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1 Introduction

During the contract period, we conducted a study of the feasibility of controlling the input impedance of a
microstrip element by dynamically changing its loading. The motivation for this work is the possibility of
using such elements in a scanned array. By changing the loading of the elements appropriately, one could
alter the active array impedance of the elements perhaps compensating to some degree for the onset of scan
blindness. While this report did not establish or refute the feasibility of the ultimate application, it definitely
establishes the feasibility of controlling input impedance of a single element by using PIN shorting diodes.

The basic theory of loaded elements is briefly reviewed in the next section. Those features of the theory
pertinent to the current application are discussed in more detail in the third section. The theoretical results
and the corresponding experimental results are also presented in this section. Conclusions and suggested
future research are given in the last section. Additional details of the analytical methods used can be found in
Appendix A. Many of these theoretical results were just recently developed and are not presented elsewhere
in the open literature. In particular, the extraction of quasistatic terms, detailed in Appendix A, makes the
interactive design of these types of loaded elements feasible. This is because the determination of the resonant
frequency of a loaded element is a non-linear problem requiring the iterative solution of the characteristic
equation. Efficiency in computation, therefore, is critical—and the quasistatic analysis presented is highly
eficient.

2 Theory of Loaded Microstrip Antennas

A brief overview of the theory of loaded microstrip antennas is presented in this section. A more detailed
discussion can be found in [1].

For design purposes, one needs a simple theory which sheds light on the physical mechanisms of the
microstrip antenna. Even if the theory is not the most quantitatively accurate, it is still vital to understand
ivs physics if one is going to do creative things with the element. One theory that has proven to be physically
illuminating, and relatively accurate as well, is the cavity-model analysis. It is this analysis that is used as
a basis for design of loaded microstrip elements.

A typical microstrip element is illustrated in Fig. 1. The fundamental assumption made in cavity-model
analysis is that the distribution of the field between the patch and the ground plane is approximately the
same as that resulting in a cavity formed by closing the edge of the patch to the ground plane as illustrated
in Fig. 2. The amplitude of the field distribution in the antenna and in the cavity are different. The method
of determining this amplitude will be discussed later. For the purpose of determining the resonant frequency
of the loaded element, the antenna will be assumed to be the same as the corresponding cavity.

2.1 Unloaded microstrip cavity

In order to analyze the loaded cavity ultimately of interest in this report, one must first understand the
analysis of an unloaded cavity. Suppose one impresses a uniform, unit, vertical, filamentary electric current
as illustrated in Fig. 2. The resulting cavity electric field will be vertically directed. Let the vertically directed
electric field produced be denoted by G(rir’), where r is the two-dimensional position vector locating the
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Figure 1: Dliustration of a typical, rectangular patch element showing dimensional parameters and coor-
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. observation point within the cavity, and r’ is the corresponding position vector locating the source current.
o Since this field is produced by a concentrated unit source, the field G(r|r’) can be thought of as a Green’s

'.\;': function. The boundary-value problem that this Green'’s function satisfies is
A (V2 + KNG(rir') = jupb(r - +'), r €S,
RN VG(rlr')- =0, re€dS,
"::. where S denotes the set of points on the patch, 35 denotes the boundary of S, and 1 is the outward-pointing
:"'~' unit normal on 8S. The solution of this boundary-value problem is
e . Ymn (r)¥mn(r)
AN Girir'y=jun ) —""7:2—:;"—': (1)
A mn
0N where A is the set of all pairs of non-negative integers, (m, n), and Yma(r) is the mn*® mode of the cavity
A satisfying
NN
\:':‘.: v2¢mu(f) = —k,z,m'/)mn(r), r€S,
L
' VYma(r) n=0, =e€as.
'_-':} The series for G(r|r’') diverges as » — r’. This is because the inductive reactance associated with a :
f ’ filament is infinite. In order to obtain the input reactance of an actual feed, one must integrate this Green’s
e function over the actual feed current distribution. This integration is typically a surface integral over the
: outer periphery of the feed structure. For the purposes of this report, it is assumed that all source and load .
T currents are distributed uniformly on a circular cylinder of diameter d. The “location” of the source or feed
o is the center of the cylinder’s cross section. The input impedance of the element can be found by placing
,;.r: the observation point at the center of the cross section of the feed, and by integrating the Green’s function
':.: over the surface current. When this is done, one obtains an input reactance of
I:;I Xin = X¢ + Xe,
(]
"’) where
¢ o . Ymn (r)wmn ("’)
X = = jwpt —————n
:-:,_ i k? — k2,
::-::: is the resonant reactance and Xy is the feed reactance. The parameter t is the thickness of the dielectric
e under the patch. The pair (m, n) represents the indices of the “resonant mode.” For the case of loaded
D microstrip elements, the resonant mode selected for determining X, is the mode of the unloaded cavity that
r resonates at a frequency closest to that of the mode of interest in the loaded cavity. The feed reactance
;-;.:: is the contribution to the total reactance from all of the non-resonant modes, principally, the higher-order
e modes of the element. The feed reactance is typically inductive and varies slowly with frequency. Of course,
Y if the frequency varies too far from the resonant frequency associated with the indices (m,n), the feed
.Q_. reactance will contain resonant components as well. The circuit model associated with this is illustrated in
. Fig. 3. The resonant mode of the loaded element can be conveniently expressed in terms of the modes of the
.‘;ls' corresponding unloaded cavity as described below.
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Figure 3: Circuit model for the input impedance Z;; of a microstrip element in the vicinity of one, well
isolated resonant frequency.

2.2 Loaded microstrip cavity

The resonant frequency of a loaded cavity is that frequency at which the cavity can support a source-
free cavity mode. At that frequency, in general, a non-sero current will flow through the multiple loads of
the cavity even though no source current is applied. A non-separable loaded cavity can be converted to
a separable cavity by using the equivalence principle. If the loads are removed and equivalent electric and
magnetic currents are impressed on the surface bounding the now absent loads, then the field produced within
the now unloaded cavity is the same as that of the original loaded cavity. It turns out that the magnetic
currents called for by the equivalence principle are typically negligible [1]. The total electric current impressed
at the location of each load is the total source-free load current that flows through the load. The unloaded
cavity, in contrast to the loaded cavity is now driven by the load currents, although the load currents are,
as yet, undetermined. To understand how to determine the load currents and to better understand the role
played by load location, consider first an element loaded by just a single load.

: 2.2.1 Single load

Suppose that the load has a reactance of Xi,. Then the network model of the undriven loaded cavity
is that illustrated in Fig. 4. A source-free mode is desired. That is, one seeks to produce a non-sero load

current with no source. This is only possible if the network is resonant. Summing the voltage around the
closed loop yields the condition for resonance,

X,+X¢+Xx, =0,
or
Xe==-X; - X,.

To best interpret this characteristic equation, consider the simple and very practical case of a short-
circuit load. In this case, Xy = 0. Figure 5(a) contains a plot of X, versus frequency for a rectangular

A) - . - . -
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Figure 4: Circuit model of a cavity loaded with a single load reactance of Xi.

microstrip antenna for three different load locations as illustrated in Fig. 5(b). It also contains plots of the
negative of the feed reactance corresponding to each feed location. The intersection of corresponding curves
is the resonant frequency of the shorted microstrip element.

The resonant mode in Fig. 5 is the (0,1) mode, the mode most commonly used in microstrip elements.
For a rectangular element of dimensions a x b, the normalized voltage distribution at observation point (z, y)
for the (0,1) mode is

v(z,y) = cos (%) .

This is zero on the center line, y = /2, of the patch. Such a line of zero field is called a nodal line. A point
at which the voltage is stationary is called an anti-nodal point. All points on the long edges of the patch
illustrated in Fig. 5 are anti-nodal points. When the load current is impressed near a nodal line, the resonant
reactance curve becomes very skinny as illustrated by case 3 in Fig. 5(a). In contrast, when the load current
is impressed near an anti-nodal point such as in case 1 of Fig. 5(b), then the X; curve becomes fat. Since
the voltage is stationary near an anti-nodal point, the X, curve does not change much as one moves the load
in the vicinity of the anti-nodal point. Thus the curve illustrated in case 2 of Fig. 5(a) is not much different
from the case 1 curve.

This variation of the X, curve would predict that the resonant frequency should monotonically increase
as the short is moved from the nodal line to an anti-nodal point if the feed reactance were to remain constant.
However, as shown in (2], the feed reactance is anything but constant with the feed position. In fact, the
feed reactance increases very rapidly as the feea point approaches the edge of the patch. If the edge is an
anti-node, then the X, curve does not change much as the load is moved toward the edge, but the — X curve
is moving rapidly downward in the graph in Fig. 5 so that the resonant frequency of the shorted element
decreases for loads near the edge. This makes sense because as the feed reactance increases, it becomes
more like an open circuit and thus its loading effect is reduced. A typical theoretical frequency versus short
position variation is illustrated in Fig. 6. The actual measured variation of resonant frequency with the
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. location of the short agrees well with the predicted results. The locat on of the shorting pin is indicated by
the normalized shorting pin location defined as

=3(-)

If one uses other types of load reactances, the resonant frequency of the loaded element will be modified
although the effect of the feed reactance is always present. Examples of other applications of loaded microstrip
elements can be found in [3], [4]. For the current application of controlling input impedance, one should not
use just a single load. The reason why will be explained in the next section.

2.2.2 Multiple loads

For multiple loads, one cannot use the simple graphical picture presented above for predicting the behavior
of a multiple-loaded element although the principles learned from this picture still apply.! For multiple loads, ¢
the characteristic equation is

Z3 + Z{” Zy2 @ Z\N
VA 222 + 2, v Z
»ooTmTA =0, 2)
2N ZaNn ... ZNN+ Zé,N) :

where Z;; is the z-parameter between the i*? and j*" port of a multiple-port microstrip cavity, and Z{' ) is
the load impedance connected to the i*® port. The z-parameters can be computed using equation (1) as
modified by integrating over the feed current distribution.? Once the resonant frequency is determined, the
next step is to compute the modal field distribution of the loaded-cavity resonant mode.

To determine the field distribution of the resonant mode, one must first assume a unit (or any other
non-zero current) at one of the ports and then compute the resulting currents at the remaining loads. Let :
Z, be a submatrix excluding the first row and column of the matrix in equation (2). Let Z;, be the first
column of the matrix in equation (2), excluding the first row. Let I be the column matrix of port currents
excluding the current in port 1, J

Then, if the load current in port 1 is I} = 1, the currents in the remaining ports are '

1=-2'2Z,. )
1 Actually, one could, in principle, apply the graphical analysis sequentially. That is, first find the effect of a single load.

N Then create a new graph in which X, is the resonant reactance and Xy is the feed reactance of the singly-loaded patch. From &
b _' these, the resonant frequency of the doubly-loaded element could be constructed. :
: L 3There is more to the computation than what has been outlined here. A very efficient analysis has been devised for computing

ﬁ-, the z-parameters in which the series is highly accelerated. The details of this are included in Appendix A.
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The resulting field distribution is

TORTPA g e l) ®

A t=]

where Y¥mn(r) and kmy, are the modal fields and corresponding resonant wavenumbers in the unloaded cavity.
Strictly speaking, this expression is only valid for observation points r outside of the load regions. That is,
if the diameter of the i*! load is d;, then |r — ;| 'must be larger than d;/2.

The input impedance of the loaded element is computed by analyzing the cavity with the actual dielectric
replaced with an artificially lossy dielectric—one whose losses account for the radiative and ohmic losses of
the original microstrip antenna. The effective loss tangent of this dielectric is S = 1/Q where Q is the
quality factor of the antenna. It is given by

1 1 1 1\!
=lo—to—t—+ =] ,
= (om*aztosta)
where Qraq is the radiative quality factor, Q,w is the quality factor associated with the surface wave, Qy is
the quality factor associated with metal heating loss, and Qg is the dielectric quality factor. These are given

where Pryq is the time-averaged power radiated by the antenna, P, is the time-averaged power carried away
by the surface wave, A is the skin depth in the metal cladding, § is the loes tangent in the actual dielectric,
and W is the average energy stored in the electric field at the resonant frequency of the cavity

The parameters in the expressions for the quality factors would appear to depend on the field under the
patch. Actually, the quality factors depend only on the distribution of the mode for which the quality factors
are being computed. The field could be multiplied by any arbitrary constant without affecting the quality
factor. At the resonant frequency of the W(r) of the loaded element, the field is strongly dominated by
W¥(r) itself. Thus, one can obtain an approximation for the quality factors by assuming the field distribution
below the patch is ¥(r), with the contributions of the other non-resonant modes of the loaded patch ignored .

The radiated field can be computed under the following approximation. The ground plane and the
dielectric are ignored, and a magnetic current filament is impressed in the presence of the ground plane.
The magnetic current flows around the edge of the patch and is equal to the voltage between the patch ana
the ground plane. The surface wave can be determined by allowing this same magnetic current filament to

% " """ J J'.'- 4""‘ o :Q-\. ._F. ,4-;,.’,:--'_‘ .~
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act in the presence of a grounded dielectric slab, although for sufficiently thin elements, the power carried
in the surface wave is negligible. The magnetic current is actually sampled at discrete points and linearly
interpolated between the sample points.® The radiated field is computed analytically and the associated
radiated power is determined by numerical quadrature.

The electric stored energy is computed by integrating the square of the electric field. That is,

W = %tc / /s |E[2dS = %tc / /s [¥(r)? dS. (@)

The singularities at the load locations in equation (3) are logarithmic; their squares are integrable. As
a result, equation (3) can be used for tJE| with little error. Since the modes of the unloaded cavity are
orthonormal, the double integration above reduces to*

w _1 2)3 aigl LI ma(Ti)¥mn(T2)
WwWE = §tfrﬂr o"OZZ fl nz—(k—z—_—k—g‘:)z—

£=0 s=0 A
Once the quality factor of the loaded element is determined, then its input impedance can be computed.

2.3 Input Impedance

e A A et e el ok i . A ® =

Assume that one more port is added to the antenna, the (N + 1)* port. The circuit model as seen from the
(N + 1)* port for the loaded cavity is illustrated in Fig. 7. The circuit model of the antenna is shown in “
Fig. 8. The .nput admittance of the lossy tank circuit only is .

- ofel(3)-)

~ G[l+j2Q(Uio-—l)].

where Q is the quality factor of the lossy tank, and wy is the resonant angular speed of the lossy tank. These

i —— ) ———————— il At — n ... &

are given by
_ R _%Ws
Q—uoL- P’
1
“6= e

where P is the power dissipated in the resistor, and W is the time-averaged energy stored in the capacitor.
The power P is related to the conductance G and the voltage V; across the tank circuit by

|V.J’G = P. (5)

The circuit quantities are related to the antenna by choosing Q to be the antenna quality factor, and P to
be the power radiated by the loaded-element resonant mode given by equation (3). The voltage V; is

3See Appendix A for details of this computation.
“The series for Wg can also be accelerated, the details of which are given in Appendix A.
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Wi = —t¥(r¢),

where 7 is the center of the feed for the loaded element—the location of the (N + 1)* port. Note that 1} is
not the feed voltage V; since the former does not include the effect of the feed reactance. The conductance
G can thus be computed from equation (5).

The feed reactance, X¢, can be modeled as a linear process over the band of operation. Let the reactance )
corresponding to the lossless loaded cavity (R = 0) be denoted by X;. Let the total reactance be X(f). Let
v
Xe = Xeo + (f - fo)Xa,
where fo corresponds to wo. Finally, let 3
LN
=14+ — , y
!"’ ( 2Q) fo ko
i
b
(i)
The resonant component of the reactance can be written as 2 A
x = 2xLUo+Af) i
T1~Q1+Af/fo)? 3\
where Af = f — fo. For small Af, this can be written approximately as :[;
by
1 Jo :
X = -xL=2L (} a'L?.
Then, ?
L - : ‘
~ S(X(4) + X(f) + 225
Similarly,
)‘
Xo = L X() - X(2)+ 2Qual). L
The quantity wol = R/Q so that o
Xp = §(X(f«r)+x(f-))+-4-5, 3
and
e
Xa = FIXU) = X(-)+ 28, R
e
What remains is to determine the input reactance of the ideal cavity at the upper and lower frequencies f, '\’ ,
and f-. o
Let the indices of the loaded ports be numbered from 1 to N with corresponding port voltages and r
currents of V, Va3, ...,Vy and I}, I, ..., Iny. The (N + 1)* port is the feed port with feed current of -
It = 1 and feed voltage Vt = Zi, where Zi; is the input impedance of the loaded element. If ::j
L
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g and I is redefined as 3
' L -
;' . = Iz \:)f h
: =\ %
' In ""..:
" then, v
: V = ZI+ Znel;, 'l
" The impedance matrix Z contains the multiport impedances between the loaded ports. The (1 x N)-matrix :-:::
. Z e contains the mutual impedances between the feed port v and the load ports r,,. The self-impedance -.r
: of the feed port in the unloaded cavity is Zg. Let the diagonal load impedance matrix be r
: 2. = Disg [ 2(", 2{7), ..., 2{]. DY
; Then :
' V = -Z.] >
I = —(2 + Zy)"'Zme, and »
- IX(f) = i=2a-Z5,(Z+2L) ' Zme- o
Having thus computed X(f), one can now evaluate the input impedance Z;, of the antenna using C::::
: 1 <
Zin = Xp + X - + - .
‘ n % Xot+ Xalf = Jo)+ ST 720077 - 10 o
r As the results of the next section demonstrate, this expression is reasonably accurate over the band of a s
single resonant mode of the ioaded element. & )
» :\‘: g
- .\' ; t
: 3 Application to Impedance Matching and Results Ay

g

A ¥

In this section, those elements of the theory presented in the previous sections specific to the application
of varying impedance are presented together with corroborating experimental results. The objective in this

a
.
¥

application is to vary the input impedance while keeping the resonant frequency and pattern of the element :L_'::j(
! fized. This objective can be met by placing short-circuits at one or more appropriately chosen locations \:::"
’ on the patch. These short-circuits can be PIN diodes thus allowing adaptation of the element to changing iy o
conditions such as the scan angle in a phased array. The theory and results given below assume that the WA
loads are short circuits. One could probably also use voltage-controlled capacitors, varactor diodes. Use of P s
& varactors would probably simplify the biasing of the diodes. This poesibility is currently under study. ~a
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Figure 9: The locus of short-circuit locations for constant resonant frequency of the single-loaded element.

As seen in the previous section, one can vary the frequency by varying the location of a short circuiting
pin. It is possible to vary the input impedance with a single short without altering the resonant frequency.
The way that the input impedance is varied for a fized feed location is to move the nodal line of the loaded
resonant mode by moving the shorting pin location. The closer the nodal line is moved to the feed, the
lower the peak input resistance will be. The trick is to move the shorting pin in such a way that at least
the resonant frequency is unchanged. This was done using an interactive computer program with graphical
output based on the theory discussed in the previous section.

3.1 Single short

The results of our computer program indicated that if a single short-circuit were placed on the locus
illustrated in Fig. 9, then the resonant frequency of the resulting loaded elements should be identical. Using
just a single short, one can vary the input impedance as is illustrated in Figs. 10~14. These figures contain the
computed magnetic current distribution, the computed input impedance, and the measured input impedance
of the loaded elements. In all cases, the patch dimensions were 4.00 cm wide by 6.00 cm long by 0.158 em
thick. The dielectric substrate was 3M Corporation’s CuClad 250 glass reinforced, double clad PTFE. The
manufacturer-supplied nominal dielectric constant was 2.43. The feed point was always at (1.00, 1.00), where
the coordinates represent the distance in cm from a reference corner of the patch. The input impedance was
collected using a computer-controlled, Hewiett-Packard 8410 network analyzer at the University of Houston.

It is quite clear from Figs. 10-14 that the magnetic current distributions around the edge of the patch are
asymmetrical. The pattern that results from such a distribution will have a significant cross-polarized pattern

14

.‘1 -‘\ ‘Fl’.. \l- - - -
LYY N AU ARV AN

;
;
]
:

-t



......

%x ¢ 2500 MHz
10 MHz Increment :

Computed -e—e—e-
l;! Measured -o—n—o~

<8
LA

(a)

Magnetic current -

/' ]

H
S

I -'. Ly

Lol efale

SAA

Y Feed Point

x ow-Load Point

Magnetic current
jJusiand yeuslepy

BN Srjeuseiy «d
(b)

A

Figure 10: (a) Measured and computed input impedance of a single-loaded element with shortcircuit at N
»

A

> ' 2625 e
bt f-toh

-‘:

NaLds

»
-

(1.75,1.04). (b) Theorstical magnetic current distribution.

o Tin Ba
NS

18 -

G A G s DA R SRR




Computed -©—o—o-
Measured -o—¥—eo-

aal lf'l il

rA
’ /‘a':}?

LN
&

v B _UA_W -
X! ﬁ)\{‘t‘q ’ }:
LT N N 1 - L

(b)

Figure 11: (a) Measured and computed input impedance of a single-loaded element with sbortcircuit at

(2.00,1.00). (b) Theorstical magnetic curreat distribution.

‘l
“ &N
.

%‘).

!
) _‘r‘"‘

¥

N

?

Y

'P-
d"

16

TN W W P

'r ‘v

e ML

n 'als

5. ol W

*x @ 2500 MH:z
10 MHz Increment

\\J

S AT

S U T
ET R N N R
AT AT K IR e R L L



Lad et bon su as o a4 aoa o g L "'vm

2
b
B
g
.
3D
4
S«
™
hy
d
]

® s 2500 MH:z
10 MHz Increment

Computed -0—o—&-
Measured -o—ux—o-

(a)

— — |

(b)
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(2.50,0.91). (b) Theoretical magnetic current distribution.
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Figure 14: (a) Measured and computed input impedance of a single-loaded element with short-circuit at
(3.00,0.82). (b) Theoretical magnetic current distribation.

19

. - e - e e e e
B I SN s

. - NEIN -4.."'- L
I I SR I 0 T N DA IR

P



T errery

although the E-plane pattern will be typical of the (0, 1)-mode of a rectangular element. The theoretical and
experimentally determined patterns for a patch loaded with a single short at (2.50,0.91) are illustrated in
Fig. 15. The measured patterns were taken with the element mounted on a 1.05m (8 7-wavelength) circular
ground plane. The element was driven at a frequency of 2470 MHz. Our pattern range 1s fairly new: it 1s
difficult to say how much of the cross-polarization is due to errors introduced by the range and how much
is due to the asymmetry in the element’s magnetic current distribution. Nevertheless, the cross-polarized
patterns appear to be at least qualitatively consistent with the predicted patterns. Note that some of the

discrepancy, especially the scalloping of the pattern and the loss of gain at the horizon is due to the finite
size of the ground plane.

In any case, it is clear that the cross-polarization arising when a single short circuit is used is significant
and probably unacceptable in many applications. Because of this, at least two shorts should be used i1n
symmetrical locations. There is another reason why two or more shorts should be used. It is clear from the
measured and computed input impedances that the impedance range obtained is not extremely broad for
a single-loaded element. We did not measure impedance levels for shorts any closer to the feed than those
illustrated 1n Figs. 10-14 because of the obstruction caused by mounting an SMA feed. However we have
plotted the theoretical resistance R versus z, where z is the z-coordinate of a single short-circuit placed
along the locus illustrated i1n Fig. 9. This plot is contained in Fig. 16. This result shou'd be compared with
the results for the double-loaded elements considered next.

3.2 Two shorts

With two shorts located symmetrically with respect to the long center line of the patch one can eliminate
the cross-polarization in the H-plane. Furthermore, one can more easily obtain a wider variation of input
impedance. Figures 17-19 contain the theoretical magnetic current distribution, and the measured and
computed input impedances of elements loaded by symmetrically located pairs of short-circuits. The locus
of points on which these pairs of short-circuits should lie is illustrated in Fig. 20.

The theoretical and measured patterns are given in Fig. 21. The measured cross-polarization s dis-
appointingly high in this case. As mentioned before, this may be due to errors introduced by the range.

Nevertheless, the cross-polarization is definitely reduced from what it was in the case of the single-loaded
element.

Finally, it is clear from Figs. 17-19 and Fig. 22 that the impedance variation is greater for the double-
loaded element than for the single-loaded element. In short, it appears that the performance yielded by a
sungle short falls short of that obtainable using two shorts.

4 Conclusions and Future Research

There are several conclusions that can be drawn from the theory and results presented in this report.

1. It is possible to change the input impedance of a microstrip element over a wide range without affecting
its resonant {requency or co-polar pattern by moving short-circuits from one point to another.
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short-circuit at (2.50,0.91). (b) Measured and theoretical patterns in H-plane.
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2. The theory that predicts this result has been corroborated by experiment. Specifically, the experiment
shows that the resonant frequency of the mode is left relatively unchanged by the appropriate placement
of short-circuits. Small deviations between the predicted and observed resonant frequency do exst.
They are due partly to errors in fabrication of the element and partly due to the errors introduced by the
cavity model upon which the theory is based. The experiment also shows that the agreement between
the predicted and observed input impedance is excellent in most cases. Finally, there was qualitative
agreement between theoretical patterns and measured patterns although the measured cross-polarized

componeats in the double-loaded element were much higher than expected from the theory-—possibly
a problem with our range and ground plane fixture.

- From the point of view of producing lower cross-polarization and from the point of view of more easily
varying the impedance level over a wide range, two short-circuits are better than one short-circuit.
Each short-circuic pair should be biased together with the same biasing voltage.

Some important items are left for future research. These include the following.

1. A simulation of loaded elements in a phased array needs to be carried out to determine the basic

feasibility of the ultimate application. This, we propose, as the major deliverable of a future research
contract.

2. Because each diode or diode pair needs a biasing line, the number of biasing lines could become quite
large if many levels of adjustment in impedance are provided. For this reason, we are currently studying
the feasibility of using voltage-controlled capacitors to change the impedance level.
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Figure 21: (a) Measured and computed input co-polar and cross-polar patterns in the E-plane for
short-circuits at (2.00,1.12) and (2.00,2.88). (b) Measured and theoretical patterns in H-plane.
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A Additional Theoretical Results

This appendix contains additional theoretical results that are implemented in the computer program used
to generate the data presented in Section 3. There are three topics within this appendix:

1. The efficient computation of the cavity Green’s function,
2. The computation of the far-field pattern, and

3. The computation of the energy stored in the cavity.

A.1 The efficient computation of the cavity Green’s function

The expression for the Green'’s function in equation (1) is very slowly converging and not particularly useful,
especially for patches of other than rectangular shape. It can be accelerated in the following way. First
partition the set A of mode indices into the union of three sets,

A= {(0,0)} U:Ze U Ag.

The first set, consisting of a single element, represents the indices of the “D.C. mode.” This is the mode of
the unloaded cavity that resonates at zero frequency—it is just a constant. Since the modes are assumed to
be normalized, this constant is

Yoo(r) = \/L?

where S represents the area of the patch.® The third set is the set of modes whose resonant wavenumbers
are greater than or equal to fkma:

A¢ = {(m,n)|kmn 2 Ekmax}-
The parameter knqy is the

= 2"fmu\/¢rl‘r

<

Emax

LY, 1,7

where c is the speed of light in a vacuum, and fnax is the maximum frequency of interest for the antenna—a
number that can be specified a priori for any analysis. The parameter £ is some real constant greater than
one. The second set is the complement of A; with respect to the set Ao,

Z( = Ao —A(.

SRoA 4

where
Ao = A-{(0,0)}

is the set of all mode index pairs ezcept for that corresponding to the D.C. mode.

Suppose that |(| < 1/£. Then one can approximate the fraction 1/(1 — ¢?) by

ARAREOR L X

A

’ .
" '5The same symbol is used to represent the set of points making up the patch. No confusion between the two uses should
7 anse.
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Then for mode indices in A¢, one can approximate the fraction 1/(k? — k2,.) by
1 1 k2 k2L-2

s R —g— — 07— — = QL) ——.
k? - kvznn kvzrm kv‘nn k;f‘n

Thus, the sum in equation (1) can be partitioned and approximated as

G(TIP') X jup { + z Ymn (T )¥mn(r’ ) - ao Z Ymn (T )¥mn(r’)

k2~ k2, re k2.,
— ayk? Z ’l’mn(')d’mn(" ) i aL_lkzL-z Z ¢'mn("k):;"mn(" ) }

This sum can be recast in a more convenient form for acceleration by summing over Ap instead of Ay The
result is

, . 1 k2 k2L-2 ,
G(rir') = jwp { + Z [k2 + dok +ay e +---4+ar; F2L ] Ymn (") ¥mn(r’)

—ag E ¢'mn(")¢’mn(f ) -a 2 Z ¢mn(")¢mn(r )

!
- map k-2 z 'bmn('k);ﬁmn(" ) } )
AO mn

There are compromises to be made in the choice of the parameter £. If £ is chosen too near 1, then the
required number of terms L necessary to approximate the fraction 1/(1 —{2) becomes very large. On the
other hand, if £ is chosen to be much greater than 1, L may be small, but the number of elements in the set
A¢ becomes very large. Either of these conditions is undesirable. A reasonable choice of £is § =2. If L is
then chosen to be 2, and the coefficients ao and a; are chosen to be 0.989 and 1.331, respectively, the error
in the approximation is about one percent. Thus, the Green’s function can be approximated as

' )1 1 k2 '
G(rlr') = jwp {§ + _E [k,—_—kz—m + aok—;.: +a -E-‘,,-,:] Ymn (r)¥mn(r') (6)
A¢

+ doGo(flf’) + kzdlcx(flf')} ,

where

Go(f'f’) = z: ¢'mn('k)2¢mn(' )

Ao
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The decomposition of the Green’s function expressed in equation (6) represents an expansion of G in
terms of its first few lowest-order modes plus the contribution due to all higher-order modes, a quasistatic
expansion. Once the quasistatic terms Go(rir') and G;(r|r’) are computed, then the Green’s function can
be evaluated very efficiently for different frequencies—the most difficult part will have been done once and
for all for a given pair of source and observation points » and »'.

The series for Go(r|r') and G;(r|r’) are still very slowly converging, as slowly converging as the series
for G. These quasistatic Green’s functions satisfy the boundary-value problem,

V3Go(r|r') = 6(r - ¢') - é res,
VGo(rir')n =0, re€d5;
V2Gi(r|r') = =Go(r[r'), r€S,
VGi(rlr')r=0, reds.

One can obtain Gy and G, by evaluating

_ 1 .. Jwp

Go = ml‘i‘},( ‘rz?)' (7)
_ ) 8 Jwu .

Gr = ml%{a—kf(c‘m)}' - ®

By expanding G in a Laurant series in k2 about k? = 0, one can evaluate these limits. To this end, the patch
is first described in terms of a coordinated system appropriate to the patch shape.

Let u and v be the coordinate variables of an orthogonal coordinate system derived through a conformal
mapping of the rectangular coordinate system. This mapping is chosen so that it maps the patch into a
rectangular patch in the (u, v)-plane. Of course, if the patch is already rectangular, then u =z, v = y. For
. a circular patch, a circular sector patch, an annular patch, or an annular sector patch, the transformation
used is

z = ae’ cos u,
y=ae’siny,

where a is the outer radius of the patch. The transformation need not be analytic, but it must satisfy

Ou| _|0v
az|~ |6y|’
Ov| _ |8u
o6z|~ |oy|’
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If these equations are satisfied, then the boundary value problem for G is transformed into
[V? + £h(u, v)2)G(rIr") = jupb(r - '),

where h(u, v) is the common scale factor of the u and v variables. If the patch is separable, then
h(u, v)? = f(u) + 9(v).

In this case, G can be expressed as

Unm (u)Um (6" Vir (v )V (v>)

Glrlr) = jun 3 ==

m=0

us
N = / Unn(u)du,

W (Vim Vb)) = Wen = Vi (04) Vit (v4) = Vi (v4)Vid (v4),
_J v ov< v
Y<TFY v, v<w

v, v<v
Uy =
v, v< v

The prime “/™ on dependent variables indicates differentiation with respect to argument. The primes on
u and v indicate the source point location (v, v') in the (u, v)-coordinate system. The Um’s and Vin’s satisfy
the separated Helmbholtz equations,

Um + (a7, + E2f(u)) Um = 0,
Vi + (=ap + k2g(v)) Vin =0,
where the “£” superscript has been suppressed on the “V” for convenience.

The a2, is the separation constant determined by applying the pair of homogeneous boundary conditions
that Un(u) satisfies at u = ug, where u_ is the left boundary of the transformed patch and u, is its right
boundary. Similarly, v_ is the lower boundary of the transformed patch and v, is its upper boundary. These
boundary conditions depend on the geometry of the patch. They are either the physical boundary condition
that the derivative Um(u) must vanish at one or both of the limits of u, or that Um (u) must satisfy conditions
that will make the field and its derivatives continuous at the limits of u. Without loss of generality, one
can always assume that V;}/(v,) = 0. The condition that V7 (v) satisfies can also be the physical boundary
condition that its derivative vanishes at v = v_, or that the field be continuous at v = v_.

These parameters can be expanded in a power series in k? as

Um=U0m+k2U1m+k‘U2m+"'r
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e *;. (AN ¢.-'.. ..-’\f.‘fx J'..‘-" n. ‘. 4'1-_.\ R AR SRR ) ..,F'.,' "‘,--,(- ‘I‘_.-,,,.R N,



g SR N

Vin = Vom + E*Vim + k' Vom + -+,

f,,:agm+kza§m+k‘a§m+---,

a
A’m = NOm ‘+k2Nlm + k‘N“‘m +-,
Wen = Wom + kzwlm + k4W2m +--

The Unm’s and the V,E ’s satisfy the sequence of differential equations,

n-1
Unm + agmUnm == Z a(zn-z),mUtm - f(“)U(n-l),m,
L=0
n-1
Vam = ogmvﬂm = Z agn—t),mvtm = 9(V)Wn-1),m,
=0

where again the superscript “t” on the V'’s has been dropped for convenience. In addition to applying the
boundary conditions discussed above, the following conditions are also applied to obtain the solution in the
most convenient form:

Nim = Nom =---=0,
Vi(ve)=0, n>0,
Vom(v4) = 1,
Vam(v-1=0, n>0,
Vom(v-) =1

These conditions can be applied since any of the muitiplication of the U and V functions by any arbitrary
function of k? leaves G(r|r’) unchanged, but does change the coefficients of the series in k? listed above—
1.e, the expansions given above are not unique. This choice simplifies the coefficients of the expansion of the

Wronskian; they become
Wam = =Vin(vs).

Using the solutions of these equations in equations (7), (8), and (9) yields the expressions

(-}
Ge(rir) =reo+ ) Fim.

m=0

The r's are
1 A
rgo = § {nxo - Tuwzo} )
1 Au A Au ?
rio = § {nzo - nlo—?WQO - ?UWQO + (’S‘,‘WZO) } )
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NEAS
- 2"0
:\'. ) fom = _-1"—) m > 0!
AuWo",
flom Wim 2
r = n d o m > 0
™ { m WOm AuWom ' ’

where Au = u, — u~. The n’s are given by

AR M LT aa ARt Nt X NIRRE M x s 6 4 _p B KX e e _ 4

Nom = L"Om(“)UOM(“')Vojn(v<)Votn(v>),
- nm = Uim(8)Vom (8 ) Vo (v<)Voh (v5) + Uom (4)Uim (4') Vo (<) Vor (v5)
-, + Uom(u)Uom () V7 (v< ) Vo (v5) + Uom(u)Uom (&) Vom (v< ) ViTa (v5 ),
7 npo = Uszo(u)+ Uso(u') + Vip(ve) + Vah(vs)
s + Uro(u)Uro(u’) + Vig(v<)Vib(vs)
ol ,_:;: + Uro(#)Vig(v<) + Uro(u)Vih(v5 ) + Uro(u)Vig(v<) + Uro(u) Vg (v5 ).
_:::_:j The summand of G, always contains the term
.F‘*" Z‘_‘:)_E_R{ie-mvx} ,
- 2x m
-; where agm = mv, z = vy — v¢ + j{u — u’). This term can be summed in closed form to yield
:,"‘»':t Golrlr') = Z2£ 220 g jvz|—In sinh(vz/2) + remainder terms.
L ' 27 2 vz[2
... - For source points (u’, v') not on the edge of the patch, the remainder terms of Gy in the preceeding expression
e are non-singular as (u, v) — (u’,v') The logarithmic singularity of the Green’s function is explicitly extracted
NS by this method. The remainder terms of Go and of G, involve sums over m of terms of the form
. :‘-_._- e—mve,
(mp)t

where z; is a complex number whose real and imaginary parts are linear functions of u, u', v, and v', and
£=1,23,

The series associated with these terms can be evaluated efficiently using the functions

o -l
Fa(z) = y{z = } t=12,..., R{z}>0
t=1
-,:::'_:E The first function F(z) can be summed in terms of elementary functions and is given by
k- R{z}

" Fi(z) = = In {2]sinh(z/2)|} .

2
The second and third functions Fa(z) and F3(z) can be computed for z in various regions of the complex
z-plane as indicated in Figs. 23-24.The formulas are extended by the following identities to regions of the
complex z-plane not covered in these two figures:
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Figure 23: Formulas for F;(z) for different regions of the complex z-plane.
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Fa(2) = Fa(z mod 27),
Fo(2) = Fa(2°).

This method has been used to obtain explicit formulas for the several differently shaped patches. The
formulas for rectangular patches are

7 = Z‘[(!b -v) +i(z -2,
n o= 2l +v)+ilz -2,
n = S{B- (0 +y)+iz-2)),
z3 %[(y> - y<) +ilz +2')),
0=l +u<) +Hilz +2),

5 = —{2b- (> +u)]+ iz +2)),
2
25 { 5 - b2+ 6-5)1),
25 {FU2+ 0- Y1 4206- 1) - JPL + 6=+ 507 )
_R{zl}: l.= 0,1,2,
— 2126 - (5 - v,

3

Zemu
QmWly) = =

3

> _(bx/a+ ar)e™
le(yh/) = & '

1 - c-—zmrb/a

Dn(ly) = | =+ 2= coth(mb/a)| Qom(ply’) - Rum(yly'),
m a

xd
F;(Z), lzl Z '2';v

xd xd
Fl (E) ' Izl < '2::

Go(rlr') = roo— % { i % Qom(yly') ~ zz:emu] cos (mrz) cos (

m=1 {=0




? - 1 2 1 ! »
Gilrlr) = rio- .2%3 {E mZ [sz(yly') - Z (; - at) c"‘"] cos (m;rz) cos (m:z >
m=1 t=0

s
- % > [Fs(ze) - szz(‘t)]} .

=0

These series typically do not require more than two or three terms for adequate convergence.

A.2 Computation of the Far-Field Pattern

Given a patch with a set of L sample points (u, v¢) along its edge (with (ur,vr) = (u1,v;)), where (u,v) is
a point in the curvilinear coordinate system used to describe the patch, one can compute the approximate
far-field in the following way. First, sample the loaded element mode ¥(u,v) at each of the sample points
thus forming the set

WO = W(ue, ve).

Then the far-field components of the electric field are given by the following formulas.

E¢ = jkot(Fgsin¢ — Fy cos ¢)41?c—jbor’

Ey = jkot(Fy cos ¢ + Fy sin ¢) cos 9-41;(-5%"’

where
-z
. . R LAV R e
F= Z T¢ [W(‘) Jo (%kof . Afg) + J A—i— jl (lkof . Af[)] AS(G""'"‘ )
=0 2
] 1
¥ = 2 [¥(ueq1, ves1) + ¥(ue, ve)) |
A @ ' |
> AW = W(ugq1, ves1) = W(ue, ve), J
p o, o] |
> re=zE+yd,  Fe=g(ratr),  Are=raa -y, !
. A
ve=u(ze,pe),  ve=v(ze,), ADse=|Ar|, #= A_::'
f=z2cosdsind + ysin@sinf + zcosf,
-y . _sinz . _sinz_coez !
;'l j jo(z) = z ' h=) = z2 z |
N :
" !
" f Y ) (
e, _‘m [
i 38 1
B 1
.:;;“ ’ 1
!:.'Q:: !
f 2 |
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::::\" A.3 The Computation of the Energy Stored in the Cavity
":::‘ This section deals with the efficient computation of the electric stored energy within a microstrip antenna
.( loaded with N lumped, linear loads. The expression for the loaded mode distribution is given in equation
v (3) in Section 2. The actual load currents, which are distributed over a finite area, are assumed to be fila-
g mentary for the purpose of computing energy. This can be done because while the field itself arising under
h) ':'_.(-’ this assumption has log singularity, the square of this field over the volume of the cavity is integrable. The
gt associated stored energy times w is given by equation (4) Section 2. This series converges slowly enough
.: K that some moderate acceleration is useful. The series is summed, approximately, by extracting a single
K 2 quasi-static term. This quasi-static term is identical to the 1?*-order quasi-static term of the expansion of
N the Green’s function itself.
; ::; The ratio
tad) 1 1 k2
e —_— s by + b 10
o w Ry R, YU, (10
LN for (m,n) € A¢. The set A¢ is the same as that defined in Section A.l. For the sake of numerical efficiency,
- the same value of £ should be used in this computation as that used for computing the field in equation (6)
~'."}'. of Section A.l. Using the approximation in (10), one arrives at
.
¥ .- Wg = te,p, f)o Z Z II;
e €20 i=0 ]
: 1 1 1
R '{W’“Z (=~ ) S ante0
S ‘ A
b = boG1(rilre) - bxkzcz(filn)} ,
where
G
'::::: Gz('lf') - E 'bmn("k)sd’mn(f )
¥ ot mn
o
o The computation of Gy(r|r’) is discussed in Section A.l. The computation of G3(r|r’') could be handled
LY d in the same way as the computation of the lower-order quasistatic terms, but this is too tedious a computa-
D tion. Instead, Ga(r|r’) is summed directly.
L
.';:: The coefficients bg and b, are the solution of the minimax problem,
R
R
b .
mia {omm o}
‘ v where
.r‘;.-, 1
"-J| ) = — -
}; ’7(3) (1 — 2)2 bo blz
-
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N .:‘ A plot of n(z) versus z will show that the minimax solution will satisfy ;
-~
3, n(0) = n(1/€*)
I and
!‘ -."— 7(0) = —n(Zmax),
.{%_::: where zq.x satisfies
AN d 2,
A &' =g ~h=0
. The solution to this is
S 2\'*
.j::': Zmax =1-— (E) .
- The solution to the minimax problem is
L _ 1 2
o b= (o) ¢
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For § = 2, these parameters are

o bo = 0.958
":_'-C_: and
\ ";- b= 3.111.
‘ "' This approximation yields a maximum error of about 4%.
J -
s The next problem is to find Ga(r|r’'). Wht is the error if Ga(r|r’) were only summed over A7 If { = 2,
‘ j; then a typical relative error level would be no worse than

0 271 % 0.06.

\:' This is because k,,.., is typically greater than or equal to the smallest non-zero k. Contributions to the
= sum outside of AE are at least 2-¢ times as small as the contribution due to the smallest k. In the

g worst case, all contributions outside of A¢ add in phase (when the source and observation points coincide)
\5*‘?4 in which case the sum can be approximated by a continuous integral over wavenumber. This accounts for
KT the exponent of 4 in the previous equation. This approximation of truncating Ga(r|r’) to just a sum over
’ -;-c- A¢ should be adequate. Under this approximation, the expression for Wg becomes
o

., We = tcru, 20 Z Z I
it =0 i=0

0o

.f\$ 1 1 - e
T st Z Ty b Ymn (i)¥mn(re) — boGa(rilre)
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