
b-AlSO 971 ADA (IRA NE) ONIE1/L 1TN4M

UNCLASSIFIED f/ HNAT MN1 A6N[J4~It I

7END

lid

S1.0

a

\I

! dm i, m ,, m , m mmmmm m mmmm m,---mmms mm

E I UNCLASSIFIED FIL
SECURITY CLASSIFICATION OF THIS PAGE (WhenDate .

REPORT DOCUMENTAT ION PAGE A INRUCTIOS

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMER

4. TITLE (ndSubeftie) S. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Repcrt: 5 KAY 1986 to 5 KAY 1937
IBM Corp., IBM Dev. System for the Ada
Language for MVS, Ver. 1.0, IBM 4381 (IBM S. PERFORMING ORG. REPORT NUMBER
System/370) under MVS

7. AUTMONS S. CONTRACT OR GRANT NUMBER(s)
Wright-Patterson

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Ada VAlidation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wrigh-Patterson APB OH 45433-6503

It. CONTROLLING OFFICE WE AND APORESS 12. REPORT DATE
Ada Joint Program Office 5 MAY 1986
United States Department of Defense T PAUL5
Washington, DC 20301-3081ASD/SIOL 31
14. MONITORING AGENCY NAME & ADORESS(ff dfferent from Cortroling Office) 15. SECURITY CLASS (of this report)
Wright-Patterson UNCLASSIFIED

15a. RE FICATION/DOWNGRADING

I___N/A
O - 16. DISTRIBUTION STATEMENT (of this Report)

O Approved for public release; distribution unlimited.

•17. DISTRIBUTION STATEMENT (of the abstract enteredin Block 20. Ifdifferent from Report)

1 UNCLASSIFIED EL -C "" 1

1B. SUPPLEMENTAR MOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary n identify by block number)

See Attached.

DO 'u, 1473 EDITION OF I NOV 65 IS OBSOLETE
I JK 73 S/N 0102-LF-O14-66O UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada® Compiler Validation Summary Report:

Compiler Name: IBM Development System for the Ada Language
for MVS, Version 1.0

Host Computer: Target Computer:
IBM 4381 (IBM System/370) IBM 4381 (IBM System/370)

under under
MVS MVS

release 3.8 release 3.8

Testing Completed 5 MAY 1986 Using ACVC 1.7

Acoessi on ,F'or

This report has been reviewed and is approved. NTIS GRA&I

DTIC TAB

Unannounced Q
Just ifiat ion

Ada Valid tion Facility D b
Georgeanne Chitwood Distribution/

ASD/SIOL Availability Codes

Wright-Patterson AFB OH 45433-6503 IAvail and/or
Dist Special

Ada Validation Ofz'ce I

Dr. John F. Krher
Institute for Defense Analyses
Alexandria VA CLEAREO

S7~B 21

~1?A,40 SEO%'yIEVW0Ada Program Office OF DEFEWA

Virginia L. Castor DEPAgE"

Director

Department of Defense
Washington DC

*Ada is a registered trademark of the United States Government

(Ada Joint Program Office). 87 1089

AVF Control Number: AVF-VSR-36.0187

Ada" COMPILER
VALIDATION SUMMARY REPORT:

International Business Machines Corporation
IBM Development System for the Ada Language for MVS,

Version 1.0
IBM 4381 (IBM System/370)

under MVS

Completion of On-Site Validation:

5 MAY 1986

Prepared By:
Ada Validation Facility

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

Prepared For:

Ada Joint Program Office
United States Department of Defense

Washington, D.C.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

+ Place NTIS form here +

..............

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the IBM Development System for the Ada
Language for MYS, Version 1.0, using Version 1.7 of the AdaO Compiler
Validation Capability (ACVC).

The validation process includes submitting a suite of standardized tests
(the ACVC) as inputs to an Ada compiler and evaluating the results. The
purpose is to ensure conformance of the compiler to ANSI/MIL-STD-1815A Ada
by testing that it properly implements legal language constructs and that
it identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
ANSI/MIL-STD-1815A. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, or during
execution.

On-site testing was performed 28 APR 1986 through 5 MAY 1986 in San Diego
CA, under the direction of the Ada Validation Facility (AVF), according to
Ada Validation Organization (AVO) policies and procedures. The IBM
Development System for the Ada Language for MVS, Version 1.0, i hosted on
an IBM 4381 operating under MVS release 3.8.

The results of validation are summarized in the following table:

RESULT TEST CLAW TOTAL
A B C D E L

Passed 66 820 1012 16 9 21 1944

Failed 0 0 0 0 0 0 0

Inapplicable 2 4 308 1 2 2 319

Withdran 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

There were 16 withdrawn tests in ACVC Version 1.7 at the time of this
validation attempt. A list of these tests appears in Appendix D.

SoIe tests demonstrate that some language features are or are not supported
by an implementation. For this implementation, the tests determined the
following:

" SHORTFLOAT is not supported.

" LONGFLOAT is not supported.

" The additional predefined types SHORT INTEGER and LONG INTEGER are
supported. LONGINTEGER is predefined but has the same range as
INTEGER; this violates the Ada Standard 3.5.4(7). See section
3.8.

" Representation specifications for noncontiguous enumeration

representations are not supported.

* The 'SIZE clause is not supported.

" The 'STORAGE SIZE clause for an access type is not supported.

* The 'SMALL clause is not supported.

" Generic unit specifications and bodies cannot be compiled in
separate compilations.

" Pragma INLINE is not supported for procedures or functions.

" The package SYSTEM is used by package TEXTIO.

" Modes INFILE and OUTFILE are supported for sequential I/O.

" Instantiation of the package SEQUENTIALIO with unconstrained
array types is not supported.

" Instantiation of the package SEQUENTIAL 10 with unconstrained
record types with discriminants without default values is not
supported.

" RESET and DELETE are supported for sequential and direct I/O.

" Modes IN FILE, INOUT FILE, and OUTFILE are supported for direct
I/O.

" Instantiation of package DIRECT 10 with unconstrained array types
and unconstrained types with discriminants without default values
is not supported.

• Dynamic creation and deletion of files are supported.

• More than one internal file can be associated with the same
external file for reading only.

• Illegal file names can exist.

ACVC Version 1.7 was taken on-site via magnetic tape to San Diego CA. All
tests, except the withdrawn tests and any executable tests that make use of
a floating-point precision greater than SYSTEM.MAX DIGITS, were compiled on
an IBM 4381. Class A, C, D, and E tests were executed on an IBM 4381.

On completion of testing, execution results for Class A, C, D, or E tests
were examined. Compilation results for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.

The AVF identified 1985 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the IBM Development System for
the Ada Language for MYS, Version 1.0. Excluded were 278 tests requiring a
floating-point precision greater than that supported by the implementation
and the 16 withdrawn tests. After the 1985 tests were processed, 41 tests
were determined to be inapplicable. The remaining 1944 tests were passed
by the compiler.

The AVF concludes that these results demonstrate acceptable conformance to

kNSI/MIL-STD-1815A.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 RELATED DOCUMENTS1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES 1I-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 CERTIFICATE INFORMATION 2-2
2.3 IMPLEMENTATION CHARACTERISTICS 2-3

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS3-1

3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS3-2

3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS3-4
3.7 ADDITIONAL TESTING INFORMATION3-4

3.7.1 Prevalidation3-4
3.7.2 Test Method 3-4
3.7.3 Test Site3-5
3.8 ANOMOLIES3-5

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to ANSI/MIL-STD-1815A. This report explains
all technical terms used within it and thoroughly reports the results of
testing this compiler using the Ada Compiler Validation Capability (ACVC).
An Ada compiler must be implemented according to the Ada Standard
(ANSI/MIL-STD-1815A). Any implementation-dependent features must conform
to the requirements of the Ada Standard. The entire Ada Standard must be
implemented, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to ANSI/MIL-STD-1815A, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations imposed on a
compiler by the operating system and by the hardware. All of the
dependencies demonstrated during the process of testing this compiler are
given in this report.

VSRs are written according to a standardized format. The reports for
several different compilers may, therefore, be easily compared. The
information in this report is derived from the test results produced during
validation testing. Additional testing information as well as details
which are unique for this compiler are given in section 3.7. The format of
a validation report limits variance between reports, enhances readability
of the report, and minimizes the delay between the completion of validation
testing and the publication of the report.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

1-1

INTRODUCTION

To attempt to identify any unsupported language constructs

required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). Testing was conducted from 28 APR
1986 through 5 MAY 1986 in San Diego CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and c6mpiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformances
to ANSI/MIL-STD-1815A other than those presented. Copies of this report
are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139
1211 S. Fern, C-107
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SIOL
Wright-Patterson AFB OH 45433-6503

1-2

Questions regarding tnis report or the validation test res-ts 5r.C e
directed to the AVF listed above or tc:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1.3 RELATED DOCUMENTS

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformance of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

A--'icant The agency requesting validation.

AVF The Ada Va'idation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting policies and
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that

demonstrates nonconformance to the Ada Standard.

Host The computer on which the compiler resides.

1-3

7a.i --ELLe A tkt r.at ..5es fvat.res -f t.e a'nguage tnat a compiler is
test rot req.irec to support or may legitimately support in a way

otner tnan the ine expectec Oy tne test.

MC The Langiage Malntenance Committee wnose function is to
resolve issues oncerning tne ACa language.

Passe. test A test for wn'n a compier generates the expected result.

Target The computer for wiccn a compiler generates code.

Test A program that evaluates the conformance of a compiler to a
language specification. In the context of this report, the
term is used to designate a single ACVC test. The text of a
program may be the text of one or more compilations.

Withdrawn A test found to be inaccurate in checking conformance to the
test Ada language specification. A withdrawn test has an invalid

test objective, fails to meet its test objective, or contains
illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformance to ANSI/MIL-STD-1815A is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Special program units are used to report
the results of the Class A, C, D, and E tests during execution. Class B
tests are expected to produce compilation errors, and Class L tests are
expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled

and executed. (However, no checks are performed during execution to see if
the test objective has been met.) For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada ldnguage) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a message indicating that it has passed.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntactical
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT-APPLICABLE message indicating the result when it is
executed.

1-4

INTRODUCTION

Class D tests check the compilation and execution capacities of a compiler.
Since there are no requirements placed on a compiler by the Ada Standard
for some parameters (e.g., the number of identifiers permitted in a
compilation, the number of units in a library, and the number of nested
loops in a subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the test
is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT-APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The Tackage REPORT
provides the mechanism by which executable tests report results. It also
provides a set of identity functions used to defeat some compiler
optimization strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The procedure
CHECK FILE is used to check the contents of text files written by some of
the Class C tests for chapter 14 of the Ada Standard.

The operation of these units is checked by a set of executable tests.
These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation is not attempted.

Some of the conventions followed in the ACVC are intended to ensure that
the tests are reasonably portable without modification. For example, the
tests make use of only the basic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place
features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values. The values used
for this validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformance to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal

1-5

INTRODUCTION

language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The nonconformant
tests are given in Appendix D.

1

I

i

I

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: IBM Development System for the Ada Language for MVS, Version 1.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine(s): IBM 4381

Operating System: MVS
release 3.8

Memory Size: 16 megabytes

Target Computer:

Machine(s): IBM 4381

Operating System: MYS
release 3.8

Memory Size: 16 megabytes

2-1

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION

Base Configuration:

Compiler: IBM Development System for the Ada Language for MVS, Version 1.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Certificate Date: 16 July 1986

Host Computer:

Machine(s): IBM 4381 (IBM System/370)

Operating System: MVS
release 3.8

Target Computer:

Machine(s): IBM 4381 (IBM System/370)

Operating System: MVS
release 3.8

2-2

CONFIGURATION INFORMATION

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

• Nongraphic characters.

Nongraphic characters are defined in the ASCII character set but

are not permitted in Ada programs, even within character strings.
The compiler correctly recognizes these characters as illegal in
Ada compilations. The characters are not printed in the output
listing. (See test B26005A.)

. Capacities.

The compiler correctly processes compilations containing loop

statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures nested to 10 levels. It
correctly processes a compilation containing 723 variables in the
same declarative part. (See tests D55A03A..H, D56001B,
D64005E..G, and D29002K.)

• Universal integer calculations.

An implementation is allowed to reject universal integer

calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes

them correctly. (See tests D4AO02A, D4AOO2B, D4AOO4A, and
D4AO04B.)

" Predefined types.

This implementation supports the additional predefined types

SHORT INTEGER and LONG INTEGER in the package STANDARD. (See
tests- B86001CR, B86001CS, B86001CP, B86001CQ, and B86001DT.)
LONG INTEGER is predefined but has the same range as INTEGER; this
viol7ates the Ada Standard 3.5.4(7). See section 3.8.

. Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR during execution. This implementation raises
NUMERIC-ERROR during execution. (See test E24101A.)

. Array types.

2-3

CONFIGURATION INFORMATION

When an array type is declared with an index range exceeding the
INTEGER'LAST values and with a component that is a null BOOLEAN
array, this compiler does not raise any exception. (See tests
E36202A and E36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERICERROR when the array type is declared.
(See test C52104Y.)

A null array with one dimension of length greater than

INTEGER'LAST may raise NUMERIC ERROR either when declared or
assigned. Alternately, an implementation may accept the
declaration. However, lengths must match in array slice
assignments. This implementation raises NUMERICERROR when the
array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the entire expression
appears to be evaluated before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compatible with the
target's subtype.

In assigning two-dimensional array types, the entire expression
does not appear to be evaluated before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. (See test C52013A.)

" Discriminated types.

During compilation, an implementation is allowed co either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications during
compilation. (See test E38104A.)

In assigning record types with discriminants, the entire
expression appears to be evaluated before CONSTRAINT ERROR is
raised when checking whether t'.e expression's subtype is
compatible with the target's subtype. (See test C52013A.)

" Aggregates.

In the evaluation of a multi-dimensional aggregate, the order in
which choices are evaluated and index subtype checks are made
appears to depend upon the aggregate itself. (See tests C43207A
and C43207B.)

2-4

CONFIGURATION 1NFORMATON

In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Functions.

The declaration of a parameterless function with the same profile
as an enumeration literal in the same immediate scope is rejected
by the implementation. (See test E66001D.)

Representation clauses.

'SMALL length clauses are not supported. (See test C87B62C.)

Enumeration representation clauses are not supported. (See test
BC1002A.)

Pragmas.

The pragma INLINE is not supported for procedures or functions.
(See tests CA3004E and CA3OO4F.)

Input/output.

The package SEQUENTIAL 10 cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. The package DIRECT 10 cannot be instantiated
with unconstrained array types and record types with discriminants
without defaults. (See tests CE2201D, CE2201E, and CE2401D.)

More than one internal file can be associated with each external
file for sequential I/O for reading only. (See tests CE2107A..F.)

More than one internal file can be associated with each external
file for direct I/O for reading only. (See tests CE2107A..F.)

More than one internal file can be associated with each external
file for text I/O for reading only. (See test CE3111A..E.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT FILE mode, and can be created in INFILE mode.
(See test EE3102C.)

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are deleted
when they are closed. (See test CF108A.)

2-5

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

The AVF identified 1985 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of the IBM Development System for
the Ada Language for MVS, Version 1.0. Excluded were 278 tests requiring a
floating-point precision greater than that supported by the implementation
and the 16 withdrawn tests. After they were processed, 41 tests were
determined to be inapplicable. The remaining 1944 tests were passed by the
compiler.

The AVF concludes that the testing results demonstrate acceptable
conformance to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 66 820 1012 16 9 21 1944

Failed 0 0 0 0 0 0 0

Inapplicable 2 4 308 1 2 2 319

ithdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

3-1

m h nmmmml - / miton mm

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER

2 3 4 5 6 7 8 9 10 11 12 14 TOTAL

Pased 93 188 254 245 160 97 154 199 96 28 215 215 1944

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 119 140 2 1 0 7 0 9 0 1 17 319

Withdrawn 0 1 4 0 0 0 1 2 6 0 1 1 16

TOTAL 116 308 398 247 161 97 162 201 111 28 217 233 2279

3.4 WITHDRAWN TESTS

The following tests have been withdrawn from the ACVC Version 1.7:

B4AO10C C41404A CA1003B
B83A06B C48008A CA3005A..D (4 tests)
BA2001E C4A014A CE2107E
BC3204C C92005A
C35904A C940ACA

See Appendix D for the test descriptions.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 319 tests were inapplicable for
the reasons indicated:

• C34001F, C35702A, and B86001CP use SHORTFLOAT which is not
supported by this compiler.

" C34001G, C35702B, and B86001CQ use LONG FLOAT which is not
supported by this compiler.

" C52008B declares a record type with four discriminants of type
integer. The type may be used in the declaration of unconstrained
objects, but the size of these objects exceeds the maximum object
size of this implementation and CONSTRAINT ERROR is raised.

" C55B16A makes use of an enumeration representation clause
containing noncontiguous values which is not supported by this
compiler.

3-2

TEST INFORMATION

" B86001DT requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

" C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation.

" C87B62A..C (3 tests) use length clauses to specify the collection
size for an access type which is not supported by this compiler.

" CA1O12A compiles generic subroutine declarations and bodies in
separate compilation units. Separate compilation of generic
specifications and bodies is not supported by this compiler.

" CA2009C and CA2009F compile generic subunits in separate
compilation files. Separate compilation of generic specifications

and bodies is not supported by this compiler.

CA3004E, EA3004C, and LA3004A use INLINE pragma for procedures
which is not supported by this compiler.

" CA3004F, EA3004D, and LA3004B use INLINE pragma for functions

which is not supported by this compiler.

BC3205D compiles generic subunits in separate compilation files.
Separate compilation of generic specifications and bodies is not
supported by this compiler.

AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D use instantiation
of package SEQUENTIAL 10 with unconstrained array types which is
not supported by this compiler.

CE2107B..D (3 tests), CE2110B, CE2111D, CE2111H, CE3111B..E (3
tests), CE3114B, and CE3115A are inapplicable because multiple
internal files cannot be associated with the same external file.

D64005G is inapplicable because the compiler does not permit more
than 15 levels of nested recursive procedures.

278 tests were not processed because SYSTEM.MAXDIGITS was 6.
These tests were:

C24113C..Y (23 tests)

C35705C..Y (23 tests)
C35706C..Y (23 tests)
C35707C..Y (23 tests)
C35708C..Y (23 tests)

C35802C..Y (23 tests)
C45241C..Y (23 tests)

C45321C..Y (23 tests)
C45421C..Y (23 tests)

C45424C..Y (23 tests)
C45521C..Z (24 tests)

3-3

TEST INFORMATION

C45621C..Z (24 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for eight Class B tests.

B97101E BA3007B BA3013A
BA3006A BA3008A BA1101C
BA3006B BA3008B

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.7 produced by
the IBM Development System for the Ada Language for MVS, Version 1.0, was
submitted to the AVF by the applicant for prevalidation review. Analysis
of these results demonstrated that the compiler successfully passed all
applicable tests.

3.7.2 Test Method

Testing of the IBM Development System for the Ada Language for MVS using
ACVC Version 1.7 was conducted on-site by a validation team. The base
configuration consisted of an IBM 4381 host and target operating under MVS.

A magnetic tape containing ACVC Version 1.7 was taken on-site by the
validation team. The magnetic tape contained all tests applicable to this
validation, as well as all tests inapplicable to this validation except for
any Class C tests that require floating-point precision exceeding the
maximum value supported by the implementation. Tests that make use of
values that are specific to an implementation were customized before being
written to the magnetic tape. Tests requiring splits during the
prevalidation testing were included in their split form on the magnetic
tape. No editing of the test files was necessary when the validation team
arrived on-site.

3-4

TEST INFORMATION

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled on the IBM 4381, and all executable tests were run on the IBM

4381. Tests withdrawn from ACVC Version 1.7 were not run.

The compiler was tested using command scripts provided by International
Business Machines Corporation. These scripts were reviewed by the
validation team.

Tests were run in batch mode using a single computer. Test output,
compilation listings, and job logs were captured on magnetic tape and
archived at the AVF. The listings examined on-site by the validation team
were also archived.

3.7.3 Test Site

The validation team arrived in San Diego CA on 28 APR 1986 and departed
after testing was completed on 5 MAY 1986.

3.8 ANOMALIES

One anomaly was discovered after the completion of testing; this
implementation's predefined type LONG INTEGER has exactly the same range as
INTEGER. The Ada Standard 3.5.4(7) states that "An implementation may also
have predefined types such as SHORTINTEGER and LONGINTEGER, which have
(substantially) shorter and longer ranges, respectively, than INTEGER."
However, there is no ACVC test that checks to see if this requirement is
met, and this implementation's violation was not noticed until after
testing was completed and a draft of this report was reviewed.

Given this nonconformity's late detection and superficial nature, the AVO
does not deny validation to this implementation. However, it is
recommended that the package STANDARD be corrected to exclude the
declaration of LONG INTEGER and associated subprograms. With such a
corrected version of -STANDARD, 5 tests passed during testing --viz.,
C340O1E, B52OO4D, B55BO9C, B86001CS, and C55BO7A--, become inapplicable,
for they contain declarations for objects of type LONGINTEGER which must
then be rejected.

3-5

APPENDIX A

COMPLIANCE STATEMENT

International Business Machines Corporation has
submitted the following compliance statement concerning
the IBM Development System for the Ada Language for
MVS.

A-i

COMPLIANCE STATEMENT

Compliance Statement

Base Configuration:

Compiler: IBM Development System for the Ada Language (MVS)

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine(s): IBM 4381 (System/370)

Operating System: MVS, release 3.8

Target Computer:

Machine(s): IBM 4381 (System/370)

Operating System: MVS, release 3.8

International Business Machines Corporation has made no deliberate
extensions to the Ada language standard.

International Business Machines Corporation agrees to the public
disclosure of this report.

International Business Machines Corporation agrees to continue to
comply with the Ada trademark policy, as defined by the Ada Joint
Program Office.

/ .z /. //

- Date: -'.-', /,-'7

International Business Machines Corporation
R.L. Varney

A-2

:. a. -

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on

representation classes. The implementation-dependent characteristics of
the IBM Development System for the Ada Language for MVS, Version 1.0, are

described in the following sections which discuss topics one through eight
as stated in Appendix F of the Ada Language Reference Manual (ANSI/MIL-STD-
1815A). Two other sections, package STANDARD and file naming conventions,
are also included in this appendix.

F.I. Implementation-Dependent Pragmas

The compiler supports pragma COMWvMENT for inserting header information into source
code.

F.2. Implementation-Dependent Attributes

There are no implementation-dependent attributes.

F.3. Package System Specification. The following is the specification of the package
System for the compiler. (LRM 13.7)

package System is

type Address is access integer;
NullAddress : constant Address null;

subtype Byte is integer range 0 .. 255;

type Integer_32 is range .(2*.31) .. (2..31)-1;
type Integer_16 is range -(2.*15) .. (2.*15).1;

type Name is (mc68000, anuyk44, ibm370);

SystemName constant name := ibm370;

Storage Unit constant := 8;
MemorySise constant := 2'i24.1;

B-i

APPENDIX F OF THE Ada STANDARD

|-- System-Dependent Named Numbers:

Min Int constant -(2 .. 31);
Max-Int constant (2 a 31) - 1;
MaxDigits : constant 6;
Max Mantissa constant 31;
Fine Delta constant := 1.0 / (2 *. (Max _antissa 1));
Tick constant := 1.0 / (10 00 6);

-- Other System-Dependent Declarations

subtype Priority is Integer range 0 .. 255;

Max Text 10 Count : constant Max Int 1;
Max-Text I0 Field constant := 1000;

type Display_Info is array (1 . 17) of Address;

type SubprogramValue is record
EntryPoint Address : Address-
Display : DisplayInfo;

end record;

end System;

F.4. Representation Clause Restrictions

The following representation clauses are supported as defined in Chapter 13 of the LRMj Address Clauses (13.5)

F.S. Implementation-Generated Name Conventions

There are no system-generated names for system-dependent components. (LRM 13.4)

F.6. Address Clause Expression Interpretation

Expressions that appear in address clauses, including those for interrupts, are interpreted as
virtual memory addresses within the compiler. (LRM 13.5)

F.7. Unchecked Conversion Restrictions

Only non-private types of the same static size are supported for unchecked conversions.

F.8. Impiementation-Dependent I/O Characteristics.

The compiler supports the predefined Text 10 package specified in the LRM 14' for
formatted 1/0. The compiler does not support Low Level 10 for binary 1/O. Sequential10 and
Direct 10 are supported, but the following types may not be instantiated for I/O:

Unconstrained array types
Unconstrained types with discriminants

B-2

APPE.NL F JF :HE A'a STANDARD

Package STANDARD

type INTEGER is range -(2m*31) .. (2*e31)-1;
type SHORT INTEGER is range -(2ee15) (2'*15)-I;
type LONGINTEGER is range -(2*031) .(2*31)-1;

type FLOAT is digits 6 range -7.23693E+75 .. 7.23693E+75;

type DURATION is delta 2#1.0#E-14 range -86400.0 .. 86400.0;

* File Names

File names follow the conventions and restrictions of the target
operating system.

B-3

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such

as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file

name. Actual values to be substituted are identified by names that begin

with a dollar sign. A value is substituted for each of these names before

the test is run. The values used for this validation are given below.

Name and Meaning Value

$BIG IDI (1..199 => 'A', 200 => '1')
Identifier of size MAX IN LEN
with varying last character.

$BIG ID2 (1..199 => 'A', 200 => '2')
Identifier of size MAX IN LEN
with varying last character.

$BIG ID3 (1..100 => 'A', 101 => '3', 102..200 > 'A')
Identifier of size MAX IN LEN
with varying middle character.

$BIG ID4 (1..100 => 'A', 101 => '4', 102..200 => 'A')
Identifier of size MAX IN LEN
with varying middle character.

$BIG INT LIT (1.197 => '0', 198..200 => '298')
An integer literal of value 298
with enough leading zeroes so
that it is MAX IN LEN characters
long.

C-1

TEST PARAMETERS

Name and Meaning Value

$BIG REAL LIT (1..194 => '0', 195..Z00 => '69.0EI')
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
MAX IN LEN characters long.

$BLANKS (1..180 => =)

Blanks of length MAX INLEN - 20

$COUNT LAST 2 147 483 645

Value of COUNT'LAST in TEXT 10
package.

$EXTENDED ASCII CHARS "abcdefghijklmnopqrstuvwxyz!$%?@\'{}-"
A strTing literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD LAST 1 000
Value of FIELD'LAST in TEXTIO -
package.

$FILE NAMEWITH BADCHARS "X}%!@#&'Y"
An illegal external file name
that either contains invalid
characters or is too long.

$FILE NAME WITH WILD CARD CHAR "XYZ*"
A7n external file name that
either contains a wild card
character or is too long.

$GREATER THAN DURATION 86 401.0
A univers-al real value that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION.

$GREATER THAN DURATION _BASE _LAST 131072.0
The universal real value that is
greater than DURATION'BASE'LAST.

$ILLEGAL EXTERNAL FILE NAMEl "BAD/CHARACTER*%@"
Illegal external file name.

$ILLEGAL EXTERNAL FILE NAME2 (1..120 => 'A')
Illegal external file names.

C-2

TEST PARAMETERS

Name and Meaning Value

$INTEGERFIRST -2*'31
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGERLAST 2'31-1
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESSTHAN DURATION -86_401.0
A universal real value that lies
between DIRATION'BASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

$LESS THAN DURATION BASE FIRST -131_072.0
The universal real value that is
less than DURATION'BASE'FIRST.

$MAXDIGITS 6
Maximum digits supported for
floating-point types.

$MAX IN LEN 200
Maxim input line length
permitted by the implementation.

$NAME (No such numeric type, used LONGINTEGER)
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORT INTEGER,
LONG FLOAT, or LONG INTEGER.

$NSG BASED INT 16#FFFFFFFE#
1 based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

$NON ASCII CHAR TYPE (NON NULL)
An enumerated type definition
for a character typ whose
literals are the identifier
NON NULL and all non-ASCII
characters with printable

graphics.

C-3

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. When testing was performed, the following 16 tests had been
withdrawn at the time of validation testing for the reasons indicated:

• B4AO10C: The objectdeclaration in line 18 follows a subprogram
body of the same declarative part.

• B83A06B: The Ada Standard 8.3(17) and AI-00330 permit the label
LABENLMERAL of line 80 to be considered a homograph of the
enumeration literal in line 25.

• BA20OIE: The Ada Standard 10.2(5) states: "Simple names of all

subunits that have the same ancestor library unit must be distinct
identifiers." This test checks for the above condition when stubs

are declared. However, the Ada Standard does not preclude the

check being made when the subunit is compiled.

• BC3204C: The file BC3204C4 should contain the body for BC3204C0
as indicated in line 25 of BC3204C3M.

• C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC ERROR (instead of CONSTRAINT ERROR).

* C41404A: The values of 'LAST and 'LENGTH are incorrect in IF
statements from line 74 to the end of the test.

" C48008A: This test requires that the evaluation of default
initial values not occur when an exception is raised by an

allocator. However, the Language Maintenance Committee (LMC) has
rulel that such a requirement is incorrect (AI-00397/01).

D-1

WITHDRAWN TESTS

. C4AO1A: The number declarations in lines 19-22 are incorrect
because conversions are not static.

• C92005A: At line 40, "/=" for type PACK.BIGINT is not visible
without a USE clause for package PACK.

" C940ACA: This test assumes that allocated task TT1 will run prior
to the main program, and thus assign SPYNUMB the value checked for
by the main program; however, such an execution order is not
required by the Ada Standard, so the test is erroneous.

• CA1003B: This test requires all of the legal compilation units of
a file containing some illegal units to be compiled and executed.
According to AI-00255, such a file may be rejected as a whole.

• CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

• CE2107E: This test has a variable, TEMP HAS-NAME, that needs to

be given an initial value of TRUE.

D-2

....... ...

