HD-A180 069

INTERMETRICS INC INTRR _(U> INFORMATION SYSTEMS AND
TECHNOLOGY CENTER W-P AFB OH ADA VALI. 26 SEP 86

UNCLASSIFIED

1]
i

o

FEFEERE

EEEE
EFE

I

rrr
r
r
i
T X -

N
(S
o

e |

lllll
mn

MICROCOPY RESOLUTION TEST CHART
NATIOMAL BUREAU 0OF STANTARDS 1907 4

e S

e -

b "ﬁ
N "
v UNCLASSIFIED I fNE roc 2] B
SECURITY CLASSIFICATION OF THIS PAGE (WhenDataEntered) '~ “HfiF F” F VT v
IN READ INSTRUCTIONS
" REPORT DOCUMENTATION PAGE BEFORE COMPLETEING FORM b
) 1. REPORT NUMBER |2. GOVT ACCESSION NO., [3. RECIPIENT'S CATALOG NUMBER %
. |
% i\
Q 4. TITLE (and Subtitle) . . 5. TYPE OF REPORT & PERIOD COVERED ‘N
Ada Compiler Validation Summary Report: 26 SEPT 1986 to 26 SEPT 0
Intermetrics Inc., Intermeterics 370/UTS Ada 1987 a3
Compilerq Version 201.16c, IBM 3083 and IBM 6. PERFORMING ORG. REPORT NUMBER b
> 4341 5
2 7. _AUTHOR(s 8. CONTRACT OR GRANT NUMBER(s) P
. Wright-Patterson 3
) (
B L)
] Y
J 9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK VY
Ada Validation FAcility AREA & WORK UNIT NUMBERS !
§ ASD/SIOL (
2 Wright-Patterson AFB OH 45433-6503
W 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
‘ Ada ngnt Program Office £ £ 26 SEpt 1986 R
& United States Department of Defense T NOWMBER OF PAGES |
Washington, DC 20301-3081 41 J
s 14, MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15. SECURITY CLASS (of thisreport) %'
& Wright-Patterson UNCLASSIFIED &
) U
: 15a. QECIASSIFICATION/DOWNGRADING [

16. DISTRIBUTION STATEMENT (of this Report)

o,

Approved for public release; distribution unlimited.

AD-A180 069

h W
¢ 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report) b,
St UNCLASSIFIED ‘
a MAY O 7 1987 ¢
by]
» 18. SUPPLEMENTARY NOTES E ::3
1 o t
3
t. t
X

19. KEYWORDS (Continue on reverse side if necessary and identify by block number) .
Ada Programming language, Ada Compiler Validation Summary Report, Ada :
Compiler Validation Capability, ACVC, Validation Testing, Ada '
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD- 4

1815A, Ada Joint Program Office, AJPO y

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
See Attached.

R

]

DD OB 1473 €o1TioN OF 1 NOV 65 IS OBSOLETE 3

1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED i

SECURITY CLASSIFICATION OF iHIS PAGE (When Data Entered)

Ada® Compiler Validation Summary seport:

¢.mpiler Name: Intermetrics 370/UTS Ada Compiler, Version 201.16¢c

Hosts and Targets:
. IBM 3083 under UTS, Version 2.3
. IBM 4341 under UTS, Version 2.3

Testing Completed 26 September 1986 Using ACVC 1.8

This report has been reviewed and is appeoved.

Lprgtant) Chtuwd

Ada Validation Facility

Georgeanne Chitwood

ASD/SIOL

Aright-Patterson AFB OH 45433-6503

Accession For
NTIS GRA:IL g
DTIC TAB
Y—Ez}b“*EQJA)‘;“ éQ;_&{:k: Unannounced O
Ada Validation Organization Justificatien——— —— -
Dr. John F. Kramer
Institute for Defense Analyses By
Alexandria VA Distribution/

Availability Codes

Aveil and/or
Dist Special

Ada J%’nt Program Office ﬁ_ /

Virginia L. Castor
Director

Department of Defense
Washington DC

®prda is a registered trademark of the United States Government
(Ada Joint Program Office).

YT T TYe Lo Aok Bt Aol Aol ok i

fv AVF Control Number: AVF-VSR-44.1286

& Ada® COMPILER

Uy VALIDATION SUMMARY REPORT:

L3

Intermetrics Inec.

N Intermetrics 370/UTS Ada Compiler, Version 201.16c
IBM 3083 and IBM 43u1

B Completion of On-Site Testing:
26 September 1986

s Prepared By:
J Ada Validation Facility
Nh ASD/SIOL
Wl Wright-Patterson AFB OH 45u433-6503

e Prepared For:

2] Ada Joint Program Office

o United States Department of Defense
o Washington, D.C.

) ®Ada is a registered trademark of the United States Government %
A (Ada Joint Program Office).

- e

»
2%, U) . J—— P P L G I PO ‘- .y
Ot OUOLY) L T AR " o T 0 v C) ST PR W) e Ay r o IE AT AT
RO Rt e e ST R G A L ISR N RY ol 27 DAL OO E T L2 AL oo St IR SR 20N A

(3

Y™ AOONK WA O R A N N N I I wWIN I I T (N - P avE L asd oan ih

Wi, TS S S P U e
R + +
i + Place NTIS form here +
e . +
’ Y)

n e T W T N A T RN N
DR ﬁﬁﬂﬁxﬁ‘kﬁz‘fﬁ;\ﬁa

EXECUTIVE SUMMARY !

-

This Validation Summary Report (VSR) summarizes the results and conclusions g
of validation testing performed on the Intermetrics 370/UTS Ada Compiler,
version 201.16c, using Version 1.8 of the Ada® Comp: 2r Validation
Capability (ACVC). The Intermetrics 370/UTS Ada Compiler is hosted on an
IBM 3083 and an IBM 4341 operating under UTS, Version <.3. Programs {
processed by this compiler may be executed on an IBM 3083 or an IBM U341
operating under UTS, Version 2.3. ; A

On-site testing was performed 22 September 1986 through 26 September 1986
at Intermetrics Inc., Cambridge MA, wunder the direction of the Ada
Validation Facility (AVF), according to Ada Validation Organization (AVO) X:
policies and procedures. The AVF identified 2210 of the 2399 tests in ACVC '

Version 1.8 to be processed during on-site testing of the compiler. The 19 ‘
tests withdrawn at the time of validation testing, as well as the 170
executable tests that make use of floating-point precision exceeding that v

supported by the implementation, were not processed. Arfter the 2210 tests
were processed, results for Class A, C, D, or E tests were examined for
correct execution. Compilation 1listings for Class B tests w-re analyzed
for correct diagwnusis of syntax :nd semantic errors. Compilation and 1link S
resn'ts of 7Tlass L tests were snalyzed for correct detectiuu of errors.
Ther? were 29 of the processed tests determined to be 1inapplicable; the
remaining 2181 tests were passed.

The results of validation are summarized in the following table:

L L)

RESULT CHAPTER TOTAL 2
2 3 4 5 6 7 8 9 10 11 12 :

$

Passed 102 251 334 235 161 97 134 262 128 32 218 227 2181 '
Failed o 0 0 0 O 0 O O O o0 o0 o0 0 ‘

Inapplicable 14 74 8 12 O 0 5 0 2 0 0 6 199 :

Withdrawn 0 5 5 0 O 1 1 2 4 0 1 0 19 k
TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399 ol
A
: The AVF concludes that these results demonstrate acceptable conformity to
o ANSI/MIL-STD-1815A Ada.
X t
S:i :
i_ "
f; ®ada is a registered trademark of the United States Government
! (Ada Joint Program Office).
)

T, a0 VRO RCRLRES

s) ol 34) S .
S iHNG) ‘n t‘.‘\‘v‘i‘ DRNg ‘t‘.‘a.ﬂ,’.’.‘q'.‘»’ .‘!‘.‘ X% .i ‘.0 Ot s H.h RN SOty SR

'k

;qd TABLE OF CONTENTS
vy
.;,; CHAPTER 1 INTRODUCTION
A\
‘:. 1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1=2
" 1.2 USE OF THIS VALIDATION SUMMARY REPORT « 12
1'3 REFERENCES e o s e o e ¢ o & & o o o o oo e o e e @ 1‘3
g 1.4 DEFINITION OF TERMS . . . & ¢« ¢ & ¢ ¢ v o ¢« o &« o+ 1=3
:') 1.5 ACVC TEST CLASSES [.] [. . . [[[. 1““
o0y
e CHAPTER 2 CONFIGURATION INFORMATION
X 2.] CONFIGURATION TESTED LI) . LI} e o o *® & ® o o & o 2-1
.’\ 2.2 IMPLEMENTATION CHARACTERTT (CS & 4 o o o s o o o o 2=2
S
nt
" CH.> 4R 3 TEST INFORMATION
P
"_ 3.1 TEST RESULTS . [['3 L] . - [. 3 [. [. . L) . L] 3‘1
Zt! 3.2 SUMMARY OF TEST RESULTS BY CLASS . « + « + ¢ &« &+ o 3=1
~T 3.3 SUMMARY OF TEST RESULTS BY CHAPTER . . . « « & « « 3=2
,:{ 3.4 WITHDRAWN TESTS ¢ 4 o ¢ o s o« o o s o o 3=2
‘. Y 3.5 INAPPLICABLE TESTS . * » . 3 L) . . 3-2
3.6 SPLIT TESTS s & & & e o ¢ e s *» s ° s e s & s s 3-)"
P 3.7 ADDITIONAL TESTING INFORMATION . ¢« & « &+ & & o « » 3=U4
-':':. 3.'{.1 Prevalidation ® & & o e ® 6 o & 8 5 2 o s s s . 3-)"
"'::-: 3-702 Test MethOd e e & 6 o & e @ 6 & o ® & & o e ¢ = 3-“
:::: 3.703 TeSt Site ¢ @ e & 5 82 e 6 o o e e e & o s o o 3-5
J
ax; APPENDIX A COMPLIANCE STATEMENT
the
B
*2 APPENDIX B APPENDIX F OF THE Ada STANDARD
o
4 H APPENDIX C TEST PARAMETERS
.';;: APPENDIX D WITHDRAWN TESTS
A
¥y,
308
o)
Sl
R
[
B
g

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) deseribes ... extent to w~hich a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, an? any implementation-dependent features
must <onf.rm to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understcod that some differences Jdo exist between implementations.
Th: a4 Standard permits some implementation dependencies--for example, the
maxisum length of lidentifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal 1language constructs and that it identifies and rejects
illegal language constructs, The testing also identifies behavior that 1is
implementation dependent but permitted by the Ada Standard, Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

11

-

LS Y “‘v-f

: e % S W W) AN e, 4 1,00 W Wi o AT 58 S R N —'(.'J:'\" SN Y oL Rl "
",l n'l';,l" ,o,",l"l?T‘-’l'-:"a"'a‘l’:f'A‘\‘Q"‘O?"I!‘?l. ,l.‘!\ ". 'Js‘o'l:.ﬁa ?.Q.. 2 .‘." "! * I.' a - 2! oK) « A A W .\\‘(.\1 Iy »'. all f‘l..'l N 1) s‘l‘!‘l'n‘l 2 .:\‘

* ~
o INTRODUCTION

459
o

=

i 1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

3} This V53 documents the results of the valldation testing performed on an A
s ' Ada compiler. Testing was carried out for the following purposes: d
- d
"} . To attempt to identify any language constructs supported by the

2 compiler that do not c~nform to the Ada Standard
oy . To attempt to identify any unsupported ianguage constructs .
:'- required by the Ada Standard :
:E . To determine that the implementation-dependent behaviur is allowed h
& by {1e Ada S*andard]
*.‘ +
'i. cesting --° this compiler was conducted by SofTech, .uc., under the :
;:: directi.r. of the AVF according to the procedures established by the Ada i
ui’ Validation Organization (AVO). On-site testing was conducted from 22 y
" September 1986 throich 26 September 1986 at Intermetrics Inc.,, Cambridge 4
(g MA.

Cﬁ i.# USE OF THIS VALIDATION SUMMARY REPORT

-'.

Consistent with the naticusl laws of the originating country, the AVO may

& make full and free public disrlosure of this report. In the United States,
- this is provided in accordance with the "Freedom of Information Act" (5 ‘
o) U.S.C. #552). The results of this validation apply only to "he computers,
’j- operating systems, and compiler versions identified in this report.

. The organizations represented on the signature page of this report do not

2 represent or warrant that all statements set forth in this report are

- accurate and complete, or that the subject compiler has no nonconformities

w to the Ada Standard other than those presented. Copies of this report are
-~ available to the public from:

-

- Ada Information Clearinghouse

T Ada Joint Program Office
< OUSDRE
& The Pentagon, Rm 3D-139 (Fern Street)

3 Washington DC 20301-3081

-“.
= or from:

P A
- Ada Validation Facility H
- ASD/SIOL

% Wright-Patterson AFB OH U45433-6503

vy
By
,\

L'

3
o

A

| 1-2

‘l'

.I

)

T RGP TR P T T PR N SR N UL R SN U A R S S I e T . ;2 JORI |
St \(_ . et e e -",,-‘-_‘. ol A _:.- S e & _'.(o (\\(“I ‘-_: A _‘1’.“'
3 " » . B . 3 R 4 it Dt

NS v

. INTRODUCTION

A5

R
;“’ Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

L"
%4 .
bl Ada Validati.n Organization ‘
e Institute for Defense Analyses

k. 1801 North Beauregard Street

Ly Alexandria VA 22311

l;‘!
.
n 1.3 REFERENCES

X s
554 1. Reference Manual for the Ada Programming Language,
'tJ ANST/MIL-STD-1815A, FEB 1983.

:: 2. Ada Validation Organization: Policies and Procedures, MITRE

o Corporation, N 1982, PB 83-110601.
e

> 3. Ada Compiler Validation Capability Implementers' Guide, SofTech, \
e Inc., SEP 1986.

’

7

» \
g 1.4 “EFINITION OF TRRMS

e

o, .
h{ ACVC The Ada Compiler Validation Capability. A set of programs 4
~ that evaluates the conformity of a compiler to the Ada
.J language specification, ANSI/MIL-STD-1815A.
,40‘ 2
ffﬂ Ada Standard ANSI/MIL-STD-1815A, February 1983.)
1S \
'y Applicant The agency requesting validation. f
il 5

B AVF The Ada Validation Facility. In the context of this report,
o0 the AVF 1s responsible for conducting compiler validations

e according to established policies and procedures.
‘%2 . AVO The Ada Validation Organization. In the context of this :
o report, the AVO 1s responsible for setting procedures for

= compiler validations.

$: Compiler A processor for the Ada language. In the context of this 3
I report, a compiler 1is any language processor, including ;
E: cross-compilers, translators, and interpreters.
!‘! \J
- Failed test A test for which the compiler generates a result that
;fﬁ demonstrates nonconformity to the Ada Standard.

i,

o’
": Host The computer on which the compiler resides.

1-3

-ya L4 -.’-- -"’ " -,"v"\"""".' / ‘b r L. 4l ’ ~,t ‘\‘_, v ”""\\1“'_\“}; - "?-V-'."\‘ -.;:-‘-
RN RV ARMAT R SRR HAALAG WAL RAL. ;

PO P VI T T O O PO YO T af Aor ot £.3 o2 Ay 2ad o2 o nab 4s 48 B R o At AR AL AR A A dn bl AR o A UL S AL RS A -1

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required tu support or may legitimately support in a way
other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.
Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or feati -3 to the Ada Standard. 1In the
context of this report, the term is wused to designate a
single test, which may couprise one or more files.

Withdrawn A test found to be incorrect .id not :us~1 to check conformity

test .2 the Ada languige specification. A tes' nay be iacorrect
because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC, The ACVC
contains both legal and 1illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class 3 tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be Ssuccessfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For exanple, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test 1s passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

C.ass B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Ve Class C tests check that legal Ada programs can be correctly compiled and

bl executed. Each Class C test is self-checking and produces a PASSED,
“ﬁﬁ FAILED, or NOT APPLICABLE message indicating the result when it is
i executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

Sl .r‘_-(‘

. e e hY (-.- ‘-{\-‘.“- S ’ -t _\:.f‘{ ,;",:'I‘“-('\{

m'n' rx’\'n‘\‘u'- ~

ANA=ZANN
‘¢¢Qﬂﬁ{4§
A

2
L
4

L-4
¥
>

[P

(R

»
s

-~
PO

-

5
s

S

‘
'5 l..

Y

.1,.'
a_a_ v .,

1

Ny ‘.[> ;

t

LY

L N

4

i
&

'

bﬁ

INTRODUCTION

permitted in a compilation or the number of units in A library--a compiler
may refuse to compile a Class D test and still be a conforming compiler,
Therefore, 1if a Class D test fails to compile because the capacity of the
compiler is exceeded, tue test Is classified as inapplicable. If a Class D
test compiles successfully, 1t is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it 1is compiled and executed. However, the Ada
Standa~d permits an implementation to reject programs containing soue
features addressed by Class E tests during compilation. Therefore, a Class
E t:..,. is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for au
allowable reasoan.

Class L. Lests check that 1incomplete or illegal Ada prograws involving
multiple, .¶tely compiled .units are detected and not allowed to
execute. Class L tests are compiled separatel, and execution is attempted.
A Class L test passes if it 1is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elnaporated.

Twc library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the ~xecutable tests. Th: nackage REPORT
provides the mechanism hy which ex. . ..,ie tests report PASSED, FAILED, or
NOT APPLICABLE r~+1its, [t also provides a set of identity functions used
to defzat some .oupiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
en3ure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place fealures that may not be supported by all implementations in separate
testr. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A 1ist of the values used for this validation are
listed in Appendix C.

A compiler must correctly process each of the tests 1in the suite and
demonstrate conformity to the Ada Standard by elther meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the 1implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, 13 not wused 1in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

1-5

~
»

N . . B T
I R P R o s R e Tt S S S

iy A . DS RN L R TN

o U

[

RO -4 SAMAIL

J I)
.

AREE b} 3

al.

CHAPTER 2

™ N
.

CONFIGURATION INFORMATION

b

AP

"7

v ~x
iy

2.1 CONFIGURATION TESicD

bt
«

The candidate compilation system for this validation was tested wunder the
following configuration:

T
‘¥

Co..pfler: Intermetrics 370/UTS Ada Compiler, Versiun 101.16¢
ACVC Version: 1.8

Certificate Expiration Date: 16 December 19387

. .
i | A
'h 'v Cw ,' v

x

. v
Id
*

Host and Target Computer:

¥ e B)
a

Machine: IBM 3083 gﬁ

Operating System: UTs !_
Version 2.3 3

Memory Size: 24 megabytes K

Host and Target Computer: !3
Machine: IBM 4341 -

Operating System: UTS N
Version 2.3 i

Memory Size: 12 megabytes t{

"f oL,
‘_(A_’A..ﬁaf A.’ \Afh L.'- JA e, A')L“

‘ L

TN

[

”

T

4, ChAN

0y

n, w, e
' "n

-

ARG

e
S,

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behavior of a compiler 1in those areas of the Ada Standard that
permit implementations to differ. Class D and E tests specifically
check for such implementation differences. However, tests in other
classes also characterize an 1Ilmplementation. This compiler 1is
characterized by the following interpretations of the Ada Standard:

. Capacities.

The compiler correctly processes Cats conta.ulng loop
statements nested to 17 1levels and recursive procedures
separately compiled as subunits nested to 17 1levels. The
compiler could not process block statements nested to 65
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H
(8 tests), D560uiI3, DOUOOSE..G (3 tests), and D29002K.)

. Universal integer cal~ulations.

An implementatisn 1s allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests DUAOO2A, DLAOO2B, O'lACOUA, and
DU4AOOYB.,)

. Predefined types.

This implementation supports the additional predefined type
SHORT FLOAT in the package STANDARD. (See tests B86001C and
B86001D.)

. Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may
raise NUMERIC_ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC ERROR during execution. (See
test E24101A.) -

« Array types.

An implementation 1is allowed to railse NUMERIC_ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD . INTEGER'LAST and/or SYSTEM.MAX_INT.

9. 1% 9y WY >e "
TN -~ ‘ ’:.‘

WAL

%

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding TNTEGER'LAST
raises NUMERIC ERROR when the array type 1s declared. (See
test °52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components railses NUMERIC_ERROR when the array
type is declared. (See test C52104Y.)

A null array with one dimension of 1length greater than
INTEGER'LAST may raise NUMERIC _ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternately, an implementation may
accept the Jeclaration. However, lengths must match in array
slice assignments. This implementation raises NUMERIC_ERRANR
when the array type is declared. (See test E52103Y.,

In assigning one-dimensional array types, th- expression does
not appear to be evaluated in its entirety before
CONSTRAINT_ERROR is raised when checking whether the
expression's subtype 1is c.napatible with the target's subtype.
In assigning two-dimensional array types, the expression does
not appear to be evaluated in its entirety before
CONSTRAINT FRROR is raised when checking whether the
expression's subtype 1is compatible with the target's subtype.
(See test C52013A.)

t::: . Discriminated types.

o

Cola During compilation, an implementation is allowed to either
~}ﬁ} accept or reject an incomplete type with disceriminants that is
b used in an access type definition with a compatible
) discriminant constraint. This implementation accepts such
:;:ﬁ Subtype indications. (See test E38104A.)

Al

’:i In assigning record types with discriminants, the expression
T does not appear to be evaluated in 1{ts entirety before

“I

CONSTRAINT_ERROR 1s raised when checking whether the
— 2xpression’'s subtype is compatible with the target's subtype.

s (See test C52013A.)

o L
li?;

»

:Rj . Aggregates.
e ™

- In the evaluation of a multi-dimensional aggregate, all choices
f~fw appear to be evaluated before checking against the index type.
550 (See tests CU43207A and CU3207B.)

-
(%
n*jﬂ In the evaluation of an aggregate containing subaggregates, all
Bl choices are not evaluated before being checked for identical
S bounds. (See test E43212B.)
AN
N
. .:\'

LN
; |
5 ‘h J
o 2-3
‘=

f‘

r

..' f.‘n" Tl .F‘.(}.ﬁ I - . : o -'.'I“f..

‘%
:

A . " N L L PP ON T DT TOTTY PP T R I TN O T IR TN TRV YT
Ay

Nty
-."-.,
}'\‘. ¢ - , .
:ya CONFIGUAAT N INFORMA.ION
LS
W, 2
uqf All choices are evaluated before CONSTRAINT ERROR is raised ir
- a bound in a nonnull range of a nonnull aggregate does not
belong to an index subtype. (See test E43211B.)
" -
-
:}:: . Functions.
'I.. .'.-
~ An implementation may allow the declaration of a parameterless
A function and an enumeration literal having the same profile in
s the same immediate scope, or it may reject the function
,‘QQ declaration. If it accept: the function declarations, the use
s, of the enumeration literal's identifier denotes the function.
93 } This implementation rejects the declarations. (See test
) E66001D.)
R
N
SN . Representation clauses.
s
§
:.}' The Ada Standard does not require an impiementation to support
i:&l representation clauses. If a representation clause is not
.é supported, then the implementation must reject it. While the
X iﬁf operation of representation clauses is not checked by Version
S 1.8 of the ACVC, they ire nsed in testing other language
:‘;: features. This implementation rejects 'SIZFE and 'STORAGE SIZE
2" - for tasks, 'STORAGE_SIZE i'ui nollections, and 'SMALL clauses.
e Cnumeration representation clauses, including those that
vy, 3pecify noncontiguous values, appear not to be supported. (See
*:i. tests C55B16A, C87B62A, CB87B62B, C87B62C, and BC1002A.)
JQSI
4 ‘F a
?; . Pragmas.
;;L; The pragma INLINE is supported for procedures. The pragma
St INLINE is supported for functions. (See tests CA3004E and
T CA3004F.)
Al
J‘,&:
“l;~ . Input/output.

24

The package SEQUENTIAL_ IO cannot be instantiated with

;ﬁt unconstrained array types and record types with disceriminants

) without defaults. The package DIRECT IO cannot be instantiated

555 with unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C, AE2101H,

.~'; CE2201D, CE2201E, and CE2401D.)

S q" -

‘E;: An existing text file can be opened in OUT _FILE mode, can be

;5;- created in OUT_FILE mode, and can be created in IN _FILE mode.

e (See test EE3102C.)

[

Ve More than one internal file can be associated with each

X z& external file for text I/0 for reading only or writing only.

ha (See tests CE3111A..E (5 tests).)

u

0

. 2-4

O AN RS NN
c“-.'-' o'

o> e ﬂ'-., ”f * -
e,'-. ,'“ 2 5 ,l;‘ Ry e t.n“‘ . \‘i' \h” XA ”g:”. ™ .“|.

i CONFIGURATION INFORMATION ;

ol :
‘G N,
gt More than one internal! file can be assoclated with each d
external file for sequential I/0 for both reading and writing.
Y (See tests CE2107A..F (6 tests).) !
'CH \
N More than one internal file can be assoclated with each A
e external file for direct I/0 for both reading and writing. 3
4 (See tests CE2107A..F (6 tests).) :
gﬁ An external file associated with more than one 1internal file 3
A can be deleted. (See test CE2110B.) h
A :
0 {
0 Temporary sequential files are given a name. Temporary direct N
Le files are given a name. Temporary filles given names are
' deleted when they are closed. (See tests CE2108A and CE2108C,)
‘ Y,
! 0
2,}: . Generics. '
K U
L '
;?' Body and subunits of a generic wunit m:3t be in the same i
@ compilation as the specification if instantiations preccie
! them. (See tests CA2009C and CA2009F.) y
[y
{Qf 4
£
& 4
2 .
3 :
1 '
17 %] ‘(
N)
> X
i
" .
%E
’)."
L, y
T ,
gg e
b ¥
T
" :
'.‘
'y .
2-5 :

A A]

S TSI TR L S
L

NIRRT T Py BTN it A o N, YT
"ﬂhﬁhﬁ!‘@ .‘ A NN BN B l.!'l !h. 'W\\"M - h‘ WV 4‘“ .‘!\.S}.‘h

: ‘-;";

e

w

s‘l."

.i:l.v

LA

egiag.‘

":':'v

o

H':‘

b) e

0

thealy CHAPTER 3

gl TEST INFORMATION

l?g.l:

W

»

Jﬁ& 3.1 TEST RESULTS

+ * .

Lo

n’*% Version 1.8 of the ACVC contains 2399 tests. When validation testing of
3@ Intermetrics j70/UTS Ada Compiler was performed, 19 tests had been
3 & withdrawn. The remaining 2380 tests were potentially applicable to this
ﬁ.: validation. The AVF determined that 199 tests were inapplicable to this
? :f implementation, and that the 2181 applicable tests were passed by the
N implementation.,

35

}.C‘ The AVF concludes that the testing results demonstrate acceptable

conrormity to the Ada Staundard.

"‘ 3.2 SUMMARY OF TEST RESULTS BY CLASS

RLME

J

oW

w4 RESULT TEST CLASS TOTAL
2 A_ B C D E L

;

K Passed 67 862 1181 12 13 up 2181
:;? Failed 0 0 0 0 0 0 0
" .

[)

X ! Inapplicable 2 5 187 5 0 0 199
oy .

A Withdrawn 0 7T 12 0 0 0 19
Ay TOTAL 69 874 1380 17 13 46 2399
ot

+ 3%

s .
‘»

neted

o

e

R

Ny

'I.!

K

N

8,

’... 3-1

. . 1 - 0 J" “«)M 0 . "‘ . A
Sty ?-.i'ffc'zf"!‘l';.\ O ,'ﬂk 0' \'u.‘ X ‘5' X i‘q,"u.i ORI DN o"'l:i't. |.l' “"* o S S Y ,u_ '* '{\' RNy

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8B 9 10 11 12 14

Passed 102 251 334 235 161 97 134 262 128 32 218 227 2181
Failed 0 0 0 0
Inapplicable 4 74 86 12
Withdrawn 0 5 5 0

TOTAL 116 330 425 247 i0: 98 140 264 134 32 *19 233 2399

3.4 WITHDRAWN TESTS

The foll~wing 19 tests were withdrawn from ACVC Version 1.8 at the time
this validation:

C321144 c41i044 B74101B

B833203C B45116A C87B50A

C340184A Ccu48008A €92005A

C35904A BU9006A C9UOACA

B37401A B4AO10C CA3005A..D (4 tests)
BC3204C

a5 B T
- e -

-

e

See Appendix.D for the reason that each of these tests was withdrawn.

i
el _

ushﬁﬁl‘

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that 1s either inapplicable or
withdrawn, For this validation attempt, 199 tests were inapplicable for
the reasons indicated:

C34001D, B52004E, B55B09D, and C55BO7B use SHORT_INTEGER which is
not supported by this compiler.

C34001E, B5200u4D, BS55B0O9C, and C55BO7A use LONG_INTEGER which 1is
not supported by this compiler.

C34001G and C35702B use LONG_FLOAT which is not supported by this
coampiler,

3-2

7 T Y v ; Sl " A" Al

- - ; - Y P) - ' Y a .50 BN "-"‘f\‘\“'\"(\(R- A R
PR IR M PRSI S S0 i 1 4 (MR DO RIS MR RGO IV R Y iR

o
'y N
KON ¥ <t n

0 00> M RO) 3 1O,
'4‘}!‘4". .‘g,&‘;.lqlh"‘.l'q.l !I‘p,l’v‘! bJ', ,‘qh o M1 4%,

A AT T Mt -
\ '\f;\’\-

TEST INFORMATION

D5SA03E..H (4 tests) require 31 to 65 levels ot loop nesting which
is greater than this implementation supports.

D56001B requires 65 levels of block nesting which is greater than
this implementation supports.

C55B16A makes use of an enumeration representation clause
containing noncontiguous values which 1is not supported by this
compiler.

B86001D requires a predefined numeric type other than those
defined by the %43 language in package STANDARD. There is no such
type for this implementation.

C86001F redefines package SYSTEM, but TEXT IO is made obDsolete by
this a=w definition in this implementation and the test canuv Le
exe~:t2d since the package REPORT 13 dependent on the package
TEXT_IO.

CB87B62A..C (3 tests) use length clauses which are not supported by
this compiler. The length clauscs are rejected during
compilation.

CA2009C and CA”009F compile generic subunits in separate
compilation files, For this implementation, the body and subunits
of a generic unit must be in the same ~ompilation as the
s:ecification if instantiations pr. '-de them.

AE2101C, CE2201D, and CE2201E use an instantiation of package
SEQUENTIAL IO with unconstrained array types which is not
supported by this compiler,

AE2101H and CE2401D use an instantiation of package DIRECT_IO with
unconstrained array types which is not supported by this compiler.

CE3111B assumes that if the same external file is open for both
reading and writing, then characters written may be immediately
re-read, without a new-line/reset/close separating the read and
write, This implementation buffers output and requires that a
reset be issued between writing and reading from the same external
file, if the read wants to be sure to see the effect of the write.

The following 170 tests require a floating-point accuracy that
exceeds the maximum of 15 digits supported by the implementation:

C24113L..Y (14 tests)
C35705L..Y (14 tests)
C35706L..Y (14 tests)
C35707L..Y (14 tests)
C35708L..Y (14 tests)
C35802L..Y (14 tests)
C45241L..Y (14 tests)

3-3

% T S A
PR O A
WS T 0% P ¥y)

Pyl TEST INFORMATION

W C45321L..Y (14 tests)

C45421L..Y (14 tests)
NS C4s5424L..Y (14 tests)
) C45521L..Z (15 tests)

&)
:Tf C45621L..2 (15 tests)
Eﬁ
[
i- 3.6 SPLIT TESTS
[
': If one or more errors do not appear to have been detected in a Cliss B test
£ because of cowplier error recovery, then the test is split into A set of
smaller tests that contain the undetected errors. These splits are ‘' en
. r piled and examined. The splitting - :3s continues until all errors
= are etected by the compiler or until thee2 {: exactly one error pe. spa.t.
LQ Auy Jlass A, Class C, or Class F test that cannot be compiled and executed
‘?\ because of its size is split into a set of smaller subtests that can be
AN processed.
-,: Splits were required for 2 Class B tests:
[
o BA1101C BC3205D
o
-f'.
- 3.7 ADDITIONA:. TESTING INFORMATION

3.7.1 Prevalidation

J Prior to validation, a set of test results for ACVC Version 1.8 produced by
the Intermetrics 370/UTS Ada Compiler was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
‘kr compiler successfully passed all applicable tests, and the compiler
N exhibited the expected behavior on all inapplicable tests.

o 3.7.2 Test Method

(. :

{ﬁj Testing of the Intermetrics 370/UTS Ada Compiler using ACVC Version 1.8 was \

b Tr conducted on-site by a validation team from the AVF. The configuration '
consisted of an IBM 3083 operating under UTS, Version 2.3. The following

" configuration was also tested using a subset of the ACVC:

Yud

z Host: Target:

ok IBM u43u1 IBM 4341

o A magnetic tape containing all tests except for withdrawn tests and tests N

o requiring unsupported floating-point precisions was taken on-site by the .
validation team for processing. Tests that make use of i

3-4
;

\

.
-

B e T o o O o D ot Lt o A N K R M g T P D e R AN IR S
! .-"‘»‘r‘-.t. .l,\ -‘.ﬂ .i") "!Q’,'l o LW TRy . N l.)..!'ﬁ h.‘t’hr‘ g ‘J‘n A% '. -‘ ‘N WS, !.l &0 J;'.\)!‘n AN ;.f BlafAND

0w
Y

i~
“~ TEST INFORMATION
O
\’\
v \}\
",
;.$ 2 implementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation - 3ting
:wﬁs w =+ included in their split form on the magnetic tape.
™ ’
Hl
?‘ The contents of the magnetic tape were loaded directly onto the host
’ computer,

After the test files were loaded to disk, the full set of tests was
cowpiied on the IBM 3083, and all executable tests were linked and
executed, Results were printed from the IBM _0%3. The tests were reviewed
by the validation team and showed acceptable results.

In parallel with the full validation on t' - B8M 3083, a subset of the ACVC
Versio~ °.8 was executed on an [BM 4341 -iuder UTS, Version 2.3. The subset
27 3ixt ; cests cousisted of 5 tests selected at random from the classes of
tests within each chapter. The tests were compiled and executed (wirn
applicable) on the IBM 4341, The test results were transferred from the
IBM 4347 to the IBM 3083 via a Remote Spooling Communications Subsystem
(RSCS) and printed from the IBM 3083. The tests were reviewed by the
validation team and showed acceptable results.

The compiler was tested using command scripts provided by Intermetrics Inc.
and reviewed by the validation team. The following options were in effect
for testing:

Option Effect
-quiet gives a sparse listing
-opt cg as.embler=false don't produce assembler listing

Tests were compiled, linked, and executed (as appropriate) using a sirgle
host and target computer. Test output, compilation listings, and job logs
were captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

[3.7.3 Test Site

The validation team arrived at Intermetrics 1Inc., Cambridge MA on 22
September 1986 and departed after testing was completed on 26 September
1986.

. 3-5
SRS

;%;\
-‘ -‘ - N - - — . . - N - -

I ‘\'-.‘-.'-s_',,x'; AR RIS " "'s';}-." Vo o aG T A TN s Nt
. Al e, AN i U A AL A 1.5, A AT ks :

e dca M M Mt b N AN ey,

K APPENDIX A

™ COMPLIANCE STATEMENT

N Intermetrics Inc. has submitted the following

{£¢ compliance statement concerning the Intermetrics
- 370/UTS Ada Compiler.

o

X
o Py s.

.
1.

5 A

22N
TN T

L

g A-1

K) o , o i e g™ ') Qv e WA X a P LPLIGES ATy A
4 ‘gl’.f.i el L ‘. ~ ui"’.‘i (X %y 'i.l' "“"'» 2 5:"\- ' ", "(e Ff \ i AL a. > < '.‘}',A ":,\’l ¥ i

A P00 Wy NG
v.‘?'ﬁ.h’?‘\“.'c N ..h..'c . ‘i.'o'l, (i O A X 5‘ 0)

Rt A% ek A 8% Bav ol Sat Sed aat

B, COMPLIANCE STATEMENT
4ty
» Compliance Statement
8
e
b
: Configuration:
;f Compiler: Intermetrics 370/UTS Adé@Compiler, Version 201.16c
[
N Test Suite: Ada Compiler Validation Capability, Version 1.8
[\
. Host and Target Computer:
3 Machine: IBM 3083
2,
- Operating System: UTS, Version 2.3
e Host and Target Computer:
a
" Machine: IBM 4341
5
re Operating System: UTS, Version 2.3
.-.:
Moy
>,
5 Intermetrics Inc. has made no deliberate extensions to the Ada language
! standard.
. Intermetrics Inc. agrees to the public disclosure of this report.
-
K>, Intermetrics Inc. agrees to comply with the Ada trademark policy, as
W defined by the Ada Joint Program Office.
)
¥

A= i vave: 7/22/86

1o Intermetrics Inc.
Dennis D. Struble

i Manager, Ada Compilers
Wy]
i
&
Y
[®pda 1s a registered trademark of the United States Government
. (Ada Joint Program Office).
{
A~2
'’

HEYy -. ~ xS
AR LN .\ , ::hJ. .

R T N NS S b e R

APPENDIX B

APPENDIX F OF THE Ada STANDARD

fhe only allowed implementatiou dependencies correspond to implementation-
dep+:.dent pragmas, to certain machine-~dependent conventions as mentior.d in
chapter 1. of MIL-STD-1815A, and to certain allowed restrictions on
representation classes. The implementation-dependent characteristics of
the Intermetrics 370/UTS Ada Compiler, Version 201.16c, are described in
the following sections which discuss topics 1in Appendix F of the Ada
Language Reference Manual (ANSI/MIL-STD-1815A). The specification of the
package STANDARD is also included in this appendix.

package STANDARD 1is

type IN.isGER is range -2147483648 .. 2147483647T;

type SHORT FLOAT is digits 6 range -16#0.ffffff#e63 .. 16#0.ffffff#eb3;

type FLOAT is digits 15 range -16#0.ffffffELFfIff#e63 ..
16#0.FECLELLELLLEL#e63;

type DURATION is delta 2.0 ®*#* (-14) range -86400.0 .. 86400.0;
DURATION'SMALL = 2.0 #% (-14)

end STANDARD;

L T S S T SLPEIC S BTN B R L R L S N R I
R S A e el AL AS NI
- . .

-, - - e
0

B RIS S IR

% '\i

0y A o v W o - & - b > S B ual 1ol 208 oaf Sad o) a8 e Wh""l“""--ﬂ

.
AT 1
.

s ;

23 . “

o Appendix F. IMPLEMENTATION DEPEX DENCIES

i This section constitutes Appendix F of the Ada LRM for this

N implementation. Appendix F from the LRM states:

\‘;. The Ada language allows for certatn machine-dependencies in a controlled

'\;' manner., No machine-dependent syntaz or semantic ertensions or restrictions
;‘ are allowed. The only allowed implementation-dependencies correspond to

i implementation-dependent pragmas and attributes, certain muchine-dependent

*:.f{_: conventions as mentioned in Chapter 13, and certain allowed restrictions on

*.3,:{' representation clauses.

)")

:' The reference manual of each Ada tmplementation must include an appendir
) (called Appendiz F) that describes 1l imnlementation-dep-ndent
o characteristics. The Appendiz F for a gwen implementation must st in

: _";‘f particular:

D) "-,-

K :"_\ 1. The form, allowed places, and effect of eLery implementation-dependent

J:. pragma.

2. The name and the type of every implementation-dependent attribute.

‘_"_Zif 8. The specification of the package SYSTEM (see 13.7).

Sl

E; §. The list of all restrictions on representation clauses (see 13.1).

! I*'v
) 5. The conveatinrs used for any implementation-generated name denoting

S0 t:~zlementation-dependent components (see 13.4).

“.\‘

«tj 6. The interpretation of erpressions that appear in address clauses.

- including those for interrupts (see 13.5).

R 7. Any restriction on unchecked conversions (see 13.10.2).

S 8. Any implementation-dependent characteristics of the nput-oulput

-::, packages (see 14).

o

- [n addition, the present section will describe the following

Rl topics:

4

o 9. Any implementation-dependent rules for termination of tasks

’-E-‘:Z dependent on library packages {see 9.4:13).

'_:\ 10. Other implementation dependencies.

ey

11. Compiler capacity limitations.

e e T e T .
A N O A e

o

O e e e e e e vt R e . L I I T S A S PO I T e e
IBAN e PRS AT AN '

F.1 Pragmas

This section describes the form, allowed places, and effect of every
implementation-dependent pragma.

F.1.1 Pragmas LIST, OPTIMIZE, PAGE, PRIORITY

Pragmas LIST, OPTIMIZE, and PAGE are ignored. Pragma PRIORITY is
supported exactly in the form, in the allowed places, and with the effect as
described in the LRM.

- (.2 Pragma SUPPRESS

Form: As specified ‘5 LRM B(14) : SUPPRESS
Allowed Pluc:: As specified in LRM B(14) : SUPPRESS
Effect: Pragma SUPPRESS is ignored.

F.1.8 Prayma INLINE
Form: Pragmu [NLINE (SubprogramNameCommalList)

Allowed Places: As specified in LRM B(4) : INLINE

Fffeci: If the subprogram body is available, and .he subprogram s not
recursive, the code is expanded ‘n-line at every ~all site and is subisct
to all optimizations.

lhe stack-frame needed for the elaboration of the inline subprogram
will be allocated as a temporary in the frame of the containing code.

Parameters will be passed properly, by value or by reference. as for
non-inline subprograms. Register-saving and the like will be
suppressed. Parameters may be stored in the local stack-frame or heldl
in registers, as global code generation allows.

Exception-handlers for the INLINE subprogram will be handled as for
block-statements. {

Use: This pragma is used either when it is believed that the time required
for a call to the specified routine will in general be excessive (this for i
frequently called subprograms) or when the average expected size of
expanded code is thought to be comparable to that of a call.

F.1.4 Pragma INTERFACE

Form: Pragma INTERFACE (language_name, subprogram_name)
where the language _name must be an enumeration value of the tvpe

B-3

SYSTEM.Supported_Language_Name (see Package SYSTEM below).
Allowed Place: As specified in [RM B(5) : INTERFACE.

Effect: Specifies that a subprogram will be provided outside the Ada program
library and will be callable with a specified calling interface. Neither an
Ada body nor an Ada body_stub may be provided for a subprogram
for which INTERFACE has been specified.

Use: Use with a subprogram being provided via another programming
language and for which no body will be given in any Ada program.
See also the LINK_NAME pragma.

The calll..; .onventions for an Ada program calling a non-Aua
subprogram are described in the Run-Time Model B-5.

F.1.5 Pragma LINK_NAME
Form: Pragma LINK_NAME (subprogram_name, link_name)
Allowed Places: .* ; specified in LRM B(5) for pragma INTERFACE.

Effect: Associates with subprogram subprogram_name the name link_name as
its entry point name.

Use: To allow Ada programs, with help from INTERFACE pragma. to
reference non-Ada subprograms. Also allows non-Ada programs to
call specified Ada subprograms.

F.1.6 Pragma CONTROLLED
Form: Pragma CONTROLLED (AccessTypeName)
Allowed Places: As specified in LRM B(2) : CONTROLLED.

Effect: Ensures that heap objects are not automatically reclaimed. Since no
automatic garbage collection is provided, this pragma currently has no
effect.

F.1.7 Pragma PACK
Form: Pragma PACK (type_simple_name)
o Allowed Place: As specified in LRM 13.1(12)

- Effect: Components are allowed their minimal number of storage units ns
g provided for by their own representation and/or packing.

I:ﬁ B-“

a Floating-point components are aligned on storage-unit boundaries.
> either 4 bytes or 8 bytes, depending on digits.

] » Use: Pragma PACK is used to reduce storage size. This can allow records
X "‘ and arrays, in some cases, to be passed by value instead of by
g reference.

B Size reduction usually implies an increased cost of accessing
con:puuents. The decrease in storage size may be offset by increase in
size of accessing code and & :lowing of accessing operations.

B F.1.8 Pragmas SYSTEM_NAME, STORAGE_UNIT,
e MEMORY_SIZE

These pragmas are not supported and are ignored.

¢
s

3

Ly
v

-
e
s ¥

“’
» % '\"‘) Ly 4

2
a6

a,

o~y

SHE

) el

e

I"" ,"(

w3
t 4
ey

l'.

. - ,
P D
SRR AR

v

f-"’ B‘S

LR S

A # W

A.\\\.\"J'

De 0 b0

qq-r-t-f - P N L I . .
s\.‘\- _p_,,\,,s_, LN, N T L

)‘ 3"'.' / " ./' A R AT IRt o %'J'

RN

L aa s g

F.2 Implementation-dependent Attributes

This section describes the name and the type of every implementation-
dependent attribute.

fhere are no implementation defined attributes. These are the values for
certain language-defined, implementation-dependent attributes:

Type INTEGER.

Type

Type

INTEGER'SIZE
INTEGER'FIRST
INTEGER'LAST

SHORT_FLOAT.

SHORT_FLOAT'SIZE
SHORT_FLOATDIGITS
SHORT_FLOAT'MANTISSA
SHORT_FLOAT'EMAX
SHORT_FLOAT'EPSILON
SHORT_FLOAT'SMALL
SHORT_FLOAT'LARGE
SHORT_FLOAT'MACHINE_ROUNDS
SHORT_FLOAT'MACHINE_RADIX
SHORT_FLOAT'MACHINE_MANTISSA
SHORT_FLOAT'MACHINE_EMAX
SHORT_FLOAT'MACHINE_EMIN
SHORT_FLOAT'MACHINE_OVERFLOWS
SHORT_FLOAT'SAFE_EMAX
SHORT FLOAT'SAFE_SMALL
SHORT FLOAT'SAFE_LARGE

FLOAT.

FLOAT'SIZE

FLOATDIGITS
FLOAT'MANTISSA
FLOAT'EMAX
FLOATEPSILON
FLOAT'SMALL
FLOAT'LARGE
FLOAT'MACHINE_ROUNDS
FLOAT'MACHINE_RADIX
FLOAT'MACHINE_MANTISSA
FLOAT'MACHINE_EMAX
FLOAT'MACHINE _EMIN
FLOAT'MACHINE_OVERFLOWS

B-6

= 32 -- bits.
= - (2**31)
(24°31-1)

= 32 .. bits.
=6

=21

= 84

= 2.0**(-20)
= 2.0*%(-85)
= 2.0**84
= false

= 16#0.800000#E-63
= 16#0.FFFFF8#E83

= 84 -- bits.

15

=51

= 204

= 2.0*%(-50)

= 2.0%%(-205)

= (1.0-2**(-51))*2.0**204
= [alse

KL

o) X0 O A

axh

Ll e A Bal A ank Lt B B B Aod el g Aol Gon Bad Sal Moy 2o ol o ao aad- gos aon Bas gos dud A

NS
.

\
g

3

¢
,;.ﬁ'

-
3

st

- -
- -
)
- - -

-
ra'd

- e | iy
IR SEF

DNSPAN

A

e n‘.'wa .'\ A ’u .’

FLOAT'SAFE_EMAX
FLOAT'SAFE_SMALL
FLOAT'SAFE_LARGE

Type DURATION.
DURATION'DELTA
DURATION'FIRST
DURATION'LAST
DURATION'SMALL

Tyz2 PRIORITY.
PRIORITY'FIRST
PRIORITY'LAST

o

*.\’M'*Mc’ﬂ"n N e i RSN

q,~.- (JI- et

s ._-: SCRIPL P P \\\,-14_\\
AT .x.’lm‘_m.nu m_;.

= 252
= 18#0.80000000000000#E-63
186#0.FFFFFFFFFFFFEO#E63

= 2.0**(-14) -- seconds
- 86,400

86,400

2.0**(-14)

-128
127

........

O o e

,‘A‘,'l’c,o aly " W

F.3 Package SYSTEM

package SYSTEM is

type ADDRESS is private; -- =", "/=" defined implicitly;
type NAME is (UTS, MVS, CMS, Prime50, Sperryl100,
MIL_STD_1750A);

SYSTEM_NAME : constant NAME := UTS;

STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant := 2**24; -- 2**31 for XA mode
-- In storage units

-- System-Dependent Named Numbers:

MIN_INT : constant := INTEGER'POS(INTEGER'FIRST) ;
MAX_INT : constant := INTEGER’'POS(INTEGER’'LAST);
MAX_DIGITS : constant := 15;
MAX _MANTISSA : constant := 31;
FINE_DELTA : constant := 2.0**(-31);
TICK : constant :-== 1.0;
-« Minimum process delay is 1.0 second on UTS
-- although clock can resolve to 0.001 second.

-- Other System-Dependent Declarations

subtype PRIORITY is INTEGER range -127..127;

--

-- Implementation-dependent additions to package SYSTEM --

L A I R I I T T I T T T T T

NULL _ADDRESS : constant ADDRESS;
-- Same bit pattern as "null” access value
-- This is the value of 'ADDRESS for named numbers
-- The 'ADDRESS of any object which occupies storay-
<= is NOT equal to this value.

ADDRESS_SIZE : constant := 32;
-- Number of bits in ADDRESS objects.
-- = ADDRESS'SIZE, but static.

ADDRESS _SEGMENT_SIZE : constant := 2**24;

-- Number of storage units in address segment

B-8

S) ‘-f’-‘

LN
A

----- B R T T e S A S
. o e L S
. N A e, A R4 » ~ 0 o *

AN, "!l‘g. h

A e
v -.’-PPA-W"% A

+ 91V, B0, TaW,

W P I
W RO e o
4 ,‘39‘?0‘.‘1‘!' L8 8 "’ AR,

RS S S
L Pt
\' b i) n l“ 15~

Ny
S

R

h>

Gy

Y RS AR
s

'3'!0
\"

N3

<2 tyre ADDRESS_OFFSET is new [NTEGER:

\?' -« Used for address arithmetic
N type ADDRESS _SEGMENT is new [NTEGER;

jﬁ_ _ -- Always sero on targets with
k -- unsegmented address space.
3
W subtype NORMALIZED_ADDRESS _OFFSET is

e ADDRESS_OFFSET range 0 .. ADDRESS_SEGMENT_SIZE - 1;

;‘ﬁ -- Range of address offsets returned by OFFSET_OF

[

oY function "+”(addr : ADDRESS; offset : ADDRESS_OFFSET)

%: return ADDRESS;

B function "+"(offset : ADDRESS_OFFSET; addr : ADDRESS)

- return ADDRESS;

e -- Provide addition between addresses and

,‘5 -- offsets. May cross segment boundaries on targets
p*s -- where objects may span segmentys.

0N -- On other targets, CONSTRAINT_ERROR will be raised
st -- when OFFSET_OF(addr) + offset not in
SR -- NORMALIZED _ADDRESS_OFFSET.

>

E‘,’ function "-"(left, right : ADDRESS) retur~ ADDRESS_OFFSET:
O -- May exceed SEGMENT_SIZE on targets whers objects

' -~ may span segments.

o -- On other targets, CONSTRAINT_ERROR

s -- will be raised if
o0 - - SEGMENT_OF { left) /= SEGMENT_OF(right).
5 function "-"(addr : ADDRESS; offset : ADDRESS_OFFSET) return
. ADDRESS;

§: -- Provide subtraction of addresses and offsets.

s 2 -- May cross segment boundaries on targets whete

(- -- objects may span segments.

3y .- On other targets, CONSTRAINT_ERROR will be rai~«d when
o, -- (OFFSET_OF(addr) - offset)

ey .- not in NORMALIZED _ADDRESS _OFFSET.

"

_.. _ function OFFSET_OF (addr : ADDRESS)
Ly retura NORMAL IZED _ADDRESS _OFFSET;

= -- Extract offset part of ADDRESS

i;: -- Always in range O..seg_size - |

v

5ﬁ function SEGMENT_OF (addr : ADDRESS) return ADDRESS _SEQIENTD:
t’ -« Extract segment part of ADDRESS

= -+« (s3ero un targets with unsegmented address space)
LN

i§ B-9

<

BRI A p R

W
'

" .1 LY LYY ’ y (R A y W'
R e O R R 2 o K Ao R s KM O

function MAKE _ADDRFSS (oifset : ADDRESS_OFFSET,;
segment : ADDRESS_SEGMENT = 0)
return ADDRESS;
-- Build address given an offset and a segment.
<- Offset may be > seg_size on targets where objects
-- may span segments, in which case it is equiv
-- to "MAKE ADDRESS(O0,segment) + offset”.
«- On other targets, CONSTRAINT_ERROR will be raised
-- when offset not in NORMALIZED _ADDRESS _OFFSET. . }

type Supported_Language _Name is -- Target dependent
-- The following are "foreign” languages:
ASSEMBLER,
FORTRAN_MAIN,
FORTRAN,
COBOL MAIN,
COBOL ,
JOVIAL MAIN,
PL1 _MAIN,

AlE ASSEMBLER, -- NOT a "(o:eign” language - uses AIE RTS
UNSPECIFIED _LANGUAGE MAIN,
UNSPECIFIED_LANGUAGE

¥

-« Most/least accurate built-in integer and [loat types

subtype LONGEST_INTEGER is STANDARD.INTEGER;
subtype SHORTEST_INTEGER is STANDARD .INTEGER;

subtype LONGEST_FLOAT is STANDARD.FLOAT;
subtype SHORTEST_FLOAT is STANDARD.SHORT_FLOAT;

private

type ADDRESS is access [NTEGER;
-- Note: The designated type here (INTEGER) is

.- irrelevant. ADDRESS is made an access type
.- simply to guarantee it has the same size as
-- access values, which are single addresses.

-- Allocators of type ADDRESS are NOT meaningtul.

~§- NULL _ADDRESS : constant ADDRESS := null:

end SYSTEM :

xj}'-::
S F.4 Representation Clauses
‘-' This section describes the list of all restrictions on representation clauses.
oV "NOTE: An implementdtion may limit ils acceptance of representation clauses to
! those that can be handled simply by the underlying hardware.... If a program
n,-.‘: contains a representation clause that is not accepted [by the compier/, then the
R xS program is dlegal.” (LRM 13.1(10)).
B There are no restrictions except as follows:
\,;: a. Length clauses are not allowed.
s
:: b. Representation clauses for enumeration types are not allowed.
%
S c. Address clauses are not allowed.
A d. Record-representation-clause:
o5
:‘-: Within a record-representation-clause, the object being represented must
Y be no larger than one 32-bit word.
'i .
The range of bits specified must be in the range of 0..31.
.'f,:jl Record components, including those generated implicitly by the compiler,
o whose locations are not given by the representation-clause, are layed out
v by the compiler following all the components whose locations are given by
the representation-clause. Such components of the invariant part of the !
‘,Z:i record are allocated to follow the user-speciied components of the
ol invariant part, and such components in any given variant part are
L 0< allocated to follow the user-specified components of that variant part.
AN
5 ‘;’)
:;I F.5 Implementation-dependent Components
f}':.‘ This section describes the conventions used for any implementation-
e generated name denoting implementation-dependent components.
s .
: f: There are no implementation-generated names denoting implementation-
,‘i: dependent (record) components, although there are, indeed, such components.
oy Hence, there is no convention (or possibility) of naming them and, therefore.
N no way to offer a representation clause for such components.
::., A NOTE: Records containing dynamic-sized components will contain (generally)
:}': unnamed offset components which will "point” to the dynamic-sized
s components stored later in the record. ACS 370/UTS offers no means to
o specify the representation of such components.
N
!
"‘ |
e B-11
'0‘"0

0y . e Rt k- - ac A it tATacw- e g2~ - . A R RN AT %Y - ™ e A AT TR At R R
B S 5 5 e % e Y e e S e) s M S R A T T g Vv e e N A A A N N ")) Y ">
RO et A SO I S el QR R B 2 A I Mg S A M D T ST M TN

i . v -.,-"-u---v-m
[y

s

F.8 Address Clauses

' This section describes the interpretation of expressions that appear in
5y address clauses, including those for interrupts.

Address clauses are not allowed.

‘:"{ﬁ‘f‘v}:"f

e ¢
~a]

. P
by

4G

\-} v,

B,

o

ol
=
o

F.7 Unchecked Conversions

This section describes any restrictions on unchecked conversions.

a5,
L

> 4

The source and target values must both be of an integer, enumeration. or
access type.

ST TN |
T G TP e -

kezz 7238

A"
iy
LL\"\‘.

-

i s

: B-12

c ey

- o0 W R LIRS 0 TN T Y - A) - A
LIRS REARIGRI ARSI S, | - X T R RER TN S S A AN A NN L

i 1,

LA RV
1
JJJ"JJ-‘

LA S
LAY

P

%2
o’
™
S
Y

>
el

PAEAA SOOI OOC AN SO N 2%y LN Ao " \ r
Bt R R A X R A X N o R AR O o e O O

F.8 Input-Output

This section describes implementation-dependent characteristics of the
input-output packages.

(a) Declaration of type Direct_10.Count? [14.2.5]
0..Integer’last;

(b) Effect of input/output for access types?
Not meaningful if read by different program invocations

(¢) Disposition of unclosed IN_FILE files at program termination? [14.1(7)]
Files are closed.

(d) Disposition of unclosed OUT_FILE files at program termination? [14.1(7)!
Files are closed.

(e) Disposition of unclosed INOUT_FILE files at program termination’
(14.1(7)] .
Files are closed.

(f) Form of, and restrictions on, file names? {14.1(1)]
UTS filenames

(g) Possible uses of FORM parameter in I/O subprograms? [14.1(1)]

The image of an integer specifying the UTS file protection on
CREATE.

(h) Where are I/O exceptions raised beyond what is described in Chapter 147
(14.1(11)]
None raised.

(i) Are alternate specifications (such as abbreviations) allowed for file names’
If so, what is the form of these alternatives? [14.2.1(21)]
No.

() When is DATA_ERROR not raised for sequential or direct input of an
inappropriate ELEMENT_TYPE? {14.2.2(4), 14.2.4(4)]
When it can be assigned without CONSTRAINT_ERROR to a
variable of ELEMENT_TYPE.

(k) What are the standard input and standard output files? [14.3(3)]
UTS standard input and output

(1) What are the forms of line terminators and page terminators? [14.3(7):
Line terminator is ASCILLF (line feed);
page terminator is ASCILFF (form feed)

(m) Value of Text_I0.Count'last? [14.3(8)]
integer'last

(n) Value of Text_[O.Field'last? [14.3.7(2)]
integer'last

B-13

WEACATACACACL CRCARE VL TRy

Qe

‘\‘\ ','\ o« Y
TG

ROT s

W

-

e b L 4 et Sl Sad At Bad 00 48 A s 4 g s auns s san s e o i o0 oa oih ad add ad ath th bt b iAol el dad it el
T WO Cas. w

_\
.
W
h
£
8
e
i 5 (o) Effect of instantiating ENUMERATION_IO for an integer type’
- (14.3.9(15)]
:‘.:. The instantiated Put will work properly, but the instantiated Get
o will raise Data_Error
) .
" (p) Restrictions on types that can be instantiated for input/output?
p Neither direct [/O nor sequential I/O can be instantiated for an
f-.', unconstrained array type or for an unconstrained record type
:: lacking default values for its discriminants.
R, -
NS (q) Specification of package Low_Level I0? [14.6]
I Low_Level_IO is not provided.
<,
N
k-~
K .
»!;' F.9 Tasking
. This section describes implementation-dependent characteristics of the
0y tasking run-time packages,
X2

Even though a main program completes and terminates (its dependent
o tasks, if any, having terminated), the elaboration of the program as a whole
continues until each task dependent upon a library unit package has either

) terminated or reached an open terminate alternative. See [.RM 9.4(13).

2

o

o F.10 Other Matters

:.' ‘
2 This section describes other implementation-dependent characteristics of i
e the system.

¥
LN N
[

Restrictions on SHARED variables (LRMY 9.11):
Must be of a scalar or access typc.

K7 b. Package Machine_Code
Will not be provided.

v on et Sl St
]

: ¢. Order of compilation of generic bodies and subunits (LRM 10.3:9):

k. Body and subunits of generic must be in the same compilation as

; A the specification if instantiations precede them (see Al-

- 00257/02). _
[{
; ;
1.0 §
12} 4
4 B-14)
) ‘
A :
r +

»

»

GNP a e
l*a’lm o W Vg W W% 0 T W, AT AR

R T g A Ty ¥
X "

5 F.11 Compiler Limitations

"::'.‘ (a) Maximum length of source line?
N 255 characters.

\ (b) Maximum number of "use” scopes?
M. Limit is 50, set arbitrarily by SEMANTICS as maximum number
of distinct packages actively "used.”

Al (¢) Maximum length of identifier?
o 255 characters.

- (d) Maximum number of nested loops?
i 24 nested loops.
i

1
]

.l ‘) ll l‘:. Y

24

l{‘ a’a

- ¥
3 .I
nta

]
«

C

@ w2 o o
‘.‘.S':;"".r‘“..‘:

3 -‘n!"-f

ST
N e te-

\' LN

NN A

>

B-15

0) -
" uY,

i W N Ve R Al ™A LTy 7 .
ety SR, b, . ot
"' " R R A AR CH I a t.i‘c.i_c e, ,,0. I,

2

-“.‘

A% e BTy
RSO X

W ﬂmlu .

" T A
:"‘»‘r:‘f S ANNN !I... ':p.ifq.oh,u!,‘

W0
K i
N
:E-\.l i.
Y
o
o
o~ APPENDIX C
-~
. TEST PARAMETERS
fﬁ'
;.. »
N Certain tests in the ACVC make use of implementation-dependent values, such
) as the maximum length of an input line and invalid file names. A test that
wiy makes use of such values is identified by the extension .TST in its file
"l name. Actual values to be substituted are represented by names that begin
L with a dollar sign. A value must be substituted for each of these naues
‘o before the test 1is run. The values used for this validation are given
ﬁ below.
e
1‘ *
d.
W) Name and Meaning Value
$BIG_ID1 (1..254 =>'A', 255 =>'1")
O Identifier the size of the
Y maximum input line lergth with
‘i} varying last character.
) $BIG_ID2 (1..254 =>'A', 255 =>'2')
e Identifier the size of the
o maximum input line 1length with
‘it varying last character.
b
$BIG_ID3 (1..127 =>'A", 128 =>'3", 129..255 =>'A")
.. Identifier the size of the
o maximum input line length with
SN varying middle character.
LY
:_j $BIG_ID4 (1..127 =>'A', 128 =>'U', 129..255 =>'A")
A r Identifier the size of the
. maximum input line 1length with
o varying middle character.
»
:. $BIG_INT LIT (1..252 =>'0', 253..255 =>"298")
) An integer 1literal of value 298
L with enough leading zeroes so

] that it is the size of ‘the
f maximum line length. !
o
<

Al mB A Al ed hes Sue Bia Al mas BaL Aot Lo elMaomhan sk iid aad gl aoe oo d LA gthoa b nuh bt sk atd and ahd ath aid-abi okt ol ahiCe AaE oSl At A A AR A v

TEST PARAMETERS >

% .
s K
¥ -
p- Name and Meaning Value .
&
$3IG_REAL LIT (1..249 =>'0', 250..255 =>"69.0E1") e,
: A real literal that can be
» elither of floating- or fixed- e
A point type, has value 690.0, and N
has enough 1leading zeroes to be
the size of the maximum line :
length. :v
@ $BLANKS (1..235 =>' ') 2
" A sequence of blanks twenty
characters fewer than the size
of the maximum line length. i
s
g $COUNT_LAST 2_147 _u83 647 g
o A universal integer literal ¥
X whose value is TEXT_IO.COUNT'LAST. oy
[Ay
$EXTENDED_ASCII_CHARS "abedefghi jklmnopqrstuvwxyz!$%26[\]1" " {}~" -
A string literal containing all)
the ASCII characters with :_
printable graphics that are not RS
in the basic 55 Ada character -
set. a'
F. $FIELD LAST 2_147_483 64T <3
> A universal integer literal "
whose value 1s TEXT IO. FIELD'LAST. o
L4 L.
q $FILE NAME WITH BAD CHARS X})1e/#$""Y .
An 1illegal external file name 'q
) that either contains invalid t;
X characters, or is too long if no Y
invalid characters exist. :J
¢
! $FILE_NAME WITH_WILD CARD_CHAR WILDCARDS/DONT/MATTER 0
An external file name that '.
. either contains a wild card -
b character, or is too long if no vy
. wild card character exists. =)
: $GREATER_THAN_ DURATION 90_000.0 -~
A universal real value that lies L
S between DURATION'BASE'LAST and <
: DURATION'LAST if any, otherwise S
0 any value in the range of .
2 DURATION. oy
+9 .
$GREATER_THAN_DURATION_BASE LAST 10_000_000.0
v, The universal real value that is "
J greater than DURATION'BASE'LAST, N
| if such a value exists. 1
3 ::-
¢ C=2 '

Y

0 1, ~ N "‘".ru-.".r-.-..rmvr"'A.
"nt’!?l’g?“n,l‘_v}l_n.l‘g, b % 0'!;. .’g. R S Ty e

-.A

Pt S

o
}l

AN A
AR P4 W

T 04’

s

Name and Meaning

TEST PARAMETERS

Value

$ILLEGAL EXTERNAL FILE NAME1
An illegal external file name,

$ILLEGAL_EXTERNAL FILE NAME2
An illegal external file name
that is different from
$ILLEGAL EXTERNAL_FILE NAME1.

$INTEGER_FIRST
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGER_LAST
The universal integer literal
expression whose value is
INTEGER'LAST,

$LESS_THAN DURATION
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESS_THAN_DURATION_BASE FIRST
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

BAD-CHARAC/TER®"

NO/MUCH-TOO-LONG-NAME-FOR-A-FILE

-2_147_483_648

2_147_UB3 647

-90_000.0

-10_000_000.0

$MAX_DIGITS 15
The universal integer 1literal
whose value 1is the maximum
digits supported for
floating-point types.
$MAX IN LEN 255
The wuniversal integer 1literal
whose value 1is the maximum
input 1line 1length permitted by
the implementation.
$MAX_INT 2 147 uB3 647
The universal integer 1literal - T 7
whose value 1is SYSTEM.MAX INT.
c-3

LAl L ole £aln s o £ o R0

3
RO WA M M ol WAL N, WH PRL 5L ok Ll WO ot W

. Ta" T " -
3 b Yo ',ﬁ’ 'h"?.-"

AR
PUr ot A LSARI AL

LR TR AR TR T *
\ ‘ N GVRORY,
' P B & LA N Aee Al

(5 MIREY W e
4) ,\ﬂ 4 (.C‘m “ . -N.-"

.y TEST PARAMETERS

L) Name and Meaning Value

: $NAME NO_OTHER_PREDEF_NUM_TYPE
bt; A name of a predefined numeric

WA type other than FLOAT, INTEGER,

A SHORT FLOAT, SHORT_INTEGER,

LONG_?LOAT, or LONG_INTEGER

if one exists, otherwise any

A undefined name.

l’)
ésﬁ $NEG_BASED_INT V6#FFFFFFFE#
A A based 1integer literal whose
Aot highest order nonzero bit
falls 1in the sign bit
o position of the representation
%) for SYSTEM.MAX_INT.

::@ $NON_ASCII_CHAR TYPE (NON_NULL)
vy An enumerated type definition

oy for a character type whose

v literals are the identifier

A NON_NULL and all non-ASCII

O characters with printable

Y graphiecs.

- - C-4

Y
i._l P

R . - . - . v PR .
f Ay . ARG Tk L DXI00 0% O i (] Al N .
I e L X M R BRI S ARk, "l'»‘i‘»"u'-‘\':ﬂ‘,‘t‘,‘a’.'ﬂ",‘»*t"“»’\ \'s‘lt.‘li‘v‘a\.‘ai.!‘d“ﬂno"‘.*’ '.l".-t"ti"‘t" N AN AR

& APPENDIX D

WITHDRAWN TESTS

': Some tests are withdrawn from the ACVC because they do not conform to the
:h Ada Standard. The following -19 tests had been withdrawn at the time of
‘N validation testing for the reasons indicated. A reference of the form
:b "AI-ddddd" is to an Ada Commentary.

Azl r

:fi . C32114A: An unterminated string literal occurs at line 62.

‘ , . B33203C: The reserved word "IS" is misspelled at line 4S.

Y "

“ . C34018A: The call of function G at line 114 is ambiguous in the
_ presence of implicit conversions.

. _x.:

‘(j: . C35904A: The elaboration of subtype declarations SFX3 and SFX4

*’{ may raise NUMERIC_ERROR instead of CONSTRAINT ERROR as expected in

5 the test.

ﬁ) . B37401A: The object declarations at lines 126 through 135 follow

:p“ subprogram bodies declared in the same declarative part.

'.'.

;ﬁf « C41k04A: The values of 'LAST and 'LENGTH are incorrect in the 4if

?b statements from line 74 to the end of the test.

."_\

" . BUS5116A: ARRPRIBLY and ARRPRIBL2 are initialized with a value of

a:- the wrong type-~-PRIBOOL_TYPE instead of ARRPRIBOOL_TYPE--at line

oo 41,

o0

25 . Cu8008A: The assumption that evaluation of default initial values

gl occurs when an exception is raised by an allocator is incorrect

S according to AI-00397.

g“: . DBU4YOO6A: Object declarations at lines 41 and S0 are terminated

15? incorrectly with colons, and end case; is missing from line 42.

P,

o « BUAOIOC: The object declaration in line 18 follows a subprogram

.. body of the same declarative part.

o

“ﬁ

a

o

-~ D=1

,;;

N

" A, AL TS WOt

e . Nt At e - . < ~ . At e
A e ° A o ¥4 . L L] % !
A ’a'~’-’e‘c‘f"’. 0 AT e Y 5.'0)'.= ‘w, ,q ‘ ’h 4'!’x,l't. 4.“"6. 7.\‘9“’!’“{“' v’l m.l’!‘l‘:‘,i’l’%‘a’!' v \?]’l, U .llg‘%'\'i.t‘i.g.‘-i', 'Jti':x.l‘_c,“l. .g, (. P\

»

LS
LA

W T ETT RV RN M mn I imr o, e s e e

"

¢ WITHDRAWN TESTS

)

! . B74101B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

]; . CB7TB50A: The call of "/=" at line 31 requires a use clause for

s package A.

Ly

™ . C92005A: The "/=" for type PACK.BIG_INT at line 40 is not visible
without a use clause for the package PACK.

.

)

‘ . CY40ACA: The assumption that allocated task TT1 will run prior to

f the main program, and thus assign SPYNUMB the value checked for by

the main program, is erroneous.

« CA3005A..D (4 tests): No valid elaboration ¢ .er exists for these
N tests.

¥ . BC3204C: The body of BC3204C0O is missing.
i
.
L)W .
.I
o
B
A
v
v’
kv
v
)
'
[}
D-2

\
o 1o

o

LT P P Iy PR R Ty g Py T S a

A A R LA A LA TN e I T e b B et 1B
.ﬁuﬁﬁmﬁi*'¢'3¢J3h7.~~. O mﬁ.rﬂ- l.ﬂpe\ﬁm\flw'm Al U B EREI T U,

......

O
&—._'.

-

B, P
AN X L SN ¥ 199 9.8 4 ¥ (] EAP3A (i)
h v . '.;‘:-._. TS ML
eyt v
l,l't.‘-'{l—*.' Ny |
. BUANILIEN : .
LGSR AR Y ‘i"‘l ,‘ w ‘
ERIRE ALY Mt L e -
1, e ‘,_'a“.j\“’ﬁ‘r-‘-? Rae 0 :
N P M 4%
ST BT T
A

