

AL ALY SN S PP R I IR R R TR TIPS LI e A R N T S S

i
)
) S 28 2.5
: = u k2 g
N _ R ., I—
i w k& W20
A =
"l . .
" == Mls
[} —
—
¢ 1.25 W14 e
d —_— _ ==
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A
'
Y
o
)
53
7

S T T IR ARAE e LY

UNCLASSIFIED _ m FILE ¢ “

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INS UCTIONS
REPORT DOCUMENTATION PAGE oy A0 DNSTRUCTIONS
1. REPORT NUMBER }2. GOVT ACCESSION NO. (3. RECIPIENT'S CATALOG NUMBER
5. TYPE OF REPORT & PERIQD COVERED
19 JUN 1986 to 19 JUN 1987

‘[@. TITLE (and Subtitle)
Ada Compiler Validation Summary Report:

d
Verdix Ada Development System, 6.0
DEC VvAX-11/750 Host and Microbar GPC68K Target |S.

PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBER(s)

7. AUTHOR(s)
Wright-Patterson

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

PERFORMING ORGANIZATION AND ADDRESS

9.
Ada Validation Facility
ASD/SIOL
Wright-Patterson AFB OH 45433-6503
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
%da nggt Proggam OfflC% £ Def 19 JUN 1986

nite tates Department o efense T RUMBER X
washington, DC 20301-3081 ' o PR
14. MONITORING AGENCY NAME & ADDRESS(/fdifferent from Controlling Office) 15. SECURLTY CLASS (of this report)
Wright-Patterson UNCLASSIFIED
152. RECLASSIFICATION/DOMNGRADING

16. DISTRIBUTION STATEMENT (of this Report)
distribution unlimited.

Approved for public release;

DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

@ ELECTE
&, MAY 0 6 1987

17.

UNCLASSIFIED

18. SUPPLEMENTARY NOTES i, WY

AD-A180 074

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada

Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DD T'ORM 1473 t0ITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

1 JAN 73

A I O e T N U N i S

e S S LA
AN, " L .
Vo, IR R m\.\.m-'l'.st.\."_xn RGN IC M RTATATIIS

ANy pt, ahe $Tp B w Al Alw e gk » u.b o R BN R gt Lol ggt

Ada® Compiler Validation Summary Report:

Compiler Name: Verdix Ada Development System (VADS), 6.0

Host Computer:

DEC VAX-11/750
under
UNIX 4.2 BSD

Target Computer:

Microbar GPC68K

(No operating system)

Testing Completed 19 JUN 1986 Using ACVC 1.7

This report has been reviewed and is approved.

p pgeanns’ Cltd

Ada Valida¥ion Facility

Georgeanne Chitwood

ASD/SIOL

Wright-Patterson AFB OH 45433-6503

o w5 Jrk

Ada validation Office

Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA

Ada J%gﬁt Program Office

Virginia L. Castor
Director

Department of Defense
Washington DC

Accession For

NTIS GRA&I

DTIC TAB

Unannounced O
Justification]

By.

Diltribut{gn/

Availability Codes
Avail and/or

Dist Special

A

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

g? w - @

G

LLELSS,

o a8, N

.\- ..‘

. ~
AT RY L\L‘LA_\.L.{L L-L AAA_'A. .

L.{l_

AVF Control Number: AVF-VSR-40.1086

Ada® COMPILER
VALIDATION SUMMARY REPORT:
Verdix Ada Development System, 6.0
DEC VAX-11/750 Host
and
Microbar GPC68K Target

Completion of On-Site Validation:
» 19 JUN 1986

Prepared By:
Ada Validation Facility
ASD/SIOL :
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washingten, D.C.

®pda is a registered trademark of the United States Government
(Ada Joint Program Office).

O RN NN AN LR VA AR O RGN U VAT AU MU AU L TaarTaar T aeaaTm gl pat U ! gt 1 Bat ¢,¢ gy

- -
-~

-~ -
2.

e Sl -

o

JRR

v

L o S e e e = o J
+ o + }
+ Place NTIS form here «+ :.
+ + 1

"

e n e o T A

Tl i

PR

‘s S ¥

v & %

sa X4

P Y)

.. P i ® ™R gy ® o L) P PR]
._...r AN I Lt -I'_'.f. M <

T

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Verdix Ada Development System

(VADS), 6.0, using Version 1.7 of the Ada® Compiler Validation Capability
(ACVC). Y

The validation process includes submitting a suite of standardized tests
(the ACVC) as inputs to an Ada compiler and evaluating the results. The
purpose is to ensure conformance of the compiler to ANSI/MIL-STD-1815A Ada
by testing that it properly implements legal language constructs and that
it identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
ANSI/MIL-STD-1815A. Six classes of tests are used. These tests are

designed to perform checks at complile time, at 1link time, or during
execution.

On-site testing was performed 17 JUN 1986 through 19 JUN 1986 at Aloha,
Oregon, under the direction of the Ada Validation Facility (AVF), according
to Ada Validation Organization (AVO) policies and procedures. The VADS,
6.0, is hosted on a DEC VAX-11/750 operating under UNIX, 4.2 BSD.

The results of validation are summarized in the following table:

RESULT TEST CLASS TOTAL
A B c D E L

Passed 68 820 1184 17 11 23 2083

Failed 0 0 0 0 0 0 o

Inapplicable 0 4 176 0 0 0 180

Withdrawn 0 4 12 0 0 o 16

TOTAL 68 828 1332 17 1 23 2279

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

.. 4'.'-""-*'\' w L :q »)‘- - \"- .(_'\‘.a:**\n “~ \-."- :.*\r'-“"- \{-\

Sy

'.'- a \"

There were 16 withdrawn tests in ACVC Version 1.7 at the time of this
validation attempt. A list of these tests appears in Appendix D.

Some tests demonstrate that some language features are or are not supported
by an implementation. For this implementation, the tests determined the
following:

. The additional predefined types, TINY INTEGER, SHORT_INTEGER, and
SHORT_FLOAT, are supported. Types LONG_INTEGER and LONG_FLOAT are
not supported.

. Representation specifications for noncontiguous enumeration
representations are supported.

. Generic unit specifiéations and bodies cannot be compiled in
separate compilations. -

. Pragma INLINE is supported for procedures. Pragma INLINE is
supported for functions.

. The package SYSTEM is used by package TEXT_IO.

. Mode IN FILE is supported for sequential I/O.
Mode OUT_FILE is supported for sequential I/0.

. Instantiation of the package SEQUENTIAL_I0 with unconstrained
array types is supported.

. Instantiation of the package SEQUENTIAL_IO with unconstrained
record types with discriminants is supported.

. RESET and DELETE are supported for sequential and direct 1/0.
. Mode IN FILE is supported for direct I/0.

Mode INOUT_FILE is supported for direct I1/0.

Mode OUT_FILE is supported for direct I/0.

. Instantiation of package DIRECT_IO with unconstrained array types
and unconstrained types with discriminants is supported.

. Dynamic creation and deletion of files are supported.

. More than one internal file can be associated with the same
external file.

. An external file associated with more than one internal file can
be deleted.

« Illegal file names can exist.

-

“‘f'f‘f'f' -‘-\ "
- :Aﬁ_.\.h.’_n-ﬁ"ﬁﬁ_‘\i.u‘_n - g W

rmm“mmmmmmmmMMMN\mn\anmwwn\n FTEEVERwVYYyVSsERE

S Y
ACVC Version 1.7 was taken on-site via magnetic tape to Aloha, Oregon. All
tests, except the withdrawn tests and any executable tests that make use of
a floating-point precision greater than SYSTEM.MAX DIGITS, were compiled on
a DEC VAX-11/750. Class A, C, D, and E tests were executed on a Microbar
GPC68K.

On completion of testing, execution results for Class A, C, D, or E tests
were examined. Compilation results for Class | tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.

The AVF identified 2093 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation.of the VADS, 6.0. Excluded were
170 tests requiring a floating-point precision greater than that supported
by the implementation and the 16 withdrawn tests. After the 2093 tests
were processed, 10 tests were determined to be inapplicable. The remaining
2083 tests were passed by the compiler.

The AVF concludes that these results demonstrate acceptable conformance to
ANSI/MIL-STD-1815A.

AR \‘D.'-n. X * \'}\:..‘;-"__.\:\\:-\;nl';-"_-\“ S \--"..\‘-\‘.\.. ‘-'.\';’. co

CHAPTER 1

¥ b b -

LA A A s q

CHAPTER

CHAPTER 2

.
NN ONEWN =

APPENDIX A

il W)

APPENDIX B

APPENDIX C

APPENDIX D

P N AP N IR R AN I N NN L

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT . .
USE OF THIS VALIDATION SUMMARY REPORT
RELATED DOCUMENTS . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 6 o o o o
DEFINITION OF TERMS . . « ¢ ¢ ¢ ¢ ¢ ¢ o o o &
ACVC TEST CLASSES . ¢ ¢ o o o o o o o o o o« o

CONFIGURATION INFORMATION

CONFIGURATION TESTED . « &« & &« ¢ o ¢ o ¢ o« o o o
CERTIFICATE INFORMATION « . . ¢« + ¢ o« &
IMPLEMENTATION CHARACTERISTICS

TEST INFORMATION

TEST RESULTS © ¢ ¢ & ¢ ¢ & ¢ o « &
SUMMARY OF TEST RESULTS BY CLASS .
SUMMARY OF TEST RESULTS BY CHAPTER
WITHDRAWN TESTS . &« &« ¢ o o o « &
INAPPLICABLE TESTS . . ¢« ¢ « « &
SPLIT TESTS ¢ ¢ ¢ ¢ o ¢« o o o @
ADDITIONAL TESTING INFORMATION .

Prevalidation

Test Method

Test Site . & & & ¢ ¢ ¢ ¢ o o o o ¢ o o s o o o

* e & e
s e & o o s & o
® o & 8 e o & @
e e & o o o o .
e o & s 8 s s o
e & o & & o
e« o & o o e ¢ @
s o & o 8 8 ¢ o
a & o o o @

COMPLIANCE STATEMENT

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDRAWN TESTS

. .

\J \J U . 4

_n_a.r_o_.
EWWN —

2-1
2-2
2-3

3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-5

t e - T .
A At atsa iat st A" ats ata"ats " a0

EWWWWW"“WWWWW"WWWW"WnW“w LAk Sadl el ol "qwu‘-T

=4

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) descridbes the extent to which a
specific Ada compiler conforms to ANSI/MIL-STD-1815A. This report explains
all technical terms used within it and thoroughly reports the results of
testing this compiler using the Ada Compiler Validation Capability (ACVC).
An Ada compiler must be implemented according to the Ada Standard
(ANSI/MIL-STD-1815A). Any 1implementation-dependent features must conform
to the requirements of the Ada Standard. The entire Ada Standard must be
implemented, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to ANSI/MIL-STD-1815a, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations imposed on a
compiler by the operating system and by the hardware. All of the
dependencies demonstrated during the process of testing this compiler are
given in this report.

VSRs are written according to a standardized format. The reports for
several different compilers may, therefore, 1. easily compared. The
information in this report is derived from the test results produced during
validation testing. Additional testing information as well as details
which are unique for this compiler are given in section 3.7. The format of
a validation report limits variance between reports, enhances readability
of the report, and minimizes the delay between the completion of validation
testing and the publication of the report.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

- . - - v o - - - . - - . . N - L - I Y T
P W N T R S v - -to s el N ERC R R .) o)
.n_‘.r}.'-_\.pﬂ}.k\.n‘_ SIS EIS IO YIS A ST RIS I S PR TA TR SRRV VAR Ve VS PR TRIS VS VWVS TS RIS T MU VG TS 7S

INTRODUCTION

. To attempt ¢to identify any unsupported 1language constructs
required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). Testing was conducted from 17 JUN
1986 through 19 JUN 1986 at Aloha, Oregon.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of Lhis report. 1In the United States,
this is provided in accordance with the "Freedom of Information Act"™ (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformances
to ANSI/MIL-STD-1815A other than those presented. Copies of this report
are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE

The Pentagon, Rm 3D-139

1211 S. Fern, C-107
Washington DC 20301-3081

or from:
ida Validation Facility

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

1-2

< ay N

A Sy T e N N R) e s e e e L L SAVRTSL R N A S A S SR Lt e e
A R N T A S S A N A N ST AT N AN AT L N TN, R e

) INTRODUCTION

B Questions régarding this report or the validation test results should be
K directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard

N Alexandria VA 22311

1.3 RELATED DOCUMENTS

-.
2
LY
1. Reference Manual for the Ada Programming Language,
v ANSI/MIL-STD-1815A, FEB 13983.
. 2. Ada Validation Organization: Policies and Procedures, MITRE
5 Corporation, JUN 1982, PB 83-110601.
3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
4 Inc., DEC 1984,
a
- 1.4 DEFINITION OF TERMS
f‘ ACVC The Ada Compiler Validation Capability. A set of programs
N that evaluates the conformance of a compiler to the Ada
'S language specification, ANSI/MIL-STD-1815A.
X Ada S*t-~dard ANSI/MIL-STD-1815A, February 1983.
-
: Applicant The agency requssting validation.
N
N AVF The Ada Validation Facility. 1In the context of this report,
the AVF 1{s responsible for conducting compiler validations
according to established policies and procedures.
3 AVO The Ada Validation Organization. In the context of this
) report, the AVO is responsidble for setting policies and
y procedures for compiler validations.
Compiler A processor for the Ada language. In the context of this
:; report, a compiler 4is any language processor, including
- cross-compilers, translators, and interpreters.
3 Falled test A test for which the compiler generates a result that
demonstrates nonconformance to the Ada Standard.
) Host The computer on which the compiler resides.
¢
‘
[}
: -3
%
)
4

L L R ey e Y TN Lt Lte - et Toye [N st "~ AT e e L TE T T e T ey e e T Y
G Y SO R N N N N R A N M AR, ¢“.;a‘¢_ Syt _*f»‘¢2¢:a_:_sfa af.f: AR A AL R A e

Cate v A PRERE RN N W)

it
£ v

P

AN I

N ELE D .

. '-‘_'d"{‘:f'-' T I A

b o -

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way
other than the one expected by the test.

LMC The Language Maintenance Committee whose function is to
resolve issues concerning the Ada language.

Passed test A test for which a compiler generates the expected result.
Target The computer for which a compiler generates code.

Test A program that evaluates the conformance of a compiler to a
language specification. In the context of this report, the
term is used to designate a single ACVC test. The text of a
program may be the text of one or more compilations.

Wwithdrawn A test found to be inaccurate in checking conformance to the

test Ada language specification. A withdrawn test has an invalid
test objective, fails to meet its test objective, or contains
illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformance to ANSI/MIL-STD-1815A is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Special program units are used to report
the results of the Class A, C, D, and E tests during execution. Class B
tests are expected to produce compilation errors, and Class L tests are
expected to ‘produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. (However, no checks are performed during execution to see if
the test objective has been met.) For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test 1s passed if no errors are detected at compile time and the
program executes to produce a message indicating that it has passed.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable., Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntactical
or semantic error in the test is detected. A Class B test 1s passed if
every illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT-APPLICABLE message indicating the result when it 1is
executed.

1-4

e n PR e LEQA Y
LS S SRS PR LS, U S)

B

INTRODUCTION

Class D tests check the compilation and execution capacities of a compiler.
Since there are no requirements placed on a compiler by the Ada Standard
for some parameters (e.g., the number of 4identifiers permitted in a
compilation, the number of units in a library, and the number of nested
loops in a subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the test
is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT-APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute, Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, shpport
the self-checking features of the executable tests, The package REPORT
provides the mechanism by which executable tests report results. It also
provides a set of identity functions used to defeat some compiler
optimization strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The procedure
CHECK_FILE is used to check the contents of text files written by some of
the Class C tests for chapter 14 of the Ada Standard.

The operation of these units is checked by a set of executable tests.
These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation is not attempted.

Some of the conventions followed in the ACVC are intended to ensure that
the tests are reasonably portadble without modification. For example, the
tests make use of only the basic set of 55 characters, contain lines with a
maximum 1length of 72 characters, use small numeric values, and place
features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values. The values used
for this validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformance to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal

1-5

INTRODUCTION

language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The nonconformant
tests are given in Appendix D.

vt 1pd Bg6 sa” . omd dg® 9at $pt @ab gt 4. @6 Baf wa¥ 9o gt Baf el Ban 4ot Qpt Ral Dal A T T A TOR TASUTAS TR TSN P AR TASK T AN TR, L LR T R TR TR0 W

b CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGUARATION TESTED
The candidate compilation system for this validation was tested under the
following configuration:

. Compiler: Verdix Ada Development System (VADS), 6.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine: DEC VAX-11/750
Operating System: UNIX 4.2 BSD
Memory Size: 6 Megabytes

Target Computer:

Machine: Microbar GPC68K
Operating System: None
| Memory Size: 0.5 Megabyte
Communications Network: Ethernet / Multibus

X Note: A SUN-2 operating under UNIX 4,2 BSD was wused to transfer the
. executable images from the host to the target. The SUN machine was also
used to execute the runtime support packages that were required to report
test results and to perform file operations.

2-1

AN e R NS e S N NN e P R T AR RS P (:-,"--‘_-:.,-_‘\'.r"/\.'
‘a ' 1 A LAY B, Al AN AL A A =~ ¥ 3

08" e et Bat gl 2.8 2.0 Ak B AL 2 4 A F'a 8 o & B 4 b L a d o Ay

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION

1 Configuration:

Compiler: Verdix Ada Development System (VADS), 6.0
Test Suite: Ada Compiler Validation Capability, Version 1.7
Certificate Date: 3 September 1986
Host Computer:
Machine(s): DEC VAX-11/750
Operating System: UNIX 4.2 BSD

Target Computer:

Machine(s): Microbar GPC68K
Operating System: None
Communications Network: Ethernet

2-2

- - e e -

s s s a e e]

" gat L 1 Lo at pat gt i

CONFIGURATION INFORMATION

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

. Nongraphic characters.

Nongraphic characters are defined in the ASCII character set but
are not permitted in Ada programs, even within character strings.
The compiler correctly recognizes these characters as 1illegal 1in
Ada compilations. _The characters are printed in the output
listing in a graphic representation for example "“A." (See test
B26005A.) .

. Capacities.

The compiler correctly processes compilations containing 1loop
statements nested to 65 1levels, block statements nested to 65
levels, and recursive procedures nested to 17 levels, It
correctly processes a compilation containing 723 variables in the
same declarative part. (See tests DS55A03A through DSSA03H,
D56001B, D64OOSE through D64O0SG, and D29002.)

. Universal integer calculations.

An 1implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX_INT. This
implementation does not reject such calculations and processes
them correctly. (See tests DHAOO2A, DHA002B, DU4AOO4A, and
DUAQOO4B.)

. Predefined types.

This implementation supports the additional predefined types
SHORT_INTEGER, SHORT_FLOAT, and TINY INTEGER in the package
STANDARD. (See tests B86001CR, BB6001CS, B86001CP, B86001CQ, and
B86001DT.)

. Based literals.

An implementation is allowed to reject a based 1literal with a
value exceeding SYSTEM.MAX_ INT during compilation, or it may raise
NUMERIC_ERROR during execution. This implementation raises
NUMERIC_ERROR during execution. (See test E24101A.)

2-3

- - . » A . - . -
~.r.-.r. J:S "'}’: .-__.r: LA A AL AT

PP

T

CONFIGURATION INFORMATION

~$5MJ ._)&.}..‘6.* L}J Lﬁ(;’k L L(L(LIL' ..’Lfr-'& :":'(: N ‘\\.f:'.""{mﬂ.'tn. AA." 'r\ \. F .;.' \' N

Arfay types.

When an array type is declared with an index range exceeding the
INTEGER'LAST values and with a component that is a null BOOLEAN
array, this compiler raises NUMERIC ERROR when the type is
declared. (See tests E36202A and E36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC_ERROR when the array type is declared. (See test
€52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array type is declared.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR either when declared or
assigned. Alternately, an 1mp1ementation may accept the
declaration. However, lengths must match in array slice
assignments. This implementation raises NUMERIC_ERROR when the
array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the entire expression
appears to be evaluated before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compatidble with the
target's subtype.

In assigning two-dimensional array types, the entire expression
does not appear to be evaluated before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications during
compilation. (See test E3B8104A.)

In assigning record types with discriminants, the entire
expression appears to be evaluated before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates,
In the evaluation of a multi-dimensional aggregate, all choices

appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

-

e .','.‘.'. S . ;.\"‘-_.'
AT A £ V' VR T U, L,

<

CONFIGURATION INFORMATION

In-the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT_ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Functions.

The declaration of a parameterless function with the same profile
as an enumeration literal in the same immediate scope is rejected
by the implementation. (See test E66001D.)

Pragnmas.

The pragma INLINE is supported for procedures and for functions.
(See tests CA3004E and CA3004F.)

Input/output.

The package SEQUENTIAL_IO can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT_IO can be instantiated with unconstrained array types and
record types with discriminants. (See tests CE2201D, CE2201E, and
CE2401D.)

More than one internal file can be associated with each external
file for sequential I/0 for both reading and writing. (See tests
CE2107A through CE2107F.)

More than one internal file can be associated with each external
file for direct 1/0 for reading only. (See tests CE2107A through
CE2107D and CE2107F.)

An external file associated with more than one internal file can
be deleted. (See test CE2110B.)

More than one internal file can be assocliated with each external
file for text 1/0 for both reading and writing. (See test CE3111A
through CE3111E.)

An existing text file can be opened in OUT_FILE mode, can be
created in OUT_FILE mode, and can be created in IN_FILE mode.
(See test EE3102C.)

Temporary sequential files are given a name, Temporary direct

files are given a name., Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

2-5

» U R) L3

CHAPTER 3

R
.l
"
A TEST INFORMATION
L)
| 3.1 TEST RESULTS
The AVF identified 2093 of the 2279 tests in Version 1.7 of the ACVC as
f potentially applicable to the validation of the Verdix Ada Development
y System (VADS), 6.0. Excluded were 170 tests requiring a floating-point
precision greater than that supported by the implementation and the 16
4 withdrawn tests. After they were processed, 10 tests were determined to be
: inapplicable. The remaining 2083 tests were passed by the compiler.
]
, The AVF concludes that the testing results demonstrate acceptable
f conformance to the Ada Standard.
2 3.2 SUMMARY OF TEST RESULTS BY CLASS
»
RESULT . .- TEST CLASS TOTAL
A B C D E L
N Passed 68 820 1144 17 11 23 2083
" Failed ©o 0 o0 o0 o0 0 0
Inapplicable 0 4 176 0 0 0 180
A Withdrawn 0O 4 12 o0 o0 0 16
\ ,
' TOTAL 68 828 1332 17 11 23 2279
'l
1
,I
L i
¥
\
)
L}
]
\ 3-1
Y
)
: e '.-;.p -g’:r_ --.;. '.r.."f .- N ‘,\':r.:-r o ' NN ~; \".‘ '-.' ".".;..r\. \"-".%";'-'% .-\.-__a\.-\a__.\\.r\.rv-\,\.- ._‘._..\

P

CRES)

Calta™e Y=L il = e]

DPSC T S S T IO S IS T IS TP IS)
AL PO A A AT A A A AR AT RO AN AP A

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER
_2_3_4_5_6_7_8_9 10 11 12 14 TOTAL
Passed 102 234 308 244 161 97 158 198 105 28 216 232 2083
Failed o o o0 o0 o0 0o o o0 O o0 O0 O 0
Inapplicabdble i 73 86 3 0 O 3 1 0O 0 0 O 180
Withdrawn 0o 1 4 o o o0 1 2 6 0 1 1 16
TOTAL 116 308 398 247 161 97 162 201 111 28 217 233 2279
3.4 WITHDRAWN TESTS
The following tests have been withdrawn from the ACVC Version 1.7:
B4AO10C C41404A CA1003B
B83A06B c48008a CA3005A through CA3005D (4 tests)
BA2001E C4AQ14A CE2107E
BC3204C C92005A
C35904A C940ACA

See Appendix D for the test descriptions.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that 4is either 4inapplicable or

withdrawn. For this validation attempt, 180 tests were inapplicable for

the reasons indicated:

. C34001E, BS52004D, BSSBO9C, B86001CS, and C55BOTA use LONG_INTEGER

which is not supported by this compiler.

. C34001G, C35702B, and B86001CQ use LONG_FLOAT which is not

supported by this campiler.

. CB86001F redefines package SYSTEM, but TEXT_IO is made obsolete by

this new definition in this implementation.

. C96005B checks implementations for which the smallest and

this implementation.

NI SR S

largest
values Iin type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for

rmmmvmmmﬂmv!rmm PPIfT VeI -RYEEN

E TEST INFORMATION

« 170 tests were not processed because SYSTEM.MAX DIGITS was 15.
These tests were:

C24113L through C24113Y (14 tests)
C35705L through C35705Y (14 tests)
C35706L through C35706Y (14 tests)
C35707L through C35707Y (14 tests)
C35708L through C35708Y (14 tests)
C35802L through C35802Zf (14 tests)
C4S241L through Cis241Y (14 tests)
C45321L through C45321Y (14 tests)
Cusy21L through CUs421Y (14 tests)
cusizul, through Ci4sh24Y (14 tests)
C45521L through CU5521Z (15 tests)
C45621L through CU5621Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 17 Class B tests.

B24104A B2A003C B67001A B95001A
B24104B B33004A B67001B B95101E
B24104C B41202A B67001C
B2A003A B44001A B67001D
B2A003B B64001A B910ABA

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.7 produced by
the VADS, 6.0, was submitted to the AVF by the applicant for prevalidation
review, Analysis of these results demonstrated that the compiler
successfully passed all applicable tests.

AR \'._.> PR
-

N A AP T

C

Vb gl gty g bia gtia Bt ha- Lo-abo i ala L y S Aol Ao aAh s e ey ;.WW]

\ TEST INFORMATION

3.7.2 Test 'Method

Testing of the VADS using ACVC Version 1.7 was conducted on-site by a
validation teanm. The configuration consisted of a DEC VAX-11/750 host
operating under UNIX 4.2 BSD and a Microbar GPC68K target. The host and
target computers were 1linked via a SUN-2. The host was connected to the

+ SUN-2 via Ethernet. The target was connected to the SUN-2 directly; the
‘ GPC68K was connected to the SUN~2 Multibus from which it also drew its
power:

kY
2 VAX-11/750
X (UNIX)
4 RCP
SUN-2 MULTIBUS | MICROBAR
(UNIX) GPC 68K
T RS-232 T

W

A magnetic tape containing ACVC Version 1.7 was taken on-site by the
validation team. The magnetic tape contained all tests to be run during
validation testing. Tests that make use of values that are specific to an
implementation were customized before being written to the magnetic tape.
Tests requiring splits during the prevalidation testing were 1included in
their split form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
camputer, After the test files were loaded, the full set of tests was
compiled on the DEC VAX-11/750. The resulting object files were linked on

i Rt gai aath bat Bt Raf b et et Jiat Sa b St A ot e L A |

TEST INFORMATION

the DEC VAX-11/750 and the executable images were transferred using the
UNIX remote copy facility (rcp) and Ethernet to a SUN-2 operating under
UNIX 4.2 BSD. The target computer, a Microbar GPC68K, was connected to the
SUN-2 Multibus. The executable images were saved to disk on the SUN-2 and
loaded one by one into the GPC68K memory via the Multibus and the on-board
ROM Monitor of the target. Once an image was loaded, it was executed and
the results were sent to the SUN-2 via two RS-232 lines which were
controlled by one of two Ada runtime support packages, SIMPLE IO or
CROSS_I0.

The SUN-2 file system was used for all input and output. The executable
tests for all chapters except chapter 14 were run using a simplified part
of the runtime system, SIMPLE IO, that does not support file input and
output. The use of SIMPLE IO reduced link time, file transfer time, and
execution time. The chapter 14 tests, which use file input-output, were
run using the runtime system package CROSS_IO, executing on both the SUN-2
and the Microbar GPC68K. File operations were performed on the SUN-2 file
system. Results were transferred to the host computer via Ethernet and the
UNIX remote copy facility. Results were printed from the host computer.

The compiller was tested using command scripts provided by Verdix. These
scripts were reviewed by the validation team.

Tests were run using one host computer and one target computer, Test
output, compilation 1listings, and job logs were captured on magnetic tape
and archived at the AVF. The listings examined on-site by the validation
team were also archived.

3.7.3 Test Site

The validation team arrived at Aloha, Oregon on 17 JUN 1986 and departed
after testing was completed on 19 JUN 1986.

SRR SRR CRASANA S VLML ATy

“¥aCea"a & B

[l D D UL N

L 4

= Yl A Y

SetatavN

APPENDIX A

COMPLIANCE STATEMENT

Verdix has submitted the following compliance statement
concerning the VADS.

“:h:':-\:q.'-h\:.\.i\;-\.i- A

B s v el a4,

v ¥

Machine(s): Microbar GPC68K
Operating System: (bare)
Communications Network: ETHERNET and FTP
VERDIX has made no deliberate extensions to the Ada language standard.
VERDIX agrees to. the public disclosure of this report.
VERDIX agrees to comply with the Ada trademark policy, as defined by the
Ada Joint Program Office.
//\L”ZZ%/ /(/4/9/[% Date: / 0/f(
VERDIX
Dave Nomura
Manager, Ada Products Division
A-2
S L L R N S ‘\'"-:’;"-:’-;"{'-;"i' - -;':ﬁi' A "\~.‘ "‘5 AN “'-.\. \\\" ""\"\" \"\"\‘-.':w'\

e N N] - \/
A lal Bab bodk g) Naywowy I'!“lil!\ Ya A"

COMPLIANCE STATEMENT

Compliance Statement

Base Configuration:

Compiler: Verdix Ada Development System
Product ID: VAda-010-01105, Version: V6.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine(s): Digital Equipment Corporation
VAX-11/750
Operating System: UNIX
’ 4.2 BSD

Target Computer:

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspend to implementation-

dependent pragmas, to certain machine-dependent conventions as mentioned in

chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation classes. The implementation-dependent characteristics of

: the VADS, 6.0, are described in the following sections which discuss topics
- one through eight as stated in Appendix F of the Ada Language Reference

Manual (ANSI/MIL-STD-1815A). Package STANDARD is also included in this
appendix.

§

? .

E APPENDIX B
¢

..... N A AT - TGS G S SR W A AN
'f;l ’ ’f:*.‘ s '..' --':.q':-' Sele :-' C NS DA N A \" NIy .1' s ‘f‘*“f\f *\f\)\.'\-'\-' ‘w‘ J‘\-n" ' 1‘\\'\-' -‘\ '\-‘ LY N

R Fa afa ok £°4 & 8o A biaatralaaladie Ao albal B Col dob Bl A A 4 JdbL A B A Sl &t ol Al Jhbl i ittt

ATTACHMENT 11

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas
1.1. SHARE_BODY Pragma

The SHARE_BODY pragma takes the name of a generic instantiation or a generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument. This pragma is only allowed
immadiately at the place of a declarative item in a declarative part or package specification, or after a
library unit in a compilation, but before any subsequent compilation unit.

When the first argument is a generic unit the pragma applics o all instantiations of that generic. When
the first argument is the name of a generic instantation the pragma applies only to the specified instan-
tiation, or overloaded instantiations. °

If the second argument is TRUE the compiler will ory 1 share code generated for a generic instantia-
tion with code generated for other instantiations of the same generic. When the second argument is
FALSE each instantiation will get a unique copy of the genersted code. The extent to which code is
shared between instantiations depends on this pragma and the kind of generic formal parameters
declared for the generic unit

~
“~
Y 1.2. EXTERNAL_NAME Pragma
N The EXTERNAL_NAME pragma takes the name of a a subprogr= or variable defined in Ada and
- allows the user to specify a different external name that may be used w0 reference the entity from other
languages. The pragma is allowed at the place of a declarative item in a package specification and
- must apply to an object declared earlier in the same package specification.
. 13. INTERFACE_OBJECT Pragma
) The INTERFACE_OBJECT pragma takes the name of a a variable defined in another language and
A allows it to be referenced directly in Ada The pragma will replace all occurrences of the variable
name with an extemnal reference to the second, link_argument. The pragma is allowed at the place of a
declarative item in a package specification and must apply 10 an object declared earlier in the same
. package specification. The object must be declared as a scalar or an access type. The object cannot be
" any of the following:
) a loop variable,
M a constant,
an initialized variable,
an array, or
- a record.

2. Implementation of Predefined Pragmas
2.1. CONTROLLED
This pragma is recognized by the implementation but has no effect.

_5 22. ELABORATE
:-_ This pragma is implemented as described in Appendix B of the Ada RM.

Sagiataidat dat gt g0l ey b ot a8 At Bl uob 28 tart gl gl St ant Aol el Ak Aal ok il Al et Aok Aod Aol

23. lNuNE
This pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE

This pragma supports calls to 'C’ and FORTRAN functions. The Ada subprograms can be either func-
tions or procedures. The types of parameters and the result type for functions must be scalar, access or
the predefined type ADDRESS in SYSTEM. An optional third argument overrides the default link
name. All parameters must have mode IN. Record and aray objects can be passed by reference using
the ADDRESS atribute.

2.5. LIST

This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMORY_SIZE

This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.7. OPTIMIZE '

This pragma is recognized by the implementation but has no effect.

28. PACK

This pragma will cause the compiler to choose a non-aligned representation for composite types. Com-
ponents that are smalier than a STORAGE_UNIT are packed into a number of bdits that is a power of
two.

29. PAGE

This pragma is implemented as described in Appendix B of the Ada RM.

2.10. PRIORITY
This pragma is implemented as described in Appendix B of the Ada RM.

2.11. SHARED
This pragma is recognized by the implementation but has no effect.

2.12. STORAGE_UNIT

This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.13. SUPPRESS

This pragma is implemented as described, except that RANGE_CHECK and DIVISION_CHECK can-
not be supressed.

2.14. SYSTEM_NAME

This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes
NONE.

Lk A0 44

4. Specification Of Package SYSTEM
package SYSTEM

is
type NAME is (vax_unix_m68k);
SYSTEM _NAME : constant NAME := vax_unix_mé8k ;
STORAGE _UNIT : constant := 8;
MEMORY_SIZE : constant := 262_144;
-- System-Dependent Named Numbers
MIN_INT : constant = -2_147_483_647 - 1;
MAX_INT : constant :e= 2 147 _483_647;
MAX_DIGITS : constant := 1§;
MAX_MANTISSA : constant := 31;
FINE_DELTA : constant := 2.0°%(-14);
TICK : constant :e« 0.01;
-- Other System-dependent Declarations
subtype PRICRITY is INTEGER range 0 .. 7;
MAX REC_SIZE : integer := 64°1024;
type ADDRESS is private;
NO_ADDR : constant ADDRESS;
function PHYSICAL_ADDRESS(I: INTEGER) return ADDRESS;
function ADDR_GT(A, B: ADDRESS) return BOOLEAN;
function ADDR_LT(A, B: ADDRESS) return BOOLEAN;
function ADDR_GE(A, B: ADDRESS) return BOOLEAN;
function ADDR_LE(A, B: ADDRESS) return BOOLEAN;
function ADDR_DIFF(A, B: ADDRESS) return INTEGER;
function INCR_ADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS;
function DECR_ADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS;
function ">" (A, B: ADDRESS) return BOOLEAN renames ADDR_GT:
function "<" (A, B: ADDRESS) return BOOLEAN renames ADDR LT
function ">="(A, B: ADDRESS) return BOOLEAN renames ADDR_GE;
function "<e"(A, B: ADDRESS) return BOOLEAN renames ADDR_LE;
function '-'(A. B: ADDRESS) return INTEGER renames ADDR_DIFF;
function "+"(A: ADDRESS; INCR: INTEGER) return ADDRESS renames INCR_ADDR:
function "-"(A: ADDRESS; DECR: INTEGER) return ADDRESS renames DECR_ADR
pragma inline(ADDR_GT);
pragma inline(ADDR L'l').
pragma mhne(m)
pragma inline(ADDR_ “LE);
pragma inline(m_DIFF);
pragma inline(INCR_ADDR);
pragma inline(DECR_ADDR) ;
private

""""""""""""

............
e e e

A

R A AN TS TS PN S Lqu N IJL-'JJL T e ey J.J(L-(- PR .x-;L{.J. N x-. .

A R R e

type ADDRESS is new integer;
NO_ADDR : constant ADDRESS := 0;
end SYSTEM;

5. Restrictions On Representation Clauses

5.1. Pragma PACK

Array and record components that are smaller than a STORAGE_UNIT are packed into a number of
bits that is a2 power of two. Objects and larger components are packed to the nearest whole
STORAGE_UNIT.

§.2. Size Specification
The size specification T'"SMALL is not supported.

5.3. Reccord Representation Clauses

Components not aligned on even STORAGE_UNIT boundaries may not span more than four
STORAGE_UNITs. S

5.4. Address Clauses
Address clauses are not supported.

§.5. Interrupts
Interrupts are not supported.

5.6. Representation Attributes
The ADDRESS attribute is not supported for the following entities:

Packages
Tasks
Labels
Entries

§.7. Machine Code Insertions
Machine code insertions are supported.

6. Conventions for Implementation-generated Names
There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses
Address clauses are not supported.

8. Restrictions on Unchecked Conversions

The predefined generic function UNCHECKED_CONVERSION cannot be instantiated with a target
type which is an unconstrained array type or an unconstrained record type with discriminants.

D S S R PRSI T S T Ty
A N ACAONCINGEC A AU SO S AN

]
1
]
)
3
p
P
>
4
d
i
.
)
Y
he
.
:.
»i
t
.
™
;
:

S A e

9. Implementation Characteristics of /O Packages

Instantdadons of DIRECT IO use the value MAX REC SIZE as the record size (expressed in
STORAGE_UNITS) when the size of ELEMENT_TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT TYPE'SIZE is very large, MAX_REC SIZE is used
instead. MAX_RECORD _SIZE is defined in SYSTEM and can be changed by a program before
msumnaung DIRECI'_!O 1 provide an upper limit on the record size. In any case the maximum size
supported is 1024 x 1024 x STORAGE_UNIT bis. DIRECT_IO will raise USE_ERROR if
MAX_REC_SIZE exceeds this absolute limit.

Instandations of SEQUENTIAL_IO uyse the value MAX_REC SlZE as the record size (expressed in
STORAGE_UNTTS) when the size of ELEMENT _ TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT _ TYPE'SIZE is very large, MAX REC_SIZE is used
instead. MAX _RECORD_SIZE is defined in SYSTEM and can be changed by a program before
instandating INTEGER _ IO o provide an upper limit on the record size. SEQUENTIAL_IO imposes no
limit on MAX_REC_SIZE.

10. Implementation Limits

The following limits are actually enforced by the implementation. It is not intended to imply that
resources up to or even near these limits are available to every program.

10.1. Line Length

The implementation supports a maximum line length of $00 characters including the end of line charac-
ter.

102, Record and Array Sizes

The maximum size of a statically sized array type is 4,000,000 x STORAGE_UNITS. The maximum
size of a statically sized record type is 4,000,000 x STORAGE_UNITS. A record type or array type
declaration that exceeds these limits will generate a warning message.

103. Default Stack Size for Tasks

In the absence of an explicit STORAGE_SIZE length specification every task except the main program
is allocated a fixed size stack of 10,240 STORAGE_UNITS. This is the value reurned by
T'STORAGE_SIZE for a task type T.

10.4. Default Collection Si;e

In the absence of an explicit STORAGE_SIZE length atrribute the default collection size for an access
type is 100,000 STORAGE_UNITS. This is the value returned by T'STORAGE_SIZE for an access
type T.

10.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE_UNITS for objects declared statically within a
compilation unit. If this value is exceeded the compiler will terminate the compilation of the unit with a
FATAL error message.

DT Tt UL N A IO]

PRI SRR ._l..-' ‘--. e '~ "
\’-"‘ J‘*L* " ‘.q.' LA AU A _"‘." ."A.':!.':\'.A.. et iiaaa ﬁ"_‘\.‘\‘.ﬂ-l) P o PRSI I AP 2P I B I

W'Y wTER Ty WY Ww el w

laat bt 208 2ot a L S A B a‘e 1°8 800 o b s B e d'a fta At 40 At Ay el Dlo ALy Alo ale aloale Losdinihie e Biediiedhedhiohnshiechindiilbiedindiiesiifi

pazxage standard is

type boolean is

function
function
function
function
function
function

function
function
function
function

W W R T T E——— - -

function (left, right:
function '/-" (left, right:
function "<® (left, right:
function "<=" (left, right:
function ">" (left, right:
function ">=" (left, right:
function "+ (right:
function "-"
function "abs
function "+" (left, :ight'
b function "-" (left, right:
1 function "*~ (left, right:
t function "/" (left, right:
b function "rem”™ (left, right:
p function "mod" (left, right:
function ®w»" (left, right:
type short_integer is range
function "=- (left,
function "/=" (left,
function "«<" (left,
function "<=" (left,
function ">" (left,
function ">=" (left,
function "+" (right:
function "-" (right:
function “abs (right:
function "+* (left,
function "-" (left,
function "=»" (left,
function "/" (left,
function "rem"” (left,
function "mod" (left,
function "ar" (left,
type integer is
function "=" (left,
function "/=" (left,
function "<” (left,
function "<=* (left,
function ">* (left,
function ">=*" (left,
function "+* (right:
function "-" (zight:
function "abs (right:
function "+" (left,
function "-" (left,
function "*" (left,
function “/" (left,
function "rem"™ (left, right:
function "mod" (left,

ngn
"/-l'
H<'
L]
">I

ll>-'

"and"
ﬂoxﬂ

"xor"”
"net"”

type tiny integer is

(false, true);

{left, right:
(left, right:
(left, right:
(left, right:
(left, right:
(left, right:

(left, right:
(left, right:
(left, right:
(right:

range

boolean) return boolean:;
booclean) return boolean;
bocolean) return boolean:
bocolean) return boolean;
booclean) return boolean;
boolean) return boolean:

boolean) return boolean:
boolean) return boolean:
boolean) return boolean;

-128 .. 127:
tiny_integer)
tiny integer)
tiny integer)
tiny integer)
tiny_intoger)
tiny_integer)

boolean) return boolean;

return boolean:;
return boolean:
return boolean:
return boolean:;
return boolean:
return boolean;

tiny inceqer) return tiny integer:

(right: tiny integer) return tiny integer:
‘right: tiny integer) return tiny_integer:

tiny_integer)
tiny_ _integer)
tiny integer)
tiny integer)
tiny integer)
tiny_integer)
tiny integer)

return tiny_integer;
return tiny integer:
return tiny_integer;
return tiny integer;

return
return
return

-32768 .. 32767;

tiny integer:;
tiny integer;
tiny integer;

right: short_integer) return boolean:

right: short
right: short
right: short
right: short

integer) return boolean;
integer) return boolean:
integer) return boolean:
integer) return boolean:

right: short_integer) return boolean:
return short_integer;
short_integer) return short_integer:

short_integer)

sho:t_intege:) return aho:t_inteqer:

right: short_integer) return short_integer:
integer) return short_ _integer:;
right: short_integer) return short_integer:
right: short integer) return short _integer;
right: short integer) return short‘intege::
integer) return short_integer:
integer) return short_integer:

right: short

right: short
right: short

range -2147483648 ..

right: integer)
right: integer)
right: integer)
right: integer)
right: integer)
right: integer)

return boolean;

return boolean:;

return boolean;

return boolean;

return boolean;
return boolean;

integer) return integer:
integer) return integer:
integer) return integer:

right: integer)
right: integer)
right: integer)
right: integer)
integer)
right: integer)

return integer;
return integer:;
return integer:
return integer:
return integer:;
return integer:;

2147483647; !

e e E e a D A et o

U‘!!!!!"l‘!!!T‘U‘?!!‘E'TT?'?!v'E!“!!!U!ﬂHﬂEF1“l1l!(HlR!H!P'!!!1!1It'!'I'ﬂ'!'v11-!'w'v'T'E-v'v'q'v'qvv'vvv'nvn'u'T

function "**" (left, right: integer) return integer:

e "™

ty~e short_float is digits 6 range
-240.111111111111111121111111#E127
200.11111113111211111111111111%E127":;

v

: function "=" (left, right: short_float) return boolean;:
function "/=" (left, right: short_float) return boolean;

i function "<*” (left, right: short_float) return boolean;

. function "<=" (left, right: short_float) return boolean:

» function ">" (left, right: short_float) return boolean:

> function ">=" (left, right: short_float) return boolean;

N function "+" (right: short_float) return short_float;

n function "-" (right: short_float) return short_float;

L3 function "abs (right: short_float) return short “float:;

. function "+" (left, right: short_float) return short _float;
function "-" (left, right: short_float) return short_float;

. function "*" (left, right: short_float) return short_float;

} function /" (left, right: short_float) return short float.

function """ (left, right: short_float) return short . _float;

v
1

type float is digits 15 range

-2#0.11111111122 112221022002 20022 00122002220 222202011201224E1024 ..
240, 1111110001111 0001202000222 0 00222000002 010002000221014E1024;

function "=" (left, right: float) return boolean;

function "/=" (left, right: float) return boolean:;

function "<* (left, right: float) return boolean;

function "<=" (left, right: float) return boolean:

function ">*® (left, right: float) return boolean;

function ">=" (left, right: float) return boolean;

function "+" (right: float) return float:

function "-" (right: float) return float:

function "abs (right: float) return float:

function "+" (left, right: float) return float:

function "-" (left, right: float) return float:

function """ (left, right: float) return float:

function "/" (left, right: float) return float:

function "t=x" (left, right: float) return float:

funttion "*" {left: univ_integer: right: univ_real) return univ_real:
function "** (left: univ_real; right: univ _integer) return univ_real;
function "/" (left: univ teal. right: univ_ _integer) return univ_ “real;
function "** (left: any fixed; right: any_ fixed) return univ_fixed:;
function "/" (left: any fixed; right: any_fixed) return univ_fixed;

type character is

(nul, soh, stx, etx, eot, enq, eck, bel,
bs, ht, 1f, vt, f£f, cr, so, si,

dle, dcl, dc2, dc3, dc4, nak, syn, etb,
can, em, sub, esc, fs, gs, rs, us,

’ l' I!l' s '.l' OSI' l‘l' l‘l' rre

'(l' I)I' l." '+l' I'I’ I_" '.l' I/l'
'OI' Ill' 021' l3" l‘l' 15" '6" 171‘
lel' 09" I:I' ':l' l<l' I-I' '>I' l?l'
le" IAI' IB" Icl' 'D" IEI' lF" IGI'
'Hl' II" IJI' IK" ILP' OH" 'NI' Iol'
'P" lQ" IR" lsl' 'Tl' 'UI' Ivl' l""
'x'l 'Y'I 'z'l '['I '\'l ']'I "'l ’ ’l
'\l' I‘l, Ibl’ lcl’ ldl' I.l' 'tl’ '-g.l'
lh" Iil' ljl' 'kl' ll" lml' ln" Iol'
Ipl' Iql' Ir" l’l' Itl' 'ul' Ivl' I'I'
lxI’ Iy" 'zl' '{l' l'l' l)l’ '-l' d.l)'.

for character use
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 127):

package ascii is

-

P "

A s

>

\

nul:
stx:
eot:
ack:
1f
ff
SO ¢
dle:
dc2:
dcd:
syn:
sub:
rs :
del:

sonstarnrt
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

character :

character
character
character
character
character

character :
character :

character

character :
character :
character :
character :
character :

1¢.
f£;
s0;
dle:
dec2;
dc4:;
syn;
sub;
rs;
del;

nul:
stx:
eot;
ack;

soh:
etx:
enq:
bel:
: constant

vt

cr ¢
: constant
del:
de3:
nak:
ethb:
esc:
: constant

si

us

exclam
quotation
sharp
dollar
percent
ampersand
colon
semicolon
query
at_sign
1_bracket
back slash
z_p:ackot
underline
grave
1_brace
bar

r brace
tilde

lc_a: constant character

lc_z:

end ascii;

subtype natural is integer range 0
subtype positive is integer range 1

type string is array(positive

pragma pack(string);

function "=* (left,
function " /=" (left,
function "<” (left,
function "<=" (left,
function ">" (left,
function ">=" (left,
function "&" (left:
function "&" (left:
function "¢" (left:
function "&" (left:

type duration is delta

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

: constant
: constant
: constant

constant character

right:
right:
right:
right:
right:
right:
string;

constant

: constant
¢ constant

constant

string)
string)
string)
string)
string)
string)

right:

character :
character :
character :
character :
character :
character :
character :
character :

character

character :
character :
character :
character :
character :

character
character
character
character
character

TR

= 20,

constant
constant
constant
constant

constant

constant
constant
constant
constant
constant

»e

e se sa ss er
fsss s
-

—
-
-

.. integer’last;
.. integer’last;

range <>) of character;

return boolean;
return boolean;
return boolean;
return boolean;
return boolean;
return boolean:;
string) return string:

character
characterx
character
character
character
character
character

character :

character

character :

character
character
character

character; right: string) return string:

string;

character:

201.04E-14 range

-24#100000000000000000.08 ..
2#1111121111311131211.112122212211111¢4;

right: character) return string:
right: character) return string;

function "=" (left, right: duration) return boolean:
function */=" (left, right: duration) return boolean;
function "<” (left, right: duration) return boolean;
function "<=" (left, right: duration) return bonlean:
function ">" (left, right: duration) return boolean;
function ">=" (left, right: duration) return boolean;
B-9
A I A R A I ALY RGOS AR RN

St r s er se es e se ae ae as ee en
LI I O B I I I O I B

-----s-‘

e Tt

dYVWUYNENTUWY FIFEINAT LVRT: =\ oy

function nen (left: duration; right: integer) return duraz:z-;
funct}on nwn (left: integer; right: duration) return duraticr:
function "/" (left: duration; right: integer) return duration;

constraint_error : exception;

numeric_error : exception:;

program_error exception;

storage_error exception;

tasking_error exception;
erd standard:;

STANDARD.DURATION'SMALL = 0.000061035

B-~10

; s “ <N . LAt 04 ghh oA an” AL 1A' glat grorm .W"".mwl"‘
A datel At b todiasidat et Jigd s : ot a Ve at o ot TN

APPENDIX C

TEST PARAMETERS

v
\ Certain tests in the ACVC make use of implementation-dependent values, such
N as the maximum length of an input line and invalid file names. A test that
9 makes use of such values 1s identified by the extension .TST in its file
2 name. Actual values to be substituted are identified by names that begin
z with a dollar sign. A value is substituted for each of these names before

the test is run. The values used for this validation are given below.
l

Name and Meaning Value
& $BIG_ID1 | (1..498 => 'A', 499 => '1')
- Identifier of size MAX_IN_LEN .
. with varying last character.
2 $BIG_ID2 (1..498 => 'A', U499 => '27)
* Identifier of size MAX_IN LEN
y with varying last character.
- $BIG_ID3 (1..241 | 243,.499 => 'A', 241 => '3')
" Identifier of size MAX_IN_LEN
’ with varying middle character.

$BIG_ID4 (1..247 | 243..499 => 'A', 2471 => '4')
’ Identifier of size MAX_IN_LEN

with varying middle character.
N $BIG_INT LIT (1..496 => '0', 497..499 => "298")
X An integer literal of value 298
y with enough leading =zeroes so
that it is MAX_IN LEN characters

= long.
by
)
4 C-1
)

' . e tarmr ATt et am. [|
DR ARG, e T ST Il N e e g

y otn g

ST NS AT A AN TN L A AN T ST A

Y TEST PARAMETERS

Name and Meaning

Value

$BIG_REAL_LIT
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
: MAX_IN LEN characters long.

b $BLANKS

A Blanks of length MAX IN LEN - 20

h $COUNT_LAST

" Value of COUNT'LAST in TEXT_IO
package.

$EXTENDED_ASCII_CHARS
. A string 1literal containing all
N the

ASCII characters with
printable graphics that are not
in the basic 55 Ada character

: set.

E $FIELD LAST
Value of FIELD'LAST in TEXT_IO
package.

$FILE_NAME WITH BAD CHARS
An illega.l external file name
that either contains invalid
characters or is too long.

il s wy

SFILE_NAME_HITH_HILQ_CARD_CHAR
An external file name that
either contains a wild card
character or is too long.

$GREATER_THAN_DURATION
A universal real value that lies
’ between DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION.

' $GREATER_THAN_DURATION_&ASE_LAST
The universal real value that is
greater than DURATION'BASE'LAST.

$ILLEGAL_EXTERNAL FILE_ NAME1
Illegal external file name.

$ ILLEGAL_EXTERNAL FILE NAME2
Illegal external file names.

C-2

L]
*
i
»

‘ "y AN »
A T AN BN M o) L e AN o X) 3 Ty

P eTR TCAT R W A St S R A LR T
o aN

(1..493 => '0', 494..499 => "69.0E1")

(1..479 => v V)

2_147_483_647

\

"rabedefghi jklmnopqrstuvwxyz! $%72€[1" {}~"

2_147_483_647

"/illegal/file name/2{]$%2102C.DAT"

"/illegal/file name/CE2102C*® DAT"

100_000.0

10_000_000.0

"/no/such/directory/&
ILLEGAL_EXTERNAL_FILE_NAME"

"/no/such/directory/&
ILLEGAL_EXTERNAL_FILE_NAME2"

-.‘\‘ vttt e W RTINS T ¥ ‘-“.';.‘ LY LYR Y

ot

o e - -

s &_1)-S5

Name and Meéning

TEST PARAMETERS

Value

$ INTEGER_FIRST
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGER_LAST

The universal integer literal
expression whose value is
INTEGER'LAST.

$LESS_THAN_DURATION
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

$LESS_THAN_DURATION_BASE_FIRST
The universal real value that is
less than DURATION'BASE'FIRST.

$MAX DIGITS
Maximum digits supported for
floating-point types.

$MAX_IN LEN
Maximum input line length
permitted by the implementation.

$MAX INT
The value of MAX_INT in package
SYSTEM,

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.
$NEG_BASED_INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_ INT.

c-3

O Y A T S A A G R AR R L S (S O R O

-2_147_483_648

2 147 _483 647

-100_000.0

-10_000_000.0

15

499 (plus line feed character)

2_147_483_647

TINY INTEGER

16#FFFFFFFD#

' .' SO SR

o« e W

f../w;.*.-.r‘-.

Ca

Pl el o

« 8 a AP

A Bal Boh Aol et Dol ao- Aol Rob Bal ot S8 A 6 S Bt et Bt kot hat b ol il
TEST PARAMETERS
Name and Meaning Value
$NON_ASCII_CHAR_TYPE (NON_NULL)
An enumerated type definition
for a character type whose
literals are the identifier
NON_NULL and all non-ASCII
characters with printable
graphics,
C-4
o e e \\‘.\..-\\\‘-‘.-‘-\...\.\ RS

. LY INL AL e N
» Ly

Ladindd

J-""(al- N Y A O

- .
...l‘-.t.-
N

. 4 ¥

L
»

mmmmm T I Y UV U VU IS VSR Y M TR IS UV LRI AL AT FOARA RAARART AR TS RARA ST RN

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. When testing was performed, the following 16 tests had been
withdrawn at the time of validation testing for the reasons indicated:

. BHAO10C: The object declaration in line 18 follows a subprogranm
body of the same declarative part.

. BB83A06B: The Ada Standard 8.3(17) and AI-00330 permit the label
LAB_ENUMERAL of 1line 80 to be considered a homograph of the
enumeration literal in line 25.

. BA2001E: The Ada Standard 10.2(5) states: "Simple names of all
subunits that have the same ancestor library unit must be distinct
identifiers.® This test checks for the above condition when stubs
are declared. However, the Ada Standard does not preclude the

Y check being made when the subunit is compiled.

. BC3204C: The file BC3204CH4 should contain the body for BC3204CO
as indicated in line 25 of BC3204C3M.

. C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC_ERROR (instead of CONSTRAINT_ERROR).

. CU4140UA: The values of 'LAST and 'LENGTH are incorrect in IF
statements from line 74 to the end of the test.

. CUB8008A: This test requires that the evaluation of default
initial values not occur when an exception is raised by an
allocator. However, the Language Maintenance Committee (LMC) has
ruled that such a requirement is incorrect (AI-00397/01).

D-1

{
(
1
1
{
|
1

WITHDRAWN TESTS

. CUHAD14A: The number declarations in 1lines 19-22 are incorrect
because conversions are not statiec.

. C92005A: At line 40, "/=" for type PACK.BIG_INT is not visible
without a USE clause for package PACK.

. C9UYOACA: This test assumes that allocated task TT1 will run prior
to the main program, and thus assign SPYNUMB the value checked for
by the main program; however, such an execution order is not
required by the Ada Standard, so the test is erroneous,.

« CA1003B: This test requires all of the legal compilation units of
a file containing some illegal units to be compiled and executed.
According to AI-00255, -such a file may be rejected as a whole.

. CA3005A..D (U4 tests): No valid elaboration order exists for these
tests.

. CE2107E: This test has a variable, TEMP_HAS_NAME, that needs to
be given an initial value of TRUE.

D-2

I S

-

A M LI AT AT TR T L T M W W KW Cu L n.-J

