
D-AIBG 072 ADA (TRADD4ANE) COMPIFE UALI N MHO4S AND 1/1
OAjV OASS CD A (U) ~TSi T N

UNCLASSIFTIED F yE4iA~ F O AI A1 'Y /G !12/3 L

E lu

a

1 .21111.5 LAI

SECUITY UNCLASSIFIEDFLE C P
SECURITY CLASSIFICATION OF THIS PAGE (When Oat F,,

REPORT DOCUMENTATION PAGE 3 ,RENShTWIGnONs

REPORT MBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 19 Jun 1986 to 19 Jun 1987
OASYS VADS Ada compiler, Version 1.7
interPro 32 (NSC 32000) 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Wright-Patterson

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB, OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE -

Ada Joint Program Office 19 June 1986 7
United States Department of Defense P. NUMBt b

Washington, DC 2D301-3081 34
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (ofthis report)

Wright-Patterson UNCLASSIFIED
1Sa. ?Eh FICATION/DWNGRADING

___N/A
16. DISTRIBUTION STATEMENT (ofthisReport)

00 Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report) U UI C
< UNCLASSIFIED ELECTE

MTAY 0 71W7
13. SUPPLEMENTARY NOTES

rE.

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverne si if necessary and ientify by block number)

See Attached.

DD ,.i 1473 EDITION OF I NOV 85 IS OBSOLETE
1 JAN 73 S/N 0102-LF-014-5001 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada® Compiler Validation Suary Report:

Compiler Name: OASTS VADS Ada compiler, Version 1.7

Host Computer: Target Computer:
InterPro 32 (NSC 32000) InterPro 32 (NSC 32000)

under under
Intergraph System V Intergraph System V

Release 2.0 Release 2.0

Testing Completed 19 JUN 1986 Using ACVC 1.7

This report has been reviewed and is approved.
Accession For
-TIS GRA&I
DTIC TAB

1- 4unannounced 0
Justifloation

Ada Validvtion Facility
Georgeanne Chitwood By
ASD/SIOL Distribution/
Wright-Patterson AFB OH 45433-6503 Availability Codes

Avail ed/or
Dist Special

Ad2a Validation Office 'U
Dr. John F. Kramer
Institute fir Defense Analyses

Alexanr- 4 .'.A

CLEARED
0 f OR OPEN PUBLICATION

Ada Jont Proam OfeMAR20 7 3
Virginia L. Castor URW.-ORAMt t-H FREU,, Ur ,,,rulMATION

Director AND SECUR'.Y REVIEW (OASO-PA)

Department of Defense DEPARTMEN;T OF 5EFENSE

Washington DC

87 1237

'Ada is a registered trademark of the United States Goverment

(Ada Joint Program Office).

87 5 6 o

AVF Control Number: AVF-VSR-42-1086

Kda's COMPILER
VALIDATION SUM4ARY REPORT:

OASYS
OASYS VADS Ada compiler, Version 1.7

InterPro 32 (NSC 32000)

Completion of On-Site Validation:
19 JUN 1986

I
Prepared By:

Ada Validation Facility
ASD/SIOL

Wright-Patterson APR OR 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C..

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

.4.

+ Plaoe NTIS form here +
+ +

-VON WWR- -

EXECUTIVE SUMMARY

"'/

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the OASYS VADS Ada compiler, Ver3ion
1.7, using Version 1.7 of the Ada! Compiler Validation Capability (ACVC).

Te validation process includes submitting a suite of standardized tests
(the . ,VC) as inputs to an Ada compiler and evaluating the results. The
purpcn3e is to ensure conformance of the compiler to ANSI/MIL-STD-1815A Ada
by testing that it properly implements legal language constructs and that
it identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
ANSI/MIL-STD-1815A. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, or during
evcrution.

-On-site testing was performed 15 IUN 1986 through 19 JUN 1986 at ZAlA/

Int-,,aationAl, Huntsville ALL, under the direction of the Ada Validation
FacUt*.:y (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The OASYS VADS Ada compiler, Version 1.7, Is hosted on an
IntPrPro 32,(NC 32000) operating under Intergraph System V, Release 2.0.

The results of validation are sumarized in the following table:

RESULT TEST CLASS TOTAL
A B C D E L-

Passed 68 820 1144 17 11 23 2083

Failed 0 0 0 0 0 0 0

Inapplicable 0 4 176 0 0 0 180

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

GAda is a registered trademark of the United States Ooverment

(Ada Joint Program Offioe).

shere were 16 withdrawn tests in ACVC Version 1.7 at the ti.e of this
validation attempt. A list of these tests appears in Appendix D.

Some tests demonstrate that some language features are or are not supported
by an implementation. For this implementation, the tests determined the
following:

" SHORT INTEGER and SHORT-FLOAT are supported.

" LONG-INTEGER and LONG-FLOAT are not supported.

. The additional predefined types TINY-INTEGER, SHORT INTEGER, and
SHORT FLOAT are supported.

* Representation specifications for noncontiguous enumeration
representations are supported.

" Generic unit specifications and bodies can be compiled in separate
compilations.

" Pragma INLINE is supported for procedures and functions.

* The package SYSTEM is not used by package TEXT IO.

Modes 9- FILE and OUT-FILE are supported for ser,11,dtial I/O.

* Instantiation of the package SEQUENTIAL I0 with unconstrained
array types is supported.

Instantiation of the package SEQUENTIAL 10 with unconstrained
record types with discriminants is supported.

* RESET and DELETE are supported for sequential and direct I/O.

M odes IN-FILE, INOUTFILE, and OUT-FILE are supported for direct
I/O.

. Instantiation of package DIRECT 10 with unconstrained array types
and unconstrained types with discriminants is supported.

Dynamic creation and deletion of tiles are supported.

More than one internal file can be associated with the same
external file.

* An external file associated with more than one internal file can

be reset.

* Illegal tile names can exist.

ACYC Version 1.7 was taken on-site via magnetic tape to ZAIAZ
International, Huntsville AL. All tests, except the withdrawn tests and
any executable tests that make use of a floating-point precision greater
than SYSTEK.A1 DIGITS, were compiled on an InterPro 32 (NSC 32000). Class
A, C, D, and E tests were executed on an InterPro 32 (NSC 32000).

On completion of testing, execution results for Class A, C, D, or 3 tests
were examined. Compilation results for Class B tests were analyzed for
correct diagnosis of syntactic and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.

The A identified 2093 of the 2279 teats in Version 1.7 of the ACVC as
potentially applicable to the validation of the OASYS VADS Ada compiler,
Version 1.7. Excluded were 170 tests requiring a floating-point prenision
greater than that supported by the implementation and the 16 withdrawn
tests. After the 2093 tests were processed, 10 tests were determined to be
inapplicable. The remaining 2083 tests were passed by the compiler.

The AVF concludes that these results demonstrate acceptable conformance to
ANSI/KIL-STD- 1815A.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 RELATED DOCUMENTS 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 CERTIFICATE INFORMATION 2-2
2.3 IMPLEMENTATION CHARACTERISTICS 2-3

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESUL.T3*BiCLASS . 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-23.4 WITHDRAW TESTS 3-2
3.5 INAPP LCABLE TES .C. 3-2
3.6 SPLIT TESTS "... 3-3
3.7 ADDITIONAL TESTING INFORMATION 3-3
3.7.1 Prevalidation 3-3
3.7.2 Test Method 3-4
3.7.3 Test Site 3-4

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the eAent to which a
specific Aea compiler oaoornu to ANSI/HIL-STD-1815A. This report explains
a) technical terms used within it'and thoroughly reports the results of
testing thia compiler using the Ada Compiler Validation Capability (ACVC).
An Ada compiler must be implemented according to the Ada Standard
(ANS/MIL-STD-1815A). Any implementation-dependent features must conform
to th, requirements of the Ada Standard. The entire Ada Standard must be
impt.;- ,nted, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to ANSI/IL-STD-1815A, it
must be understood that some differences do exist between implementations.
The A6 'itandard permits some implementation dependencies--for example, the
naxiwum length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations imp!sed on a
compiler by the operating system and by the hardware. All of the
dependeneies demonstrated during the process of testing this compiler are
given in this report.

VS~s are written according to a standardized format. The reports for
several different co6mpilers may, therefore, be easily compared. The
information in this report is derived from the test results produced during
viilidation testing. Additional testing information as well as details
which are unique for this compiler are given in section 3.7. The format of
a validation report limits variance between reports, enhances readability
of the report, and minimizes the delay between the completion of validation
testing and the publication of the report.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

1-1

INTRODUCTION

, To attempt to identify any unsupported language constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SotTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). Testing was conducted from 15 JUN
1986 through 19 JUN 1986 at ZAIAZ International, Huntsville AL.

1.2 USE OF THIS VALIDATION SUMHARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformances
to ANSI/HIL-STD-1815A other than those presented. Copies of this report
are available to the public £rom:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, RM 3D-139
1211 S. Fern, C-107
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SIOL
Wright-Patterson APB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1.3 RELATED DOCUMENTS

1. Reference Manual for the Ada Programming LangA,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1981t.

1.A DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformance of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

aoa Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AV? The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting policies and
procedures for oompiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler Is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformance to the Ada Standard.

Host The computer on which the compiler resides.

1-3

INTRODUCTION

Tnappliciable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

LMC The Language Maintenance Committee whose function is to
resolve issues concerning the Ada language.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A prograp that evaluates the cotiformance of a compiler to a
language s pecification. In the context of this report, the
term i5 used to designate a single ACVC test. The text of a
program may be the text of one or more compilations.

Withd,-.-wn A test found to be inaccurate in checking conformance to the
test Ada language specification. A withdrawn test has an invalid

test objective, fails to meet its test objective, or cortains
illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformanoe to ANSI/MIL-STD-1815A is measured using the ACVC. The ACVC
eontains bioth legal a.-,A fIlegal Ada programs structurf'd :ito six t-t
"" '~' A, 13, C, D, 17, awl. 1. The first letter of a test name identifies
the class to which it belongs. Special program units are used to report
the results of the Class A, C, D, and E tests during execution. Class B
tests are expected to produce compilation errors, and Class L tests are
^xpected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. (However, no checks are performed during execution to see if
the test objective has been met.) For example, a Class A test checks that
reserved 4ords of another language (other than i'ose already reserved in
th. :;a laiguage) are not treated as reserved words by an Ada compiler. A
C.t.-t 1 test is passed if no errors are detected at compile time and the

pi'Q , ': executes to produce a message indicating that it has passed.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntactical
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and

executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT-APPLICABLE message indicating the result when it is

executed.

INTRODUCTION

Class D tests check the compilation and execution capacities of a compiler.
Since there are no requirements placed on a compiler by the Ada Standard
for some parameters (e.g., the number of identifiers permitted in a

compilation, the number of units in a library, and the number of nested
Loops in a subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the test
is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT-APPLICABLE, PASSED,
or FAILED message when it is complIed and executed. However, the Ada
SK-.idard permits an implementation to reject programs containing some
f'-a,;ures addressed by Class E tests during compilation. Therefore, a Class
d >-t is passed by a compiler ir it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.

A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program. are elaborated.

Two library units, thn package REPORT and the procedure CHECK FILE, support
the ne: '-checking i'eatures of Lhe e.cutable tests. The package REPORT
provi .,) the mechanibm by which executable tests report results. It also
provides a set of identity functions used to defeat some compiler
optimization strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The procedure
CHECK FILE'is used to check the contents of text files written by some of
the Class C tests for chapter I4 of the Ada Standard.

The operation of these units is checked by a set of executable tests.

These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation is not attempted.

Some of the conventions followed in the ACVC are intended to ensure that
the tests are reasonably portable without modification. For example, the
tests make use of only the basic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place
features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values. The values used
for thi*, validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformance to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal

1-5

INTRODUCION

language oonstruot or an erroneous language oonstruot is withd., from the
ACVC and, therefore, is not used in testing a compiler. The nonconformant
tests are given in Appendix D.

I

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 COWLIGURAT!ON TESTED

The candidate compilation System for this validation was tested under the
ealkowing configuration:

Compiler: QASYS VADS Ada compiler, Version 1.7

Test Suite: Ada Compiler Validation Capability, Version 1.1

Host Co. nputer:

Machine(s): InterPro 32 (NSC 32000)

Operating System: Intergraph System V
Release 2.0

Memory Size: 4 megabytes

Target Computer:

Machine(s): InterPro 32 (NSC 32000)

Operating System: Intergraph System V
Release 2.0

Memory Size: 11 megabytes

2-1

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION

Base Configuration:

Compiler: OASYS VADS Ada compiler, Version 1.7

Test Suite: Ada Compiler Validation Capability, Version 1.7

Certificate Date: 3 September 1986

Host Computer:

Machine(s): InterPro 32 (NSC 32000)

Operating System: Intergraph System V
Release 2.0

Target Computer:

Machine(s): InterPro 32 (NSC 32000)

Operating System: Intergraph System V

Release 2.0

2-2

CONFIGURATION INFORMATION

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an

implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

Nongraphic characters.

Nongraphic characters are defined in the ASCII character set but
are not permitted in Ada programs, even within character strings.
The compiler correctly recognizes these character3 as illegal in

Ada compilations. The characters are printed in the output
listing. (See test B26005A.)

" Capacities.

The compiler correctly processes compilations containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures nested to 17 levels. It
correctly processes a compilation containing 723 variables in the
same declarative part. (See tests D55A03A through D55A03H,
D56001B, D64u05E through D640050, and D29002K.)

" Universal integer calculations.

An implementation is allowed to reject universal integer

calculations having values that exceed SYSTEM.MAX INT. This

implementation does not reject such calculations and processes
them correctly. (See tests D4AO02A, D4AOO2B, D)4AOOA, and

" Predefined types.

This implementation supports the additional predefined types
SHORT INTEGER, SHORT FLOAT, and TINY INTEGER in the package
STANDARD. (See tests 386001CR, B86001CP, and B86001DT.)

. Based literals.

An implementation is allowed to reject a based literal with a

value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR during execution. This implementation raises
NUMERICERROR during execution. (See test E2I101A.)

" Array types.

When an array type is declared with an index range exceeding the

INTEGER'LAST values and with a component that is a null BOOLEAN
array, this compiler raises NUMERIC ERROR when the type is
declared. (See tests C36202A and 336202B.)

2-3

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC-ERROR when the array type is declared. (See test

C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST

components raises NUMERIC ERROR when the array type is declared.
(See test C52104¥Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR either when declared or
assigned. Alternatively, an iplementation may accept the
declaration. However, lengths must match in array slice
assignments. This implementation raise*s NUMERIC ERROR when the
array type is declared. (See test E52103Y.)

in ae3igning one-dimensional array types, the entire expression
appears to be evaluated before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype.

In assigning two-dimensional array types, the entire expression
does not appear to be evaluated before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications during
compilation. (See test E38104A.)

In assigning record types with discriminants, the entire
expression appears to be evaluated before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E13212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E3211B.)

[2--

CONFIGURATION INFORMATION

" Functions.

The declaration of a parameterless function with the same profile
as an enumeration literal in the same imediate scope in rejected
by the implementation. (See test 966001D.)

. Representation clauses.

Enumeration representation clauses are supported. (See test
BC1 002A.)

" Pragas.

The pragma INLINE is suppoirted for procedures and functions. (See

tests CA3004E and CA3004F.)

. Input/output.

The package SEQUENTIAL IO can be instantiated with ,-,onstrained
array types and record types with discriminants. The package
DIRECT 10 can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests
CE2201D, CE2201E, and CE2II01D.)

More than one internal file can be associated with each external
file for sequential I/O for both readinZ and writing. (See tests
CE21 OTA through CE21O7F.)

More than one internal file can be associated with each external
file for direct 1/O for reading only. (See tests CE2107A through
CE2107D and CE21077.)

An external file associated with more than one internal file can
be deleted. (See test CE2110B.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests
CE3111A through CE3111E.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT FILE mode, and can be created in IN-FILE node.
(See test EE3102U.)

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

2-5

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

The AV? identified 2093 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the OASYS VADS Ada compiler,
Version 1.7. Excluded were 170 tests requiring a floating-point precision
greater than that supported by the implementation and the 16 withdravn
tests. After they were processed, 10 tests were determined to be
inapplicable. The remaining 2083 tests were passed by the compiler.

The AVF concludes that the testing results demonstrate acceptable
conformance to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L -

Passed 68 820 1144 17 11 23 2083

Failed 0 0 0 0 0 0 0

Inapplicable 0 4 176 0 0 0 180

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 1 23 2279

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
_ _ _ 2 . 4 5 6. 8 2 _0 11 12 14

Passed 102 234 308 244 161 97 158 198 105 28 216 232 2083

Failed 0 0 0 0 0 0 0 0. 0 0 0 0 0

Inapplicable 14 73 86 3 0 0 3 1 0 0 0 0 180

Withdrawn 0 1 4 0 0 0 1 2 6 0 1 1 16

TOTAL 116 308 398 247 161 97 162 201 111 28 217 233 2279

3.4 WITHDRAWN TESTS

The following tests have been withdrawn from the ACVC Version 1.7:

B4AO10C C41404A CA1003B
B83A06B C48008A CA3005A through CA3005D (4 tests)
BA.01E C4AO14A CE2107E
BC3204C C92005A
C35904A C940ACA

See Appendix D for the test descriptions.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 180 tests were inapplicable for
the reasons indicated:

" C340019, B52004D, B55B09C, B86001CS, and C55BO7A use LONG INTEGER
which is not supported by this compiler.

" £34001G, C35702B, and B86001CQ use LONG FLOAT which is not
supported by this compiler.

" C86001F redefines package SYSTEM, but TEXT-1O is made obsolete by
this new definition in this implementation.

" C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

3-2

TEST INFORMATION

170 tests were not processed because S1STEM.MkAXDIGITS vas 15.
These tests were:

C24113L through C24113Y (14 tests)
C35705L through C35705Y (14 tests)
C35706L through C35706Y (14 tests)
C35707L through C35707Y (111 tests)
C35708L through C35708Y-(14 tests)
C35802L through C35802r (14 tests)
C45241L through C45241Y (14 tests)
C45321L through C45321Y (14 tests)
C45421L through C45421Y (14 tests)
C45424L through C45424Y (14 tests)
C45521L through C45521Z (15 tests)
C45621L through C45621Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of itS size is split into a set of smaller subtents that can be
processed.

Splits were required for 19 Class B tests.

B24104A B37201A B67001B
P24104B B38008A B67001C
B24104C B41202A B67001D
92A003A B44001A B910ABA
92A003B B64001A B95001A
B2AO03C B67001A B97101E
833004A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.7 produced by
the OASYS VADS Ada compiler, Version 1.7, was submitted to the AVF by the
applicant for prevalidation review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests.

3-3

TEST INFORMATION

3.7.2 Test Method

Testing of the OASTS VADS Ada compiler using ACVC Version 1.7 was conducted
on-site by a validation team. The base configuration consisted of an
InterPro 32 (NSC 32000) host and target operating under Intergraph System
V.

A magnetic tape containing ACYC Version 1.7 was taken on-site by the
validation team. The magnetic tape contained all tests applicable to this
validation, ms well as all tests inapplicable to this validation except for
any Class C 'ests requiring a floating-point precision exceeding the
maximum value supported by the implementation. Tests that make use of
values that are specific to an implementation were customized before being
written to the magnetic tape. Tests requiring splits during the
prevalidation te-tiae were included in their split form on the magnetic
tape. No editing of the test fjles was necessary when the validation team
arrived on-site.

The contents of the magnetic tape were loaded onto an InterPro 32 computer
and stored on a Maxtor hard disk. The Maxtor hard disk was moved to a
-econd InterPro 32 and the tests were written to low density diskettes.

After the test files were loaded from the diskettes, the full set of tests
was compiled on the InterPro 32 and all executable tests were run on the
InterPro 32. Results were written to low density diskettes and loaded c a
ZAIAZ 32 and printed.

The compiler was tested using command scripts provided by OASYS. These
scripts were reviewed by the validation team.

Tests were run in batch mode using two host and target computer(s). Test
output, compilation listings, and job logs were captured on low density
diskettes and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

The validation team arrived at ZAIAZ International, Huntsville AL on 15 JUN
1986 and departed after testing was completed on.19 JUN 1986.

3-4

APPENDIX A

COMPLIANCE STATEMEIN

ZAIAZ has submitted the following oompliance statement
concerning the OASTS VkDS Ada compiler.

A-1

COMPLIANCE STATEMENT

Compliance Statement

Base Configuration:

Compiler: OASYS Ada. Version 1.7

Test Suite: Ada Compiler Validation Capability. Version !.7

Host Computer:

Machine: InterPro 32 (NSC 32000)

Operating System: Intergraph System V
Release 2.0

Target Computer:

Machine: InterPro 32 (NSC 32000)

Operating System: Intergraph System V
Release 2.0

ZAIAZ has made no deliberate extensions to the Ada ianguage

standard.

ZAIAZ agrees to the public disclosure of this report.

ZA;AZ agrees to comply with the Ada traosmark poiicy, as
defined by the Ada Joint Program Office.

~~6 Date: 4J

ZAIAZ
William W. Smith
President

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation classes. The implementation-dependent characteristics of
the OASYS VADS Ada compiler, Version 1.7, are described in the following
sections which discuss topics one through eight as stated in Appendix F of
the Ada Language Reference Manual (ANSI/MIL-STD-1815A). Package STANDARD
is also included in this appendix.

(1) Implementation-Dependent Pragwas

SHARE BODY Pragma

The SHARE BODY pragma takes the name of a generic instantiation or
a generic unit as the first argument and one of the identifiers
TRUE or FALSE as the second argument. This pragma is only allowed
imediately at the place of a declarative item in a declarative
part of package specification, or after a library unit in a
compilation, but before any subsequent compilation unit.

When the first argument is a generic unit, the pragma applies to
all instantiations of that generic. When the first argument is
the name of a generic instantiation, the pragma applies only to
the specified instantiation, or to overloaded instantiations.

If the second argument is TRUE, the compiler will try to share
code generated for a generic instantiation with code generated for
other instantiations of the same generic. When the second
argument is FALSE, each instantiation will get a unique copy of
the generated code. The extent to which code is shared between
instantiations depends on this prapma and the kind of generic
formal parameters declared for the generic unit.

B-1

APPENDIX F OF THE Ada STANDARD

EXTERNAL NAME Pragma

The EXTERNAL NAME pragma takes the name of' a variable defined in
another language and allows it to be referenced directly in Ada.
The prawna will replace all occurrences of the variable name with
an external reference to the second name which is a link argument.
The pragma is allowed at the place of a declarative item in a
package specification and must apply to ax: object declared earlier
in the same package specification. The object must be declared as
a scalar or an access type. The object cannot be any of the
following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

(2) Implementation-Dependent Attributes

NONE.

(3) Specification of Package SYSTEM

package SYSTEM is
type ADDRESS is private;
type NAME is (iprosysv);

SYSTEM NAME : constant NAME := iproaysv;
.STORAGE UNIT : constant := 8;
MEMORY SIZE : constant := 16 7741144;
-- System-Dependent Named Numbers
KIN INT : constant := -2 147 483 647 - 1;
MAX INT : constant :x 2f47 j3_ 7;
MAX DIGITS : constant := 15;
MAX MANTISSA : constant :z 31;
FINE DELTA : constant :a 2.00(-14);
TICK : constant ts 0.01;
- Other System-dependent Declarations
subtype PRIORITY is INTEGER*range 0 .. 7;
MAX REC SIZE : integer :s 64#1024;

private
type ADDRESS is new INTEGER;

end SYSTEM;

B-2

APPENDIX F OF THE Ada STANDARD

(4) Restrictions On Representation Clauses

Pragma PACK:

Bit packing is not supported. Objects and components are packed

to the nearest whole STORAGE-UNIT.

Size Specification:

The size specification T'SMALL is not supported.

Record Representation Clause:

Component clauses must be aligned on STORAGE-UNIT boundaries.

Address Clauses:

Address clauses are not supported.

Interrupts:

Interrupts are not supported.

Change of Representation:

Change of representation is not supported for record types.

Representation Attributes:

The ADDRESS attribute is not supported for the following entities:

Packages
Tasks
Labels
Entries

Machine Code Insertions:

Machine code insertions are not supported.

9-3

APPENDIX F OF THE Ada STANDARD

(5) Conventions for Implementation-generated Names

There are no implementation-generated names.

(6) Interpretation of Expressions in Address Clauses

Address clauses are not supported.

(7) Restrictions on Unchecked Conversions

The predefined generic function UNCHECKED-CONVERSION cannot be
instantiated with a target type which is an unconstrained array
type or an unconstrained record type with discriminants.

(8) Implementation Characteristics of I/O Packages

Instantiations of DIRECT 10 use the value MAX REC SIZE as the
record size (expressed in STORAGE UNITS) when -the size of
ELEMENT TYPE exceeds that value. For example, for unconstrained
arrays such as string, where ELEMENT TYPE'SIZE is very large,
KAI REC SIZE is used instead. MAX REC SIZE is defined in SYSTEM
and can be changed by a program before instantiating DIRECT 10 to
provide an upper limit on the record size. In any case, the
maximum size supported is 1024 x 1024 x STORAGE UNIT bits.
DIRECT 10 will raise USE ERROR if MAX REC SIZE exceeds this
absolute limit.

Instantiations of SEQUENTIAL 10 use the value MAX REC SIZE as the
record size (express in STORAGE UNITS) when the size of
ELEMENT TYPE exceeds that value. For example, for unconstrained
arrays such as string, where ELEMENT TTPE'SIZE is very large,
MAX REC SIZE is used instead. MAX REC SIZE is defined in SYSTEM
and can be changed by a program before instantiating INTEGER IO to
provide an upper limit on the record size. SEQUENTIAL 10 imposes
no limit on MAX REC SIZE.

3-11

APPENDIX F OF THE Ada STANDARD

Package STANDARD

type INTEGER is range -214T7 483_648 .. 21417 483_6T;7

type FLOAT is digits 15
RANGE -1.79769313486232E+308 .. 1.79769313486232E+308;

type SHORT FLOAT is digits 6
RANGE --3.40282E+38 .. 3.110282E*38;

type DURATION is delta 2.OE-1l range -86400.0 .. 86400.0;

type TINY-INTEGER is -128 .. 127;

DURATION'SMALL = 6.10351562500000E-05 seconds

5-5

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC - ke use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are identified by names that begin
with a dollar sign. A value is substituted for each of these names before
the test is run. The values used for this validation are given below.

Name and Meaning Value

$BIGID1 (l..498 > 'A', 499 => 'i',
Identifier of size MAX IN LEN 500 => line feed character)
with varying last character.

$BIGID2 (l..498 => 'A', 499 => '2',
Identifier of size MAX IN LEN 500 > line feed character)
with varying last character.

$BIG ID3 (1..249 I 251..499 a> 'A', 250 => '3',
Identifier of size MAX IN LEN 500 > line feed character)
with varying middle character.

$BIj_ 1D0 (1..249 I 251..499 => 'A', 250 > '',
Identifier of size MAX IN LEN 500 > line feed character)
with varying middle character.

$BIG INT LIT (I..496 > '0', 497..499 z> "298",
An integer literal of value 298 500 > line feed character)
with enough leading zeroes so
that it is MAX-INLEN characters
long.

C-1

TEST PARAMETERS

Name and Meaning Value

$BIG REAL LIT (1..493 > '0', 494..499 a> *69.oE1",
A real literal that can be 500 > line feed character)
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
MAX-IN LEN characters long.

$BLANKS (1..479 >
Blanks of length MAX INLEN - 20 480 > line feed oharacter)

$COUNT LAST 2 147 483_647
Value of COUNT'LAST in TEXT 10
package.

$EXTENDED ASCII CHARS Oabodefghijklmnopqrstuvwxyzl$%?e[]'"
A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD LAST 2 147 483_647
Value of FIELD'LAST in TEXT 10
package.

$FILE NAME WITH BAD CHARS */illegal/file-name/2'(]$%? J] (1-
An illegal external file name
that either contains invalid
characters or is too long.

$FILE NAME WITH WILD CARD CHAR '/illegal/file name/CE2102C' .DAT"
An external tile name that
either contains a wild card
character or is too long.

$GREATER THAN DURATION 100000.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATION' LAST or any value in
the range of DURATION.

$GREATER THAN DURATION BASE LAST 10000000.0
The universal real value that is
greater than DURATION'BASE'LAST.

$IL-LEGAL EXTERNAL FILE NAME 1 */no/such/diretory/ILLEGAL EXTERNAL-FILENAMR 1
Ille7gal external tile name.

$ILLEGAL EXTERNAL FILE NAME2 "/no/such/directory/ILLGALEXTERNALFILENAME2"
Illegal external file names.

C-2

TEST PARAMETERS

Name and Moaning Value

$INTEGER FIRST -21 47_483_68
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEGER LAST 21 47_483647
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESS THAN DURATION -100 000.0
A-univers;1 real value that lies
between DURATIONBASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

$LESS THAN DURATION BASE FIRS -1 0000000.0
The universal real value that is
less than DURATIONI'BASE'FIRST.

$MAX DIGITS 15
Maximun digits supported for
floating-point types.

*MAX In LEN 500 (499 plus line feed oharacter)
Maximum input line length
permitted by the implementation.

$MAX INT
The value of MAX INT in package 21471483_6147
SYSTEM.

$NAME TINY INTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG-FLOAT, or LONGINTEGER.

$NEG BASED INT 16#FFFFFFFD#
A based Integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

C.-3

TEST PARAMITRS

$NON ASCII CHAR TYPE (NON N8ULL)
An anmerated type definition
for a character type Vhose
literals are the identifier
NON N, L and all non-ASCII
characters with printable

iaphios.

C-4I

APPENDIX D

WITHDRAWN TESTS

Somse tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. When testing was performed, the following 16 tests had been
withdrawn at the time of validation testing for the reasons indicated:

" B4AAO1OC The object declaration in line 18 follows a subprogram
body of the same declarative part.

" B83A06B: The Ada Standard 8.3(17) and AI-00330 permit the label
LAB ENUMERAL of line 80 to be considered a homograph of the
en.eration literal in line 25.

" BA2OOIE: The Ada Standard 10.2(5) states: 'Simple names of all
subunits that have the same ancestor library unit must be distinct
identifiers.* This test checks for the above condition when stubs
are declared. However, the Ada Standard does not preclude the
check being made when the subunit is compiled.

" BC3204C: The file BC320C should contain the body for BC3204CO
as indicated in line 25 of BC3204C3M.

. C35904As The elaboration of subtype declarations SF13 and SFX4
may raise NUMERIC-ERROR (instead of CONSTRAINT ERROR).

CZlIIOA: The values of 'LAST and 'LENGTH are incorrect in IF
statements from line T to the end of the test.

" C48OO8A This test requires that the evaluation of default
initial values not occur when an exception is raised by an
allocator. However, the Language Maintenance Committee (LMC) has
ruled that such a requirement is Incorrect (MI-00397/01).

D-1

WITHDRAWN TESTS

" CRAOIlA: The number declarations in lines 19-22 are incorrect
because conversions are not static.

" C92005A: At line 40, "/x" for type PACK.BIG INT is not visible
without a USE clause for package PACK.

" C94OACA: This test assumes that allocated task TT1 will run prior
to the main program, and thus assign SPYNUMB the value checked for
by the main program; however, such an execution order is not
required by the Ada Standard, so the test is eroaeous.

• CA1003B: This test requires all of the legal compilation units of
a file containing some illegal units to be compiled and executed.
According to AI-00255, such a file may be rejected as a whole.

" CA3005A..D (A tests): No valid elaboration order exists for these
tests.

" CE210TE: This test has a variable, TE!P HASNAME, that needs to
be given an initial value of TRUE.

D-2

