
D-AI89 668 ADA (TRA]DV4mE) CQMILRUL M10 SP/R EP

ULASSIFIED I"LISHTf O-ApOAAul F/G 121/1 ML

, 7uEND

11

1. awlM

'Io

1- .2.-

* ... , Jb lin m jmi
m

iJNIIHli a ~ aaU

SECURITY UNCLASSIFrED C FILL U T. ".
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFRE CUJcTINONsR

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 11 MAY 1986 to 11 MAY 1987
Tolerant Systems, Tolerant Ada Development

System (TX/VADS), Part Number S-240, Version 6. PERFORMING ORG. REPORT NUMBER

1.0, Tolerant ETernity
7 AUTHPR(s n 8. CONTRACT OR GRANT NUMBER(s)Wright-Patterson

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB, OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 11 MAY 1986
United States Department of Defense
Washington, DC 20301-3081 13. NUMBER OF PAGES

14. MONITORING AGENCY NAME & AODRESS(Ifdifferent from Controlling Office) 15. SECURITY CLASS (ofthisreport)

Wright-Patterson UNCLASSIFIED
15a. ?kjFICATION/DOWNGRADING

I N/A
(0 16. DISTRIBUTION STATEMENT (of this Report)

0 Approved for public release; distribution unlimited.

o0

17. DISTRIBUTION STATEMENT (of the abstract entered in Block20. if different from Report) LT I
Ii UNCLASSIFIED LECTEqMAY 0 61

18. SUPPLEMENTARY NOTES m 08 9 7..................

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DD 10' 1473 EDITION OF I NOV 65 IS OBSOLETE

I JA 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada Compiler Validation Sumary Report:

Compiler Name: Tolerant Ada Development System (TX/VADS®),
Part Number S-240, Version 1.0

Host Computer: Target Computer:
Tolerant Eternity,@ Tolerant Eternity

under under
TX 5.0.12 TX 5.0.12

Testing Completed 11. ay 1986 Using ACVC 1.7

This report has been reviewed and is approved.

i Ada Valititon Facility

Georgeanne Chitwood
ASD/SIOL
Wright-Patterson AFB, OH 45433-6503 Accession For

NITIS GRi
DTIC TAB

CA I-Unannouced 0
_--- Just iffoat i

Ada Validation Office
Dr. John F. Kramer By
Inst- tute for Defense Analyses Distribution/
A.exandria VA AvailabilitY Codes

Ivail and/owr
Dist Special

Aa ItProgram OfficeI
Virginia L. Castor
Director
Department of Defense
Washington DC

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

02ternity and TX are trademarks of Tolerant Systems.
eVADS is a registered trademark of the VERDIX Corporation.

875

AVF-VSR-30.0786

*Ada COMPILER
VALIDATION SUMNARY REPORT:

Tolerant Systems
Tolerant Ada Development System (TA~VADS),

Part Number S-2410, Version 1.0
Tolerant Eternity@

Completion of On-Site Validation:
11 May 1986

Prepared BY:
Ada Validation Facility

ASD/SIOL

Wright-Patterson APB, OR 4#5433-6503

Aa Prepared For:
AaJoint Program Office

United States Department of Defense
Washington, D.C.

*Asis a registered trademark of the United States Govermient
(Ada Joint Program Office).

*trnity and TZ are trademarks of Tolerant Systems.
OVADS is a registered trademark of the VERDIX Corporation.

+ *

+ Place NTIS-form here +
*

, S - • .

4

/

EXECUTIVE SUMMARY~C"

This Validation Summary Report (VSR) SUMarizes the results and conclusions
of _kalidation testing performed on the Tolerant Ada Development System
(TXO/VADS®), Part Number S-240, Version 1.0 (hereafter refered to as the
Tolerant Ada Development System), using Version 1.7 of the Ada9 Compiler
Validation Capability (ACVC).

The validation process includes submitting a suite of standardized tests
(the ACVC) as inputs to an Ada compiler and evaluating the results. The
purpose is to ensure conformance of the compiler to ANSI/MIL-STD-1815A Ada
by testing that it properly implements legal language constructs and that
it identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
ANSI/HIL-STD-1815A. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, or during
execution.

On-site testing was performed 5 May 1986 through 11 May 1986 at San Jose,
CA. under the direction of the Ada Validation Facility, according to Ada
Validation Organization (AVO) policies and proceduresi, The Tolerant Ada
Development System is hosted on a Tolerant Eternity operating under TX
5.0.12.

The results of validation are summarized in the following table:

RESULT TEST CLASS TOTAL
A B C D E L

Passed 68 819 1144 17 11 23 2082

Failed 0 0 0 0 0 0 0

Inapplicable 0 5 176 0 0 0 181

Vithdwan 0 4 12 0 .0 0 16

TOTAL 68 828 1332 17 11 .23 2279

O eAdl is a eiate'red trademark of the 1 ni ted "States Govern ent
(Aaa Joint Progrm Offtoe). '

Otternity and TX are trademarki of Tolerant Systems.
eVADS is a registered trademark of the VZRDIX Corporation.

There were 16 withdrawn tests in ACVC Version 1.7 at the time of this
validation attempt. A list of these tests appears in Appendix D.

Some tests demonstrate that some language features are or are not supported
by an implementation. For this implementation, the tests determined the
following:

. LONG-INTEGER and LONG-FLOAT are not supported.

• The additional predefined types TINY INTEGER, SHORT INTEGER, and
SHORT-FLOAT are supported.

0 Representation specifications for nonoontiguous enumeration
representations are supported.

. Generic unit specifications and bodies can be compiled in separate
compilations.

. Pragma INLINE is supported for procedures and functions.

0 The package SISTDI is used by package TEXT10.

M Modes IN FILE and OUT FILE are supported for sequential I/O.

e Instantiation of the package SEQUENTIAL10 with unconstrained
array types is supported.

* Instantiation of the package SEQUENTIAL 10 with unconstrained
record types with discriminants is supported.

SRESET and DELETE are supported for sequential and direct I/O.

0 Modes IN FILE, INOUT FILE, and OUT FILE are supported for direct
1/O.

* Instantiation of package DIRECT 10 with unconstrained array types
and unconstrained types with discriminants is supported.

0 Dynamic creation and deletion of files are supported.

. More than one internal file can be associated with the same
external file.

e An external file associated with more than one internal file can
be reset.

I Illegal file names can exist.

ACVC VTetion 17 was taken on-site via magnetic Vape tofan Jose, CA. ., All
tests, except the withdrawn tests and any eeoutfble tests that make use of
a floating-point precision greater than SYST3M.MAXDIGITS, were compiled on

a Tolerant Eternity. Class A, C, D, and E tests were executed on a
Tolerant Eternity.

On completion of testing, execution results for Class A, C, D, or K tests
were examined. Compilation results for Class B were analyzed for correct

diagnosis of syntax and semantic errors. Compilation and link results of
Class L tests were analyzed for correct detection of errors.

The AVF identified 2093 of the 2279 tests in Version 1.7 of the ACVC as

potentially applicable to the validation of Tolerant Ads Development
System. Excluded were 170 tests requiring a floating-point precision

greater than that supported by the implementation and the 16 withdrawn
tests. After the 2093 tests were processed, 11 tests were determined to be
inapplicable. The remaining 2082 tests were passed by the compiler.

The AVF concludes that these results demonstrate acceptable conformance to

A ISI/? .L-STD- 1815A.

.4

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 RELATED DOCUMENTS 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 CERTIFICATE INFORMATION 2-2
2.3 IMPLEMENTATION CHARACTERISTICS 2-3

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS*BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.41 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS 3-3
3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation 3-4
3.7.2 Test Method . o o 3-41
3.7.3 Test Site o o 3-5

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report. (VSR) describes the extent to which a
specific Ada compiler conforms to ANSI/MIL-STD-1815A. This report explains
all technical terms used within it and thoroughly reports the results of
testing this compiler using the Ada Compiler Validation Capability (ACVC).
An Ada compiler must be implemented according to the Ada Standard
(ANSI/MIL-STD-1815A). Any implementation-dependent features must conform
to the requirements of the Ada Standard. The entire Ada Standard must be
implemented, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to ANSI/MIL-STD-1815A, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations imposed on a
compiler by the operating system and by the hardware. All of the
dependencies demonstrated during the process of testing this compiler are
given in this report.

VSRs are written according to a standardized format. The reports for
several different compilers may, therefore, be easily compared. The
information in this report is derived from the test results produced during
validation testing. Additional testing information as well as details
which are unique for this compiler are given in section 3.7. The format of
a validation report limits variance between reports, enhances readability
of the report, and minimizes the delay between the completion of validation
testing and the publication of the report.

1.1 PURPOSE OF THIS VALIDATION SUIHARY REPORT

The VSR documents the results of the validation testing performed on an Ada
compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

1-1

INTRODUCTION

" To attempt to identify any unsupported language constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). Testing was conducted from 5 May
1986 through 11 May 1986 at Tolerant Systems, Inc. in San Jose, CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformances
to ANSI/MIL-STD-1815A other than those presented. Copies of this report
are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, RM 3D-139
1211 S. Fern, C-107
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SIOL
Wright-Patterson £F7, OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard

Alexandria iA 22311

1.3 RELATED DOCUMENTS

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformance of a compiler to the Ada
language specification, ANSI/MIL-STD- 1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible fr conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting policies and
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformance to the Ada Standard.

Host The computer on which the compiler resides.

1-3

.4

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

LMC The Language Maintenance Committee whose function is to
resolve issues concerning the Ada language.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that evaluates the conformance of a compiler to a
language specification. In the context of this report, the
term is used to designate a single ACVC test. The text of a
program may be the text of one or more compilations.

Withdrawn A test found to be inaccurate in checking conformance to the
test Ada language specification. A withdrawn test has an invalid

test objective, fails to meet its test objective, or contains
illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformance to ANSI/IL-STD-1815A is measured using the Ada Compiler
Validation Capability (ACVC). The ACVC contains both legal and illegal Ada
programs structured into six test classes: A, B, C, D, E, and L. The
first letter of a test name identifies the class to which it belongs.
Special program units are used to report the results of the Class A, C, D,
and E tests during execution. Class B tests are expected to produce
compilation errors, and Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. (However, no checks are performed during execution to see if
the test objective has been met.) For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a message indicating that it has passed.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntactical
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT-APPLICABLE message indicating the result when it is
executed.

1-4;

INTRODUCTION

Class D tests check the compilation and execution capacities of a compiler.
Since there are no requirements placed on a compiler by the Ada Standard
for some parameters (e.g., the number of identifiers permitted in a
compilation, the number of units in a library, and the number of nested
loops in a subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the test
is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT-APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report results. It also
provides a set of identity functions used to defeat some compiler
optimization strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The procedure
CHECK FILE is used to check the contents of text files written by some of
the Class C tests for chapter 14 of the Ada Standard.

The operation of these units is checked by a set of executable tests.
These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation is not attempted.

Some of the conventions followed in the ACVC are intended to ensure that
the tests are reasonably portable without modification. For example, the
tests make use of only the basic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place
features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values. The values used
for this validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformance to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal

1-5

INTRODUCTION

language construot or an erroneous language construct is vithdrawn from the
ACVC and, therefore, in not used in testing a compiler. The nonoonformant
tests are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The oandidate compilation system for this validation was tested under the
following configuration:

Compiler: Tolerant Ada Development System (TX/VADS),

Part Number S-240, Version 1.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Maohine(s): Tolerant Eternity

Operating System: TX 5.0.12

Memory Size: 16,777,216 bytes

Target Computer:

Machine(s): Tolerant Eternity

Operating System: TX 5.0.12

Memory Size: 16,777,216 bytes

2-1

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION

Base Configuration:

Compiler: Tolerant Ada Development System (TX/VADS),
Part Number S-240, Version 1.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Certificate Date: 16 June 1986

Host Computer:

Machine(s): Tolerant Eternity

Operating Syst~m: TX 5.0.12

Target Computer:

Machine(s): Tolerant Eternity

Operating System: TX 5.0.12

2-2

CONFIGURATION INFORMATION

2.3 IMPLEMENTATION CHARACTERISTICS

One at the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementation
to differ.* Class D and E tests specifically check for s3voh implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

N Nongraphic characters.

Nongraphic characters are defined in the ASCII character set but
are permitted in Ada programs, even within character strings. The
compiler correctly recognizes these characters as illegal in Ada
compilations. The characters are not printed in the output
listing. (See test B26005A.)

" Capacities.

The compiler correctly processes compilations containing loop
statements nested to 65 levels, block statements nested to 65
levels, recursive procedures nested to 17 levels. It correctly
processes a compilation containing 723 variables in the same
declarative part. (See tests D55AO3A through D55A03H, D56001B,
D6J0052 through D6IOO5G, and D2900K.)

• Untversal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTE4.MAXJINT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4A0O2A, D4AO02B, DAOOI4A, and
D4AOO4B.)

" Predefined types.

This implementation supports the additional predefined types
TINY INTEGER, SHORT INTEGER, and SHORT FLOAT in the package
STkNARD. (See tests-B86001CR and B86001CP.)

" Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTE4.MAX INT during compilation, or it may raise
NUMERIC ERROR during execution. This implementation rejects the
test du;ing compilation. (See test E2I1O1A.)

" Array types.

When an array type is declared with an index range exceeding the
INTEER'LAST values and with a component that is a null BOOLEN
array, this compiler raises NUMERIC ERROR when the type is
declared. (See tets 936202A and 236202B.)

2-3

CONFTGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared . (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array type is declared I
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR either when declared or
assigned. Alternately, an imilementation may accept the
declaration. However, lengths must match in array slice
assignments. This implementation raises NUMERIC ERROR when the
array type is declared. (See test E52103!.)

In assigning one-dimensional array types, the entire expression
appears to be evaluated before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is ;ompatible with the
target's subtype.

In assigning two-dimensional array types, the entire expression
does not appear to be evaluated before CONSTRAINT ERROR is raised
when checking whether the expressionts subtype is copatible with
the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications during
compilation. (See test E3810A.)

In assigning record types with discriminants, the entire
expression appears to be evaluated before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

SAggregates.

In the evaluation of a multi-dizensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being cheocked for identical bounds.
(See test E3212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound -in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-4

CONFIGURATION INFORMATION

. Functions.

The declaration of a parameterless function with the same profile
as an enumeration literal in the same imediate scope is rejected
by the implementation. (See test E66001D.)

. Representation clauses.

Enumeration representation clauses are not supported. (See test
BC1002A.)

P Pragmas.

The praua INLINE is supported for procedures and functions. (See
tests CA3004IE and CA300F.)

* Input/output.

The package SEQUENTIALIO can be instantiated with unconstrained
array types and record types with discriminants. The packase
DIRECT 10 can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests
CE2201D, CE2201E, and CE2401D.)

More than one internal file can be associated with each external
file for sequential I/O for both reading and writing. (See tests
CE2107A .. CE2107F (6 tests).)

More than one internal file can be associated with each external
file for direct I/O for both reading and writing. (See tests
CE2107A .. CE2107F (6 tests).)

A4 external file associated with more than one internal file can
be deleted. (See test C02110B.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests
C93111A .. C031113 (5 tests).)

An existing text file can be opened in OUT FILE mode, can be
created in OUT PILE mode, and can be created in IN FILE mode.
(See test 331020.)

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are deleted
when they are closed. (See test CE2108A.)

2-5

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

The AVF identified 2093 of the 2279 tests in Version 1.7 of the Ada
Compiler Validation Capability as potentially applicable to the validation
of Tolerant Ada Development System, Part Number 5-240, Version 1.0.
Excluded were 170 tests requiring a floating-point precision greater than
that supported by the implementation and the 16 withdrawn tests. After
they were processed, 11 tests were determined to be inapplicable. The
remaining 2082 tests were passed by the compiler.

The AVF concludes that the testing results demonstrate acceptable
conformance to the Ada Standard.

3.2 SUIMMARY OF TEST RESULTS BY CLASS

MOLT TOT CLASS TOTAL
A B C D 2 L

Passed 68 819 1144 17 11 23 2082

Failed 0 0 0 0 0 0 0

Inapplicable 0 5 176 0 0 0 181

Vitbdrmm 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 1! 23 2279

3-1

TEST INFORMATION

3.3 SUIARY OF TEST RESULTS BY CHAPTER

RESULT CR*PTER

8_ 5978 10 11 12 14 TOTAL

Passed 102 2311 308 244 161 97 157 198 105 28 216 232 2082

Failed 0 0 0 0 0 0 0 0 .0 0 0 0 0

Inapplicable l4 73 86 3 0 0 4 1 0 0 0 0 181

Withdrawn 0 1 4 0 0 0 1 2 6 0 1 1 16

TOTAL 116 308 398 27 161 97 162 201 111 28 217 233 2279

3.4 WITHDRAWN TESTS

The following tests have been withdrawn from the ACVC Version 1.7:

B4AO1OC C41l404A CA1003B
B83A06B C48008A CA3005A through CA3005D (4 tests)
BA2001E (4A014A CE2107E
BC3204C C92005A
C35904A C94oACA

See Appendix D for the test descriptions.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 181 tests were inapplicable for
the reasons indiated:

* C34001E, B52004D, B55B09C, B86001CS, and C55B07A use LONG-INTEGER
which is not supported by this compiler.

* C340010, C35702B, and B86001CQ use LONG-FLOAT which is not
supported by this compiler.

• B86001DT requires a predefined numerio type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

. C86001F redefines packase SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation.

3-2

TEST INFORMATION

. C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATIONS's base type. This is not the case for
this implementation.

. 170 tests were not processed because SYSTEM.MAX DIGITS was 15.
These tests were:

C24113L through C24113Y (1i tests)
C35705L through C35705Y (l4 tests)
C35706L through C35706Y (l4 tests)
C35707L through C35707Y (14 tests)
C35708L. through C35708T (14 tests)
C35802L through C358021 (i tests)
C45241L through C4521Y (14 tests)

C45321L through C45321Y (14 tests)
C4$521L through C'45421Y (111 tests)
C45412IL through C454I2 IY (141 tests)
C45521L through C45521Z (15 tests)
C45621L through C45621Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 18 Class B tests.

B24104A B33004A B67001B
B2104B B37201A B67001C
B241OC B38008A B67001D
B2AO03A BIIIOO1A B910ABA
B2AO03B B64O01A B95001A
B2AO03C B67001A B97101E

3-3

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.7 produced by
Tolerant Ada Development System was submitted to the AVF by the applicant
for prevalidation review. Analysis of these results demonstrated that the
compiler succestfully passed all applicable tests.

3.7.2 Test Method

Testing of Tolerant Ada Development System using ACVC Version 17 was
conducted on-site by a validation team. The configuration consisted of a
Tolerant Eternity host and target operating under TX 5.0.12.

A magnetic tape containing ACVC Version 1.7 was taken on-site by the
validation team. The magnetic tape contained all tests applicable to this
validation, as well as all tests inapplicable to this validation except for
any Class C tests that require floating-point precision exceeding the
maximum value supported by the implementation. Tests that make use of
values that are specific to an implementation were customized before being
written to the magnetic tape. Tests requiring splits during the
prevalidation testing were included in their split form on the magnetic
tape. No editing of the test files was necessary when the validation team
arrived on-site.

The contents of the magnetic tape were loaded directly onto the Tolerant
Eternity. After the test files were loaded to disk, the full set Of tests
was compiled on the Tolerant Eternity, and all executable tests were rum on
the Tolerant Eternity. Results were transferred via ethernet from the
Tolerant Eternity to a VAX-11/780 to be printed. Tests that were withdrawn
from ACVC Version 1.7 were not run.

The compiler was tested using command scripts provided by Tolerant Systems.
These scripts were reviewed by the validation team. Those which compile *.

and link used the following options:

-M <umit name> Produce an executable unit using <unitname>
as the main program.

-o <a.out> Output filenme is <a.out>.

Tests were run in batch mode using a single host and target computer. Test
output, compilation listings, and Job logs were captured on magnetic tape
and archived at the AVF. The listings examined on-site by the validation
team were also arohived.

3-4i

TEST INFORMATION

3.7.3 Test Site

The validation team arrived at San Jose, CA on 5 May 1986 and departed
after testing was oompleted on 11 May 1986.,

3-5

APPENDIX A

COMPLIANCE STATEMENT

Tolerant Systems has submitted the following compliance
statement concerning the Tolerant Ada Development
System.

A-1

COMPLIANCE STATEMENT

Compliance Statement

Base Configuration:

Compiler: Tolerant Ada Development System,
TX/VADS, part number S-240, Version 1.0

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine: Tolerant Eternity

Operating System: TX 5.0.12

Tolerant Systems has made no deliberate extensions to the Ada

language standard.

Tolerant Systems agrees to the public disclosure of this report.

Tolerant Systems agrees to comply with the Ada trademark policy,
as defined by the Ada Joint Program Office.

/ cj Dated Kay 5, 1986

Tolerant Systems
Dale Shipley
Vice President, Engineering

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

1. Implementation-dependent.Pragmas

Tolerant ADS provides for sharing of generic bodies
(procedures and packages), when the generic parameters are
restricted to enumeration types, integer types, and floating
types.

PRAGMA SHARE BODY is used to indicate desire to share or not
share an instantLation. The pragma may reference the generic unit
or the instantiated unit. When it references a generic unit, it
sets sharing on/off for all instantiations of that generic, unless
overridden by specific SHARE BODY praqmas for individual
instantiations. When it references an instantiated unit, sharing
is on/off only for that unit. The default is to share all generics
that can be shared, unless the unit uses PRAGMA IN-LINE.

PRAGMA SHARE BODY is only allowed in the following places:
immediately Uitbin a declarative part, immediately within a
package specification, or after a library unit in a compilation,
but before any subsequent compilation unit. The form of this
pragma is

pragma SHARZ-_ODY (generic.name, boolean literal)

Note that a parent instantiation is independent of any individual
instantiation, therefore recompilation of a generic with different
parameters has no effect on other compilations that reference it.
The unit that caused compilation of a parent instantiation need
not be referenced in any way by subsequent units that share the
parent instantiation.

Sharing generics causes a slight execution t.me penalty because
all type attributes must be indirectly referenced (as if an extra
calling argument were added). However, it substantially reduces
compilation-time in most circumstances and reduces program size.

B-1

APPENDIX F OF THE Ada STANDARD

Tolerant has compiled a unit, SHARED 10, in the standard library
that instantiates all Ada generic I/5 packages. Thus, any
instantiation of an Ada 1/0 generic package will share one of the
parent instantiation generic bodies. The PRAGNA SHARE BODY takes
the name of a generic instantiation or a generic unit-as :he -94:st
argument and one of the identifiers TRUE or FALSE as :he second
argument. This praqma is only allowed immediately at the place of
a declarative item in a declarative part or package specification,
or after a library unit in a compilation, but before any subseq.en:
compilation unit.

When the first argument is a generic unit, the praqma applies to
all instantiations of that generic. When the first argument is :he
name of a generic instantiation the pragma applies only to the
specified instantiation, or overloaded instantiation.

f the second argument is TRUE, the compiler will try to share :,de
generated for a generic instantiation with code generated for 3:ne:

instantiations of the same generic. When the second argument is
FALSE, each instantiation will get a unique copy of the generated
code. The extent to which code is shared between instantiations"
depends on this pragma and the kind of generic formal parameters
declared for the generic unit.

PRAGMA EXTERNAL NAxE allows variables defined in another language
to be referencel directly in Ada. PRAGNA EXTERNA, NAME will replace
all occurrences of variable name with an external reference to
link-name rn the object file using the format shown below.

pragma EXTERNALNAME (variable-name, link-name);

This pragma is allowed at the place of a declarative item in a
package specification and must apply to an object declared earlier
in the same package specification. The object must be declared as
a scalar or an access type. The object cannot be any of the following

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

The link name must be constructed as expected by the linker ld(l).
For example, if linking with a C program on UNIX, the C variable
name preceded by an underscore must be used in the same case (upper
and lower) as in the C program source file, i.e., to link to the C
global variable ertno.

B-2

APPENDIX F OF THE Ada STANDARD

package PACKAGENAME is

ERRNO: INTEGER;
pragma EXTERNAL NAME(ERRNO,"_errno");

end*PACKAGE NAME:

2. Implementation-dependent Attributes

There are no implementation-dependent attributes in Tolerant ADS.

4. Restrictions on Representation Clauses

4.1. PRAGMA PACK

Bit packing is not supported. Objects.and components are packed
to the nearest whole STORAGE-UNIT.

4.2. Size Specification

The size specification T'SMALL is not supported.

4.3. Record Representation Clauses

Component clauses must be aligned on STORAGE-UNIT boundaries.

4.4. Address Clauses

Address clauses are not supported.

4.5 Interrupts

Interrupts are not supported.

4.6 Change of Representation

Change of representation is not supported for record types.

4.7 Representation Attributes

Tht ADDROS attribute Is not supported for the tolloving entities:
static constants packages tasks labels entries.

'-3

APPENDIX F OF THE Ada STANDARD

4.8. 1achine Code Insertions

machine code insertions are not supported.

5. Conventions for rmplementation-generated Names

There are no implementation generated names.

6. Interpretation of Expressions in Address Clauses

Address clauses are not supported.

7. Restrictions on Unchecked Conversions

The predefined generic function UNCHECKED CONVERSION cannot be
instantiated with a target type that is an unconstrained array
type or an unconstrained record type with discriminants.

8. Implementation Characteristics of Z/O Packages

Instantiations of DIRECT 1O use the value MAX REC SIZE as the
record size (expressed i STORAGE_ UNITs) when-the-size of
ELEMENT TYPE exceeds that value. For example, for unconstrained
arrays such as string where ELEMENT TYPEISIZE is very large,
MAX .EC SIZE is used instead. MAX RECORD SIZE is defined in
SYSEM ind can be changed by a pr3gram bifore instantiating
DIRECT 10 to provide an upper limit on the record size.
In any case, the maximum size supported is 1024 * 1024 *
STORAGE UNIT bits. DIRECT_10 will raise USE ERROR if
MAX-REC.SIZE exceeds this absolute limit.

Instantiations of SEOUENTIAL 10 use the value MAX REC SIZE as
the record size (expressed ii STORAGE UNITs) vhen-the size of
ELEKENT TYPE exceeds that value. For example, for unconstrained
arrays much as string where ELEMENT TYPE'SIZE is very large,
MAX REC SIZE is used instead. MAX RECORD SIZE is defined in
SYSTEM Ind can be changed by a pirgram bifore instantiating
INTEGER 10 to provide an upper limit on the record size.
SEQUENTYAL.IO imposes no limit on MAXRZCSIZE.

B-4

APPENDIX F OF THE Ada STANDARD

package standard is

type boolean is (false, true);
function "=" (left, right: boolean) return boolean;
function "/=" (left, right: boolean) return boolean;
function "<. (left, right: boolean) return boolean;
function "<=" (left, right: boolean) return boolean;
function ">" (left, right: boolean) return boolean;
function ">=" (left, right: boolean) return boolean;
function "and" (left, right: boolean) return boolean;
function "or" (left, right: boolean) return boolean;
function "xor" (left, right: boolean) return boolean;
function "not" (right: boolean) return boolean;

type tiny integer is range -128 .. 127;
function '=" (left, right: tiny integer) return boolean;
function "/=" (left, right: tiny-integer) return boolean;
function "<" ('aft, right: tiny-integer) return boolean;
function "<=" (left, right: tiny integer) return boolean;
function ">" (left, right: tiny-integer) return boolean;
function ">-" (left, right: tiny integer) return boolean;
function "+" (right: tiny integer) return tiny integer;
function "-" (right: tiny-integer) return tiny-integer;
function "abs (right: tiny-integer) return tiny integer;
function "+" (left, right: tiny integer) return tiny integer;
function "-" (left, right: tiny-integer) return tiny integer;
function "*" (left, right: tiny integer) return tiny integer;
function "/" (left, right: tiny-integer) return tiny-integer;
function "rem" (left, right: tiny integer) return tiny integer;
function "mod" (left, right: tiny-integer) return tiny-integer;
function "*" (left, right: tiny_integer) return tiny-integer;

type short integer is range -32768 .. 32767;
function "Z" (left, right: short integer) return boolean;
function "/-"(left, right: short-integer) return boolean;
function "<" (left, right: short-integer) return boolean;
function "="(left, right: short-integer) return boolean;
function ">" (left, right: short-integer) return boolean;
function ">-"(left, right: short-integer) return boolean;
function "+" (right: short integer) return short integer;
function "-"(right: short-integer) return short-integer;
function "abs (right: short- integer) return short-integer;
function "+" (left, right: short integer) return-short integer;
function "-" (left, right: short integer) return short-integer;
function "*" (left, right: short-integer) return short integer;
function "/" (left, right: short-integer) return short-lnteger;
function "rem" (left, right: short-integer) return short_integer;
function "mod" (left, right: short-Lnteger) return short-integer;
function "**"(left, rights short integer) return short integer;

type integer is range -2147483648 .. 2147483647;
function "" (left, right: integer) return boolean;
function "/-" (left, right: integer) return boolean;
function "<" (left, right: integer) return boolean;
function "<-" (left, right: integer) return boolean;

.-5

f> -in) r

function ">" (left, right: integer) return boolean;
function ">=" (left, right: integer) return boolean;
function "+" (right: integer) return integer;
function "- (right: integer) return integer;
function "abs (right: integer) return integer;
function "+" (left, right: integer) return integer;
function "-" (left, right: integer) return integer;
function "*" (left, right: integer) return integer;
function "/" (left, right: integer) return integer;
function "rem" (left, right: integer) return integer;
function "mod" (left, right: integer) return integer;function "*" (left, right: integer) return integer;

type short float is digits 6 range
-2#1.lTlll 11111 11111 11111 lll#El27
2#1.11111 11111-11111-11111-111#E127;

function "=" (left,-right: shortfloat) return boolean;
function "/=" (left, right: shortfloat) return boolean;
function "<" (left, right: short-float) return boolean;
function "<=" (left, right: short-float) return boolean;
function ">" (left, right: short-float) return boolean;
function ">=" (left, right: short-float) return boolean;
function "+"s(right: shortofloat) return short float;
function "-" (right: short float) return short float;
function "abs (right: short-float) return short float;
function "a" (left, right: short float) return-short float;
function "+" (left, right: short float) return short float;
function "-" (left, right: short-float) return short-float;
function "*" (left, right: short-float) return short-float;
function "/" (left, right: short-float) return short-float;

type float is digits 15 range
-2#1.1111111111 1111111111 11111111iii1 l1 llli111111111 ll#E1023
2#l.11111111111111111111-1-1 -I 11-11111l 111ll#El023;

function "-"(left, rTght: floatT return boolean;
function "(" left, right: float) return boolean;
function "<" (left, right: float) return boolean;
function "<-" (left, right: float) return boolean;
function ">" (left, right: float) return boolean;
function ">-" (left, right: float) return boolean;
function "+" (right: float) return float;
function "- (right: float) return float;
function "abs (right: float) return float;
function "+" (left, right: float) return float;
function "-" (left, right: float) return float;
function "*" (left, right: float) return float;
function "/" (left, right: float) return float;
function "*" (left, right: float) return float;
function "*" (left: univ integer; right: univ real) return univre
function "*" (left: univ-real; right: univ integer) return univ-re
function "/" (left: univ-real; right: univ-integer) return univ-re
function "*" (left: any 'ixed; right: any 'ixed) return univ fixed
function "/ (left: any fixed; right: any-fixed) return univjfixed

type character is
(nul, soh, stix, etx, sot, enq, eck, bel,
bs, hit, lf, vt, ff, cr, so, si,
dle, dcl, dc2, dc3, dc4, nak, syn, etb,

3-6

can, em, sub, esc, fs, gs rs, us,
lot, le, 921, *3 , e40, 'lt , 'i , 17f,

$a*, e)S, 6:6, 1;1,6<l0, Sao, 1>0, */I,i$0, '1', $B , 4, 51, 6', ,,
'8' I9 O:', ISO, I<, U' IV , I O,
I, ey, B, 'C', 'Do , 'E$, 'F, 'G'
H ','$a, J', 'K', 'L', Set, 'N, fill' '' 'T' ,'U' 'V, 'W',

'p', fit, j, k, 11, W, W, @o,
'xf ' Z'$ ' (, Il , del)

for character use
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 127);

package ascii is
nul: constant character in nul; sob: constant character :-soh;
stx: constant character :ef stx; etx: constant character :mg etx;
cot: constant character :- ot; enq: constant character :menq;
ack: constant character :=ack; bel: constant character :bel;
if : constant character := f; vt : constant character :vt;
ft : constant character :-ff; cr : constant character :cr;
so : constant character :-so; si : constant character :si;
die: constant character :=die; dcl: constant character :dcl;.
dc2: constant character :=dc2; dc3: constant character :-dc3;
dc4: constant character :mo dc4; nak: constant character :*nak;
syn: constant character :- syn; etb: constant character :aetb;
sub: constant character :0 sub; esc: constant character :esc;
rs : constant character :=rs; us : constant character :*us;
del: constant character :del;
exciam: constant character := 111;
quotation: constant character :~
sharp: constant character
dollar: constant character
percent: constant character 'I
ampersand: constnt character :
colon: constant character :-
semicolon: constant character :- 'oh;
query: constant character :- '7';
at sign: constant character := en';

Soract;et: constant character :- be';
backoslash: constant character :-'\';
r bracket: constant character :- cr;
underline: constant character:
grave: constant character :-
1 brace: constant character:=c
bar: constant character :- dI4;
r brace: constant character u
tTlde: constant character :- del

eca: constant character :- 'a';

ichr: constant character :w '';

end ascii;

B-7

a--persand- -cosan -hrce -''

st nu is ie rn 0 ,.

subtype natural is integer range 0 .. integer'last;subtype positive is integer range 1 .. integer'last;

type string is array(positive range <>) of character;
pragma pack(string);
function "=" (left, right: string) return boolean;
function "/=" (left, right: string) return boolean;
function "<" (left, right: string) return boolean;
function "=" (left, right: string) return boolean;
function ">" (left, right: string) return boolean;
function ">=" (left, right: string) return boolean;
function "&" (left: string; right: string) return string;
function "&" (left: character; right: string) return string;
function "&" (left: string; right: character) return string;
function "&" (left: character; right: character) return string;

type duration is delta 2#1.0#E-14 range
-2#100000000000000000.0# ..
2#11111111111111111.11111111111111#;

function (left, right: duration) return boolean;
function "/" (left, right: duration) return boolean;
function "<" (left, right: duration) return boolean;
function "=" (left, right: duration) return boolean;
function ">" (left, right: duration) return boolean;function ">"(left, right: duration) return boolean;
function "*" (left: duration; right: integer) return duration;
function "*" (left: integer; right: duration) return duration;
function "/" (left: duration; right: integer) return duration;

constraint error: exception;
numeric erFor: exception;
program error: exception;
storage error: exception;
tasking-error: exception;

end standara;

3-6

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its tile
name. Actual values ta be substituted are identified by names that begin
vith a dollar sign. A value is substituted tor each of these names before
the test is run. The values used for this validation are given below.

Name and Meaning ,, Value

tBO.G TO1 (..498W>AO, 499=>'1')

identifier of size MAX IN LEN
ith varying last charaoter.

$BIG ID2 (%..498%>#k', 499=>121)

identifier of size MAX IN LON
with varying last character.

$BIG .1D3 (1..249>'A', 250>'3', 251•..499>'A')
Identifier of size MAX IV LEN
with varying middle oharacter.

$810 ll)4 (1 ••24)9s> 'A', 25001 '41, 251 • • 99W> AI')

Identifier of size MAX IN LEN
with varying middle character.

$BIG IT LIT (1.. 496t>) 0), 97. . 99*>0298")
An integer literal of value 298
with enough leading zeroes so
that it in MAXIN-LN characters
long.

c-I

TEST PARAMETERS

Name and Meaning Value

$BIG REAL LIT (1-41930>'0', i94..Jl9>w69.OE1")
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
MAX IN-LEN characters long.

$BLANKS 479
Blanks of length MAX-IN LEN - 20

$COUNT LAST 214~74836'47
Value of (X)UNT'LAST in TEXT-10
package.

$EXTENDED ASCII CHARS wabcdefghijklmnopqrstuwxyzt$%?@[\J^' -"
A string literal. containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character

-set.
$FIELD-LAST 214i741836417

Value of FIELD'LAST in TEXT 10
package.

$FILENAME WITH BAD CHARS "\/illegal\/filename\/2(($%2102C .DAT"
An illegal- external file name
that either contains invalid
characters or is too long.

$F11.. NMlE WITH WILD CARD CHAR "\/illegal\/filename\/CE2I 02C' .DAT"
An eXternal file name that
either contains a wild card
character or is too long.

$GREATER THAN DURATIONS 100000.0
A universal real value that lies
between DURATIOK'BASE'LAST and
DURATIOILAST or any value in
the range of DURATION.

$GREATER THAN DURATION BASE LAST 10000000.0
The universal real value that is
greater than DURATION 'EASE' LAST.

$ILLEGAL E XTE RNAL FILE NAM9l *\/no\/much\/directory\/0
Illegal external file name. RILLEGAL EXTERNAL FILE-NAlE I"

$ILLEGAL EXTERNAL FILE NANK2 *\/no\/suah\/directory\/* &
I11l7gal external. tile names. "ILLEGAL EXTENAL FILE-NAME2"

C-2

TEST PARAMETERS

Name and Meaning Value

$INTEGER FIRST -2147483648
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGER LAST 2147483647
The universal integer literal
expression whose value is
INTEGER 'LAST.

$LESS THAN DURATION -1 00000.0
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

$LESS THAN DURATION BASE FIRST -10000000.0
The universal real value that is
less than DURATION'BASE'FIRST.

$MAX DIGITS 15
Maximum digits supported for
floating-point types.

$MAX IN LEN 499
Maimu- input line length
permitted by the implementation.

$NAME TINY INTEGER
A name of a predefined numerio
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG FLOAT, or LONG INTEGER.

$NEG BASED INT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEt.MAX INT.

$NON ASCII MAR TYPE (NON NULL)
n enwerated type definition
for a oharaoter type whose
literals are the identifier
NON NULL and all non-ASCII
oharacters with printable
graphios.

C-3

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. When testing was performed, the following 16 tests had been
withdrawn at the time of validation testing for the reasons indicated:

" B4AO1OC: The object declaration in line 18 follows a subprogram
body of the same declarative part.

" B83A06B: The Ada Standard 8.3(17) and AI-00330 permit the label
LAB ENUMERAL of line 80 to be considered a homograph of the
enteration literal in line 25.

" BA200E: The Ada Standard 10.2(5) states: "Simple names of all
subunits that have the same ancestor library unit must be distinct
identifiers." This test checks for the above condition when stubs
are declared. However, the Ada Standard does not preclude the
check being made when the subunit is compiled.

. BC32O0C: The file BC3204C4 should contain the body for BC3204C0
as indicated in line 25 of BC320C34.

" C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC-ERROR (instead of CONSTRAINT-ERROR).

C41104A: The values of 'LAST and 'LENGTH are incorrect in IF
statements from line 74 to the end of the test.

C48008$A This test requires that the evaluation of default
initial values not occur when an exception is raised by an
allocator. However, the Language Maintenance Committee (LMC) has
ruled that such a requirement is incorrect (AI-00397/01).

D-1

WITHDRAWN TESTS

" C4AO14A: The number declarations in lines 19-22 are incorrect
because conversions are not static.

" C92005A: At line 40, "/a" for type PACK.BIG INT is not visible
without a USE clause for package PACK.

" C94OACA: This test assumes that allocated task TT will run prior
to the main program, and thus assign SPYNUMB the value checked for
by the main program; however, such an execution order is not
required by the Ada Standard, so the test is erroneous.

" CAIO03B: This test requires all of the legal compilation units of
a file containing some illegal units to be compiled and executed.
According to AI-00255j such a file may be rejected as a whole.

" CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

" CE2107E: This test has a variable, TEMP HAS NAME, that needs to
be given an initial value of TRUE.

D-2

IATE

=MED

