AD-a130 oscg CTRADEN °" Egnmﬁnén%ﬂu

AND)
UNCLASSIFIED F/G 1273 NL

it FEFEITN =1l
: =

o_____ =K

AD-A180 064

UNCLASSIFIEJ’m FILE CYE V

SECURITY CLASSIFICATION Of THIS PAGE (When Data Entered)

——

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETEING FORM

1. REPORT NUMBER

[2. GOVT ACCESSION NO.

3. RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtitie)

Ada Compiler Validation Summary Report:
Systems Designers plc, SD Ada-Plus VAX/VMS x
MC68020, Version 2B.00, Host: VAX 8600,
Target: Motorola MC68020

§. TYPE OF REPORT & PERIOD COVERED
1 DEC 1986 to 1 DEC 1987

6. PERFORMING ORG. REPORT NUMBER

AUTHOR(s)
"National Computing Centre Limited

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION AND ADDRESS
National Computing Centre LImited
Oxford Road, Manchester, M1 TED UK

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADORESS

12. REPORT DATE

Ada Joint Program Office 1 DEC 1986

United States Department of Defense I NOMBER OF PAGES—————————
Washington, DC 20301-3081 | 48

14. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) Y 15. SECURITY CLASS (of this report)
National Computing Centre Limited UNCLASSIFIED

15a. QEﬁESBEEFICAT ION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

ELECT
MAY O 6 1987

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

1815A, Ada Joint Program Office, AJPO

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

147 EDITION OF 1 NOV 85 IS OBSOLETE

S/N 0102-LF-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada* Campiler Validation Summary Report:

Compiler Name: SD Ada-Plus VAX/VMS x MC68020

Host: Target:
VAX 8600 under Motorola MC68020 under
vMS no operating system
4.2

Testing Completed 1 December 1986 Using ACVC 1.8

This report has been reviewed and is approved.

An_

The Natiofal Computing Centre Ltd
Vony Gwillim

Oxford Road

Manchester

Ml 7ED

| gr: Wy Ky Y

Ada Valication Office

Accession Popr

NTIS GRAag |
DTIC Tap
Unannoungeq

\

DI. Ub.:‘ f\. KranEI Justir D

Institute for Defense Analyses loatton

Alexandria VA By
Distributiony

Availgguity Codes
Avai}l and/op

st | Speciay

_W&@__
Ada Joint Program Office
Virginia L. Castor

Director

Department of Defense
wWashington DC

87 1236

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

e -

AVF Control Number: AVF-VSR-90502/07

Ada* QOMPILER
VALIDATION SUMMARY REPCRT:
Systems Designersiplc
SD Ada-Plus VAX/VMS x MC68020
Version 2B.00
Host : VAX 8600
Target: Motorola MC68020

Campletion of On-Site Testing:
1 December 1986

Prepared By:
National Computing Centre Limited
Oxford Road
Manchester
M1 7ED
UK

Prepared For:

Ada Joint Program Office .
United States Department of Defense
Washington, D.C.

USA

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

++++t4t bttt bbb bbb b4

+ +
+ Place NTIS form here +
+ +

E O s o

S Ty TR o T e TR e e

| e

(™

EXECUTIVE SUMMARY [

-
~—

This Validation Summary Report (VSR) summarizes the results and
conclusions of validation testing performed on the SD Ada-Plus VAX/VMS

X MC68020, 2B.00, wusing Version 1.8 of the Ada* Compiler Validation

Capability (ACVC). The SD Ada-Plus VAX/VMS x MC68020 is hosted on a
VAX 8600 operating under VMS, 4.2. Programs processed by this
campiler may be executed on a Motorola MC68020.

On-site testing was performed 28 November 1986 through 1 December 1986
at Systems Designers plc, Camberley, er the direction of The
National Computing Centre Ltd (AVF), a ing to Ada Validation
Organization (AWO) policies and procedures. - AW identified 2102
of the 2399 tests in ACVC Version 1.8 to be processed during on-site
testing of the compiler. The 19 tests withdrawn at the time of
validation testing, as well as the 278 executable tests that make use
of floating-point precision exceeding that supported by the
implementation were not processed. After the 2102 tests were
processed, results for Class A, C, D, or E tests were examined for
correct execution. Compilation listings for Class B tests were
analyzed for oorrect diagnosis of syntax and semantic errors.
Compilation and 1link results of Class L tests were analyzed for
correct detection of errors. There were 184 of the processed tests
determined to be inapplicable; The remaining 1918 tests were passed.

The results of validation are summarized in the following table:
RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passed 93 205 280 244 161 97 138 261 123 31 218 67 1918
Failed 0 0 0 0 0 0 0 0 0 0 O O 0
Inapplicable 23120140 3 0 0 1 1 7 1 0166 462
Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19
TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity
to ANSI/MIL-STD-1815A Ada.

*Ada is a registered trademark of the United States Government
(AMda Joint Program Office).

U"’ri 3‘

b h —d ok =
)
NawNn -

5;

SN
v o

wwuwu?uwwuw W
L]
NSNS e W~

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT .ceeeccssel-2
USE OF THIS VALIDATION SUMMARY REPORT .e.ccceccecessl=2
m .oo.oo-oo--.olvo..-oo-o--oo-oooaoogo..-.o1-3
DEFINITION OF TERMS ..cccccceccsccccocsccccccascassel—3
ACVC TEST CLASSES ccccecccccascscccsasocccsvccsccasel—d

CONFIGURATION INFORMATION

mmnm m0....Q......l.........ol02_1
mmm mISI'I$ -.o-.noo-ooo.-.-'..-oz—z

TEST INFORMATION

mm’ls ..ooa.o..oo-.-oo-ooo.-.oooooo.ooo--oo.o3—1
SUMMARY OF TEST RESULTS BY CLASS .ccccccccccccccccssd-l
SUMMARY OF TEST RESULTS BY CHAPTER ..coccosescescose3d=2
WIW m --o-o.oo~.¢..oo-oooaoo-.-oo-oo....ao3—2
Mm m o...-.oo..oo.o.ooooo-10000000-0003-2
SPLITm ..oo...oo.oo.oo-oo-oo-o.o--o...o.-.o.ooo3"4
ADDITIONAL TESTING INFORMATION ccccccccecccccncccsse3—4
mlid‘tim -oooooo.ooooo-oooo.o..uo.oo.ooo.....oo3"‘4
Mt kﬂm o...ooo-o..o..-o.-ooooo.oo-oooo-.oo...-o3"5
Mt Site oo-.nooov-o.-o-oooo--o0.-..--..0-0--...-..3‘5

COMPLIANCE STATEMENT

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHORAWNN TESTS

CHAPTER 1

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard. This report
explains all technical terms used within it and thoroughly reports the
results of testing this campiler using the Ada Compiler Validation
Capability (ACVWC). An Ada compiler must be implemented according to
the Ada Standard and any implementation-dependent features must
conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented
that is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard,
it must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result fram characteristics of particular operating systems, hardware,
or implementation strategies. All of the dependencies demonstrated
during the process of testing this campiler are given in this report.

The information in this report is derived from the test results
during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an
AMa compiler and evaluating the results. The purpose of validating is
to ensure conformity of the compiler to the Ada Standard by testing
that the campiler properly implements legal language constructs and
that it identifies and rejects illegal language constructs. The
also identifies behaviour that is implementation dependent but
permitted by the Ada Standard. Six classes of tests are used. These
tests are designed to perform checks at compile time, at link time,
and during exescution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on
an Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
campiler that do not conform to the Ada Standard

. To attempt to identify any unsupported language constructs
required by the Ada Standard.

. To determine that the implementation-dependent behaviour is
allowed by the Ada Standard

Testing of this compiler was conducted by NCC under the direction of
the AVF according to policies and procedures established by the Ada
Validation Organisation (AVO). On-site testing was conducted from
28 November 1986 through 1 December 1986 at Systems Designers plc.,
Camberley.

1.2 USE OF THIS VALIDATION SUMMARY REPCRT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. 1In the
United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. 552). The results of this wvalidation
apply only to the computers, operating systems, and campiler versions
identified in this report.

The organisations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and oamplete, or that the subject compiler has no
nonoconformities to the Ada Standard other than those presented.
Copies of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSTCRE)

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
The National Camputing Centre Ltd
Oxford Road

e —

e s

INTRODUCTION

Questions regarding this report or the validation test results should
be directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexardria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Lanquage,

ANSI/MIL~STD-1815A, FEB 1983.

2, Ada Validation Organization: Policies and Procedures,MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ma Compiler Validation Capability Implementer's Guide,
SofTech, Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC

The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the ada
language specification, ANSI/MIL-STD-1815A.

~

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant
AVF

AVO

Compiler

Failed test

The agency requesting validation.

The National Computing Centre Ltd. 1In the context of
this report, the AVF is responsible for conducting
campiler validations according to established policies
and procedures.

The Ada Validation Organization. In the context of this

report, the AVO is responsible for setting procedures for
campiler validations.,

A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-campilers, translators, and interpreters.

A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

1-3

INTRODUCTION
Host The computer on which the campiler resides.
Inapplicable A test that uses features of the language that a campiler
test is not required to support or may legitimately support in
a way other than the one expected by the test.

Passed test A test for which a campiler generates the expected

result.
Target The computer for which a compiler generates code.
Test A program that checks a compiler's conformity regarding a

particular feature or features to the Ada Standard. In
the context of this report, the term is used to designate
a single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check
conformity to test the Ada language specification. A
test may be incorrect because it has an invalid test
objective, fails to meet its test objective, or contains
illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
campilation errors. Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully
ocampilad and executed. However, no checks are performed during
execution to see if the test objective has been met. For example, a
Class A test checks that reserved words of another language (other
than those already reserved in the Ada language) are not treated as
reserved words by an Ada compiler. A Class A test is passed if no
errors are detected at campile time and the program executes to
produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it ocontains is detected by the

campiler.

INTRODUCTION

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a
PASSED, FAILED, or NOT APPLICARLE message indicating the result when
it is executed.

Class D tests check the compilation and execution capabilities of a
campiler. Since there are no requirements placed on a compiler by the
Ada Standard for same parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to campile a Class D test and still be
a conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is
classified as inapplicable. If a Class D test campiles successfully,
it is self-checking and produces a PASSED or FAILED message during
execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is campiled and executed. However,
the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during
compilation. Therefore, a Class E test is passed by a compiler if it
is compiled successfully and executes to produce a PASSED message, oOr
if it is rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
miltiple, separately ocompiled units are detected and not allowed to
execute. Class L tests are campiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The
package REPORT provides the mechanism by which executable tests report
PASSED, FAILED, or NOT APPLICAHLE results. It also provides a set of
identity functions used to defeat some compiler optimization
allowed by the Ada Standard that would circumvent a test objective.
The procedure CHECK FILE is used to check the contents of text files
written by some of the Class C tests for chapter 14 of the Ada
Standard, The operation of these units is checked by a set of
executable tests. These tests produce messages that are examined to
verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

INTRODUCTION

The text of the tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55

characters, oontain lines with a maximum length of 72 characters, use

small numeric values, and place features that may not be supported by
all implementations in separate tests. However, saome tests contain
values that require the test to be custamized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation are listed in Apperdix C.

A campiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard either meeting the pass
criteria given for the test or by showing that the test is
inapplicable to the implementation. Any test that was determined to
contain an illegal language construct or an erroneous language
construct is withdrawn fram the ACVC and, therefore, is not used in
testing a campiler. The tests withdrawn at the time of validation are

given in Appendix D.

2.1

CHAPTER 2

QONFIGURATION INFORMATION

QONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Campiler: SD Ada-Plus VAX/VMS x MC68020

ACVC Version: 1.8

Certification Expiration Date: 17 December 1987

Host Computer:
Machine :

Operating System:

Memory Size:
Target Computer:
Machine :

Operating System:
Memory Size:

Communications Network:

VAX 8600

4.2

20 M byte

Motorola MC68020 implemented on
Motorola MVME 133 board,

inocorporating MC68881 floating
point co-processor.

no operating system
1 M byte
RS232C connector via a null

modem using a protocol
conforming to RS232C.

L s e VY S ol _ -

o m e e AL

TN et .

G T S g

QONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behaviour of a campiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. This campiler is characterized by the
following interpretations of the Ada Standard:

Capacities.

The compiler correctly processes campilations containing loop
statements nested to 65 levels, block statements nested to 65

levels, and recursive procedures separately ocompiled as
subunits nested to 17 levels. It correctly processes a
campilation ocontaining 723 variables in the same declarative
part. (See tests DS5SA03A..H (8 tests), DS6001B, D64005E..G (3

tests), and D29002K.)
Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4A002A, D4A002B, D4A004A, and

D4A004B.)

Predefined types.

This implementation supports the additional predefined type
SHORT _INTEGER in the package STANDARD. (See tests B86001C and

B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during campilation, or it may
raise NUMERIC ERROR or cmsmumm during execution.
This implementation raises NmERIC ERROR during execution.

(3ee test E24101A.)

Array Types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERRCR for an array having a 'LENGTH that exceeds
smmmrmmsram/orsmmxm

A packed BOOLEAN array having a 'LENGTH exceeding INTBGER'LAST
raises NUMERIC ERROR when the array type is declared.
(See test C52103X.)

2-2

Y

g S e o

OQONFIGURATION INFORMATION

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the array
type is declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERRCOR or OONSTRAINT ERROR
either when declared or a551gned Alternatlvely, an
inplementatim may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERIC ERROR when the array type is declared.
(See test ES52103Y.)

In assigning one-dimensional array types, the expression
appears to be evaluated in its entirety before
GNS‘IRAINI‘ ERROR is raised when checking whether the
expression s subtype is compatible with the target's subtype
In assigning two-dimensional array types, the expression does
not appear to be evaluated in its entirety before
€ STRAINT ERROR is raised when checking whether the
expression’'s subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During ocompilation, an implementation is allowed to either
accept or reject an incamplete type with discriminants that is
used in an access type definition with a compatible
discriminant oconstraint. This implementation accepts such
subtype indications. (See test E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all
choices appear to be evaluated before checking against the
index type. (See tests C43207A and C43207B.)

In the evaluation of an aggregate oontaining subaggregates,
all choices are evaluated before bheing checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised

if a bound in a nonnull range of a nonmull aggregate does not
belong to an index subtype. (See test E43211B.)

2-3

R et —

e ———— o

QONFIGURATION INFORMATION
Functions

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in
the same immediate scope, or it may reject the function
declaration. If it accepts the function declarations, the use
of the enumeration literal's identifier denotes the function.
This implementation rejects the declarations. (See test
E66001D.)

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version
1.8 of the ACVC, they are used in testing other language
features. This implementation accepts 'SIZE and
'STORAGE_SIZE for tasks, 'STORAGE SIZE for collections, and
'SMALL clauses. Enumeration representation clauses, including
those that specify noncontiguous values, appear to be
supported. (See tests CS55B16A, C87B62A, C87B62B, C87B62C, and
BC1002A.)

Pragmas.

The pragma INLINE is not supported for procedures. The
pragna INLINE is not supported for functions. (See tests
CA3004E and CA3004F.)

Input/Output.

The package SEQUENTIAL IO <can be instantiated with
unconstrained array types and record types with discriminants.
The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101C, AE2101H, CE2201D, CE2201E, and

This implementation implements input/output packages
SEQUENTIAL IO, DIRECT IO and TEXT IO as "null" packages. The
package raises two possible exceptions, details of which are
given in paragraph F.8 of Appendix B.

Generics.

Generic subprogram declarations and bodies can be compiled in
separate caompilations. (See test CA2009F.)

Generic package declarations and bodies can be ocompiled in
separate compilations. (See tests CA2009C and BC3205D.)

2-4

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing
of SD Ada-Plus VAX/VMS x MC68020 was performed, 19 tests had been
withdrawn. The remaining 2380 tests were potentially applicable to
this validation. The AVF determined that 462 tests were inapplicable
to this implementation, and that the 1918 applicable tests were passed
by the implementation.

The AVF oconcludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 69 865 912 17 11 44 1918

Failed 0 0 0 0 0 0 0

Inapplicable 0 2 456 0 .2 2 462

Withdrawn 0 7 12 0 0 0 19
TOTAL 69 874 1380 17 13 46 2399
3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER

2 3 4 5 6 7 8 9 10 11 12 14 TOTAL
Passed 93 205 280 244 161 97 138 261 123 31 218 67 1918
Failed 0o 0 0 0 0 0 0 O O O 0 O 0
Inapplicable 23 120140 3 0 0 1 1 7 1 0166 462
Withdrawn 6 5 5 0 0 1 1 2 4 0 1 O 19
TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the
time of this validation:

C32114A C41404A B74101B
B33203C B45116A C87B50A
C34018A C48008A C92005A
C35904A B49006A C940ACA
] B37401A B4A010C CA3005A..D (4 tests)
BC3204C

See Appendix D for the reason that each of these tests was
withdrawn.

3.5 INAPPLICABLE TESTS

Same tests do not apply to all campilers because they make use of
features that a compiler is not required by the Ada Standard to
support. Others may depend on the result of another test that is
either inapplicable or withdrawn. For tlis validation attempt, 462
tests were inapplicable for the reasons indicated:

. C34001E, BS52004D, BS5B09C, and CSSBO7A use LONG_INTEGER which is
not supported by this campiler.

. C34001F and C35702A use SHORT FLOAT which is not supported by this
compiler.

. C34001G and C35702B use LONG FLOAT which is not supported by this
campiler.

3-2

TEST INFORMATION

. C64104M, CB1010B, CZ1201D requires storage space for a fixed size

collection which is exceeded during execution. On the MC68020
target camputer the default collection size allocation is 1K
bytes. STORAGE ERROR is raised during execution because the total
size of the objects within the collection is greater than this
default storage size. Although these three tests were ruled
inapplicable, modified versions using representation clauses to
increase the collection sizes for C64104M, CB1010B and CZ1201D to
4K, 10K and 2K respectively. These modified tests all executed
successfully.

BB6001DT requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

CB6001F. A separate package is used to collect the executable
test results fram the MC68020 target. The package TEST IO uses
the package SYSTEM, thus when this test recompiles package SYSTEM
it invalidates the package TEST I0O. This means that the test
cannot be built and executed.

C96005B checks implementations for which the smallest and largest
values in type DURATION are different fram the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

CA3004E, EA3004C, and LA3004A use INLINE pragma for procedures
which is not supported by this compiler.

CA3004F, EA3004D, and LA3004B use INLINE pragma for functions
which is not supported by this compiler.

This implementation raises USE ERRCR when an attempt is made to
create/open a file. As a result, the following 166 tests are
inapplicable, as is CZ1103A (one of the support units), although
this test does not appear in the counts.

CE2102D, .F (3 tests) CE2204A..B (2 tests) CE3104A

CE2102I..J (2 tests) CE2210A CE3107A
C"2104A..D (4 tests) CE2401A..F (6 tests) CE3108A..B (2 tests)
CE2105A CE2404A CE3109A
CE2106A CE2405B _ CE3110A
CE2107A..F (6 tests) CE2406A CE3111A..E (5 tests)
CE2108A..D (4 tests) CE2407A CE3112A..B (2 tests)
CE2109A CE2408A CE3114A..B (2 tests)
CE2110A..C (3 tests) CE2409A CE3115A
CE2111A..E (5 tests) CE2410A CE3203A
CE2111G..H (2 tests) CE3102B CE3208A
CE2201A..F (6 tests) CE3103A CE3310A..C (3 tests)

3.6

—— e St
CE3302A CE3410C..F (4 tests)
CE3305A CE3411A
CE3402A..D (4 tests) CE3412A
CE3403A..C (3 tests) CE3413A
CE3403E..F (2 tests) CE3413C
CE3404A..C (3 tests) CE3602A..D (4 tests)
CE3405A..D (4 tests) CE3603A
CE3406A..D (4 tests) CE3604A
CE3407A..C (3 tests) CE3605A..E (5 tests)
CE3408A..C (3 tests) CE3606A..B (2 tests)
CE3409A CE3704A..B (2 tests)
CE3409C..F (4 tests) CE3704D..F (3 tests)
CE3410A

TEST INFORMATION

CE3704M..0 (3
CE3706D. .F (2
CE3804A. .E (5
CE3804G ,I (2
CE3804M

CE3805A..B (2
CE3806A

CE3806D..E (2
CE3905A..C (3
CE3905L

CE3906A..C (3
CE3906E..F (2

tests)
tests)
tests)
tests)

tests)

tests)
tests)

tests)
tests)

The following 278 tests make use of floating-point precision that
exceeds the maximum of 6 supported by the implementation:

Also one of the support tests,
equivalent to the expected output.

C24113C..Y (23
C35705C..Y (23
C35706C. .Y
C35707C..Y
C35708C..Y (23
C35802C..Y
C45241C..Y (23
C45321C..Y
C45421C..Y (23
C45424C. .Y (23
C45521C..2
C45621C. .2

tests)
tests)
tests)
tests)
tests)
tests)
tests)
tests)
tests)
tests)
tests)
tests)

(23
(23

(23
(23

(24
(24

CZ1103A does not produce output
This is because the exception

USE_ERRCR is raised on all attempts to create a file within this

test.

SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B
test because of campiler exrror recovery, then the test is split into a
set of smaller tests that contain the undetected errors. These splits
are then campiled and examined. The splitting process continues until
all errors are detected by the compiler or until there is exactly one

error per split.

Any Class A, Class C, or Class E test that cannot be
conpiled and executed because of its size is split into a set of
smaller subsets that can be processed.

Splits were required for 6 Class B tests.

B22003A
B29001A

B74401C
BC10AEB

3-4

BC1202E
BC3204B

e e m———— e e et

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8
produced by SD Ada~Plus VAX/VMS x MC68020 was submitted to the AVF by
the applicant for review. Analysis of these results demmmstrated that
the compiler successfully passed all applicable tests, and the
caompiler exhibited the expected behaviour on all inapplicable tests.

3.7.2 Test Method

Testing of SD Ada-Plus VAX/VMS x MC68020 using ACVC Version 1.8 was
conducted on-site by a validation team from the AVF, The
configuration consisted of a VAX 8600 host operating under WMS, 4.2,
and a Motorola MC68020 target under no operating system. The host and
target computers were linked via RS232C connector.

A magnetic tape containing all tests was taken on-site by the
validation team for processing. The magnetic tape oontained tests
that make use of implementation-specific values which were customized
before being written to the magnetic tape. Tests requiring splits
during the prevalidation testing were not included in their split form
on the magnetic tape.

The oomtents of the magnetic tape were loaded directly onto the host
camputer.

After the test files were loaded to disk, the full set of tests was
ocanpiled and linked on the VAX 8600, and all executable tests were
run on the Motorola MC68020. Object files were linked on the host
camputer, and executable images were transferred to the target
camputer via RS232C connector. Results were printed from the host
computer, with results being transferred to the host computer via
RS232C connector.

The compiler was tested using command scripts provided by Systems
Designers plc. and reviewed by the validation team. The following
options were in effect for testing:

Option Effect
"list=>on" this ensures that the compilation listings

produced by the compiler contain a full
listing of the test source.

TEST INFORMATION

Tests were compiled, linked and executed (as appropriate) using a
single host computer and a single target ocamputer. Test output,
campilation listings, and job logs were captured cn magnetic tape and
archived at AVF. The listings examined on-site by the validation team
were also archived.

3.7.3 TEST SIIE
The validation team arrived at Systems Designers plc., Camberley on

28 November 1986 and departed after testing was completed on 1
December 1986.

3-6

APPENDIX A

OOMPLIANCE STATEMENT

Systems Designers plc., has submitted the following
campliance statement concerning the SD Ada-Plus
VAX/VMS x MC68020.

COMPLIANCE STATEMENT
Campliance Statement
Base Configuration:
Campiler: SD Ada-Plus VAX/VMS x MC68020, 2B.00
Test Suite: Ada* Compiler Validation Capability, Version 1.8

Host Camputer:

Machine: VAX 8600
Operating System: VMS
4,2
Target Computer:
Machine: Motorola MC68020 implemented on

Motorola MVME 133 board,
incorporating MC68881 floating
point co-processor

Operating System: no operating system
Communications Network: RS232C connector via a null

modem using a protocol
conforming to RS232C.

Systems Designers plc. has made no deliberate extensions to the Ada
language standard.

Systems Designers plc. agrees to the public disclosure of this report.

Systems Designers plc. agrees to comply with the Ada trademark policy,
by the Ada Joint Program Office.

Date: /'@/ b‘/?%

¢

&S
Systems Designers plc

Bill Davison
Custamer Services Manager

*2da is registered trademark of the United States Government
(Ada Joint Program Office).

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to
certain allowed restrictions on representation classes. The
implementation-dependent characteristics of the SD Ada-Plus VAX/VMS x
MC68020, 2B.00 are described in the following sections which discuss
topics one through eight as stated in Appendix F of the Ada Language
Reference Manual (ANSI/MII-STD-1815A). The specification of the
package STANDARD is also included in this appendix.

B-~1

- - ——

SYSTEMS DESIGNERS
{R)
Ada -Plus
VAX/VMS x MC68020

APPENDIX F TO THE REFERENCE MANUAL

Systems Designers plc, D.A.REF.AF[BC-MH]
Pembroke House,

Pembroke Broadway, Issue 1.0
Camberley,

Surrey. December 1986
GuUl5 3XD

UNITED KINGDOM

Telephone: 0276 686200
Telex : 858280 SYSDES G

Systems Designers plc registered in England 1642767
(»)

Ada is a registered trademark of the U.S. Government (Ada Joint
Program Office).

Systems Designers Ada-Plus Appendix F

Amendment
Record

AMENDMENT RECORD

Amendment

|

| mer . Date
| Notification

I

Incorporated

Date of Incorporated
Issue By

e e e e e e — ——————— e e

D.A.REF.AF[BC-MH] 1.0

e el - A

-— . e e

Systems Designers Ada-Plus Appendix F
Contents
Page 1
CONTENTS
PREFACE

APPENDIX F IMPLEMENTATION-DEPENDENT CHARACTERISTICS

IMPLEMENTATION-DEPENDENT PRAGMAS
Pragma EXPORT
Pragma DEBUG
Pragma SUPPRESS_ALL
IMPLEMENTATION-DEPENDENT ATTRIBUTES
PACKAGE SYSTEM
RESTRICTIONS ON REPRESENTATION CLAUSES
Length Clauses
Attribute SIZE
Attribute STORAGE_SIZE
Attribute SMALL
Record Representation Clauses
Alignment Clause
Component Clause
Address Clauses
Object Addresses
Entry Addresses
IMPLEMENTATION-GENERATED NAMES
INTERPRETATION OF EXPRESSIONS IN ADDRESS CLAUSES
UNCHECKED CONVERSIONS
CHARACTERISTICS OF THE INPUT/OUTPUT PACKAGES
The Package TEXT_IO
The Package IO_EXCEPTIONS
PACKAGE STANDARD
PACKAGE MACHINE_CODE
LANGUAGE-DEFINED PRAGMAS
Pragma INLINE
Pragma INTERFACE
Assembler Names .
Parameter Passing Conventions
Procedure-Calling Mechanism
Pragma OPTIMISE
Pragma SUPPRESS

. e 0
[PSH S I o)

WWWNNN
[SN) N W) =

N

HBRRMHEMEREEERPROOODONONAaSBLLAELLLLDLDWNREE R
. . .
W -

e O

LR B B B B e e B B e B B B B RO B B RO O B RO IO B I B e e By B B e

@ o & 8 & e e ¢ & & & e * o 4 2 6 » s B B s s+ e & 8 9 e * e e v o

W N

D.A.REF.AF[BC-MH] 1.0

gy

Ada-Plus Appendix F

Contents
Page

Fig. F
Fig. F
Fig. F.

F

Fig.

Systems Designers

FIGURES

Package SYSTEM

Package STANDARD

Routine Activation Record on Entry to Called
Subprogram

Routine Entry And Exit Code

D.A.REF.AF[BC-MH] 1.0

gl

Systems Designers Ada-Plus Appendix F
Preface
Page 1
PREFACE
This document describes the implementation-dependent

characteristics of the VAX/VMS x MC68020 SD-Ada Compiler.

The document should be considered as Appendix F of the Reference
Manual for the Ada Programming Language.

D.A.REF.AF[BC-MH] 1.0

Systems Designers Ada-Plus Appendix F

Position

Appendix F
Page 1

APPENDIX F

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

IMPLEMENTATION-DEPENDENT PRAGMAS

Pragma EXPORT

pragma EXPORT ([ADA NAME=>] simple name,

[EXT_NAME=>] "name_string");

The pragma EXPORT takes the name of an Ada variable in
the first parameter position and a string in the
second parameter position. The name must be the simple
name of a variable in the package level static data
area in scope, and name-string must be a string
literal which is unique in any program produced for
the target, otherwise the program is erroneous.

The parameter name string must be a string literal
which conforms to the naming conventions imposed by
the MC68020 builder. The name must be no more than
eight characters in length and start with a dot or
upper case letter. The rest of the characters are
restricted to being a digit, dot, dollar, underline or
upper case letter.

The pragma EXPORT may be placed at the position of a basic
declarative item of a library package specification or in
the declarative part of a library package body.

D.A.REF.AF(BC-MH] 1.0

g —-

- —

Ada-Plus Appendix F Systems Designers

Appendix F
Page 2

Effect

Use of this pragma causes the <compiler to generate
additional 1linkage information. This associates the
string literal of the second parameter with the variable
nominated by the first parameter. This external naming
facility is restricted to data objects held in static
areas.

F.1.2 Pragma DEBUG

Form
pragma DEBUG ([NAME=>]name);
The pragma DEBUG takes a name as the single argument.
The value yielded by the parameter must be scalar or
access type.
Position
The pragma DEBUG may be placed at the position of a
basic_declarative_item or a statement where the name is in
scope.
Effect

Use of this pragma causes the compiler to generate tracing
code, and auxiliary information 1in debug symbol tables.
This tracing code is loaded into the target computer in
such a way that the main thread of normal execution
perceives no reference to the trace code, and the values
embedded in the main thread «code, such as offsets, remain
unaffected.

The tracing code may be activated by use of the Debug
System.

D.A.REF.AF[BC~-MH] 1.0

p——— ——— —

Systems Designers Ada-Plus Appendix F

Appendix F
Page 3

F.1.3 Pragma SUPPRESS_ALL

Form
pragma SUPPRESS_ALL;
This pragma has no parameters.
Position
The pragma SUPPRESS_ALL is only allowed at the start of a
compilation before the first compilation unit.
Effect
Use of this pragma prevents the compiler from generating
any run-time checks for CONSTRAINT_ERROR or NUMERIC_ERROR.
F.2 IMPLEMENTATION-DEPENDENT ATTRIBUTES

There are no such attributes.

F.3 PACKAGE SYSTEM
The specification of the package SYSTEM is given in Figure F.1l.

In order to obtain addresses the routine CONVERT_ADDRESS is
supplied. The function takes a parameter of type EXTERNAL_ ADDRESS
which must be 8 or less Hexadecimal characters representing an
address. If thre address is outside the range 0..MEMORY SIZE-1 the
predefined exception CONSTRAINT_ERROR is raised. CONSTRAINT_ERROR
1s also raised if the EXTERNAL ADDRESS contains any
non-hexadecimal characters.

The function is overloaded to take a parameter of type ADDRESS and
return EXTERNAL ADDRESS. This value will have all leading zeros
suppressed wunless the address is zero in which case a single zero
will be returned. '

D.A.REF.AF{BC-MH] 1.0

Ada-Plus Appendix F Systems Designers

Appendix F
Page 4

package SYSTEM is

type ADDRESS is private

type NAME is (MC68020);

SYSTEM NAME : constant NAME := MC68020;
STORAGE_UNIT : constant 1= By
MEMORY_SIZE : constant = 2*%32;
MIN_INT : constant t=m ~(2%%31);
MAX INT : constant i= (2**31)-1;
MAX DIGITS : constant = 6;

MAX MANTISSA : constant := 31;

FINE DELTA : constant := 24#1.04E-30;
TICK : constant := 2%1.04E-7;
subtype PRIORITY is INTEGER range 0 .. 15;
type UNIVERSAL_ INTEGER is range MIN_INT .. MAX_ INT;

subtype EXTERNAL ADDRESS is STRING;

function CONVERT_ADDRESS (ADDR : EXTERNAL_ADDRESS)
return ADDRESS;
function CONVERT_ADDRESS (ADDR : ADDRESS)
return EXTERNAL_ADDRESS;
function "y {ADDR : ADDRESS;
OFFSET : UNIVERSAL_INTEGER)

return ADDRESS;
private
—-—- type ADDRESS is system-dependent
end SYSTEM;
Figure F.1

Package SYSTEM

-—TTT W we—

D.A.REF.AF[BC-MH] 1.0

Systems Designers Ada-Plus Appendix F

Appendix F
Page 5

F.4 RESTRICTIONS ON REPRESENTATION CLAUSES
F.4.1 Length Clauses

F.4.1.1 Attribute SIZE

The value specified for SIZE must not be less than that chosen by
default by the compiler (e.g. 8 for enumeration types, 32 for
integer types, real types and access types, etc.). The value
given is ignored.

F.4.1.2 Attribute STORAGE_SIZE

For access types the limit is governed by the indexing range of
the target machine and the maximum is equivalent to
SYSTEM.ADDRESS'LAST.

For task types the limit is also SYSTEM.ADDRESS'LAST.

F.4.1.3 Attribute SMALL
Only values which are powers of two are supported for this
attribute.

F.4.2 Record Representation Clauses

F.4.2.1 Alignment Clause

The static_simple_ expression used to align records onto storage
unit boundaries must deliver the values 1 or 2.

F.4.2.2 Component Clause

The static range is restricted to ranges which force component
alignment onto storage unit boundaries only, (i.e. multiples of
8 bits).

The component size defined by the static range must not be less
than the minimum number of bits required to hold every allowable
value of the component. For a component of non-scalar type, the
size must not be larger than that chosen by the compiler for the

type.

D.A.REF.AF[BC-MH] 1.0

I-IlII------------------q'.'-,--' o—

Ada-Plus Appendix F Systems Designers

Appendix F
Page 6

F.4.3 Address Clause

F.4.3.1 Object Addresses

For objects with an address clause, a pointer is declared which
points to the object at the given address. There is a restriction
however that the object cannot be initialised either explicitly or
implicitly (i.e the object cannot be an access type).

F.4.3.2 Entry Addresses

Address clauses for entries are supported; the address given is
the address of an interrupt vector.

F.5 IMPLEMENTATION-GENERATED NAMES

There are no implementation-generated names denoting
implementation-dependent components.

F.6 INTERPRETATION OF EXPRESSIONS IN ADDRESS CLAUSES

The expressions in an address clause are interpreted as absolute
addresses on the target.

F.7 UNCHECKED CONVERSIONS

The implementation imposes the restriction on the wuse of the
generic function UNCHECKED CONVERSION that the size of the target
type must not be greater than the size of the source type.

F.8 CHARACTERISTICS OF THE INPUT/OUTPUT PACKAGES

Packages SEQUENTIAL IO, DIRECT_IO and the predefined input/output
package TEXT IO are implemented as "null" packages which conform
to the specification given in the Ada Language Reference Manual.
This package raises the exceptions specified in Chapter 14 of the
Language Reference Manual. There are two possible exceptions
which are raised by this package. These are given here in the
order in which they will be raised.

a) The exception STATUS_ERROR is raised by an attempt to
operate wupon a file that is not open (no files can be
opened).

b) The exception USE_ERROR is raised if exception

STATUS_ERROR is not raised.

D.A.REF.AF(BC-MH] 1.0

Systems Designers Ada-Plus Appendix F

Appendix F
Page 7

Note that MODE_ERROR cannot be raised as no file can be opened
(therefore it cannot have a current mode) and NAME_ERROR cannot be
raised since there are no restrictions on file names.

The predefined package IO _EXCEPTIONS is defined in the Ada
Language Reference Manual.

The predefined package LOW_LEVEL IO is not provided.
The implementation-dependent characteristics are described in
Sections F.8.1 to F.8.2.
F.8.1 The Package TEXT_IO
When any procedure is <called the exception STATUS ERROR or
USE_ERROR 1is raised (there are no restrictions on the format of
the NAME or FORM parameters).
The type COUNT is defined:-

type COUNT is range 0 .. INTEGER’LAST;
and the subtype FIELD is defined:

subtype FIELD is INTEGER range 0 .. 132;
F.8.2 The Package IO EXCEPTIONS

The specification of the package is the same as that given in the
Ada Language Reference Manual.

D.A.REF.AF[BC-MH] 1.0

Ada-Plus Appendix F Systems Designers

Appendix F
Page 8

F.9 PACKAGE STANDARD

The specification of package STANDARD is given in Figure F.2.

package STANDARD is
type BOOLEAN is (FALSE, TRUE);
type SHORT_ INTEGER is range -32768 .. 32767;

type INTEGER is range
— 2147483648 .. 2147483647;

type FLOAT is digits 6 range
- l6#0.FFFFFF$E32 .. 1640.FFFFFF4E32;

type CHARACTER is

{nul, soh, stx, etx, eot, eng, ack, bel,
bs , ht , 1f , vt , f£f , cr , so , si ,
dle, dcl, dc2, dc3, dc4, nak, syn, etb,
can, em , sub, esc, fs , gs , rs , us ,
’ r' I!I' I"" r#r' ISI' r%" r&r' r:v'
I(l' I)l’ I*v’ I+l' I"' I_l' r." I/I’
IOI' 'll, 12" '31’ 141, 151' '6', r7"
Ial' r9l, r:" l;l' I<I’ v=v, r>l' v?r’
'@l’ rAr, 'B', ICI' rDr’ 'E', 'R, G,
'HI' 'I', rJr' ’K', IL" 'M', 'N', '0',
'PI' IQI' erl rsr' 'T', IU', 'VI' 'W',
rxl’ ’YI' rz!' I[I’ I\I' r]r' r"r' ' I'
l\l’ 'a’, ’b’, ICI' 'd', 'er, rfr' IgI,
'h', rll' Ijl' Ik" Ill' 'mr' rnv' 'O',
r I' lqll 'r" 'S" ltI' Iul' Ivl' 'w"
le' ryr’ 'zl' I{I' rlr' r}r' [r' del);

Figure F.2 (1 of 4)

Package STANDARD

D.A.REF.AF[BC-MH] 1.0

w“

Systems Designers Ada-Plus Appendix F
Appendix F
Page 9
for CHARACTER use ~— ASCII characters without holes 4
(0 , 1 ,2 ,3 ,4 ,5 ,6 ,7 ,
8 ,9 ,10, 11,12, 13, 14 , 15 , q
16 , 17 , 18 , 19, 20, 21, 22, 23,
24 , 25 , 26 , 27, 28 , 29 , 30, 31, 1
32, 33, 34 , 35, 36 , 37 , 38 , 39 ,
40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 ,
48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , .
56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 ,
64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 ,
72 , 73 , 74 , 75 , 16 , 77 , 18 , 79 ,
80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 ,]
g8 , 89 , 90 , 91 , 92 , 93 , 94 85 ,

96 , 97 , ¢8 99 , 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127);

package ASCII is

—-— Control characters:

NUL : constant CHARACTER := nul;
SOH : constant CHARACTER := soh;
STX : constant CHARACTER := stx;
ETX : constant CHARACTER := etx;
EOT ¢ constant CHARACTER := eot;
ENQ : constant CHARACTER := engq;
ACK : constant CHARACTER := ack;
BEL : constant CHARACTER := bel;
BS : constant CHARACTER := bs;
HT : constant CHARACTER := ht;
LF : constant CHARACTER := 1lf;
|
vT ¢ constant CHARACTER := vt;
FF : constant CHARACTER := ff; |
CR ¢ constant CHARACTER := cr;
o] : constant CHARACTER := so;
SI : constant CHARACTER := si; !
DLE : constant CHARACTER := dle;
bpCl : constant CHARACTER := dcl;
pDC2 : constant CHARACTER := dc2;
DC3 : constant CHARACTER := dc3;
DC4 : constant CHARACTER := dcd;
NAK : constant CHARACTER := nak;
SYN : constant CHARACTER := syn;

Figure F.2 (2 of 4}

Package STANDARD

D.A.REF.AF[BC-MH] 1.0

Ada-Plus Appendix F

Appendix F
Page 10

ETB
CAN
M
SUB
EsC
FS
GS
RS
us
DEL

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

~- Other characters:

EXCLAM
QUOTATION
SHARP
DOLLAR
PERCENT
AMPERSAND
COLON
SEMICOLON
QUERY

AT _SIGN

L_BRACKET
BACK_SLASH
R_BRACKET
CIRCUMFLEX
UNDERLINE
GRAVE
L_BRACE
BAR
R_BRACE
TILDE

S0 00 90 00 06 88 v s 9 e

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

~- Lower case letters

LC_A
Lc_B
Lc_c
LC D
LC_E
LC_F
LC_G
LC_H

48 65 6% 4a 4 40 00 0

constant
constant
constant
constant
cosntant
constant
constant
constant

Figure

..

CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER

CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER

CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER

CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER

Systems Designers

etb;
can;
em;
sub;
esc;
fs;
gs;
rs;
us;
del;

L T TR TR A I I

t 1
.
rny

I#’

o @ a0

.~ % w N .=

oW o fon WK
S s s w e
Yom S im0 s
N me Ne e w ve we ws we N,

D R T T T TR T N

.
.
.

.
.

LU TS O S S I (I
. v v w w m e mow N
Se Ne we we we ws wa e we

P v,

Ia'
'bl
ICP
ld'
Ie!
Ifl
! [}

’ k‘r

co v se ss es se se e
4OoHouwow N
~e ws Se me we we we e

F.2 (3 of 4)

Package STANDARD

D.A.REF.AF[BC-MH] 1.0

Systems Designers

LC I : constant
LC_J : constant
LC_K : constant
LC_ L : constant
LC_M : constant
LC_N : constant
LC_O : constant
LC P : constant
LC_Q : constant
LC_R : constant
LC S : constant
LC_T : constant
LC_ U : constant
LC_V : constant
LC_ W : constant
LC_X : constant
LC_Y : constant
LC_Z : constant
end ASCII;

-- Predefined subtypes:

CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER

subtype NATURAL is INTEGER

range 0

subtype POSITIVE is INTEGER

range 1 ..

-- Predefined string type:

Ada-Plus Appendix F

Appendix F
Page 11

~
[
-~

~ =~
P N
~ =

Il’

ltl

ve ee oo ae ve se as sr se e
Wonow o m s nwnnw
~ ~
nnr
~
Ne N N6 Ne me e N Ne s we we wo wa W e we we wo

: 'zl

INTEGER'LAST;

INTEGER'LAST;

type STRING is array (POSITIVE range <>)

of CHARACTER;

type DURATION is delta 241.04E-7
range -16777216.0

-- The predefined exceptions:

.. 16777215.0;

CONSTRAINT ERROR
NUMERIC_ERROR
PROGRAM_ERROR
STORAGE_ERROR
TASKING_ERROR

end STANDARD;

Package STANDARD

exception;
exception;
exception;
exception;
exception;

Figure F.2

(4 of 4)

D.A.REF.AF[BC-MH) 1.0

—— et e+ e

Ada-Plus Appendix F Systems Designers

Appendix F
Page 12

F.10 PACKAGE MACHINE CODE

Package MACHINE CODE is not supported by the SD-Ada Compiler.

F.11 LANGUAGE-DEFINED PRAGMAS

The definition of certain language-defined pragmas is incomplete
in the Ada Language Reference Manual. The implementation
restrictions imposed on the use of such pragmas are specified in
Sections F.11.1 to F.11.4.

F.11.1 Pragma INLINE

This pragma supplies a recommendation for inline expansion of a
subprogram to the compiler. This pragma is ignored by the §D-Ada
Compiler.

F.11.2 Pragma INTERFACE

This pragma allows subprograms written in another language to be
called from Ada. The SD-Ada Compiler only supports pragma
INTERFACE for the 1language ASSEMBLER. Normal Ada calling
conventions are used by the SD-Ada Compiler when generating a call
to an ASSEMBLER subprogram.

F.11.2.1 Assembler Names

The name of an interface routine must conform to the naming
conventions both of Ada and of the MC68020 builder.

F.11.2.2 Parameter Passing Conventions

Parameters are passed to the called procedure in the order given
in the specification of the subprogram, with default expressions

evaluated, if present.

Scalars are passed by copy for all parameter modes (the value is
copied out for parameters with mode out).

Composite types are passed by reference for all parameter modes.

F.11.2.3 Procedure-Calling Mechanism
The procedure-~calling mechanism uses the run-time stack

organisation shown in Figure F.3 and the routine entry and exit
code shown in Figure F.4.

D.A.REF.AF[BC-MH] 1.0

N+22+P

N+22

N+20

N+16

N+12

N+8

N+4

Systems Designers

________________ +
| "Return" Address|
———————————————— -+
Return Address | <--
_________________ +
|
|
I
I
I
| <--
———————————————— +
L I
{Locals>]
|
———————————————— +
P I
<parameters> |
| <--
________________ +
I
NEST*4 |
|
________________ +
{
EXCEP |
| <--
________________ -+
I
DISPLAY |
|
________________ +
I
FP |
|
________________ +
|
SP]
I
________________ +
I
PP |
[
________________ +
MAIN STACK
Figure F.3

LINK STACK

SP

TS

FP

PP

Ada-Plus Appendix F

Appendix F
Page 13

Local Data

Routine parameters (in
order declared)

Current nesting level*4

Address of Exception
Handler Table

Saved Display Entry for
Current nesting level

Dynamic Predecessor

Saved Top of Link stack

. Saved Parameter pointer

Routine Activation Record
on Entry to Called Subprogram

D.A.REF.AF[BC-MH] 1.0

Ada-Plus Appendix F Systems Designers

Appendix F
Page 14

The implementation wuses the following dedicated and temporary
registers:

Sp - Link Stack Pointer A7
FD -~ Frame Pointer A2
PP - Parameter Frame Pointer A3
DP - Display Pointer Al
TS - Main Stack Pointer Al

Macros RM_P _BEGIN and RM P _END are provided for the routine entry
and exit code respectively. This code is shown in Figure F.4.

Routine Entry Code

MOVE.L SP,(PP)+

MOVE.L FP, (PP)+

MOVE.L n(DP), (PP)+
MOVEA.L PP,FP

MOVE.L FP,(FP)+

MOVE.W $<nest*4>,(FP)+
MOVE.L FP,n(DP)

Routine Exit Code

MOVE.L -(PP),n(DP)
MOVEA.L -(pP),FP
MOVEA.L -(PP),SP
RTS
Figure F.4

Routine Entry And Exit Code

F.11.3 Pragma OPTIMISE

This pragma supplies a recommendation to the compiler for the
criterion upon which optimisation is to be performed. This pragma
is ignored by the SD-Ada Compiler.

F.11.4 Pragma SUPPRESS

This pragma gives permission for specified run-time checks to be

omitted by the compiler. This pragma is ignored by the SD-Ada
Compiler.

D.A.REF.AF[BC-MH] 1.0

Systems Designers Ada-Plus Appendix F

Readers
Comments

READERS COMMENTS

Do you find this document suitable to your needs? 1Is it
understandable, usable, and well structured? Does it fit
appropriately into the Documentation Set which accompanies your
Product?

We would like your comments:

pid you find specific errors in the document? If so, can you
please submit a User Documentation Problem (UDOP) Report, an
example of which 1is included as part of the Release Details
supplied with your product.

|Name l
| === e !
Position] Please return your
------------------------------------- | comments to:
| Company |
_____________________________________ |
Address | Customer Services Group,
| Systems Designers plc,
Pembroke House,
Pembroke Broadway,
i Camberley,
Surrey.
------------------------------------- GU1S 3XD
Date UNITED KINGDOM
Software Version No.

D.A.REF.AF[BC-MH] 1.0

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are identified by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

NAME AND MEANING

$BIG_ID1
Identifier the size of the
maximum input line length

VALUE

A....Al

254 characters

with varying last character.

$BIG_ID2 A....A2
Identifier the size of the |-~--]
maximum input line length 254 characters
with varying last character.

$BIG_ID3 A....A3A....A
Identifier the size of the |-~—=] |-~--]
maximum input line length 127 127 characters
with varying middle character.

$BIG_ID4 A....AdA....A
Identifier the size of the | ===} |-~--]
maximm input line length 127 127 characters

with varying middle character.

$BIG_INT LIT 0....0298
An integer literal of value 298 | =]
with enough leading zeroes so 252 characters
that is is the size of the
maximmm line length.

$BIG_REAL LIT 0....069.0E1
A real literal that can be | ====]
either of floating~ or fixed- 249 characters
point type, has value of 690.0,
and has enough leading zeroes to
be the size of the maximum line
length.

C-1

NAME AND MEANING

$BLANKS
A sequence of blanks twenty
characters fewer than the size
of the maximm line length.

$COUNT LAST
A universal integer literal
whose value is TEXT IO.COUNT'LAST.

$EXTENDED ASCII CHARS
A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD LAST
A universal integer lateral
whose value is TEXT IO.FIELD'LAST

$FILE NAME WITH BAD CHARS
An illegal external file name
that either contains invalid
characters or is too long if no
invalid characters exist.

$FILE NAME WITH WILD CARD CHAR
An external file name that
either contains a wild card
character or is too long if no
wild card characters exists.

$GREATER THAN DURATION
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in in the range of
DURATION.

$GREATER_THAN_DURATION BASE LAST
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

$TLLEGAL EXTERNAL_FILE NAME1
An illegal external file name.

C-2

TEST PARAMETERS

235 blanks

2147483647

abcdefghllklnmpqrstuvwxyz
1se2e(\1° (b "

255

X}]!.dat

file*.dat

2.0

16777216.0

bad char”

NAME AND MEANING

$ILLEGAL EXTERNAL FILE NAME2
an lllegal external file name
that is different from
$ILLEGAL, EXTERNAL FILE NAME1,

$INTEGER FIRST
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGER_LAST
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESS THAN DURATION
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise

any value in the range of DURATION,

$LESS THAN_DURATION BASE FIRST
The universal real value that is
less than DURATION'BASE'FIRST, if
such a value exists.

$MAX DIGITS
The universal integer literal
whose value is the maximum digits

supported for floating~point types.

$MAX_IN LEN
The universal integer literal
whose value is the maximum input
line length permitted by the
implementation.

$MAX INT
The universal integer literal
whose value is SYSTEM,MAX INT,

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT INTEGER,
LONG FLOAT, or LONG_INTEGER if
one exists, otherwise any
undefined name.

bad_char#*

-2147483648

2147483647

-16777216.0

20

2147483647

$NAME

TEST PARAMETERS

—— W
NAME AND MEANING VALUE
$NBEG BASED INT 16 FFFFFFFE

A based integer literal whose
highest order nonzero bit falls
in the sign bit position of the
representation for SYSTEM.MAX INT.

$NON_ASCII_CHAR TYPE (NON_NULL)
An enumerated type definition for
a character type whose literals
are the identifier NON_NULL and
all non ASCII characters with
printable graphics.

C-4

TEST PARAMETERS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn fram the ACVC because they do not conform to
the Ada Standard. The following 19 tests had been withdrawn at the
time of validation testing for the reasons indicated. A reference of
the form "AI-d3ddd" is to an Ada Commentary.

C32114A:
B33203C:
C34018A:

C35904A:

B37401A:

C41404A:

B45116A:

C48008A:

B49006A:

B4A010C:

An unterminated string literal occurs at line 62.
The reserved word "IS" is misspelled at line 45.

The call of function G at line 114 is ambiguous in
the presence of implicit conversions.

The elaboration of subtype declarations SFX3 and
SFX4 may raise NUMERIC ERROR instead of OONSTRAINT _
ERROR as expected in the test.

The object declarations at lines 126 through 135
follow subprogram bodies declared in the same
declarative part.

The values of 'LAST and 'LENGTH are incorrect in
the if statements from line 74 to the end of the
test.

ARRPRIBL 1 and ARRPRIBL 2 are initialized with a
value of the wrong type--PRIBOOL _TYPE instead of
ARRPRIBOOL TYPE--at line 41.

The assumption that evaluation of default initial
values occurs when an exception is raised by an
allocator is incorrect according to AI-00397.

Object declarations at 1lines 41 and 50 are
terminated incorrectly with colons, and end case;
is missing fram line 42.

The object declaration in line 18 follows a
subprogram body of the same declarative part.

p-1

T T T T T s~ - ——

B74101B:

C87B50A:

C92005A:

C940ACA:

CA3005A. .D:
(4 tests)

BC3204C:

WITHDRAWN TESTS

The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

The call of "/=" at line 31 requires a use clause
for package 2.

The "/=" for type PACK.BIG_INT at line 40 is not
visible without a use clause for the package PACK.

The assumption that allocated task TT1 will run
prior to the main program, and thus assign SPYNUMB
the value checked for by the main program, is
erronecus.

No valid elaboration order exists for these tests.

The body of BC3204C0 is missing.

D-2

