
-Also 669 ADA (TRADENANE) COMPILER VALIDATION SUMMARY REPORT ITI
INTERMETRICS INC INTRR (U) INFORMATION SYSTENS AND
TECHNOLOGY CENTER U-P AFB ON ADA VALI 26 SEP 86 L

IUNCLA55mmn

IIIIIommom

1.01.0

I11 - 5d 11f,1

mjCOCOY ESLUTO TES CAR

NA1I L .H-RU (f 4N P) t

SECUITY UNCLASSIFIED ~~!r(N 7
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COUPLETEIG R

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 26 SEPT 1986 to 26 SEPT
Intermetrics Inc., Intermeterics 370/UTS Ada 1987

Compiler., Version 201.16c, IBM 3083 and IBM 6. PERFORMING ORG. REPORT NUMBER

4341 ,__
7, AUTH'R(sL 8. CONTRACT OR GRANT NUMBER(s)

Wright-katterson

9. PERFORMING ORGANIZATION AND ADDRESS I0. PROGRAM ELEMENT, PROJECT, TASK
Ada Validation FAcility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 26 SEpt 1986
United States Department of Defense 13. NUMBER 0r PAGES
Washington, DC 20301-3081 41

14. MONITORING AGENCY NAME & ADDRESS(If different from ControllingOffice) 15. SECURITY CLASS (of this report)
Wright-Patterson UNCLASSIFIED

(,0 15a. RE kISiJFICATION/DOWNGRADINGo N/A
16. DISTRIBUTION STATEMENT (ofthisReport)

0
00 Approved for public release; distribution unlimited.
-

I17. DISTRIBUTION STATEMENT (of the abstract entered in lock 2. If different from Report)

SUNCLASSIFIED ELEY E? & 8

18. SUPPLEMENTARY NOTES !) .,-

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABST RAC T (Continue on reverie side if necessary and identify by block number)

See Attached.

A
DD I 1473 EDITION OF A NOV 65 1S OBSOLETE ,

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF iHIS PAGE (When Data Entered)

Ada® Compiler Validation Summary dleport:

. mptler Name: Intermetrics 370/UTS Ada Compiler, Version 201.16c

Hosts and Targets:
" IBM 3083 under UTS, Version 2.3
" IBM 4341 under UTS, Version 2.3

Testing Completed 26 September 1986 Using ACVC 1.8

This report has been reviewed and Ls ippL'ved.

Ada Valia ion Facility
Georgeanne Chitwood

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

AcceSSion For_

N-iTIS GRA&I. I>DTIC TAB

Ada Validation Organization Justification
Dr. John F. Kramer
Institute for Defense Analyses By
Alexandria VA Distribution/..

Availability Codes

Avail and/or

Dist Special

Ada jolt Program Office d
Virginia L. Castor

Director
Department of Defense
Washington DC

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

87 5 1 3

AVF Control Number: AVF-VSR-44.1286

i

Ada® COMPILER
VALIDATION SUMMARY REPORT:

Intermetrics Inc.
Intermetrics 370/UTS Ada Compiler, Version 201.16c

IBM 3083 and IBM 4341

Completion of On-Site Testing:
26 September 1986

V

Prepared By:
Ada Validation Facility

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

Prepared For:

Ada Joint Program Office
United States Department of Defense

Washington, D.C.

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

+ Place NTIS form here +
+

(........................

"i

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Intermetrics 370/UTS Ada Compiler,
'idrsion 201.16c, using Version 1.8 of the Ada® Comp' -r Validation
Capability (ACVC). The Intermetrics 370/UTS Ada Compiler is hosted on an
IBM 3083 and an IBM 4341 operating under UTS, Version £.3. Programs
processed by this compiler may be executed on an IBM 3083 or an IBM 4341
operating under UTS, Version 2.3.

On-site testing was performed 22 September 1986 through 26 September 1986
at Intermetrics Inc., Cambridge MA, under the direction of the Ada
Validation Facility (AVt), according to Ada Validation Organization (AVO)
policies and procedures. The AVF identified 2210 of the 2399 tests in ACVC
Version 1.8 to be processed during on-site testing of the compiler. The 19
tests withdrawn at the time of validation testing, as well as the 170
executable tests that make use of floating-point precision exceeding that

supported by the implementation, were not processed. After the 2210 tests
were processed, results for Class A, C, D, or E tests were examined for
correct execution. Co"'I'llation listings for Class B tests w re analyzed
for correct diag.,.sis of syntax tnd semantic errors. Compilation and link
res,!s of 'la3ss L tests werp ialyzed for correct detect a of errors.
There were 2) of the processed tests determined to be inapplicable; the
remaining 2181 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passed 102 251 334 235 161 97 134 262 128 32 218 227 2181

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 74 86 12 0 0 5 0 2 0 0 6 199

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

"Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

i

Av {

TABLE OF CONTENTS

CHAPTER I INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARiY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEME NATION CHARACTFRrc -CS.2-2J.

SC 1-I !,R 3 TEST INFORMATION

3.1 TEST RESULTS3-1

3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS3-2
3.6 SPLIT TEST", 3-4
3.7 kDDITIONAL TESTING INFORMATION 3-4
3.. !• Prevalidation 3-4

3.7.2 Test Method3-4
3.7o3 Test Site 3-5

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

Y1

Ir

ji

CHAPTER 1

INTRODUCTION

* This Validation Summary Report (ViR) describes _-extent to *hich a
3pecific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Valid~tion Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any Implementation-dependent features
must .nnf- r, to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences lo exist between implementations.
TL ,A Standard permits some implementation dependencies--for example, the
maxi,.um length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVc, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

,4m1

*1-I

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This V63 documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

• To attempt to identify any language constructs supported by the
compiler that do not cinform to the Ada Standard

- To attempt to identify any utsupported ±anguage constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed2
by t' kda SAndard

£estin. this compiler was conducted by SofTech, .. w., under the
directitL. of the AVF according to the procedures established by the Ada
Validation Organization (AVO). On-site testing was conducted from 22
September 1986 thrnirlh 26 September 1986 at Intermetrics Inc., Cambridge
MA.

'.- USE OF THIS VALIDATION SUMMARY REPORT

Conrij.3'1ent with the natWIPIa laws of the originating country, Lhe AVO may
makc full dnd free public disolojure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to '.e computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility

ASD/SIOL I
Wright-Patterson AFB OH 45433-6503

.1-2

v? J

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validati. r Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Proram_ing Language,

4 ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures, MITRE

Corporation, '1 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., SEP 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs

that evaluates the conformity of a compiler to the Ada

language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this

report, the AVO is responsible for setting procedures for

compiler validations.

Compiler A processor for the Ada language. In the context of this

report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

V S
JL!-S.

I NTJDUCTION

Inapplicable A test that uses features of the language that a compiler is

test not required tu jupport or may legitimately support in a way
other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or feat ,3 to the Ada Standard. In the

4 context of this report, the term is usel to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect -id not uin to check cnnformity
test -) the Ada languagp specification. A tes' ay be incorrect

because it has an invalid test objective, fails to meet its
;,% test ,nbjective, or contains illegal or erroneous use of the

language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC

contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first lett'r of a test name identifies
the class to which J.r belongs. Class A, C, D, and E tests are executable,

and special program units are used to report their results during

execution. Class 3 tests are expected to produce compilation errors.

Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if

'the test objective has been met. For exanple, a Class A test checks that
reserved words of another language (other than those already reserved in

the Ada language) are not treated as reserved words by an Ada compiler. A
Cl3ss A test is passed if no errors are detected at compile time and the

program executes to produce a PASSED message.

:. ass B tests check that a compiler detects illegal language usage. Class

B tests are not executable. Each test in this class is compiled and the

resulting compilation listing is examined to verify that every syntax or

semantic error in the test Is detected. A Class B test is passed if every

illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and

executed. Each Class C test is self-checking and produces a PASSED,

FAILED, or NOT APPLICABLE message indicating the result when it is

executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1.-

.- ,tb.

INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test Is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or

-i.FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standg-d permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E t i is passed by a compiler if it is compiled successfully and executes
to pw.duce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L s che k that incomplete or illegal Ada progra. involving

% multiple, aeparately compiled units are detected and not allowed to
execute. Class L tests are compiled separatelj and execution is attempted.

A Class L test passes if it is repected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main

4 program are e1borated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the xecutable tests. Thr ackage REPORT
provides the mechanism by which ex-, ..., Le tests report PASSED, FAILED, or
NOT APPLICABLE r...Lts. it also provides a set of identity functions used
to def-at some .;uipiler optimizations allowed by the Ada Standard that

would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For

example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and

place features that may not be supported by all implementations in separate
testc. However, some tests contain values that require the test to be

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation are
listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass

criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the

ACVC and, therefore, is not used in testing a compiler. The tests
4 %withdrawn at the time of validation are given in Appendix D.

1-5

N 'N

4-0L'

:.A

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION rESYID "-

The candidate compilation system for this validation was tested under the

following configuration:

Copiler: Intermetrics 370/UTS Ada Compiler, Versi,)n ,.ol.16c

ACVC Version: 1.8 -

Certificate Expiration Date: 16 December 1987

Host and Target Computer:

Machine: IBM 3083 NA

Operating System: UTS
Version 2.3

Memory Size: 24 megabytes NA,

Host and Target Computer:

Machine: IBM 4341

Operating System: UTS
Version 2.3

Memory Size: 12 megabytes

2-1-'

1A 6!AL

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behavior of a compiler in those areas of the Ada Standard that
permit implementations to differ. Class D and E tests specifically

check for such implementation differences. However, tests in other
classes also characterize an implementation. Thib .:ormpiler is
characterized by the following interpretations of the Ada Standard:

. Capacities.

The compilec correctly processes ;ts contauLing loop
statements nested to 17 levels and recursiv,. procedures
separately compiled as subunits nested to 17 levels. The

compiler could not process block statements nested to 65
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55AO3A..H
(8 tests), D560uI3, D64005E..G (3 tests), and D29002K.)

. Universal integer cal-,ilations.

An implementatio)n is allowed to reject universal integer
calculations having wlues that exceed SYSTEM.MAXIN'r. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AO02A, D4AOO2B, D'AOOi4A, and
D4AO04B.)

Predefined types.

This implementation supports the additional predefined type

SHORT FLOAT in the package STANDARD. (See tests B86001C and
B86001D.)

" Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may
raise NUMERICERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC ERROR during execution. (See
test E24101A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

2-2

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding TNTEGER'LAST
riises NUMERIC ERROR when the array type is declared. (See

test 252103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the array
type is declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternately, an implementation may

accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERIC EROR
when the array type is declared. (See test E52103Y.)

In assigning one-dimensional drray types, Li- expression does
.'. not appea' to be evaluated in its entirety before

CONSTRAINTERROR is raised when checking whether the
expression's subtype is c.',.,atible with the target's subtype.

In assigning two-dimensional array types, the expression does
not appear to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.

(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible
discriminant constraint. This implementation accepts such
subtype indications. (See test E38104A.)

In assigning record types with discriminants, the expression
does not appear to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expressionTs subtype is compatible with the target's subtype.
(See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical
bounds. (See test E43212B.)

2-3

CONFIGUAAT"N INFORMA.ON

All choices are evaluated before CONSTRAINTERROR is raised if
a bound in a nonnull range of a nonnull aggregate does not
belong to an inlex subtype. (See test E43211B.)

Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in
the same immediate scope, or it may reject the function
declaration. If it accept the function declarations, the use
of the enivmeration literal's identifier denotes the function.
This implementation rejects the declarations. (See test
E66001D.)

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version
1.8 of the ACVC, they ire ,,*ed in testing other language

~. features. This implementation rejects 'SIZE and 'STORAGE SIZE
for tasks, 'STORAGE SIZE i'w -ollections, and 'SMALL clauses.
Fnumeration representation clauses, including those that
specify noncontiguous values, appear not to be supported. (See
tests C55B16A, C87B62A, C87B62B, C87B62C, dnd BC1002A.)

. Pragmas.

The pragma INLINE is supported for procedures. The pragma
INLINE is supported for functions. (See tests CA3004E and
CA3004F.)

" Input/output.

The package SEQUENTIAL 10 cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. The package DIRECTIO cannot be instantiated
with unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C, AE2101H,
CE2201D, CE2201E, and CE2401D.)

" An existing text file can be opened in OUT FILE mode, can be
- created in OUT FILE mode, and can be created in INFILE mode.

(See test EE3102 .)

More than one internal file can be associated with each
external file for text I/O for reading only or writing only.
(See tests CE3111A..E (5 tests).)

2-4

-~~ ~ ~~~~~~~~~ -
*...?,:RZL'~ * * ~ - *ia.*~a.

CONFIGURATION INFORMATION

More than one internal file can be associated with each
external file for sequential I/O for both reading and writing.
(See tests CE2107A..F (6 tests).)

More than one internal file can be associated with each
external file for direct I/O for both reading and writing.
(See tests CE2107A..F (6 tests).)

An external file associated with more than one internal file
can be deleted. (See test CE2110B.)

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are
deleted when thej are closed. (See tests CE2108A and CE2108C.)

Generics.

Body and subunits of a generic unit ml;jt be in the same
compilation as the specification if instantiations precedea
them. (See tests CA2009C and CA2009F.)

2-5

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
Intermetrics j'.O/UTS Ada Compiler was performed, 19 tests had been
withdrawn. The remaining 2380 tests were potentially applicable to this
validation. The AVF determined that 199 tests were inapplicable to this
implementation, and that the 2181 applicable tests were passed by the
implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Staujard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
__-___ A B C D E L

Passed 67 862 1181 12 13 46 2181

Failed 0 0 0 0 0 0 0

Inapplicable 2 5 187 5 0 0 199

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passed 102 251 334 235 161 97 134 262 128 32 218 227 2181

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 74 86 12 0 0 5 0 2 0 0 6 199

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 ;" 98 140 264 134 32 19 233 2399

3.4 WITHDRAWN TESTS

The follPwing 19 tests were withdrawn from ACVC Version 1.8 at thp time of
this validation:

C32114A C41404A B74101B
B33203C B45116A C87B50A
C34018A C48008A C92005A

C35904A B49006A C940ACA
B37401A B4AO10C CA3005A..D (4 tests)

BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 199 tests were inapplicable for
the reasons indicated:

• C34001D, B52004E, B55BO9D, and C55B07B use SHORTINTEGER which is
not supported by this compiler.

. C34001E, B52004D, B55B09C, and C55BO7A use LONG INTEGER which is
not supported by this compiler.

. C34001G and C35702B use LONGFLOAT which is not supported by this
compiler.

3-2

TEST INFORMATION

. D55AO3E..H (4 tests) require 31 to 65 levels of loop nesting which
is greater than this implementation supports.

• D56001B requires 65 levels of block nesting which is greater than
this implementation supports.

. C55B16A makes use of an enumeration representation clause

containing noncontiguous values which is not supported by this
compiler.

• B86001D requires a predefined numeric type other than those

defined by the A i language in package STANDARD. There is no such
type for this implementation.

. C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cai je
exe- t:3d since the package REPORT is dependent on the package
TEXT_10.

• C87B62A..C (3 tests) use length clauses which are not supported by
this compiler. The length clauscs are rejected during
compilatton.

* CA2009C and CA2009F compile generic subunits in separate

compilation files. For this implementation, the body and subunits
of A generic unit must be in the same compilation as thn
4 ecLfication if instantiations pi -.de them.

AE2101C, CE2201D, and CE2201E use an instantiation of package
SEQUENTIAL 10 with unconstrained array types which is not
supported by this compiler.

. AE2101H and CE2401D use an instantiation of package DIRECT 10 with

unconstrained array types which is not supported by this compiler.

* CE3111B assumes that if the same external file is open for both
reading and writing, then characters written may be immediately
re-read, without a new-line/reset/close separating the read and

write. This implementation buffers output and requires that a
reset be issued between writing and reading from the same external
file, if the read wants to be sure to see the effect of the write.

The following 170 tests require a floating-point accuracy that

exceeds the maximum of 15 digits supported by the irplementation:

C24113L..Y (14 tests)
C35705L..Y (14 tests)
C35706L..Y (14 tests)
C35707L..Y (14 tests)
C35708L..Y (14 tests)
C35802L..Y (14 tests)

C45241L..Y (14 tests)

3-3

TEST INFORMATION

C45321L..Y (14 tests)

C45421L..Y (14 tests)
C45424L..Y (14 tests)
C45521L..Z (15 tests)
C45621L..Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a C1s B test
because of copler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are "en
, p4ed and examined. The splitting -. ss continu 9 until all Prruvs
are detected by the compiler or until tht.: i; exdvtly on,, error p.,' 3pit.
Aniy 2lass A, Class C, or Claso E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 2 Class B tests:

BA1101C BC3205D

3.7 ADDITIONW- TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the Intermetrics 370/UTS Ada Compiler was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Intermetrics 370/UTS Ada Compiler using ACVC Version 1.8 was
conducted on-site by a validation team from the AVF. The configuration
consisted of an IBM 3083 operating under UTS, Version 2.3. The following
configuration was also tested using a subset of the ACVC:

Host: Target:

IBM 4341 IBM 4341

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of

3-4

TEST INFORMATION

implementation-specific values were customized before being written to the
nagnetic tape. Tests requiring splits during the prevalidation sting

included in their split form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded to disk, thp full set of tests was
-ompiied on the IBM 3083, and all executable tests were linked and
executed. Results were printed from the IBM -C'3. The tests were reviewed
by the validation team and showed acceptable results.

In parallel with the full validation on H BM 3083, a subset of the ACVC
Versio,- .8 was executed on an [BM 4341 Ana".r UTS, Version 2.3. The subset
)" i .t Lests consisted of 5 tests selected at random from the classes of
tests within each chapter. The t-sts were compiled and executed (*.1n
applicable) on the IBM 4341. The test results were transferred from the
IBM 4341 to the IBM 3083 via a Remote Spooling Communications Subsystem
(RSCS) and printed from the IBM 3083. The tests were reviewed by the
validation team and showed acceptable results.

The compiler was tested using command scripts provided by Intermetrics Inc.
and reviewed by the validation team. The following options were in effect
for testing:

Option Effect-

-quiet gives a sparse listing
4-. -opt cg ajembler=false don't produce assembler listing

Tests were compiled, linked, and executed (as appropriate) using a single
host and target computer. Test output, compilation listings, and job logs
were captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

The validation team arrived at Intermetrics Inc., Cambridge MA on 22
September 1986 and departed after testing was completed on 26 September
1986.

3-5
,.., . ' ; "'" " ,- : / :"4" " --. " ' ' ' "

APPENDIX A

COMPLIANCE STATEMENT

Intermetrics Inc. has submitted the following
compliance statement concerning the Intermetrics
370/UTS Ada Compiler.

IA

+ +A-i

COMPLIANCE STATEMENT

Compliance Statement

Configuration:

Compiler: Intermetrics 370/UTS Ada'Compiler, Version 201.16c

Test Suite: Ada Compiler Validation Capability, Version 1.8

Host and Target Computer:

Machine: IBM 3083

Operating System: UTS, Version 2.3

Host and Target Computer:

Machine: IBM 4341

Operating System: UTS, Version 2.3

Intermetrics Inc. has made no deliberate extensions to the Ada language

standard.

Intermetrics Inc. agrees to the public disclosure of this report.

Intermetrics Inc. agrees to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office.

~~ ~Date:_ ___
Intermetrics Inc.
Dennis D. Struble
Manager, Ada Compilers

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

A-2DI .

- ---

APPENDIX B

APPENDIX F OF THE Ada STANDARD

ihe onl' allowed implementation dependencies correspond to implementation-
dep,:.ident pragmas, to certain machine-dependent conventions as mentior.Ad in
charter V of MIL-STD-1815A, and to certain allowed restrictions on
representation classes. The implementation-dependent characteristics of
the Intermetrics 370/UTS Ada Compiler, Version 201.16c, are described in
the following sections which discuss topics in Appendix F of the Ada
Language Reference Manual (ANSI/MIL-STD-1815A). The specification of the
package STANDARD is also included in this appendix.

package STANDARD is

type INt.GER is range -2147483648 .. 2147483647;

type SHORT FLOAT is digits 6 range -16#0.ffffff#e63 .. 16#0.ffffff#e63;
type FLOAT is digits 15 range -16#0.ffffffffffffff#e63

16#0. ffffffffffffff#e63;

type DURATION is delta 2.0 ** (-14) range -86400.0 .. 86400.0;
-- DURATION'SMALL 2.0 ** (-14)

S..

end STANDARD;

oB.-.

B-i4.

---------- A rd ulr.- th7s

Appendix F. IMPLEMENTATION DEPET)ENCIES

This section constitutes Appendix F of the Ada LR%1 for this
implementation. Appendix F from the LRM states:

The Ada language allows for certain machine-dependencies in a controlled
manner. No machine-dependent syntax or semantic extensions or restrzctions
are allowed. The only allowed i.,nplementation-dependencies correspond to
implementation-dependent pragmas and attributes, certain much ine- dependent
conventions as mentioned in Chapter 13, and certain allowed restrictions oin
representation clauses.

The reference manual of each Ada implementation must include an appendir
(called Appendix F) that describes ill nrtlementation-deprnderit
characteristics. The 4ppendx F for a given implementation must list in
particular:

1. The form, allowed places, and effect of eLet implementation-dependent
pragma.

P. The name and the type of every implementatiwn-dependent attribute.

S. The specification of the package SYSTEM (see 13. 7).

4. The list of all restrictions on representation clauses (see 13.1).

5. The conve.itio- used for any Implementation-generated name denoting
-., -lementation-dependent components (see 15.4].

6. The interpretation of ezpressions that appear in address clauses.
including those for interrupts (see 13.5).

7. Any restriction on unchecked conversions (see 13.10.2).

8. Any implementation-dependent characteristics of the input-output
packages (see 14).

In addition, the present section will describe the following
* 2 -to pics:

9. Any implementation-dependent rules for termination of tasks
dependent on library packages (see 9.4;13).

p. 10. Other implementation dependencies.

11. Compiler capacity limitations.

B- 2

.~~ ~ ~ .- .

F. 1 Pragmas

This section describes the form, allowed places, and effect of every
implementatioa-dependent pragma.

F.1.1 Pragmas fIST, OPTIMIZE, PAGE, PRIORITY

Pragmas LIST, OPTIMIZE, and PAGE are ignored. Pragma PRIORITY is
supported exactly in the form, in the allowed places, and with the effect as
described in the LRM.

/.2 Pragma SUPPRESS

Form: As specified :'.. LRM B(14) SUPPRESS

Allowed Pl-,,,: As specified in LRM B(14) : SUPPRESS

Effect: Pragma SUPPRESS is ignored.

F.1.3 Prcuirna /INLNE

Form: Pragma, INLINE (SubprogramNameCommaList)

Allowed Places: As specified in LRM B(4) : INLINE

Fffi,: If the subprogram body is available, and .he subprogram is not
fecursive, the code is expanded ;n-line at every '4 site and is sibjet
to all optimizations.

L'he stack-frame needed for the elaboration of the inline subprogram
will be allocated as a temporary in the frame of the containing code.

Parameters will be passed properly, by value or by reference, as for
non-inline subprograms. Register-saving and the like will be
suppressed. Parameters may be stored in the local stack-frame or lild
in registers, as global code generation allows.

Exception-handlers for the INLINE subprogram will be handled a 1,)r
block-statements.

Use: This pragma is used either when it is believed that the time required
for a call to the specified routine will in ge-neral be excessive (this for
frequently called subprograms) or when. the average expected size of
expanded code is thought to be comparable to that of a call.

F.1.4 Pragma INTERFACE

Form: Pragma INTERFACE (language-name, subprogram-name
where the language-name must be an enumeration value of the tylw,

B-3

al.:.

SYSTEM .SupportetdLanguageName (see Package SYSTEM below).

Allowed Place: As specified in I PM B(5) : INTERFACE.

Effect: Specifies that a subprogram will be provided outside the Ada program
library and will be callable with a specified calling interface. Neither an
Ada body nor an Ada body..stub may be provided for a subprogram
for which INTERFACE has been specified.

Use: Use with a subprogram being provided via another programming
language and for which no body will be given in any Ada program.
See also the LINKNAME pragma.

The cal!., onventions for an Ada program calling a non-Aa
subprogram are described in the Run-Time Model B-5.

F. 1.5 Pragma L INKNAME

Form: Pragma LINK-NAME (subprogram-name, link-name)

Allowed Places: .'.; specified in LRM B(5) for pragma INTERFACE.

-' Effect: Associates with subprogram subprogram-name the name link-name as
its entry point name.

Use: To allow Ada programs, with help from INTERFACE pragma, to
reference non-Ada subprograms. Also allows non-Ada programs to
call specified Ada subprograms.

F.1.6 Pragma CONTROLLED

Form: Pragma CONTROLLED (AccessTypeName)

Allowed Places: As specified in LRM B(2) : CONTROLLED.

Effect: Ensures that heap objects are not automatically reclaimed. Since no
automatic garbage collection is provided, this pragma currently has no
effect.

F.1.7 Pragma PACK

Form: Pragma PACK (type-simple..name

Allowed Place: As specified in LRM 13.1(12)

Effect: Components are allowed their minimal number of storage units ,s
provided for by their own representation and/or packing.

B-4

'p.,

Floating-point components are aligned on storage-unit boundaries.
either 4 bytes or 8 bytes, depending on digits.

Use: Pragma PACK is used to reduce storage size. This can allow records
and arrays, in some cases, to be passed by value instead of by
reference.

Size reduction usually implies an increased cost of accessing
coI~Aients. The decrease in storage size may be offset by increase in
size of accessing code and 1':lowing of accessing operations.

F.1.8 Pragmas SYSTEM-NAME, STORAGE_UNIT,
MEMOR YSIZE

These pragmas are not supported and are ignored.

I-,

ed

I

B-5

.Y
L.

F.2 I mplementation- dependent Attri butes

This section describes the name and the type of every implementation-
dependent attribute.

i'here are no implementation defined attributes. These are the values for
certain language-de fined, implementation-dependent attributes:

Type INTEGER.
INTEGER'SIZE = 32 _. bits.
INTEGER'FIRST =- (2**31)
INTEGER'LAST = (2**31-1)

Type SHORT-FLOAT.
-~SHORT-YLOAT'SIZE = 32..- bit.

SHORT-FLOAT'DIGITS = 6
SHORTYFLOAT'MANTSSA = 21
SHORTYFLOAT'EMAX = 84
SHORTJFLOAT'EPSILON = 2.0**(.20)
SHORTYLOAT'SMALL = 2.00*(.85)
SHORT...FLOAT'T, kLRGE = 2.0**84

SH ORTFL OAT'MACHINE-ROUND S = false
SHORTYFLOAT'NIACHINE-RADLX =18
3HORT-FLOAT'MA(CH[NE-MANTISSA = 6
SHORTYFLOAT'MACHINE-.EMAX = 63
SHORTLOAT'MACHINE-EMIN =-64

SHORTYLOAT'MACHINE-OVERFLOWS = false
SHORTYLOAT'SAFE-EMAX = 252

SHORTJL QAT'SAFE-SMALL = 16 #0.800000#E-63
SHORTYLOAT'SAFE-.LARGE = 16#0.FFFFF8#E03

Type FLOAT.
FLOAT'SIZE = 84 -- bit.
FLOAT'DIGITS = 15
FLOAT'MANTISSA = 51
FLOAT'EMAX = 204
FLOAT'EPSILON = 2.0**(.50)
FLOAT'SMALL = 2.0*(-205)
FLOAT'LARGE = (1.0-2--(.5 1))'2.0"204
FLOAT'MvACHINEJIOUNDS = raise

FLOAT'MACHINE-RAD[X = to
FLOAT'MACHINE.MANTISSA = 14

FLOAT'vACHINbE.\-MAX = 63
FLOAT',MACHINE-E&IN = -64

FLOAT'%MACHINE-.OVERFLOWS = ralse

B-6

V V.

* -~ ~ V* V~%. 4

- - - - -- -

FLOAT'SAFE-EMAX = 252
FL OAT' SAFE...SMAL L = 16 #0.80000000000000*E- 63
FL OAT'SAFEJ.LARGE = I 6#0.FFFFFFFFFFFFE0#EO3

Type DURATION.
DU.RATION'DELTA = 2.0**(-14) -. seconds
DURATION'FIRST =-85,400

D URATION'LAST =86,400

DURATION'SMALL =2.0"(-14)

TV-,* PRIORITY.:
PRIORITY'FIRST = -128
PRIORITY'LAST = 127

B-

F.3 Package SYSTEM

package SYSTE4 is

type ADDRESS is private; -- , /=" defined implicitly;

type NAME is (UTS, MVS, CMS, PrimeS0, Sperryll00,

MILSTD.1750A);

SYSTEMNAME constant NAME := UTS;

STORAGE-UNIT : constant 8;
MEMORYSIZE constant 2"s24; -- 2"31 for XA mode

-- In storage units

-- System-Depe'ndent Named Numbers:

MININT : constant : INTEGER'POS(INTEGER'FIRST);
MAXINT constant INTEGER'POS(INTEGER'LAST);

MAX-DIGITS : constant := 15;
MAX..MANTISSA : constant := 31;
FINEDELTA : constant := 2.0"*(-31);
TICK : constant :T= 1.0;

Minimum process delay is 1.0 second on UTS
-- although clock can resolve to 0.001 second.

-- Other System-Dependent Declarations

subtype PRIORITY is INTEGER range -127..127;

-. Implementation-dependent additions to package SYSTEM --
-..........-... -.-..-.. .-.-.-...............-----

NULLA\DDRESS : constant ADDRESS;
-- Same bit pattern as "null" access value
-- This is the value of 'ADDRESS for named numbers
-The 'ADDRESS o any object which occupies sturag,4

-- is NOT equal to this value.

ADDRESS-SIZE : constant := 32;
-- Number of bits in ADDRESS objects.

-- -ADDRESS'SIZE, but static.

ADDRESSSEC2VENTSIZE : constant := 2"'24;
-- Number of storage units in address segment

B-8

n~ N 4

V tyreADDRESS-OFFSET is new INTEGER;
.. Us ed f or add re ss ar i thme t ic

type ADDRESS..SEC'N4ENT is new INTEGER;
-Always zero on targets with

unsegmented address space.

subtype NOR ALIZED-ADDRESS-.OFFSET is
ADDRESS-..OFFSET range 0 . ADDRESS..SEGVENT..SIZE -1

-Range of address offsets returned by OFFSET-OF

function "+"(addr :ADDRESS; offset :ADDRESS-.OFFSET)
-~ return ADDRESS;

funct ion "-+"(offset :ADDRESS-OFFSET; addr :ADDRESS)
re turn ADDRESS ;

.Provide addition between addresses and
-- offsets. May cross segment boundaries on targe ts

where objects may span segments.
-On other targets, CONSTMILINT-.ERROR will be raised
-- when OFFSET..OF(addr) + offset not in

NORMALIZED-.ADDRESS-OFFSET.

function "-"(left, right :ADDRESS) retur,, .DDRESS-)FFSET:
V *- May exce-ed SEGMvENT-.SIZE on targets where, objects

may span segments.
On other targets, CONSTRAINT-.ERROR

-- will be raised if

-- SEGNENT-.OF (Ief t =SEGMENT-OF (r ig h t

function "-"(addr :ADDRESS; offset ADDRESS-.OFFSET) return

ADDRESS;
%- Provide subtraction of addresses and off sets.

-May cross segment boundaries on targets where
-. objects may span segments.

-On other targets, CONSTRAINT-ERROR will be rai-d -hen

-. (OFFSET-.OF(addr) - offset)

*- not in NORMALIZED-ADDRESS-OFFSET.

function OFFSET-OF (addr :ADDRESS)

return NORMALIZED.ADDRESS-OFFSET;

% Extract offset part of ADDRESS
Always in range 0. .seg.s ize

f unc tion SEGIMENTJ.)F (addr :ADDRESS) re tu rn ADDRESS SEUNtE.\I
Extract segment part of ADDRESS

-(zero un targets with unsegmented address spa-~

B -9

function MAKEADDFR SS luifset : ADDRESS-OFFSET;
segment ADDRESSSEC 4ENT :=-0)

return ADDRESS;

-- Build address given an offset and a segment.

Offset may be > seg.size on targets where objects

may span segments, in which case it is equiv

to "MAKEADDRESS(O,segment) + offset".

On other targets, CONSTRAINT-ERROR will be raised
when offset not in NORMALIZEDADDRESSOFFSET.

type SupportedLanguageName is (-- Target dependent

- The following are "foreign" languages:

AS SE BLER,
FORTRANJ.MA IN,

FORTRAN,

COBOL -MAIN,
COBOL,

JOV IAL-MAIN,

PL I .-MAIN,

A[E.ASSEMBLER, -- NOT a "fzeign" language - uses AIE RTS
UNS PEC IF 1ED _LANGUAGE _MA IN,
UNSPECI F I ED.LANGUAGE

1;
Most/least accurate built-in integer and float types

subtype LONGESTINTEGER is STANDARD.INTEGER;

subtype SHORTEST-INTEGER is STANDARD. INTEGER;

subtype LONGEST-FLOAT is STANDARD.FLOAT;
subtype SHORTEST-FLOAT is STANDARD.SHORTFLOAT;

i private

type ADDRESS is access INTEGER;

-- Note: The designated type here (INTEGER) is
irrelevant. ADDRESS is made an access type

-- simply to guarantee it has the same size ab

access values, which are single addresses.

-- Allocators of type ADDRESS are NOT meaningf,,I.

NULL-ADDRESS : constant ADDRESS :- null:

end SYSTEM

B-10

- -- -

F.4 Representation Clauses

This section describes the list of all restrictions on representation clauses.
",'NOTE: An implementdtion may limit its acceptance of representation clauses to

those that can be handled simply by the underlying hardware.... If a program
contains a representation clause that is not accepted [by the compiler/, then the
program is dlegal." (LRM 13.1(10)).

There are no restrictions except as follows:

a. Length clauses are not allowed.

b. Representation clauses for enumeration types are not allowed.

c. Address clauses are not allowed.

d. Record-representation-clause:

Within a record-representation-clause, the object being represented must
be no larger than one 32-bit word.

The range of bits specified must be in the range of 0..31.

Record components, including those generated implicitly by the compiler,
whose locations are not given by the representation-clause, are layed out
by the compiler following all the components whose locations are given by
the representation-clause. Such components of the invariant part of the

- record are allocated to follow the user-specified components or the
J1. invariant part, and such components in any given variant part are

allocated to follow the user-specified components of that variant part.

pF.5 Implementation-dependent Components

This section describes the conventions used for any implementation-
generated name denoting implementation-dependent components.

There are no implementation-generated names denoting implementation-
dependent (record) components, although there are, indeed, such components.
Hence, there is no convention (or possibility) of naming them and, therefore,
no way to offer a representation clause for such components.

NOTE: Records containing dynamic-sized components will contain (generally)
unnamed offset components which will "point" to the dynamic-sized
components stored later in the record. ACS 370/UTS offers no means to
specify the representation of such components.

B-Il
-- Nx"

F.6 Address Clauses

This section describes the interpretation of expressions that appear in
address clauses, including.those for interrupts.

Address clauses are not allowed.

F.7 Unchecked Conversions

This section describes any restrictions on unchecked conversions.

The source and target values must both be of an integer, enumeration, or
access type.

,B11

F.8 Input-Output

This section describes implementation-dependent characteristics of theU input-output packages.

(a) Declaration of type DirectIO.Count? [14.2.5j
O..Integer' last;

(b) Effect of input/output for access types?

Not meaningful if read by different program invocations

(c) Disposition of unclosed IN-FILE files at program termination? [14.1(7)
Files are closed.

(d) Disposition of unclosed OUT-FILE files at program termination? [14.1(7)i
Files are closed.

(e) Disposition of unclosed INOUT..FILE files at program termination?
[14.1(7)]

.p'. ~ Files are closed.

(f) Form of, and restrictions on, file names? [14.1(1)1
UTS filenames

,.-.*.- (g) Possible uses of FORM parameter in I/O subprograms? [14.1(1)j
The image of an integer specifying the UTS file protection on
CREATE.

(h) Where are I/O exceptions raised beyond what is described in Chapter 147(14.1(1I)1

, .'iNone raised.
(i) Are alternate specifications (such as abbreviations) allowed for file names.

If so, what is the form of these alternatives? [14.2.1(21)1
No.

(j) When is DATA-ERROR not raised for sequential or direct input of an
inappropriate ELEMENTTYPE? (14.2.2(4), 14.2.4(,I)l

When it can be assigned without CONSTRAINTERROR to a
variable of ELEMENTTYPE.

(k) What are the standard input and standard output files? [14.3(5)!
UTS standard input and output

(1) What are the forms of line terminators and page terminators? [14.3(7)
Line terminator is ASCI[.LF (line feed);
page terminator is ASCII.FF (form feed)

(m) Value of TextJO.Count'last? [14.3(8)1
integer'last

(n) Value of TextIO.Field'last? [14.3.7(2)[
integer'last

B- 13

@of' . ,

(o) Effect of instantiating ENUMERATION_10 for an integer type?

L14.3.9(15)1
The instantiated Put will work properly, but the instantiated Get
will raise Data-Error

(p) Restrictions on types that can be instantiated for input/output?
Neither direct I/O nor sequential 1/0 can be instantiated for an

unconstrained array type or for an unconstrained record type

lacking default values for its discriminants.

(q) Specification of package LowLevel_1O? [14.6)
LowLevel-IO is not provided.

'.

F.9 Tasking

This section describes implementation-dependent characteristics of the
tasking run-time packages,

Even though a main program completes and terminates (its dependent
tasks, if any, having terminated), the elaboration of the program as a whole

continues until each task dependent upon a library unit package has either
terminated or reached an open terminate alternative. See VRM 9.4(13).

F.10 Other Matters

This section describes other implementation-dependent characteristics of
the system.

a. Restrictions on SHARED variables (LR' AI 1I):
Must be of a scalar or access typ(-.

b. Package Machine-Code
Will not be provided.

c. Order of compilation of generic bodies and subunits (LRM 10.3:9):
Body and subunits of generic must be in the same compilation as
the specification if instantiations precede them (see Al-
00257/02).

B- 14

0" de .

F.11 Compiler Limitations

(a) Maximum length of source line?
255 characters.

(b) Maximum number of "use" scopes?
Limit is 50, set arbitrarily by SEMANTICS as maximum number
of distinct packages actively "used."

(c) Maximum length of identifier?
255 characters.

(d) Maximum number of nested loops?
24 nested loops.

.B11

n.

: .p.

..

B-I 5

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIG IDI (I.•254 =>'A', 255 =>Ill)

Identifier the size of the
maximum input line length with
varying last character.

$BIG ID2 (_•254 =>'A', 255 =>'2')
Identifier the size of the
maximum input line length with
varying last character.

$BIG ID3 (1-127 =>'A', 128 =>'3', 129..255 =>'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIG ID4 (1-127 ->'A' 128 =>'4', 129..255 :>'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGINTLIT (1..252 =>'O', 253..255 =>"298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-1

TEST PARAMETERS

Name and Meaning Value

$BIG REAL LIT (1.249 =>'0', 250..255 =>"69.OE1")
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be

the size of the maximum line
length.

* $BLANK3 (1..235 => ')
A sequence of blanks twenty
characters fewer than the size

of the maximum line length.

$COUNTLAST 2_147_483647
A universal integer literal
whose value is TEXTIO.COUNT'LAST.

$EXTENDED ASCII CHARS "abcdefghijklmnopqrstuvwxyz!$%?@[\]^' {}-'

A string literal containing all
the ASCII characters with

printable graphics that are not
in the basic 55 Ada character

set.

$FIELD LAST 2 147 483 647
A universal integer literal
whose value is TEXT 10. FIELD'LAST.

$FILE NAME WITH BAD CHARS X}]!@/#$^-Y
A-n illegal- external file name
that either contains invalid
characters, or is too long if no

invalid characters exist.

$FILE NAME WITH WILD CARD CHAR WILDCARDS/DONT/MATTER

An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$GREATER THAN DURATION 90000.0
A un-versal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER THAN DURATION BASE LAST 10 000 000.0
The universal real value that is %
greater than DURATION'BASE'LAST,

if such a value exists.

C-2 - -... ". '

' • " " "' ,-" > "'q 7 ' -.)... ¢

TEST PARAMETERS

*"Name and Meaning Value

$ILLEGAL EXTERNALFILENAMEI BAD-CHARAC/TER* ^

An illegal external file name.

$ILLEGAL EXTERNAL FILE NAME2 NO/MUCH-TOO-LONG-NAME-FOR-A-FILE

An illegal external file name
that is different from
$ILLEGALEXTERNAL_FILE_NAME1.

$INTEGER FIRST -2-147_483648
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGERLAST 2_147_483647
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESSTHAN DURATION -90 000.0
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of

DURATION.

$LESS THAN DURATION BASE FIRST -10 000 000.0

The universal real value that is
less than DURATION'BASE'FIRST,

A, if such a value exists.

$MAXDIGITS 15
The universal integer literal
whose value is the maximum

digits supported for
floating-point types.

$MAX IN LEN 255
The universal integer literal
whose value is the maximum

input line length permitted by
the implementation.

$MAX_ INT 2 147_483_647
'The universal integer literal
whose value is SYSTEM.MAX INT.

C-3

TEST PARAMETERS

Name and Meaning Value

$NAME NO OTHERPREDEF NUM TYPE

'. A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG FLOAT, or LONG_ INTEGER
if one exists, otherwise any
undefined name.

$NEG BASED INT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NON ASCIICHAR TYPE (NONNULL)
An enumerated type definition
for a character type whose
literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

.- C32114A: An unterminated string literal occurs at line 62.

- B33203C: The reserved word "IS" is misspelled at line 45.

. C34018A: The call of function G at line 114 is ambiguous in the
presence of implicit conversions.

, C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC ERROR instead of CONSTRAINT ERROR as expected in
the test.

o B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

. C41404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of
the wrong type--PRIBOOLTYPE instead of ARRPRIBOOL TYPE--at line
41.

C48008A: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

B49006A: Object declarations at lines 41 and 50 are terminated

incorrectly with colons, and end case; is missing from line 42.

B4AO1OC: The object declaration in line 18 follows a subprogram
body of the same declarative part.

D-1

WITHDRAWN TESTS

B74101B: The b at line 9 causes a declarative part to be
treated as a sequence of statements.

. C87B50A: The call of "/=" at line 31 requires a use clause for
package A.

. C92005A: The "/=" for type PACK.BIG INT at line 40 is not visible
without a use clause for the package PACK.

* C940ACA: The assumption that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

* CA3005A..D (4 tests): No valid elaboration c ,er exists for these
tests.

* BC3204C: The body of BC3204C0 is missing.

JJ

"D
p.'

''a

= D-2

IME/

