
AD-A1SO 865 ADA (TRADENME) Cj~fILER UILI 1 /1
ff AT! MOAL ;011t~EN r(U LYMT I YTI ND

UNCLASS IFI ED E ~ NAAU F/GHS M

'~1.0

111.25 LA1460

UNCLASSIFIED d

SECURITY CLASSIFICATION OF THIS PAGE (,en Data Entered) rl I - .

REPORT DOCUMENTATION PAGE GEFORL 0 LSTn4roaM
I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 6 MAY 1986 to 6 MAY 1987
Rational Environment A-5-18-1 for the
Rational Architecture (R100) 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Wright-Patterson

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 6 MAY 1986
United States Department of Defense . NULK UF PAM
Washington, DC 20301-3081 40

14. MONITORING AGENCY NAME & AODRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
in Wright-Patterson UNCLASSIFIED

cc 15a. REBt fFICATION/DOWNGRADING

O N/A
16. DISTRIBUTION STATEMENT (of this Report)

0
0 Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. ff different from Report)

UNCLASSIFIED

1B. SUPPLEMENTARY NOTES E ...

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

O0 tur 1473 EDITION OF I NOV 66 IS OBSOLETE
SJAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada* Compiler Validation Summary Report:

Compiler Name: Rational EnvironmentOA_5_18 1

Host Computer: Target Computer:
Rational Architecture (R1000) Rational Architecture (RIO00)

under under
Rational Environment O Rational Environment

Testing Completed 6 HAY 1986 Using ACVC 1.7

This report has been reviewed and is approved.

Ada Val ation Fclt
Georgeanne Chitwood
ASD/SIOL
Wright-Patterson AFB, Ohio 45433-6503 Accession For

NTIS GRA&I

DTIC TAB
Unannounced Q

"V" Validation Office
Dr. John F. Kramer B u
":.titute for Defense Analyses
Alexandria VA Availability Codes

jAvall and/or
Dist Special

Ada Jott Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC

eAda is a registered trademark of the United States Government

(Ada Joint Program Office).

'Rational and R 1000 are registered trademark@ of Rational.

ftational Environment is a trademark of Rational

87 5 6 12 Z

AVF CONTROL NUMBER: AVF-VSR-28.0786

Ada ® COMPILER
VALIDATION SUMHARY REPORT:

Rational Environment@ A-518-1
for the

Rational Architecture (R10006)

Completion of On-Site Validation:
6 MAY 1986

Prepared By:
Ada Validation Facility

ASD/SIOL
Wright-Patterson AFB, Ohio 15433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D .C.

*Ada is a registered trademark of the United States Government

(Ada Joint Program Offioe).

*Rational and RIO00 are registered trademarks of Rational.

*Rational Environment is a trademark of Rational

+ +* Place NTIS form here .e

+ +

44 -14k4- -4

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and coclusioj
of validation testing performed on the Rational Environment5'(R1000),
Version A 5 18_1, using Version 1.7 of the Ada0 Compiler Validation
Capability (ACVC).

The validation process includes submitting a suite of standardized tests
(the ACVC) as inputs to an Ada compiler and evaluating the results. The
purpose is to ensure conformance of the computer to ANSI/MIL-STD-1815k Ada
by testing that it properly implements legal language constructs and that
it identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
ANSI/MIL-STD-1815A. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, or during

On-site testing was performed 5 MAY 1986 through 6 MAY 1986 at Rational,
Mountain View, CA under the direction of the Ada Validation Facility (AVF),
according to Ada Validation Organization (AVO) policies and procedures.
The Rational Environment is hosted on a Rational Architecture (R1000).

The results of validation are summarized in the following table:

RESULT TEST CLASS TOTAL
A B C D E L

Passed 67 817 1117 14 9 21 2045

Failed 0 0 0 0 0 0 0

Inapplicable 1 7 203 3 2 2 218

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 -23 2279

eAds is a registered trademark of the United States Government

(Ada Joint Program Office).

Rational and R1000 are registered trademarks of Rational.

Rational Environment is a trademark of Rational

There were 16 withdrawn tests in ACVC Version 1.7 at the time of this
validation attempt. A list of these tests appears in Appendix D.

Some tests demonstrate that some language features are or are not supported
by ad implementation. For this implementation, the tests determined the
following:

. SHORT INTEGER, SHORT FLOAT, and LONGFLOAT are not supported.

. LONGINTEGER is supported.

. Representation specifications for noncontiguous enumeration
representations are not supported.

. Generic unit specificatiovis and bodies can be compiled in separate
compilations.

. Pragma INLINE is not supported for procedures nor for functions.

. The package SYSTE4 is not used by package TEXTIO.

. Modes INFILE and OUT-FILE are supported for sequential I/O.

. Instantiation of the package SEQUENTIALIO with unconstrained
array types is supported.

. Instantiation of the package SEQUENTIAL 10 with unconstrained

record types with discriminants is supported.

. RESET and DELETE are supported for sequential and direct I/0.

. Modes IN-FILE, INOUTFILE, and OUT-FILE are supported for direct
I/O.

. Instantiation of package DIRECT 10 with unconstrained array types

and unconstrained types with disoriminants without defaults is not
supported.

. Dynamic creation and deletion of files are supported.

. More than one internal file can be associated with the same
external file only for reading.

* Illegal file names can exist.

ACVC Version 1.7 was taken on-site via magnetic tape to Rational, Mountain

View, CA. All tests, except the withdrawn tests and any executable tests
that make use of a floating-point precision greater than SYSTEM.MAX DIGITS,
were compiled on a Rational Architecture (R1O00). Class A, C, D, and E
tests were executed on a Rational Architecture.

On completion of testing, execution results for Class A, C, D,.or E tests
were examined. Compilation results for Class B were analyzed for correct
diagnosis of syntax and semantic errors. Compilation and link results of
Class L tests were analyzed for correct detection of errors.

The Ada Validation Facility (AVF) identified 2093 of the 2279 tests in
Version 1.7 of the ACVC as potentially applicable to the validation of the
Rational Environment. Excluded were 170 tests requiring a floating-point
precision greater than that supported by the implementation and the 16
withdrawn tests. After the 2093 tests were processed, 48 tests were
determined to be inapplicable. The remaining 2045 tests were passed by the
compiler.

The AVF concludes that these results demonstrate acceptable conformance to

ANSI/MIL-STD-1815A.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 RELATED DOCUMENTS 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES -4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED -1
2.2 CERTIFICATE INFORMATION 2-2
2.3 IMPLEMENTATION CHARACTERISTICS2-3

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3.7.3 Test Site 3-7

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to ANSI/MIL-STD-1815A. This report explains
all technical terms used within it and thoroughly reports the results of
testing this compiler using the Ada Compiler Validation Capability (ACVC).
An Ada compiler must be implemented according to the Ada Standard
(ANSI/MIL-STD-1815A). Any implementation-dependent features must conform
to the requirements of the Ada Standard. The entire Ada Standard must be
implerented, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to ANSI/MIL-STD-1815A, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations imposed on a
compiler by the operating system and by the hardware. All of the
dependencies demonstrated during the process of testing this compiler are
given in this report.

VSRs are written according to a standardized format. The reports for
several different compilers may, therefore, be easily compared. The
information in this report is derived from the test results produced during
validation testing. Additional testing information is given in section 3.7
and states problems and details which are unique for a specific compiler.
The format of a validation report limits variance between reports, enhances
readability of the report, and minimizes the delay between the completion
of validation testing and the publication of the report.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

1I-1

INTRODUCTION

" To attempt to identify any unsupported language constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the Ada Validation Facility (AVF) according to policies and
procedures established by the Ada Validation Organization (AVO). Testing
was conducted from 5 MAY 1986 through 6 MAY 1986 at Rational in Mountain
View, CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformances
to ANSI/MIL-STD-1815A other than those presented. Copies of this report
are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139
1211 S. Fern, C-107
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SIOL
Wright-Patterson AFB, Ohio 45433-6503

Questions regarding this report or the validation tests should be directed
to the AVF listed above or to:

Ada Validation Organization

Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1-2

INTRODUCTION

1.3 RELATED DOCUMENTS

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformance of a compiler to the Ada
language specification, ANSI/MIL-STD- 1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting policies and
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformance to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

LMC The Language Maintenance Committee whose function is to

resolve issues concerning the Ada language.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

1-3

INTRODUCTION

Test A program that evaluates the conformanre of a compiler to a
language specification. In the context of this report, the
term is used to designate a single ACVC test. The text of a
program may be the text of one or more compilations.

Withdrawn A test which has been found to be inaccurate in checking
test conformance to the Ada language specification. A withdrawn

test has an invalid test objective, fails to meet its test
objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformance to ANSI/MIL-STD-1815A is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Special program units are used to report
the results of the Class A, C, D, and E tests at execution. Class B tests
are expected to produce compilation errors, and Class L tests are expected
to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. (However, no checks are performed during execution to see if
the test objective has been met.) For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A

Class A test is passed if no errors are detected at compile time and the
program executes to produce a message indicating that it has passed.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntactical
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT-APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no requirements placed on a compiler by the Ada Standard
for some parameters (e.g., the number of identifiers permitted in a
compilation, the number of units in a library, and the number of nested
loops in a subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class D test
fails to compile because the capacity of the compiler is exceeded, the test
is classified as inapplicable. If a Class D test compiles successfully, it
is self-checking and produces a PASSED or FAILED message during execution.

1-4

INTRODUCTION

Each Class E test is self-checking and produces a NOT-APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package.REPORT and the procedure CHECK-FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report results. It also
provides a set of identity functions used to defeat some compiler
optimization strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The procedure
CHECK FILE is used to check the contents of text files written by some of
the Class C tests for chapter 14 of the Ada Standard.

The operation of these units is checked by a set of executable tests.
These tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then the
validation is not attempted.

Some of the conventions followed in the ACVC are intended to ensure that
the tests are reasonably portable without modification. For example, the
tests make use of only the basic set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values, and place
features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values. The values used
for this validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformance to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The nonconformant
tests are given in Appendix D.

1-5

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Rational Environment A-5-18-1

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine: Rational Architecture (R100O)

Operating System: Rational Environment

Memory Size: 32 Megabytes

Target Computer:

Machine: Rational Architecture (R1000)

Operating System: Rational Environment

Memory Size: 32 Megabytes

2-1

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION

Base Configuration:

Copilert Rational Environment A-5-181

Test Suite: Ada Compiler Validation Capability, Version 1.7

Certificate Date: 6 MAY 1986

Host Computer:

Machine: Rational Architecture (R1000)

Operating System: Rational Environment

Target Computer:

Machine: Rational Architecture (R1000)

Operating System: Rational Environment

2-2

CONFIGURATION INFORMATION

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

. Nongraphic characters.

Nongraphic characters are defined in the ASCII character set but
are not permitted in Ada programs, even within character strings.
The compiler correctly recognizes these characters as illegal in
Ada compilations. The characters are printed in the output
listing. One character, form feed (ASCII 12), is not detected
because the underlying input system precedes the character with a
line terminator which is detected instead. (See test B26005A.)

" Capacities.

The compiler correctly processes compilations containing loop
Statements nested to 65 levels and recursive procedures nested to
10 levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A
through D55A03H, D56001B, D64005E through D64005G and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AOO2A, D4AOO2B, D4AO4A, and
D4AOO4B.)

Predefined types.

This implementation supports the predefined type LONG INTEGER.
(See tests C34001E, B52004D, B55B09C, C55B07A, and B86001CS.)

" Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR during execution. This implementation rejects the
literal-during compilation. (See test E24101A.)

" Array types.

When an array type is declared with an index range exceeding
INTEGER'LAST values and with a component that is a null BOOLEAN
array, this compiler does not raise any exception. (See tests
E36202A and 336202B.)

2-3

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises STORAGE ERROR when array objects are declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER' LAST
components raises no exception. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC-ERROR either when declared or
assigned. Alternately, an implementation may accept the
declaration. However, lengths must match in array slice
assignments. This implementation raises no exception. (See test
E52103Y.)

In assigning one-dimensional array types, the entire expression
appears to be evaluated before CONSTRAINT ERROR is raised when
dchecking whether the expression's subtype is compatible with the
target's subtype.

In assigning two-dimensional array types, the entire expression
does not 4ppear to be evaluated before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. (See test C52013A.)

" Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation rejects such subtype indications during
compilation. (See test E38104A.)

In assigning record types with discriminants, the entire
expression appears to be evaluated before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

. Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical
bounds. (See test E3212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

oft

2-4l

CONFIGURATION INFORMATION

" Functions.

The declaration of a parameterless function with the same profile
as an enumeration literal in the same immediate scope is rejected
by the implementation. (See test E66001D.)

" Representation clauses.

'SMALL length clauses are not supported. (See test C87B62C.)

Enumeration representation clauses are not supported. (See test
BC 1002A.)

" Pragmas.

The pragma INLINE is not supported for procedures nor for
functions. (See tests CA3004E and CA3004F.)

" Input/output.

The package SEQUENTIAL 10 can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT 10 cannot be instantiated with unconstrained array types

and record types with discriminants without defaults. (See tests
CE2201D, CE2201E, and CE24O1D.)

More than one internal file can be associated with each external

file for sequential I/O for reading only. (See tests CE2107A
F (5 tests (no "E").)

More than one internal file can be associated with each external

file for direct I/O for reading only. (See tests CE2107A .. F (5
tests (no "E").)

An external file associated with more than one internal file

cannot be deleted. (See test CE2110B.)

More than one internal file can be associated with each external

file for text I/O for reading only. (See tests CE3111A .. E (5
tests).)

An existing text file can be optned in OUT FILE mode, can be
created in OUT FILE mode, and can be created in IN FILE mode.
(See test SE3102C.)

Dynamic creation and resetting of a sequential file are allowed.

(See test CE2210A.)

Temporary sequential and direct files are given a name. Temporary
files given names are deleted when they are closed. (See test
CZ2108A.)

2-5

r _____

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

The AVF identified 2093 of the 2279 tests in Version 1.7 of the ACVC as
potentially applicable to the validation of Rational Environment A_5_18_1.
Excluded were 170 tests requiring a floating-point precision greater than
that supported by the implementation; and the 16 withdrawn tests. After
they were processed, 48 tests were determined inapplicable. The remaining
2045 tests were passed by the compiler.

The AVF concludes that the testing results demonstrate acceptable

conformance to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 67 817 1117 14 9 21 2045

Failed 0 0 0 0 0 0 0

Inapplicable 1 7 203 3 2 2 218

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17* 11 23 2279

3-1

-

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER
_j 4 6 7 8 10 11 12 14 TOTAL

Passed 102 232 306 242 160 97 155 197 99 28 216 211 2045

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 75 88 5 1 0 6 2 6 0 0 21 218

Withdrawn 0 1 4 0 0 0 1 2 6 0 1 1 16

TOTAL 116 308 398 247 161 97 162 201 111 28 217 233 2279

S.4 WITHDRAWN TESTS

The following tests have been withdrawn from the ACVC Version 1.7:

B4AO10C C41404A CA1003B
B83A06B C48008A CA3005A through CA3005D (4 tests)
BA2001E C4AO14A CE2107E
BC3204C C92005A
C35904A C94OACA

See Appendix D for the test descriptions.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that Is either inapplicable or
withdrawn. For this validation attempt, 218 tests were inapplicable for
the reasons indicated:

• C34001D, C55BO78, B86001CR, B52004E, and B55BO9D use SHORT-INTEGER
which is not supported by this compiler.

• C34001F, C35702A, and B86001CP use SHORT FLOAT which is not
supported by this compiler.

• C3001G, C35702B, and B86001CQ use LONG FLOAT which is not
supported by this compiler.

. C48006B makes use of a construct whose meaning is still under
discussion by the Language Maintenance Committee--the constraining
of a discriminated, incomplete type before the elaboration of the
full record type declaration. The Rational Environment rejects

3-2

TEST INFORMATION

this test during compilation. Because the issue could not be
resolved by the time of validation testing, this test is
considered inapplicable.

• C55B16A makes use of an enumeration representation clause
containing noncontiguous values which is not supported by this
compiler.

• B86001DT requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

• C87B62B and C87B62C use 'STORAGE SIZE and ,SMALL clauses which are
not supported by this compiler.

* CA3004E, EA3004C, and LA3004A use pragma INLINE for procedures
which is not supported by this compiler.

* CA3004F, EA3004D, and LA3OO4B use pragma INLINE for functions
which is not supported by this compiler.

• AE2101H uses instantiation of package DIRECT 10 with unconstrained
array types which is not supported by this compiler.

• CE2102D through CE2102J (6 tests (no "H")) are not applicable
since this implementation supports INOUT FILE for direct I/O, and
INFILE, OUT-FILE, RESET, and DELETE for sequential and direct
I/O.

. D4AO04B requires literals which are outside the range of
LONG INTEGER. These are not supported by this implementation.

* D56001B and D64005G require a static nesting level which exceeds
the maximum nesting level of 15 supported by this implementation.

" CE2401B is inapplicable because the creation of sequential I/O and
direct I/0 files for a type containing access types is not
supported by this system.

" CE2401D is inapplicable because instantiation of package DIRECT 10
with unconstrained array types and record types with discriminants
is not supported by this compiler. However, this test was
modified for validation to eliminate instantiation of the package
DIRECT I0 for unconstrained array types and for record types whose
disoriminants do not have default values. The remaining portions
of the test demonstrated that DIRECT 10 may be instantiated for
record types whose disoriminants have default values.

* C92005B is inapplicable because in this system a task's
STORAGE SIZE attribute yields a value greater than
STADARD.INTEGBR'LkST.

3-3

TEST INFORMATION

* C96005B is inapplicable because in this impl'mentation DURATION is
its own base type.

* CE2107B through CE2107D (3 tests), CE2110B, CE2111D, CE2111H,
CE3111B through CE3111E (4 tests), CE3114B, and CE3115A are
inapplicable because more than one internal file being associated
with the same external file is only supported by this compiler if
the files are opened for reading.

* 170 tests were not processed because they make use of
floating-point types requiring more than the maximum precision
supported. These tests were:

C24113L through C24113Y (14 te'ts)

C35705L through C35705Y (14 tests)
C35706L through C35706Y (14 tests)
C35707L through C35707Y (14 tests)
C35708L through C35708Y (14 tests)
C35802L through C35802Y (14 tests)
C 15241L through C45241Y (14 tests)
C45321L through C45321Y (14 tests)
C145'421L through C45421Y (14 tests)
C45424L through C45424Y (14 tests)
C45521L through C45521Z (15 tests)
C45621L through C45621Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 40 Class B tests containing more than one syntax
error because the compiler stops processing at the first such error.

3-4

TEST INFORMATION

B22003A B24005B B32103A B55AOlA
B22004A B24104A B35101A B64001A
B22004B B24104B B37201A B67001A
B22004C B24104C B37307B B67001B
B23004A B26002A B41202A B67001C
B23004B B26005A B44001A B67001D
B24001A B29001A B45205A B97101E
B24001B B2AOO3A B51001A BB3005A
B24001C B24003B B51003A BC3003A
B24005A B24003C B53003A BC3013A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.7 produced by
Rational Environment A 5 18 1 was submitted to the AVF by the applicant for
prevalidation review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests.

3.7.2 Test Method

Testing of Rational Environment using ACVC Version 1.7 was conducted
on-site by a validation team. The base configuration consisted of a
Rational Architecture (RIO00) operating under Rational Environment
A_5_18-1.

A test tape containing ACVC Version 1.7 was taken on-site by the validation
team. The tape contained all tests applicable to this validation as well
as all tests inapplicable to this validation except for any Class C tests
that require floating-point precision exceeding the maximum value supported
by the implementation. Tests that make use of values that are specific to
an implementation were customized before being written to the tape. Tests
requiring splits during the prevalidation testing were included in their
split form on the test tape.

The contents of the tape were loaded directly onto the Rational
Architecture using a special program developed by Rational for that
purpose. This program read each test file and placed it into a directory
based on the test file name. Directories were organized according to
chapter so that the tests for a given chapter were placed into the same
directory. Some test files were loaded into special directories, however,
because of special requirements for running these tests. One special
directory contained a subset of Chapter 14 tests that use both
CURRENT OUTPUT and STANDARD OUTPUT and required a special version of the
package REPORT (see below). A second special directory contained tests
that have side-effects on the program library during o.pilation, such as

3-5

-4

TEST INFORMATION

the one that redefines the package SYSTEM.

Once all tests had been loaded to disk, three parallel batch streams were
started. The Rational Environment includes both an interactive Ada editing
facility and support for incremental change to semantically consistent
units. Since the ACVC is structured only for testing batch compilers,
Rational constructed a batch facility that invokes components of the
interactive and incremental compilation system. Tests were run using this
batch facility, and thus indirectly using the Rational Environment
compilation system, but no explicit testing of these facilities was

attempted.

In the special batch environment created for testing purposes, it was
necessary to change package body REPORT so that writing was done to
CURRENT OUTPUT rather than to STANDARD OUTPUT because file STANDARD OUTPUT
was identified with the user's terminal. (Even for specially constructed
batch streams STANDARD OUTPUT is associated with the terminal used to start
the stream.) The test team verified that this was the only change to that
package. However, two versions of REPORT were required because some of the
executable tests for Chapter 14 check the use of STANDARD OUTPUT and
CURRENT OUTPUT. These tests were run using the standard ACVC version of
the REPORT package with the console designated as STANDARDOUTPUT.
Execution results for these tests were copied to the printer from the
console.

After the test files were loaded to disk, the full set of tests was run on
the RiO00. Results were printed from the R1000. Tests that were withdrawn
from ACVC Version 1.7 were not run.

The compiler was tested using command scripts provided by Rational. These
scripts were reviewed by the validation team. The following switches were
in effect for testing:

Switch Setting

Account
Auto Login False
Closed Private Part False
Parser Configuration ()
Create-Internal Links True
Create-SubprogramSpecs False
IgnoreInterfaoe Pragmas False

Ignore Minor-Errors False
Ignore UnsupportedRepSpecs False
Password
Remote-Directory f-

Remote Machine
Remote Roof
Remote Type Rational

3-6

TEST INFORMATION

Require Internal Links False
Send Port Enabled False
Subsystem-Interfaoe False
TargetKey R1000
Transfer Mode Stream
Transfor-Structure File
Transfer-Type ASCII
Usernamen

Tests were run in batch mode using a single computer. Test output,
compilation listings, and job logs were captured on magnetic tape and
archived at AVF. The listings examined on-site by the validation team were
also archived.

3.7.3 Test Site

The validation team arrived at Rational in Mountain View, CA on 5 MAY 1986
and departed after testing was completed on 6 MAY 1986

3-7

APPENDIX A

COMPLIANCE STATEMENT

Rational has submitted the following compliance
statement concerning the Rational Environment.

A-1

Compliance Statement

Base Configuration:

Compiler: Rational Environment A_5_18_1

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine: Rational Architecture (R1000)

Operating System: Rational Environment A_5-18_1

Target Computer:

Machine: Rational Architecture (R1000)

Operating System: Rational Environment A_5_18_1

Rational has made no deliberate extensions to the Ada language

standard.

Rational agrees to the public disclosure of this report.

Rational agrees to comply with the Ada trademark policy,
as defined by the Ada Joint Program Office.

/alter Wall,
RATIONAL
Manager, Software Test and Release

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The Ada Limpa e RJfere e Masu specifie that certain features of the language
are implementation dependent. It require that these Implementation dependencies
be defined in an appendix, Appendix F.

This section of the Rudau Enfromame Relference Miamud the Appendix F for
the Rational Environment and the Rational Architecture. It contains sections that
describe the following Implementation-dependent features:

" Compilation
" The predefined language environment

" Attributes

" Representation clause
" Chapter 14, 1/0.
" Limits

Note that.there will be a separate Appendix F for each additional target supported
by the Environment.

Compilation
The following sections Introduce some of the concepts that underlie the Environment
compilation system and provide a summary of the separate compilation rules for
Ada units In the Environment.

Umit Staie
The Rational Environment provides an integrated representation of propau, in-
dependent of their compilation state. In the Environment, no distinction I made
between source, object code, or other Implementation-dependent representations.

In the Environment, each Ada unit can be In one of three bask states that range
from source, the lowest state, to coded, the highes state. The proces of trandorm-
ing a proram to the state In which it can be executed couis of promoting all of
Its units from the source state to the coded state and then promoting a command
that references It. Each of the state Is described in more detail below.

3-1

APPENDIX F OF THE Ada STANDARD

* Source - In this state, the Image of the unit can be edited. Other units that
reference It (in the Ada sense) cannot be in a state higher than the source state.

" Installed - In this state, the unit has been syntactically and semantically checked
according to the definition of the Ads language. Other units can now reference it
(in the Ada sense); that Is, they can be promoted from the source state to higher
sta.

" Coded - In this state, code has been generated for the unit, and the unit can be
exscuted from a Command window.

eatmmt d Gamle

Since the Rational Environment and the Rational Architecture do not depend on
macro expansion approaches to compile generics, the specification and the body of
a generic are not required to be in the same compilation. Bodies of generics can be
changed without obsolescing inhtantiations of these generics.

If the formal part of a generic contains private (or limited private) types, certain
additional implicit dependencies between the specification, body and instantiations
of a generic may be introduced (see Section 13.3.2 of the Ads L, Reference
Man-u.. The effect of these implicit dependencies is described more fully in 'rn-
stallation,' below, and in the discussion of the Must-Be-Constrained pragma in
'Pragmas,' later in this section.

Jutaltim
Installation ordering rules follow Ada's separate compilation rules. Specs must be
installed before their corresponding bodies are installed. Subunits must be installed
after their parents are installed. A unit spec must be installed before another unit
that refers to it can be Installed. Bodies can be changed without obsolescing using
occurren s.

If the formal part of a generic contains private (or limited private) types, certain
additional implicit installation dependencies among the specification, body, and
instantiations of a generic may be introduced (see Section 13.3.2 of the Ada Lanpffe
Rafernce Manzl).

If the specification and body of such a generic ar Installed, and the body contains
languaqe constructs that would require constrained actuals for the formal private
(or limited private) types, instantiations that do not provide constrained actuals
for these formals cannot be Installed after this point (semantic errors will be gen-
erated). U, on the other hand, the specification for such a generic and at least one
instantiation with unconstrained actuals for the formals have been installed, the
body for the generic cannot then be Installed If It contains language constructs that
would require constrained actuals (semantic errors will be generated).

The Environment supports a pragms, the MustBeConstraned pragma, that can
be used to provide more explicit control over the treatment of generics with formals
that are private (or limited private). More information is avall e in the description
of the Must-e..Constrained pragms in ,Pragmass later In this section.

B-2

APPENDIX F OF THE Ada STANDARD

It i aways legal for a generic actual parameter to be a type with discriminants if
the discriminants have default values. In generic unit Instantiation, the Rational
Environment treats such actual parameters as if they were constrained types. This
conforms to the requirements of AI-00037.

Literal declarations outside the bounds of Lon&~teger are rejected at installation
time. The bounds of Long-Integer are System.Minnt..ystem.Max-nt.

A parameterless function having the same name and type as the enumeration literal
(declared in the same scope) Is rejected at installation time. This conforms to Al-
00330.

Specs must be coded before their corresponding bodies are coded. Specs must also
be coded before users of those spec can be coded. Changes that require recodin
the specs require recoding the bodies of the units that have been changed and all
usages of those changed units.

Jnmental AstaM g/Wlid&mrwg
The Rational Environment currently allows certain incremental changes to units in
the installed state (note that coded units must be demoted to the installed state
before these operations are allowed).

New declarations that are upward compatible (based on Ada semantics) can be
inserted into installed units. Entire declarations can be incrementally demoted
from installed to source, edited, and then incrementally reinstalled.

The Environment also allows incremental operations on entire statements for units
in the installed state. New statements can be inserted or deleted. Existing state-
ments can be incrementally demoted to source, edited, and then reinstalled.

Incremental operations are also allowed In context clauses.

Incremental operations are not allowed for two-pat types or generic formal parts.

The Predefized Lang"ge]Eronmeut
The following material describes the predefined library units: package Standard,
package System, the UncheckedDeallocation procedure, and the Unchecked-Con-
version function.

kage Santmdaid

package Standard defines all of the predefted Identifies in the language.

pokge Stw dw is

tgpe Boolean is (False. True);
for SooleM'Size Ue 1;

B-3

APPENDIX F OF THE Ada STANDARD

two Integer is range-2ss31 . *31;

t pe Lorg.1Integer is rw0ge (-2s62 - 2*42) (2-42 - I * 2-42);
- -2 3 . 2**63-I

type Float is digits 15
range -1.7977E36 .. 1.7977E308;

type Character is (Nul. ..., DOel);
fo Charecte use (I 127);
for Character Size use 8;

package Ascii is ... and Ascii;

siktwpe Natural in Integer rnge ' " Integer'Last;
subtype Positive is Integer range I IntegerLast;

t po String is ara (Positive range 0) of Charcter;

type Duration is delta 3.17578125-E4-S
wage -4.29496729S6 09 .. 4.294967296E.9;

ComstraintError : exoeption;
Nutme-ic.Error : exception;
ProgrwnError : exception;
Storage-Error : exception;
Task ing.Error : exception;

and Standard;
STANDARD.DURATION'SMALL - 3.0517578125 E-05 seconds

Packag Systew
Package System defines various Implementation-dependent types, objects, and sub-
progams.
Other declarations are defined in package System that are reserved for internal use
and are not documented. These declarations should not be required for users of the
Rational Environment.

package System is

type Nine is (RIM);

Sstem.Nmo : oonstant Ne := RIM;

Bit : constt : 1;
Storage.Uit : conantt := 1 0 Bit;

Woed.Size : mutant :a 128 • Bit;
Byte.Size : onstant a * s Sit;
Megabte : onstant a (2 ". 20) . Ste.Size;
NomoeiSize : constant a 3 Megbte;

- SWstwm-Depwxnt Nmed M&

Min.Int : mutant : Long.Intoger'Pos (Lang-lntegerFirst);
Ma I.nt : cmnstant Ln-.Integer 'Po (Long.IntegeLost);

B-4

PPBNDIX F Or THS Ada STANDARD

M...Digits oonstmt :u IS;
Max.Mw t sea : oonstant : 63;
Fine-Delta : c nstt :u 1.0 / (2.0 es 63);
Tick : oontant :- I.E-9;

"type Priority is Integer r.ge i .. S;

type Byte is ero Itural ria 0 .. M5;

typ Btetring is arry (NaUral rwte 0) of Byte;
-- Basic uLnits of trursmssimn/reception to/from 0 devices.

Instruction-Error : excetion;
-- Raised by UhclckedConversion when conversion fails.

and System;

U-oehe--d.Deafseatlm
The UncheckedDeallocation procedure i used to perform unchecked storage deal-
location for objects designated by values of access types other than task types.

gow riC
type Object is limited private;
type Name is access Object;

procedure Udobked.aelllocation(X in out Name);

Note that the current implem ation of UncheckeLDeallocation aigns null to X
but does not actually reclaim the storage for the object it designates. The procedure
i provided so that software that eventually will be targeted to other computers can
be developed and debugged in the Rational Environment.

UneheckseCO~verdls lhutimd
The Unchecked-Conversion function converts objects of one type to objects of an-
other type.

geWm iO
type Source is limited private;
type Target is limited private;

f rnction UncheckedConversion (S : Source) return Target;

This function returns the bit pattern for S as an object of the Trget type. If the

conversion is impossible, the Instruction.Error exception is raised.

Unchecked-Conversion succeeds if the following conditions are met:

e If the Taget type Is an array, It must be constrained.
9 Turget'ise must be Im than or equal to Source'Sise. If arget'Sise Is smaller

than Source'Sise, truncation occurs.
* The Source and Target cannot contain access, task, discriminated, or private

- type.

II 3-5

APPENDIX F OF THE Ada STANDARD

Examples of conversions that succeed Include:
* LongJteger to a record with two Integer fields.
* Float to a Longjategr.
* Integer and an arry of 82 Booleans.
* Two record types of equal else, each containing only scalar subcomponents and

no discriminants.

Pehge Msebh.C.d.
The paciap Machine-Code is not currently supported.

Attributes
The Environment supports no Implementation-dependent attributes other than
those defined in Appendix A of the Ads La q. Rawcae Manud The following
clarifications and restrictions complement the descriptions provided in Appendix A:

0 'Address - This attribute is not supported; any number returned is meaningless.
* 'Firt-Bit - This attribute is not supported.
* 'Last-Bit - This attribute is not supported.
* 'Position - This attribute Is not supported.
* 'Stora" ise - 'Storsg Ise Is meaningful only when applied to accm type or

subtypes, in which cue it returns the number of storage units reserved for the
collection associated with the base type for the access type or subtype. 'Stor-
age-Sise ha no effect for task types or task objects.

Pragmas
The Environment supports praqmas for application software development in addi.
tion to those defined in Appendix B of the Ads Lan~ Rfersean Manu They
are described below along with additional clarifications and restrictions for the
pragmas defined in Appendix B of the Ads Lsug Mteresce Manas&

* Closed-Private.Part - This pragma is used in conjunction with the Subsystem
tools to indicate that a Subsystem interface has a closed private part.

e Controlled - Since the Implemntation does not support automatic garbage col-
lection, this pragma Is always Implicitly in effect.
Inline - This pragma currently has no effect.

* Interface - The Environment does not currently support the execution of other
language on the Rational Architecture. However, to support development of
target-dependent software containibg this pragma, the Environment recognises
this pragma. The effect of this pragma is that a body is Implicitly built that will
raise the Program.Error exception If the subprogram Is executed.

* List - This pragma currently has no elect.

5-6

APPENDIX F OF THE Ada STANDARD

* Main - This prma is used to cause the Environment to preload the object code
for the compilation units referenced by s main program Normally this loading
is done when a Command window referencing these units is promoted.
The pragma takes no parameters and should be placed Immediately after the
declaration for the specifcatio or the body of the main subprogram. Note that
there Is a restriction that the parameters to sbrograms containing this pragma
must be of type defined in packge Standard, packag Stem, or any other
predefined package in the Environmst directory structure provided by RationaL
The pragpa can be placed only after library units. The loading takes place when

bdy of the main pror Is promoted to the coded state. In order for this
to occur, al compilation units referenced by the main program must be in the
coded state.

When us.q the Subsystem tools, the loading of subprograms containing a Main
prgma w. w use the current Activity to determine the actul Subsystem impl1-
mentations that will comprise the main program. Once the loamig has ten

, the execution of the main program can occur without requiring an Activ.

Executing a main program containing this pragma first causes the closure of the
library its referenced by the main progr to be elaborated. The program is
then executed. f there are references in the Command window to units in the
closure of the main program other than within the main program these references
will cause their own copy of thee units to be elaborated. The elaborated
instances will be separate from those of the main program's elaboration.

* Memory.Sise - This pragma has no effect.
SMust.BeConstrained - This pragm is used in a generic formal part to indicate

that formal private (and limited private) types must be constrained or need not
be constrained.
This pragm allows programmers to declare explicitly how they intend to use
the formal in the specification for a generic. By doing so, the Environment can
check that any instantiations of the generic that are installed before the body of
the generic is installed are legaL
Its syntax Is: PIafs f* et t.Conetrained ([<ocrd >a>] <tW);
The <oo can be either yes or no and defaults to the previous value (which is
initially yes) if omitted. twp.id> must be a formal private (or limited private)
type defined in the same formal part as the pragma.
f the <Gwv value of no is specified, any use in the body that requires a con-
raied te will be agged as a semantic error. If yes is specified, any instan-

tiations that contain actuals that require constrained types will be flagged with
semantic errors If the actuals are not constrained.

* OpenPrivate..-PA - This pragma Is used in conjunction with the Subsystem
tools to indicate that a Subsystem interface has an open private part.

* OptiMe - Thi pragma currently has no enect.
SPak - AD records and rrays are stored packed in the minimum number of bits

that they require, unless explicitly overridden by a length reprsentation clause
(see Representation of Object below). Thus, this prgm has no effect.

* Pap - This pragms currently baso effect.

B-7

APPENDIX F OF THE Ada STANDARD

" Priority - Priorities can be specified only inside a task or a library main program.
If multiple priorities ane specified, omly the AMzu priority speified is use. The
default priority Is 2.

0Privat. es..On - This pragma is used in conjunction with the Subsyste
*tooks to Indicate that Items in a context clause ane required only in the pia
part of a Subsystem Interface.th

* Shared - This pragma currently has no effect.
" Storage-.Unit - The only legal storage unit value for the Rational Architecture is

1.
" Suppress - This pragma currently has so effect.
" System-Name - The only legal system name is R1000.

Rtepresentation Chumn
The Rational Environment does not currently provide a complete implementation
for representation specifications. However, to facilitate host/target. development
of target-dependent code containing representation clauses, the Environment will
optionally ignore unsupported representation clauses.

Repreetatin of Olijeets

The Environment follows some simple rules for representing objects in virtual mem-
ory, and these rules can be used to create objects with arbitrary bit Images without
using representation clauses.

For discrete types as components of structures (records and arrays), the Rational-
Architecture representation will allocate the minimum amount of space to represent
the range imposed by the (possibly dynamic) constraints of the applicable subtype,
using a two's complement representation that Is sero based.

For example:

subtype Binary is Integer range I .. 1; - uses I bit

Su.btype A is Intogsrage~w -3 .. 120; - uses 8 bits

type B is nee Naural range 0_ 63; us es 6 bits

type C is new Natural range 1622. .W3; us.es 10 bits

type Dis (X. Y. Z); -usetibi to

type E is (X); -uses I bits

Sise representation clause are supported for afl enumeration types, as long as the)
are not declared with two-part declarations. Thus, the above rules can be o=rrd
den. A specific eample of this Is the representation for the Standard.Character
type which taeI bits Instead of 7 because of a alse representation clause.

B-8

APPENDIX F OF THE Ada STANDARD

For records without dicriminants, the Rational Architecture storm the fields In the
order specified In the type declaran, using the minimum space required for each
fold, with no additio mrm t-mnad db

t pe R1 is - Uses 86+1 a IS bits
record

Field-1 : A;
Field_2 : B;
Field_3 : Boolean;

and record;

type PZ is -- Uses 15+1 a 16 bits
record

Fieldl : RI;
FieldZ : Boolean;

wnd record;

For constrained arry types, the Rational Architecture storms the elements packed,
using the minimum space for each-element, with no additional fields.
type Al is array (I..N) of RI; - Us*e ISN bits

- N need not be statio

type A! is arraj (.-.I0) of Boolean; - Uses 11 bits.

type R3 is - LUe 15+11.2
record - 2 zf bits

Field.l : RI;
Field.2 : A2;
Field_3 : 0;

end recod;

Lingth Clause
" 'SiSe - The Rational Architecture supports the 'Sie attribute for discrete types

only. These types ae further limited in that they can have only a single dec.
laration point (that is, they cannot be Incomplete or private types). The size
specified must be le than or equal to 64.

* 'Storage-Sie for collections - The default collection size ls 22*4 bits. The
storage sise for a collection can range from 10s8 to 2*o32 bits. The storage sie
for a collection determines the number of bite required to represent access types
for the collection (for eample, for collections of the default 2*'24 bit ai, the
number of bite required to store objects of the access type that is amociated with
this collection Is 24. Only types with single declaration points can have storage
si Mpecified (that Is, they cannot be incomplete or private types).

* 'Storap.se for tasks - Since each tSk In the Rational Architecture gets its
own virtual address space, storage sio specifications for tasks are meaningless
and, consequently, ae not supported.

* 'Small - This length clause Is not currently supporte.

humerstls Rereetatham Chum

No ume retion rpresentation clause a currently supported.

B-9

APPENDIX F OF THE Ada STANDARD

Rterd resmtatin Cam
No record representation clause are currently supported.

Address Clavum

No address clauses are currently supported.

AIt-
Since interrupts do not exist in the Rational Architecture, the representation
clauses are not needed and, consequently, are not supported.

Chapter 14 1/0
The Environment supports all of the I/O packages defined in Chapter 14 of the
Ads Languffe Reference MaUsv, exe t for pckag LowL"eveLlo, which is notneeded. The Environment also provides a number ofther ps.
packages defined in Chapter 14, as well as the other 1/0 paaes supported by
the Environment, are more fully documented in the "Input/Output section of the
Ratodm Environment Ruf ece ManeL

The following list summarises the Implementation-dependent features of the Chap-
ter 14 1/0 packages:

" Filenames - Filenames must conform to the syntax of Ada Identifiers. They can,
however, be keywords of the Ada language.

" Form parameter - The Form parameter is ignored.
" Iustantiations of package Direct-lo and package Sequentialo with access types

- Such instantiations an allowed. If file an created or opened using such in-
stantiations, the Un-Error exception is raised.

* Count type - The Count type for package 7exto and package DirectIo is
defined as:

package Text;_lo is

tW,'a Count is range 0 .. 1.JMUJMU;

w"d Text..Ia;

package Direct.o is

tpe count is n Integer
range 0 .. Integar'Lst/Element.Type'Size;

wid6irect..Io;
* Field subtype - The subtype Field for package TextJo Is defined as:

subttpe Field is Intge r.w 0 .. Intger'Last;
" Standard Input and StandarLOutput fas - Thes film an the interactive In-

put/output windows provided by the Rational Editor.
" Internal and eternal files - More than one Internal file may be associated with a

sage em al file for input only. Only one Internal file may be asociated with
a single aernal file for output or inot.

B-10

APPENDIX P OF THE Ada STANDARD

" SequentiaLlo and Directlo packages - Package Squentiallo may be instanti-ated for unconstrained array t~pe or for types with discriminants without defaultdiscriminant values. Paclage Uarectdo may not be instantiated for unconstrainedarray y or for types with discrimuiants without default discriminant values.
" Terminators - The control characters used as terminators are:

Line terminator - Asciu.Lf
Page terminator - AiciJ.f
File terminator - Asclu.Eot

" Treatment of control character - Control characters, other than the terminatorsdescribed above, are passed directly to and from film to application programs.
" Concurrent properties - The Chapter 14 1/0 packages assume that concurrentrequests for I/0 resources will be synchronised the application program makingthe requests.

Lbwmts
The following package specifies the absolute limits on the use of certain language
features:

package Limits is
Large : ocrutant :a <some ver large rAber>;

Z-Lx.nane._Lr gth : oorstant :a 254;

-- Seantics
Max..Oioarimiwonts_ InnCorwetraint : constant :a 256;Max.Associatioer. InRecord.Aggregate : oanstn t :a 256;Max-Fiaelds-In-Roord-Aggregmte : corstant :a 2S6;Max.Formals. Im-Geric : oanstant :a .56;MaxNested.Contexts : costant :3 25S;Max-Nested-Packages : corstant :a Large;MaxUi to- I nTraini ti gvi_-Closure.Of-fi th-Lists

: castwt :a Large;
- (limited by virtual =mmor stack size)Max)M*ner.OE.Librwries : oanstwt : Large;

- Cods GeneratorMax.Non.-.t&ICase_.Alterrtiva : anetant :a 25;Max-ndi -esI n-Arra.Aggregate : oMnstnt :a 64;ax.arameters.IMnCall : am tant :a 25;Max.Expression.Nesting.Depth : constant :* Large;
- (limited bW virtual mmorW stack size)MaxMoberO ,_- atioJ.Literals : onstant :a 256;

Max..4.UeOf-Fields- InReoordl : oanstant :a 2S;Max-Minber..Of-.Entries-gn-A..Tak : 00nstet :8 IS_i .er-OfDiom ns oreIr-I.n.rray : onstant :a 63;Max.est ing.OFSuprograme.Or.B1 ocks. I r.A.Pakage
: anetr:a 14;

- Execution
MaxJM*er.Of.Tasks : carstant :a Large;

- (limited bU available disk space)

end Limits;

5-11

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are identified by names that begin
with a dollar sign. A value is substituted for each of these names before
the test is run. The values used for this validation are given below.

Name and Meaning Value

$BIG ID1 (1 .. 253 => 'A', 254 0) '1')
Identifier of size MAX IN LEN
with varying last character.

$BIGID2 (0 .. 253 => 'A', 254 => '2')
Identifier of size MAX INLEN
with varying last character.

$BIGID3 (1 .. 126 => 'A', 127 => '3',
Identifier of size MAX IN LEN 128 .. 254 => 'A')
with varying middle character.

$BIG ID4 (1 .. 126 => 'A', 127 => '141',
Identifier of size MAX IN LEN 128 .. 254 > 'A')
with varying middle charaoter.

$BIG INT LIT (1 .. 251 > '0', 252 .. 254 :> '298')
An integer literal of value 298
with enough leading zeroes 30
that it is MAXIN LEN characters
long.

C-1

TEST PARAMETERS

Name and Meaning Value

$BIGREAL LIT (1 .. 249 => '0',
A real literal that can be 250 .. 254 z> '69.OE1')
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
MAX IN LEN characters long.

$BLANKS (1 .. 234 z> 1 1)
Blanks of length MAXINLEN - 20

$COUNTLAST 1_000_000_000
Value of COUNT'LAST in TEXTIO
package.

$EXTENDEDASCII CHARS abcdefghijklmnopqrstuvwxyz!$%?@[\]'{} -

A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD LAST 2147483647
Value of FIELD'LAST in TEXT IO
package.

$FILENAME WITH BAD CHARS BADCHARACTERS&<>=
An illegal- ext-ernal file name
that either contains invalid
characters or is too long.

$FILENAMEWITH WILD CARD CHAR WILDCARDS@
An exiternal Cile name that
either contains a wild card
character or is too long.

$GREATER THAN DURATION 5.0E09
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION.

$OREATER.THAN DURATION.BASE.LAST 5. OE09
The universal real value that is
greater than DURATION'BASE'LAST.

$ILLEGAL EXTERNAL FILE NAME1 BAD CHARACTERS&<>=
Illegal external file name.

$ILLEGAL EXTERNAL FILE NAME2 (1 .. t0 => 'A') &
"Illegal external file names. (1 .. 100 > 'A') &

(1 .. 100 > 'A')

C-2

TEST PARAMETERS

Name and Meaning Value

$INTEGERFIRST -2147483647
The universal integer literal
expression whose value is.
INTEGER'FIRST.

$INTEGERLAST 2147483647
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESSTHANDURATION -5.0E09
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

$LESSTHANDURATION BASE FIRST -5.0E09
The universal real value that is
less than DURATION'BASE'FIRST.

$MAXDIGITS 15
Maximum digits supported for
floating-point types.

$MAX IN LEN 254
Maximum input line length
permitted by the implementation.

$NEGBASEDINT 16#fffffffffffffffe#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

$NONASCIICHAR TYPE non-null
An enumerated type definition
for a character type whose
literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

C-3

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. When testing was performed, the following 16 tests had been
withdrawn at the time of validation testing for the reasons indicated:

• B4AO10C: The objectdeclaration in line 18 follows a subprogram
body of the same declarative part.

. B83AO6B: The Ada Standard 8.3(17) and AI-00330 permit the label
LAB EUMERAL of line 80 to be considered a homograph of the
enuieration literal in line 25.

. BA20OIE: The Ada Standard 10.2(5) states: "Simple names of all
subunits that have the same ancestor library unit must be distinct
identifiers." This test checks for the above condition when stubs
are declared However, the Ada Standard does not preclude the
check being made when the subunit is compiled.

. BC3204C: The file BC3204C4 should contain the body for BC3204C0
as indicated in line 25 of BC3204C3M.

• C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC ERROR (instead of CONSTRAINT ERROR).

C414O4A: The values of 'LAST and 'LENGTH are incorrect in IF
statements from line 74 to the end of the test.

- C48008A: This test requires that the evaluation of default
initial values not occur when an exception is raised by an
allocator. However, the Language Maintenance Comittee (LMC) has
ruled that such a requirement is incorrect (AI-00397/01).

D-1

WITHDRAWN TESTS

. C4AO14A: The number declarations in lines 19-22 are incorrect
because conversions are not static.

" C92005A: At line 40, */=" for type PACK.BIGINT is not visible
without a USE clause for package PACK.

" C940ACA: This test assumes'that allocated task TTI will run prior
to the main program, and thus assign SPYNUHB the value checked for
by the main program; however, such an execution order is not
required by the Ada Standard, so the test is erroneous.

" CA1003B: This test requires all of the legal compilation units of
a file containing some illegal units to be compiled and executed.
According to AI-00255, such a file may be rejected as a whole.

" CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

" CE210TE: This test has a variable, TEMPHASNAME, that needs to
be given an initial value of TRUE.

D-2

U.'

