AO-A180 861 ADA ¢ mam:) CO!IPILEI VﬂLIDﬁTlOﬂ sum
DIGITAL EQUIPMENT CO!PORRTION VAX ADA ¥ rsmu.
E _MANAGEMENT SUPPORT CENTER FRLLS CHURCM VA
UNCLASSIFIED 07 NOV 86 G 12/3

[AN A I L O S SRR

o g e 0% 2c 0wt Y
5

il) E

Jo sk &

—— E m L
E . [

|||| TR =

—— |,8

oy T

N
==
=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AD-A180 061

D i s RS S &

UNCLASSIFIED 1 .
SECURITY CLASSIFICATION OF THIS PAGE (WhenOara—Eix: E"‘_’__ ~"Np

£

5

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETEING FORM

1. REPORT NUMBER [2. GOVT ACCESSION NO. [3. RECIPIENT'S CATALOG NUMBER :

4

»

4. TITLE {and Subtitle)) k 5. TYPE OF REPORT & PERIOD COVERED ¢

Ada Compiler Validation Summary Report: 7 NOV 1986 to 7 NOV 19387

. Digital Equipment Corp. 4
VAX Ada V1.3 6. PERFORMING ORG. REPORT NUMBER el
‘ 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) {2
Federal Software Management Support Center Iy

By

10. PROGRAM ELEMENT, PROJECT. TASK

9. PERFORMING ORGANIZATION AND AOORESS
AREA & WORKX UNIT NUMBERS

Federal Software Management Support Center
5203 Leesburg Pike, Suite 1100
Falls Church, VA 22041-3467

11. CONTROLLING OFFICE NAME AND ADDRESS

12. REPORT DATE

Ada Joint Program Office 7 NOV 1986
United States Department of Defense | 3. NOWBER OF PAGES
Washington, DC 20301-3081 70
14. MONITORING AGENCY NAME & ADORESS(/fdifferent from Controlling Office) . [15. SECURITY CLASS (ofthisreport)
Federal Software Management Support Center UNCLASSIFIED

15a. géﬁksaEEFICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

, Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

1815A, Ada Joint Program Office, AJPO

AL

-

7'y

o .

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

PACE |
.

»

AL
.

See Attached.

\
>
Il"."

DD UM 1473 c0iTIoN OF t NQV 65 IS OBSOLETE
1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

' -F AN S N I T -
A N D TN D O N S o Y AN g T T S “ . -
o ¥ } \;\i'-\{\'ﬁ\ L P O S

This report has been reviewed and is approved. ;

Ada Validation Facilit
Richard G. Harrison

! . By ‘/". .
- o on'en a» a» .- - L------—; ——-‘-—W— *

Director N
Federal Software Management Support Center i
5203 T.eesburg Pike ¢
Suite 1100 s

Falls Church, VA 22041-3467

Acce_ssion_ For .
NTIS GRA&I % \
Dr. John F. Kramer 32;23::2‘:3 d 0 \
Institute of Defense Analyses Justificatio '
Alexandria VA »
By
{ Distribution/ N
Avg_{;ability Codes
%_W P PP~ Avail and/or | d
- TV Dist
Ada Joint Program Office s Speoial
Virginia L. Castor ”
Director, AJPO _I o
Department of Defense \ b
Washington, DC y
A
vy
WU
e
3
*Ada is a registered trademark of the United States Government e
(Ada Joint Program Office). '
87 « 87 1360 :
\ N 2 - (W) aX
O v 118 .

N0 ST A T AT AT JR SO, RES

b2t o

A AR LML A

Testing Completed on 7

Ada Compiler Validation Summary Report:

Compiler Name: VAX Ada V1.3

Host C uter:

VAX 8800 = = = = - - =

VAX-11/780 = - = = =

under

VAX/VMS

L]
o]
Q,

VAX 8800
under

VAX/VMS

1]
3
[o 8

VaXstation II
under

MicrovVMs

Target Computer:

VAX-11/750
VAX-11/785
VAX 8200
VAX 8700
VAX 8800
VAX-11/730
VAX-11/780
VAX-11/782
VAX 8300
VAX 8500
VAX 8600
VAY. 8650

under

VAX/VNMS

MicrovVax II
under

MicrovMs and VAXELN

vAXstation II under
MicroVvMs

VAX-11/780 under VAX/VMS

MicrovaX II under VAXELN

Nov 1986 Using ACVC 1.8.

R e v -

- o - -

P

-

LUV

&

FSVB6VSRDECS540A

*Ada COMPILER
VALIDATION SUMMARY REPORT:
Digital Equipment Corp.
VAX Ada V1.3

ibe host environment is the VAX series* of computers under
VAX/VvMS V4.4, and the MicrovAX II and VAXstation II under
MicroVMS V4.4. .The target environments are all hosts, and the
MicroVAX II using the VAXELN Toolkit, V2.2 in combination with
VAXELN Ada, V1.1.

Completion of On-Site Vvalidation:
7 Nov 1986

Prepared By:
Federal Software Management Support Center
5203 Leesburg Pike
Suite 1100
Falls Church, Va 22041-3467

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington, D.C.

*VAX series includes the VAX-11/730, VAX-11/750, Vax-11/780,
VAX-11/782, VAX-11/785, VAX-11/8200, VAX-11/8300, VAX-11/8500,
VAX-11/8600, VAX-11/8650, VAX-11/8700, VAX-11/8800

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

R LT T P e Sy I e T T T T I A S S N S AR LA AR v R Y LS y PONERICRA
'~ o) T A Y 9 PR T NN R L LS E SRS 1\ LR AR 0.
ALY " W W " \ ‘.,) N " O Y I NG S o s N .0. o .\ -~ " VA

EXECUTIVE SUMMARY

1 This Validation Summary Report summarizes the results and

) conclusions of validation testing performed on the VAX Ada
V1.3 using Version 1.8 of the *Ada Compiler Validation

{ Capability (ACVC).

The validation process includes submitting a suite of
standardized tests (the ACVC) as inputs to an Ada compiler and
evaluating the results. The purpose is to ensure conformance
of the computer to ANSI/MIL-STD-1815A Ada by testing that it
properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The
testing also identifies behavior that is implementation
dependent but permitted by ANSI/MIL-STD-1815A. Six classes of
tests are used. These tests are designed to perform checks at
compile time, at link time, or during execution.

e

-

- - o

On-site testing was performed 3 Nov 1986 through 7 Nov 1986
at Nashua, NH under the auspices of the Federal Software
[Management Support Center, according to Ada Validation
r Organization policies and procedures, -The VAX Ada V1.3 is
) hosted on the VAX series operating under VAX/VMS V4.4 and the
’ MicrovMs, V4.4.

The results of validation are summarized in the following

: table:

T RESULT TEST CLASS TOTAL

. A B c D E L

. Passed 69 865 1329 17 13 46 2339
Failed 0 0 o 0 0 0 0

X Inapplicable 0 2 39 0 0 0 41
Withdrawn 0 7 12 0 e 0 19
TOTAL 69 874 1380 17 13 46 2399

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

R R A N D NI IR

There were 19 withdrawn tests in ACVC Version 1.8 at the time
of this validation attempt. A list of these test appears in
¢ Appendix D.

Some tests demonstrate that some language features are or are
not supported by an implementation. For this implementation,
the test determined the following.

. SHORT_INTEGER is supported.

. LONG_INTEGER is not supported.

Dt g

. SHORT_FLOAT is not supported.
. LONG_FILOAT is supported.

. The additional predefined types, LONG_LONG_FLOAT
and SHORT_SHORT_INTEGER are supported.

Py Tl e D

. Representation specifications for noncontiguous
- enumeration representations are supported.

. The 'SIZE clause is supported.

y . The 'STORAGE_SIZE clause is supported.

\

. The 'SMALL clause is supported.

. Generic unit specifications and bodies can be compiled
in separate compilations.

. Pragma INLINE is supported for procedures. Pragma
INLINE is supported for functions.

. The package SYSTEM is used by package TEXT_IO.

Mode IN_FILE is supporied for sequential I/O.

LAaLS
.

. Mode OUT_FILE is supported for sequential I/O.

. Instantiation of the package SEQUENTIAL_IO with
unconstrained array types is supported.

. Instantiation of the package SEQUENTIAL_IO with
unconstrained record types with discriminants is
supported.

.
4
\
-
-
)

LR P e -

N ICNIL I AN A DA I N NN N IO N PO RN NS
I A AC I A NN A N L S N OGN Ot

.................
oL

TABLE OF CONTENTS

INTRODUCTION

1l

1 PURPOSE OF THIS VALIDATION SUMMARY REPORT
2 USE OF THIS VALIDATION SUMMARY REPORT .
3 RELATED DOCUMENTS . . ¢ ¢ ¢ ¢« o o o o
4 DEFINITION OF TERMS . . ¢« ¢ ¢ o« & o « &
5 ACVC TEST CLASSES . . ¢ ¢ ¢ o « o & « =

CHAPTER 2 CONFIGURATION INFORMATION
CONFIGURATION TESTED . ¢ ¢« ¢ o « ¢ o o o o

2.1
2.2 CERTIFICATE .« o ¢ o o o o o s o o o s o
2.3 IMPLEMENTATION CHARACTERISTICS e s e e s

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS ¢ &+ + ¢ ¢ o o o o o s o s o =
3.2 SUMMARY OF TEST RESULTS BY CLASS e o e o
3.3 SUMMARY OF TEST RESULTS BY CHAPTER
3.4 WITHDRAWN TESTS =« ¢ ¢ ¢ o o o o o a o o
3.5 INAPPLICABLE TESTS ¢ ¢« ¢ o ¢ o o o o o o o
3.6 SPLIT TESTS =« o « ¢ o o o o o o o o o o =
3.7 ADDITIONAL TESTING INFORMATION e o o & s
3.7.1 Prevalidation . . ¢ ¢ ¢ ¢ ¢ ¢ o o o o @
3.7.2 Test Method . ¢ « ¢ ¢ ¢ ¢ o o o o o o =«
3.7.3 Test Site . . ¢ ¢« ¢ ¢ ¢ ¢ e o e e o o

APPENDIX A COMPLIANCE STATEMENT
APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

WWWwwwwwwwww
1
OV D DN

it Il

Lot

- wwnfmmmmnwmmm

CHAPTER 1
INTRODUCTION

This Validation Summary Report describes the extent to which a
specific Ada compiler conforms to ANSI/MIL-STD-1815A. This
report explains all technical terms used within it and
thoroughly reports the results of testing this compiler using
the Ada Compiler Validation Capability (ACVC). An Ada compiler
must be implemented according to the Ada Standard
(ANSI/MIL-STD-1815A). Any implementation-dependent features
must conform to the requirements of the Ada Standard. The
entire Ada Standard must be implemented, and nothing can be
implemented that is not in the Standard.

Even thiough all validated Ada compilers conform to
ANSI/MIL~-STD-1815A, it must be understood that some differences
do exist between implementations. The Ada Standard permits
some implementation dependencies--for example, the maximum
length of identifiers or the maximum values of integer types.
Cther differences between compilers result from limitations
imposed on a compiler by the operating systems and by the
hardware. All of the dependencies demonstrated during the
process of testing this compiler are given in the report.

Validation Summary Reports are written according to a
standardized format. The report for several different
compilers may, therefore, be easily compared. The information
in this report is derived from the test results produced during
validation testing. Additional testing information is given in
section 3.7 and states problems and details which are unique
for a specific compiler. The format of a validation report
limits variance between reports, enhances readability of the
report, and minimizes the delay between thc completion of
validation testing and the publication of the report.

1.1 PURPOsic OF THIS VALIDATION SUMMARY REPORT

The Validation Summary Report documents the results of the
validation testing performed on an Ada compiler. Testing was
carried out for the following purposes:

N i B R J' B) ') . - - - L I - - - .
R NN AR A R Lo .z.'.,-'.-r.'(-rr RN I A
A i Mot N .c:’.e..c. .t..!_':' Ay N S P

R)

T A R AN U AR AR AR P A C T T L A R S A A R A A R N A N A TN N Y W WP Wy N yw TN IWNY Y Wew e worw ., W Mth oM ald e

INTRODUCTION

. To attempt to identify any language constructs
supported by the compiler that do not conform to +he

Ada Standard

. To attempt to identify any unsupported language
constructs required by the Ada Standard

. To determine that the implementation-dependent behavior
is allowed by the Ada Standard

Testing of this compiler was conducted under the supervision of
the Federal Software Management Support Center according to
nolicies and procedures established by the hda Validation
Organization (AVO). Testing was conducted from 3 Nov 1986
through 7 Nov 1986 at Nashua, NH.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country,
the Ada Validation organization may make full and free public
disclosure of this report. In the United States, this is
provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this
report do not represent or warrant that all statements set
forth in this report are accurate and complete, or that the

subject compiler has no nonconformances to ANSI/MIL-STD-1815A

other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE

The Pentagon, Rm 3D-139

1211 S. Fern, C-107
Washington, DC 20301-3081

or from the Ada Validation Facility (AVF) listed below.

Questions regarding this report or the validation tests should
be directed to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard

' Alexandria VA 22311

1-2

T TS A T L I T T T T et A T e T AT Ty T e LA o S e I I O
oy v RN AR YA LS . DA CRN N P A P S A A IR T
A I AN N N A A T T e

or to:

ACVC

Ada Validation Facility

Federal Software Management Support Center
5203 Leesburg Pike

Suite 1100

Falls Church, VA 22041-3467

RELATED DOCUMENTS

1. Reference Manual for the Ada Programming
Langquage, ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and
Procedures, ITRE Corporation, JUN 1982, PB

83-110601.

3. Ada Compiler Validation Capability
Implementers' Guide, SofTech, Inc., DEC 1984.

DEFINITION OF TERMS

The Ada Compiler Validation Capability. A set
of programs that evaluates the conformance of a
compiler to the Ada language specification,
ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant
AVF

AVO

Compiler

Failed test

Host

The agency requesting validation.

Ada Validation Facility. The Federal Software
Management Support Center. 1In the context of
this report, the AVF is responsible for
conducting compiler validations according to
established policies and procedures.

The Ada Validation Organization. 1In the
content of this report, the AVO is responsible
for setting policies and procedures for
compiler validations.

A processor for the Ada language. In the
context of this report, a compiler is any
language processor, including cross-compilers,
translators, and interpreters.

A test for which the compiler generates a
result that demonstrates nonconformance to the
Ada Standard.

The computer on which the compiler resides.

1-3

AN T Y

N g PSP A p b B BB ;e p s m e - e e e -
I S A I e g T s Rt L R A ST A SR AT
: . L . .

Inapplicable A test that 1ses features of the languace that
a test compiler is not required to support or
may legitimately support in a -1y othexr than
the one expected by the test.

Passed test A test for which a compiler generates the
expected result.

Target The computer for which a compiler generates
code.

Test A program that evaluates the conformance of a

compiler to a language specification. 1In the
context of this report, tha term is used to
designate a single ACVC test. The text of a
. program may be the iext of one or more

compilations
Withdrawn A test which has been found to be inaccurate in
test checking conformance to the Ada language

specification. A withdrawn test hLas an invalid
test objective, fails to meet its test
objective, or contains illegal or erroneous use
of the language.

1.5 ACVC TEST CLASSES

Conformance to ANSI/MIL-STD-1815A is measured using the Ada
Compiler Validation Capability (ACVC). The ACVC contains both
legal and illegal Ada program structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Legal programs are
compiled, linked, and executed while illegal programs are only
compiled. Special program units re used to report the results
of the legal programs.

Class A tests check that legal Ada programs can be successfully
compiled and executed. (However, no checks are performed
during execution to see if the test objective has been met.)
For example, a Class A test checks that reserved words of
another language (other than those alveady reserved in the Ada
language) are not treated as reserved words by an Ada

compiler. A Class A test is passed if no errors are detected
at compile time and the program executes to produce a message
indicating that it has passed.

A I I W W W I W T T PO T U WO TV VO T I VY P Y W W T v oy w vy LA A a Ad Lof ooa b4 44 bog g L ol —“T

Voo,

Class B tests check that a compiler detects illegal language
usage. Class B tests are not executable. Each test in this
class is compiled and the resulting compilation listing is
exarined to verify that every syntactical or semantic error in
the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking and
produces a PASSED, FATLED, or NON-APPLICABLE message indicating
the result when it is executed.

Cla~~ D tests check the compilation and execution capacities of
a conpiler. Since there are no requirements placed on a
compiler oy the Ada Standard for some parameters (e.g., the
number of identifiers permitted in a compilation, the number of
units in a library, and the number of nested loops in a
subprogram body), a compiler may refuse to compile a Class D
test and still be a conforming compiler. Therefore, if a Class
D test fails to compile because the capacity of the compiler is
excr=2ded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a
PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a
NOT-APPLICABLE, PASSED or FAILED message when it is compiled
and executed. However, the Ada standard permits an
implementation to reject programs containing some features
addressed by Class E tests during compilation. Therefore, a
Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada prograns
involving multiple, separately compiled units are detected and
not allowed to execute. Class L tests are compiled separately
and execution is attempted. A Class L test passes if it is
rejected at link time--that is, an attempt to execute the main
program must generate an error message before any declarations
in the main program or any units referenced by the main program
are elaborated.

Two library units, the package REPORT and the procedure CHECK_
FILE, support the self-checking features of the executable
tests. The package REPORT provides the mechanism by which
executable tests report results. It also provides a set of
identity functions used to detect some compiler optimization
strategies and force computations to be made by the target
computer instead of by the compiler on the host computer. The
procedure CHECK_FILE is used to check the contents of text
files written by some of the Class C tests for Chapter 14 of
the Ada Standard.

E
v
L4
»
.
N
)
|
13
%
]
»
g

..-" o

R e T
POUN NN

AT I T S N T T AT A, s R T TR AL TR e T PO O U R O T IS S S
-f'\.l' I__-r_..- L S \-I\..«‘\-.'I._q(_-.\f T AT A e L P _..-.' R (\.',_: - - Lt s

The operation of these units is checked by a set of executable
test. These tests produce messages that are examined to verify
that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

Some of the conventions followed in the ACVC are intended to
ensure that the tests are reasonably portable without
modification. For example, the tests make use of only the
basic set of 55 characters, contain lines with a maximum length
of 72 characters, use small numeric values, and place features
that may not be supported by all implementations in separate
tests. However, some tests contain values that require the
tnst to be customized according to implementation-specific
values. The values used for this validation are listed in
Ap;;c-ndix C.

A compiler must correctly process each of the tests in the
suite and demonstrate conformance to the Ada Standard by either
meeting the pass criteria given for the test or by showing that
the test is inapplicable to the implementation. Any test that
was determined to contain an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and
therefore, is not used in testing a compiler. The
nonconformant tests are given in Appendix D.

ST RACCASKYIFT LA CAAS NG IR ¥V W

- - "

. = .- !.. ~‘_ --‘\-~- e . N Al 4
VR LY A P AN,

CHAPTER 2

CONFIGURATION INFORMATION

CONFIGURATION TESTED

The candidate compilation system for this validation was
tested under the following configuration:

Compiler: VAX Ada V1.3

Test Suite: Ada Compiler Validation Capability, Version

1.8
Host Coaputer:

Machine(s):

Operating Systems:

Memory Size:
Target Computer:

Machine(s):

Operating System

Memory Size:

Communications Network:

2-1

A,

VAX-11/780, VAX 8800 and
VAXstation II

VAX/VMS V4.4
MicrovMs V4.4
and 8 MB

12, 32,

VAX-11/730, 750, 780,
VAX-11/785, 8200, 8300, 8500,
VAX 8600, 8650, 8700, 8800,
Microvax II, VAXstation II

782,

VAX/VMS V4.4
MicrovMs V4.4
VAXELN V2.2

4 - 32MB

§ﬂ1 ATARATETENINNYTIN XTEUWENTWT

CONFIGURATION INFORMATION

2.2 CERTIFICATE INFORMATION
Base Configuration:
vi.3

Compiler: VAX Ada

Test Suite: Ada Compiler
1.8

Completion Date:
HosL Computer:

Machine(s):

Operating System:

Machine(s):

Operating System:
Target Computer:

Machine(s):

Operating System:
Machine(s):
Operating System:
Machine(s):

Operating System:

D
{
\
.’
..
N
L)
n
.
r
.
)
F
»
e e e e e N N

ala .A...’A_... A_'k‘_‘ A‘A --_\.A_l A A‘{L, "L‘L ‘_{A.! A{J i f. "L(L

Validation Capability, Version

7 Nov 1986

VAX-11/730, 750, 780, 782, 785,
8200, 8300, 8500, 8600, 8650,
8700, and 8800

VAX/VMS, V4.4

MicroVAX 1I, VAXstation II

MicroVMs, V4.4

VAX-11/730, 750, 780,
785, 8200, 8300, 8500,
8650, 8700, 8800
VAX/VMS, V4.4

782,
8600,

MicroVAX II, VAXstation II
MicroVMs, V4.4

MicroVAX II

VAXELN Toolkit, V2.2, in

combination with VAXELN Ada,
vi.1

- - “»

...............

2.3 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behavior of a compiler in those areas of the Ada Standard that
permit implementation to differ. Class D and E tests
specifically check for such implementation differences.
However, tests in other classes also characterize an
implementation. This compiler is characterized by the
following interpretations of the Ada Standard:

. Nongraphic characters.

Nongraphic characters are defined in the ASCII
character set but are not permitted in Ada prog.ams,
even within character strings. The compiler
correctly recognizes these characters as illegal in
Ada compilations. The characters are not printed in
the output listing. (See test B26005A.)

. Capacities.

The compiler correctly processes compilations
containing loop statements nested to 65 levels,
block statements nested to 65 levels, procedures
nested to 17 levels. It correctly processes a
compilation containing 723 variables in the same
declarative part. (See tests D55A03A..H, D56001B,
D64005E. .G, D29002K)

CONFIGURATION INFORMATION
. Universal integer calculations.
An implementation is allowed to reject universal
integer calculations having values that exceed
SYSTEM.MAX INT. This implementation does not reject
such calculations and processes them correctly.
(See tests D4AOO2A, D4A002B, D4AOO4A, and D4AOO4B.)

. Universal real calculations.

When rounding to interger is used in a static
universal real expression, the value appears to be
rounded away from zero. (See test C4AO01l4A.)

~N
-

.......

Predefined tvves.

This implementation supports the additional
predefined types SHORT_INTEGER, LONG_FTOAT, and
SHORT_SHORT_INTEGER in the package .;1'ANDARD. (See
test B86001DT.)

Based literals.

An implementation is allowed to reject a based
literal with a value exceeding SYSTEM.MAX_INT durinog
compilation, or it may raise NUMERIC_ERROR during
execution. This implementation raises NUMFRIC_
ERROR during execution. (See test E24101A.)

Array types.

An implementation is allowed to raise NUMERIC_ERROR
for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT.

A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises NUMERIC_ERROR when the array
objects are declared. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more
than INTEGER'LAST components raises NUMERIC_ERROR
when the array type is declared. (See test
C52104Y.)

IR AP P IO O PG N

I A PP T P 4
DRV SR, 6N PO W0 o P A TSN TP L S s, A R ST SA ';\J‘.-":f&\:\

e s & a4 L &l

A null array with one dimension of length greater
than INTEGER'LAST may raise NUMERIC_ERROR either
when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match in array slice assignments. This
implementation raises NUMERIC_ERROR when the array
type is declared. (See test ES52103Y.)

In assigning one-dimensional array types, the entire
expression appears to be evaluated before CONSTRAINT_
ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. In assigning two-dimensiounal array types,
the entire expression does not appear to be

evaluated before CONSTRAINT _ERROR is raised when
checking whether the expression's subtype is
compatible with the target's subtype. (See test
C52013A.)

Discriminated types.

During compilation, an implementation is allowed to
either accept or reject an incomplete type with
discriminants that is used in an access type
definition with a compatible discriminate
constraint. This implementation accepts such
subtype indications during compilation. (See test
E38104A.)

In assigning record types with discriminants, the
entire expression appears to be evaluated before
CONSTRAINT_ERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013a.)

Aggregates.

In the evaluation of a multi-dimensional aggregate,
all choices appear to be evaluated before checking
against the index subtype. (See tests C43207A and
C43207B.)

“w “w - Cw ~ - - - . R T Y -
RPN AN A NS AN AT AT AT R N AT AR AT Pt A AT -d
Xala) ianana¥ o h % z .] ')_‘L‘n \An---

Em el catinn Rl LS LSRR Sl R e R S A A Al e ahe e A8 Al gl al. Ala Al Sloadie Al 4t gl ol "Bl ‘al af Nl ' of (ot daf B Tof g S g Sog . g Fogui -"—---1

In the evalnstion of an aggregate containing
subaggregates, all choi.es are evaluated before
being checked for identical bounds. (See test
E43212B.)

All choices are evaluated before CONSTRAINT_ERROR is
raised if a bound in a nonnull range of a nonnull
aggregate does not belong to an index subtype. (See
test E43211B.)

CONFIGURATION INFORMATION
. Functions.

'The declaration of a parameterless function with the
saue. profile as an enumeration literal in the same
immediate scope is rejected by the implementation.
(See test E66001D.)

Representation clauses.

The Ada Standard does not require an inplementation
to support representation clauses. If a
representation clause is not supported, then the
implementation must reject it. While the operation
of representation clauses in not checked by Version
1.8 of the ACVC, they are used in testing other
language features. Testing indicates that size
specifications are supported, that specification of
storage for a task activation is suwported, and that
specification of SMALL for a fixed point type is
supported. Enumeration representation clauses
including those that specify noncontiguous values
appear to be supported. (See tests C55BléA,
C87B62A, C87B62B, C87B62C, and BCl002A.)

. Generics.

When given a separately compiled generic unit
specification, some illegal instantiations, and a
body, the compiler rejects the body because of the
instantiations. (See tests BC3204C and BC3204D.)

. Pragmas.

The pragma INLINE is supported for procedures. The
pragma INLINE is supported for functions. (See
tests CA3004E and CA3004F.)

BORC AR o 00 2 i A b N LA ha i L
N
]
)

AN Rl A R R e et ot Al Aal et Aak Aet Rad ho Bad Aot Fov R Jlab oS So0 B8 ol ok SR (ot St a8 St fiat SRt fa' Bet Fa‘ A Us- 82 5o Aa Aa g W 13 oNg .53 o758 o £ T8 o¥8 o¥f Aol Rl b

) . Input/output.

The package SEQUENTIAL_IO can be instantiated with
unconstrained array types and record types with

A discriminants. The package DIRECT_IO cannot be

W instantiated with unconstrained array types and

o record types with discriminants without defaults.
" (See tests CE2201D, CE2201E, and CE2401D.)

More than one internal file can be associated with
each external file for sequential I/O for reading
) only. (See tests CE2107A..F.)

More than one internal file can be associated with
each exiernal file for direct 1/0 for reading only.
(See tests CE2107A..F.)

e A A,

An external file associated with more than one
internal file can be deleted. (See test CE2110B.)

More than one internal file can be associated with
each external file for text I/O for reading only.

b, (See tests CE3111A..E.)
o,
; Dynamic creation and resetting of a sequential file
59 is allowed. (See test CE2210A.)
Temporary sequential files are given a name.
; Temporary direct files are given a name. Temporary
3 files given names are not deleted when they are
7 closed, but are not accessible after the completion
» of the main program. (See test CE2108A.)
Cad
L4
L
»
4
[}
é
~l

s JPRE SR -'.-:_. 4. CR r, . T f.\l
o Wy 5 % " v \A:AE.LMLfLAJ}t.r:J}J}J}l .e_ .A'.‘A

CHAPTER 3
TEST INFORMATION

3.1 TEST RESULTS

The Federal Software Management Support Center identified 2362
of the 2399 tests in Version 1.8 of the Ada Compiler
Validation Capability as potentially applicable to the
validation of VAX Ada V1.3. Excluded were 18 tests with
source lines that were too long; and the 19 withdrawn tests.
After they were processed 23 tests were determined to be
inapplicable. The remaining 2339 tests were passed by the
compiler.

ihe Federal Software Management Support Center concludes that
the testing results demonstrate acceptable conformance to the
Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B (o] D E L
Passed 69 865 1329 17 13 46 2339
Failed 0 0 0 0 0 0 0
N/A 0 2 39 0 0 0 41
Withdrawn 0 7 12 0 0 0 19
TOTAL 69 874 1380 17 13 46 2399
3-1

............ R R R R RN AT

SN

\t J' T4
"L’L‘.-"A—(JJL el A!JJ‘_‘L{L(L’ "n. e L&A_R.Ll { W, P, JA.(-.(A.!MA_(L{‘_ JA -JJJJJ.t..l.f.r:":f_\LJ}

|

sl AR LTS TR LR LM, T T NTREY mwm“"mNmm
. healiead s Y

TEST INFORMATION
3.3 SUMMARY OF TEST RESULTS BY CHAPTER
RESULT

2 3 4 5 6 7 8 9 10 11 12 14 Total

Passed 98 322 420 244 161 97 138 261 130 32 218 218 2339

Failee 0 O O ©O0 ©0 O O O 0 0 © 0 0 |

]
N/A 13 3 0 3 ©0 0 1 1) 0 0 15 41 |
W/D o 5 5 o0 0 1 1 2 4 0 1 0 19

LvOYAT, 116 330 425 247 161 98 140 264 134 32 219 233 2399
3.4 WITHDRAWN TESTS

The following tests have been withdrawn from the ACVC Version

1.8:
C32114A B37401A B49006A C92005A
B33203C C41404A B4AOlo0C C940ACA
C34018A B45116A B74101B CA3005A..D
C35904A C48008A C87B50A BC3204C

See Appendix D for the rationale for withdrawing these tests.
3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use
of features that a compiler is not rcyuired by the Ada Standard
to support. Others may depend on the result of another test
that is either inapplicable or withdrawn. For this validation
attempt, 41 tests were inapplicable for the reasons indicated:

. C96005B ~ there are no out-of-range values for
type DURATION

. CE2107B, CE2107C, CE2107D, CE2107E, CE2111D
CE3111B, CE3111C, CE3111D, CE3111E, CE3114B
CE2110B

- with default open/create options (no FORM
string), VAX Ada allows more than one internal
file to be associated with the same external file
for mode IN_FILE only (multiple readers) , but
does not allow more than one association for OUT

* _FILE or INOUT_FILE in combination with mode 1IN
_FILE or another mode OUT_FILE (mixed readers and
writers or multiple writers).

3-2

) \

I
:_\.\‘_‘.' SRS .‘.. oAt . RS ."‘._",:' Y :
RO l.'..:.&(x_“ﬁ‘k-u\;.(‘\ LV TN

i -~ -
- e

> e e

files, but an implementation restriction
does not allow the mode of a file to be
g changed from IN_FILE to either INOUT

' _FILE or OUT_FILE (an amplification of
accessing privileges while the external
file is being accessed). Thus CE3115A
does not apply.

j
. CE3115A - VAX Ada allows resetting of shared i
|
|

. . CE2102D, CE2102I, CE2111H - the creation of a file
” of mode IN_FILE is not allowed

) . CE24113H..C24113Y ~ source lines exceed the
q limit of 120 characters

. B52004D, B55B0SC, C34001E, CS55BO7A -
: LONG_INTEGER is not supported

) . C34001F, C35702A -
> SHORT_FLOAT is not supported

. C86001F ~ TEXT_IO uses the predefined package
SYSTEM, which is made obsolete by the
user defined package SYSTEM

.

.

(MY . “ . L g8 el et ' at. [Atk f A Lep .8 # Toa Ao’ -] . ” g ot

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a
Class B test because of compiler error recovery, then the test
iz split into a set of smaller tests that contain the
undetected errors. There were no split tests required for this
implementation.

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, sets of test results for ACVC Version 1.8
produced by VAX Ada V1.3 were submitted to the Federal
Software Manugement Support Cenier by the applicant for
pre-validation review. Analysis ~i iLhese results demonstrated
that the compiler successfully passed all applicable tests.

The specific configurations submitted for the pre-validation
review were as follows:

Host Target
Processor Op. Sys. Processor Op. Sys.
VAX-11/780 VAX/VMS VAX-11/730 VAX/VMS
VAX~-11/780 VAX/VMS VAX~11/780 VAX/VMS
VAX-11/780 VAX/VMS VAX-11/782 VAX/VMS
VAX-11/780 VAX/VMS VAX 8300 VAX/VMS
VAX-11/780 VAX/VMS VAX 8500 VAX/VMS
VAX-11/780 VAX/VMS VAX 8600 VAX/VMS
VAX~-11/780 VAX/VMS VAX 8650 VAX/VMS
VAXstation II MicroVMs VAX~-11/780 VAX/VMS
VAXstation II MicroVMs MicroVAX II VAXELN

The VAX-11/782 results were compared against the VAX-11/730,
780, 8300, 8500, 860N and the 8650 and found to be equivalent.

The results from the Vax-11/780 were compared against the
Microvax II, 730, 782, 8300, 8500, 8600, 8650 and 780 and found
to be egquivalent.

The results produced by VAX Ada were the same for all tested
members of the VAX family--for those using VMS, MicrovMs, or
VAXELN.

3.7.2 Test Method

A test magnetic tape containing ACVC Version 1.8 was taken
on-site by the validation team. This magnetic tape contained
all tests applicable to this validation as well as all tests
inapplicable to this validation except for any Class C tests
that require floating-point precision exceeding the maximum
value supported by the implementation. Tests that were
withdrawn from ACVC Version 1.8 were not run. Tests that make
use of values that are specific to an implementation were
customized before being written to the magnetic tape.

The test tape was written in VAX BACKUP format and was loaded
to disk using Digital Equipment Corp. standard utility
routines.

Once all tests had been loaded to disk, processing was begun
using command scripts provided by Digital Equipment Corp.

The validation was executed in batch control mode with the
files organized by chapter and class to allow the tests to be
run independently and in parallel.

A new compilation library was created and initialized with all
units contained in the library given the logical name
ADASPREDEFINED. The startup control file established the newly
created library as the current compilation library and then
compiled REPORT and CHECK_FILE into that library.

The prevalidation results were verified on-site. The various
tests results from the prevalidation execution were captured on
disk and used to compare against the on-site results using
"DIF", a difference utility.

The OPTIMIZE option was used to produce the compiled code.

The following configurations were tested on-site:

Host Op. Sys. Target Op. Sys.
VAX 8800 VAX/VMS VAX-11/750 VAX/VMS

VAX-11/785

VAX 8200

VAX 8700

VAX 8800

MicrovVax II MicrovMs

MicrovVax II VAXELN
VAXstation II MicrovMs VAXstation II MicroVMs

4 - - . g
o A tet alo il Nl nty et el tel 1o tay TRy v Ty R A 4
- A - . W % Al - Mol fad tulC A g -a A e | vv‘im

3.7.3 Test Site

The validation team arrived at Nashua, NH on 3 Nov 1986 and
departed after testing was completed on 7 Nov 1986.

SPAS LR

o

L AL

[N o RS N RN a

wVelaT @y e s

4
o
-
-
-
-

. . e ae . - - .-

e, OGS . e, R AR A R I I . Tttt RS »
. N “ 2 - AR . . . i .

B aler o A_‘}.A_.A 4'4'.4 ."'.4 ana 4'.41'.4'.;4.! AN ISIRY WPV _-'.A:‘.-:‘_A .A‘!‘_. _A\..A _-‘.4\‘1-1 L;.L.:.- ‘:.\-n.'; » ':'.\: :'

A Cw

. & Aalh 0.0 4 Y TAt o ake gl (]

[

‘

3

R

p

;

L)

)

!

. APPENDIX A

. COMPLIANCE STATEMENT
r Digital Equ:meent Corporation has submitted the following compliance
statement concerning VAX Ada and VAXELN Ada.
k)

q

k]

.

)

2

v

5

1

4

4
)

»

3 A-1
[

Y

“'.p .-qr L N R R T N T LN T O T T T T T Y U I

- » - . .« e a” . - . te . »® o
(X} A K Xl s a Xl . v A b

.¢'~n 04 %

e n-r;..-.v-.—xw'wm'mwwvvmmmmm

COMPLIANCE STATEMENT

Compliance Statement

Base Configuration:

Compiler: VAX Ada Version 1.3
Test Suite: Ada Compiler Validation Capability, Version V1.8

Host Computers:

Machines:
VAX~11/730, VAX-11,/750, VAX-11/780, VAX-11/782,
VAX-11/785, vAaX 8200, VAX 8300, VAX 8500,
VAX BACN, VAX B650, VAX 8700, and VAX B8800.
Operating System:
VAX/VMS, Version 4.4

Machines:
MicrovVAax 11, . and
VAXstation 11I.
Operating System:
MicroVMS, Version 4.4

Target Computers (same as host plus VAXELN):

Machines:
VAX-11/730, VAX-11,/750, VAX-11/780, VAX-11/782,
VAX-11,/785, vAX 8200, VAX 8300, VAX 8500,
vax 8600, vaAX 8650, VAX 8700, and VAX 8800.
Operating System:
VAX/VMS, Version 4.4

Machines:
" Microvax I1I1, and
VAXstation II.
Operating System:
MicrovMS, Version 4.4

Machines:
Microvax 11
Operating System:
| VAXELN Toolkit, Version 2.2, in combination with
- VAXELN Ada, Version 1.1.

s
~
.
.’

L]
J

13
»
]

.
]

L
.

’
,

]
)
v
]
'

]
AT a? e T o
B N T o TV, S S 0L T B R LT TS R
T A T R A A N A A AT R LT
o BB LA YRR Y S A T P N A A T i S ST

. a4 d » » [0.0 a [Py ' 4 ol N g6 s noAiRat 8 4 g’ 3 » $ o ¥ g bad” L e

- . ey -
NN A

.
-

= -

]

Nahh S

B3PS

L]
4
A

‘N "y, §
By e N 2t WA, WO LN N W 9

COMPLIANCE STATEMENT

Digital Equipment Corporation has made no deliberate extensions to
the Ada language standard.

Digital Equipment Corporation agrees to public disclosure of this
report.

Digital Equipment Corporation agrees to continue to comply with the
Ada trademark policy, as defined by the Ada Joint Program Office.

¢ otier 2 NeL il

Charles Z. Mitchell
VAX Ada Project Leader

6 October 1986

AT RIN A) A N S T S T S N R e T A O T N T S ST T S A A P T
L 2 4 X A ¢ s \

APPENDIX B

k) APPENDIX F OF THE ADA STANDARD

| The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to
certain allowed restrictions on representation classes. The
implementation-dependent characteristics are described in the
following sections which discuss topics one through eight as stated
in Appendix F of the Ada Language Reference manual
(ANSI/MIL-STD-1815A). Two other sections, package STANDARD and file
naming conventions, are also included in this appendix.

Portions of this section refer to the following attachments:
7 1. Attachment 1 - Implementation-Dependent Pragmas

2. Attachment 2 - VAX Ada Appendix F

. (1) Implementation-Dependent Pragmas

J See Attachment 1.

(2) Implementation-Dependent Attributes

Name TXEE

P'AST_ENTRY The value of this attribute is of type
SYSTEM.AST_HANDLER.

P’BIT The value of this attribute is of type
universal_integer.

P'MACHINE_SIZE The value of this attribute is of type
universal_integer.

| B-1

r'u."-_’(rf LR L P N A A N A I I A I O S A A AR WP AP RS AT Py T Rt At R YR PR Ay v A
A Sy I GO A A AN P o (O N RS L A N R AN S A N AR NN N M NIRRT,

& APPENDIX F OF THE ADA STANDARD
:
p P’NULL_PARAMETER The value of this attribute is of type
b P. .
: P'TYPE _CLASS The value of this attribute is of type
SYSTEM.TYPE_CLASS.
(3) Package SYSTEM
” See Attachment 2, Section F.3.
5
M (4) Representation Clause Resirictions
!
T>2 Attachment 2, Section F.4.
Y (5) Conventions
4
: See Attachment 2, Section F.5.
o (6) Address Clauses
) See Attachment 2, Section F.6.
I
' {7) Unchecked Conversions
; VAX Ada supports the generic function UNCHECKED_ CONVERSION
X with the following restrictions on the class of types
. involved:
1. The actual subtype corresponding to the formal type
2 TARGET must not be an unconstrained array type.
a 2. The actual subtype corcsponding to the formal type
o TARGET must not be an unconstrained type with
: discriminants.
)
y (8) Input-Output Packages
) SEQUENTIAL_IO Package
SEQUENTIAL IO can be instantiated with any file
A type, including an wunconstrained array type or an
; unconstrained record type. However, input-output
. for access types is erroneous.
¢

B-2

WCION AC AT SCATNT SO S RCAENE AT AENE AT SE AT AT AT SN T AT A AE SR ST SO, W AGHT AUAC SO A PO IR rd
K10 » Y. * Y T % 1Y, -\ LGN . MY L.'h..';‘:\‘ﬁi'pi'?:'f_.\. YRS '&J;\:n:‘.a ‘..h’:}..)i\:-_‘.. :}.b.l.\:}h:}i\.n_

A A A A A S A L N A R N G R T N R T i T T T TN O D R O X T ™ W ITW
: T TR R R O I W R WOy

APPENDIX F OF THE ADA STANDARD |

VAX Ada provides full support for SEQUENTIAL 10,
with the following restrictions and clarifications:

1. VAX Ada supports modes IN FILE and OUT_FILE for
sequential input-output.” However, VAX Ada does
not allow the creation of a file of mode
IN_FILE.

2. More than one internal file can be associated
with the same external file, However, with
default FORM strings, this is only allowed when
all internal files have mode IN_FILE (multiple
readers). If one or more internal files have
mode OUT FILE (mixed readers and writers or
multiple writers), then sharing can only be

- achieved using FORM strings.

3. VAX Ada supports deletion of an external file
which 1is associated with more than one internal
file, In this case, the external file becomes
immediately unavailable for any new
associations, but the current associations are
not affected; the external file is actually
deleted after the last association has Dbeen
broken.

4. VAX Ada allows resetting of shared files, but an
implementation restriction does not allow the
mode of a file to be changed from IN_FILE to

OUT_FILE (an amplification of accessing
privileges while the external file 1is being
accessed}.

DIRECT_IO Package
type CNT is range 0 .. 2147483647;
TEXT_10 Package

type CNT is range 0 .. 2147483647;
subtype FIELD is INTEGER range 0 .. 2147483647;

LOW_LEVEL_ IO

Low-level input-output is not provided.

APPENDIX F OF THE ADA STANDARD

t9) Package STANDARD

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type SHORT SHORT_INTEGER is range -128 .. 127;
-- type LONG INTEGER is not supported

type FLOAT is digits 6;

type LONG FLOAT is dlgltS 15;

type LONG LONG FLOAT is digits 33;

-- type SHORT FLOAT is not supported

type DURATION is delta 1.0E-4
range -131072.0 .. 131071.9%99;
(10) File Names

File names follow the conventions and restrictions of the
target operating system.

’
’

/..-P%.P,.J', (X

.'-.I-l

Attachment 1

Implementation-Dependent

Pragmas

) sTe b & & 8

v e

R
’L{L’ ' L'-J J re A

This attachment defines the pragmas LIST. ' \GE, and OPTIMIZE, and
summarizes the definitions given elsewhere ot the remaining language-
defined pragmas. VAX Ada implementation-dependent information

(including the VAX Ada implementation-dependent pragmas) is marked
with change bars.

The V.AX .Ada pragma TITLE is also defined in this annex.

Pragma

AST_ENTRY

v d t
N AT

IJ'J"

c'»...

» \Eﬁt\ ‘-!}! ? \ \

Meaning

Takes the simple name of a single
entry as the single argument; at
most one AST_ENTRY pragma

is allowed for any given entry.
This pragma mwust be used in
combination with the AST_ENTRY
attribute, and is only allowed after
the entry declaration and in the
same task h pe specification or
single task as the entry to which

it apr'ics. This pragma specifies
that the given entry may be used to
handle a VAX/VMS asynchronous
system trap (AST) resulting from a

Implementation-Dependent Pragmas 1-1

d"\ N . T I,.-'_." " . -' "

atsa Ak

1-2

2 CONTROLLED
3 ELABORATE
EXPORT_EXCEPTION

Implementation-Dependent Pragmas

VAX/AMS system service call, The
pragma does not affect nounal use
of the entry (see 9.12a),

Takes the simple name of an access
type as the single argument This
pragma is only lvved immeds
ately within the declavative part or
package specificaii o that contauss
the declaration of the access tvpe:
the declaration must occur betore
the pragma. This pragma i~ not
allowed for a derived type. This
pragma specities that automatic
stoage reclamation must not be
pertormed tor objects designated
by values of the access tvpe eacept
upon leaving the innermost block
statement, subprogram body, or
task body that encloses the access
type declaration, or atter leaving
the main program (sce 4.8).

Takes one or more simple names
denuting library units as arguments.
This pragma is only allowed imme-
diately after the context clause of

a compilation unit (before the sub-
sequent library unit o1 ~(condary
unit). Each argument must be the
simple name of a library unit men-
tioned by the context clause. This
pragma specifics that the corre-
sponding library unit body must be
elaborated before the given compi-
lation unit. If the given compilation
unit is a subunit, the library unit
Lody must be elaborated betore the
body of the ancestor library unit of
the subunit (see 10.3).

Takes an internal name denoting an
exception, and optionally takes an
external designator (the name of a

ST A,

EXPORT_FUNCTION

VAX/VMS Linker global symbol), a
form (ADA or VMS), and a code (a
static integer expression that is in-
terpreted as a VAX condition code)
as arguments. A code value must
be specitied when the torm s VMS
(the default if the form is not spec-
ified). This pragma is only allowed
at the place of a declarative item,
and must apply to an exception
declared by an earlier declarative
itens of the same declarative part
or package specilication; it is not
alloned for an exception declared
with a renaming declaration. The
pragma permits an Ada excep-
tion to Le handled by programs
written in other VAX languages
(see 13.9a.3.2).

Takes an internal namc denoting a
function, and optionally takes an
external designator (the name of a
VANX/VMS Linker global symbol),
parameter types, and result type
as arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a function
declared by an earlier declarative
item of the same declarative part
or package specification. In the
case of a function declared as a
compilation unit, the pragma is
only allowed after the function dec-
laration and before any <ubsequent
compilation unit. This pragma is
not allowed for a function declared
with a renaming declaration. and
is not allowed tor a generic func-
tion (it may be given for a genernic
instantiation). This pragma permits
an Ada function to be called from

Implementation-Dependent Pragmas 1-3

EXPORT_OBJECT

EXPORT_PROCEDURE

1-4 Implementation-Dependent Pragmas

P AR AR P e
:"L.": ,_A_fh:'rt-!.i - W W W,

a program written in another VAX
language (sec 13.9a.1.4).

Takes an internal name denoting
an object, and optionally takes an
external designator (the name of a
VAX NS Linker global symbol)
and size designator (a VAXiIVMS
Linker global symbol whose value
is the size in bytes of the exported
abject) as arguments. This pragma
is only allowed at the place of a
declarative item at the cutermost
level of a library package spo.i
fication or bodv and must apply
to a variable declared by an car-
lier declarative item of the same
package specification or body;
the variable must be of a type or
subtype that has a constant size
at comptie time. This pragma is
not allowed for objects declared
with a renaming declaration, and
is not allowed in a generic unit.
This pragma purmits an Ada ob-
ject to be referred to by a routine
written in another VAX language
{see 13.9a.2.2).

Takes an internal name denoting

a procedure, and aptionally takes
an external designator (the name of
a VAX/VMS Linker global symbol)
and parameter types as arguments.
This pragma is only allowed at the
place of a declarative item, and
must apply to a procedure declared
by an earlier declarative item of the
same declarative part o1 package
specification. 'n the case of a pro-
cedure declared as a compilation
unit, the nragma is only allowed
after the procedure declaration and
before any subsequent compilation
unit. This pragma is not allowed
for a procedure declared with a

mmmmmwww D Sk S Sad bl Uad Solh Gui taf A i e R e A e d

renaming declaration, and is not
atlowed for a generic procedure (it
may be given for a generic instanti-
ation). This pragma permits an Ada
routine to be called from a program
written m another VAX language
{see 13.9a.14)

EXPORT_VALUED_PROCEDURE Takes an internal name denoting
a procedure, and opticnally takes
an external designator (the name of
a VAX/VMS Linker global symbaol)
and parameter types as arguments.
This pragma is only allowed at the
place of a declarative item, and
must apply to a procedure declared
by an carlier declarative item ot the
same declarative part or package
specification. In the case of a pro-
cedure declared as a compilation
unit, the pragma is only allowed
after the procedure declaration and
before any subsequent compilation
unit. The first (or only) parameter
of the procedure must be of mode
out. This pragma is not allowed
for a procedure declared with a
renaming declaration and is nat
allowed for a generic procedure (it
may be given for a generic instan-
tiation). This pragma permits an
Ada procedure to behave as a func-
tion that both returns a value and
causes side effects on its parame-
ters when it is called from a routine
written in another VAX language
(see 13.9a.1.4).

IMPORT_EXCEPTION Takes an internal name denoting
an exception, and optionally takes
an external designator (the name
of a VAX/VMS Linker global sym-
bol), a form (ADA or VMS), and

Implementation-Dependent Pragmas 1-5

X a code (a static integer expres-
sivn that is interpreted as a VAX
condition code) as arguments. A
code value 1s allowed only when
the form is VNIS (the default if the
form is not speatied). This pragma
. is only allowed at the place of a
declarative item, and must apply
to an exception declared by an
‘ earlier declarative item of the same
) declarative part or package spec-
ification; it 1s not allowed for an
exception declared with a renaming
, declaration. T'his pragma poomits a
- non-Ada exception (m.{ notably,
a VAX condition) to be handied by
an Ada program (see 13.9a 3.1).

. IMPORT_FUNCTION Takes an internal name denoting a
. function, and optionally takes an
external designatar (the name of a
VAXIVMS Linker glabal symbol),
parameter types, result type, and

s mechanism as arguments. ragma
> INTERFACE must be used with this
pragma (see 13.9). This pragma

is only allowed at the place of a
declarative item, and must apply
to a function declared by an earlier
declarative item of the same declar-
ative part or package specification.
In the case of a function declared

! as a compilation unit, the pragma is
only allowed after the function dec-
laration and before any subsequent
compilation unit. This pragma is al-
lowed for a function declared with
a renaming declaration; it is not

. allowed for a generic lunction or a
generic function instantiation. This
pragma permits a non-Ada rou-
tine to be used as an Ada function
(see 13.9a.1.1).

y IMPORT_OBJECT Takes an internal name denoting
an object, and opticnally takes an

- e~

3 1-6 Implementation-Dependent Pragmas

Ca®o Ta O LR LA LT RN T W -_.-'..4 T AN N
S £ N O T T N TRt

IMPORT_PROCEDURE

external designator (the name of a
VAX/VMS Linker global symbol)
and size (a VAX/VMS Linker global
symbol whoese valuce s the size in
bytes of the imported object) as
arguments. This pragma s only
allone” - the place of a declara-
tive item at the vutermost level ot
a library package specitication or
body, and must apply to a variable
declared by an ealier declarative
item of the same package spuciti-
cation or bodv' the vaiable must
be of a type or subtype that ha<
constant size at compile tinwe. This
pragma is not allowed for objects
declared with a renaming aeclaia-
tion, and is not allowed in a generic
unit. This pragma permits storage
declared in a non-Ada routine to
be referred to by an Ada program
(see 13.9a.2.1).

Takes an internal name denoting

a procedure, and optionally takes
an external designator (the name of
a VAX/VMS Linker global symbol)
parameter tvpes, and mechanism
as arguments. Pragma INTERFACE
must be used with this pragma
{see 13.9). This pragma is only
allowed at the place of a declar-
ative item, and must apply to a
procedure declared by an earlier
declarative item of the same declar-
alive pari or package specitication
In the case of a procedure declared
as a cempilation unit, the pragma
is onlyv allowed after the proce-
dure declaration and before any
subsequent compilation unit. This
pragma is allowed for a procedure
declared with a renaming declara-
tion; it is not allowed for a generic
procedure or a generic procedure

Implementation-Dependent Pragmas 1-7

1-8

IMPORT_VALUED_PROCEDURE

4 INLINE

implementation-Dependent Pragmas

instantiation. This pragma permits
a non-Ada routine to be used as an
Ada proccdure (see 13.9a.1.1).

Takes an internal name denoting a
procedure, and optionally takes an
external designator (the name of a
VAX/VMS Linker global symbol),
parameter types, and mechanism
as arguments. Pragma INTERFACE
must be used with this pragma (see
13.9). This pragma is only allowed
at the place of a declarative item,
and must apply to a procedure
declared by an earlier declarative
item of the same declarative part
or package specification. In the
case of a procedure declared as

a compilation unit, the pragma is
only allowed after the procedure
declaration and befure any subse-
quent compilation unit. The first
(or only) parameter ot the proce-
dure must be of mode out. This
pragma is allowed for a procedure
declared wilth a renaming declara-
tion; it is not allowed for a generic
procedure. This pragma permits

a non-Ada routine that returns a
value and causes side effects on its
parameters to be used as an Ada
procedure (see 13.9a.1.1).

Takes one or more names as ar-
guments; each name is either the
name of a subprogram or the name
of a generic subprogram. This
pragma is only allowed at the place
of a declarative item in a declarative
part ar package specification, or af-
ter a library unit in a compilation,
but before any subsequent compi-
lation unit. This pragma specifies
that the subprogram bodies should
be expanded inline at each call

S TS TR

whenever possible; in the case ut
a generic subpiogram. the pragma
applies to calls of its instantiations
(see 6.3.2).

INTERFACE Takes a langace name and a sub-
program namwe as arguments. This
pragma is alloved at the place of a
declarative item, and must apply in
this case to a subprogram declared
by an earlier declarative item of the
same declarative part or package
specification. This pragma is also
allowed for a libiary unit; in this
case the pragma must appear after
the subprogram declaratiun, and
before any subsequent compila-
tion unit. This pragma specifies
the other language (and thereby
the calling conventions) and in-
torms the compiler that an object
module will be supplied for the
corresponding subprogram (see
13.9).

In VAX Ada, pragma INTERFACE
is required in combination with
pragmas IMPORT_FUNCTION,
IMPORT_PROCEDURE, and
IMPORT_VALUED_TROCEDURE
(see 13.9a.1).

LIST Takes one of the identifiers ON
) or OFF as the single argument.

This pragma is allowed anywhere
a pragma is allowed. It specifies
that listing of the compilation is to
be continued or suspended until
a LIST pragma with the opposite
argument is given within the same
compilaticn. The pragma itself
is always listed it the compiler is
producing a listing.

implementation-Dependent Pragmas 1-9

R o N A B R T I IS S SN A AT S S ST N ST RSN

LONG_FLOAT Takes either D_FLOAT or G_
FLOAT as the single argument.
The default is G_FLOAT. This
pragma is only allowed at the start
of a compilation, before the first
compilation unit (if any) of the
compilation. It specifies the choice
of representation to be used for the
predefined type LONG_FLOAT
in pachage STANDARD and for
floating point 1y e declarations with
digits specified in the range 7..15
{see 3.5.7a).

MAIN_STORAGE Takes one or two nonnegative
’ static simple expressions of some

integer type as arguments. This
pragma is only aliowed in the
outermost declarative part of a
library subprogram: at most one
such pragma is allowed in a library
subprogram. It has an effect only
when the subprogram to which it
applies is used as a main program.
This pragma causes a fixed-size
stack 1o be created for a main task
{the task associated with a main
program), and determines the
number of storage units (bytes) to
be allocated for the stack working
storage area and/or guard pages.
The value specified for either or
bath the working storage area and
guard pages is rounded up to an
integral number of pages. A value
of zero for the working storage
area rc -ults in the use of a default
size; a value of zero for the guard
pages :csults in no guard storage.
A negative value for eith.r working
storage or guard pages causes the
pragma to be ignared (see 13.2b).

1-10 Implementation-Dependent Pragmas

o -l' Sy &G
f\':\".'hi ':" 4\{ f J" ’ i\ \A".L.. \L \ "

7 MEMORY_SIZE Takes a numeric literal as the
single argumunt. This pragma
is only allowed at the start of
a compilation, before the first
compilation unit Gf anvy of the
compilation. The effect ot this
pragma is to use the value of the
specified numeric literal for the
definition of the named number
MEMORY_SIZE (see 13.7).

d OPTIMIZE Takes one of the identifiers TIME
or SPACE as the single argument.
Hhie pragma is only allowed within
a dediarative part and it applies
to the bleck or body enclosing
the declaiative part. It specities
whether time or space is the pri-
mary vptimization criterion.

In VAX Ada, this pragma is only
allowed immediately within a
declarative part of a body declara-
tion.

9 PACK Takes the simple name of a record
or array type as the single argu-
ment. The allowed positions for
this pragma, and the restrictions on
the named type, are governed by
the same rules as for a represcnta-
tion clause. The pragma specifies
that storage minimization should be
the main criterion when =electing
the representation of the given type
(see 13.1).

10 PAGE This pragma has no argument,
and is allowed anywhcere a pragma
is allowed. It specifies that the
program text which follows the
pragma should start on a new

Implementation-Dependent Pragmas 1-11

v W

- ‘-d.ﬁ*“-"\"- WA AT .Y ‘-‘,\ '-}\-.\' o \:._‘._.\;\\4.\;\“'-.'J\“-\:-\.-' ‘..\.-‘;-\.-“..\'.‘- b

1 PRIORITY

PSECT_OBJECT

12 SHARED

Impiementation-Dependent Pragmas

¥ ™ L LIV I L - e h_'-\\\“"\\-
TR A ST I N A SO AL AR AR TN CR UL CEANVN OO0,

page (if the compiler is currently
producing a listing).

Takes a static expression of the pre-
defined integer subtype PRIORITY
as the single argument. This
pragma is only allowed within

the specification of a task unit or
immediately within the outermost
declarative part of a main program.
It specifies the priority of the task
(or tasks of the task type) or the
priority of the main program (see
9.8).

Takes an internal name denoting
an object, and optionally takes an
external designator (the name of

a program section) and a size (a
VAX/VMS Linker global symbol
whose value is interpreted as

the size in bytes of the exported
fimported object) as arguments.
This pragma is only allowed at the
place of a declarative item at the
outermost level of a library package
specification or body, and must
apply to a variable declared by an
earlier declarative item of the same
package specification or body:

the variable must be of a type or
subtype that has a constant size

at compile time. This pragma is
not allowed for an object declared
with a renaming declaration, and is
not allowed in a generic unit. This
pragma enables the shared use of
objects that are stored in vverlaid
program sections (see 13.9a.2.3).

Takes the simple name of a vari-
able as the single argument. This

Sa at.Tatn pla AL AL, gly g%, a4, Lrp gin S Lp iy AU A A d A A

- .
-~T e & = - -

e eve 4 B

]
»

N,

13

14

STORAGE_UNIT

SUPPRESS

pragma is allowed only for a vari-
able declared by an object decla-
ration and whose type is a scalar
or access type; the variable decla-
ration and the pragma must both
occur (in this order) immediately
within the same declarative part or
package specification. This pragma
specifies that every read or update
of the variable is a synchroniza-
tion point for that variable. An
implementation must restrict the
ohjects for which this pragma is
allowed to objects for which each of
firect reading and direct updating
is implemented as an indivisible
operation (see Y.11).

VAX Ada does not support pragma
SHARED (see VOLATILE).

Takes a numeric literal as the
single argument. This pragma

is only allowed at the start of

a compilation, before the first
compilation unit {if any) of the
compilation. The effect of this
pragma is to use the value of the
specified numeric literal for the
definition of the named number
STORAGE_UNIT (see 13.7).

In VAX Ada, the only argument
allowed for this pragma is eight (8).

Takes as arguments the identifier
of a check and optionally also

the name of either an object, a
type or subtype, a subprogram, a
task unit, or a generic unit. This
pragma is only allowed either im-
mediately within a declarative part
or immediately within a package

Implementation-Dependent Pragmas 1-13

o, fv’$w’.' ..I..-'.-(,-q‘~f$f.'r_.f (..f‘~r_.-' ‘r.‘v \--_.r \-.“' ..r A e ,'c - _.-‘._.. _'.' _'.'_ RO .‘f“.
2N PN Ladal D 4 Salka L Al .

specification. In the latter case, the
only allowed foiin is with a name
that denotes an entity (or several
overloaded subprograms) declared
immediately within the package
specification. The permission to
omit the given check extends from
the place of the pragma to the end
of the declarative region associated
with the innermost enclosing block
statement or program unit. For a
pragma given in a package specifi-
cation, the permission extends to
the end of the scope of the named
- entity.

If the pragma indludes a name. the
permission to omit the given check
is further restricted: it is given only
for operations on the named object
or on all objects of the base type
of a named type or subtype; for
calls of a named subprogram; for
activations of tasks of the named
task type; or for instantiations of
the given generic unit (see 11.7).

VAX Ada does not support pragma
SUPPRFESS (see SUPPRESS_ALL).

SUPPRESS_ALL This pragma has no argument
and is only allowed following a
compilation unit. This pragma
specifies that all run-time checks in
the unit are suppressed (see 11.7).

15 SYSTEM_NAME Takes an enumeration literal as
the single argument. This pragma
is only allowed at the start of
a compilation, before the first
compilation unit (if any) of the
compilation. The effect of this

pragma is to use the enumeration

1-14 Implementation-Dependent Pragmas

RS LB O AR A
\-‘b > \(“l.'l‘;\f":\.' ".P..»}ﬁn?.a.) N e .L\J‘.l.‘.n'.‘.&...‘.’.l&.a).n;

TASK_STORAGE

TIME_SLICE

literal with the specified identifier
for the definition of the constant
SYSTEM_NAME. This pragma

is only allowed if the specified
identifier corresponds to one of the
literals ot the type NAME declared
in the package SYSTEM (see 13.7).

Takes the simple name of a task
and a static expression of some
integer tvpe as arguments. This
pragma is allowed anywhere that

a task ~torage specification is al-
fowed. that s, the declaration of
the task tvpe to which the pragma
applies and the pragma must both
occur (in this order) immediately
within the same declarative part
package specihication, or task spec-
ification. The effect of this pragma
is to use the value of the expres-
sion as the number of storage units
(bytes) ta be allocated as guard
storage. The value is rounded up
to an integral number of pages: a
value of zero results in no guard
storage; a negative value causes the
pragma to be ignored (see 13.2a).

Takes a static expression of

the predefined fixed point

type DURATION (in package
STANDARD) as the single argu-
ment. This pragma is only allowed
in the outermost declarative part

of a library subprogram, and at
most one such pragma is allowed
in a library subprogram. It has an
effect only when the subprogram to
which it applies is used as a main
program. This pragma specifies the
nominal amount of elapsed time
permitted for the execution of a

Impiementation-Dependent Pragmas 1-15

}\; \}';k:}:}\':\'t-.}-.}-.' n

W28 SN N NSNS

A
pp s ol D A% N

= AN

A YN W

VOLATILE

A

AN ALY

2 s s a

Implementation-Dependent Pragmas

e
e

¥
Ta Al

AL ALy

O

I R R R R Py P R P R TR N S
\'\'«‘-J‘l{ 'A e "ﬁ’ f'lf.- .\ . ' AW

task when other tasks of the same
priority are also eligible tor cie-
cution. A positive, nonzero value
of the static expression enables
round-robin <cheduling for all tasks
in the subprogram; a negative or
zero valuo disables it (see 9.8a).

Takes a title or a subtitle string, or
both, in either order, as arguments.
Pragma TITLE has the form:

pragma TITLE (titl:ng option
[,tatling-option]),
titling-option =

[TITLE =>]) string_literal
| [SUBTITLE =>] string_literal

This pragma is allowed anywhere
a pragma is allowed; the given
string(s) supersede(s) the default
title and/or subtitle portions of a
compilation listing.

Takes the simple name of a vari-
able as the single argument. This
pragma is only aliowed for a vari-
able declared by an object declara-
tion. The variable declaration and
the pragma must both occur (in this
order) immediately within the same
declarative part or package speci-
fication. The pragma mwust appear
before any occurrence of the name
of the variable other than in an ad-
dress clause or in one of the VAX
Ada pragmas IMPORT_OBJECT,
EXPORT_OBJECT, or PSECT_
OBJECT. The variable cannot be
declared by a renaming declaration.
The VOLATILE pragma specifies
that the variable may be modified

LR vf . ﬁ{.:"'."'.'.‘- ."\(:. :‘,‘-.V‘ N TR '.(\;‘; '.: -l".

asynchronously. This pragma in-
structs the compilcr to obtain the
value of a variable from memory
each time it is used (see 9.11).

Implementation-Dependent Pragmas 1-17

---". -:a“‘

!-\fn--“.-‘\f -' RS J-\ \' Y

'm-u\"-‘..“- PP NI .r
'.%{".‘-J.‘-..\ ._f.* .'li ‘a.P 'ﬂi '.\.A_A}.AL

TS

P Sl et

~ eV
* .‘~’-.

Attachment 2

VAX Ada Appendix F

et

-

e

This appendix summarizes the implementation-dependent characteris-
tics of VAX Ada by

T T e T I T N T R N o I R N A ST U
PP WPt N Q- -~ - - -.‘ G'J' > ‘. PR, > '.‘..-\-. “' .v'\-’-q\ f\'\-'\s'-'t‘ o J q': !'\. n'..-‘\l -'\I S.\B. .1

- NOTE

This appendix is not part of the standard definition of the
Ada programming language.

Listing the VAX Ada pragmas and attributes.
Giving the specification of the package SYSTEM,

Presenting the restrictions on representation clauses and unchecked
type conversions.

Giving the conventions for names denoting implementation-
dependent components in record representation clauses.

Giving the interpretation of expressions in address clauses.

Presenting the implementation-dependent characteristics of the
input-output packages.

Presenting other implementation-dependent characteristics.

VAX Ada Appendix F 2-1

s BAN Al S

l

F.1 Implementation-Dependent Pragmas

) VAX Ada provides the following pragmas. which are defined elsewhere

in the text. In addition, VAX Ada restricts the predefined language
pragmas INLINE and INTERFACE, and provides alternatives to prag-

mas SHARED and SUPPRESS (VOLATILE and SUPPRESS_ALL). See
Annex B for a descriptive pragma summary.

AST_ENTRY (see 9.12a)

EXPORT_EXCEPTION (see 13.9a.3.2)
EXPORT_FUNCTION (see 13.9a.1.4)

EXPORT _OBJECT (see 13.9a.2.2)
EXPORT_PROCEDURE (see 13.9a.1.4)
EXT'ORT_VALUED_PROCEDURE (sve i3.9a.1.4)
IMPORT_EXCEPTION (see 13.9a.3.1)
IMPORT_FUNCTION (see 13.9a.1.1)
IMPORT_OBJECT (see 13.9a.2.1)
IMPORT_PROCEDURE (see 13.9a.1.1)
IMPORT_VALUED_PROCEDURE (see 13.9a.1.1)
LONG_FLOAT (see 3.5.7a)

MAIN_STORAGE (see 13.2b)

PSECT_OBJECT (see 13.92.2.3)

SUPPRESS_ALL (see 11.7)

TASK_STORAGE (sce 13.2a)

TIME_SLICE (see 9.8a)

TITLE (see B)

VOLATILE (see 9.11)

2-2 VAX Ada Appendix F

P

F.2 Implementation-Dependent Attributes

VAX Ada provides the following attributes, which are defined else-

e BIT (see 13.7.2)
- « MACHINE_SIZE (see 13.7.2)
| e NULL_PARAMETER (see 13.9a.1.3)
o TYPE_CLASS (see 13.7a)

F.3 Specification of the Package System

package SYSTEN 1is

type NANE s (VAX_VNS, VAXELN),

SYSTEM_NANE conatant !IJANE = VAX_VNS,
STORACE_UNIT conatant = 8,

NEMORY _SIZE constant = 2e031-1,
NAX_INT conratant = 2ee031-}
NIN_INT constant = -(2s¢31),
NAX_DIGITS cohatant = 33,
NAX_MANTISSA constant = 31,

FINE_DELTA conatant = 2 Ose(-30),
TICK constant = 10 Ose(-2),
subtype PRIDRITY 4e¢ INTEGCER range 0 15,

-~ Address iype

type ADDRESS is private;

ADDRESS_ZERO constant ADDRESS,

function *«* (LEFT : ADDRESS, RIGHT
function "+* (LEFT : INTEGER, RIGHT
function *-* (LEFT ADDRESS, RIGHT
function *-* (LEFT ADDRESS, RIGHT

-- fanction *=* (LEFT, RICHT
-- function */== (LEFT, RIGHT
function *<" (LEFT, RICHT
funection “<:=* (LEFT, RIGHT
function ">* (LEFT, RIGHT
fuaction *>=" (LEFT, RIGHT

- o . I
'-'-". ~ _\‘\ ~ ,'\-"._'..4‘.-.\4‘._ T e T

ADDRESS)
ADDRESS)
ADDRESS)
ADDRESS)
ADDRESS)
ADDRESS)

INTEGER]
ADDRESS)
ADDRESS)
INTEGER)

return
returs
returs
retura

return BOOLEAN,
retura BOOLEAN,
retura BOOLEAN,
retura BOOLEAN,
retura BOOLEAN,
return BCOOLEAN,

ADDRESS,
ADDRESS ,
INTEGER,
ADDRESS ,

where in the text. See Annex A for a descriptive attribute summary.

e AST_ENTRY (see 9.12a3)

VAX Ada Appendix F 2-3

W'

a'e s 8 8 2 N

«"mTe's B 9 A A&

AN

-~ HNote that because ADDRESS 1s a private type
-~ the functions "=" and */=" are already available and
-= do not hve to be explicitly defined

goneric
type TARGET is private,
function FETCH_FROM_ADDRESS (A ADDRESS) return TARCET,

generic
type TARGET is private,
procedure ASSIGN_TO_ADDRESS (A ADDRESS., T TARGET),

type TYPE_CLASS is (TYPE_CLASS_ENUNERATION,
TYPE_CLASS_INTEGER,
TYPE_CLASS_FIXED_POIUT,
TYPE_CLASS_FLOATING_PGINT,
TYPE_CLASS ARRAY,
TYPE " ass_RECCKD,
TYPE_CLASS_ACCESS,
TYPE_CLASS_TASK,
TYPE_CLASS_ADDRESS),

VAX Ada floating point type declarations for the VAX
-- hardvare floating-point data types

type

D_FLOAT is

implementatt n_defined,

type F_FLOAT is
type G_FLOAT 1e

wnplementats

n_defined,

tmplementation_defined,;

type

H_FLOAT 1

tmplementafs

‘n_d:ﬁnrd.

-- AST handler type
type AST_HANDLER is limited private,
HO_AST_HANDLER - constant AST_HANDLER,

-- lion-Ada exception

HON_ADA_ERROR : exception,

-~ VAX hardware-oriented types and functions

type BIT_ARRAY is array (ILTECER range <>) of BOOLEAI,

pragma PACK(BIT_ARRAY),

sudtype BIT_ARRAY_8 is BIT_ARRAY (0 7.
subtype BIT_ARRAY_16 is BIT_ARRAY (O 18),
subtype BIT_ARRAY_32 s BT ARRAY (0 . 31),
subtype BIT_ARRAY_64 18 BIT_..::iY (0 63),
type UNSIGNED EYTE is renge O 25§,

for UNSIGNED BYTE'SIZE wuse 8,

2-4 VAX Ada Appendix F
",',.",-.',-.' W B _.'\ ._:‘1 e A A AT e N

l.‘i‘l‘l‘l“r“ . a8 ca¥ 84 Bat o4l o e hait. < grn gt gt o . i BYE B\A [N N 1 N ' '

[}

¢

[

t

)

[}

!

’

\?

]

) function "not" (LEFT : UNSIGNED_BYTE) retura UNSIGLED_BYTE, R
functien “and* (LEFT, RIGHT : UNSIGUED_BYTE) retura UNSIGHED B%TE,

¥ function "or" (LEFT, RICHT - UNSIGNED_BYTE) retura UNSIGNED_BYTE,

»: fuaction “xor* (LEFT, RIGHT : UNSISNED_BYTE) retura UNSIGHED_BYTE,

't

¥ function TO_UNSIGNED BYTE (LEFT - BIT_ARRAY_8) retura UNSIGNED BYTE,

% function TO_BIT_ARRAY_ & (LEFT : UNSIGNED_BYTE) retura BIT_ARRAY_B,

o

type UNSIGNED_BYTE_ARRAY is array (INTEGER range <>) of UNSIGUED_BYTE,

type UNSICNED_WORD d4s range O ..
for UNSIGNED_WORD'SIZE use 16,

65535

>

L4 function “not* (LEFT : UNSIGNED_¥WORD) retura UNSIGHNED_WORD,
$ function *"and™ (LEFT, RIGHT - UNSICNED_WORD) retura UNSICNED_WIRD,

. function “or* (LEFT, RIGHT : UNSIGNED_WORD) returan UNSIGIED_WORD,
function “"xor™ (LEFT, RIGHT - UNSICNED_VWORD) return UNSIGUED_¥URD,
function TO_UNSICHNED_¥WORD (LEFT :YBfT_ARRAY_ls) retura UNSTGNUED_WORD,

4 function TO BIT_ARRAY_16 (LEFT - UNSIGHNED_WORD) return 3.7 _ARRAY_16,

. .

. type UNSIGCUED_WORD_ARRAY is array (INTEGER range <>) of UISIGNED_¥CRD,

‘i

y type UNSICNED_LONCWYORD {e range NIN_INT .. MAX_INT,

) function “not* (LEFT : UNSIGHED_LONGYORD) retura UNSIGHED_LONGWORD;
N function "and* (LEFT, RIGHT : UNSIGNED_LONGWORD) retura UNSIGUED_LONGWORD,
. function “or* (LEFT, RIGHT . UNSIGHED _LONGYORD) retura UNSIGNED_LONGWORD;
- function “"xor® (LEFT, RIGHT : UNSIGNED_LONGYORD) return UNSIGIHED_LONGYORD,

;: function TO_UNSIGNED_LONCWORD (LEFT . BIT_ARRAY_32)

E - retura UNSIGNED_LONGYORD,

pd function TO_BIT_ARRAY_32 (LEFT : UNSIGNED_LONGYORD) retura BIT_ARRAY_32;

[/

1 type UNSIGHED _LONGEURD_ARRAY is

a array (INTEGER range <>) of UNSIGNED_LONGWORD,

-

n

% type UNSIGNED _QUADYORD is recerd

- LO : UNSIGNED_LONGWORD;

L1 : UNSIGNED_LONGYORD,
end record;

’

: function "not" (LEFT : UNSIGUED_QUADYCRD) return ULSIGHNED_QUADWORD,
. function *“and* (LEFT, RIGHT MISIGNED _QUADWORD) return UNSIGCNED_QUADWORD;

N function "or* (LEFT, RIGHT : UNSICHED _QUADYTRD) return UNSICHED_QUADWORD,
! {unction "xor* (LEFT, RICHT - UNSICNED_QUADWORD) return UNSIGNED_QUADWORD;

function TO_UNSICNED_QUADYORD (LEFT : BIT_ARRAY_64)

- retura UNISIGNED_QUADWORD,

Q function TO_BIT_ARRAY_64 (LEFT : UNSIGNED_QUADYORD) return BIT_ARRAY_64,
0 type UNSIGHED QUADWORD_ARRAY is

. array (INTEGER range <>) of UNSIGIED_QUADYORD,

L]

-

§ VAX Aga Appendix F 2-5

"

-

.

|

: '

n’-’:" - \"J'(' LIPS S IS I “u T oy » > ‘e o Ce e e
L o Lo X n y < Lo\ s -~ e’ ';.: a:a.“\‘h!:rﬁ(.f

o
e

- PRI

*

Ll)

LR W e

PP)

fuaction TO_ADDRESS (X : INTECER)

fuaction TO_ADDRESS (X . UNSIGNED_LONGWORD)
fuaction TO_ADDRESS (X : untversal_tnfeger)

function TO_INTEGER (X : ADDRESS)

faaction TO_UNSICNED_LONGYORD (X : ADDRESS)

function TO_UNSIGNED LONCWORD (X

return ADDRESS,
retura ADDRESS,
retura ADDRESS,

return INTEGER;
return UNSIGNED_LONGWORD;

. AST_HANDLER) return UNSIGHED _LOLGWORD,

Conventional names for

static subtypes of type

UNSIGUED_LONGYORD

subtype
subtype
subtype
subtype
subtype

subtype
subtype
subtype
subtype
subtype

subtype
subtype
subtype
subtype
subtype

subtype
subtype
subtype
subtype
subtype

sudtype
subtype
subtype
subtype
subdtype

subtype
subtype
subtype
sudbtype
subtype
subtype

UNSIGNED_1
UNSIGHED_ 2
UNSIGNED_3
UNSIGNED_4
UNSIGNED .S

UNSICNED_6
UNSICGUED_7
UNSIGHED 8
UNSIGUED_9
HISIGLED_10

UNSIGNED_11
UNSICNED_12
UNSIGHFD_13
Unsicn-n_i14
UNSIGHED_15

UNSICUFD_16
UNSIGHED_ 17
UNSICIED_ 18
ULSIGUED_19
UNSIGNED_20

UNSIGNED_21
UNSIGUED_ 22
UUSICHED_ 23
UNSIGNED_24
UNISIGNED_25

UNSIGNED_26
UNSIGNED_ 27
UNSIGUED_28
UNSIGNED_29
UnsIGUED_30
UNSIGNED_31

is
is
1
ie
is

is
is
ie
ie
is

ie
is
is
is
i

is
is
is
i
is

is
is
i
is
1s

is
is
1
ie
is
ie

Function for obtaining

UNISIGNED _LONGYORD
UNSIGNED_LONGYCRD
UNSIGNED_LODNGYORD
UNSTGNED_LONGYORD
UNSIGUED _LONGVORD

UNSIGHED_LONC 40RD
UNSIGUED _LONC¥ORD
UNSIGHED_LONGWORD
UNSIGUED _LONCYORD
UNSIGUED _LONGYORD

UNSIGIED _LONGYORD
UNSIGHED_LONGWORD
UNISIGIED _LONGWORD
UNSIGUED _LONGWORD
VNSIGUED _LONGYGRD

UVNSIGHED _LONGYORD
UNSIGIED _LONGYCRD
UNSIGUED _LONGYORD
UUISIGNED _LONGYCRD
UNSIGUED _LONGWORD

UNSIGUED LONGYORD
UNUSIGNED _LOUGWORD
UNSICHED _LONGWORD
UNSIGUED LONGYORD
UNSIGNED LONGYORD

UNSICNED _LONGWORD
UNISIGHED _LONGYORD
UNSIGUED _LONGYORD
VLIS IGUED _LOUGYORD
UNSIGNED _LONGYORD
UNISIGNED _LONGYORD

rangs
range
range
range
range

range
range
range
range
range

range
range
range
range
range

range
renge
renge
range
raage

range
range
range
range
range

renge
range
range
raage
range
range

global symbol values

CO0OO0OQO0O0 OO0O00O0 00000 0O0O0CO0OC OCOO0OO0O OO0 o000

1-1
2-1
. 2% 3-%,
4-1
6-1

2%
2se

2
2

20
2¢0
280
290

29020-1,

20021-1,
29022-1,
290231,
20024-1,
2#e25-1,

2ve26-1,

. 20e27-1

20e28-1,
20039-1,
20030-1

2ee31-1,

function IMPORT_VALUE (SYMBOL

STRING) retura

UNSIGITED_LONCYORD,

vAX device and process register operations

function READ_REGCISTER (SOURCE UNSICHED _BYTE)
function READ _RECISTER (SOURCE UNSIGUED_WORD)
function READ _RECISTER (SOURCE

retura UNSICHED BYTE,
retura UNSIGIED _WORD,
VNSICLED_LONCYORD) retura UNSIGUED_LONGWORD,

2-6 VAX Aga Appendix F

A A A QN 2 R, #‘f*!'{‘lif;f o

o ot =

N

L g

o I N S R R S T R
AL L A N A T N T A T T T T N

a & & 2>

procedure WRITE REGISTER(SOURCE
TARGET
proecedure ¥WR.Te ReGISTER(SOURCE
TARCET
procedure WRITE RECISTER (SOURCE
TARGET

fuanctioa MFPR (REC_NUMBER
precedare MTPR (REC_HUMBER
SOURCE

UNSICUED _BYTE,

out UNSIGUED_BYTE),
UNSIGNED_WORD,

ost UNSICUED_VYORD),
UNSIGUED _LONGWORD,

ost UNSIGNED_LONGWORD),

INTEGER) vetura ULSIGIED_LONGYORD,
INTECER,
UNSIGHED_LONCWORD) ,

VAKX 1nterlocked-instruction procedures

procedure CLEAR_INTERLOCKED (BIT

OLD_VALUE

procet. SET_INTERLOCKED (BIT

OLD_VALUE

type ALIGHED_SHORT_INTEGER 148
recerd
VALUE
ond record.
for ALICIED SHORT_INTECER use
record
at mod 2,
ead record,

SHORT_INTEGER = 0,

procedure ADD_INTERLOCKED (ADDEND
AUGEND
sicl

type INSQ_STATUS 1e (0K _NOT_FIRST,

type RENMG_STATUS te (OK_NOT_ENPTY,

ia out BOOLEAN,
out BOCOLEAlN),
in out BOOLEAl,
wat BOOLEAN),

ia SHORT_INTEGER;
: 4n out ALIGNED_SHORT_INTECER,;
. out INTEGER) ;

FAIL_NO_LOCK, OK_FIRST);
FAIL_NO_LOCK,

OK_ENPTY, FAIL_VAS_ENPTY),

procedure INSQHI (ITEN . da ADDRESS,
HEADER ia ADDRESS,
STATUS out INSQ_STATUS),
procedure REMQHI (HEADER - ia ADDRESS,
ITEN - out ADDRESS,

STATUS - eut RENMQ_STATUS),

privase

procedure INSQTI (ITEN © 4Aa ADDRESS,
HEADER in ADDRESS,
STATUS : out INSQ_STATUS),
procedure RENGT! (HEADER ia ADDRESS,
ITEN out ADDRESS.
STATUS out RENG_STATUS),
-- Not shown

end SYSTEM,

YA, W Sy

LT /

VAX Ada Appendix F

2-7

l o

2 it - -

Cary

S

P

s a

PrPPS

s s A

F.4 Restrictions on Representation Clauses

The representation clauses allowed in VAX Ada are length, enumera-
tion, record representation, and address clauses.

In VAX Ada, a representation clause for a generic formal type or a
type that depends on a generic formal type is not allowed. In addition,
a representation clause for a composite type that has a component

or subcomponent of a generic formal type or a type derived from a
generic formal type is not allowed.

F.5 Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses

VAX Ada does not allocate implementation-dependent components in
records.

Interpretation of Expressions Appearing in Address
Clauses

Expressions appearing in address clauses must be of the type
ADDRESS defined in package SYSTEM (see 13.7a.1 and F.3). In VAX
Ada, values of type SYSTEM.ADDRESS are interpreted as integers in
the range 0.. MAX_INT, and they refer to addresses in the user half of
the VAX address space.

VAX Ada allows address clauses for variables (see 13.5.

VAX Ada does not support interrupts.

F.7 Restrictions on Unchecked Type Corversions

VAX Ada supports the generic function UNCHECKED_CONVERSION
with the restrictions given in section 13.10.2.

2-8 VAX Ada Appendix F

N

O RN ST LI
. | [

s Sad 8] “J J & 4 (3 . U U L 4 1
’
&
L]
&
U
[}
F.8 Implementation-Dependent Characteristics of
)
o Input-Output Packages
)
The VAX Ada predefined packages and their operations are imple-
- mented using VAX Record Management Services (RMS) file orga-
nizations and facilities. To give users the maximum benefit of the
underlying RMS input-output facilities, VAX Ada provides pack-
: ages in addition to SEQUENTIAL_IO, DIRECT_IO, TEXT_IO, and
; IO_EXCEPTIONS, and VAX Ada accepts VAX RMS File Definition
\ Language (FDL) statements in form strings. The following sections
5 summarize (he implementation-dependent characteristics of the VAX
: Ada inpnt-output packages. The VAX Ada Run-Time Reference Mannal
liscusses these characteristics in more detail.
F.8.1 Additional VAX Ada Input-Output Packages
, In addition to the language-defined input-output packages (SEQUENTIAL_
10, DIRECT_IO, and TEXT_IO), \'AX Ada provides the following
input-output packages:
. e RELATIVE_IO (see 14.2a.3)
. e INDEXED_IO (see 14.2a.5)
e SEQUENTIAL_MIXED_IO (see 14.2b.4)
¢ DIRECT_MIXED_IO (see 14.2b.6)
¢ RELATIVE_MIXED_IO (see 14.2b.8)
e INDEXED_MIXED_IO (see 14.2b.10)
‘ VAX Ada does not provide the package LOW_LEVEL_1O.
F.8.2 Auxiliary input-Output Exceptions
J
VAX Ada defines the exceptions needed by packeses RELATIVE_1O,
! INDEXED_IO, RELATIVE_MIXED_IO, and INDEXED_MIXED_!O in
1 the package AUX_IO_EXCEPTIONS (see 14.5a).
';
VAX Ada Appendix F 2-9
1
b
V
R G 0 O L A 0, N O A R T R T

A LTI W TR T AR T

F.8.3 Interpretation of the FORM Parameter

The value of the FORM parameter for the OPEN and CREATE proce-
dures of each input-output package may be a string whos<e value is in-
terpreted as a sequence f statements of the VAX Recond Management
Services (RMS) File Definition Language (FDL), or it may be a string
whose value is interpreted as the name of an external file containing
FDL statements.

The use of the FORM parameter is described for each input-output
package in chapter 14. For information on the default FORM param-
eters for each VAX Ada input-output package and for information on
using the the FORM parameter to specify external file attributes, see
the VAX Ada Rim-Time Reference Manual. For information on | DL, see
the Guide to VAX'VMS File Applications and the VAX 1V'AS File Definttion
Languaee Facility Reference Manual,

F.8.4 Implementation-Dependent Input-Output Error Conditions

As specified in section 14.4, VAX Ada raises the following language-
defined exceptions for error conditions occurring during input-output
operations: STATUS_ERROR, MODE_ERROR, NAME_ERROR, USE_
ERROR, END_ERROR, DATA_ERROR, and LAYOUT_ERROR. In
addition, VAX Ada raises the following exceptions for relative and
indexed input-output operations: LOCK_ERROR, EXISTENCE_ERROR,
and KEY_ERROR. VAX Ada does not raise the language-defined
exception DEVICE_ERROR; device-related error conditions cause USE_
ERROR to be raised.

TJSE_ERROR is5 raised under the following conditions:

e In all CREATE operations if the mode specified is IN_FILE.

e In"all CREATE operations if the file attributes specified by the
FORM parameter are not «ipported by the package.

e In the WRITE operations on reiative or indexed files if the element
in the position indicated has already been written.

e In the UPDATE and DELITE_ELEMENT operations on relative or
indexed files if the element tn be updated or deleted is not locked.

¢ In the UPDATE operations on indexed files ii the specified key ‘
violates the external file attributes.

2-10 VAX Ada Appendix F

RN,

hJ

e In the SET_LINF_LENGIH and SET_PAGE_LENGTH opera-
tions on text files if the lengths specified are inappropriate for the
external file.

o If the capacity of the external file has been excecded.

NAME_ERROR is raised as specified in section 14.4: by a call of

a CREATE or OPEN procedure if the string given for the \ AME
parameter does not allow the identification of an external tile. In
N VAX Ada. the value ot 2 NAME parameter can be a string that denotces
, a VAX/VMS file specification or a VAX/VMS logical name (in either
case, the string names an external file). For a CREATE procedure, the
value of a N AME parameter can also be a null string in which case it
names a temporary external file that is deleted when the main program
exits. The VAX Ada Run-Tie Reference Manual expl~ins the naming of
external files in maore detail.

F.9 Other Implement’atiaon Characteristics

Implementation cha:acteristics having to do with the definition of a
main program, various numeric ranges, and implementation limits are
summarized in the following sections.

F.9.1 Definition of a Main Program

A fibrary unit can be used as a main program provided it has no
formal parameters and, in the case of a function, if its rciurned value

i discrete type. If the main program is a procedure, the status
. recaoned to the VAXIVMS eavironment upon normal completion of the
. procedure is the value one. If the main procedure is a function, the

status returned is the function value. Note that when a main tunction
returns a discrete value whose size is less than 32 bits, the value is zero
or sign extended as appropriate.

VAX Ada Appendix F 2-11

I

™ e N
4'-' -
m&(-r'r RS BV T R

RO .
O AN RGN 2 SN NN A A AN

'1
Y
.
Q
F.9.2 Values of Integer Attributes
_; The ranges of values for integer types declared in package STANDARD
. are as follows:
s
! SHORT_SHORT_INTEGER -128 127
b SHORT_INTECER ~32708 .. 32767
- INTEGER S21474K3048 .. 2147483047

~ovs

For the packages DIRECT_IO, RELATIVE_IO, SEQUENTIAL
MIXED_IO, DIRECT_MIXED_IO, RFLATIVE_MIXFD 10, INDEXED_
MIXED_IQ, and TEXT_IO, the range of values for types COUNT and
POSITIVE_COUNT aic as follows:

COUNT : . 21474%3047
POSITIVE_COUNT ! 27483017

For the package TEXT_IO, the range of values for the type FIELD is as

follows:
" FIELD 1) . 2147483047
-
. F.9.3 Values of Floating Point Attributes
»
. F_Floating Va-ite
. and Approximate
. Attribulc Decimal Equivalent
. DICITS o 3 ‘
) MANTISSA N
EMAX 84
. EPSILON Tas() TN _(kK)=e -4
:' poroximately 9 S3674E-07
R TreALL () BONKD_(NKdee-21
approximately 2 SRJU4E-In
-
LARCGE 16500 FFFF_Fstiee . 21 ;
A approximately 1 Y3428E £ 25 \
. i
Y
3
‘
2-12 VAX Ada Appendix F
N .
.
-
~
"
h '

g w

PP Tt e N
"‘ .0‘. s i

RS Sy

e P P T e e et

(3
o

el v - - -

o v .
St 2N S it b o

9 2 e e e

<

a X

- -
W

g o W J ol T el Bat fa¥ 3 3 Y 3 W
F_Floaling Value
and Approximate

Attribute Decimal Equivalent

SAFE_EMAX 127

SAVE_SNMALL
approximately

SAFE_LARGE
appraximately

HINST
approximately

LAST
approximately

AMACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS
MACHINE_OVERFLOWS

1020, 1HK)_(KKI=e=31
2.93874E -39
1o=0).7FFF_FClre + 32
17MNE+38

-10%). 7FFF_FFase + 32
ST TOIE + 38

1020) 7FFF_FFre + 32
1.70141E + 3%

D_Floating Value
and Approximate

Attribute Decimal Equivalent

DIGITS 9

MANTISSA k1l

EMAX 124

EPSILON 160, 4000_ (000 _ K0 _ 0 =e -7
approximately 9.3132257461548E-10

SMALL Th=00 SOBO_(ON0_INNN_ (NK)=e=-31
Wy ocimately 2.3509887016440E -38

1efr 16#0). FFFF_FFFE_(NXN)_(XK)ee + 31
pproximately 2.1267647922655E + 37

Sar T ot AX 127

SAL T SAatALL Toa(h HHHY_ (KD _(KNKD_(KHixe=31

approximately

2 49387 358770557 E -39

VAX Ada Appendix F 2-13

U I AR RN AT AT LS L S P SR I N S O AT AR S Y . e " et a” st
0 S R s A o S R G R R L G A R A TR A

P T
SN

"-

R

S o L

R
» Ll

o« o

o

o

D_Floating Value
and Approximate

Attribute Decimal Equivalent

SAFE_LARGE 16200 7FFF_FFFF_tKK)_(iK)=e + 32
appronimately 1 7014118338124 - 38

FIRST -1o#) 7FFF_FFFF_FFFF_FFh=e+ 32
approximately -1 7014118340047 + 3K

LAST 10#() 7FFF_FFFF_FFFF_FF8se+32

approximately
MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_EMIN
MACHINE_ROUNDS
MACHINE_OVERFLOWS

1 7014118346047E + 38

"

G_Floating Value
and Approximate

Attribute Decimal Equivalent

DICITS 15

MANTISSA 51

EMAX 204

EPSILON 1690 4000_UOO0_ 1NN _(N$e-12
approximately 8.881784197001E-006

SMALL 160 BNK_ (K ENK)_Hdre =51
approximately 1.944692274332E 4462

LARGE 1620 . FFFF_FFFF_FFFF_Et*e + 51
approximately 2.571100870814E + 001

SAFE_EMAX 23

SAFE_SMALL 160, 10 _K0_(KKN)_(K)2¢-255
approximately 5.502684646268E -3

SAFE_LARGE 10O 7FFF_FFFF_FFFF_Flse « 250

approximately

K 98%405674312E + 307

2-14 VAX Ada Appendix F

" -

PN A SN St

g
5

l
|
v

G_Floating Value
and Approximate

Attribute Decimal Equivalent

FIRST -16s0.7FFF_FFFF_FEFF_FCse+ 256
approximately -8 U8K050674312E + 307

LAST 160 7FFF_FFFF_FFFF_FCse+ 256

approximately
MACHINE_RADIX
MACHINE_MANTISSA
MACHINE_EMAX
MACHINE_FMIN
AACHINE_ROUNDS
NMACHINE_OVERFLOWS

8 UKB465074312E « 307
2

53

1023

1023

True

True

H_Floating Value
and Approximate

Attribute Decimal Equivalent

DICITS 33

MANTISSA m

EMAX 444

EPSILON 1620 4I00_0K0_IKNKY_ (000 _(RKIO_ (KK (KKK)_ (b =27

approximately 7 70371977754894341222391177U3397E K134

SMALL 161 BOOH_IKK_ (K00_00DH_BOK_DI_(N_ 0#e=111
approximately 1.1(6568214637918210934318020936E 1134

LARGE 16#0). FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFE_llre + 111
approximately 4.54274201268475430659332737993100E + 1133

SAFE_EMAX 16383

SAFE_SMALL 16=0 TOK_(RKKT_(XKD_ OO _ (KKK _ OO0 _OEKKG_ (1o 4095
approximately N dI52578577802337656500945433044 E-4933

SAFE_LARCE 1020 7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_D=e - diM0
approximately 5 94N6574767861588254287966331400E + 4931

FIRST -16#0).7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_Cre+ d(M0

approximately

=5 948657470786 1388254 28796033 14(0E « 4931

VAX Ada Appendix F 2-15

ARSI T T T e S L N A e ol

\
)
)
]
H_Floating Value
and Approximate
Attribute Decimal Equivalent
LAST 16=0.7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_C=e+ 4090
approximately 5.948657470780 158254 28796633 1400E « 4931
: MACHINE_RAD™ 2
. MACHINE_MANTISSA 13
MACHINE_ENMAX 10383
MACHINE_EMIN -16383
MACHINFE POUNDS True
} LeACHD we v RFLOWS Irue
; .
! F.9.4 Attributes of Type DURATION
E. The values of the significant attributes of type DURATION are as
4
follows:
: DURATION' DELTA 7 (OKKKIE <04
- DURATION' SMALL - M
‘ DURATION' FIRST ~131072 tinn
. DURATION' LAST 131071 999y
DURATION' LARCE 1 3107 1908389048 1375E + 15
> F.9.5 Implementation Limits
. Limit Description
; 32 Maximum number ot torma! parameters 10 a subprogram or entry
X declaration that are ot an unconstrained record tyvpe
: 120 Maximum identitier length (number of characters)
' 120 Maximum number ot characters in a source line
245 Maximum number of discriminants tor a record type
3
L]
2-16 VAX Ada Appendix F
’ '
i

G GG S A, At G S B it A G G G, o i S S S S A S S e S R VS

!
7
)
0]
q
U
a
»
Limit Description
. 240 Maximum number of tormal parameters 1n an entry or subprogram
declaration
' 255 Maximum number of dimensions 10 an array type
. 1623 Maximum number ot hbrary umts and subunits 10 a compilation
¢ 1
dosure
A 45 Maximum number ot tibrary units and subunits in an execution
4 5
¢ closure
32757 Mavmum number of obie ts declared with PSECT_OBJECT pragmas
03335 AMavmum number ot enumeration hterals 10 an enumeration tyvpe
detinition
63535 Manvinum number ot characters 1in a value of the nredetined type
) STRING
-
. 6535 Maximum number of trames that an exception can propagate
8
\ 63335 Maxivum number of fines in a source tile
\ -~
1 .
224 Maximum number of s in any object
)] . . ,
g The compilation closure of a given umit is the total set ot units that the given unit
» depends on, directly and indirectly
‘ t
\ 2)
The execution cle~ure of a given unmit s the compilation closure plus all associated
secondary units (hibrary bodies and subunits)
;
Y
.
.
i
-
-
»
»

VAX Aga Appendix F 2-17

\ ‘.*.

SN FRTS SRR SRS
AN RGP ACAN W Mﬁm&m&ﬁ

s s &2

R L BTN
PP PP PRI

APPENDIX C
TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent
values, such as the maximum length of an input line anu invalid
file names. A test that makes use of such values is identified
by the extension. TST in its file name. Actual values to be
substituted are identified by names that begin with a dollar
sign. A value is substituted for each of these names before

the test is run. The values used for this validation are given
below.

Yone and #ceaning Value
$SBIG_ID1 119 A's and a
|l'

Identifier of size MAX_IN_LEN
with varying last character.

$BIG_ID2 119 A's and a
|2l
Identifier of size MAX_IN_LEN
with varying last character.

$BIG_ID3 119 A's and a
*3' in the middl
Identifier of size MAX_IN_LEN
with varying last character.

$BIG_ID4 119 A's and a
'4' in the middl
Identifier of size MAX_IN_LEN
with varying last character.

SBIG_INT_LIN 116 0's and
0298
An integer literal of value 298
with enough leading zeroces so
that it is MAX_IN_LEN characters
long.

e

e

Mt NN .
O I) .
P N

N

54

Bah gat A pot gyt g.¢

Name and Meaning
SBIG_REAL_LIT

A real literal that can be
either of floating or fixed
point type, has value 690.0, and
has enough leading zeroes to be
MAX_IN_LEN characters long.

$BLANKS
Blanks of length MAX_IN_LEN - 20
SCNT_LAST
Value of CNT'LAST in TEXT_IO
package.

SEXTENDED_ASCII_CHARS

Value

114 0's and
69.0E1

BLANKS

2147483647

abcdefghijklmnopgrstuvwxyz!$$?2€[\]~' ()~

A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$SFIELD_LAST
Value of Field'LAST in TEXT_IO
package.

SFILE_NAME WITH_BAD_CHARS
An illegal external file name
that either contains invalid
characters or is too long.

SFILE _NAME WITH WILD_CARD_CHAR
An external file name that
either contains a wild card
character or is too long.

SGREATER_THAN_DURATION
A universal real value that lies
between DURATION'BASE'LAST and

DURATION'LAST or any value in
the range of DURATION

S$GREATER_THAN_DURATION_BASE_LAST
The universal real value that is
greater than DURATION'BASE'LAST.

S$ILLEGAL EXTERNAL FILE NAME

Illegal external file name.

Cc-2

2147483647

X)]less &~Y

XYZ+*

100 _000.0

10_000_000.0

BAD-CHARACTER*"

o F R R RN A O R A R AT AT .'-,J-.-.-.-,\';."s{'.(-."- e e Ao \’\'-.“.f\(\ .».

A T B

Name and Meaning Value
$ILLEGAL_EXTERNAL_FILE NAME2

MUCH-TOO-LONG-NAME-FOR-A-FILE-MUCH-TOO-LONG-NAME-FOR-
A-FILE

Illegal external file names.

SINTEGER_FIRST ~-2147483648
The universal integer literal
expression whose value is
INTEGER'FIRST.

SINTLGER_LAST 2147483647
The universal integer literal
expression whose value is
INTEGER' LAST.

SLESS_THAN_DURATION -100 000.0
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

SLESS_THAN_DURATION_BASE_FIRST -10_000 _000.0
The universal real value that is
less then DURATION'BASE'FIRST.

SMAX_DIGITS 33
floating-point types.

SMAX_IN_LEN 120
Maximum input line length
permitted by the implementation.

SNAME SHORT SHCPRT INTEGEF
A name of predefined numeric
type other than FLOAT, INTEJER,
SHORT_FLOAT, SHORT INTLGER,
LONS_FLOAT, or LONG INTEGER,

SNEG_BASED_INT LESFFFFFFFES
A based integer literal whose
highest order nonzerc bit
falls in the sign kit
posi.tion of the represertation
for SYSTEM.MAX INT.

SNON_ASCII CHAR_TYPE (NCON NULL
An enumerated type definition
for a character type whose
literals are the identifier
NON_NULL and all non-ASCII
characters with printable
graphics.

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not
conform to the Ada Standard. When testing was performed, the
following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated:

. B4A010C: The object_declaration in line 18 follows
a subprogram body of the same declarative part.

. BC3204C: The file BC3204C4 should contain the body
for BC3204CO as indicated in line 25 of BC3204C3M.

C35904A: The elaboration of subtype declarations
SFX3 and SFX4 may raise NUMERIC_ERROR (instead of
CONSTRAINT_ERROR) .

C41404A: The values of 'LAST and 'LENGTH are
incorrect in IF statements from line 74 to the end
of the test.

. C48008A: This test requires that the evaluation of
default initial values not occur when an exception
is raised by an allocator. Howvever, the Language
Maintenance Committee (LMC) has ruled that such a
requirement is incorrect (AI-00397/01).

C32114A: An unterminated string literal occurs at
line 62.

B33203C: The reserved word "IS" is misspelled at
line 45S.

C34018A: The call of function G at line 114 is
ambiguous in the presence of implicit conversions
and inconsistente without.

B37401A: The object declarations at lines 126-135
follow subprogram bodies declared in the same
declarative part.

B45116A: ARRPRIBL]1 and ARRPRIBL: are initialized
with a value of the wrong type (PRIBOOL_TYPE instead
of ARPPRIBOOL_TYPE) at line 41.

B49006A: Obiect declaratives at lines 41 and 50 are
terminated incorrectly with colons; "END CASE:" is
missing from line 42.

B74101B: The "BEGIN" at line 9 is mistaken; it
causes the declarative part to be treated as a
sequence of statements.

C87B50A: The call of "“/=" at line 31 requires a
"USE" clause for package A.

C92005A: At line 40, "/=" for type PACK.BIG_INT is
not visible without a "USE" clause for package PACK.

C940ACA: This test assumes that allocated task TT1
will run prior to the main program, and thus assign
SPYNUMB the value checked for by the main program;
however, such an execution order is not required by
the Ada Standard, so the test is erroneous.

CA3005A..D (4 tests): No valid elaboration order
exists for these tests.

END OF LIST

P S . PP DRI ISR R w . [P NN L U S S -
. \x.&" \{s{.;':\’_\.':\ ‘:s':&f-.‘(\fmf\':\':-.‘t\“:\‘:m‘f\‘f\"s" o :_"

|

A

T B W RO AL M AL LM L SN ol | Bl A L L oo Bart ypC Apl 9% Bn . Bn® Bul bot 0rt e aet y

e ™ N NGt Pt :

B 2L

- -
R

"SI

-

O/

y Frerr. PSS P 4 o T e

