
061 w ADN (TRADENAN) COMPILER VALIDATION SWWRNM REPORT I
DIT AL EQUIPMENT CORPORATIO VA D 1() FEDERAL
STUdRE MANAGERENT SUPPORT CENTER AFALLS3CHURCH VA

WILSSIFIED 67 NOV SE F/G 12/5 ML

Eomhhhhhmmhhls
EEmhhhhhhhEmhE
EhmmhEEohhhmhhE
Eu'.'ommso

11111L- 1..6E2

MIROOPRSOUI TES 22AR
NAINL UE LI TNARS16

UNCLASSIFIED lflf, r:' n
SECURITY CLASSIFICATION OF THIS PAGE (When Data EI , _A

REPORT DOCUMENTATION PAGE READNSTRUCTIONSBEFORE COMPLETEIG FORM
1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 7 NOV 1986 to 7 NOV 1987
Digital Equipmont Corp.
VAX Ada Vl.3 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Federal Software Management Support Center

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
Federal Software Management Support Center AREA & WORK UNIT NUMBERS

5203 Leesburg Pike, Suite 1100
Falls Church, VA 22041-3467

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 7 NOV 1986
United States Department of Defense 3. NUMBLH UF PALhS
Washington, DC 20301-3081 70

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Federal Software Management Support Center UNCLASSIFIED

15a. R jFICATIONDOWNGRAOING
N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

to Approved for public release; distribution unlimited.

00 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED M I 0 7

0 18. SUPPLEMENTARY NOTES

4.

1g. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD- .
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number) r"

See Attached.
p

DO t'wN 1473 EDIrION OF I NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

%-".:.J".... -.. ---.. - , ,... . .'

This report has been reviewed and is approved.

Ad.a Validation Facility
Richard G. Harrison
Director
Federal Software Management Support Center
5203 Teesburg Pike
Suite 1100
Falls Church, VA 22041-3467

--------------------- NTIS GRA&I
Ada Validation Office TIC
Dr. John F. Kramer

Institute of Defense Analyses ustiricantin

Alexandria VA

B,
Distribution/

Availability Codes
Avail and/or

Ada Jint Program Office Dist Special

Virginia L. Castor
Director, AJPO
Department of Defense
Washington, DC

4

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

(1% 87 13606 i1U

NON N N %I

Ada Compiler Validation Summary Report:

Compiler Name: VAX Ada V1.3

Host Computer: Target Computer:

VAX 8800 -------- VAX-11/750
VAX-11/785
VAX 8200
VAX 8700
VAX 8800

VAX-11/780 ------- VAX-11/730
VAX-11/780
VAX-11/782
VAX 8300
VAX 8500
VAX 8600
VAX 8650

under under

VAX/VMS VAX/VMS

and

VAX 8800 MicroVAX II

under under

VAX/VMS MicroVMS and VAXELN

and

VAXstation II VAXstation II under
MicroVMS

under
VAX-11/780 under VAX/VMS

MicroVMS

MicroVAX II under VAXELN

Testing Completed on 7 Nov 1986 Using ACVC 1.8.

I

FSVB6VSRDEC540A

*Ada COMPILER
VALIDATION SUMMARY REPORT:

Digital Equipment Corp.
VAX Ada V1.3

T'he host environment is the VAX series* of computers under
VAX/vhS V4.4, and the MicroVAX II and VAXstation II under
MicroVMS V4.4. .The target environments are all hosts, and the
MicroVAX II using the VAXELN Toolkit, V2.2 in combination with
VAXELN Ada, Vl.I.

Completion of On-Site Validation:
7 Nov 1986

Prepared By:
Federal Software Management Support Center

5203 Leesburg Pike
Suite 1100

Falls Church, Va 22041-3467

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C.

*VAX series includes the VAX-II/730, VAX-11/750, Vax-ll/780,
VAX-II/782, VAX-II/785, VAX-II/8200, VAX-II/8300, VAX-II/8500,
VAX-I1/8600, VAX-ll/8650, VAX-l1/8700, VAX-11/8800

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

/

EXECUTIVE SUMMARY

This Validation Summary Report summarizes the results and
conclusions of validation testing performed on the VAX Ada
Vl.3 using Version 1.8 of the *Ada Compiler Validation
Capability (ACVC).

The validation process includes submitting a suite of
standardized tests (the ACVC) as inputs to an Ada compiler and
evaluating the results. The purpose is to ensure conformance
of the computer to ANSI/MIL-STD-1815A Ada by testing that it
properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The
testing also identifies behavior that is implementation
dependent but permitted by ANSI/MIL-STD-1815A. Six classes of
tests are used. These tests are designed to perform checks at
compile time, at link time, or during execution.

On-site testing was performed 3 Nov 1986 through 7 Nov 1986
at Nashua, NH under the auspices of the Federal Software
Management Support Center, according to Ada Validation
Organization policies and proceduresi -The VAX Ada V1.3 is
hosted on the VAX series operating under VAX/VMS V4.4 and the
MicroVMS, V4.4.

The results of validation are summarized in the following
table:

RESULT TEST CLASS TOTAL

A B C D E L__

Passed 69 865 1329 17 13 46 2339

Failed 0 0 0 0 0 0 0

Inapplicable 0 2 39 0 0 0 41

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

3° -- " I . .. *.." ,**o* -'_
3
f ~ o *%_ o*'//% _ .3 _ __. . ' . -- - .

There were 19 withdrawn tests in ACVC Version 1.8 at the time
of this validation attempt. A list of these test appears in
Appendix D.

Some tests demonstrate that some language features are or are
not supported by an implementation. For this implementation,
the test determined the following.

. SHORTINTEGER is supported.

• LONGINTEGER is not supported.

• SHORTFLOAT is not supported.

• LONGFLOAT is supported.

• The additional predefined types, LONGLONGFLOAT
and SHORTSHORTINTEGER are supported.

• Representation specifications for noncontiguous
enumeration representations are supported.

. The 'SIZE clause is supported.

. The 'STORAGESIZE clause is supported.

. The 'SMALL clause is supported.

• Generic unit specifications and bodies can be compiled
in separate compilations.

• Pragma INLINE is supported for procedures. Pragma

INLINE is supported for functions.

• The package SYSTEM is used by package TEXTIO.

• Mode INFILE is supported for sequential I/O.

• Mode OUTFILE is supported for sequential I/O.

• Instantiation of the package SEQUENTIALIO with
unconstrained array types is supported.

• Instantiation of the package SEQUENTIALIO with
unconstrained record types with discriminants is
supported.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . . . 1-1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 RELATED DOCUMENTS 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 CERTIFICATE 2-2
2.3 IMPLEMENTATION CHARACTERISTICS 2-3

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS 3-4
3.7 ADDITIONAL TESTING INFORMATION.............3-4
3.7.1 Prevalidation 3-4
3.7.2 Test Method 3-5
3.7.3 Test Site 3-6

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

" " ' ", .- o-• . '.' %" ' - ".-% .. % ,.% ., - -*. ,•

CHAPTER 1

INTRODUCTION

This Validation Summary Report describes the extent to which a
specific Ada compiler conforms to ANSI/MIL-STD-1815A. This
report explains all technical terms used within it and
thoroughly reports the results of testing this compiler using
the Ada Compiler Validation Capability (ACVC). An Ada compiler
must be implemented according to the Ada Standard
(ANSI/MIL-STD-1815A). Any implementation-dependent features
must conform to the requirements of the Ada Standard. The
entire Ada Standard must be implemented, and nothing can be
implemented that is not in the Standard.

Even thiough all validated Ada compilers conform to
ANSI/MIL-STD-1815A, it must be understood that some differences
do exist between implementations. The Ada Standard permits
some implementation dependencies--for example, the maximum
length of identifiers or the maximum values of integer types.
Other differences between compilers result from limitations
imposed on a compiler by the operating systems and by the
hardware. All of the dependencies demonstrated during the
process of testing this compiler are given in the report.

Validation Summary Reports are written according to a
standardized format. The report for several different
compilers may, therefore, be easily compared. The information
in this report is derived from the test results produced during
validation testing. Additional testing information is given in
section 3.7 and states problems and detailt which are unique
for a specific compiler. The format of a validation report
limits variance between reports, enhances readability of the
report, and minimizeg the delay between tho completion of
validation testing and the publication of the report.

1.1 PURPOsz OF THIS VALIDATION SUMMARY REPORT

The Validation Summary Report documents the results of the
validation testing performed on an Ada compiler. Testing was
carried out for the following purposes:

1-1

L' . _0

INTROOUCTION

• To attempt to identify any language constructs
supported by the compiler that do not conform to 4-he
Ada Standard

• To attempt to identify any unsupported language
constructs required by the Ada Standard

• To determine that the implementation-dependent behavior
is allowed by the Ada Standard

Testing of this compiler was conducted under the supervision of
the Federal Software Management Support Center according to
)olicies and procedures established by the Ada Validation
Organization (AVO). Testing was conducted from 3 Nov 1986
through 7 Nov 1986 at Nashua, NH.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country,
the Ada Validation organization may make full and free public
disclosure of this report. In the United States, this is
provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this
report do not represent or warrant that all statements set
forth in this report are accurate and complete, or that the
subject compiler has no nonconformances to ANSI/MIL-STD-1815A
other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139
1211 S. Fern, C-107
Washington, DC 20301-3081

or from the Ada Validation Facility (AVF) listed below.

Questions regarding this report or the validation tests should
be directed to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard
Alexandria VA 22311

1-2

or to:

Ada Validation Facility
Federal Software Management Support Center
5203 Leesburg Pike
Suite 1100
Falls Church, VA 22041-3467

1.3 RELATED DOCUMENTS

1. Reference Manual for the Ada ProgramminQ
Language, ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation OrQanization: Policies and
Procedures, i-TmRE Corporation, JUN 1982, PB
83-i0bul.

3. Ada Compiler Validation Capability
Implementers' Guide, SofTech, Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set
of programs that evaluates the conformance of a
compiler to the Ada language specification,
ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF Ada Validation Facility. The Federal Software
Management Support Center. In the context of
this report, the AVF is responsible for
conducting compiler validations according to
established policies and procedures.

AVO The Ada Validation Organization. In the
content of this report, the AVO is responsible
for setting policies and procedures for
compiler validations.

Compiler A processor for the Ada language. In the
context of this report, a compiler is any
language processor, including cross-compilers,
translators, and interpreters.

Failed test A test for which the compiler generates a
result that demonstrates nonconformance to the
Ada Standard.

Host The computer on which the compiler resides.

1-3

~ J~ !

Inapplicable A test that isps features of the languaoe that
a test compiler is not required to support or
may legitimately support in a -y othex than
the one expected by the test.

Passed test A test for which a compiler generates the
expected result.

Target The computer for which a compiler generates
code.

Test A program that evaluates the conformance of a
compiler to a language specification. In the
context of this report, tha term is used to
designate a single ACVC test. The text of a
.program may be thp ;ext of one or more
compilations

Withdrawn A test which has been found to be inaccurate in
test checking conformance to the Ada language

specification. A withdrawn test has an invalid
test objective, fails to meet its test
objective, or contains illegal or erroneous use
of the language.

1.5 ACVC TEST CLASSES

Conformance to ANSI/MIL-STD-1815A is measured using the Ada
Compiler Validation Capability (ACVC). The ACVC contains both
legal and illegal Ada program structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Legal programs are
compiled, linked, and executed while illegal programs are only
compiled. Special program units -tce used to report the results
of the legal programs.

Class A tests check that legal Ada programs can be successfully
compiled and executed. (However, no checks are performed
during execution to see if the test objective has been met.)
For example, a Class A test checks that reserved words of
another language (other than those a~ready reserved in the Ada
language) are not treated as reserved words by an Ada
compiler. A Class A test is passed if no errors are detected
at compile time and the program executes to produce a message
indicating that it has passed.

1-4

rv W r 1W. w 'wW rw 1% 1P - MV Mr Mu

Class B tests check that a compiler detects illegal language
usage. Class B tests are not executable. Each test in this
class is compiled and the resulting compilation listing is
exaxrined to verify that every syntactical or semantic error in
the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Cldss C tests check that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking and
produces a PASSED, FAILED, or NON-APPLICABLE message indicating
the result when it is executed.

Cl[-' D tests check the compilation and execution capacities of
a compiler. Since there are no requicements placed on a
compilei i.)y the Ada Standard for some parameters (e.g., the
number of iientifiers permitted in a compilation, the number of
units in a library, and the number of nested loops in a
subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class
D test fails to compile because the capacity uf the rompilpr is
exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a
PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a
NOT-APPLICABLE, PASSED or FAILED message when it is compiled
and executed. However, the Ada standard permits an
implementation to reject programs containing some features
addressed by Class E tests during compilation. Therefore, a
Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs
involving multiple, separately compiled units are detected and
not allowed to execute. Class L tests are compiled separately
and execution is attempted. A Class L test passes if it is
rejected at link time--that is, an attempt to execute the main
program must generate an error message before any declarations
in the main program or any units referenced by the main program
are elaborated.

Two library units, the package REPORT and the procedure CHECK_
FILE, support the self-checking features of the executable
tests. The package REPORT provides the mechanism by which
executable tests report results. It also provides a set of
identity functions used to detect some compiler optimization
strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The
procedure CHECKFILE is used to check the contents of text
files written by some of the Class C tests for Chapter 14 of
the Ada Standard.

1-5

V

The operation of these units is checked by a set of executable
test. These tests produce messages that are examined to verify
that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

Some of the conventions followed in the ACVC are intended to
ensure that the tests are reasonably portable without
modification. For example, the tests make use of only the
basic set of 55 characters, contain lines with a maximum length
of 72 characters, use small numeric values, and place features
that may not be supported by all implementations in separate
tests. However, some tests contain values that require the
tit to be customized according to implementation-specific
values. The values used for this validation are listed in
Ap,,;ndix C.

A compiler must correctly process each of the tests in the
suite and demonstrate conformance to the Ada Standard by either
meeting the pass criteria given for the test or by showing that
the test is inapplicable to the implementation. Any test that
was determined to contain an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and
therefore, is not used in testing a compiler. The
nonconformant tests are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was
tested under the following configuration:

Compiler: VAX Ada V1.3

Test Suite: Ada Compiler Validation Capability, Version

1.8

Host Computer:

Machine(s): VAX-11/780, VAX 8800 and
VAXstation II

Operating Systems: VAX/VMS V4.4
MicroVMS V4.4

Memory Size: 12, 32, and 8 MB

Target Computer:

Machine(s): VAX-11/730, 750, 780, 782,
VAX-11/785, 8200, 8300, 8500,
VAX 8600, 8650, 8700, 8800,
MicroVAX II, VAXstation II

Operating System VAX/VMS V4.4
MicroVMS V4.4
VAXELN V2.2

Memory Size: 4 - 32MB

Communications Network:

2-1

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION

Base Configuration:

Compiler: VAX Ada Vl.3

Test Suite: Ada Compiler Validation Capability, Version
1.8

Completion Date: 7 Nov 1986

Host Computer:

Machine(s): VAX-11/730, 750, 780, 782, 785,
8200, 8300, 8500, 8600, 8650,
8700, and 8800

Operating System: VAX/VMS, V4.4

Machine(s): MicroVAX 11, VAXstation II

Operating System: MicroVMS, V4.4

Target Computer:

Machine(s): VAX-11/730, 750, 780, 782,
785, 8200, 8300, 8500, 8600,
8650, 8700, 8800

Operating System: VAX/VMS, V4.4

Machine(s): MicroVAX II, VAXstation II

. Operating System: MicroVMS, V4.4

Machine(s): MicroVAX II

Operating System: VAXELN Toolkit, V2.2, in
combination with VAXELN Ada,
V1.1

2-2

I : ,":* ,; ,-:,b,-',.''% b '.:';9 '' --- - . -- .-- '-'.". -, -,. -, .- ..

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behavior of a compiler in those areas of the Ada Standard that
permit implementation to differ. Class D and E tests
specifically check for such implementation differences.
However, tests in other classes also characterize an
implementation. This compiler is characterized by the
following interpretations of the Ada Standard:

Nongraphic characters.

Nongraphic characters are defined in the ASCII
character set but are not permitted in Ada progLiras,
even within character strings. The compiler
orrectly recognizes the characters as illegal in

Ada compilations. The characters are not printed in
the output listing. (See test B26005A.)

Capacities.

The compiler correctly processes compilations
containing loop statements nested to 65 levels,
block statements nested to 65 levels, procedures
nested to 17 levels. It correctly processes a
compilation containing 723 variables in the same
declarative part. (See tests D55A03A..H, D56001B,
D64005E..G, D29002K)

CONFIGURATION INFORMATION

Universal integer calculations.

An implementation is allowed to reject universal
integer calculations having values that exceed
SYSTEM.MAX INT. This implementation does not reject
such calculations and processes them correctly.

(See tests D4AO02A, D4AO02B, D4AO04A, and D4AO04B.)

Universal real calculations.

When rounding to interger is used in a static

universal real expression, the value appears to be
rounded away from zero. (See test C4AO14A.)

2-3

VV

• . - , , - . .'d, ' , . ' ' '.. .. - '. , - ,. , , . , , , , - ,.- . .. - .

* Predefined 1voes.

This implementation supports the additional
predefined types SHORTINTEGER, LONG_TOAT, and
SHORT SHORTINTEGER in the package iTANDARD. (See
test B86001DT.)

* Based literals.

An implementation is allowed to reject a based
literal with a value exceeding SYSTEM.MAX INT durinacompilation, or it may raise NUMERIC_ERROR during
execution. This implementation raises NUMERIC_
ERROR during execution. (See test E24101A.)

* Array types.

An implementation is allowed to raise NUMERICERROR
for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

A packed BOOLEAN array having a 'LENGTH exceedinq
INTEGER'LAST raises NUMERICERROR when the array
objects are declared. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more
than INTEGER'LAST components raises NUMERICERROR
when the array type is declared. (See test
C52104Y.)

2-4

0 .

A null array with one dimension of length greater
than INTEGER'LAST may raise NUMERICERROR either
when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match in array slice assignments. This
implementation raises NUMERIC_ERROR when the array
type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the entire
expression appears to be evaluated before CONSTRAINT_
ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. In assigning two-dimensiunal array types,
the entire expression does not appear to be
evaluated before CONSTRAINTERROR is raised when
checking whether the expression's subtype is
compatible with the target's subtype. (See test
C52013A.)

Discriminated types.

During compilation, an implementation is allowed toeither accept or reject an incomplete type with
discriminants that is used in an access type
definition with a compatible discriminate
constraint. This implementation accepts such
subtype indications during compilation. (See test
E38104A.)

In assigning record types with discriminants, the
entire expression appears to be evaluated before
CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013,.)

Aggregates.

In the evaluation of a multi-dimensional aggregate,
all choices appear to be evaluated before checking
against the index subtype. (See tests C43207A and
C43207B.)

2-5

|~

In the eva2"1ition of an aggregate containing
subaggregates, all choi.ces are evaluated before
being checked for identical bounds. (See test
E43212B.)

All choices are evaluated before CONSTRAINTERROR is
raised if a bound in a nonnull range of a nonnull
aggregate does not belong to an index subtype. (See
test E43211B.)

CONFIGURATION INFORMATION

Functions.

The declaration of a parameterless function with the
saie profile as an enumeration literal in the same
immediate scope is rejected by the implementation.
(See test E66001D.)

Representation clauses.

The Ada Standard does not require an inplementation
to support representation clauses. If a
representation clause is not supported, then the
implementation must reject it. While the operation
of representation clauses in not checked by Version
1.8 of the ACVC, they are used in testing other
language features. Testing indicates that size
specifications are supported, that specification of
storage for a task activation is supported, and that
specification of SMALL for a fixed point type is
supported. Enumeration representation clauses
including those that specify noncontiguous values
appear to be supported. (See tests C55B16A,
C87B62A, C87B62B, C87B62C, and BC1002A.)

Generics.

When given a separately compiled generic unit
specification, some illegal instantiations, and a
body, the compiler rejects the body because of the
instantiations. (See tests BC3204C and BC3204D.)

Pragmas.

The pragma INLINE is supported for procedures. The
pragma INLINE is supported for functions. (See
tests CA3004E and CA3004F.)

2-6

, V , %j ".% % . %% % ' "...' .%f '%*'% 4 %% ' . -.* * .. .* S -. -.

Input/output.

The package SEQUENTIAL_IO can be instantiated with
unconstrained array types and record types with
discriminants. The package DIRECTIO cannot be
instantiated with unconstrained array types and
record types with discriminants without defaults.
(See tests CE2201D, CE2201E, and CE2401D.)

More than one internal file can be associated with
each external file for sequential I/O for reading
only. (See tests CE2107A..F.)

More than one internal file can be associated with
each exLernal file for direct i/O for reading only.
(See-tests CE2107A..F.)

An external file associated with more than one
internal file can be deleted. (See test CE2110B.)

More than one internal file can be associated with
each external file for text I/O for reading only.
(See tests CE3111A..E.)

Dynamic creation and resetting of a sequential file

is allowed. (See test CE2210A.)

Temporary sequential files are given a name.
Temporary direct files are given a name. Temporary
files given names are not deleted when they are
closed, but are not accessible after the completion
of the main program. (See test CE2108A.)

2-7

N V

'a

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

The Federal Software Management Support Center identified 2362
of the 2399 tests in Version 1.8 of the Ada Compiler
Validation Capability as potentially applicable to the
validation of VAX Ada V1.3. Excluded were 18 tests with
source lines that were too long; and the 19 withdrawn tests.
After they were processed 23 tests were determined to be
inapplicable. The remaining 2339 tests were passed by the
compiler.

i'lie Federal Software Management Support Center concludes that
the testing results demonstrate acceptable conformance to the
Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A D L _

Passed 69 865 1329 17 13 46 2339

Failed 0 0 0 0 0 0 0

N/A 0 2 39 0 0 0 41

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

Ir J.

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT

2 3 4 5 6 7 8 9 10 11 12 14 Total

Passed 98 322 420 244 161 97 138 261 130 32 218 218 2339

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

N/A i8 3 0 3 0 0 1 1 0 0 0 15 41

W/D 0 5 5 0 0 1 1 2 4 0 1 0 19

iO2AL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following tests have been withdrawn from the ACVC Version
1.8:

C32114A B37401A B49006A C92005A
B33203C C41404A B4AO10C C940ACA
C34018A B45116A B74101B CA3005A..D
C35904A C48008A C87B50A BC3204C

See Appendix D for the rationale for withdrawing these tests.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use
of features that a compiler is not rcquired by the Ada Standard
to support. Others may depend on the result of another test
that is either inapplicable or withdrawn. For this validation
attempt, 41 tests were inapplicable for the reasons indicated:

" C96005B - there are no out-of-range values for
type DURATION

" CE2107B, CE2107C, CE2107D, CE2107E, CE2111D
CE3111B, CE3111C, CE3111D, CE3111E, CE3114B
CE2110B

- with default open/create options (no FORM
string), VAX Ada allows more than one internal
file to be associated with the same external file
for mode INFILE only (multiple readers) , but
does not allow more than one association for OUT
-FILE or INOUTFILE in combination with mode IN
-FILE or another mode OUTFILE (mixed readers and
writers or multiple writers).

3-2

I-

CE3115A - VAX Ada allows resetting of shared
files, but an implementation restriction
does not allow the mode of a file to be
changed from INFILE to either INOUT
FILE or OUTFILE (an amplification of
accessing privileges while the external
file is being accessed). Thus CE3115A
does not apply.

" CE2102D, CE2102I, CE2111H - the creation of a file
of mode INFILE is not allowed

. CE24113H..C24113Y - source lines exceed the
limit of 120 characters

• B52004D, B55B09C, C34001E, C55B07A -
LONGINTEGER is not supported

* C34001F, C35702A -
SHORTFLOAT is not supported

* C86001F - TEXTIO uses the predefined package
SYSTEM, which is made obsolete by the
user defined package SYSTEM

3-3

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a
Class B test because of compiler error recovery, then the test
it; split into a set of smaller tests that contain the
undetected errors. There were no split tests required for this
implementation.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, sets of test results for ACVC Version 1.8
produced by VAX Ada Vl.3 were submitted to the Federal
Software Manckgement Support CenLer by the applicant for
pre-validation review. Analysis ,r' Lhese results demonstrated
that the compiler successfully passed all applicable tests.

The specific configurations submitted for the pre-validation

review were as follows:

Host Target

Processor op. Sys. Processor op. Sys.

VAX-ll/780 VAX/VMS VAX-ll/730 VAX/VMS
VAX-11/780 VAX/VMS VAX-11/780 VAX/VMS
VAX-l1/780 VAX/VMS VAX-l/782 VAX/VMS
VAX-11/780 VAX/VMS VAX 8300 VAX/VMS
VAX-11/780 VAX/VMS VAX 8500 VAX/VMS
VAX-11/780 VAX/VMS VAX 8600 VAX/VMS
VAX-11/780 VAX/VMS VAX 8650 VAX/VMS
VAXstation II MicroVMS VAX-11/780 VAX/VMS
VAXstation II MicroVMS MicroVAX II VAXELN

The VAX-11/782 results were compared against the VAX-l1/730,
780, 8300, 8500, 8600 an-d the 8650 and found to be equivalent.

The results from the Vax-11/780 were compared against the
MicroVAX II, 730, 782, 8300, 8500, 8600, 8650 and 780 and found
to be equivalent.

The results produced by VAX Ada were the same for all tested
members of the VAX family--for those using VMS, MicroVMS, or
VAXELN.

3-4

3.7.2 Test Method

A test magnetic tape containing ACVC Version 1.8 was taken
on-site by the validation team. This magnetic tape contained
all tests applicable to this validation as well as all tests
inapplicable to this validation except for any Class C tests
that require floating-point precision exceeding the maximum
value supported by the implementation. Tests that were
withdrawn from ACVC Version 1.8 were not run. Tests that make
use of values that are specific to an implementation were
customized before being written to the magnetic tape.

The test tape was written in VAX BACKUP format and was loaded
to disk using Digital Equipment Corp. standard utility
routines.

Once all tests had been loaded to disk, processing was begun
using command scripts provided by Digital Equipment Corp.

The validation was executed in batch control mode with the
files organized by chapter and class to allow the tests to be
run independently and in parallel.

A new compilation library was created and initialized with all
units contained in the library given the logical name
ADA$PREDEFINED. The startup control file established the newly
created library as the current compilation library and then
compiled REPORT and CHECKFILE into that library.

The prevalidation results were verified on-site. The various
tests results from the prevalidation execution were captured on
disk and used to compare against the on-site results using
"DIF", a difference utility.

The OPTIMIZE option was used to produce the compiled code.

The following configurations were tested on-site:

Host OD. Sys. Target On. Sys.

VAX 8800 VAX/VMS VAX-11/750 VAX/VMS
VAX-11/785
VAX 8200
VAX 8700
VAX 8800
MicroVAX II MicroVMS
MicroVAX II VAXELN

VAXstation II MicroVMS VAXstation II MicroVMS

3-5

* 3.7.3 Test Site

* The validation team arrived at Nashua, NH on 3 Nov 1986 and

departed after testing was completed on 7 Nov 1986.

43-

APPENDIX A

* COMPLIANCE STATEMENT

Digital Equipment Corporation has sbbmitted the following compliance
statement concerning VAX Ada and VAXELN Ada.

A- 1

COMPLIANCE STATEMENT

Compliance Statement

Base Configuration:

Compiler: VAX Ada Version 1.3
Test Suite: Ada Compiler Validation Capability, Version V1.8

Host Computers:

Machines:
VAX-11/730, VAX-11/750, VAX-l1/780, VAX-ll/782,
VAX-11/785, VAX 8200, VAX 8300, VAX 8500,
VAX 860n, VAX 8650, VAX 8700, and VAX 8800.

Operating System:
VAX/VMS, Version 4.4

Machines:
MicroVAX 11, and

VAXstation II.
Operating System:

MicroVMS, Version 4.4

Target Computers (same as host plus VAXELN):

Machines:
VAX-1l/730, VAX-1t/750, VAX-ll/780, VAX-1l/782,
VAX-I1/785, VAX 8200, VAX 8300, VAX 8500,
VAX 8600, VAX 8650, VAX 8700, and VAX 8800.

Operating System:
VAX/VMS, Version 4.4

Machines:
MicroVAX II, and

VAXstation II.
Operating System:

MicroVMS, Version 4.4

Machines:
MicroVAX II

Operating System:
VAXELN Toolkit, Version 2.2, in combination with
VAXELN Ada, Version 1.1.

A-2

COMPLIANCE STATEMENT

Digital Equipment Corporation has made no deliberate extensions to
the Ada language standard.

Digital Equipment Corporation agrees to public disclosure of this
report.

Digital Equipment Corporation agrees to continue to comply with the
Ada trademark policy, as defined by the Ada Joint Program Office.

___ __ __6 October 1986

Charles Z. Mitchell
VAX Ada Project Leader

A-3

APPENDIX B

APPENDIX F OF THE ADA STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to
certain allowed restrictions on representation classes. The
implementation-dependent characteristics are described in the
following sections which discuss topics one through eight as stated
in Appendix F of the Ada Language Reference manual
(ANSI/MIL-STD-1815A). Two other sections, package STANDARD and file
naming conventions, are also included in this appendix.

Portions of this section refer to the following attachments:

1. Attachment 1 - Implementation-Dependent Pragmas

2. Attachment 2 - VAX Ada Appendix F

(1) Implementation-Dependent Pragmas

See Attachment 1.

(2) Implementation-Dependent Attributes

Name Type

P'AST ENTRY The value of this attribute is of type
SYSTEM.ASTHANDLER.

P'BIT The value of this attribute is of type
universal_integer.

P'MACHINESIZE The value of this attribute is of type
universal_integer.

B-i

vriff~w*MnWWn moW ru %WM lum AM Ww M

APPENDIX F OF THE ADA STANDARD

P'NULLPARAMETER The value of this attribute is of type
P.

P'TYPECLASS The value of this attribute is of type
SYSTEM.TYPE CLASS.

(3) Package SYSTEM

See Attachment 2, Section F.3.

(4) Representation Clause ResLrictions

e Attachment 2, Section F.4.

(5) Conventions

See Attachment 2, Section F.5.

(6) Address Clauses

See Attachment 2, Section F.6.

(7) Unchecked Conversions

VAX Ada supports the generic function UNCHECKED CONVERSION
with the following restrictions on the class of types

4' involved:

1. The actual subtype corresponding to the formal type
TARGET must not be an unconstrained array type.

2. The actual subtype cotc'sponding to the formal type
TARGET must not be an unconstrained type with
discriminants.

(8) Input-Output Packages

SEQUENTIALIO Package

SEQUENTIAL 10 can be instantiated with any file
type, including an unconstrained array type or an
unconstrained record type. However, input-output
for access types is erroneous.

B-2

APPENDIX F OF THE ADA STANDARD

VAX Ada provides full support for SEQUENTIAL 10,
with the following restrictions and clarifications:

1. VAX Ada supports modes IN FILE and OUTFILE for
sequential input-output. However, VAX Ada does
not allow the creation of a file of mode
INFILE.

2. More than one internal file can be associated
with the same external file. However, with
default FORM strings, this is only allowed when
all internal files have mode IN FILE (multiple
readers). If one or more internal files have
mode OUT FILE (mixed readers and writers or
multiple writers), then sharing can only be

- achieved using FORM strings.

3. VAX Ada supports deletion of an external file
which is associated with more than one internal

file. In this case, the external file becomes
immediately unavailable for any new
associations, but the current associations are
not affected; the external file is actually
deleted after the last association has been
broken.

4. VAX Ada allows resetting of shared files, but an
implementation restriction does not allow the

mode of a file to be changed from IN FILE to
OUT FILE (an amplification of accessing
privileges while the external file is being
accessed).

DIRECT_10 Package

type CNT is range 0 .. 2147483647;

TEXTIO Package

type CNT is range 0 .. 2147483647;
subtype FIELD is INTEGER range 0 .. 2147483647;

LOW LEVEL 10

Low-level input-output is not provided.

B-3

APPENDIX F OF THE ADA STANDARD

t9) Package STANDARD

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type SHORT SHORT INTEGER is range -128 .. 127;
-- type LONG_INTEGER is not supported

type FLOAT is digits 6;
type LONG FLOAT is digits 15;
type LONG LONG FLOAT is digits 33;
-- type SHORTFLOAT is not supported

type DURATION is delta 1.OE-4
range -131072.0 .. 131071.9999;

(10) File Names

File names follow the conventions and restrictions of- the
target operating system.

B-4

Attachment 1

Implementation-Dependent
Pragmas

I his attachment defines the pragma, LISF. I' \(E, and OPTIMIZE, and
summarizes the definitions given elsivhere ot the remaining language-
defined pragmas. VAX Ada impileentaition-dependent information
(including the VAX Ada implementation-dependent pragmas) is marked
with change bars.

The V.\X Ada pragma TITLE is also defined in this annex.

Pragma Meaning

ASTENTRY Takes the simple niine of a single
entry as the single argument; at
most one ASTENTRY pragma
is allowed for any given entry.
This pragma must be u,;ed in
combination with the ASTENTRY
attribute, and is only allowed after
the entry declaration and in the
same task t pe specification or
single task as the entry to which
it a'lpices. This pragma specifies
that the given entry may be used to
handle a VAX/VMNS asynchronous
system trap (AST) resulting from a

Implementation-Dependent Pragmas 1-1

,,I-. ., ,, %.. . %.,. %,, , - , .-. , ., , .-- -.--. .--., --.,- --, ,.- --. .-.

11W V W ,0r v-i rwn U-.- rw'- TV 9rUE. V''rw OWw "r VI TV"vF V w wb .r l WK WILW

''%I S ,systern ser-vice call. The
pragma does not affect nowbil use

(if the entiN (see 912a).

2 CONTROLLED Takes the simple namie tit an acce-
tvpt: a, t he jinol .1 irizuw%. ii 1 TIl
pragmia is OnlIy ed i jn nied i
ately within the dleclarative part or
package specificaim. it that conltawm,
thle declaration of the access ty- pe;
the declaration miust occui heloie
the pragmia. This pragmia i- not
allowed for a derived tNype Thi!5
pragma specifie!s that autoIMMaic
sto-ie recliation miust not be
peitormied tor objects designated
bv '\ ikieS Of thC accet-; type C\Vept
upon leaving the innerw --4 block
statemnent, subpiogramn bodyv, or
tastk body that enclo-es the access
type declaration, or atter leax ing
the miain programi (see 4.8).

3 ELABORATE Takes one or mnore simiple nam~es
denoting library units, as argumnents.
This pragma i' Only allOw\ed inime-
diately after thle contcxt clause of
a comnpilation unit (before the sub-
sequent library unit ot *~odr
unit). Each argumnent miust be the
simiple namne of a library unit mien-
tioned by thle context clause. This
pragma specifies that the corre-
sponding library unit body miust be
elaborated b'efore the given comipi-
lation unit. If the given comipilation
unit is a subunit, the library unit
b~odv mnus-t be elaborated before the
body of the aicestor library, unit oft
the subunit (see 10.3).

EXPORT- EXCEPTION Takes an internal namne denoting anl
exception, and optionally takes an
external designator (thle namie of a

1-2 Implementation-Dependent Pragmas

KW~~rVWTWJ1W~~~r,1Mr*CMW_7 J~-wW rwj v NW w~

\'AX/VM5 Linker global svmbol), a
form (ADA or VMIS). and 1 code (ai
static integer expression that is in-
terpreted as a VAX condition code)
as arguments. A code value mu~t
be -specified h~lcn the torn) i- %IS
(the default if the form) is niot ,.pcc-
ified). T[his pragnia is 01nl*y allowed
at the place of a declarative item,
and must apply to an C\CeptiOnl

* declared by an earlier declarative
* itemn of the same drilarative part

or package specii~cation; it is not
allo%\ ed for an exception declared
with a renaming deClaratil'n. The
pragma permits an Ada c,\cetp-
tion to Lbe handled bY piogranis
written in other VAX languages
(see 13.9a.3.2).

EXPORT-FUNCTION Takes an internal name denoting a
function, and optionally takes an
external designator (the name of a
V;\X,'\VMS Linker global symbol),
parameter types, and result type
as arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a function
declared by an earlier declarative
item of the same declarative part
or package specification. In the
case of a function declared as a
compilation unit, the pragma is
only allowed after the function dec-
laration and before any -;ubsequent
compilation unit. This pragma is
not allowxed for a function declared
with a renaming dieclaration, and
is not allowed for a generic func-
tion (it may be given for a generic
instantiotion). This pragma permits
an Ada function to he called from

Implementation-Dependent Pragmas 1-3

a program written in another VAX
la n gia, Pe (se. L 13. Q. 1. 4,).

EXPORT OBJECT Takes an internal name denoting
an object, ,,nd optionally tike-; an
external de'-ignator (the name of a
V\AX\ \It Linker global symbol)
and size designator (a VAX,'1S
Linker global symbol whose value
is the size in bytes of the exported
object) as arguments. This pragma
is only allowed at the place of a
declarative item at the outermost
level of a library package spi,-i
fication or body ind must applh
to a variable declared by an car-
lier declarative item of the same
package specification or bod%,
the variable must be of a type or
subtype that has a constant size
at compile time. This pragma is
not allowed for objects declared
with a renaming declaration, and
is not allowed in a generic unit.
This pragma pcimnits an Ada ob-
ject to be referred to by a routine
written in another VAX language
(see 13.9a.2.2).

EXPORT PROCEDURE Takes an intet l name denoting
a procedure, and optionally takes
an external designator (the name of
a VAX/VMS Linker global symbol)
and parameter types as arguments.
This pragma is only allowed at the
place of a declarative item, and
must apply to a procedure declared
by an earlier declarative item of the
same declarative part o, package
specification Tn the case of a pro-
cedure declared as a compilation
unit, th ragma is only allowed
after the procedure declaration and
before any subsequent compilation
unit. This pragma is not allowed
for a procedure declared x ith a

1-4 Implementation-Dependent Pragmas

e P.

Ulm W7K~ ~T." go'" A F "Wr " - '7~' - % ~ ' !'' ~ 7

renaming declaration, and i% not
allowed for a generic procedure (it
may be given for a generic instanti-
ation). Tis! pragmia permits an Ada
routine to be called from .i pi-oegam
%MULt11 ill .another VAX lam111UaIt
(see 13.9a. 1.4t.

EXPORT- VALUED- PROCEDU RE Takes an internal name decnoting
a procedure, and optionally takes
an external designator (the name of
a VAX/\'MS Linker global svmiboh
and parameter types aargurnent,.
This pragmia is only allowed at thc
place of a declari.-c lt- n, and
must apply to a procedure declared
Li by n arlier c, 1 rative item ot the
same declarative part or package

-specif Iication. In the case of a pro-
Ccdure declared as a compilation

* unit, the pragmi.~ is only allowed
after the procedure declaration and
before any subsequent com1pilation
unit. The first (or only) parameter
of the procedure must be of mode
out. This pragnia is not allowed
for a procedure declared w,.ith a
renaming declaration and is not
allowed for a generic procedure (it
may be given for a generic instan-
tiation). This pragmia permits an
Ada procedure to behave as a func-
tion that both returns a value and
causes side effects on its paramne-
ters when it is called from a routine
written in another VAX language
(see 13.9a.1.4).

IMIPORT_ EXCEPTION Takes an internal name denoting
an exception, and optionally takes
an external designator (the name
of a VAXIVMS Linker global sy-
bolj. a form (ADA or VMIS). and

implementation-Dependent Pragmas 1-5

]am wr PT' 1.7% w YrVV WTv. W" W Vw - w - W. w P w ' w ,

a code (a static integer expres-
.ion that is interpreted as a VAX
conditi m code) as aiguments. A
code %alue is allowed only when
the form i- VNIS (the dcfault if the
form is not specified). lhi, pra.,mna
is only allowed at the place of a
declarative item, and must apply
to an exception declared by an
earlier declarative item of the same
declarative part or package spec-
ification; it is not allowed for an
exception declared .ith a renaming
declaration. Ihis pragma p,.niits, a
non-Ada exception (i, notably,
a VAX condition) to be handled by
an Ada program (Nee 1 3.4a 11).

IMPORT_ FUNCTION Takes an internal name denoting a
function, and optionally takes an
external designator (the nam1e oif a
VAX/VMS Linker global symbol),
parameter types, result type. and
mechanism as arguments. Pragma
INTERFACE must be used with this
pragma (see 13.9). This pragma
is only allowed at the place of a
declarative item, and must apply
to a function declared by an earlier
declarative item of the same declar-
ative part or package specification.
In the case of a function declared
as a compilation unit, the pragma is
only allowed after the function dec-
laration and before an% subsequent
compilation unit. This p,.igna is al-
lowed for a function declared with
a renaming declaration: it is not
allowed for a generic lunction or a
generic function instantiation. This
pragma permits a non-Ada rou-
tine to be used as an Ada function
(see 13.9a.1.1).

IMPORT-OBJECT Takes an internal name denoting
an object, and optionally takes an

1-6 Implementation-Dependent Pragmas

-- . - - - - - - - - - -

external designator (the name of a
VAX/V'%IS Linker global symbol)
and size (a VAX/VMS Linker global
symbol whose value .", the 17C in
bytes of the impoOLd object) a,
argouments. This pi,,g~ma i-, ,,,
alho\ . :' the place of a declara -
tive item at the outermost lecl ot
a library package specitication or
body, and must apply to a a iabh.
declared by an eulier declarative
item of the same package spcciti-
cation or body lhc _Jable must
bQ of a type or subtype that ha- I
w.oii-,tant size at comp , Ii , lhis
pragma is not allowed for ,,Liects
declared with a renanmin, , i,.lia-
tion, and is not allowed in a g,:rric
unit. This pragma permit , stoiage
declared in a non-Ada routine to
bc referred to by an Ada program
(see 13. 9 a.2.1).

IMPORT_ PROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external de-,ign,,tor (the name of
a VAX/VMS Linker global symbol)
parameter types, and mechanism
as arguments. Pragma INTERFACE
must be used with this pragma
(see 13.9). This pragma is only
allowed at the place of a declar-
ative item, and must apply to a
procedure declared by an earlier
declarative ity. of 'he same declar-
ativ% 1 ,,ii o r package speciftcation
In the case of a piocedure declared
as a n.,,ipilation unit, the pragmi
is only allowed after the proce-
dure declaration and before any
subsequent compilation unit. This
pragma is allowed for a piocedure
declared with a renaming declara-
tion; it is not allowed for a generic
procedure or a generic procedure

Implementation-De~endent Praoras 1-7

U.

-' '- -'-' - - -% ';{," '." "-%,.' . . ' ,., ,"" , .," • "" % * .' " ". .",". .,, ..€ , x",%:.".

instantiation. This pragma permits
a non-Adia routine to be used as an
Ada proccdute (see 13.9a.1.1).

IMPORT VALUED PROCEDURE Take,; an internal name denoting a
procedure, and optionally takes an
external designator (the name of a
VAX/VMS Linker global symbol),
parameter types, and mechanism
as arguments. Pragma INTERFACE

"0 must be used with this pragma (see
13.q). This pragma is only allowed
at the place of a declarative item,
and must apply to a procedure
declared by an earlier declarative
item of the same declarative part
or package specification. In the
case of a procdure declared as
a compilation unit, the pragma is
only ilowed after the procedure
declaration and before an,, subse-
quent compilation unit. The first
(or only) parameter of the proce-
dure must be of mode out. This
pragma is allowed for a procedure
declared with a renaming declara-
tion; it is not allowed for a generic
procedure. This pragma permits
a non-Ada routine that returns a
value and causes side effects on its
parameters to be used as an Ada
procedure (see 13.9a.1.1).

4 INLINE Takes one or more names as ar-
guments; each name is either the
name of a subprogram or the name
of a generic subprogram. This
pragma is only allowed at the place
of a declarative itemn in a declarative
part or package specification, or af-
ter a library unit in a compilation,
but before any subsequent compi-
lation unit. This pragma specifies
that the subprogram bodies should
be expanded inline at each call

1-8 Implementation-Dependent Pragmas

- '• -m - -.*° • - %- -o ", ',,".. ,-. %",. " "%' % '",'. ,q ", " .'% % ,i" " " . d' ',.
"

' " ,'%" .

whenever possible; in the case ot
a generic subpiogram, the pragma
applies to calls of its iniitantiations
(see 6.3.2).

5 INTERFACF Takes a larii' v,1e name and a sub-
program name as arguments This
pragma is allov, ed at the place of a
declarative item, and must apply in
this case to a subprogram declared
by an earlier declarative item of the
same declarative part or package
specification. This pragma is also
allowed for a libiary unit; in this
case the pragma must appear after
the subprogram declaration, and
before any subsequent compila-
tion unit. This pragma specifies
the other language (and thereby
the calling conventions) and in-
forms the compiler that an object
module will be supplied for the
corresponding subprogram (see
13.9).

In VAX Ada, pragma INTERFACE
is required in combination with
pragmas IMPORT FUNCTION,
IMPORT PROCEDURE, and
IMPORT_ VALUED PP CEDURE
(see 13.9a.1).

6 LIST Takes one of the identifiers ON
or OFF as the single argument.
This pragma is allowed anywhere
a pragma is allowed. It specifies
that listing of the compilation is to
be continued or suspended until
a LIST pragma with the opposite
argument is givcn within the same
compilati,,n. The pagma itself
is always listed d the compiler is
producing a listing.

Implementaton-Dependent Pragmas 1-9

A

LONGFLOAT Takes either DFLOAT or G_
FLOAT as the single argument.
The default is GFLOAT. This
pragma is only allowed at the start
of a compilation, before the first
compilation unit (if any) of the
compilation. It specifies the choice
of representation to be used for the
predefined type LONGFLOAT
in package STANDARD and for
floating point tN-F.e declarations with
digits specified in the range 7.15
(see 3.5.7a).

MAIN STORAGE Takes one or ho noniwgative
static simple expressions of ome
integer type as arguments. This
pragma is only allowed in the
outermost declarative part of a
library subprogram: at most one
such pragma is allowed in a library
subprogram. It has an effect only
when the subprogram to which it
applies is used as a main program.
This pragma causes a fixed-size
stack to be created for a main task
(the task associated with a main
program), and determines the
number of storage units (bytes) to
be allocated for the stack working
storage area and/or guard pages.
The value specified for either or
both the working storage area and
guard pages is rounded up to an
integral number of pages. A value
of zero for the working storage
area rc ults in the use of a default
size; a value of zero for the guard
page- ,esults in no guard storage.
A negative value for either working
storage or guard pages causes the
pragma to be ignored (see 13.2b).

1-10 Implementation-Dependent Pragmas

7 MEMORYSIZE Takes a numeric literal as the
single argument. This pragma
is only allowed at the start of
a c,,mpilation, before the first
com pilation unit (if ,,\) ,t the
compilation. The effect ot this
pragma is to use the vaiue of the
specified numeric literal for the
definition of the named number
MEMORYSIZE (see 13.7).

OPTIMIZE Takes one of the identifiers TIME
or SPA-CE as the single arg,:ent.
I lhi< ragma is only allowed within
a d,.iara!ive part and it applies
to the block or body enclosing
the declaiative part. It specities
whether time or space is the pri-
mary optimization criterion.

In VAX Ada, this pragma is only
allowed immediately within a
declarative part of a body declara-
tion.

9 PACK Takes the simple name of a record
or array type as the single argu-
ment. The allowed positions for
this pragma, and the restrictions on
the named type, are governed by
the same rules as for a representa-
tion clause. The pragma specifies
that storage minimization should be
the main criterion when -;electing
the representation of the given type
(see 13.1).

10 PAGE This pragma has no argtument.
and is allowed anywhere a pragma
is allowed. It specifies that the
program text which follows the
pragma should start on a new

Implementation-Dependen, Pragmas 1-11

IN

page (if the compiler is currently
producing a listing).

11 PRIORITY Takes a static expression of the pre-
defined integer subtype PRIORITY
as the single argument. This
pragma is onl) allowed within
the specification of a task unit or
immediately within the outermost
declarative part of a main program.
It specifies the priority of the task
(or tasks of the task type) or the
priority of the main program (see
9.8).

PSECTOBJECT Takes an internal name denoting
an object, and optionally takes an
external designator (the name of
a program section) and a size a
VAX/VMS Linker global symbol
whose value is interpreted as
the size in bYtes of the exported
/imported ob)ect) as arguments.
This pragma is only allowed at the
place of a declarative item at the
outermost level of a library package
specification or body, and must
apply to a variable declared by an
earlier declarative item of the same
package specification or body;
the variable must be of a type or
subtype that has a constant size, at compile time. This pragma is
not allowed for an object declared
with a renaming declaration, and is
not allowed in a generic unit. This
pragma enables the shared use of
objects that are stored in overlaid
program sections (see 13.9a.2.3).

12 SFHARED Takes the simple name of a vari-
able as the single argument. This

1-12 Implementation-Dependent Pragmas

S.,

W WW NR WW~r 1~tW W 7 UJW'MWF~V - *VV rw~ T rV M- lV'rW-W '*M 'P9-'- F

pragma is allowed only for a vari-
able declared by an object decla-
ration and whose type is a scalar
or access type; the variable decla-
ration and the pragma must both
occur (in this order) immediately
within the same declarative part or
package specification. This pragma
specifies that every read or update
of the variable is a synchroniza-
tion point for that variable. An
implementation must restrict the
ohjects for which this pragma is
alIu, ed to objects for which each of
'irect reading and direct updating
is implemented as an indivisible
operation (see 9.11).

VAX Ada does not support pragma
SHARED (see VOLATILE).

13 STORAGE-UNIT Takes a numeric literal as the
single argument. This pragma
is only allowed at the start of
a compilation, before the first
compilation unit (if any) of the
compilation. The effect of thi'.
pragma is to use the value of the
specified numeric literal for the
definition of the named number
STORAGE UNIT (see 13.7).

In VAX Ada, the only argument
allowed for this pragma is eight (8).

14 SUPPRESS Takes as arguments the identifier
of a check and optionally also
the name of either an object, a
type or subtype, a subprogram, a
task unit, or a generic unit. This
pragma is only allowed either im-
mediately within a declarative part
or immediately within a package

Implementation-Dependent Pragmas 1-13

qB*%r*f/. .'. .t *

specification. In the latter case, the
only allowed foiin is with a name
that denotes an entity (or several
overloaded subprograms) declared
immediately within the package
specification. The pcimission to
onit the given check extends from
the place of the pragma to the end
of the declarative region associated
with the innermost enclosing block
statement or program unit. For a
pragma given in a package specifi-
cation, the permission extends to
the end of the scope of the named
entity.

If the pragma inludes a name, the
permission to omit the given check
is further restricted: it is given only
for operations on the named object
or on all objects of the base type
of a named type or subtype; for
calls of a named subprogram; for
activations of tasks of the named
task type; or for instantiations of
the given generic unit (see 11.7).

VAX ALd does not support pragma
SUPPRFcq (see SUPPRESSALL).

SUPPRESS-ALL This pragma has no argument
and is only allowed following a
compilation unit. This pragma
specifies that all run-time checks in
the unit are suppressed (see 11.7).

15 SYSTEM NAME Takes an enumeration literal as
the single argument. This pragma
is only allowed at the start of
a compilation, before the first
compilation unit (if any) of the
compilation. The effect of this
pragma is to use the enumeration

1-14 Implementation-Dependent Pragmas

I'

'p

n ,.,mlP~~- - 'S ' ._ . . _ .
d' u',." it',/" ',e" -,,o . ".., " '.o" ' '.. ",.'o'....-",.,,," ,€'."".-"4 ". " " .,' . '''o ".'- ".''4 - -"4' ,," '" ° "' "" ", ",, ". - " '-

literal with the specified identifier
for the definition of the constant
SY5bEM NAME. This pragma
is nnl' allowed if the specified
identifier corresponds to one of the
literals ot th. t. pe NAME declared
in the package SN STEM (see 13.7).

TASK_ STORAGE Takes the simple name of a task
and a static expression of some
integer type as aqguments. This
pragnia is allowed anywhere that
a tai, -torage specification is al-
loweci, that is, the declaration of
the task type to which the pragma
applies and the pragma must both
occur (in this order) immediately
within the same declarative part
package speciticati.n, or task spec-
ification. The effect of this pragma
is to use the value of the expres-
sion as the number of storage units
(bytes) to be allocated as guard
storage. The value is rounded up
to an integral number of pages: a
value of zero results in no guard
storage; a negative value causes the
pragnia to be ignored (see 13.2a).

TIME- SLICE Takes a static expression of
the predefined fixed point
type DURATION (in package
STANDARD) as the single argu-
ment. This pragma is only allowed
in the outermost declarative part
of a library subpiogram, and at
mo t one such pragma is illowed
in a library subprogram. It has an
effect only when the subprogram to
which it applies is used as a main
program. This pragma specifies the
nominal amount of elapsed time
permitted for the execution of a

Implementation-Dependent Pragmas 1-15

D%

, . ,,* ", ,% % I. % - '% % % % ,", ,

'*'U.*~" 71-W~Y~ V K wr rLy W J p rV MW WWIR -

task when other taks of the same
priority are also eligible toi ,\e-
cution. A positive, nonzero value
of the static expression enables
round-robin ,cheduling for all tasks
in the -Lbpr , ram; a ncatixe or
zero V\ L , .isables it (see 9 .8a).

TITLE Takes a title or a subtitle string, or
both, in either order, as argumn,.its.
Pragma TITLE has the form:

pragma TITLE (titl:ng option
-[titi. ing-option]),

titling-option =
[TITLE =>] stringliteral

I [SUBTITLE =)] string-literal

This pragma is allowed anwhere
a pragma is allowed; the given
string(s) supersede(s) the default
title and/or subtitle portions of a
compilation listing.

VOLATILE Takes the simple name of a vari-
able as the single argument. This
pragma is only allowed for a vari-
able declared by an object declara-
tion. The variable declaration and
the pragma must both occur (in this
order) immediately within the same
declarative part or package speci-
fication. The pragma must appear
before any occurrence of the name
of the variable other than in an ad-
dress clause or in one of the VAX
Ada pragmas IMPORT_OBJECT,

EXPORTOBJECT, or PSECT
OBJECT. The variable cannot be
declared by a renaming declaration.
The VOLATILE pragma specifies
that the variable may be modified

1-16 Implementation-Dependent Pragmas

'p

Id

n,.

I

asynchronously. This pragma in-
structs the compilcr to obtain the
value of a variable from memory
each time it is used (see 9.11).

4

Implementation-Dependent Pragmas 1-17

P1k. ho . . . - - - o -

Attachment 2

VAXAdaAppendix F

NOTE

'his appendix is not part of the standard definition of the
Ada programming language.

This appendix summarizes the implementation-dependent characteris-
tics of VAX Ada by

* Listing the VAX Ada pragmas and attributes.

* Giving the specification of the package SYSTEM.
* Presenting the restrictions on representation clauses and unchecked

type conversions.

* Giving the conventions for names denoting implementation-
dependent components in record representation clauses.

• Giving the interpretation of expressions in address clauses.
* Presenting the implementation-dependent characteristics of the

input-output packages.

* Presenting other implementation-dependent characteristics.

VAX Ada Appendix F 2-1

F.1 Implementation-Dependent Pragmas

VAX Ada provides the follo%,ing pragmias, which are defined elsewhere
in the text. In addition, VAX Ada restricts the predefined language
pragmas INLINE and INTERFACE. and provides alternati% C to prag-
mias SHARED and SUPPRESS (VOLATILE and SUPPRESS_ ALL). See
Annex B for a descriptive pragma sumnmary.

*AST-ENTRY (see 9.12a)
*EXPORT- EXCEPTION (see 13.9a.3.2)
*EXPOR I- FUNCTION (see 13.9a.1.4)
*EXPORT.OBJECT (see 13.9a.2.2)

E XIPORT PROCEDURE (see 13.9a. 1A)
*EXIW)IZI VALUED PROCEDURE icc 1.9a.1.4)
*IMPORT EXCEPTION (see 13.9a.3.1)
*IM4PORT_ FUNCTION (see 13.9a. 1.1)
*IMPORT OBJECT (see 13.9a.2.1)

EAiPORT PROCEDURE (see 13.9a.1.1)
*IMPORT-VALUED PROCEDURE (see 13.9a. 1.1)
*LONG-FLOAT (see 3.5.7a)
*MAIN STOPAG (see 13.2b)
*PSECT OBJECT (see 13.9a.2.3)
*SUPPRESS-ALL (see 11.7)
*TASK-STORAGE (see 13.2a)
*TIME-SLICE (see 9 .8a)
*TITLE (see B)
*VOLATILE (see 9.11)

2-2 VAX Ada Apoendix F

~-j w~w,.'-. . - - W r 11"F I%, VF 'JW 'IVFP .7~. '. ' WW Jw ' WW Vw W V 1- W 7W V"1tWW h1 W** W W'1 TW V W911 WW FWVWM

F.2 Implementation-Dependent Attributes
VAX Ada provides the following attributes, which are defined else-

Where in the text. See Annex A for a descriptive attribute surnrnary.

* AST ENTRY (see 9.12a)

* BIT (see 13.7.2)

* MACHINE SIZE (see 13.7.2)
* NULL PARAMETER (see 13.9a.1.3)

* TYPE CLASS (see 13,7a 2)

F.3 Specification of the Package System

packee SYSTEM is

type iANE is (VAI_VNS. VAIEL).

SYSTEJ4-11AME constant 1AME = VAX-VMS,

STORAGE UVIIT constant = 8.
MEMORY-SIZE constant - 2-31-1.

MAXI-.IT constant = 2-31-1.
MIII-IIIT constant - -(2-*31),
MAXDIGITS constant z 33.
MAXMAIITISSA constant = 31.
FIREDELTA constant = 2 0--(-30).
TICK constant = 10 0..(-2).

subtype PRIORITY is INTEGER range 0 15.

-- Address types

type ADDRESS Is private.

ADDRESSZERO constant ADDRESS.

function (LEFT ADDRESS, RIGHT INTEGER) return ADDRESS,
function " (LEFT IITEGER, RIGHT ADDRESS) return ADDRESS,
function - (LEFT ADDRESS, RIGHT ADDRESS) return I1ITEGER,
function - (LEFT ADDRESS. RIGHT INTEGER) return ADDRESS.

-- function = (LEFT, RIGHT ADDRFSS) return BOOLEAN.
- unction "/=" (LEFT, RIGHT ADDRLSS) return BOOLEAI.

function " (LEFT, RIGHT ADDRESS) return BOOLEAN.
function "(S (LEFT. RIGHT ADDRESS) return BOOLEA,
function "> (LEFT. RIGHT ADDRESS) return BOOLEAI
function "' (LEFT, RIGHT ADDRESS) return BOOLEA.

VAX Ada Appendix F 2-3

? ': . , , = . . ,, F " , '-, , " -.- '.,, " -, % " . . "- "-". ... ," ,4 , ."."% .' . , , .'. .,.. .'

-- Note that because ADDRESS is a private type
-- the functions "=" and */=" are already available and

- do not h'e to be explictly defined

generic
type TARGET Is private.

function FETCH-FRONADDRESS (A ADERESS) return TARCET.

generic
type TARGET Is private.

procedure ASSIGH TOADDRESS (A ADDRESS. T TARGET).

type TYPE-CLASS is (TYPECLASSEFJIUNERATIOIU,

TYPECLASS IIITECER,

TYPECLASS-FIXEDPOINT.

TYPECLASSFLOATINc_-POIIT,

TYPE.CLASS .ARRAY,

TYFP "' A:, _RFCCkD,

TYPECLASS ACCESS,

TYPE-CLASSTASX.

TYPECLASSADDRESS),

VAX Ads floating point type declarations for the VAX

hardware floating-point data types

type DFLOAT Is implementat:,,n-dt.in. ,

type FFLOAT Is itn,' .ntati n. defin-,,
type GFLOAT is implementati ,ndefind,
type HFLOAT is ampemrintai n_dtfind,

AST handler type

type ASTHYADLER Is limited private.

IOASTHAINDIER constant ASTHANDLER,

-- lion-Ada exception

IOIADA-ERROR : exception.

-- VAX hardware-oriented types end functions

type BIT-ARAY is array (INTECGE. range >) of BOOLEAIH,
pragma PACK(BITARRAY),

subtype BIT.ARRAY_8 is BIT-ARRAY (0 7),

subtype BETARRAY_16 is BIT-ARRAY (0 1S),
subtype BIT-ARRAY-32 Is 5".ARRAY (0 31).

subtype BIT.ARRAY_64 is BIT_..;,.AY (0 63).

type UISIGUEDBYTE is range 0 255,

for UISIGI'EDBYTE'SIZE use 8,

2-4 VAX Ada Appendix F

C

function *not* (LEFT UNSIGNED-BYTE) return UIISIGNED-BITE,
function "and" (LEFT. RIGHT UNSIGIIED.BYTE) return UISICIIED5iTE.
function, "or" (LEFT. RIGHT UNSIGI3ED.BYTE) return UTISIYIEDBYTE.
function "xor" (LEFT. RIGHT URSICIIED-BYTE) return WJSIGIIEDBYTE.

function TO.U!SIGUED-BYTE (LEFT BIT-RRAY-8) return U71SIG!IED-BYTE.
function TO-BIT-ARRAYS (LEFT : UNSIGUED-BYTE) return BITARRAYB,

type UNSIGNED.BYTE-ARRAY Is array (INTEGER range <>) of UNSIGIJEDBYTE,

type WSIGNED.WORD is range 0 .. 65535
for UNSIGUED.WQRDSIZE use 16.

function "not" CLEFT UNSIGIZED-WORD) return UNiSIGIIED-WORD,
function "and" "LEFT, RIGHT UIISIGNED-WORD) return UIISICIIED-voRD.
function 'or" (LEFT. RIGHT USIGIJED-WORD) return UIISIGUED-WORD.
function "xor" (LEFT, RIGHT UlISICIIEDWORD) return UISIGllEO§ERFLD.

function TO-.UISIGUED-WORD CLEFT ITRAY 6)return UJISTMIJED.VQRD,
function TO.BIT-ARRAY-16 (LEFT UTISIGIIED-WORD) return ;3:7AARAY.16.

* type UISIUE&WORD-ARRAY Is array (INTEGER range <>) of 111SICIIED.VORO.

type UNSIGNED-LOICURD is range MNIIZT .. MAXINT,

function 'not' (LEFT UIISIGUED-LOUGWDRD) return UIISIGUTED-LDICWORD;
function "and" (LEFT, RIGHT UIISIGUED-LOJCWORD) return MIS IGUED..L IZGWORD.

*function "or" (LEFT. RIGHT U1ISIC!IED.LOIGVORD) return UIISIGIIEDLOIGVORD;
function "xor" (LEFT, RIGHT WI1SIGIIED-.OIGVR.D) return UUISICIED-LONCWORD,

function TO-UNSIGIED-LONWORD (LEFT .BIT-ARRAY-32)
* return U11SICUED-LONGWORD;

functi on TO-BIT.ARRAY-.32 (LEFT : UIS IGUED.LOUGW ORD) return BIT-ARRAY-32,

*type UNUSIGUTED-LOIGWJR.DARRAY is
array (INTEGER range <>) of UIISIGIJEDLOllCWORD,

.4 type UISIGIrEDgUADVORD is record
LO UIS I GNED -LONG WORD;
Li U1ISIGIIED-LOIG WORD;
end record;

function *not" (LEFT WISIGIIED-QUADC.RD) return U11SIGUED-GUADVORLD,
function *and" (LEFT. RIGHT !TISIGIIED..gUADVORD) return UIJSICIIEDQUADVORD,
fiu.tion "or" (LEFT. RIGHT UlSI~llED.QUADlVRD) return UIISIGIJED..QUADWIRD.
.unction *xor" (LEFT, RIGHT WJSIGIIEDQUADVORD) return UIISICiED.QUADWORD;

function TO-JJNSIGHED-QUADWORD (LEFT :BIT-ARLRAY..64)
return UIISIGIIEDgUADVORD,

function TO-BIT-ARRAY-64 (LEFT :WUISIGIJED.GUkDVORD) return BIT-ARRAY-64.

type UU;SIGUED..GUADVOR.D.ARRAY Is
array (IITECER range <>) of UIISIGITED..gUADVORD,

VAX Ada Appendix F 2-5

if f

FO.rwaKPE mr~xrw1-F7LfU7-.'~Kh1Fw WW 7"V . -w,. - mu* r V Wxi ,vt'wV V ... "-- -'r"wl ~*. r-b,,.'V' 'w

function, TO-ADDRESS (X IN4TEGER) return ADDRESS.
function IO-ADDRESS (X UNSIGNED-LONGWORD) return ADDRESS,
functiou TO-ADDR.ESS (1 unt'ersaL.integer) return ADDRESS,

fuanction TO-INTEGER (X ADDRESS) return ItiTEGER.
function TO- NSICffEDLO1GWORD (X ADDRESS) return U1SICUED-LOUCVORD;

function 70-UNSIGIZED-LIICVOPD (X ASL-HAIJOLER) return UIZSIGNEDLOII1CWORD,

-- Conventional naumes for static subtypes of type UIISIGIIED-LOICORD

subtype UNSIGCUED-1 is WI1SIGNED-LOICORD range 0 2*' 1-1.
subtype UIJSICIZED-2 is UNSIG1ED-LO11GWGRD range 0 2-s 2-1.
subtype UNISGfED-3 In UIJSIGIJED-L0]IICVRD range 0 2-' 3-11

*subtype UIISIGNED-4 is UIIS:G!ED-LOJCORO range 0 2.s 4-1.
*subtype UIISICIJED-S is UIIS I GED-LOIGWORD range 0 2-. 5-1.

subtype W1SICJED-6 is UIISIGIUEDL1011:IORD range 0 2.. 6-1.
subtype 11ISC'ED_7 is L1IISIG11ED-LOJCWORD range 0 2.- 7-1.
subtype LJiNSIGNED-8 Is UIISICIIED - OIOORD range 0 2-- 8-1.
subtype UIIED-9 Is UIISIGIJED-LOIICWORD ran~ge 0 2.o 9-1.

*subtype S D.0Is U11SIGIJED.LOJCVORD range 0 2-.10-1.

subtype UZSIGIED- 1 is UIISIGIIED-LOLG WORD range 0 2-.11-1.
*subtype UIS 1CUED - 2 Is UIISIGHED.LOJGWORD range 0 2-.12-1.
*subtype UI:SIC~vi)-13 is W)JSIC1F.D-LOICWORD range 0 2-.13-1.

subtype UIJSIG1!,&D14 Is U11SICIJED-LOJWORD range 0 2-'14-1.
subtype U1S IGIED-J 15Is UNS IGIED-L ONGCWORD range 0 2--15-1,

*subtype UIS1C!rD- 16 Is UIISICIED-LOIJCORD range 0 2-'16-1.
subtype UIISIGIIED- 17 Is WISIGIIED-LDGWCORD range 0 2-.17-1.

*subtype tfISIGflEO. 18 is WIISICIIED-LOI1CWOKD rag. 0 2-.18-1.
subtype U1SOIIED 9 Is UNSIGNED-LIIWORD range 0 2-.19-1.

*subtype UIISIGIIED-20 Is UIJSIGIEDLONGWORLD range 0 2..20-1,

subtype UIISIGIIED21Iis U11SIGIIED.LOHGWORD range 0 2-.21-1.
subtype UIISICITED-.22 Is UXJSIGHED.A.OUGWORD range 0 2-.22-1.
subtype UIISICIIED-.23 Is UIISIGIIED-LIICWORD rang. 0 2-.23-1.

*subtype UIISIG1ED-24 Is U1ISIGIIED-LDICWO.D range 0 2--24-1.
4subtype UTISICUED-26 ts UNS IGIED-LONG WORD range 0 2-.25-1.

subtype UIISIGIIED-26 is UNSICIIED-LOGWORD range 0 2--26-1,
subtype UIISIGIED-27 is UIISIG1IED-LOIIGWORD range 0 2-.27-1.
subtype WISIGIED..28 ts UNS IGIIED- LONJGWORD range C 2--28-1.
subtype UIISIGITED-29 Is IIS:GIIEDLOCWODRD range 0 2--29-1,
subtype UNS!ED-30 to U11SICIED-LOIICORD range 0 2-.30-1
subtype UWISGNED..31 is U11SICHED-LOIGHORD range 0 2--31-1,

-- Function for obtaining global symbol values

fnction roMPORT-VALUE (SYMBOL STRINIG) rstujrn UIISIGIfEOLOIICRD,

V- AX device and process register operations

function READ..ECISTER (SOURCE UWJSIGIIED-BYTE) return U11ICNZED.DYT.
function PLEAD-REGISTER (SOURCE UTISICIIED-WORD) rotor& WI1SIGIJED-WORLD.
function ILEAD..REGISTER (SOURCE WI1SIGZIED-LOICWORD) return UIISIGIED-LONGVORD.

2-6 VAX Ada Apoendix F

44%% %

procedure lITEREG ISIRk (SOURCE VIS!C'JED_ BYTE.
TARGET out UNSIGIIEDBYTE),

procedure IR T _ . ISTER(SOURCE UiSIGIED-1.ORD.
TARCET ut LUIJSICIJED_ WORD).

procedure WRITERECISTER (SOURCE US I CED- LOIG WORD,
TARGET out UIJSGIiEDLOICWORD),

fenctlsa MFPR (REC-I'MBER INTEGEA) return UIISIGIUEDLONGWORD.
procedure NTPR (LEGJMUNBR IIITFZER,

SOURCE UISIGNEDLOGWORD),

VAL interlocked-instruction procedures

procedure CLEARIITERLOCKED (BIT In out BOOLEANI,
OLD-VALUE out BOOLEAI),

procel. ETIiTERLOCKED (BIT In out BOOLEAII.
OLD-VALUE ,ot BOOLEAN).

type ALIGIED-SHORT_:ITECER Is
record

VALUE SHORT INTECEA - 0.
end record.

for ALICIEDSHORTINTEGERa ule

record
at mod 2.

end record,

procedure ADD-IITERLOCKED (ADDEND I o SHORTINJTEGER;
AUG£11D In ut R ALIGNEF.DSHOR TINTEGER;

SIGII out INTEGER);

type IISgSTATUS Is (MNOJT.FIRST, FAIL_1O.LOCK, OK_FIRST);
type REN£_STATUS is (OKJIOTEMPTY, AILJOLOCK,

OKE4PTY, FAILVAS..EPTT).

procedure IUSQHI (ITEM ln ADDRESS,
HEADER in ADDRESS.

STATUS out I1S_STATJS).

procedure RENQHI (HEADER In ADDRESS.

ITEM out ADDRESS.
STATUS out REMQ_STATUS).

procedure IINSQTI (ITEM In ADDRESS,
HEADER In ADDRESS.
STATUS out !IISQ-STATUS)

procedure RENQTI (HEADER Is ADDRESS,

ITEM out ADDRESS.
STATUS out RE NSTATUS)

privue

-- Not shown

end SYSTEM.

VAX Ada ADpendix F 2-7

t. .• , * 'f - 'a"* ,, - '..--,- • * , -. ', '*.(.o j' ., I'A i .%_ .% +,_'.. + %'%'.,%" %" " %.%".,." ..".. . % " • %. . . ,." ,

F.4 Restrictions on Representation Clauses

The representation clauses allowed in VAX Ada are length, enumera-
tion, record representation, and address clauses.

In VAX Ada, a representation clause for a generic formal type or a
type that depends on a generic formal type is not allowed. In addition,
a representation clause for a composite type that has a component
or subcomponent of a generic formal type or a type derived from a
generic formal type is not allowed.

F.5 Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses

* VAX Ada does not allocate implementation-dependent components in
records.

," F.6 Interpretation of Expressions Appearing in Address
-. Clauses

Expressions appearing in address clauses must be of the type
ADDRESS defined in package SYSTEM (see 13.7a.1 and F.3). In VAX
Ada, values of type SYSTEM.ADDRESS are interpreted as integers in
the range 0..MAX_ INT, and they refer to addresses in the user half of
the VAX address space.

VAX Ada allows address clauses for variables (see 13.5.

VAX Ada does not support interrupts.

F.7 Restrictions on Unchecked Type Corversions

VAX Ada supports the generic function UNCHECKEDCONVERSION
iwith the restrictions given in section 13.10.2.

2-8 VAX Ada Appendix F

r4.

F.8 Implementation-Dependent Characteristics of
In put-Output Packages

The VAX Ada predefined packages and their operations are imple-
mented using VAX Record Management Ser\vic:L (['\1vS) file orga-
nizations and facilities. To give users thle maximium benefit of the
underlying RMS input-output facilities, VAX Ada provides pack-
ages in addition to SEQUENTIAL 10, DIRECTJO, TEXT 10, and
10-EXCEPTIONS, and VAX Ada accepts VAX RMS File Definition
Languaige (FOL) statements in form strings. The following sections
sunlrari/c ',le imnplementation -dependent characteristics of thc \'AX
Ada in1'0i-output packages. The VAX Ada Run-TimL' R.cr'nw Afnniial
liscusses these characteristics in more dletail.

F.8.1 Additional VAX Ada Input-Output Packages

In addition to the language-defined input-output packages (SEQUENTIAL-
10, DIRECT-10, and TEXT-10), VA.X Ada provides the followving
input-output packages:

*RELATIVE1O (see 14.2a.3)

*INDEXED -10 (see 14.2a.5)

*SEQUENTIAL- MIXED-J1 (see 14.2b.4)

*DIRECT-MIXED-10 (see 14.2b.6)

*RELATIVEMIXED-_10 (see 14.2b.8)
*INDEXEDMIXED- O (see 14.2b.10)

VAX Ada does not provide the package LOW...LEVEL-1O.

F.8.2 Auxiliary Input-Output Exceptions

VAX Ada defines the exceptions needed by pack~n;ies RELATIVE 10,
INDEXED-10. RELATIVE MIXED-10, and INDEXED- MIXED- 10 in
the package AUX- 10_EXCEPTIONS (see 14.5a).

VAX Ada Appendix F 2-9

F.8.3 Interpretation of the FORM Parameter

The value of the FORM parameter for the OPEN and CREA IE proce-
dures of each input-output package may be a string whose value is in-
terpreted as a sequence ,f -a,1einents of the VAN c, ,i d MXanI).I'nent
Services (RNIS) File Definition Language (FDLL or it may be a string
whose value is interpreted as the name of an external file containing
FDL statements.

The use of the FORM parameter is described for each input-output
package in chapter 14. For information on the default FORM param-
eters for each VAX Ada input-output package and for information on
using the the FORM parameter to specify external file attributes, see
the VAX Ada Riu- ne Rejerence Manta!. For information on 1 i)1., see
the Guide to VAX,,'VMS File Applications and the VAX 1' fS File Definttion
Lani.Vn,,,e Facilityi Reference Maumal.

F.8.4 Implementation-Dependent Input-Output Error Conditions

As specified in section 14.4, VAX Ada raises the following language-
defined exceptions for error conditions occurring during input-output
operations: STATUS-ERROR, MODEERPOR, NAME-ERROR, USE
ERROR, END-ERROR, DATA ERROR, and LAYOUTERROR. In
addition, VAX Ada raises the following exceptions for relative and
indexed input-output operations: LOCK-ERROR, EXISTENCE- ERROR,
and KEY-ERROR. VAX Ada does not raise the language-defined
exception DEVICE-ERROR; device-related error conditions cause USE-
ERROR to be raised.

USEERROR is raised under the following conditions:

* In all CREATE operations if the mode specified is IN-FILE.
" n'all CREATE operations if the file attributes specified by the

FORM Y,;iiamotcr are not upported by the package.
* In the WRITE operations on rh.-iti% e or indexed files if the element

in the position indicated has already been written.
* In the UPDATE and DFI.IYE ELEMENT operations on relative or

indexed files if the element t, be updated or deleted is not locked.
" In the UPDATE operations oo indexed file-. if the specified key

violates the external file attributes.

2-10 VAX Ada Appendix F

In the SET-LINELENG IH and SET PAGELENGTH opera-
tions on text files if the lengths specified are inappropriate for the
external file.
If the capacity of the external file has been excet-ded.

NAMEERROR is raised as specified in sectiin 14.4. by a all of
a CREATE or 011EN procedure if the string given for the \.,,ME
parameter does not allow the identification of an external tile. In
VAX Ada, the value of i NAME parameter can be a string that denotes
.1 VAX/VMS file specification or a VAX/VMS logical name (in either
case, the string names an external file). For a CREATE procedure, the
value of a N \MiE parameter can also be a null stri:w in which case it
names a temporary exteinal file that is deleted when the main pr,,gram
exits, The VAX Ada Rui.Tiu' Rcferece Mannal exp ;ns the naming of
external files in jaore dcetail.

F.9 Other Implementation Characteristics

Implementation clu ad:tristics having to do with the definition (if a
main program, various numeric ianges, aid implementation limits are
summarized in the following sections.

F.9.1 Definition of a Main Program

1. library unit can be used as a main program provided it has no
* fonial parameters and, in the case of a function, if its returned value

i - '.;crete type. If the main program is a procedure, the status
.ret.,,,ied to the VAX/VMS environment upon normal completion of the
procedure is the value one. If the main procedure is a function, the
status returned is the function value. Note that when a main function
returns a discrete value whose size is less than 32 bits, the value is zero
or sign extended as appropriate.

0%

VAX Ada Appendix F 2-11

,."..-
% A A J + - + " - -, + -, + , . ,+ + : 4 ., / %

,
,,.,," ',- ,+ -, ,,,&m

F.9.2 Values of Integer Attributes

The ranges of values for integer types declared in package STANDARD
are as follows:

SHORT SHORTINTEGER -i2s 127

SHORTINTEGER -327os .. 327(,7

INTEGER -21474h3,48 .. 2147483047

For the package,; DIRFCT-l1, RELATIVE-1O, SI-QUENTIAI.
MIXED_10, DIRECT MIXED_ 10, RFI-.VFIVEMIXFD.I INDEXED-
MIXED-1O, and TEXT JO, the range of values lor types COUNT and
POSITIXE COUNT ai as follows:

COLN , 0. 21474,47

POSITI,'E t (OL ,T 21174S,"3 17

For the package TEXT_10, the range of values for the type FIELD is as
follows:

FIEID 1) - 21474,S34,47

F.9.3 Values of Floating Point Attributes

F. Floating V,,,e
and Approximate

AtIribut' Decimal Equivalent

[)ICI rs 6

MANTI4SA 21

EkM-X 84

rPSII-ON I11.() OI) N V'.-4

ppi own'Itely 4 5.3074E -417

eipproxiniate l 2 5S444 E-2
-

LARGE 16-0 FFFFF' I0-. 21

aipproximattely I I 42'% E - 5

2-12 VAX Ada Appendix F

=,~

1%7. ~. rr 'rvwr wlwlpwl '_wpr w; FrVT W9, 1111 WFW' 't- Mlir WW" rM~wv1Kr rWW- IMUMrw lrn WI '

F..Floaling Value
and Approximate

Attribute Decimal Equi~alent

s AFEEMIAX 127

~,)0 E-SN ALL l~I.(M K)t-,

opproximately 2.93874 E-39

SAFELARGE Io-0.7 FF F-FCO-e ,32
aipproximaitely 1 70141 F + 38

* appi oxim.atet -1 01 41 E +M

* LAST 1ito7FFF-FF8' + 32
*ipproximitel% 1.70141 E + 38

%MACHINE RADIX 2

.IACHINEIAN I ISSA 24

NIACHINE-ENIAX 127

NIACHINE-ENIIN -127

IACHINE-ROL'NLS Trtw

KIACHINE-OERFLC)M~ True

D - loating Value
and Approximate

Attribute Decimal Equivalent

DIGITS 9

MANTISSA 31

* ENIAX 124

* EPSILON 16-0,411)M)II-tKXlt (MKI MOt)-7

approxmately 9.3132251746154SE-ltI

WMALL 1'I~MIK~XKIIt~3
.1y ' ;uatedy 2.35I)98870(144oE-38

I ,;.-, 16v.UFFFF-FFFE-t(WMMEIX)e31
pioxi mateIv 2 1 2676479226i55E+.37

SA, IAX 1127

SA, A. L L 1(,-0 1KIKKIK~(~It

aipproximately 2.'P3'735K771 1557 E --S

VAX Ada Appendix F 2-13

D-Floalang Value
and Approximate

Attribute Decimal Equi~alent

SAFE-LARGE I(i-l) 7FrI FFFFJXM1KXHM-e32
apprcwirnatv1Iy 1 7111411833,4124 E -3N

FIRST -lo-0 7FFF-FFFFFFFF FFs~', 32
approximate1% -1 70141 18341-447E * 38K

LAST It)-() 7FFF FFFF FFFF FF8'e+ 32
*approximatt-k 1 7(1141 18340t)47E 38

MACHINERADIX 2

,MACHINE-ktIA\TISSA5(

NIA'CHINEEMIAX 127

NIACHINLEKIIN -127

* MACHINERC)UNDS m-

MIACHINE C)VERFLOW~S Tu

G-Floating Value
and Approximate

Attribute Decimal Equivalent

*DIGITS 15

*MANTISSA 51

EMAX 2(q

EPSILON16.IMIINMMl1t'2
approximate[\ 8.881784197iM1E-016

SMALL 1h(. S~IX X-f X X-fX XXi-)e-5 I
approximately 1 .944692274332E-4162

LARGE I6-.FFFF-FFFF-FFFF.El-e+51
approximately 2.5711 W81170814 E + 01

SAFE EMAX 10)23

SAFE SIMALL 1~l.ltM~KMI)-5
~ipproxi matlY 5 .5'66464626SE -3(19

SAFE-LARGE 1i..7FFFFFFF-FFFF-FIIe.t' 2
approximnatt'y K 4SS405674312 E + 307

2-14 VAX Ada Appendix F

**%

G..Floating Value
and Approximate

Attribute Decimal Equivalent

FIRST -Ii,:i).7FFF-FFFF-FFFF-FCrt,+250
approximatelY -8 YSNN-i4(7431I2E 307

LAST 111-0 7FFF FFFF-FFFF FC'v*250
approximately 8 N4ti45C1743- 112 E +3407

MIACHINE RADIX 2

MIACHINE MIANTISSA 53

N IA CH I NEEN IA X 1023

%IACHINF FNIIN -10213

N IA CHI N tRULLND)S True

NMIA C HINE OV%1E RFLO0WS True

Hjloating Value
and Approximate

Attribute Decimal Equivalent

*DIGITS 3

*MANTISSA11

ENIAX 444

EPSILON 1600IMIM)M4IKIIIII1IK)4K04e
*approximately 7-7137147775:4894341222341 177tt3397E-4K134

SMALL16.8MIKMIXIMIIIKIIMIMXtrl1
approximately 1 .1OO6-56-821463791S21(l93431S(l2tl936E-l134

doLARGE 16*I.FFFFFFFF-FFFF-FFFF-FFFF-FFFF-FFFE-()'e + Il1

I approximately 4 .542742t126847543(16593327379931 H)t)E + 0133

SAFE EMAX 16383

S.AFESMALL 1'I1KIKKtMIK(l~t~lWlKK)'-(9
approxi mately 8 44 15 25785778(023370565S669454331 44E-4933

SAFELARGE 1o'4).7FFFFFFFFFFF-FFFF-FFFF-FFFF-FFFF4'et- 4())

approximately 5 9486i5747o786,158825-42S7966(331 4041E - 4931

FIRST -16-1).7FFF -FFFF -FFFF FFFF FFFF-FFFFFFF C'e+ 4(14Fapproximately -5,9486i5747(7il-i38854287%0-433144 hOE -4931

VAX Ada Appendix F 2-15

IAAAI4

HFloating Value

and Approximate
Attribute Decimal Equivalent

LAST l0h-I 7FFF. FFFF_ FFFF FFFF FFFF FFFF FFFFC- . 4oL,1%

pproxi mateky 5 ,4865747u 78&l5425427%i33 11 "I)E '4931I

MACHINE_ RAr' - 2

MACHINEMANTISSA 113

NiACHINEENIAX 103S3

NIACHINE ENIIN - 10)83

MACHINF "'ll 'NEDS Trte

:..,.Hi . t , RFLM NS Iru LI

F.9.4 Attributes of Type DURATION

rhe values of the significant attributes of type DURATION are as
follows:

DURATION' DELTA I IINPE-414

DURATION' SMALL 2- 14

DURATION' FIRST -131072 oll1ll

DURATION' LAST 1311171 19449

DURATION ' LARCE 1 3107 I N,,0,4,9S 375E tL);

F.9.5 Implementation Limits

Limit Description

32 Maximum ntimbeNr ot lorm,d! paraniteter in a sulprogram or tntry
declaration that art. ot an iincon-traint-d record tr.%.

12!1 Maximum identiier length (number O character%)

1211 Maximum numl'r of characters in F1 SOUrce line

245 Maximum numbt-r of discriinuants tor a record type

2-16 VAX Ada Appendix F

S. %

.

l imit Description

'46 kNlaiimum numl'-er of tormal parometer, in an entry or stlprogrom
d-cla ration

h1ai'ik l oniber of dimensions in an arra) tt ptv

t113 Niaximuni immi:vi of lit'rar% uinit% and subunnit, in a coinpilation

, lvsurr
1

409'? MiaximiumninihL'r of library Units anld SIibUulit In in v)xkttinf

32757 klaxiunum ntimlit-r or olhit ts de~hiIiwd tiith PSECT (rBJECT pragmas

,,;535 \laimiu niltri of enumeirationfl iterals in an enk~imeration tvpt'
tet ilnit ion

16535 %1,1 %. 1 IM rn fu mber of chiractters in i .olit of t 1w :,rtJv td tvptv

1,.,,35 Klaximmin nLIMtbir of trianl, thot an tex pt ion :III Propagate

J,; ;IrNloxiiun nUinler of line, in a tirkett tile

2 31-1 klaximiini luimbexr of lilts In ant ~j'

1 The compilation closure' of a give'n unit is the total se't of unit, that the' i~nUnit

depend, on., Lireacl) and indirt-ct]iv

2 Thr e'xecution clc<-are of a gsi~ n uinit i, the' ompilation kIo~ku i plus, 111 aooated
se'condary units (litbrary bodw ied s1u 'tiLn it')

VAX Adla App'endix F 2-17

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent
values, such as the maximum length of an input line anu invalid
file names. A test that makes use of such values is identified
by the extension. TST in its file name. Actual values to be
substituted are identified by names that begin with a dollar
sign. A value is substituted for each of these names before
the test is run. The values used for this validation are given
below.

Aone and Mui niriq Value

SBIGIDI 119 A's and a
'l'

Identifier of size MAX IN LEN
with varying last character.

$BIG_ID2 119 A's and a
'2'

Identifier of size MAX IN LEN
with varying last character.

SBIG_ID3 119 A's and a
'3' in the middle

Identifier of size MAXINLEN
with varying last character.

$BIG_ID4 119 A's and a
'4' in the middle

Identifier of size MAXINLEN
with varying last character.

SBIG_INTLIN 116 O's and
0298

An integer literal of value 298
with enough leading zeroes so
that it is MAXINLEN characters
long.

",,,.', ,.' *,. n -. ,: , : : : "• . , . . .- .- .-: - .- * *- . - -.- .- .

Name and Meaning Value

SBIGREALLIT 114 O's and
69.OEl

A real literal that can be
either of floating or fixed
point type, has value 690.0, and
has enough leading zeroes to be
MAXINLEN characters long.

$BLANKS BLANKS
Blanks of length MAXINLEN - 20

$CNT_LAST 2147483647
Value of CNT'LAST in TEXTIO
package.

$EXTENDEDASCIICHARS
abcdefghijklmnopqrstuvwxyz!$%?@[\]^{()-

A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELDLAST 2147483647
Value of Field'LAST in TEXT_10
package.

$FILENAMEWITHBADCHARS X)]!@$^&-Y

An illegal external file name
that either contains invalid
characters or is too long.

SFILENAMEWITHWILDCARDCHAR XYZ*
An external file name that
either contains a wild card
character or is too long.

$GREATERTHANDURATION 100000.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION

$GREATERTHANDURATIONBASE_LAST 10_000_000.0
The universal real value that is
greater than DURATION'BASE'LAST.

$ILLEGALEXTERNALFILENAME
BAD-CHARACTER*^

Illegal external file name.

C-2

Name and Meanin Value

$ILLEGALEXTERNAL_FILENAME2

MUCH-TOO-LNG-NAME-FOR-A-FI LE-MUCH-TOO- LONG-NAME- FOR-
A-FILE

Illegal external file names.

$INTEGERFIRST -2147483648
The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTkGER_LAST 2147483647
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESSTHANDURATION -100_000.0
A universal real value that lies
between DURATIONIBASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

SLESSTHANDURATIONBASEFIRST -10 000 000.0
The universal real value that is
less then DURATION'BASE'FIRST.

SMAXDIGITS 33
floating-point types.

SMAXINLEN 120
Maximum input line length
permitted by the implementation.

SN/.ME SHOPT SHOPT :NTE;EF
A name of predefined numeric
type other than FLOAT, INTEVIP,
SHORTFLOAT, SHORTINTLGEP,
LONIFLOAT, or LWNG_ :N.EGER,

$NEG_ BASED_ INT C*FFFFFFFE0
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

SNONASCII CHARTYPE 'NON NULL
An enumerated type definition
for a character type whose
literals are the identifier
NONNULL and all non-ASCII
characters with printable
graphics.

C-3

% ..-. .2.

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not
conform to the Ada Standard. When testing was performed, the
following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated:

B4AO10C: The object declaration in line 18 follows
a subprogram body of the same declarative part.

BC3204C: The file BC3204C4 ihould contain the body
for BC3204CO as indicated in line 25 of BC3204C3M.

C35904A: The elaboration of subtype declarations
SFX3 and SFX4 may raise NUMERICERROR (instead of
CONSTRAINTERROR).

C41404A: The values of 'LAST and 'LENGTH are
incorrect in IF statements from line 74 to the end
of the test.

" C4800SA: This test requires that the evaluation of
default initial values not occur when an exception
is raised by an allocator. However, the Language
Maintenance Committee (L14C) has ruled that such a
requirement is incorrect (AI-00397/01).

C32114A: An unterminated string literal occurs at
line 62.

B33203C: The reserved word "IS" is misspelled at
line 45.

C34018A: The call of function G at line 114 is
ambiguous in the presence of implicit conversions
and inconsistente without.

B37401A: The object declarations at lines 126-135
follow subprogram bodies declared in the same
declarative part.

B45116A: ARRPRIBLl and ARRPRIBL2 are initialized
with a value of the wrong type (PRIBOOLTYPE instead
of ARPPRIBOOLTYPE) at line 41.

B49006A: Object declarative. at lines 41 and 50 are
terminated incorrectly with colons; "END CASE;" is
missing from line 42.

D-1

B74101B: The "BEGIN" at line 9 is mistaken; it
causes the declarative part to be treated as a
sequence of statements.

* C87B50A: The call of "/-" at line 31 requires a
"USE" clause for package A.

C92005A: At line 40, "/-" for type PACK.BIGINT is
not visible without a "USE" clause for package PACK.

C940ACA: This test assumes that allocated task TT1
will run prior to the main program, and thus assign
SPYNUMB the value checked for by the main program;
however, such an execution order is not required by
the Ada Standard, so the test is erroneous.

CA3005A..D (4 tests): No valid elaboration order
exists for these tests.

END OF LIST

D

ii

I

.4

4
S

