with varying middle character.

$BIG INT LIT (1..496 => '0', 497..499 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is MAX INLEN characters
long.

C-I

-4

TEST PARAMETERS

Name arnd Meaning Value

$BIG REAL LIT (1-.493 => l0t, 494..499 => "69.OE1")
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
MAX IN LEN characters long.

$BLANKS (1-.479 => ')
Blanks of length MAX-INLEN - 20

$COUNTLAST 21147_483_647
Value of COUNT'LAST in TEXT 10
package.

$EXTENDED ASCII CHARS "abcdefiijklmnopqrstuvwxyz$%?[J^()-"
A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

*$FIELD LAST 2 147 483 647
Value of FIELD'LAST in TEXT_10 - -
package.

$FILE-NAMEWITHBADCHARS "/illegal/tile name/21$%2102C .DAT"
An illegal- external file name
that either contains invalid

* characters or is too long.

$FILE_NAMEWITHWILD CARD CHAR "/illegal/tile name/CE21O2C*.DAT"
An external Cile name that
either contains a wild card
character or is too long.

$GREATER THAN DURATION 100 000.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION.

$GREATER THAN DURATION BASE LAST 10 000 000.0
The universal real value that is
greater than DURATION'BASE'LAST.

$ ILLEGAL EXTERNAL F ILE NAME I "/no/suchldirectory&
Illejal external file name. ILLEGAL EXTERNALFILE NAME 1"

$ ILLEGAL EXTERNAL F ILENAM.E2 "/nO/such/directory/ &
Illeial external tile names.* ILLEGAL EXTERNAL FILE NAME2"

C-2

N Nq

- ~i~'~ ~ w:~yv~'r~ r~ ~ "~'~.~r ~ --... ~p-W-- W- W- 7 -W- - - W - - V w --- a- -- U- "

TEST PARAMETERS

Name and Meaning Value

$ INTEGER- FI RST -21 47_483_648
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEGER LAST 2147_483_647
The universal integer literal
expression whose value is
INTEGER' LAST.

$LESSTHAN DURATION -100_000.0
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

$LESS_THAN DURATION BASE FIRST -10_000_000.0
The universal real value that is
less than DURATION'BASE'FIRST.

$ $MAXDIGITS 15
Maximum digits supported for
floating-point types.

$MAX IN LEN 499 (plus line feed character)
Maximum input line length
permitted by the implementation.

$MAX INT
The value of MAX-TNT in package 2147483647
SYSTEM.

$NAME TINY INTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORT INTEGER,
LONG FLOAT, or LONG-INTEGER.

$NEG BASED TNT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

C-3

TEST PARAMETERS

Name and Meaning Value

$NONASCII CHAR TYPE (NON-NULL)
An enumerated type definition
for a character type whose
literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. When testing was performed, the following 16 tests had been
withdrawn at the time of validation testing for the reasons indicated:

, B4AO10C: The object declaration in line 18 follows a subprogram
body of the same declarative part.

. B83A06B: The Ada Standard 8.3(17) and AI-00330 permit the label
LAB ENUMERAL of line 80 to be considered a homograph of the
enumeration literal in line 25.

" BA2001E: The Ada Standard 10.2(5) states: "Simple names of all
subunits that have the same ancestor library unit must be distinct
identifiers." This test checks for the above condition when stubs
are declared. However, the Ada Standard does not preclude the
check being made when the subunit is compiled.

. BC3204C: The file BC3204C1 should contain the body for BC3204C0

as indicated in line 25 of BC3204C3M.

. C3590A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC-ERROR (instead of CONSTRAINT-ERROR).

" C414O4A: The values of 'LAST and 'LENGTH are incorrect in IF
statements from line 74 to the end of the test.

• C48008A: This test requires that the evaluation of default
initial values not occur when an exception is raised by an
allocator. However, the Language Maintenance Committee (LMC) has
ruled that such a requirement is incorrect (AI-00397/01).

D-1

WITHDRAWN TESTS

" C4AO14A: The number declarations in lines 19-22 are incorrect
because conversions are not static.

" C92005A: At line 40, "/=" for type PACK.BIG INT is not visible
without a USE clause for package PACK.

" C940ACA: This test assumes that allocated task TT will run prior
to the main program, and thus assign SPYNUMB the value checked for
by the main program; however, such an execution order is not
required by the Ada Standard, so the test is erroneous.

" CA1003B: This test requires all of the legal compilation units of
a file containing some illegal units to be compiled and executed.
According to AI-00255, .such a file may be rejected as a whole.

• CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

• CE2107E: This test has a variable, TEMP HAS NAME, that needs to
be given an initial value of TRUE.

D-2

D3./ L .-- ---- W

