
D-4180 064 ADA (TRA RNAME) jOMlE VMAIr j MONUG~ R
UNCLASSI[FIED PRRMGAD 1C8 F/G 12/5 ML

1.0

111.25 11 L4 11.6

UNCLASSIFIEIJDC FILE GV?±y
ECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORE COsPLETENG FORK

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and(Sbtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: I DXC 1986 to I DXC 1987
Systems Designers plc, SD Ada-Plus VAX/VMS x
MC68020, Version 2B.00, Host: VAX 8600, 6. PERFORMING ORG. REPORT NUMBER
Target: Motorola MC68020

7 AUTJ4OR(s) 8 OTATO RN UBRs
National Computing Centre Limited 8.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
National Computing Centre Limited AREA & WORK UNIT NUMBERS

Oxford Road, Manchester, MI 7ED UK

i1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 1 DEC 1986
United States Department of Defense 7 NUMMIR O PAUES
Washington, DC 20301-3081 48

14. MONITORING AGENCY NAME & AOORESS(if different from Controlling Office) 15. SECURITY CLASS (ofthis report)
National Computing Centre Limited UNCLASSIFIED

15a. Rk6FICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (ofthisReport)

O Approved for public release; distribution unlimited.

0

0-
17. DISTRIBUTION STATEMENT (of the abstractentered in Block 20. if different fromeReport) L jlm I

UNCLASSIFIED

'C 18. SUPPLEMENTARY NOTES F

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

00 l" 1473 EDITION OF I NOV 65 IS OBSOLETE
I JaM 73 S/N 01O2-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada* Cumpiler Validation Summary Report:

Compiler Name: SD Ada-Plus VAX/VMS x MC68020

Host: Target:
VAX 8600 under Motorola MC68020 under
VMS no operating system
4.2

Testing Completed 1 December 1986 Using ACVC 1.8

This report has been reviewed and is approved.

The Natioal Computing Centre LtdVbny Gwil1im
Oxford Road
Manchester
M1 7ED

Accesion For-V NTIS GRA&
---- ---- DTic TAB

Ada ValiCticn Office UnaBoue
Dr. 2,. i. Kramer 0
Institute for Defense Analyses
Alexandria VA Y

Distributilon/
Availeb-l1ty Cod.,

Dist Avall ad/orAd A t Progam Office eoa

Virginia L. Castor
Director
Department of Defense
Washingtcn DC

87 1236

*Ada is a registered trademark of the United States Gcvernment
(Ada Joint Program Office).

AVF Control Nunber: AVF-VSR-90502/07

Ada* cOMLR
VALIDATION SUMMARY REPORT:

Systems DesignersLp1c
SD Ada-Plus VAX/VMS x MC68020

Version 2B.00
Host : VAX 8600
Target: Motorola M68020

Completion of On-Site Testing:
1 December 1986

Prepared By:
National Ccmputing Centre Limited

Word Road
MancdsterMI 7ED

UK

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C.

UsA

*Ada is a registered trademark of the United States Goverrmnent
(Ada Joint Program Office).

............................

+Place NTIS form here+

................

//
ExEcnTIE SUMMARY / I

This Validation Summary Report (VSR) summarizes the results and
conclusions of validation testing performed on the SD Ada-Plus VAX/VMS
x MC68020, 2B.00, using Version 1 .8 of the Ada* Compiler Validation
Capability (ACVC). The SD Ada-Plus VAX/VMS x MC68020 is hosted on a
VAX 8600 operating under VMS, 4.2. Programs processed by this
compiler may be executed on a Motorola MM8020.

On-site testing was performed 28 November 1986 through 1 December 1986
at Systems Designers plc, Camberley, der the direction of The
National Computing Centre Ltd (AVF), ac ding to Ada Validation
Organization (AV) policies and procedures. -The 4A identified 2102
of the 2399 tests in ACVC Version 1.8 to be processed during on-site
testing of the compiler. The 19 tests withdrawn at the time of
validation testing, as well as the 278 executable tests that make use
of floating-point precision exceeding that supported by the
implementation were not processed. After the 2102 tests were
processed, results for Class A, C, D, or E tests were examined for
correct execution. Capilaticn listings for Class B tests were
analyzed for correct diagnosis of syntax and semantic errors.
Compilation and link results of Class L tests were analyzed for
correct detection of errors. There were 184 of the processed tests
determined to be inapplicable; The remaining 1918 tests were passed.

The results of validation are summarized in the following table:

RESELT clA= TOTAL

2 3 4 5 6 7 8 9 10 11 12 14

Passed 93 205 280 244 161 97 138 261 123 31 218 67 1918

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 120 140 3 0 0 1 1 7 1 0 166 462

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results du -trate acceptable conformityto ANSI/K[-SD1815A Ada.

*Ada is a registered trademark of the United States Goverrnent
(Ada Joint Program Office).

TABLE F CntM

CHAPTRI I INRDUTON'

1.1 PtRPSE OF THIS VALIDATION 9M ¥Y REPORT 1-2
1.2 USE OF THIS VALIDATION SMARY RE 1-2
1.3 M ... 1-3
1.4 W'INITICN OF TEM 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONIGURATION INFUMTION

2.1 CNFIGJURATION TES 2-1
2.2 I00..4TATION CHARACRISTICS...................2-2

OCW'iM 3 TEST NFI)Rt1MATICff

3.1 TEST RESULTS 3-1
3.2 SLM4ARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMtiARY OF T R LS BY PTER 3-2
3.4 WI RA TESTS................ 3-2
3.5 INAPPLICABLE TESTS *............................ 3-2
3.6 SPLIT TES 3-4
3.7 ADDI TESTING INFORMATION 3-4
3.7.1 Prevalidation *............. 3-4
3.7.2 Tlest Method %............................ 3-5

3.7.3 Test Site .. 3-5

APPENIX A COMPLIACE STATEET

APPENDIX B APPEDIX F OF THE Ada STANDARD

APPENIX C TEST PAAMETERS

APHIX D W HORAW

CAPTR~ 1

DUR ODUCTION

This Validation SuMnary Report (VSR) describes the extent to which a
specific Ada compiler ornforms to the Ada Standard. This report
explains all technical terms used within it and thoroughly reports the
results of testing this compiler using the Ada Compiler Validation
Capability (ACVC). An Ada compiler must be implemented acording to
the Ada Standard and any implementation-dependent features must
conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented
that is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard,
it must be understood that sane differences do exist between
implementations. The Ada Standard permits some implementation
depemencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from characteristics of particular operating systems, hardware,
or implementation strategies. All of the dependencies demonstrated
during the process of testing this compiler are given in this report.

The information in this report is derived from the test results
during validation testing. The validation process includes

submitting a suite of standardized tests, the MCVC, as inputs to an
Ada compiler and evaluating the results. Tha purpose of validating is
to ensure conformity of the ompiler to the Ada Standard by testing
that the compiler properly implemnts legal language constructs and
that it identifies and rejects illegal langue constructs. Tie
testing also identifies beiaviour that is implementation dependent but
permitted by the Ada Standard. Six classes of tests are used. These
tests are designed to perform chedw at compile time, at link time,
and during emecuticn.

1 -1

1.1 PURPOSE OF THIS VALIDATION SUMARY RERT

This VSR documents the results of the validation testing performed on
an Ada compiler. Testing was carried out for the following purposes:

" 7b attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

• To attempt to identify any unsupported language constructs
required by the Ada Standard.

" To determine that the implementation-dependent behaviour is
allowed by the Ada Standard

Testing of this compiler was conducted by NOC under the direction of
the AVF according to policies and procedures established by the Ada
Validation Organisation (AVO). On-site testing was conducted from
28 November 1986 through 1 December 1986 at Systems Designers plc.,
Cwmberley.

1.2 USE OF THIS VALIDATION SUMMARY REPOR

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the
United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. 552). The results of this validation
apply only to the computers, operating systems, and compiler versions
identified in this report.

The organisations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and omplete, or that the subject compiler has no
noconformities to the Ada Standard other than those presented.
Copies of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
The National Computing Centre Ltd
Oxford Road
Mandhester

United Kng

1-2

Questions regarding this report or the validation test results should
be directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1.3 REFNS

1. Reference Manual for the Ada Pr Ianquae,-
ANSI/MIL-ji7-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures,MIrME
Corporation, JUN 1982, PB 83-110601.

3. Ada Comiler Validation Capability Implementer's Guide,
SofTech, Inc., DEC 1984.

1.4 DFINITICN CF TEM

ACVC The Ada Ccmpiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MJL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The National Caputing Centre Ltd. In the context of
this report, the AVF is responsible for cxnducting
compiler validations according to established policies
and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
ompiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-ompilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
dmmnstrates nonconformity to the Ada Standard.

1-3

INTODMON

Host The computer on which the compiler resides.

Inapplicable A test that uses features of the language that a compiler
test is not required to support or may legitimately support in

a way other than the one expected by the test.

Passed test A test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Stardard. In
the context of this report, the term is used to designate
a single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check
conformity to test the Ada language specification. A
test may be incorrect because it has an invalid test
objective, fails to meet its test objective, or contains
illegal or erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully
coupi] d and executed. However, no checks are performed during
execution to see if the test objective has been met. For example, a
Class A test checks that reserved words of another language (other
than those already reserved in the Ada language) are not treated as
reserved words by an Ada compiler. A Class A test is passed if no
errors are detected at compile time and the program executes to
produce a PASSED message.

Class B tests check that a ompiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
campiler.

1-4

NTiRCION

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and prodiuces a
PASSED, FAILED, or NOTI APPLICABLE message indicating the result when
it is executed.

Class D tests check the compilaticn and execution capabilities of a
comnpiler. Since there are no requirements placed on a comnpiler by the
Ada Standard for sone parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
librazy--a compiler may refuse to comp~ile a Class D test and still be
a conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is
classified as inapplicable. If a Class D test compiles successfully,
it is self-checking and prod~uces a PASSED or FAILED message during
execution.

Each Class E test is self-checking and prodiuces a NOT APPLICABLE,
PASSED, or FAILED message when it is comipiled and executed. However,
the Ada Standard permits an implementation to reject programs
containing same features addressed by Class E tests during
compilation. Therefore, a Class E test is passed by a comnpiler if it
is compiled successfully and executes to produce a PASSED message, or
if it is rejected by the compiler for an allowiable reason.

Class L tests check that inomiplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attemipted. A Class L test passes if it is rejected at link time--that
is, an attemipt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the -amn program are elaborated.

Two library units, the package REPCRT and the procedure G{D (FILE,
support the self-checking features of the executable tests. The
package RECRT provides the mechanism by which executable tests report
PASSED, FAILE, or NOT' APPLICABIE results. It also provides a set of
identity functions used to defeat some compiler optimization
allowed by the Ada Standard that ww.ld circumvent a test objective.
The procedure CHEMFILE is used to check the onrtents of text files
written by same of the Class C tests for chapter 14 of the Ada
Standard. The operation of these units is checked by a set of
executable tests. These tests produce messages that are examined to
verify that the units are operating correctly. If these units are riot
operating correctly, then the validation is not attempted.

1-5

The text of the tests in the ACVC follow, conventions that are intendied
to ensure that the tests are reasonably portable without rmdification.
For example, the tests make use of only the basic set of 55
characters, contain lines with a maximum length of 72 characters, use
small numeric values, and place features that may not be supported byq
all implementations in separate tests. However, some tests contain
values that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation are listed in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard either meeting the pass
criteriar given for the test or by showing that the test is
inapplicable to the imnplementation. Any test that was determined to
contain an illegal language costruct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in
testing a compiler. The tests withdrawn at the time of validation are
given in Appendix D.

1 -6

CHAPTER 2

IOgNFIGRATION INFKMATION

2.1 CONFIGURATION TE=

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: SD Ada-Plus VAX/VMS x MC68020

ACVC Version: 1.8

Certification Expiration Date: 17 December 1987

Host Computer:

Machine : VAX 8600

Operating System: VMS
4.2

Memory Size: 20 M byte

Target Computer:

Machine Motorola MC68020 implemented on
Motorola MVME 133 board,
irrporating MC68881 floating
point co-processor.

Operating System: no operating system

Memory Size: 1 M byte

Communications Network: RS232C crmnector via a null
modem using a protocol
onforming to RS232C.

2-1

4 FIGURATION 'I10 TIO

2.2 lKLMNATION CHARACIERISTICS

One of the purposes of validating compilers is to determine the
behaviour of a coapiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. This compiler is characterized by the
following interpretations of the Ada Standard:

. Capacities.

The compiler correctly processes compilations containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately compiled as
subunits nested to 17 levels. It correctly processes a
compilation ontaining 723 variables in the same declarative
part. (See tests D55AO3A..H (8 tests), D56001B, D64005E..G (3
tests), and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
then correctly. (See tests D4A02A, D4A02B, D4A04A, and
D4A004B.)

Predefined tye.
This implementation supports the additional predefined type

SHr1.,T Lu inm th pa ckage STADAD. (Se tet B86001C and
B8600TD.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAXINT during compilation, or it may
raise NUMRIC E or 0SAINTRROR during execution.
This implemientation raises NtEICEROR during execution.
(See test E24101A.)

SArray Types.

An implementation is allowed to raise NUIRC EROR or
CONSIRAITEROR for an array having a 'Lmm that exceeds
SNMARD.3mIK'LAST and/ or SYSTEK.MAX_ nT.

A packed BOOLEAN array having a 'LMCH exeding nITSMM AST
raises NLMIC ERROR when the array type is declared.
(See test C52103X.)

2-2

ONFIGURATION INFRMTION

A packed two-dimensional BOOLEAN array with more than
INTBGER'IAST components raises NUMERIC_ERROR when the array
type is declared. (See test C52104Y.)

A null array with one dimension of length greater than
nfMrExE'LAST may raise NUMIC EIRROR or CWSIRAINT_ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
mast match in array slice assignments. This implementation
raises NMEC ROR when the array type is declared.
(See test E52103Y.)

In assigning one-dimensional array types, the expression
appears to be evaluated in its entirety before
cx0SRAINT W= is raised when checking whether the
expressionfs subtype is compatible with the target's subtype.
In assigning two-dimensional array types, the expression does
not appear to be evaluated in its entirety before
r 3IANT ERR is raised when checking whether the
expressionTs subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible
discriminant constraint. This implementation accepts such
subtype indications. (See test E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before
02SnIW ERROR is raised when checking whether the
expressionT s subtype is compatible with the target's subtype.
(See test C52013A.)

Aggregates.

In the evaluation of a multi-fdtensional aggregate, all
choices appear to be evaluated before checking against the
index type. (See tests C43207A and C43207B.)

In the evaluation of an aggregate containing aggates,
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before 0 N TR ERROR is raised
if a bound in a nornull range of a rmull aggregate does not
belong to an index subtype. (See test E43211B.)

2-3

CONFIG RATION INF0MATION
•Functions

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in
the same immediate scope, or it may reject the function
declaration. If it accepts the function declarations, the use
of the enumeration literal's identifier denotes the function.
This implementation rejects the declarations. (See test
E66001D.)

* Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version
1.8 of the ACVC, they are used in testing other language
features. This implementation accepts 'SIZE and
'SrTOAE SIZE for tasks, ISiTORAGE SIZE for collections, and
'SMALL clauses. Enumeration representation clauses, including
those that specify rKxontiguous values, appear to be
supported. (See tests C55B16A, C87B62A, C87B62B, C87B62C, and
BC1002A.)

* Pragmas.

The pragma ThLINE is not supported for procedures. The
pragma INLINE is not supported for functions. (See tests
CA3OO4E and CA3004F.)

•Input/Output.

The package SBEa I'IALIO can be instantiated with
unconstrained array types and record types with discriminants.
The package DIRT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101C, AE2101H, CE2201D, CE2201E, and
CE2401D.)

This implementation implements inpit/output packages
SBQ.ENTIAL IO, DIRECT I1 and TEXT 10 as "null" packages. The
package raises two possible exceptions, details of which are
given in paragraph F.8 of Appendix B.

. Generics.

Generic subprogram declarations and bodies can be compiled in
separate ccmpilations. (See test CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C and BC3205D.)

2-4

CliAP'TER 3

TEST INFRMTION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing
of SD Ada-Plus VAX/VMS x MC68020 was performed, 19 tests had been
withdrawn. The remaining 2380 tests were potentially applicable to
this validation. The AVF determined that 462 tests were inapplicable
to this implementation, and that the 1918 applicable tests were passed
by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOMAL

A B C D E L

Passed 69 865 912 17 11 44 1918

Failed 0 0 0 0 0 0 0

Inapplicable 0 2 456 0 2 2 462

Withdrawn 0 7 12 0 0 0 19

TOAL 69 874 1380 17 13 46 2399

3-1

TEST INEPMIOC

3.3 SUMMARY CF TEST RESULTS BY CHAPE

RESULT CHAPTER

2 3 4 5 6 7 8 9 10 11 12 14 TOTAL

Passed 93 205 280 244 161 97 138 261 123 31 218 67 1918

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 120 140 3 0 0 1 1 7 1 0 166 462

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHERAWN TESTS

The following 19 tests were withdrawn fra ACVC Version 1.8 at the
time of this validation:

C32114A C41404A B74101B
B33203C B45116A C87B50A
C34018A C48008A C92005A
C35904A B49006A C940ACA
B37401A B4A1OC CA3005A..D (4 tests)

BC3204C

See Appendix D for the reason that each of these tests was
withdrawn.

3.5 INAPPLICABLE TESTS

Sane tests do not apply to all capilers because they make use of
features that a compiler is not required by the Ada Standard to
support. Others may depend on the result of another test that is
either inapplicable or withdrawn. For this validation attempt, 462
tests were inapplicable for the reasons indicated:

" C34001E, B52004D, B55BO9C, and C55B07A use LQGWINTGER which is
not supported by this cziqiler.

" C34001F and C35702A use SHORTFLOAT which is not supported by this
compiler.

" C34001G and C35702B use IOM FWAT which is not supported by this
compiler.

3-2

TETINFRMTION

C64104M, CBI010B, CZ1201D requires storage space for a fixed size
collection which is exceeded during execution. On the MC68020
target omputer the default collection size allocation is 1K
bytes. STORAGE ERROR is raised during execution because the total
size of the objects within the collection is greater than this
default storage size. Although these three tests were ruled
inapplicable, modified versions using representation clauses to
increase the collection sizes for C64104M, CB1010B and CZ1201D to
4K, 10K and 2K respectively. These modified tests all executed
successfully.

" B86001DT requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

" C86001F. A separate package is used to collect the executable
test results from the MC68020 target. The package TEST 10 uses
the package SYSTE4, thus when this test recompiles package SYSTEM
it invalidates the package TEST_10. This means that the test
cannot be built and executed.

C96005B checks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

CA3004E, EA3004C, and LA3004A use INLINE pragma for procedures
which is not supported by this compiler.

CA3004F, EA3004D, and LA3004B use INLINE pragma for functions
which is not supported by this compiler.

This implementation raises USE RROR when an attempt is made to
create/open a file. As a result, the following 166 tests are
inapplicable, as is CZ1103A (one of the support units), although
this test does not appear in the counts.

CE2102D..F (3 tests) CE2204A..B (2 tests) CE3104A
CE2102I..J (2 tests) CE2210A C3107A
CP2104A..D (4 tests) CE2401A..F (6 tests) CE3108A..B (2 tests)
CE2105A CE2404A CE3109A
CE2106A (2405B CE3110A
CE2107A..F (6 tests) CE2406A CE3111A..E (5 tests)
CE2108A..D (4 tests) CE2407A CE3112A..B (2 tests)
CE2109A CE2408A CE3114A..B (2 tests)
CE2110A..C (3 tests) CE2409A CE3115A
CE2111A..E (5 tests) CE2410A CE3203A
CE2111G..H (2 tests) CE3102B CE3208A
CE2201A..F (6 tests) CE3103A CE3310A..C (3 tests)

3-3

IEST INF-UMTION

CE3302A CE3410C..F (4 tests) CE3704M..O (3 tests)CE3305A CE 3411IA CE3706D..F (2 tests)
CE3402A..D (4 tests) CE3412A CE3804A..E (5 tests)
CE3403A..C (3 tests) CE3413A (3804G ,I (2 tests)
CE3403E..F (2 tests) CE3413C CE3804M
CE3404A..C (3 tests) CE3602A..D (4 tests CE3805A..B (2 tests)
CC3405A..D (4 tests) CE3603A s3806A

E3406A..D (4 tests) C(3604A CE3806D..E (2 tests)
CE3407A..C (3 tests) CE3605A..E (5 tests CE3905A..C (3 tests)
CE3408A..C (3 tests) (E3606A..B (2 tests) E3905L
CE3409A (E3704A..B (2 testst e 3906A..C (3 tests)
CE3409C..F (4 tests) (E3704D..F (3 tests) CE3906E..F (2 tests)CE 3410A

CThe following 278 tests make use of floating-point precision that
exceeds the maxi2 of 6 supported by the implementation:

C24113C..Y (23 tests)
C35705C..Y (23 tests)C35706C..Y (23 tests)
C35707C..Y (23 tests)
C35708C..Y (23 tests)
C35802C..Y (23 tests)

C45241C..Y (23 tests)C45321C..Y (23 tests)
C45421C..Y (23 tests)
C45424C..Y (23 tests)
C45521C.. Z (24 tests)
C45621C..Z (24 tests)

Also one of the support tests, CZ1103A does not produce output
equivalent to the expected output. This is because the exception
USE_ CR is raised on all attempts to create a file within this
test.

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B
test because of compiler error recovery, then the test is split into a
set of smaller tests that contain the undetected errors. These splits
are then compiled and examined. The splitting process continues until
all errors are detected by the compiler or until there is exactly one
error per split. Any Class A, Class C, or Class E test that cannot be
compiled and executed because of its size is split into a set of
smaller subsets that can be processed.

Splits were required for 6 Class B tests.

B22003A B74401C BC1202E
B29001A BCI 0AE BC3204B

3-4

TEST INFFTION

3.7 ADDITIONAL TESTING INFMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8
produced by SD Ada-Plus VAX/VMS x M068020 was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the
compiler exhibited the expected behaviour on all inapplicable tests.

3.7.2 Test Method

Testing of SD Ada-Plus VAX/VMS x MC68020 using ACVC Version 1.8 was
coducted on-site by a validation team fron the AVF. The
configuration consisted of a VAX 8600 host operating under VMS, 4.2,
and a Motorola MC68020 target under no operating system. The host and
target computers were linked via RS232C connector.

A magnetic tape containing all tests was taken on-site by the
validation team for processing. The magnetic tape contained tests
that make use of implementation-specific values which were customized
before being written to the magnetic tape. Tests requiring splits
during the prevalidatin testing were not included in their split form
on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the VAX 8600, and all executable tests were
run on the Motorola M068020. Object files were linked on the host
computer, and executable images were transferred to the target
computer via RS232C connector. Results were printed from the host
computer, with results being transferred to the host computer via
RS232C connector.

The compiler was tested using ocmmand scripts provided by Systems
Designers plc. and reviewed by the validation team. The following
options were in effect for testing:

Option Effect

"list>n" this ensures that the compilation listings
produced by the compiler ontain a full
listing of the test source.

3-5

TEST l'F, RMTIO,

Tests were compiled, linked and executed (as appropriate) using a
single host computer and a single target computer. Test output,
compilation listings, and job logs were captured on magnetic tape and
archived at AVF. The listings examined on-site by the validation team
were also archived.

3.7.3 TEST SITE

The validation team arrived at Systems Designers plc., Camberley on
28 November 1986 and departed after testing was completed n 1
December 1986.

3-6

APPENDIX A

COMPLIANCE STATE4EW

Systems Designers plc., has submitted the following
ompliance statement concerning the SD Ada-Plus
VAX/VMS x MC68020.

A-i

COMPLIANCE STATEMENT

Coapliance Statement

Base Configuration:

Ccmpiler: SD Ada-Plus VAX/VMS x MC68020, 2B.00

Test Suite: Ada* Compiler Validation Capability, Version 1 .8

Host Computer:

Machine: VAX 8600

Operating System: VMS
4.2

Target Computer:

Machine: Motorola MC68020 implemented on
Motorola MVME 133 board,
incorporating MC68881 floating
point co-processor

Operating System: no operating system

Comunications Network: RS232C oonnector via a null
moden using a protocol
conforming to RS232C.

Systems Designers plc. has made no deliberate extensions to the Ada

language standard.

Systems Designers plc. agrees to the public disclosure of this report.

Systems Designers plc. agrees to comply with the Ada trademark policy,
3by the Ada Joint Program Office.

Systems Designers plc
Bill Davison
Custaner Servicec Manager

*Ada is registered trademark of the United States Government
(Ada Joint Program Office).

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to
certain allowed restrictions on representation classes. The
implementation-dependent characteristics of the SD Ada-Plus VAX/VMS x
MC68020, 2B.00 are described in the following sections which discuss
topics one through eight as stated in Appendix F of the Ada language
Reference Manual (ANSI/MIL-STD-1815A). The specification of the
package STANDARD is also included in this appendix.

B-i

SYSTEMS DESIGNERS

Ada -Plus

VAX/VMS x MC68020

APPENDIX F TO THE REFERENCE MANUAL

Systems Designers plc, D.A.REF.AF[BC-MH]
Pembroke House,
Pembroke Broadway, Issue 1.0
Camberley,
Surrey. December 1986
GU15 3XD
UNITED KINGDOM

Telephone: 0276 686200
Telex : 858280 SYSDES G

Systems Designers plc registered in England 1642767

Ada is a registered trademark of the U.S. Government (Ada Joint
Program Office).

Systems Designers Ada-Plus Appendix F

Amendment
Record

AMENDMENT RECORD

I Amendment IDate of jIncorporated jDate
INotification I Issue By I Incorporated I

D.A.REF.AFIBC-MH] 1.0

Systems Designers Ada-Plus Appendix F

Contents
Page 1

CONTENTS

PREFACE

APPENDIX F IMPLEMENTATION-DEPENDENT CHARACTERISTICS

F.1 IMPLEMENTATION-DEPENDENT PRAGMAS
F.1.1 Pragma EXPORT
F.1.2 Pragma DEBUG
F.1.3 Pragma SUPPRESS ALL
F.2 IMPLEMENTATION-DEPENDENT ATTRIBUTES
F.3 PACKAGE SYSTEM
F.4 RESTRICTIONS ON REPRESENTATION CLAUSES
F.4.1 Length Clauses
F.4.1.1 Attribute SIZE
F.4.1.2 Attribute STORAGE SIZE
F.4.1.3 Attribute SMALL

F.4.2 Record Representation Clauses
F.4.2.1 Alignment Clause
F.4.2.2 Component Clause
F.4.3 Address Clauses
F.4.3.1 Object Addresses
F.4.3.2 Entry Addresses
F.5 IMPLEMENTATION-GENERATED NAMES
F.6 INTERPRETATION OF EXPRESSIONS IN ADDRESS CLAUSES
F.7 UNCHECKED CONVERSIONS
F.8 CHARACTERISTICS OF THE INPUT/OUTPUT PACKAGES
F.8.1 The Package TEXT 10
F.8.2 The Package IOEXCEPTIONS
F.9 PACKAGE STANDARD
F.10 PACKAGE MACHINE CODE
F.11 LANGUAGE-DEFINED PRAGMAS
F.11.1 Pragma INLINE
F.11.2 Pragma INTERFACE
F.11.2.1 Assembler Names
F.11.2.2 Parameter Passing Conventions
F.11.2.3 Procedure-Calling Mechanism
F.11.3 Pragma OPTIMISE
F.11.4 Pragma SUPPRESS

D.A.REF.AF[BC-MH) 1.0

Ada-Plus Appendix F Systems Designers

Contents
Page 2

FIGURES

Fig. F.1 Package SYSTEM
Fig. F.2 Package STANDARD
Fig. F.3 Routine Activation Record on Entry to Called

Subprogram
Fig. F.4 Routine Entry And Exit Code

D.A.REF.AF[BC-MH] 1.0

Systems Designers Ada-Plus Appendix F

Preface
Page 1

PREFACE

This document describes the implementation-dependent
characteristics of the VAX/VMS x MC68020 SD-Ada Compiler.

The document should be considered as Appendix F of the Reference
Manual for the Ada Programming Language.

D.A.REF.AF[BC-MH] 1.0

Systems Designers Ada-Plus Appendix F

Appendix F
Page 1

APPENDIX F

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

F.1 IMPLEMENTATION-DEPENDENT PRAGMAS

F.1.1 Pragma EXPORT

Form

pragma EXPORT ([ADA NAMEs>] simple name,
[EXT-NAME->] "name string");

The pragma EXPORT takes the name of an Ada variable in
the first parameter position and a string in the
second parameter position. The name must be the simple
name of a variable in the package level static data
area in scope, and name-string must be a string
literal which is unique in any program produced for
the target, otherwise the program is erroneous.

The parameter name string must be a string literal
which conforms to the naming conventions imposed by
the MC68020 builder. The name must be no more than
eight characters in length and start with a dot or
upper case letter. The rest of the characters are
restricted to being a digit, dot, dollar, underline or
upper case letter.

Position

The pragma EXPORT may be placed at the position of a basic
declarative item of a library package specification or in
the declarative part of a library package body.

D.A.REF.AF[BC-MH] 1.0

Ada-Plus Appendix F Systems Designers

Appendix F
Page 2

Effect

Use of this pragma causes the compiler to generate
additional linkage information. This associates the
string literal of the second parameter with the variable
nominated by the first parameter. This external naming
facility is restricted to data objects held in static
areas.

F.1.2 Pragma DEBUG

Form

pragma DEBUG ([NAME=>]name);

The pragma DEBUG takes a name as the single argument.
The value yielded by the parameter must be scalar or
access type.

Position

The pragma DEBUG may be placed at the position of a
basic declarative item or a statement where the name is in
scope.

Effect

Use of this pragma causes the compiler to generate tracing
code, and auxiliary information in debug symbol tables.
This tracing code is loaded into the target computer in
such a way that the main thread of normal execution
perceives no reference to the trace code, and the values
embedded in the main thread code, such as offsets, remain
unaffected.

The tracing code may be activated by use of the Debug
System.

D.A.REF.AF[BC-MH) 1.0

Systems Designers Ada-Plus Appendix F

Appendix F
Page 3

F.1.3 Pragma SUPPRESS ALL

Form

pragma SUPPRESSALL;

This pragma has no parameters.

Position

The pragma SUPPRESS ALL is only allowed at the start of a
compilation before the first compilation unit.

Effect

Use of this pragma prevents the compiler from generating
any run-time checks for CONSTRAINTERROR or NUMERIC ERROR.

F.2 IMPLEMENTATION-DEPENDENT ATTRIBUTES

There are no such attributes.

F.3 PACKAGE SYSTEM

The specification of the package SYSTEM is given in Figure F.I.

In order to obtain addresses the routine CONVERT ADDRESS is
supplied. The function takes a parameter of type EXTERNAL ADDRESS
which must be 8 or less Hexadecimal characters represenfing an
address. If the address is outside the range 0..MEMORY SIZE-l the
predefined exception CONSTRAINT ERROR is raised. CONSTRAINT ERROR
is also raised if the EXTERNALADDRESS contains - any
non-hexadecimal characters.

The function is overloaded to take a parameter of type ADDRESS and
return EXTERNAL ADDRESS. This value will have all leading zeros
suppressed unless the address is zero in which case a single zero
will be returned.

D.A.REF.AF[BC-MHJ 1.0

Ada-Plus Appendix F Systems Designers

Appendix F
Page 4

package SYSTEM is

type ADDRESS is private

type NAME is (MC68020);

SYSTEM NAME : constant NAME : MC68020;
STORAGE UNIT : constant : 8;
MEMORY SIZE : constant : 2**32;
MIN INT : constant :-(2"31);
MAX INT : constant : (2**31)-l;
MAX DIGITS : constant : 6;
MAX MANTISSA : constant : 31;
FINE DELTA : constant : 2#1.0#E-30;
TICK : constant : 2#1.0#E-7;

subtype PRIORITY is INTEGER range 0 .. 15;

type UNIVERSALINTEGER is range MININT .. MAXINT;

subtype EXTERNALADDRESS is STRING;

function CONVERT ADDRESS (ADDR : EXTERNAL ADDRESS)
return ADDRESS;

function CONVERT ADDRESS (ADDR : ADDRESS)
return EXTERNALADDRESS;

function "+go (ADDR : ADDRESS;
OFFSET : UNIVERSAL INTEGER)

return ADDRESS;

private

-- type ADDRESS is system-dependent

end SYSTEM;

Figure F.1

Package SYSTEM

D.A.REF.AF[BC-MH] 1.0

Systems Designers Ada-Plus Appendix F

Appendix F
Page 5

F.4 RESTRICTIONS ON REPRESENTATION CLAUSES

F.4.1 Length Clauses

F.4.1.1 Attribute SIZE

The value specified for SIZE must not be less than that chosen by
default by the compiler (e.g. 8 for enumeration types, 32 for
integer types, real types and access types, etc.). The value
given is ignored.

F.4.1.2 Attribute STORAGESIZE

For access types the limit is governed by the indexing range of
the target machine and the maximum is equivalent to
SYSTEM.ADDRESS'LAST.

For task types the limit is also SYSTEM.ADDRESS'LAST.

F.4.1.3 Attribute SMALL

Only values which are powers of two are supported for this
attribute.

F.4.2 Record Representation Clauses

F.4.2.1 Alignment Clause

The static simple expression used to align records onto storage
unit boundaries must deliver the values 1 or 2.

F.4.2.2 Component Clause

The static range is restricted to ranges which force component
alignment onto storage unit boundaries only, (i.e. multiples of
8 bits).

The component size defined by the static range must not be less
than the minimum number of bits required to hold every allowable
value of the component. For a component of non-scalar type, the
size must not be larger than that chosen by the compiler for the
type.

D.A.REF.AF[BC-MH] 1.0

Ada-Plus Appendix F Systems Designers

Appendix F
Page 6

F.4.3 Address Clause

F.4.3.1 Object Addresses

For objects with an address clause, a pointer is declared which
points to the object at the given address. There is a restriction
however that the object cannot be initialised either explicitly or
implicitly (i.e the object cannot be an access type).

F.4.3.2 Entry Addresses

Address clauses for entries are supported; the address given is
the address of an interrupt vector.

F.5 IMPLEMENTATION-GENERATED NAMES

There are no implementation-generated names denoting
implementation-dependent components.

F.6 INTERPRETATION OF EXPRESSIONS IN ADDRESS CLAUSES

The expressions in an address clause are interpreted as absolute
addresses on the target.

F.7 UNCHECKED CONVERSIONS

The implementation imposes the restriction on the use of the
generic function UNCHECKED CONVERSION that the size of the target
type must not be greater tHan the size of the source type.

F.8 CHARACTERISTICS OF THE INPUT/OUTPUT PACKAGES

Packages SEQUENTIAL 10, DIRECT 10 and the predefined input/output
package TEXT 10 are implementeU as "null" packages which conform
to the specifTcation given in the Ada Language Reference Manual.
This package raises the exceptions specified in Chapter 14 of the
Language Reference Manual. There are two possible exceptions
which are raised by this package. These are given here in the
order in which they will be raised.

a) The exception STATUS ERROR is raised by an attempt to
operate upon a file-that is not open (no files can be
opened).

b) The exception USE ERROR is raised if exception
STATUSERROR is not raised.

D.A.REF.AF[BC-MH] 1.0

Systems Designers Ada-Plus Appendix F

Appendix F
Page 7

Note that MODE ERROR cannot be raised as no file can be opened
(therefore it cannot have a current mode) and NAME ERROR cannot be
raised since there are no restrictions on file names.

The predefined package 10 EXCEPTIONS is defined in the Ada

Language Reference Manual.

The predefined package LOW_LEVELIO is not provided.

The implementation-dependent characteristics are described in
Sections F.8.1 to F.8.2.

F.B.1 The Package TEXT IO

When any procedure is called the exception STATUS ERROR or
USE ERROR is raised (there are no restrictions on the format of
the NAME or FORM parameters).

The type COUNT is defined:-

type COUNT is range 0 .. INTEGER'LAST;

and the subtype FIELD is defined:

subtype FIELD is INTEGER range 0 .. 132;

F.8.2 The Package IO EXCEPTIONS

The specification of the package is the same as that given in the
Ada Language Reference Manual.

D.A.REF.AF[BC-MH] 1.0

Ada-Plus Appendix F Systems Designers

Appendix F
Page 8

F.9 PACKAGE STANDARD

The specification of package STANDARD is given in Figure F.2.

package STANDARD is

type BOOLEAN is (FALSE, TRUE);

type SHORT_INTEGER is range -32768 .. 32767;

type INTEGER is range
- 2147483648 .. 2147483647;

type FLOAT is digits 6 range
- 16#0.FFFFFF#E32 .. 16#0.FFFFFF#E32;

type CHARACTER is

(nul, soh, stx, etx, eot, enq, ack, bel,

bs , ht , If , vt , ff , cr , so , si r

dle, dcl, dc2, dc3, dc4, nak, syn, etb,

can, em , sub, esc, fs , gs , rs , us

, I, , fill, ,#1,,, , ,% ,&. .
00, 11,) P21, F3, , 14 ,f 15_, 61, ,71,

I', '1a, 'B', PC', 'D', 'E', F', IGI,

'h', 'a", 'j', ', Idt, 'en, In', Ign,

'8', 'i9' ' :' ';', ,<,, ,m,, In$, ,ot,

'p 'q', 'B', 's', 't', ' ', ' ', 'w''

X , IV rz , I , 0, 1 - e l);

Figure F.2 (1 of 4)

Package STANDARD

D.A.REF.AF[BC-MHI 1.0

i • I I I

Systems Designers Ada-Plus Appendix F

Appendix F
Page 9

for CHARACTER use -- ASCII characters without holes
(0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71
72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87
88 89 90 91 92 93 94 95
96 97 98 99 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 115, 116, 117, 118, 119
120, 121, 122, 123, 124, 125, 126, 127);

package ASCII is

-- Control characters:

NUL : constant CHARACTER nul;
SOH : constant CHARACTER := soh;
STX : constant CHARACTER := stx;
ETX : constant CHARACTER := etx;
EOT : constant CHARACTER := eot;
ENQ : constant CHARACTER := enq;
ACK : constant CHARACTER :- ack;
BEL : constant CHARACTER := bel;
BS : constant CHARACTER := bs;
HT : constant CHARACTER := ht;
LF : constant CHARACTER := if;

VT : constant CHARACTER : vt;
FF : constant CHARACTER : ff;
CR : constant CHARACTER : cr;
SO : constant CHARACTER : so;
SI : constant CHARACTER : si;
DLE : constant CHARACTER : dle;
DC1 : constant CHARACTER : dcl;
DC2 : constant CHARACTER : dc2;
DC3 : constant CHARACTER : dc3;
DC4 : constant CHARACTER : dc4;
NAK : constant CHARACTER : nak;
SYN : constant CHARACTER : syn;

Figure F.2 (2 of 4)

Package STANDARD

D.A.REF.AF[BC-MH] 1.0

Ada-Plus Appendix F Systems Designers

Appendix F
Page 10

ETB : constant CHARACTER etb;
CAN : constant CHARACTER can;
EM : constant CHARACTER := em;
SUB : constant CHARACTER sub;
ESC : constant CHARACTER esc;
FS : constant CHARACTER fs;
GS : constant CHARACTER gs;
RS : constant CHARACTER := rs;
US : constant CHARACTER := us;
DEL : constant CHARACTER del;

-- Other characters:

EXCLAM : constant CHARACTER
QUOTATION : constant CHARACTER
SHARP : constant CHARACTER : ;
DOLLAR : constant CHARACTER : $
PERCENT : constant CHARACTER :=
AMPERSAND : constant CHARACTER :=
COLON : constant CHARACTER : -
SEMICOLON : constant CHARACTER :=
QUERY : constant CHARACTER
AT S:GN : constant CHARACTER :=

L BRACKET : constant CHARACTER '[';
BACK SLASH : constant CHARACTER :=
R BRACKET : constant CHARACTER :=
CIRCUMFLEX : constant CHARACTER :=
UNDERLINE : constant CHARACTER := '
GRAVE : constant CHARACTER := ',.

L BRACE : constant CHARACTER :=
BAR : constant CHARACTER '
R BRACE : constant CHARACTER := '';
TILDE : constant CHARACTER := '

-- Lower case letters:

LC A : constant CHARACTER := 'a';
LC B : constant CHARACTER : b';
LC C : constant CHARACTER : c';
LC D : constant CHARACTER :-d';
LC E : cosntant CHARACTER : e';
LC F : constant CHARACTER := 'f';
LC-G : constant CHARACTER :1';
LC-H : constant CHARACTER :='h';

Figure F.2 (3 of 4)

Package STANDARD

D.A.REF.AF[BC-MHI 1.0

Systems Designers Ada-Plus Appendix F

Appendix F
Page 11

LC I : constant CHARACTER :=
LC J : constant CHARACTER :=j;
LC K : constant CHARACTER =k';
LC L : constant CHARACTER := 1';
LC-M : constant CHARACTER =m';
LC N : constant CHARACTER In';
LC O : constant CHARACTER := 'o';
LC P : constant CHARACTER :=p';
LC Q : constant CHARACTER =q';
LC R : constant CHARACTER := r' ;
LC S : constant CHARACTER :=s';
LC T : constant CHARACTER := t';
LC-U : constant CHARACTER := 'u';
LC-V : constant CHARACTER :- v';
LC-W : constant CHARACTER : 'w' ;
LC-X : constant CHARACTER := x';
LC-Y : constant CHARACTER :=y;
LC Z : constant CHARACTER :=z';

end ASCII;

-- Predefined subtypes:

subtype NATURAL is INTEGER
range 0 .. INTEGER'LAST;

subtype POSITIVE is INTEGER
range 1 .. INTEGER'LAST;

-- Predefined string type:

type STRING is array (POSITIVE range <>)
of CHARACTER;

type DURATION is delta 2#1.0#E-7
range -16777216.0 .. 16777215.0;

-- The predefined exceptions:

CONSTRAINT ERROR : exception;
NUMERIC ERROR : exception;
PROGRAM-ERROR : exception;
STORAGE-ERROR : exception;
TASKING-ERROR : exception;

end STANDARD;

Figure F.2 (4 of 4)

Package STANDARD

D.A.REF.AF[BC-MHj 1.0

Ada-Plus Appendix F Systems Designers

Appendix F
Page 12

F.10 PACKAGE MACHINECODE

Package MACHINECODE is not supported by the SD-Ada Compiler.

F.11 LANGUAGE-DEFINED PRAGMAS

The definition of certain language-defined pragmas is incomplete
in the Ada Language Reference Manual. The implementation
restrictions imposed on the use of such pragmas are specified in
Sections F.1l.1 to F.11.4.

F.11.1 Pragma INLINE

This pragma supplies a recommendation for inline expansion of a
subprogram to the compiler. This pragma is ignored by the SD-Ada
Compiler.

F.11.2 Pragma INTERFACE

This pragma allows subprograms written in another language to be
called from Ada. The SD-Ada Compiler only supports pragma
INTERFACE for the language ASSEMBLER. Normal Ada calling
conventions are used by the SD-Ada Compiler when generating a call
to an ASSEMBLER subprogram.

J F.11.2.1 Assembler Names

The name of an interface routine must conform to the naming
conventions both of Ada and of the MC68020 builder.

F.11.2.2 Parameter Passing Conventions

Parameters are passed to the called procedure in the order given
in the specification of the subprogram, with default expressions
evaluated, if present.

Scalars are passed by copy for all parameter modes (the value is
copied out for parameters with mode out).

Composite types are passed by reference for all parameter modes.

F.11.2.3 Procedure-Calling Mechanism

The procedure-calling mechanism uses the run-time stack
organisation shown in Figure F.3 and the routine entry and exit
code shown in Figure F.4.

D.A.REF.AFIBC-MH 1.0

Systems Designers Ada-Plus Appendix F

Appendix F
Page 13

LINK STACK

+------------------+
1"Return" Address i

I Return Address I <-- SP

<-- TS

I L
N+22+P I <Locals> Local Data

+---------------------

I P iRoutine parameters (in
N+22 < parameters> I order declared)

I <-- FP
+---------------------

N+20 I NEST*4 Current nesting level*4

I I Address of Exception
N+16 j EXCEP Handler Table

I<-- PPI +------------------------

I I

N+12 I DISPLAY Saved Display Entry for
Current nesting level

+---------------------

N+8 FP Dynamic Predecessor

N+4 I ST*4Saved Top of Link stack

+---------------------

N IPP ISaved Parameter pointer

I <-IP

+---------------------

MAIN STACK

Figure F.3

Routine Activation Record

on Entry to Called Subprogram

D.A.REF.AFIBC-MHJ 1.0

Ada-Plus Appendix F Systems Designers

Appendix F
Page 14

The implementation uses the following dedicated and temporary
registers:

SP - Link Stack Pointer A7
FP - Frame Pointer A2
PP - Parameter Frame Pointer A3
DP - Display Pointer AO
TS - Main Stack Pointer Al

Macros RM P BEGIN and RM P END are provided for the routine entry
and exit code respectively? This code is shown in Figure F.4.

Routine Entry Code

MOVE.L SP,(PP)+
MOVE.L FP,(PP)+
MOVE.L n(DP),(PP)+
MOVEA.L PP,FP
MOVE.L FP,(FP)+
MOVE.W #<nest*4>,(FP)+
MOVE.L FP,n(DP)

Routine Exit Code

MOVE.L -(PP),n(DP)
MOVEA.L -(PP),FP
MOVEA.L -(PP),SP

RTS

Figure
F.4

Routine Entry And Exit Code

F.I1.3 Pragma OPTIMISE

This pragma supplies a recommendation to the compiler for the
criterion upon which optimisation is to be performed. This pragma
is ignored by the SD-Ada Compiler.

F.11.4 Pragma SUPPRESS

This pragma gives permission for specified run-time checks to be
omitted by the compiler. This pragma is ignored by the SD-Ada
Compiler.

D.A.REF.AF[BC-MHJ 1.0

Systems Designers Ada-Plus Appendix F
Readers

Comments

READERS COMMENTS

Do you find this document suitable to your needs? Is it
understandable, usable, and well structured? Does it fit
appropriately into the Documentation Set which accompanies your
Product?

We would like your comments:

Did you find specific errors in the document? If so, can you
please submit a User Documentation Problem (UDOP) Report, an
example of which is included as part of the Release Details
supplied with your product.

Name
I------------------------------------ I
jPosition Please return your
I--------------------------------- comments to:
Company
I------------------------------------ I
jAddress Customer Services Group,

I J Systems Designers plc,
I I Pembroke House,

Pembroke Broadway,

I I Camberley,
I I Surrey.
I-------------------------------I GUl5 3XD
jDate I UNITED KINGDOM
I ------------------------------- I
ISoftware Version No.
I _D.A.R__.A__B_-M .0I

D.A.REF.AF[BC-MHI 1.0

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are identified by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

NAME AND MEANING VALUE

$BIG_IDI A A1
Identifier the size of the I ---- I
maximum input line length 254 characters
with varying last character.

$BIG_1D2 A A2
Identifier the size of the I ---- I
maximun input line length 254 characters
with varying last character.

$BIGID3 A A3A A
Identifier the size of the I ---- I I ---- I
maximum input line length 127 127 characters
with varying middle character.

$BIG_ID4 A A4A A
Identifier the size of the I ---- I I ---- I
maximuim input line length 127 127 characters
with varying middle character.

$BIG INT LIT 0 0298
An integer literal of value 298 1 ---- I
with enough leading zeroes so 252 characters
that is is the size of the
maximu line length.

$BIG_REAL_LIT 0 069.OE1
A real literal that can be I ---- I
either of floating- or fixed- 249 characters
point type, has value of 690.0,
and has enough leading zeroes to
be the size of the maximum line
length.

C-I

7ES7 PARAMEERS

NAME AND MEANNG VALUE

$BLANKS 235 blanks
A sequence of blanks twenty
characters fewer than the size
of the maximn line length.

$OOUNTLAST 2147483647
A universal integer literal
whose value is T=XIO.COUNT'LAST.

$DXMED ASCII CHARS "abcdefghijklmnopqrstuvwxyz
A string literal containing all !$%?@[\^1{-"
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD LAST 255
A universal integer literal
whose value is TEX IO.FIED'LAST

$FILENAME_WITHBAD_CHARS X) ! .dat
An illegal external file name
that either contains invalid
characters or is too long if no
invalid characters exist.

$FII_NAME_WITH_WILD) CARDCHAR file*.dat
An external file name that
either ontains a wild card
character or is too long if no
wild card characters exists.

$GREATER THAN DURATION 2.0
A universal real value that lies
between DRATICN'BASE'LAST and
DURATION' LAST if any, otherwise
any value in in the range of
DURATION.

SGRFAT0RTHAN DURATION BASE LAST 16777216.0
The universal real value that is
greater than DURATION'BASE' LAST,
if such a value exists.

$ILLEAL _ETEL_FIENAMl badcharA
An illegal external file name.

C-2

TESTr PALAMErERS,

NAME AND MEANING VALUE

$ILLEAL _OTERNAL_FILE NAME2 bad char*
An illegal external file name
that is different from
$ILLEXAL ErnMENAL FILE NAME.

$IrN1MERFIRST -2147483648
The universal integer literal
expression whose value is
INTEGE'FIRST.

$INTEXE LAST 2147483647
The universal integer literal
expression whose value is
NrEGER' LAST.

$LESSTHAN DURATION -2.0
A universal real value that lies
between DURATION ' BASE' FIRST and
D[RATION'FIRST if any, otherwise
any value in the range of DURATION.

$LESSTHANDURATIONBASEFIRST -16777216.0
The universal real value that is
less than DURATION'BASE'FIRST, if
such a value exists.

$MAX DIGITS 6
The universal integer literal
whose value is the maximum digits
supported for floating-point types.

$MA_3 20
The universal integer literal
whose value is the maximum input
line length permitted by theimlementation.

$MAXINT 2147483647
The universal integer literal
whose value is SYSTEM.MAX INT.

$NAME $NAME
A name of a predefined numeric
type other than FLOAT, DNTR,
SHMT FLOAT, SHir I'N 1,
IE01_FLOAT, or MW INTOGER if
one exists, otherwise any
undefined name.

C-3

TEST PAMWETES

NAME AND MEAN2MGVAU

$NEG _BASEDINT 16 FFFFFFFE
A based integer literal whose
highest order nonzero bit falls
in the sign bit position of the
representation for SYSTEX.MAX_INT.

$NON _ASCII CHAR TYPE (NONNULL)
An enumerated type definition for
a character type whose literals
are the identifier NON NULL and
all non ASCII characters with
printable graphics.

C-4

APPENDIX D

W TU)IRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 19 tests had been withdrawn at the
time of validation testing for the reasons indicated. A reference of
the form "AI-ddddd" is to an Ada Commentary.

" C32114A: An unterminated string literal occurs at line 62.

" B33203C: The reserved word "IS" is misspelled at line 45.

" C34018A: The call of function G at line 114 is ambiguous in
the presence of implicit conversions.

" C35904A: The elaboration of subtype declarations SFX3 and
SFX4 may raise NUMEIC_ERR instead of CONS'lAINT_
ERROR as expected in the test.

" B37401A: The object declarations at lines 126 through 135
follow subprogram bodies declared in the same
declarative part.

" C41404A: The values of 'LAST and 'LENGT= are incorrect in
the if statements from line 74 to the end of the
test.

" B45116A: ARRPRIBL 1 and ARRIBL 2 are initialized with a
value of the wrong type--PRIBOOL_TYPE instead of
ARRPRIBOOLTYPE--at line 41.

" C48008A: The assmption that evaluation of default initial
values occurs when an exception is raised by an
allocator is incorrect according to AI-00397.

" B49006A: Cbject declarations at lines 41 and 50 are
terminated incorrectly with colons, and end case;
is missing from line 42.

" B4A010C: The object declaration in line 18 follows a
subprogram body of the same declarative part.

D-1

WITHDAWN TES

. B74101B: The begi at line 9 causes a declarative part to be
treated as a sequence of statements.

. C87B50A: The call of "/=" at line 31 requires a use clause
for package A.

. C92005A: The "/=" for type PACK.BIG INT at line 40 is not
visible without a use clause for the package PACK.

. C940ACA: The assumption that allocated task Trl will run
prior to the main program, and thus assign SPYNUMB
the value checked for by the main program, is
erroneous.

. CA3005A..D: No valid elaboration order exists for these tests.
(4 tests)

. BC3204C: The body of BC3204C0 is missing.

D-2

0T
omM4p

