M4
N

%

ADA VA

3

S
P AFB OH

Fia"a

UNCLASSIFIED

-

muuu

E EEFEPTPR

o_____ ~

E

uuhL.

AD-A180 072

T —y e

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data

FILE CQPY |

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS @

BEFORE COMPLETEING FORM

1. REPORT NUMBER J2. GOVT ACCESSION NO.

3. RECIPIENT’S CATALOG NUMBER

.

4, TITLE (and subtitle) . .
Ada Compiler Validation Summary Report:

OASYS VADS Ada compiler, Version 1.7
InterPro 32 (NSC 32000)

5. TYPE OF REPORT & PERIOD COVERED
19 Jun 1986 to 19 Jun 1987

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
Wright-Patterson

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION AND ADDRESS

Ada Validation Facility

ASD/SIOL

Wright-Patterson AFB, OH 45433-6503

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS
Ada Joint Program Office
United States Department of Defense
Washington, DC 20301-3081

12. REPORT DATE P
19 June 1986 .’

T3 NURBER OF FAG§S4

14. MONITORING AGENCY NAME & ADDRESS(I different from Controliing Office)
Wright-Patterson

15. SECURITY CLASS (of thisreport)
UNCLASSIFIED

15a. gEﬁkBBEEFICATIDN/DOHNGRADING

18. DISTRIBUTION STATEMENT (of this Report)

. Approved for public release; distribution unlimited.

UNCLASSIFIED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

ELECTE
MAY O 7 1887

18. SUPPLEMENTARY NOTES

E

v oE__

19. KEYWORDS (Continue on reverse side if necessary and identify by biock number)

1815A, Ada Joint Program Office, AJPO

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DD 'O 1373

1 JAN 73

EDITION OF 1 NOV 685 IS OBSOLETE
S/N 0102-LF-014-8801

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada® Compiler Validation Summary Report:

Compiler Name: OASYS VADS Ada compiler, Version 1.7

Host Computer: Target Computer:
InterPro 32 (NSC 32000) InterPro 32 (NSC 32000)
under under
Intergraph System V Intergraph Systea V
Release 2.0 Release 2.0

Testing Completed 19 JUN 1986 Using ACVC 1.7

1 h d and .
This report has been revieue. an '13 approved Aosession For -

NTIS GRARL g
DTIC TAB
é’/2 :)C—’ é ’ 2 Unannounced 0O
Justification
Ada Validjtion Facility
Georgeanne Chitwood By

ASD/SIOL ' Distribution/
Wright-Patterson AFB OH 45433-6503 Availability Codes

Avail and/or
Dist Special

Dr. Jochn F. Kramer
Institute for Defense Analyses
Alexan?—~4i= A :

b 1 ATh - * rratn il ———

CLEARED

+OR OPEN PUBLICATION
Ada J%nt Progran or.fioe MAR 2 0 1987 3
Virginia L. Castor DHECTORATE 1-OR FREELUK, Ur wiruriMATION
Director AND SECURTTY REVIEW (OASO—PA)
Department of Defense DEPARTMENT OF DEFENSE
Washington DC _ —— e

87 1237

®sda i3 a registered trademark of the United States Government
(Ada Joint Program Office).

87 5 6 1083

NPy ——

AVF Control Number:

Ada® COMPILER
VALIDATION SUMMARY REPORT:
OASYS
OASYS VADS Ada compiler, Version 1.7
InterPro 32 (NSC 32000)

Completion of On-Site Validation:
19 JUN 1986

Prepared By:
Ada Validation Facility
ASD/SIOL
Wright-Patterson APB OH 45433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
) Washington, D.C.

AVF-VSR-42-1086

©Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

. o

Lo aaad sl oot Sl o s an g de ol o d

+ . +
+ Place NTIS form here «
+ +*

Lo ad s s ad s a s 2ol g ol os on s

EXECUTIVE SUMMARY

y

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the OASYS VADS Ada compiler, Version

Tone validation process includes submitting a suite of standardized tests
(the #CVC) as inputs to an Ada compiler and evaluating the results, The
purpose is to ensure conformance of the compiler to ANSI/MIL-STD-1815A Ada
by testing that it properly implements legal language constructs and that
it identifies and rejects illegal language constructs., The testing also
identifies behavior that is implementation dependent but permitted by
ANST/MIL-SID~-1815A. Six classes of tests arc used. These tests are
designed to verform checks at compile time, at 1link time, or during
execution.

On-site testing was performed 15 JUN 1986 through 19 JUN 1986 at ZAIA/
Intscaational, Huntsville iL, under the direction of the Ada Validation
Fac!!1:y (AVF), according to Ada Validation Organization (AVO) policies and
procedures, The OASYS VADS Ada compiler, Version 1.7, iIs hosted on an
IntarPro 32°{NSC 32000) operating under Intergraph System V, Release 2.0.

The results of validation are summarized in the following table:

RESULT TEST CLASS TOTAL

A B C D E L _____
Passed 68 820 1184 17 1Y 23 2083
Failed 0 0 0 0 0 0 0

Inapplicable 0 & 176 0 0 0 180
Withdrawn 0 4 12 0 0 0 16
TOTAL 68 828 1332 17 11 23 2279

®Ada is a registered trademark of the United States Government
(Ada Joint Progras Offioce).

R o B i

There were 16 withdrawn tests in ACVC Version 1.7 at the time of this
validation attempt. A list of these tests appears in Appendix D.

Some tests demonstrate that some language features are or are not supported
by an implementation. For this implementation, the tests determined the
following:

o SHORT_INTEGER and SHORT FLOAT are supported.

. LONG_INTEGER and LONG_FLOAT are not supported.

. The additional predefined types TINY INTEGER, SHORT_INTEGER, and
SHORT _FLOAT are supported.

. Representation specificationa for noncontiguous enumeration
representations are supported.

. Generic unit specifications and bodies can be compiled in separate
compilations.

. Pragma INLINE is supported for procedures and functions.
. The package SYSTEM is not used by package TEXT_I0.
Modes IN_FILE and OUT_FILE are supported for sequcatial I/0.

. Instantiation of the package SEQUENTIAL_IO with unconstrained
array types is supported.

. Instantiation of the package SEQUENTIAL_IO with unconstrained
record types with discriminants is supported.

. RESET and DELETE are supported for sequential and direct 1/0.

. Modes IN_FILE, INOUT FILE, and OUT_FILE are supported for direct
1/0.

. Instantiation of package DIRECT_IO with unconstrained array types
and unconstrained types with discriminants is supported.

. Dynamic creation and deletion of files are supported.

. More than one internal file can be associated with the same
external file.

. An sxternal file associated with more than one internal file can
be reset.

« Illegal file names can exist.

ACVC Version 1.7 was taken on-site via magnetic tape to ZAIAZ
International, Huntsville AL. All tests, except the withdrawn tests and
any executable tests that make use of a floating-point precision greater
than SYSTEM.MAX DIGITS, were compiled on an InterPro 32 (NSC 32000). Class
A, C, D, and E tests were executed on an InterPro 32 (NSC 32000).

On completion of testing, execution results for Class A, C, D, or E tests
were examined. Compilation results for Class B tests were analyzed for
correct diagnosis of ayntactic and semantic errors. Compilation and 1link
results of Class L teats were analyzed for correct detection of errors.

The AVF identified 2093 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the OASYS VADS Ada compiler,
Version 1.7. Excluded were 170 tests requiring a floating-point prerision
greater than that supported by the implementation and the 16 withdrawn
tests. After the 2093 tests were processed, 10 tests were determined to be
inapplicable. The remaining 2q83 tests were passed by the compiler,

The AVF concludes that these results demonstrate acceptabdble conformance to
ANSI/MIL-STD-1815A,

CHAPTER 1

CHAPTER 2

CHAPTER

WWWwWwwwwwww w

e IOV TWIN -

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

wN =

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT

USE OF THIS VALIDATION SUMMARY REPORT
RELATED DOCUMERTS .« . ¢« ¢ o ¢ o &« &
DEFINITION OF TERMS . . . « « « .« &
ACVC TEST CLASSES . . ¢ ¢ &« ¢ ¢ & &

CONFIGURATION INFORMATION

CONF IGURATIO“ TmTED * L] L L] L] * L] .
CERTIFICATE INFORMATION
IMPLEMENTATION CHARACTERISTICS . . .

TEST INFORMATION

TEST RESULTS ¢ o ¢ ¢ ¢ o o o o + &
SUMMARY OF TEST RESULTS BY CLASS .
SUMMARY OF TEST RESULTS BY CHAPTER
WITHDRAWN TESTS ¢ « ¢ : o ¢ o o o
INAPPLICABLE TESTS ¢ « ¢ o « o ¢ &«
SPLIT TESTS ¢ ¢ ¢« +© & ¢ o o o @
ADDITIONAL TESTING INFORMATION .

Prevalidation . . ¢« ¢ ¢ ¢« «

Test Method . . . ¢ ¢ & ¢ ¢ «

Test Site . & ¢ ¢ ¢ ¢ ¢ o o &«

* o & s

COMPLIANCE STATEMENT

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDRAWN TESTS

¢ & o o

» » » » » L » o Ll *

. . . L] L]

L] * L L[] . . * L] L[] L]

® o & o o

L] . L] L] L)

¢ ¢ ® & o & s s o

2-1
2-2
2-3

3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-4

CHAPTER 1
INTRODUCTION

This Validation Summary Report (VSR) describes the excent to which a
specific Ada compiler coaniorus to ANSI/MIL-STD-1815A. This report explains
all technical terms used within it and thoroughly reports the results of
tesiing thiy compiler using the Ada Compiler Validation Capability (ACVC).
An 4da compiler must be implemented according to the Ada Standard
(ANST/MIL-STD-18154). Any implementation-dependent features must conform
to th2 requirements of the Ada Standard. The entire Ada Standard must be
{umpl.:onted, and nothing can de implemented that is not in the Standard.

Even though all validated Ada compilers conform to ANSI/MIL-STD-18154, it
must be understood that some differences do exist between implementations.
Tne Ad. Standard permits some implementation dependencies--for example, the
maxigun length of 1identifiers or the maximum values of integer types.
Other differences between compilers result from limitations imposed on a
compiler by the operating system and by the hardware. All of the
dependencies demonstrated during the process of testing this compiler are
given in this report.

VSRs are written according to a standardized format. The reports for
several different compilers may, therefore, be easily compared. The
information in this report is derived from the test results produced during
vulidation testing. Additional testing information as well as details
which are unique for this compiler are given in section 3.7. The format of
a validation report limits variance between reports, enhances readability
of the report, and minimizes the delay between the completion of validation
testing and the pudblication of the report.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler, Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

1-1

INTRODUCTION

« To attempt to 1identify any unsupported language constructs
required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures estadblished by
the Ada Validation Organization (AVO). Testing was conducted from 15 JUN
1986 through 19 JUN 1986 at ZAIAZ International, Huntsville AL.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act™ (5
U.S.C. #552). The results of this validation apply only to the computers,
opecating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformances
to ANSI/MIL-STD-1815A other than those presented, Copies of this report
are available to the public {rom:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE

The Pentagon, Rm 3D-139

1211 8. Fern, C-107
Washington DC 20301-3081

or from:
Ada Validation Facility

- ASD/SIOL
Wright-Patterson AFB OH H45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1.3 RELATED DOCUMENTS

1. Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Orggniiation: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 198%.

1.4 DEFINITION OF TERMS

ACVC

aca Standard

Applicant

AVE

AYO

Compiller

Failed test

Host

The Ada Compiler Validation Capability. A set of programs
that evaluates the conformance of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

ANSI/MIL-STD-1815A, February 1983.
The agency requesting validation.

The Ada Validation Facility. In the context of this report,
the AVFP is responsidle for conducting compiler validations
according to established policies and procedures,

The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting policies and
procedures for compiler validations.

A processor for the ida language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

A test for which the compiler generates a result that
demonstrates nonconformance to the Ada Standard.

The computer on which the compller resides.

1-3

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way
other than the one expected by the test.

LMC The Language Maintenance Committee whose function is to
resolve issues concerning the Ada language.

Passed test A test for which a compiler generates the expected result.
Target The computer for which a compilar generates code.

Test A program that evaluates the couformance of a compiler to a
language apecification. In the context of this report, the
term is used to designate a single ACVC test., The text of a
program may be the text of one or more compilations.

Withd:-awn A test found to be inaccurate in checking conformance to the

test Ada language specification. A withdrawn test has an invalid
test objective, fails to meet its test objective, or contains
illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformance to ANSI/MIL-STD-1815A is measured using the ACVC. The ACVC
nontains bHoth legal and ‘llegal Ada programs structured into six test
~lisw: A, 8, C, D, ®, aud &,. The first letter of a test name identifies
Lhe c¢lass (o which it belongs. Special program units are used to report
the results of the Class A, C, D, and E tests during execution. Class B
tests are expected to produce compilation errors, and Class L tests are
axpected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. (However, no checks ar2 performed during execution to see if
the test objective has been met.) For examp’=s, a Class A test checks that
reserved words of another language (other than iiose already reserved in
th- 'da laaguage) are not treated as reserved words by an Ada compiler. A
Cliut 1 test 1s passed if no errors are detected at compile time and the
pirogesn sxecutes to produce a message indicating that it has passed.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntactical
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test 1is self-checking and produces a PASSED,
FAILED, or NOT-APPLICABLE message 1indicating the result when 1t {s
executed,

1-4

INTRODUCTION

Class D tests check the compilation and execution capacities of a compiler.
Since there are no requirements placed on a compiler by the Ada Standard
for some parameters (e.g., the number of identifiers permitted in a
compilation, the number of units in a library, and the number of nested
loops in a subprogram body), a compiler may refuse to compile a Class D
test and still be a conforaming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is excecded, the test
is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT-APPLICABLE, PASSED,
or FAILED message when it is compiled and cxecuted. However, the Ada
St..vdard permits an implementation to reject programs containing some
reracures addressed by Class E tests during compilation. Therefore, a Class
i .»3t is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason,

Class L tests check that 4incomplete or 1illegal Ada programs 1involving
multiple, separately compiled units are detected and not allowed to
execute., Class L tests are complled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message bdefore any
declaratinons in the main program or any units referenced by the main
nregram are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the =e:’.checking i'eatures of ihe excautadble tests. The package REPORT
provi-ias the mechanism by which executable tests report results. It also
provides a set of 4identity functions used to defeat some compiler
optimization strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The procedure
CHECK_FILE'is used to check the contents of text files written by some of
the Class C tests for chapter il of the Ada Standard.

The operation of these units is checked by a set of executable tests.
These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation is not atteampted.

Soue of the conventions followed in the ACVC are intended to ensure that
the tests are reasonably portable without modification. For example, the
tests make use of only the dasic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place
features that may not be supported by all implementations in separate
tests, However, some tests contain values that require the test to be
customlized according to implementation-specific values. The values used
for thin validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformance to the Ada Standard dy either meeting the pass
criteria given for the test or by showing that the test is inapplicadble to
the implementation. Any test that was determined to contain an illegal

1-5

—1r--I---------------"-""""""'lllr'ﬂl.r""' o

INTRODUCTION

language construct or an erroneous language construct is withdrwu from the

ACVC and, therefore, is not used in testing a compiler. The nonconformant
4 tests are given in Appendix D.

—— e — e . o g

1-6

e o oy

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation systeh for this validation was tested under the
¢ollawing configuration:
Compiler: OASYS VADS Ada compiler, Version 1.7
Test Suite: Ada Compiler Validation Capability, Version 1.7
Host Cu:aputers:
Machine(s): InterPro 32 (NsC 32000)

Operating System: Intergraph System V
Release 2.0

Memory Size: 4 megabytes

Target Computer:

Machine(s): InterPro 32 (NSC 32000)

Operating System: Intergraph System V
Release 2.0

Memory Size: 4 megabytes

2-1

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION

Base Configuration:

Compiler: OASYS VADS Ada compiler, Version 1.7

Test Suite: Ada Compiler Validation Capability, Version 1.7

Certificate Date:
Host Computer:
Machine(s):

Operating System:

Target Computer:
Machine(s):

Operating System:

 on

2-2

3 September 1986

InterPro 32 (NSC 32000)

Intergraph System V
Release 2.0

InterPro 32 (NSC 32000)

Intergraph System V
Release 2.0

e o

———

CONFIGURATION INFORMATION

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers {s to determine the behavior of
a ccmpiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This ocompiler 1is characterized by the following
interpretations of the Ada Standard:

. Nongraphic characters.

Nongraphic characters are defined in the ASCII character set but
are not permitted in Ada programs, even within character strings.
The compiler correctly recognizes these characters as 1illegal in
Ada compilations. The characters are printed in the output
listing. (See test B2600SA.)

. Capacities.

The compiler correctly processes compilations containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures nested to 17 levels. It
correctly processes a compilation containing 723 variables in the
same declarative part. (See tests DSS5A03A through D5S5A03H,
D56001B, D64UOSE through D64005G, and D29002K.)

. Universal integer calculations.

An implementation is allowed to reject uaniversal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AOO2A, D4AOO2B, DHUAOOUA, and
DYAQO4B.)

« Predefined types.
This implementation supports the additional predefined types
SHORT_INTEGER, SHORT_FLOAT, and TINY INTEGER in the package
STANDARD. (See tests B86001CR, B86001CP, and B86001DT.)

. Based literals.
An implementation is allowed to reject a based 1literal with =a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC_ERROR during execution. This implementation raises
NUMERIC_ERROR during execution. (See test E24101A.)

« Array types.
When an array type is declared with an index range exceeding the
INTEGER'LAST values and with a component that is a null BOOLEAN

array, this compiler raises NUMERIC ERROR when the type 1is
declared. (See tests E36202A and E36202B.)

2-3

_— e - a —— o~ a . - - - S

.

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC_ERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array type is declared.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR either when declared or
assigned. Alternatively, an dimplementation may accept the
declaration. However, lengths must match in array slice
assignments., This implementation raise:s NUMERIC ERROR when the
array type is declared. (See test ES2103Y.)

In asz3igning one-dimensional array types, the entire expression
appears to be evaluated before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype.

In assigning two-dimensional array types, the entire expression
does not appear to be evaluated before CONSTRAINT _ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementatjon is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications during
compilation. (See test E38104A.)

In assigning record types with discriminants, the entire
expression appears to be evaluated before CONSTRAINT ERROR 1is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.,

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and Cu3207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before deing checked for identical bounds.
(See test EU43212B.)

All choices are evaluated before CONSTRAINT ERROR is rlil‘d if a

bound in a nonnull range of a nonnull aggregate does not bdbelong to
an index subtype. (See test E43211B.)

2-4

-

CONFIGURATION INFORMATION

Punctions,

The declaration of a parameterless function with the same profile
as an enumeration literal in the same immediate scope is rejected
by the impleaentation. (See test B66001D.)

Representation clauses.

Enumeration representation clauses are supported. (See test
BC1002A.)

Pragaas.

The pragma INLINE is suppuorted for procedures and functions. (See
tests CA3004E and CA3004F.)

Input/output.

The package SEQUENTIAL_IO can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT_IO can be instsntiated with unconstrained array types and
record types with discriminants without defaults. (See tests
CE2201D, CE2201E, and CE2401D.)

More than one internal file can be assoclated with each external
file for sequential 1/0 for both readinz and writing. (See tests
CE2107A through CE2107F.)

More than one internal file can be associated with each external
file for direct 1/0 for reading only. (See tests CE210TA through
CE2107D and CE2107F.)

An external file associated with more than one internal file can
be deleted. (See test CE2110B.)

More than one internal file can be associated with each external
file for text I/0 for both reading and writing. (See tests
CE3111A through CE3111E.)

An existing text file can be opened 1in OUT_FILE mode, can be
created in OUT FILE mode, and can be created in IN FILE mode.
(See test BE3102C.)

Temporary sequential files are given a name. Temporary direct

files are given a name. Temporary files given names are deleted
vhen they are closed. (See tests CE2108A and CE2108C.)

2-5

- T e e e

—_—— T ee————— T

CHAPTER 3

TEST INFORMATION

3.Y TEST RESULTS

The AVF identified 2093 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicadble to the validation of the OASYS VADS Ada compiler,
Version 1.7. Excluded were 170 tests requiring a floating-point precision
greater than that supported by the implementation and the 16 withdrawn
tests. After they were processed, 10 tests were determined to be
inapplicable. The remaining 2083 tests were passed by the compiler,

The AVF oconcludes that the testing results demonstrate acceptabdle
conformance to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B € D E L
Passed 68 820 1148 17 11 23 2083
Pailed o o o0 o o0 o0 0

Inapplicadle 0 4 176 0 0 0 180
Withdrawn 0 8 12 0 0 0 16

TOTAL 68 828 1332 17 1 23 2279

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
—2_3_4_5_6_7_8_9 10 1 _12 14

Passed 102 234 308 244 161 97 158 198 105 28 216 232 2083

Failed 0 0 0o 0 0 0 06 0.0 0 0 0 O

Inapplicable 14 73 8 3 o0 ©0 3 1 0 O©o O O 180

Withdrawn o 1 4 0 o0 0 1 2 6 0 1 1 16

TOTAL 116 308 398 247 161 97 162 201 111 28 217 233 2279

3.4 WITHDRAWN TESTS

The follcwing tests have been withdrawn from the ACVC Version 1.7:

B4AO10C C41404A CA1003B

B83A06B C48008A CA3005A through TA3005D (4 tests)
BAZ2OUIE CUAD14A CE2107E

BC3204C €92005A

C359G4A COUOACA

See Appendix D for the test descriptions.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this wvalidation attempt, 180 tests were inapplicable for
the reasons indicated:

C34001E, B52004D, B55B09C, B86001CS, and C55BOTA use LONG_INTEGER
which is not supported by this compiler.

£34001G, C35702B, and B86001CQ use LONG_FLOAT which is not
supported by this compiler.

C86001F redefines package SYSTEM, but TEXT_IO is made obsolete by
this new definition in this implementation.

C960058 checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

3-2

IR o T i

TEST INFORMATION

o 170 tests were not processed because SYSTEM.MAX DIGITS was 15,
These tests were:

C24113L through C24113Y (14 tests)
C35705L through C35705Y (14 tests)
C35706L through C35706Y (14 tests)
C35707L through C35707Y (14 “ests)
C35708L through C35708Y (14 tests)
C35802L through C35802Y (14 tests)
Cl45241L through CH5241Y (14 tests)
C45321L through C45321Y (14 tests)
Cu5421L through C454821Y (14 tests)
Cu454241, through CHSH24Y (14 tests)
C45521L through CL5521Z (15 tests)
C45621L through C45621Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of 1ts size is split into a set of smaller subtests that can be
processed.

Splits were required for 19 Class B tests.

B2U4104A . B37201A B67001B
B24104B B38008A B67001C
B24104C B%1202A B67001D
B2A003A B44001A B910ABA
B2A003B B64001A B95001A
B2A003C . B6T001A B9T101E
B23004A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.7 produced by
the OASYS VADS Ada compiler, Version 1.7, was submitted to the AVF by the

applicant for prevalidation review. Analysis of these results demonstrated
that the compiler successfully passed all applicadle tests.

3-3

[N R -

TEST INFORMATION

3.7.2 Test Method

Testing of the OASYS VADS Ada compiler using ACVC Version 1.7 was conducted
on-site by a validation team. The base configuration consisted of an
InterPro 32 (NSC 32000) host and target operating under Intergraph System

A magnetic tape ocontaining ACVC Version 1.7 was taken on-site by the
validation team. The magnetic tape contained all tests applicable to this
validation, as well as all tests inapplicable to this validation except for
any Class C tlests requiring a floating-point precision exceeding the
maximum value supported by the implementation. Tests that make use of
values that are specific to an implementation were customized dbefore being
written to the magnetic tape. Tests requiring splits during the
prevalidation testing were included in their split form on the magnetic
tape. No editing of the test files was necessary when the validation team
arrived on-site. -

The contents of the magnetic tape were loaded onto an InterPro 32 computer
and stored on a Maxtor hard disk. The Maxtor hard disk was moved to a
second InterPro 32 and the tests were written to 1low density diskettes.
After the test files wei-c loaded from the diskettes, the full set of tests
was compiled on the InterPro 32 and all executable tests were run on the
InterPro 32. Results were written to low density diskettes and loaded on a
ZAIAZ 32 and printed.

The compiler was tested using command scripts provided by OASYS. These
scripts were reviewed by the validation team.

Tests were run in batch mode using two host and target computer(s). Test
output, compilation 1listings, and Jjob logs were captured on low density
diskettes and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

The validation team arrived at ZAIAZ International, Huntaville AL on 15 JUN
1986 and departed after testing was completed on 19 JUN 1986.

3-8

"“'“*-

APPENDIX A

COMPLIANCE STATEMENT

ZAIAZ has submitted the following compliance
concerning the OASYS VADS Ada compiler.

T T

statement

-y —

COMPL IANCE STATEMENT

Compl iance Statement

Base Configuration:
Compiier: DASYS Ada, Version 1.7
Test Suite: Ada Compiier Validation Capability, Version 1.7
Host Computer:

Machine: interPro 32 [NSC 32000)

Operating System: intergraph System V
Release 2.0

Target Computer:

Machine: interPro 32 (NSC 32000)

Operating System: Intergraph System V
Releass 2.0

ZAIAZ nes macde no deliiberate extensions to the Ada isnguage
standard.

ZAIAZ agrees to the public disclosure of this report.

ZAiAZ agrees to comply with the Ada trademark poiicy, 8s
defined by the Ada Joint Program Office.

%OM Dato:%j&lz_fé

William W. Smith
President

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation classes, The implementation-dependent characteristics of
the OASYS VADS Ada compiler, Version 1.7, are described in the following
sections which discuss topics one through eight as stated in Appendix F of
the Ada Language Reference Manual (ANSI/MIL-STD-18154). Package STANDARD
is also included in this appendix.

(1) Implementation-Dependent Praguas

SHARE BODY Pragma

The SHARE BODY pragma takes the name of a generic instantiation or
a generic unit as the first argument and one of the identifiers
TRUE or FALSE as the second argument. This pragma is only allowed
immediately at the place of a declarative item in a declarative
part of package specification, or after a 1library unit in a
compilation, but before any sudbsequent compilation unit.

When the first argument is a generic unit, the pragma applies to
all 1instantiations of that generic. When the first argument is
the name of a generic instantiation, the pragma applies only to
the specified instantiation, or to overloaded instantiations.

If the second argument is TRUE, the compiler will try %o share
code generated for a generic instantiation with code generated for
other instantiations of the saze generic. When the second
argument 4is FALSE, each instantiation will get a unique copy of
the generated code., The extent to which code 4is shared between
instantiationa depends on this pragma and the kind of generic
formal parameters declared for the generic unit.

B-1

-~ e e e A E

APPENDIX F OF THE Ada STANDARD

(2)

(3)

EXTERNAL_NAME Pragma

The EXTERNAL_NAME pragma takes the name of a variadble defined in
another language and allows it to be referenced directly in Ada.
The pragma will replace all occurrences of the variable name with
an external reference to the second name which is a link argument.
The pragma is allowed at the place of a declarative item in a
package specification and must apply to an object declared earlier
in the same package specification.
a scalar or an access type.

following:

loop variable,
constant,

an initialized variable,
an array, or

record.

Implementation-Dependent Attributes

NONE.

Specification of Package SYSTEM

package

SYSTEM is

type ADDRESS is private;
type NAME is (ipro_sysv);

SYSTEM_NAME : constant NAME := ipro_sysv;

"STORAGE UNIT : constant := 8;

private

MEMORY_SIZE : constant := 16_T74_144;
== System-Dependent Named Numbers
MIN_INT : constant := -2 147 483 647 - 1;
MAX_INT : constant sz 2_147_#83_6uT;
MAX_DIGITS : constant := 153
MAX_MANTISSA ¢ constant := 31;

FINE DELTA : constant sz 2.0%8(-1l4);
TICK ¢t constant t= 0.01;

~= Other System-dependent Declarations
subtype PRIORITY is INTEGER range 0 .. T;
MAX_REC_SIZE : integer := 6U4®1024;

type ADDRESS is new INTEGER;

end SYSTEM;

B-2

The object must be declared as
The object cannot be any of the

———-

———

APPENDIX F OF THE Ada STANDARD

(4) Restrictions On Representation Clauses

Pragma PACK:

Bit packing is not supported. Objects and components are packed
to the nearest whole STORAGE_UNIT. ‘

Size Specification:

The size specification T'SMALL is not supported.

Record Representation Clause:

Component clauses nusf-bd'aligned on STORAGE_UNIT boundaries.

Address Clauses:

Address clauses are not supported.

Interrupts:

Interrupts are not supported.

Change of Representationt

Change of representation is not supported for record types.

Representation Attributes:

The ADDRESS attribute is not supported for the following entities:
Packages
Tasks

Labels
Entries

Machine Code Insertions:

Machine code insertions are not supported.

B-3

APPENDIX F OF THE Ada STANDARD

(5)

(6)

M

(8)

Conventions for Implementation-generated Names

There are no implementation-generated names.

Interpretation of Expressions in Address Clauses

Address clauses are not supported.

Restrictions on Unchecked Conversions

The predefined generic [unction UNCHECKED CONVERSION cannot be
instantiated with a target type which is an unconstrained array
type or an unconstrained record type with discriminants.

Implementation Characteristics of I/0 Packages

Instantiations of DIRECT IO use the value MAX REC_SIZE as the
record size (expressed in STORAGE_UNITS) when the size of
ELEMENT_TYPE exceeds that value. For example, for unconstrained
arrays such as string, where ELEMENT TYPE'SIZE is very large,
MAX_REC SIZE is used instead. MAX REC SIZB is defined in SYSTEM
and_ can be changed by a program before instantiating DIRECT_IO to
provide an upper limit on the record size. In any case, the
maximum size asupported 4is 1024 x 1024 x STORAGE UNIT bits.
DIRECT I0 will raise USE_ERROR 4if MAX REC_SIZE exceeds this
absclute limit,

Instantiations of SEQUENTIAL_IO use the value MAX REC_SIZE as the
record size (express in STORAGE_UNITS) when the size of
ELEMENT_TYPE exceeds that value. For example, for unconstrained
arrays such as string, wvhere ELEMENT TYPE'SIZE is very large,
MAX_REC_SIZE is used instead. MAX_REC_SIZE is defined in SYSTEM
and can be changed by a program before instantiating INTEGER_IO to
provide an upper limit on the record size. SEQUENTIAL_IO imposes
no limit on MAX_REC_SIZE.

B-4

Cas

APPENDIX F OF THE Ada STANDARD

Package STANDARD
type INTEGER is range -2 147_483_648 .. 2 147_UB83_6A4T;

type FLOAT is digits 15
RANGE -1.79769313486232E+308 .. 1.79769313486232E+308;

type SHORT_FLOAT is digits 6

type DURATION is delta 2.0E-14 range -86400.0 .. 86400.0;

type TINY_ INTEGER is -128 .. 127;

DURATION'SMALL = 6.10351562500000E-05 seconds

B-5

APPENDIX C
TEST PARAMETERS

certain tests in the ACVC - ke use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are identified by names that begin
with a dollar sign. A value is substituted for each of these names bdefore
the test is run. The values used for this validation are given below.

Name and Meaning Value

‘BIG_ID1 (1--“98 => .A" ‘399 => '1',
Identifier of size MAX_IN_LEN 500 => line feed character)
with varying last character.

’BIG.IDZ (1.."98 => 'A" “99 => '2"
Identifier of size MAX_IN LEN 500 => line feed character)
with varying last character.

$BIG_ID3 (1..249 | 251..499 => 'A', 250 => '3',
Identifier of size MAX_IN_LEN 500 => line feed character)
with varying middle character.

‘BIG_IDI‘ (10.2“9 ‘ 251.-“99 => 'A‘, 250 => '33',
Identifier of size MAX_IN_LEN 500 => line feed character)
with varying middle character.

SBIQ_INT_LIT (1..896 => '0', 497..499 => "298",
An integer 1literal of value 298 500 =z> line feed character)
with enough 1leading zeroes so
that it is MAX_IN LEN characters

long.

——— T w———— T W e e

TEST PARAMETERS

Name and Meaning

Value

$BIG_REAL_LIT
A real 1literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough 1leading zeroes to be
MAX_IN LEN characters long.

$BLANKS
Blanks of length MAX_IN_LEN - 20
$COUNT_LAST
Value of COUNT'LAST in TEXT_IO
package.

SEXTENDED ASCII_CHARS
A string 1iteral containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD_LAST
value of FIELD'LAST 4in TEXT_IO
package.

$FILE_NAME WITH_BAD_CHARS
An illegal external file name
that either oontains invaliad
characters or is too long.

$FILE NAME ,_WITH_WILD_CARD_CHAR
An external file name that
either contains a wild card
character or is too long.

$GREATER_THAN_DURATION
A universal real value.that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION.

$GREATER_THAN_DURATION_BASE_LAST
The universal real value that is
greater than DURATION'BASE'LAST.

$I_LLEGAL_EXTERNAL_FILE_NAME1
Illegal external file name.

$ILLEGAL_EXTERNAL_FILE NAME2
Illegal external file names.

(10.‘93 => '0', ug“..“gg 2> .6900E1",
500 => line feed character)

(1..479 => * ¢,
B80 => line feed oharacter)

2_147_NE3_647

"abedefghi jklmnopqratuvwxyzi $52€[]1" {}~"

2_147_483_647

/illegal/file name/2{1$32€[]1"(}-"

"/illegal/file_name/CE2102C*.DAT"

10C_000.0

10_000_000.0

*/no/such/directory/ILLEGAL_EXTERNAL_FILE_NAME 1"

*/no/such/directory/ILLEGAL_EXTERNAL_FILE_NAME2"

C-2

U SR S

Nane and Meaning

TEST PARAMETERS

Value

$INTEGER_FIRST
The universal integer literal

expression whose value is
INTEGER'FIRST.

$INTEGER_LAST
The universal integer literal
expiression whose value is
INTEGER'LAST.

$LESS_THAN_DURATION
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

QLESS_IHAN_DURATION_;ASE_FIRST
The universal real value that is
less than DURATION'BASE'FIRST.

$MAX_DIGITS
Maximum digits supported for
floating-point types.

$MAX_IN_LEN
Maximum input line length
permitted by the implementation.

$MAX_INT
The value of MAX_INT in package
SYSTEM.

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

$NEG_BASED_INT
A based integer literal whose
highest order ononzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_INT.

c-3

-2_147_u83_6u8

2_147_483_647

-100_000.0

-10_000_000.0

15

500 (499 plus line feed character)

2_187_483_647

TINY_INTEGER

16#FFFFFFFD#

TEST PARAMETERS

$NON_ASCII_CHAR_TYPE

- -

T T ey e

(NON_NULL)

An enumerated type definition

for a character

literals are
NON_NULL and

characters with

graphics.

type whose
the 4identifier
non-ASCII
printable

C-4

APPENDIX D

WITHDRAWN TESTS

Souwe tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. When testing was performed, the following 16 tests had been
withdrawn at the time of validation testing for the reasons indicated:

. BHA010C: The object_declaration in line 18 follows a subprogran
body of the same declarative part.

. B83A06B: The Ada Standard 8.3(17) and AI-00330 permit the label
LAB_ENUMERAL of 1line 80 to be considered a homograph of the
enumeration literal in line 25.

. BA2001E: The Ada Standard 10.2(5) states: "Simple names of all
subunits that have the same ancestor libdbrary unit must be distinct
identifiers.” This test checks for the above condition when stubs
are declared. However, the Ada Standard does not preclude the
check being made when the subunit is compiled.

. BC3204C: The file BC3204Ch should contain the body for BC3204C0O
as indicated in line 25 of BC3204C3M.

. C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC_ERROR (instead of CONSTRAINT_ERROR).

. CH1304A: The values of °'LAST and 'LENGTH are inocorrect in 1IF
statements from line T4 to the end of the test.

. C88008A: This test requires that the evaluation of default
initial wvalues not occur when an exception is raised dy an
allocator. However, the Language Maintenance Committee (LMC) has
ruled that such a requiresent is inoorreot (AI-00397/01).

D=1

WITHDRAWN TESTS

CHAO0148A: The number declarations in 1lines 19-22 are incorrect
because conversions are not static.

C92005A: At line 80, "/=" for type PACK.BIG_INT is not visible
without a USE clause for package PACK.

C940ACA: This test assumes that allocated task TT1 will run prior
to the main program, and thus assign SPYNUMB the value checked for
hy the main program; however, such an execution order is not
required by the Ada Standard, so the test is e:roneous,

CA1003B: This test requires all of the legal compilation units of
a file containing some illegal units to be compiled and executed,
According to AI-00255, such a file may be rejected as a whole.

CA3005A..D (4 tests): No valid elaboration order exists for these
tests. .

CE2107E: This test has a variable, TEMP_HAS NAME, that needs ¢to
be given an initial value of TRUE.

D=2

